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I INTRODUCTION

The goal of this project is the development of optical signal processing architectures
and techniques that are suitable for processing information in two dimensions and yet
utilize principally one dimensional transducers. The method that we use to accomplish this
is time and space integrating processing and it allows the implementation of very powerful
analog signal processing architectures using well developed acoustooptic devices as input
electronic-to-optical transducers. This in turn makes it possible in many instances to apply
in the immediate future these architectures to applications that require two dimensional
signal processing capability. We have applied our methods to synthetic aperture radar,
image recognition, two dimensional spectrum analysis of one dimensional signals and
adaptive phased arrays. In previous years we have developed several specific acoustooptic
architectures for each application area and we have experimentally demonstrated at least
one architecture in each category. A direct consequence of our work in this area has
been the initiation of development programs in industrial and government laboratories to
build architectures that we have developed under this contract for specific applications.
For instance, there are at least five acoustooptic synthetic aperture radar processors (a
system developed at Caltech under this contract) that have been constructed in industrial
laboratories and there are active development programs in each of the four application areas
we mentioned above. In this report we present our results in each of the four application
areas during the past year.

The emphasis of our work in the radar imaging area has shifted to inverse synthetic
aperture radar (ISAR). In ISAR the object that is being imaged is moving usually in
a trajectory that is not completely known. Therefore ISAR is a much more demanding
signal processing problem than SAR because the trajectory of the moving object needs to
be estimated in addition to forming the radar image once the trajectory is known. The
approach that we have developed is to cast the ISAR problem as an optimization problem.
An image is formed using the current estimate of the trajectory, and then an "energy" iVS t
function is calculated that is mininum when the image is sharply focused. The estimate of cut,
the trajectory is then modified to decrease the energy function and thus focus the image. 04S,.

Depending on the characteristics of the target trajectory, it can take hundreds of iterations
for the algorithm to converge. In SAR, where the trajectory is assumed known, only a
single iteration is required. Therefore the computational speed that is required for ISAR
(at least when our algorithm is used) is several orders of magnitude higher than SAIl.
Current digital signal processing techniques have sufficient processing power to do the
SAR problem in real time. The reasons that optics can be advantageous in certain SAR-
applications is not speed, but rather low power consumption and size. For real tie ISA I --

imaging however in applications where the target trajectory is not known the required
speed is beyond the capabilities of digital signal processing techniques. An analog optical
implementation however has sufficient processing power to tackle the problem in real time
with reasonably low power requirement and system complexity. The energy formulation -ode

of the ISAR problem is described in section I. or
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During the past year we completed the experimental demonst ration of the
programmable acoustooptic image correlator. In this system an input image is detected by
a TV camera and applied to the optical system as a video signal through an acoustooptic
device. The reference is stored in a digital memory and entered into the system through a
one dimensional array of LEDs. In section III we show that if the reference is stored with
only one bit of accuracy, then the performance degrades only marginally. The capacity of
the correlator (defined as the maximum number of distinct objects it can classify correctly)
is reduced by a factor of only .57r. In addition the traditional training algorithms that exist
for programming the correlator can be readily modified to accommodate the binary format
of the reference. In section III we present a binary version of the perceptron algorithm. The
significance of the above results is that the design of the electronic portion of the optical
correlator is simplified drastically. The experimental demonsrtration of the acoustooptic
correlator performing multiple target recognition is also reported in section III.

Two different acoustooptic architectures for performing two dimensional spectrum
analysis were demonstrated. The first is a Mach-Zender interferometer with two
orthogonally oriented acoustooptic devices in each of its arms. The two arms of the
interferometer interfere on a two dimensional CCD where the 2-D Fourier transform
accumulates through temporal integration. The description of this system and its
experimental demonstration has been published as a paper (reference 2 in section IV).
The second architecture is a multiplicative one (the light from one acoustooptic device is
then rediffracted from a second that is orthogonally oriented. This second architecture
is described in section IV and it is more insensitive to mechanical vibrations than the
interferometric approach. The interferometer however has its own advantageous features
which are better light efficiency and simpler demodulation requirements at the output to

* separate the signal from teh bias terms.

Section V reports our progress in the area of adaptive filters. In previous years we have
demonstrated single channel acoustooptic filters that utilized a combination of temporal
and spatial integration. This year we concentrated on broadband phased arrays. In this
case jammers may be present anywhere within a bandwidth as high as one gigahertz.
The adaptive processor must then place nulls in both the temporal frequency doniain and
the direction of arrival of the jaminer to effectively cancel the interference. Again this
is a problem that is extremely demanding computationally and analog optics provides a
uniquely effective solution. For example, for a GHz bandwidth. 100 antenna elements in
the array, and 100 taps within each channel, the computational rate required simply to do
the broadband beamforming is 101:3 multiplications per second. In addition the %eight s
for each weight must be adaptively calculated in real time which further increases the

i%- ! computational load. It is very unlikely that a technology other than analog acoustooptiC
signal processors will be capable in the forseeable future of achieving this processing rale
with reasonable power consumption and system complexity.

A
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II ISAR IMAGING

11.0 Introduction

The theory and technology of producing synthetic aperture radar images of stationary
targets from moving platforms have been well developed and utilized'. As SAR imaging
requires precise knowledge of the relative motion between radar and target it is not possible
to directly produce SAR images of targets which themselves move beyond the control of
the imaging system. Inverse synthetic aperture radar (ISAR) is an attempt to overcome
this difficulty 2' ,3 .

II.1 SAR ImagingFundarnentals

Consider a three-dimensional rigid target whose reflectivity at any point in space is given,
in a coordinate system fixed on the target, by f(r) (That f(r) does not depend on time is
a statment of the constraint that the target is a rigid body). Any relative motion between
this target and an imaging radar will be described as seen in the target's coordinate system;
that is the radar moves along a trajectory, fi(t), while the target remains fixed. It will be
assumed that the change in fi(t) over the duration of a single pulse can be neglected

If the radar transmits a pure tone, g(t) = e 2 Vt, and the target consists of a small
volume d3 r centered on i*with reflectivity f(r) the received signal will be given by

s(t) - d3 rf(rl)e j 2ffv' ' (t -2,r- R,',)

If the target consists of a collection of such volumes, and if multiple reflections and shad-
owing effects are neglected, then the received signal will be given by

[2irt/,(t 2 r' R l/c
..., s(t) f d. r f(r)e ,,'

If R >> r then the far-field approximation gives IF- f R e - where ej'l is the unit

vector in the /i direction. Consequently the received signal is given by

J2 7 rv,, (t 2R/,') F(2- *,

% In other worls the radar receives the (spatial) Fourier transform of the object, at, spatIl

frequency 2 along the ray in Fourier space defined by e'R on a temporal carrier.

If the radar instead transmits a signal with a finite ban(lwidth.

_--g f u G'2

gI)dvGve''I



it follows that the received signal will be given by

fB/2 C
e -) e 2 L/,,(t 2R/c) j.

Mixing s(t) with e - 2ffu(t 2 R/c). Fourier transforming and multipling the result by

G(u) ej27rv,2 R/c, -B/2 < u < B/2;
10, otherwise

will roduce

W(v) = F(2(v+vo)R)rect(V).

If the radar does this for N different rays, e4, 0 < k < N - 1, it will produce samples
of the target's Fourier transform over some volume of Fourier space. These can then be
inverse transformed producing the function f(rl to within the resolution permitted by the
finite size of the volume. This is the basic principle of synthetic aperture radar.

11.2 Two-Dimensional Imaging

The special case of a two-dimensional geometry is considered in this paper because - 1)
It has important practical applications; almost all work in the literature deals with this
case, and 2) it greatly reduces the complexity of the problem for analysis and computer
simulation, yet the results readily generalize to three-dimensions. For a two-dimensional
geometry eR -- cos~k,sin 0 k!. Consequently a two-dimensional target, f(x,y), gives rise
to a sequence of N Fourier samples described by

F.! .( 2 (/ J L,,)Icos Ok,sin Okl)rect(v/B)
C

rect(v/B)Jdx fdyf(x,y)e y 0< k < N 1.

A very important class of problems results when the small angle conditions,

2v
cos Ok - I, sin Ok : Ok, - YO)11,,11 - 1ymn,4 Or /C I< I

hold. Then the Fourier samples "decouple" into a cascade of one dimensional transforms

2 (  " ,) f1e 3 d ,e 2 J", , d0-,. ( v, B)C, 2 . . ( X Y) 0 < k < N -1.
cf

iOk f v(



Resolution in z is achieved via "range compression"

dv e-j -(y) = f(x,y) * Bsinc( -
f-8B/2 ]t-eJ~,)c2B 1

What is left are the samples

Fk(x) = dyej2-t.ylkf(x.y) Bsinc(/x).

The quantity c/2B = Ax, the x resolution, defines the width of a "range bin". The rest of
the discussion will center on achieving y resolution within any given range bin (fixed x).
For clarity, therefore, explicit dependence on x will no longer be shown.

Resolution in y is thus achieved by inverting

Fk = dy f(y)eJ xYk, 0 < k < N - 1,

which is done by simply inverse transforming via

[(Y) = - k - Y (I21

k

?J f () f-2 ([ -y)ek]
Nk

If the problem is well posed (if it is at all possible to form an image) then the quantity
in brackets will be a sinc-like function with some main lobe width Ay. Since the actual
function depends on the Ok in a very complicated way, the following approximation will be
employed l - ) (1 1.2.2)

k

It should always be remembered that this is a "delta" function only on a scale larger than
Ay (it really has a finite width). In view of (11.2.2) it follows that to within the finite
resolution Ay, (y) ; f(y).

Notice the implicit assumption that R for each pulse -- Rk --- (needed for mixing
and filtering) arid the 0 k are known. This is the case in SAR imaging. For ISAR imaging,
however, the trajectory is unknown a priori. What one has instead are estimates Rk, 9 k.

Since radar is a range measuring device, accurate "gross-range" estimates, Rik, are much
more straight forward to obtain than are the "aspect" angles, bk, through techniques such
as point-target referencing or echo correlating. Therefore discussion below is confined to
estimating the aspect angle>.

5
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The N aspect angle estimates, 0 = (d,,... iN .v- ), define an N dimensional state space.
With each point in state space is associated an image -

(Y 01 zd7f (?) [N e Yk) d7 f(rY)h(y, r;O

For 0 5 0, h is in general not a "delta" function, and consequently f(y) : f(y). In its most
general form, then, the ISAR problem is to search state space for the point corresponding
to the "true" image. (Notice that, because of the small angle assumptions, h has a form

which is invariant under y -- y/a, 0 -+ aB. Consequently all images associated with a given
ray in state space are scaled (in y only) versions of a single image. This fact is what makes
ISAR as it is currently described in the literature 2' 3 possible. One merely assumes that
Ok OC k; the actual constant of proportionality is not needed. Hence there is no need for
parameter estimation and the problem reduces to an inverse Fourier transform. However
this approach only works for trajectories consistent with this assumption.)

11.3 State Space Statistics

Assume the range bin consists of N point-targets located at positions y, = nAy, i.e.

N-I

f(y) = E fe'i-""65(y - nAy) (!f.3.1)
n=0

"y where f and 0 are the magnitude and phase of the reflectance. Then the returns are given
by

Fk f>ii ' - fme 'e~ m

m m

where ck - -/-Ok If the target is reconstructed using trajectory estimates Ok - Ok (k

then the image pixels are given by

1n frnel ,, e (nock-n$k) 1 ~ nJp. :eJ( )I ,

m k m k

and hence

m p k I

If the (k are treated as independent, identically distributed, random variables with
density p(() then the expected value of In'2 can be computed as

E 2_ "  
> fmfpeJ(W~~,.v,) e~' n )"&e J(P ' )"kEe Jf"(' ;.

m p k 1

(11.3.2)

6
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The expected value of the random term is

E-i(Ek-q) { f dc p(E)e-n, 2 = P(n)!2 , if k I

or more compactly
' + k(1 - IP(n)12 ). (4)

Substituting (4) into (11.3.2) it follows that

E[In,121 1 P (n) 12 fnf i(V.- VW (m-, )Ok -j(P-,n)O,
N 2 P > > Z > e )e (11.3.4)

m p k I

(1 - IP(n)12)-+ N 2  ei(V'--Op) E ej( m - P )Ok

m p k

By (11.2.2),

Z e(mp) N np Zee(m-)ke(Pn) " N 2Smnbpn "

k k I

Using this in equation (11.3.4) gives the final result -

E[lf121 = f2 1 P(n)12 + (_P(n) (fI.)

m

Equation (11.3.5) says two things - errors in the trajectory estimate: l)degrade the
image pixels from an intensity of f, to f2lP(n)l2 (the first term), and 2)give rise to a noise
floor (the second term). As an example let

1

then

P(n) e '(m)-

and ([11.3.5) becomes

E. , N2 f2 e (n f2. (11.3.5a)

The pixels farthest froin the y 0 axis (n large) have on average both a higher noise
level and a lower recon.itruction intensity. Thus the image deteriorates from the extremities

7

.~. .'. .



inward. This is as expected since a small error in aspect angle causes a phase error which
grows proportional to y. To make this statment quantitative a signal to noise ratio can be
defined as the ratio of the first term in (11.3.5) to the second -

S N ~ n = f' I P (n) 12

Eat 1 - P(n)(.

where 1
Eat,2

m

For the p(E) used in the above example (11.3.6) becomes

SNR(n) E f2 1 (I1.3.6a)Ear e ( na ' -1

which clearly displays the pixel deterioration relative to the noise floor with increasing n.
Figures II.1 and 11.2 show computer simulation verification of (II.3.5a) with N = 16,o=
0.5, for a range bin with point-targets at pixels 0 and 7.

H1.4 Energy Functions

ISAR imaging can be treated as an optimization problem with respect to the state space
parameters kk. The central task then becomes the formulation of an "energy" function
describii,, the quality of the reconstruction. Without some a priori assumptions about
the nature of the image to be reconstructed it is impossible to say whether a given recon-
struction is "good" or "bad" since all images are equally likely. Thus image reconstruction
schemes generally contain a substantial amount of a priori assumptions as to the form
of the original image. The more specific the assumptions the more discerning an energy
function that can be constructed.

Our research has so far concentrated on energy functions for an important class of

targets namely binary-random-phase targets. These targets have the property that f, is
0 or 1 while ip, is arbitrary. Such a target model should be well suited to ISAR imaging
of aircraft in flight and ships at sea since such targets consist of a nearly uniform. highly
reflective object (metal) against a poorly reflective background (air or water). It. can then
be stated a priori that a good reconstruction will have in, 2 very nearly I or 0 with no
other values allowed, An energy function making use of this knowledge is

, I f, n' 0

E >: E, where E, I.H
n 1 ' ,f , CYk

where a and p are constants to be chosen. Clearly E is non-negative and assurnes its
global rninirnurn vallie of 0 when the binary image is faithfully reconstructed. K assumes

8



4the value I when all pixel energies assume the value a. The normalization factors in The
denominators insure that E is continuous as :lf2 moves across the threshold.

Using (II.3.5a), choosing a to be Eavj, and then substituting into (11.4.1) gives E,

(1 - e(n'): )P and hence
N-1 ( )

N-
E - ; (1 -

,= 0

for the energy of the mean image. This function is monotonically increasing in a. and
hence has no local minima. It is also independent of the distribution of binary point-
tar ,,,ts, depending only on their total number through E,.

II.5 Simulation Results

We have run computer simulations using the range bin model given in (11.3.1) with N = 16.

Starting with some trajectory, 6, we added noise to produce an initial estimate, 00, then
computed the corresponding initial image and its energy as given by (11.4.1). From there
an optimization algorithm (having no knowledge of the true trajectory) was used to search
state space for progressively "better" images. Figure 11.3 shows a range bin consisting of
8 point targets. Figure 11.4 is the image corresponding to an initial trajectory estimate
while the image in figure 11.5 corresponds to a point in state space eventually reached by
the algorithm.

While the above approach is completely general, it requires a search over a space
with N degrees of freedom. For large N this may not be practical. At the expense of
generality we can reduce the degrees of freedom by parameterizing the trajectory (e.g.
Ok = alk - a2 k2 -+ ... ) with M parameters where M < N. Our goal is then to obtain
faithful estimates - h l ,a 2 ... .M. Figures 11.6 and 11.7 show results for the case N
16, M = 2, where the target is that in figure I.3; figure 11.6 corresponding to the initial
parameter estimates and figure 11.7 corresponding to the improved estimates obtained by
the optimization algorithm.

11.6 Optical Processing

11.2. nThe optical implementation of the matched filtering process described in equation
S1.2.1 is straight forward. All we munist do is to place the samples in the front focal plane of

a Fourier transformring lens such that the transverse position of t k is proportional to Ok.
,-4, 'That is %%e rnw-is protl ice a tra nsn ittarnce in this plane given by

.':' lJ) _ Fk 6(x aOk)

Shere 'a is soric con tarit lte to the Fouiecr transforming property of the lens we get in
its back focal plate a field (x anl y are the transv rws coordinates in the front and back

9
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focal planes respectively)

i(y) -Jdx T(x)ej 2 1ry(x/Afj) kFke -j 2 7Y~k(a/ A- f)
k

where A, is the optical wavelength and f is the focal length of the lens. Comparing this
expression to the right hand side of equation 11.2.1 we see that they are identical except
for a different scale factor in the exponent. As we have already seen this merely scales the
image produced accordingly.

The transmittance T(x) can be produced by putting the samples on a carrier and
then feeding them into an acoustooptic device with sample Fk entering the device at a
time proportional to Ok which is our best current estimate of Ok. When all the samples
have entered the device a short laser diode pulse effectively freezes the position of the
samples and produces the image f(y).

If we let the image fall on a photodetector array we can read out the pixel intensities
serially, computing the energy E, in equation 11.4.1 as each pixel emerges and by keeping
a running sum we will have computed the total energy E when the last pixel emerges.

*This energy value is then feed back to the circuitry which determines when the samples
will be feed into the acoustooptic device at the next iteration.

10
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figure 11.1 -mean of 100 images made with sigma=O.5
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figure 11.3 -target (single range bin)
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III LED BIPOLAR CORRELATOR

111.0 Introduction

Ever since Vander Lugt demonstrated optical matched filtering in 1964 1, the main stream
of optical pattern recognition has been correlation type image recognition. In addition to
the ease of implementation by optics, matched filtering type correlator is also insensitive
to any shift in position of the input pattern. Besides using a Fourier transform filter,
matched filtering can also be implementated by using a correlation plane filter. The success
of either scheme, however, is limited by the availability of linear spatial light modulators
with sufficient dynamic range and accuracy. Subsequently, we resort to the use of a bipolar
spatial light modulator. In this report, we address the issues of the feasibility of using an
image plane bipolar filter for correlation and the performance of bipolar filters versus linear

* filters in terms of output signal to noise ratio. We also investigate the possibility of using
a single bipolar filter for multiple patterns recognition; some algorithms of so doing; and
the storage capacity of the bipolar filters corresponding to those algorithms. In the last
four sections, we describe an optical system designed to implement the linear perceptron
classification procedure using a bipolar filter.

III.1 _Bpolar correlators

We begin our investigation by first analysing the performance of thresholding the input
image'. The performance that we adopt here is SNR, the signal (correlation peak) to noise
(additive noise and side- lobe) ratio. Let f(i,j) be the image to be recognized. Assume
f(ij) to be a discrete sequence of independent, identically distributed Gaussian random
variables with zero mean and variance cf. The input image to the correlator is the sum
of f(i,j), the image to be recognized, and n(i,j), an additive noise image. Here, we also
assume n(i,j) to be an independent, discrete sequence of Gaussian random variables with
zero mean and variance a. The thresholded image is defined as

i(i, A = /1, if f(i,j) + n(i,j) > 0;

1 -1, if otherwise. (1/1.1.1)

The reference image h(ij) is obtained by thresholding f(i,j):

h h(i. J) I , if f(ij) >0;

hIi.j) { otherwise. (111.1.2)

The correlation between the thre',holded input and reference irlages is then given by

N N

j') f__ (I"J)h( , 1'J J')

t- 3
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The signal to noise ratio, defined as

SNR' = E 2[g(0,O)j 3 ,jA 0(

var[g(i',j'j,

can be shown to be

SNR'= N 2 r tan-(SNR,, )l where SNRn - a
. (111.1.5)

In order to see the effect of thresholding the input image, we compare SNR' with the
signal to noise ratio that is obtained if the input image is not thresholded. It can be shown
that in this case

SNR N 2SNR"I 
1

1 + SNR 2 (

The two SNRs are plotted in Figure III.1.1 as a function of SNR ,n. As can readily be
observed from the plot, the correlator with input image thresholded is only marginally
degraded for high input SNR.

111.2 Bipolar rotation invariant filters

Mathematically, any pattern f(r, #) can be decomposed into an infinite sum of its circular
harmonics 3

'

(r,O0) Y, fn (r) e - n't  (1[/1.2. 1a)

n= -00

where

f,(r) - f(r,O)e jndO. (11.2.1b)

Thus, if the pattern is correlated with any component of its circular harmonics f (r)e -j n,

the magnitude of the output is rotation invariant. Furthermore, if any component of
circular harmonics is recorded on a Fourier transform hologram, the resulting filter is also
shift invariant.

Computer generated bipolar filters were generated from the first two orders of cir-
cular harmonics of the letter A using the algorithm described by eq.(llI.2.1). Numnerical
correlations of the letters A,B,C,and D and the binary CC Hs were evaluated. The result
is presented in Figure 111.2.1. The intra-class recognition using the zeroth order circular
harmonics is remarkable. However, the inter-class discrimination performance is barely
satisfactory. In order to obtain good discrimination performance, cross correlations using
bipolar filters generated from different circular harmonics have to be evaluated. A comnpro-
mise between the inter- and intra- class discrimination performance will determine which
bipolar filter to be used.
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111.3 Generalized bipolar filters

In this section, we examine the possibility of designing linear bipolar filters for recognizing
multiple objects. One immediate extension of such a design, if it can be done, is to
incoporate information corresponding to multiple versions of a certain object in a filter
to achieve invariance (e.g. rotation and/or scale). We investigate two schemes that may
accomplish this goal.

The first scheme is a derivative of the well known 2-category perceptron invented in
the 60's 4 . Basically, a 2-category linear perceptron is a machine consisting of a weight
pattern w trained by a certain algorithm utilizing the set of all input patterns {fm} such
that the output

N
2

9 = Sin[:W±, m(,A 1 if jf, belongs to %P';
sgn j = '. ~-1 otherwise.(1.3)

We confine our attention to one of the simplest perceptron training algorithm, which is
as follows: The set of input patterns is arranged as a repetitive sequence of patterns, i.e.

,f'.-.f M, fI ..}. The weight vector is trained by the elements from the sequence

one at each time,

wk+ l =wk+ akf;k w some initial vector, (III.3.2a)

w h e r e _- 1 i f g k  s g 8 ) k  .f k I  = - I a n d f k C ;

C - ifgk +1nd fk + 1 and f %P; (III.3.2b)

0 otherwise.

The algorithm has converged when the correct response is obtained for each input vector.

A bipolar perceptron can be defined by modifying the linear perceptron simply by
replacing w by a bipolar weight pattern. The training algorithm can also be modified to

w k -- = sgnw k _ akf k; (111.3.3)

The result of the rate of convergence of a bipolar perceptron trained using the above
algorithm is shown in Figure 111.3.1. An ordinate reading of 10' iterations means the
binary perceptron did not converge within 10' steps. Even though a convergence proof
does not exist, preliminary computer simuations do indicate a bipolar solution weight
pattern can be obtained provided the dimensionality V is high enough. The statistical
capacity with N = 16 is shown in Figure 111.3.2. Note that the capacity curve starts to
roll off at approximately M, the number of stored vectors, equals to 2N/3, whereas the
capacity curve of a linear perceptron (not shown) does not roll off until M - N. This can
be explained by the fact that the solution region of a linear perceptron may not contain a
bipolar point. In such case, a bipolar vector does not exist which classifies all input vectors
correctly.
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The second scheme that can be used to recognize multiple patterns is described below.
For ease of comparison, we first analyse the ordinary (non- bipolar) linear filter of the
second scheme designed for the desired purpose. Consider the following algorithm: the
operation to be performed is given as

9 - sgn h(,,V)foi, J) 1 if f, belongs to 1.;

_ otherwise, (111.3..)
t,)

where * is the class of objects to be recognized. The filter h(i,j) is generated by formiaig
a weighted sum of all the input patterns, i.e.

M
h h(i,) = y a,,, fm,,(i, j), (Itt.s.5a)

where
ama +1 if fro belongs to xk; (III.3.5b)

. 1 otherwise.

To see that the above scheme is capable of recognizing multiple objects, rewrite equation
(111.3.4) as

N 2  M

g synlom.N2 fA(Z,j) +- am fm(i,3)fma(i,3)J. (111.3.6)
L t,; m' r

The RHS of the above equation is composed of two terms, namely, the signal (first) term
and the noise (second) term. Provided that the signal term is sufficiently large comparing
to the noise term, the correct response is expected.

Our next task is to obtain a theoretical estimate of the capacity of the filter. We define
the capacity to be the number of vectors M. that can be stored in a filter with vanishirigly
.small probability of error for sufficiently large dimensionality N. Assuming f (i ) to be
a discrete sequence of bipolar-valued independent random variable, i.e.

S PfImJ)j I P 1 2:

(111.3.7)
I' f,0',J)' f,,, (I", J') P:'fm(1, J)

it can be shown that
,v2

81 n.\
Shift invariance can be incoporated into this system by modifying the operation to be

g(i',') s gn [> h(,j)fm(i ,J - ") { 1 otherwise.
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In such case, the capacity Al, can be shown to be

M N N 2  (111.3.10)
16InN

The digitally computed correlations of random sequences (statistics given by eq.(III.3.7))
and the linear weighed-sum filter with different number of vectors stored are shown in
Figure 111.3.3. It can be seen from the simulated results that as the number of vectors
stored in a filter increases, so do the magnitudes of the sidelobce-. This phenomenon
accounts for the limit of the number of vectors that can be stored in a weighed sum filter.
Thf, histogram of capacity with dimensionality N equals 128 is also shown in Figure [1.3.4.
The mean of the histogram agrees with the theoretical result.

For the bipolar analog of the above scheme, consider the same operation given by
equation (111.3.4). In this case, the filter is generated by bipolarizing the filter given by
equation (111.3.5). It is given as follows,

M

h (i, J) =sgn [EZCkMIfmnl(Z',i. (311.1

Using the same statistics for the stored vectors, it can be shown that the capacity of a
bipolar weighted sum filter is only reduced by a factor of 7r/2.Thus

2 N 2
Mb '!-- - - '(111.3.12)• - . r 16lnN'

.-

for filters with shift invariance incoporated, and

-:Mb 2 N 2
Mb - 2 (111.3.13)

7r 8InN'

for filters without. Computer simulated correlations of random vectors and the bipolar
filter formed by the above algorithm are shown in Figure 111.3.5. Note that the magnitude
of the peak decays as the number of vectors stored increases in this case. This phenomenon
is understandable, since as M increases, the relative information of each vector stored in
the filter decreases. The histogram of capacity of the corresponding bipolar filter is also

, shown in Figure 111.3.6. The mean of the histogram agrees with the theoretical result.
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111.4 Optical System Implementation

Elsewhere we have described a two-dimensional incoherent acousto-optic image correlator5
and have discussed various advantages associated with this form of processing. Here we
will describe the implementation of bipolar correlations using such a system. The basic
system architecture is shown in figure (111.4.1) and consists of a 16 element vertical LED
array in the reference plane, an acousto - optic device (AOD) in the input plane, and a
CCD camera in the output plane. An IBM PC is used to load reference image data into
the electronic memory shown. The data is read out to the LEDs, 32 bits at a time in such
a way as to modulate the intensity of the 1 th LED with consecutive pixel values of the ith
reference image line. A 2 bit D-A converter preceeding each LED allows for representation
of up to 4 distinct intensity levels per pixel. In the applications reported here, three of
these levels are used to represent an unbiased bipolar signal (-1,0,1) as a biased unipolar
signal (0,1,2). The imaging optics and signal timings are such that the TDI output of the
CCD is proportional to the correlation between the bipolar input and reference images
plus some bias term. The ith LED is intensity modulated by the current

Ai(t) = [1 + a,(t)Jrect(t/T)

where ai(t) represents the bipolar signal associated with the i't h line of the reference image,
and T, is the reference image width. The Jth line of the input image results in an intensity
modulation of the diffracted light after the AOD (assuming uniform incident intensity)
that is given by :

B(t - xv) I + bj(t - x/v) 2 rect( t  X/V

where bj(t) is the bipolar signal associated with the 1 th line of the input image, and T2 is
the TV horizontal line time plus blanking interval. Using this we obtain the nth line of
the CCD output as

n, =n

Cn(x) = J [ A-.,M_-n(t)B,(t + x/v)dt
n=n- --- IIT

sn =nL T

;'~1 = 1 - an',A4 n(t)][1 + b,¢(t _- X/)2 dt(I..)

n, na
- 

n -M fl

n -- n rT
T,,(x) +- 2 1: _ an,,kf - n(t)b ,,(t +- x iv)dt

n ' n -N -'1 I T

where T(,.r) is the bias signal on the n th output line, M is the number of CCD lines and
the correlation time T is given by : T - T 4- T 2 .

In order to obtain the true correlation a(x, n) * b(x, n) we clearly must remove t he biat
termn from equation ([11.4.1). It is important to note that under the condition

< a,(t) >=< bj(t) >- 0 V i,j (111.1.2)
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where the symbol <> represents the expectation or average value, the bias signal 7'T(x) is
independent of the input and reference signals.

111.5 Correlation Results

We have implemented the above system and have obtained correlation results as shown
in figure (III.5.1). In our experiments, the three images shown in figure (lII.5.1a) were
presented to the TV camera as the input scene. The input scene signal was first passed
through a DC block in order to remove any bias . After also removing the horizontal and
vertical sync pulses the signal was amplified and a constant level was added. This level
was adjusted so as to insure that the input signal was strictly positive. For a bipolar input
scene then , this unipolar signal is simply the [1 + b(t)j described earlier. This modifie,'.
signal was used to amplitude modulate a 50 MHz RF carrier which was then applied to
the AOD.

Various reference images were generated using an IBM PC. Each reference image was
16 lines high by 32 pixels wide however, by virtue of the bipolar encoding scheme employed,
a data array of 32 bits by 32 bits was necessary to represent one image. At the beginning
of each input image horizontal line time, the 32 lines of reference data were read out to
the LEDs. Preceeding each LED was a 2 bit resistive ladder network used to convert two
bits of digital data into one of the 3 appropriate analog levels. The output correlations
are shown in figures (III.5.1b,c,d) for various reference images. As can be seen from the
figures, the system exhibits good cross correlation suppression and strong autocorrelation
peaks.

111.6 Bias Considerations

In order to represent a bipolar signal in light intensity, a constant bias is added to the
signal before modulation. The presence of this bias term in A(t) and B(t) results in the
bias term T,(x) in the system output. Removal of T,(x) is therefore required before the
true correlation may be observed. Shown in figure (111.6.1) is a typical line of the bias
signal T,(x). As expected, the bias signal is approximately triangular, characteristic of
the correlation between the two rectangular functions associated with A(t) and B(t).

Removal of the bias function T,,() is achieved by first generating a bias reference
image and a bias input image. A recording of the 2-D output correlation of these two
images is exactly T,(x) assuming the conditions of eq. 111.1.2 . Thereafter, in order to
retrieve the true correlation from the system output, 7, (r) may be subtracted fror, C, (r)
on a pixel by pixel basis. This will yield the desired signal

a(x,.n) , b(x,n) - C,(x) T,(x)

If the condition of eq. 11.,1.2' is not salisfied then the bias teri 7"' (X) beco I e', signt I
dependent. In general, it is easily shown that the bias signal is given by

n
I

=

T"(X) E ]2 2 aw ., .(t) * b,,(t x, v) rect(I TI)re( t  r )t
n -n .4 I T
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We see that the first term is the typical triangular bias ; however, the second term is in
fact signal dependent. Various schemes for removing the second term from eq. 111.6.1
may be envisioned. One particularly straightforward method would be to simply record
the two signals

T'nM J -TX

signall = f a'_--(t)rect(t/Tj)rect(t-_ )dt

rt'=n-M - T T2

n n=

signal2 = E / b,(t - x/v)rect(t/Tj)rect( t - -X / V ) d t

n' =n-M +-I TT2

and perform a pixel by pixel subtraction off line as we did with the signal independent
term. It is important to note that if the quantity of interest is the inner product of two
images rather than the entire 2-D correlation, then the condition of eq. [111.4.2] may be
relaxed somewhat. In this case it is necessary only to have equal numbers of is and -is
over the entire image to insure signal independent bias.

11.7 Implementation of a Linear Descriminant Function

The above system has been utilized in a pattern recognition scenario. Taking advantage
of the flexibility afforded by the computer generated reference images, it is possible to
form arbitrary linear combinations of these images to generate more powerful filters. A
LDF based on three images was generated using a bipolar perceptron type algorithm as
described in section 111.3. In our experiments the algorithm was init-alized with the filter

-'-W' w= E IMG, - E IMG1

t in Vj i in P2

where TP, and Ti2 are the two classes and IMGj is one of the three images to be classified.
Since only three levels may be represented in our system, a threshold arithmetic must be
implemented. That is, when executing the above algorithm we have that 1 1 - I and
that -I - 1 = -1. Although there is no guarentee of convergence in the bipolar case, we
observed convergence for all three dichotomies. The LDF as found above was used as the
reference image while the three seed images were placed in the input p!ane. The results
for three different class assignments are shown in figure (111.7.1). We see that. successful
classification was achieved for all three of the nontrivial dichotomies possible.

. , 111.8 Conclusion

We have shown that the performance. in terms of output SN? and storage capacity, of
bipolar correlation filters does not severly degrade when compared to conventional cor-
relation filters. As a matter of fact, bipolar SMs are free of the problems of limited
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dynamic range and non-linearity. We have also presented experimental results pertaining
to an incoherent acousto-optic correlation architecture. The particular system we describe
implements bipolar correlations between a TV scene and a computer generated reference
image. Good correlation results have been obtained. We have also successfully imple-
mented a two class decision machine using this correlator. Many issues still remain to be
researched. For instance, how a bipolar filter is optimized is one of them. How a bipolar
perceptron is trained to recognize multiple objects is another example. For a certain set of
data, a bipolar filter which will make the right decision in recognition may not exist at all.
It is, nevertheless, the authors' belief that the probability of having such a bipolar filter
approaches one for sufficiently high dimensionality.

. *.*,
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Figure 111.1.1. Output vs input SNRs for the binary and conventional correlators.
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Figure 111.2.1. (d) Image of of the letters A,B,C and D. (e) Computer simulated correlation
result of (a) and (d).
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CORRELATION OUTPUT (N=128, M=1) CORRELATION OUTPUT (N=128. M=2)
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Figure 111.3.3. The simulated correlations of the linear weighed-sum filters of different num-
her of stored vectors and some of their stored vectors. The threshold level for recognition
is one half of the energy of each vector.
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correlation with bipolar filter (M=1) correlation with bipolar filter (f.=2)

.6 .6
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0 0
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64 128 192 256 64 128 192 256

01-e3 . Iti

Figure 111.3.5. Computer simulated correlations of bipolar weighed-sum filters of differ-
ent number of stored vectors and some of their stored vectors. The threshold level for
recognition is one half of the energy of each vector.
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ELECTRONIC DEVICE
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Figure 1.4.1 Incoherent Correlator Architecture
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(a) Input scene top: [NIG 1, middle: LMG2, bottorri: 1%I(':
(b) Correlator output for reference image = [MG I
(c) output for ref. IMG2
(d) output for ref. IMG3
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IV MULTIPLICATIVE TIME AND SPACE INTEGRATING-

ACOUSTO-OPTIC SPECTRUM ANALYZER

IV.0 Introduction

In this section we will describe multiplicative time and space integrating (TSI) acousto-
optic architectures for spectrum analysis of images and of 1-D signals. The TSI approach
is used which combines the best features of 1-D space integrating and 1-D time integrating
spectrum analyzers'. Wagner and Psaltis have previously demonstrated experimentally
an additive architecture for folded spectrum processing of I-D signals2 . In this section
we describe and experimentally demonstrate a multiplicative processor suitable for finding
the 2-D Fourier spectrum of images. The information signal is fed into a Bragg cell and a
lens takes the Fourier transform in the coarse frequency (x) direction of the image. In the
second Bragg cell, the DFT signal is entered which along with the time integrating CCD
calculates the Fourier transform in the fine frequency (y) direction of the image. We begin
the section by describing the principles of TSI processing. The space integrating spectrum
analyzer is described using 1-D time signals and 2-D video images as inputs. Then, the
Discrete Fourier transform (DFT) based time integrating spectrum analyzer is described
and experimental results are given. The possible TSI architectures are given and analysis
is carried out. Experimental data is presented and system performance issues such as bias
removal techniques are discussed. We end with a summary of the processor and its possible
applications.

IV.1 Principles of TSI Processing

Fig.IV. .Lt shows the basic setup for a TSI architecture for spectrum analysis. Bragg cells
are used as input SLMs because of their high bandwidth. The input signal s(t) is a long
I-D signal that cannot be enclosed in the time window of the Bragg cell. This leads to
representing s(t) as a space-time raster f(x,n) where n is the laser diode pulse nurriber.
This raster then passes through a Fourier transforming lens with power in the x-direction
giving another space-time raster F, (u.n) which consists of spatial Fourier transforms of the
windowed signal s(t). Next, the raster F,(u,n) is spectrally resolved in temporal frequency
by using time integrating Fourier transform modules. The output of the system is a
folded spectrum of the input s(t). The motivation for dividing the 2-1) Fourier transforuri
operation into a space integrating lens Fourier transform and N time integrating Fouricr
transforms comes from the separability of the 2-D Fourier kernel as noted in equation
(IV.1.1). Figure [V.1.2 shows the basic principle of folded spectrum systerns originally
shown by Thomas -3 . Possible inputs s(t) to a folded spectrum system can be a narrolbituld
highly coherent signal burried in white noise (SET[) or a video signal from a canuuera
pointed at an image f(x,y). 2 A video signal has a natural rastering rnechanisin,tlierfore the
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2-D folded spectrum output is the 2-1) Fourier spectrum of the input video image.

n=.%" - l

IV.2 Spa4ce IntegratinySpectruin Analyzer

Figure IV.2.1 shows the optical setup for the SI Spectrum Analyzer. The field amplitude
at he detector plane is

F(z',t) = A g(t - ")e-J2 'Fdxe-J"t AvS(uv)e- 2 ut asinc(Au)e - j t

where v is the acoustic signal velocity in the Bragg cell and i(t) is the complex diffracted
signal.

Using the reference signal r for hetrodyne detection, the intensity on the detector
plane is

2vt 2
"xt) - Tr S -U2v B (u)- r!

For a single tone input
s(t) = acos(2rf't)

the intensity is

I(x',t) = a 2 B2 (u - -) -r2 -2 alrB(u - f)cos(27rf't 1-1)
V V

Taking the pulsing action of the laser diode into account every T seconds, the intensity on
the n t

h pulse is

(x',n) a,2 B2(u - - 2 a:rB(u - f )cos(2ir6nT +- Q) (IV.2.t)
V V

where B(u) is the general blurr spot taking into account the finite aperture of the Bragg

cell and acoustic apodization effects. Also,

k

T

a--i e

Equatiorn ([v.2.1) shows that for a single tone input, the output of the processor con-
sists of a constant bias term, a signal dependent bias term positioned according to the
signal coarse frequency f,. and a sampled temporal modulation at the signal fine fre-
quency. The third term contains the original input signal, except it has been heterod).ied
to baseband by the pulsing action of the laser diode. It is this temporal modulation that
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allows us to use time domain spectral analysis schemes, such as the DFT algorithm to
resolve the signal into higher resolution spectral components. In order to avoid aliasing
effects between the bandlimited signals in each coarse frequency blurr spot.we need to
satisfy the Nyquist criteria .i.e

1 2
T T,

where T is the sampling time of the laser diode and T, is the aperture of the Bragg cell.
When s(t) is a video signal where f, represents the nth video line, the field amplitude
on the detector plane can be written as

E(u,n)zKF,(u) * B(u)l (IV.2.2)

where K is a scaling factor. For a camera looking at a tilted grating image with a spatial
frequency uo in the x coordinate direction (fast temporal variation) and frequency v0 in
the y (slow) direction,

f =(x) cos[2ruo(x + nO)j

1
uO - vT,

V() 2vT,

Vco

U"o

where T, is the video line time. In this mode of system operation, the laser diode pulsing
rate should be set equal to the video line rate.i.e. T = T, For example, if we have a
grating with variation only in the x direction, ( v, = 0), from equation (IV.2.2) we get

E(u,n) = KrB(u - uo) + B(u -- u 0) (Iv.2.3)

and for a variation only in the y direction of the image,

E (u. n) --zK B(u) cos (27r vn X)(1..)

X = vT

Frorn equation (IV.2.3) it is clear that the fast spatial frequency variations along the x
direction of an image can be resolved in the Fourier plane by using an acousto-optic device
as an input transducer and a Fourier transforming lens to spatially channelize these fast
frequencies into coarse frequency bins. Equation (IV.2.4) tells us that spatial variations
of frequency t,) along the y direction in the image are converted by the pulsing space
integrating acousto-optic spectrum analyzer to a sampled temporal variation of the same
frequency in a coarse frequency bin. This temporal variation can then be channelized
into its fine frequency bins along the y direction by using the DFT algorithm based spa-
tially distributed time integrating modules generated by using imaging optics and a CCi)
detector array. Figure [V.2.4 shows the grating video images.
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IV.3 Time IntegratingSpectrum Analyzer Experiment

We have used the DFT Algorithm approach to time spectrum processing 4 . The DFT
algorithm is described by

n=N-1

S (k) s(n)WNnk
n=O

WN = e-

where S(k) is the 1-D Fourier spectrum of the input signal s(n).This operation can be
broken up into a summation over n of the products of the input signal samples with its
corressponding DFT matrix columns. As the DFT matrix is symmetric, we require only
half the terms in a DFT column. The analog nature of each column is sinusoidal with a
half cycle increase with each increasing DFT column. The DFT matrix represented as a
1-D signal is a stepped frequency chirp signal that can be written as

N-I -T
d(t) = E cos[nAw(t - nT)lrect[t  I (IV.3.1)

n=o

We used a personal computer to generate the DFT signal. The DFT mask and the half cycle
step behavior are shown in Figure IV.3.1. This method calculates the Cosine transform
i.e. the real part of the Complex Fourier Spectrum. The spectrum analysis is performed
along the length of the DFT column which acts as a spatially distributed local oscillator

*(DLO) in time. The frequency of the oscillators increases from the top (DC) of the column
to the bottom (half the Nyquist sampling frequency). If one of the input signal frequencies
coincides with one of the DLO beads, it beats with it to build up an interference peak
at the location of that DLO bead. In this way, the frequency components of the input
signal are resolved into the fine frequency bins along the DFT column (y) direction. Figure
IV.3.2 shows the optical system set up in the laboratory. The laser diode is pulsed at the
video line rate and the input signal s(t) into the Bragg cell is

s(t) = cos(0wo + 6)tj + d(t)coswot

where w0 is the center frequency of the Bragg cell. The signal s(t) is imaged on to the
CCD via the ti diffracted order light from the Bragg cell with appropriate single sideband
filtering done in the Fourier plane of cylinderical lens C2. The light intensity integrated
on the CCD is

nf N- I
1(y) = >3 e-J(w"')(nT ") - _ --j ,,(nr 7:)+n~- ,  ,2

()) 4

where

2 (V-- y )2 v



and 3 are signal dependent spatial frequency and phase terms and C is constant bias
term. Typical value for w, is -z 1.86 cycles per mm which gives only a few cycles on the
CCD surface giving a very low modulation. Therfore, we see peaks located at the sinc
type function maximum position y = corressponding to the signal fine frequency 6. In
our experiment. 6 is varied from DC to 7.8 KHz which corressponds to the bandwidth of a
video image along its vertical (y) or slower direction. Figure IV.3.3 shows the experimental
results without bias removal. The peak moves along the imaged DFT signal ridge with
changing fine frequency.

IV.4 Architectures for TSI Spectrum Analysis

Figures IV.4.1 and IV.4.2 show two possible TSI architectures for spectrum analysis
using crossed Bragg cells , imaging optics, a pulsing laser diode , CCD detector array
and supplementary electronics. The general signal chain for both systems is as follows.

.- The DFT signal d(t) added to a reference bias a is mixed up to the center frequency AO
of the Bragg cell before being used as input to the acousto-optic device. This composite
signal si(t) is then imaged on to the CCD plane with appropriate single sideband spatial
filtering. In the other orthogonal Bragg cell,we enter the sum of a reference chirp c(t) with
the information signal v(t) (eg. video,tones) that has been mixed to the Bragg cell center
frequency. A lens takes the Fourier transform of the signal s 2 (t) in the AO device and this
spectrum is made to coincide with the detector plane. The electric field incident on the
CCD detector plane is

E = / . (t - J2 ruzdx[ 2 (t -
JA V V

where

s(t) ='[a - d(t)COSwot

) n N - t -

v(t) -f (t- nT)rect( - _TnT

for a video signal.
c (t) co~sb(t - nT)2 rect( nT)

n

and d(t) is defined by IV.3.1. Taking into account the pulsing of the laser diode (6(t n7'))
w0 ." and the single sideband Filtering, we get the intensity on the nth pulse as

%2

" " v( (vu) - C(vu)) , A sincAu a -e , (IV. I.I)

On expanding equation (/V. .1) (see appendix A), and collecting similar terms, we get
the total time integrated inttrferornertically generated charge distribution recorded on the
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CCD after a frame time to be given by

n=N- I

I(u,y) = KRe (F (u) ,B(u))co(n ' Y) - Ki - 2  (Iv. .2)
n =0)

where the first term gives the 2-D Cosine transform of the input signal and KI and K 2 rep-
resent constant bias and signal dependent bias terms respectively. K is a scaling constant
and we have assumed that the reference chirp spectrum is uniform over the bandwidth of
the information signal. The general blurr spot B(u) has been used in the analysis. For
a continous time signal as input, the first term of equation (IV.4.1) represents the folded
spectrum of the input. On the other hand, for a video signal input, it gives the 2-D video
image spectrum. See appendix A for the impulse response of the system corressponding
to the two types of input. The architecture in figure IV.4.1 although analytically sound
has two important practical limitations. In order to achieve high spectral resolution using
present day hardware .i.e.AOD's, CCD's, the focal length of the imaging lenses runs into
meters. Secondly, for ideal operation the single sideband filtering has to be done in the
plane of the second Bragg cell which is not possible because of the thickness of the crystal
and its support casing. The architecture in figure IV.4.2 solves both these problems by
using crossed cylinders for imaging. This imaging method gives lens values that assure
overall short system length and desired demagnifications for compatibility with the CCD
detector specifications. In our case, we used 10 cm and 15 cm cylinderical lenses to achieve
the desired demagnifications.

Figure IV...3 shows the laboratory setup of the architecture in Figure IV.4.2. The
system timing is controlled by the CCD detector 7.16 MHz internal oscillator. The CCD
blanking signal is used to generate a 15.734 KHz laser diode trigger signal with a pulse
width of 100 nsec. This corressponds to a light flash every video line time. The anamorphic
gaussian beam profile of the laser diode is collimated by the spherical lens such that the
long axis is along the x direction of the SI AOD aperture. The Bragg diffracted light
from the first .OD is Fourier transformed by a spherical lens in the x direction and
recollimated in the y direction giving a slit of light positioned in the aperture of the second
AOD. The Bragg diffracted light from the second AOD is imaged on to the CCD using the
crossed cylinders. In the Fourier plane of the cylinder with power in the y direction. the
appropriate spatial single sideband filtering is done. The AOD's used in this experiment are
slow shear mode Telirium Oxide devices with an aperture time of 70 11sec and bandwidth
of 10 MlIz. A 60 Mlfz center frequency is used for the AOD's. The reference chirp is
stored in a digitally programmable read only memory (PROM) and read out each laser
diode trigger pulse using the CCI) pixel clock and a digital-to-analog converter. Figure
IV.I. I shows a reference chirp oscilloscope trace that was used in the experiments. The
chirp, being digitally generated is perfectly coherent at every laser diode pulse. The I)[ T
signal is generated by an IBM-PC image processing work station that is locked to the CCI)
dete(tor clock. For video signal inputs, the CCI) camera is locked to the CCI) detector

I array by using special syrichronizing circuitry. For folded spectrum processing of tones,
the laser diode trig,-r frequency is adjusted according to the Nyquist criteria.
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Experimental re!ults from this processor are shown in figures IV.-.5 and IV. i.6 for a
fine frequency analysis bandwidth of 7.86 Kilz. The processor is operated with a coarse
frequency resolution of 80 KHz per pixel. )ata in figure IV.4.5 corressponds to a fine
frequency variation from DC to 7.8 KHz with a zero coarse frequency variation. \We

- see the interference peak move from left(DC) to right(7.86 KHz) along the DC coarse
frequency bin. Figure IV.4.6(a) shows the 2-D folded spectrum of a single tone input
where the position of the peak gives the coarse and fine frequencies. Coarse DC position
corressponds to the base of the picture. Figure IV.4.6(b) shows the 2-D video spectrum
of a tilted grating used as the video image. The DC of the fast (coarse) variation along

the x direction of the image corressponds to the central bin between the two peaks on the
pic 'ire. The slow (fine) variation along the y direction of the image corressponds to the
left to right movement of the peak along each fast frequency bin. We get two peaks instead
of one because the video signal is mixed with 60 MHz before entering the Bragg cell giving
an amplitude modulated signal whose spectrum has two sidebands located symmetrically
around the 60 MHz carrier frequency. The single tone experiments are carried out using a
signal generator whose frequency is varied around 60 MHz. The 2-D results corresspond
to spectrums after electronic bias subtraction.

IV.5 Bias Removal Tech iques

Bias separation from the desired signal is always an important issue in interferomnetric
time integrating processors. We discuss three ways in which the bias can be removed.
Pixel by pixel electronic bias subtraction can be done by using two synchonously operated
CCD's, one to record the signal plus bias terms and the other for recording bias terms.
In our experiments, we used a PC based image processing work station with a frame
grabber to store the bias for subtraction. Another approach is to place the desired signal
on a spatial carrier which is converted to a temporal variation by the natural readout

A mechanism of the CCD and then bandpass filtered by appropriate electronics. In the TSI
processor, the 2-D spectrum can be placed on a spatial carrier by mixing the DvT signal
by an frequency offsetted Bragg cell center frequency signal eg. 60. t MHz and using a time
delayed reference chirp signal. The bias subtraction and carrier demodulation rmethods of
bias removal do not solve the problem of limited system dynamic range as processing is
done after the detection of the signal. The effective system dynamic range at the output
is

DRd - DR -- SBR

(0 -SBR)

where D[? is the dynamic range of the output detector (CCI)) and S111? is the signal tobias ratio on the detector. In most TI systems, SBR is much less than one. One way of

solving this dynariic range problem is using a photorefractive crystal for bias rerrioval .

The desired spectrurn is generated on a spatial carrier along the crystal side and is read
out by a Bragg matched beam. The possible architecture for the TSI spectrum analyzer
using a photorefractive crystal is shown in figure IV.5.I. This architecture has definite
attractions such as higher light efficiency, better system dynamic range and no reference
chirp requirement in the signal chain. In addition, the single sideband filtering does not
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have to be done in the Bragg cell aperture and this system can process higher space-
bandwidth signals as the resolution of the photorefractive crystal is much greater than
that of the CCD detector. As this system is not common path, it is more sensitive to
jitter.

S' IV.6 Processor Performance Issues

The Caltech processor shown in figure IV.4.3 achieved coarse and fine frequency res-
olutions of 80 KHz and 100 Hz respectively. The number of coarse and fine frequency
resolution bins corressponded to 384 and 491 respectively. The bandwidth of the system
is controlled by the bandwidth of the reference chirp which is programmed in a high speed
PROM to 5 MHz for video signal inputs. Modulation depths of 30 percent were obtained.
The Caltech processor performance is limited by nonuniformities in the reference chirp
spectrum due to inhouse electronics, the limited temporal coherence of the high power
hitachi laser diode and intermodulation product terms resulting from AOD and amplifier
nonlinearities. The coarse frequency resolution is limited by CCD pixel size, focal length
of Fourier transforming lens, AO cell aperture and apodization effects. For the video pro-
cessor, the ideal coarse frequency resolution of 15.7 KHz could be obtained by using a

V larger focal length lens and smaller CCD pixels. The fine frequency resolution is limited
by integration time of the CCD which corressponds to 60 Hz. Note that using carrier
demodulation for bias removal reduces the number of frequency bins along the carrier di-
rection. For using a photorefractive crystal such as Bismuth Silicon Oxide (BSO) for bias
removal in our proposed architecture we need around 8 W pulsed or 12.6 mW continous
power to record gratings with an Argon laser beam 5. This high power requirement can
be reduced for test purposes if we wait a few video frames before reading the integrated
spectrum on the crystal using the Helium-Neon readout beam. The principle of operation
involves the coherent addition of the image spectrum over successive video frames to build
up enough charge density for recording gratings on the crystal. Another important issue to
note is that in a multi-tone signal input environment, the TS[ processor will not introduce
crosstalk because each tone is spatially separated in the Fourier plane thus giving cross
terms that have negligible contributions.
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Appendix

This appendix gives the derivation of equation [V.4.2 starting with equation IV.4.1
given earlier.For simplicity of the analysis, we have assumed the u = 0 axis to corresspond
to the position of the Bragg cell center frequency ( ') on the CCD plane. The intensity
on the nth pulse given in equation IV.4.1 can be written as

In = (S - C) (a d) ; (1)

where 'S' and 'C' are Fourier spectrums of the information signal and reference chirps
respectively taken by the space integrating Bragg cell spectrum analyzer and 'a' and 'd'
are the reference bias signal and the spatially filtered and hetrodyned to baseband DFT
signal respectively. 'a' is a real quantity and 'd' is given by

"d z= e - j n '

di s =

Using the above relations and expanding equation (1) we get
'-4

i = 2ReaSC'Re(d)j + (1 + a2)rC12 + 21C 1
2 Re(ad)

(I - a 2a)IS12  - 2 S12 Re(ad) + 2(1 -+ a 2)Re(SC " )  (2)

Note that the reference chirp is a perfectly coherent chirp with no dependence on n
as the same digital chirp is generated every laser diode pulse. Re in equation (2) stands
for real value of a function. Equation (2) consists of 6 terms where the first term gives
the 2-D spectrum, the second and third terms give the constant bias term and finally the
fourth,fifth and sixth terms give the signal dependent bias term. Assuming the reference
chirp spectrum C is uniform over the information signal bandwidth and has an arbitary
fixed phase which can be taken to be zero for simplicity of analysis, we can write C = C,
where C,, is a constant. Now taking the summation over all the N laser diode pulses to
find the charge distribution on the CCD , the first term in equation (2) gives

n=N - I

I, = 2aCoRe[ > SRe(d) (3)
n -0

Substituting in equation (3) the value of S for a video signal and the value of d we get
the desired 2-1) spectrum

11 (u. y) KRe, >1] (]Flu) $c B(u))coS( -y)

l 
'

%where K is a constant term involving the constant terms CO and a and the finite size of
the CCI) detector array in the u and y directions. We have used the generalized blurr spot
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B(u) to account for the finite aperture of the Bragg cell in the SI direction. The second
and third terms of equation (2) on summation give the constant bias term K, to be

Ki NGC2 (1 -a 2 ) - 2a Co 2 COs(ay) sin(iVy) (5)
sin(N3y).; , Kl = NC,>2(I - a2 )= (N- a1) s~l)sn(y 5

,-( 2v

2v
where the first term in equation (5) gives a constant bias level and the second term gives a
fine frequency DC ridge along y = 0 with a very slow spatial modulation undetectable by
the CCD. Now taking the summation over n of the fourth,fifth and sixth terms in equation
(2), we get the signal dependent bias term K 2 as

K 2 = N(1 "- a 2 )1S(u) 2  2 12COS(ay)Sin(gY) + 2CO(1 + a 2 )1S(u)'a (6)

sin(3y)

Note that the absolute value operation on S(u, n) in equation (2) removes the time depen-
dence in the spatial Fourier transform taken by the lens giving only the coarse frequency
bias ridge terms in equation (6). The first and third terms in equation (6) give bias terms
positioned at the signal coarse frequency ridges. The constant a, depends on the fine
frequency of the signal. The second term gives the coarse frequency ridge crossed with the
fine frequency DC ridge. Combining the results from equations (4), (5) and (6) we get the
total time integrated charge distribution on the CCD to be

1 (u,y) =KRe : 2(Fn,(u) B(u))cos(n---y)l - K, - K 2 (7
nN

The impulse response of the system for a video image input with a spatial frequency u, in
the x-direction and spatial frequency v, in the y-direction of the image is

I,.co.s(rj) B(ts u) - B(u , u)j (8)

q (.A 1)

-1 7r nX y
2t

where we used the fact that the modulation along y is slow. We will get two peaks

positioned at the coordinates u - u,,y 27 V,)Xt and it - y 2

For a single tone input signal with f. and ff the coarse and fine frequencies respec-
tivelR, we get the inpulse response of the syst emti as

1, co~~~.si'n('\Z) u f: 9

c rffT"- Y

This ti rre we g(t one peak located at u , ,y rffT where c is a fine frequency
dependent constant pha-,e term.
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V. Adaptive Broadband Array Processing

V.0 Introduction

Adaptive signal processing techniques for processing broadband phased arrays are pre-
sented. After discussing the essential differences between narrowband arrays and broad-
band arrays, optimal forms for the broadband space-time filters are derived. Adaptive
processing systems which converge to the optimal forms are then presented. Acousto-optic
implementations using multi-channel acousto-optic devices are presented. One partici-
lar implementation makes use of a photorefractive crystal as a time-integrating detector
[11,121.

V.1 Narrowband Processors in Broadband Environments

The extension of adaptive filtering techniques to the space-time domain is applicable
for sonar and radar signal processing where the outputs from an array of sensors must be
weighted and summed to optimally estimate a signal in the presence of noise 1-3]. When
the array processor encounters only narrowband signals centered at a common carrier
frequency, f), the filter structure shown in Fig. V.1 is identical to that of the temporal
filter except that the input samples are the outputs of the sensors instead of a tapped
delay line. In such applications, only spatial discrimination of signals is required. and the
jammer nulling capabilities of such systems are quite good as long as the jammers are
narrowband. The output can be described by the following equation

N
z (t) - > h , ,(t), ('1

n -- I

where N is the number of elements in the array and h, is the adaptively controlled weight
for the nth sensor output u,(t).

After suppressing the temporal carrier term exp{j27rfnt}, the signal received by the
nth element due to a narrowband signal arriving at an angle 0 from boresight can be
expressed as

u,(t) = a(t)exp{ J27rfsin~nd/c}, (V.2)

where c is the speed of light, a(t) is the slowly varying envelope of the signal, and d is the
spacing between the array elements. The goal of the adaptation is the minimization of
the mean squared error between the actual output of the processor and a desired signal.
The scenario with which we will be concerned is the one where the desired signal is kno%% n
to be on boresight. and interference from directions other than this must be supprve.-c'd.
This is sometimes known as sidelobe cancellation .1,. An example of narrowband nullig,
is shown in Fig. V.2. where the array gain pattern for a uniformly weighted array and the
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minimum mean-squared error gain pattern for receiving a signal on boresight and rejecting
a jamrner of the same frequency at a sidelobe angle are plotted.

Although the jammer is received at a sidelobe angle and is attenuated relative to the
signal, the power of the jamming interferences is typically much larger than that of the
signal, and so the summed output of the uniformly weighted processor will be dominated
by the interference. In this case, the optimum pattern to which the adaptive processor
converges places a perfect null precisely at the direction of the interference.

Given the size of the array (N -- the number of receiving elements), an tipper bound
on the number of spatial jammers of the same frequency f, that the array is able to reject
can be established. The rnth jammer from a set of H! jammers can be represented by an
.- element vector O ' ) whose nth element is given by

U(m) = erp{ -j21rfjsinOfnd, c}. (V.3)

Simultaneous nulling of all of the AM jammers leads to the system of equations

"(m) 04) (I)

U 1  U 2  ... Ub I
Sl S2 ... .h

where s represents the signal vector, and the last equation of the system arises from the
constraint that the signal be accepted. If the jammers are distributed spatially such that

the vectors {() } "I. and s are linearly independent, then in order for a solution h
to exist, there can be at most N equations in the system, yielding the tipper bound of
M! - N - 1. The linear independence condition is akin to that of general position in
pattern recognition 9 and assures that the jammers are irregularly distributed in space.

S Since the narrowband arrays assign only one weight per sensor, no consideration of the
temporal content of the received signal is taken. The spatial distinction of a signal is judged
based on the observed differences in the phase of the signal as received by each lement.
If a particular jammer contains many frequencies spread over a significant bandwidth.
each component will result in a unique relative phase difference from element to elernent
andl hence will look like a multiplicity of jammers directed at different angles. Thus, if a
narrowband processor encounters a sufficiently wideband interference in some direct|i,.
it will use up all of its degrees of freedom (the adjustable weights) to null this single
directional noise.

Two exarnples are shown in Figs. V.3 and V.I. where the rninimitii n rne aired

error array patterns are plotted for a boresight desired signal and a multi-frequency jarninier
incident at 0 60 . The element spacing in each case is T. . The jamming frequencies are

.85f,. and .7f,,. with the signal power and the power in each jamming frequency being
equal. [or each case (Fig. V.3, Fig. V.A), a gain pattern for each jamming frequency is
plotted, sirce the array response is frequency dependent. Fig. V.3 depicts the response of
a 2 element array, and it is clear that only the frequency .85J'O is nulled perfectly, while Fig.
V. I. which corresponds to a .I element array, shows perfect nulling for all three frequencies.
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Fig. V.2 Narrowband Sidelobe Cancellation (arrow indicates the an-
gular position of the jammer): a)uniforrmily weighted array gain pat-
tern; b)rninirn ur Mean squared error array gain pattern (jammer inci-
dence angle is 50'
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Fig. V.3 M1i0nirrium Mean Squared Error Gain Patterns for a Multiple
Frequency Jammer (f = f0, .85f, .7f, ) Incident at. 60 from Bore-
sight (2 element array, element spacing is cj2f,): a)response for !,
b)response for .85f-, c)response for .7fo
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V.2 Optimum Broadband Systems

In narrowband applications, bandpass filters are used to assure a narrowband signal

and noise environment as shown in Fig. V.1, but where signals with large bandwidths

must be processed, such filters cannot be used. Even in broadband noise environments,

we would like the N element array to be capable of cancelling N - 1 jammers in general.

regardless of their respective bandwidths. This requires that more degrees of freedom

be available for the output of each sensor than the single weight that the narrowband

processor provides. Shown in Fig. V.5 is an N element array processor that satisfies

the requirements for operation in broadband environments by passing the output of each
sensor through a linear time-invariant filter, or equivalently, a tapped delay line 5-7.

While spatial discrimination is still made possible by the spatial sampling done by the

array of sensors, the additional capability of making distinctions based on the temporal

content of the received signals is offered by the array of filters.

An optimum choice of the linear filters based on the mean squared error criterion can

be made in the present scenario of a desired signal incident on boresight and broadband

jammers from other directions. Let s(t) represent the desired signal which is assumed

to derive from a stationary random process with zero mean and autocorrelation function

given by R(r) = Els(t r)s'(t)!. Since the desired portion of the received signal arrives

on boresight, there is no dispersion, and each element receives an identical desired signal

as(t). The interference that arrives from different directions will induce signals in each

element with different delays.

Let v,(t) be the interference component received by the nth element, assumed also

to derive from a zero mean stationary random process with covariance function given by
n(r) = Eiv,(t - r)v-(t). The total signal received by the nth element is therefore

given by u,(t) as(t) - Vn(t). The output of the array processor is given by

4 N

z (t) > J:-D hn(T)U,(t -* T)dr.(.)

The problem is to minimize the mean-squared error

c h,(r)' = E z(t) - s(t) 21, (".6)

by var ing the filter kernels hn(T). By using simple variational arguments, it is shown

in Appendix B that the rninimizinig solution for h, (r) must satisfy the system of linear
integral equations

11J,(T) oR(t T) (t (14 dF I(t). (t .7)

whc re ri . 2 ...... V. Trarisforrriatior of the above systerr to the frequency dorrain vield.

_ ti~f~.S(f) F,U(). 5(/). (v.sa)

61

J
•

. , .. % % %
r/',., ":. . '.,,, ", ._. '_. x "_. ",' '.> a,, .,,.. , .,.., . .S -,.,,".,-_. - ,_ - - ' - - - - .. -. -. ., .-..- .. -..



RECEIVING
FILTERS

ELEMENTS

, [ -- h l(t)

BROADBAND SIGNALS h 4t)

h h(t) z(t)

h > t)

Fig. V.5 Frost's Broadband Array Processor
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Here S(f) is the spectral density function of the signal and F,,(f) is the cross-spectral
density matrix of the interference, given by the Fourier transforms of the corresponding
covariance functions, and Hm(f) is the frequency response of the rth filter of the array.
For comparison, the corresponding equation for a narrowband processor with a single
complex weight u-, for the fth receiving element is

1M a, 0 Crn , = 1, for n = 1,2 .... N, (V.8b)
,%; rn-i

where o is the amplitude of the received signal component on boresight and Cm, -
E tt',- , the covariance matrix of the noise components. A comparison of Eqs. V.8a

and V.8b shows that the optimal broadband strategy is to simply provide an optimum
narrowband weight for each frequency f. Thus, the optimum broadband system reduces
to a channelized system of optimum narrowband sub-systems.

If we now assume that the signal spectrum is approximately white (e.g., spread spec-
trum codes) with spectral density S0 and the received signal component is small compared
to the noise so that aS,) << 1, then Eq. V.8 can be approximated by

>-Hm(f)rmn(f) Stj- (V.9)

The frequency-dependent response of the individual filters can now be varied to compensate
for the spectral characteristics of the environment, whereas the narrowband processor

offered no such flexibility with its single, frequency-independent weight for each sensor.

V.3 Directional Cancellation of a Single Broadband Interference[2,4-6]

The example of a cancellation of a multi-frequency irte:rference given in Fig. V.1
nhows that a narrowband array processor suppresses a broadband jammer by placing the
null over a wide region near the interference direction. This is true in general for any nar-

rowband array processor with a number of elements sufficiently large to null a broadband

interference. A large number is needed because the array pattern shifts with frequency.

liv solving Eq. V.9 explicitly for the case of a single broadband interference incident at an
V. : angle 0, with respect to boresight. we will show analytically that the broadband system

,uppresses the interference with a null that (oes not shift with frequency. placed precisely

at 0,.
Iket o(t) 1w the broadl band int erference w aveforni incidenit at an angle 0, with respect

to ho reight. so that the nh elerrient receives the relatively delayed version o(t n A). where
A . . Assii re that the interference waveform is derived from a zero mean station-
arv rairtilom proces wv ith the a,,tocorrelation function given by -I(r) EI& o(t r )o'(t)
the Co('0aian 'ce betwee mi the interference r-ceived by the nt h an(1 m th elements is given hy

'I."
. .; , , ( ) P ' ( ( f n A )
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The inclusion of sensor or receiver noise that is uncorrelated for each element and assumed
to be white with spectral density a, yields

,,(r -(n - m)A) -6l6(T)(.)

as the covariance of the total noise present in the rfth and nth elements. The noise cross
spectral density matrix, required for the optimal solution, is the Fourier transform of the
above expression. It is given by

rmn(f) = exp{j27rf(n - m)A}S,(f) - 6mn,. (V. 12)

The particularly simple form assumed by the noise cross spectral density matrix en-
ables the inversion of Eq. V.9 to be carried out explicitly. It can be shown that the solution
of Eq. V.9, which gives the optimum form for each filter, is given by

Hn(f) = (So/Or){1 - exp{-jirfA(N 4- 1- 2n)}

si'n(7rfNA) S pO2+N,() V 3s'n(rf A ) 0V13szirfA) S'(f)/(ao° + NS,(f)) }. (.3

The gain pattern that results from this choice of filters can be determined by computing the
array response to a monochromatic plane wave signal at various frequencies and incidence

•. . angles. Specifically, if we let 0 represent the incidence angle of this probe beam, the gain
pattern as a function of the probe frequency and angle is given by

g(fO) (exp{ - rf (N l)A' {/CO1  sin(7rf N ')
= -A( }. sin(7rfA')

exp{.7rf(A' _ sZn(7rfNA)(V. 14)

sn(7rfNA)• - ezp{ j zrf( - A)( - )) Si-(TA

sn(rf(A' - A)) (C2 S(f(

where A' -- dinO 'c. At incidence angles other than that of the interference. 0,, the second
term is small since A i A' so that

g9 . )- 0). S:ia2)exvpf-17rf(., N )A } in rf A'(V. 15)

which is simply the array pattern with uniform weighting.
When we probe near the interference, however, so that 0 0,, then the second terri

,econies appreciably large and the gain occomes
. f in ( Ar fA)

( f , O) -(S ,u)e.rpf{ ],rf(A I Sin(fA)(.

{ Vs(f)C'(, - .NsM)I

.'W With the assumption that the interference power is large compared to that of the detector

noi-se so that ,'2, the gain becomes zero near the interference direction. Note
also that this wll in the array pattern remaiins fixed for all frequencies where there is

sufficient iriterfervi,ce power to overcome the detector noise.

67

'I
Jat, . %*



V.4 Adaptive Array Processor

As in the strictly temporal case, the adaptive broadband sidelobe canceller also uti-
lizes convolvers and correlators to accomplish the desired task. However, because of the
multi-dimensional nature of the signals (spatial and temporal), arrays of correlators and
convolvers must be employed. The basic system is shown in Fig. V.6.

The output of the processor is simply the sum of all of the signals from the array
elements and a feedback signal, which is derived from a cascade of multi-channel correlation
and convolution operations performed on the output and input signals. The output is fed
back to the first block, which calculates the correlation between the output signal and the
N input signals from the array elements. Each of the resulting correlation functions, given
by (u, 1 (t) *z(t)), n = 1,2,....N, is then convolved with its corresponding input. The N
convolved results are summed to give

N

= G u,(t) * (u,,(t) * z(t)) (V.17)
n=1

as the feedback signal, where G is the feedback gain.
To show that the adaptive processor approximates the optimum response, however,

the output must first be expressed in the form of Eq. V.5, where the impulse respon :e
for each array filter is explicitly shown. We will show that the equation describing the
filter impulse response functions, h,(t), n = 1,2,....N, of the adaptive processor is
approximately equivalent to that of the minimum mean-squared error processor given by

:q. V.9.
In ordler to clarify the analysis to follow, we redraw the schematic of Fig. V.6a as

shown in Fig. V.6b so that as in the Frost architecture (Fig. V.5). the output from
iridiv idual filters can be identified and described. Here, the output of the r th filter is given

by

Y" N,~( h,(t r)u,(r)dr.

or equivalertly. Y, (f) ft,(f)V',(f) where Y, (f) is the Fourier transform of y,,t). The
overall output is then given by z(t) k, y,,(t). Inspection of Fig. V.6b vields

, ,(t) ' t ,, ,i (t) . ,( )

where (f) is the l)irac deltia fiur ( , Iin. Sirr e .r,, (t) h,,(1) . ,,(). t he irrpl'l( rE, m ,i '

of the ri, filter is des-cribed by

,, ) ,

...................................................
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Taking the Fourier transform of the above equation and rearranging yields

[8,m - GU"(f)Um(f Hm(f) 1, (V.20)
m

where U,(f) is the Fourier Transform of u,(t). If the feedback gain G is sufficiently large
so as to leave the first term of Eq. V.19 negligible compared to the second, then Eq. V.20
becomes

GEUL(f)Um(f)Hm(f) ; 1. (V.21)
m

Th,: is of the same form as the optimum equation, Eq. V.9. provided that the input SNR
is sufficiently low so that we can identify u ,(f)u,(f) as the estimate of the noise cross
spectral density matrix rmn(f). The particularly simple form of Eq. V.20 can be inverted,
however, to give a closed form solution for the adapted filtering functions. The derivation
is analogous to that leading up to Eq. V.13 and yields

H(f(f) - mrn(f) n = 1,2,..,N. (V.22)yN,,,=, jUrn(f) 12

Suppose that the total signal received by the array consists of a weak probe signal on
boresight represented by p(t) whose Fourier transform is P(f) and strong interference
signals incident in other directions, the noise received by the nth element represented
by vn(t) whose Fourier transform is V,(f). Thus, the total input is given by u,(t) =
p(t) -4- v,(t). The probe is sufficiently weak as to only negligibly affect the determination
of the filtering functions H,(f) so that approximately,

S ( 1Vm(f) n 1,2,..,N. (V.23)
y N-"nl IVm~fyp

The output is described by

Nz(s) E Hnz(f)un (s)
n =1 N(.4

:M I V ((fn- G [ V r(( =l Vm(f) 2

Further expansion yields

Zv N Vm (.)

E V ,(f) 1-- ,__

n-- 1 I GZ 1 VM(f) 2
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As expected. the second term is effectively suppressed if the feedback gain can be made
large.

V.5 Optical Implementation

The optical implementation of the adaptive sidelobe canceller is a fairly straight-
forward extension of the optical techniques used for the temporal systems described in
Chapter 3. The extension is made simply by using arrays of convolvers and correlators
to handle the N input signals from the antenna array sensors. The input spatial light
modulators to be used are multi-channel and single channel acousto-optic devices that
offer large dynamic range and can operate on broadband signals. We concentrate first
on a space-time integrating system that involves the use of a photorefractive crystal to
perform the time integration. A strictly space integrating array processor is described in
Section V.6.

The basic task of the processor is to form the feedback signal given by Eq. V.17.
Note, however, that since correlation can be expressed as u,(t) * z(t) = u-( t) * z(t), and
convolution is both an associative and commutative operation, the feedback signal can be
expressed equivalently as

N(t - (t) u,(t ou t)W .6
n-- I

This rearrangement suggests that we can modify the systemr architecture sorriewhat by first
computing amt autocorrelation function of each input signal, adding the autocorrelations
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and convolving the summed result with the output, z(t), to form the feedback signal as
illustrated in Fig. V.7.

For the purpose of discussion, however, we adhere to the strict interpretation of Eq.
V.17 as discussed in V.4. As shown in Fig. V.6a, the output is first correlated against
each of the N input waveforms, and each resulting correlation is then convolved with its
corresponding input. The .V convolution-correlation signals thus produced are summed
to form the feedback signal. The multi-channel correlations are performed using time
integration and the convolution with the output signal is achieved with space integration.

Shown in Fig. V.8 is the multi-channel correlator, where the output autocorrelations
are written as modulations of an index grating formed on the crystal by the photorefractive
effect. More specifically, AODI and AOD2 are arranged to operate in a coherent, additive
architecture. The single channel AODI diffracts a portion of its input light. This passes
through AOD2 without being affected because of Bragg mismatch and is imaged onto the
crystal to yield the amplitude z(t -t- x/v - T/2)exp{j27rfo(t + x/v)} in the crystal plane.
The multi-channel AOD2 diffracts the undiffracted beam from AODL, which is aligned to
be well matched to its acoustic gratings to yield the optical amplitude

I: u,(t - x/v - T/2)r,(y)exp{j27rfo(t- x/v) ,

also imaged onto the crystal. Here rn(y) characterizes the vertical confinement of the
acoustic beam in each channel of the multi-channel AOD and can be approximated by

I. y - -(n - '-)o'71-)rect y( y)0
rn(y) .L ( r,,, , n = 1,2,..,,N, (t.27)

6y being the acoustic beam width and yo the separation between neighboring channels,
where N is assumed to be odd.

These two amplitudes are incident at an angle with respect to each other. Since
both have the same Doppler-shift in frequency, an intensity grating is seen by the crystal.
In fact. an array of one-dimensional modulated index gratings, each confined vertically
by r,(y), is formed within the crystal. It can be shown that the modulation functions

* are proportional to the desired correlation functions, and specifically, the diffracted light
due to the nth grating when the crystal is illuminated by a plane wave is given by 8
,E, (x, y)erp{ - j2xrf(2x v)}. Herett

E,(x., y) x r, .(g) exp'(t' t) T , (t' x r, T 2)z-(t' - x ' 2, t'

r (Y) IUn(t')Z'(t - 2X v)dt'.
rntY)] , T 2)

In this equation, the exponentially decaying v iridow fhitition has been dpproxirilatCd 1, I
rectangular wiridow of temporal duration r. The resulting integral is proportion al to t he
correlation fun,:tion of u,n(t) and z(t) with 2rrt' as the shift variable.
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To complete the task of forming the feedback signal, we combine the previously de-
scribed correlators with a space integrating convolver, resulting in the system shown in
Fig. V.9. The added portions are the multi-channel AOD (AOD3) which is driven by
the system output z(t), some imaging optics, and a single photodetector. Since the auto-
correlations are available at a compressed horizontal spatial scale, 2x/v, a combination of
cylindrical and spherical lenses C1,L5,L6 is used to anamorphically image AOD3 onto the
crystal. This anamorphic imaging provides a 2:1 demagnification ratio in the horizontal
direction and 1:1 in the vertical.

A portion of the He-Ne read beam is diffracted by AOD3 and passes through the
crystal unaffected since its propagation direction is not properly Bragg-matched to the
correlation gratings in the crystal. The DC beam from AOD3, however, is arranged to
be Bragg matched to the gratings and reads out the correlation functions. If the acoustic
velocity in AOD3 is v, the same as that of AOD1 and AOD2, and all of the AODs are
driven at the same frequency, fo, then the read beam diffracted by the crystal and that
diffracted by AOD3 are collinear and interfere temporally at fo because of the Doppler shift
induced by AOD3. The diffracted light amplitude just behind the crystal due to the crystal
gratings is proportional to Ej E.(x, y)exp{j27rfo(-2x/v)}, and the diffracted light from
AOD3 evaluated at the same plane is F-, exp[j27rfo(t - 2x/v)]u,,(t - 2x/v - T/2)r,(y).

The sum of the above two amplitudes are Fourier transformed by lens L7, and the
resulting intensity distribution is integrated across the Fourier plane by a sufficiently large
photodetector. If w is the width of each AOD. the result is the output photocurrent

i(t) x Re {exP{"2rfot} J-/4 f E'(x,y)u,(t - 2x/v - T/2)dydx

DCterms
jw/4fo cft - /v-T/2

:x Re{exp{j27rfut} rn(y)u(t')z(t' - 2.r'v)
n J -w/4 t _t-x/v-T/2 -r (V.29)

u (t - 2z/v - T/2)dt'dydx} + DCterms

oc Re{exp{j2irfot} ]Jun(t')z(t' - 2x,'v)
n f-T/4 t-z/v-_T/2-r

u,(t - 2x/v - T/2)dt'dx} + DCterms.

The high frequency term centered at f) is approximately equal to the desired feedback
signal given by Eq. V.17. The output of the system z(t) is then formed by subtracting the
feedback signal from the sum of the input signals >Vn un(t) to yield

Z(t) - fG) fT4 f[ U (t t -T/2)z(t' -t -. 3- T'2)

n Tr T14Jr (V.30)

u,(t - 2j3 - T/2)dt'd3},

where 3 x v. T - ,v, and G is the feedback gain. Here we have assumed that the
signals received by the array are all centered at f( and that they drive the AOI)s directly
after being amplified.

76



By defining an equivalent impulse response, h,(a), for the system such that z(t)
- f- h,(a)un(t - a)da, Eq. V.30 can be expanded further to give

z(t) =, uu-(t) ( Z] Jt' t3-T) (V.31)

n n

Um(t' - t + , - T/2 - a)u,(t - 20 - T112)dadt'd3}.

An equation that describes the impulse response can then be derived by noting that the
output appearing on the left side of the above equation can be expressed, using the impulse
response. With the assumption that the integration time, r, is long enough to warrant the
approximation sincf r] ;, (f), the resulting impulse response equation is given by

h P( ) ;Z 6( ) - G()rect ]3 -T/2 f 0 exp{j2 rf'(3 - a - T/2)} (V.32)

h. (a) Un (f') Um (f')df'da,

where Un(f) is the Fourier transform of the nth input signal un(t). Taking the Fourier
transform of the above equation gives

Hn(f) = I-C 1 exp{jir(f' - f)T}sinc'(f' - f)TIHm(f')U'(f')Um(f')df'. (V.33)
m

This is very similar to the optimal equation discussed in V.2 if we identify the product
U'(f)U,,(f) as an approximation of the required cross spectral density matrix. In par-
ticular, the effect of the finite convolution time is to distort the spectral properties of
the input noise field. Thus, the optical implementation is expected to place a spectrally
broader null in comparison with the interference bandwidth, but the spatial characteristics
remain similar to the optimal case.

V.6 Adaptive Array Processor with Variable Look Direction

The array processor described thus far is a sidelobe-cancelling system where the mlax-
*imum sensitivity (the "look direction") is always constrained to be in the direction of

boresight." In this section, an acousto-optic processor is presented which is an extension
of the temporal active processor described in to the space-time domain. The optical archi-
tecture considered uses space integration as opposed to the photorefractive implermentat ion
considered in the previous section. The optimizing criterion used is that of maxirmizing
the output SNR (signal detection) and the signal need not arrive on boresight.

The scenario considered is that where a signal waveform s(t) is incident on the arras at
a known angle 0 with respect to boresight. and noise (possibly broadband) from directiorlal

The look direction can be changed by introducing appropriate delays in the sigrials
received by each element before they are processed.
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sources corrupt the received signal waveform. Let s,(t) =-.5(t - n(d'c)cosO) be the signal
waveform received by the nth element. The total signal received by the nth element is then
given by u (t) = s,,(t) + v,(t), where v,,(t) is the sum of all noise terms. Here d is the
array element spacing, and c is the speed of light.

The output of a general space-time filter can be expressed as

N 00

y(t) T J u(r)hn(t - T)d,, (V.3.4)

where un(t) is the complex envelope of the total rf signal (centered at fo) received by the
nth array element, and hn(t) is the filtering function for each channel. A similar expression
is obtained for the optically implemented space-time filter using two multi-channel AODs
shown in Fig. V.10. This system is coherent, and the output can be shown to be given by

2ciNT/2 u,(t - r - T/2)h,(t + T)dr, (V.35)
y Nt= T N: T/fV.o

n=l

where the filtering function h,(t) is used to drive the second AOD, and cl is a constant
that depends on laser power, AOD diffraction efficiencies, and the quantum efficiencies
of the detectors. The only differences from the general filter (Eq. V.34) are limited
accumulation time and the time compression of the output. This is of little consequence
since signal detection rather than estimation is considered here. The noise v,(t) present
in the received signal is modeled by a zero-mean random process with a covariance matrix
given by

Irn (t) Etm(t)vn(t- r)]. (V.36)

It can be shown through variational arguments that the choice of h,(t), for which the SNR
of the AO space-time filter is maximum at a specified time to, must satisfy the following
system of integral equations:

.. f rn n( - 3)hm()d4 = As*(t - T), n = 1,2, .. , N. (V. 37)

The details of this derivation are given in Appendix B.
For adaptivity, we need to calculate and continuously update the filter function to

drive the output to the optimum result. As with the temporal active processor, the output
must be correlated with the input to produce the appropriate filter function. Since the
array processor has N inputs and one output, this requires that we correlate N signals
with a common one. This can be achieved with the arrangement shown in Fig. V. 11. That
figure shows the use of a multi-channel AOD driven by the N antenna element outputs ill
conjunction with a single channel AOD driven by the processor output signal.

The complex envelope of the output of the nth detector element is given by

rn(t) - J y(t r)u ' (t + 2r - T/2)dT, (V.38)
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where c.2 is a constant that depends on the laser power. AOl) diffraction efficiencies, and
the quantum efficiency of the detector. For proper correlation to appear at each output,
the signal driving the single channel AOD must be time-compressed by a factor of two.
This is indeed the case for the system described. Thus, the AOD implemented space-time

'V" filter and the .V channel correlator with a single reference are compatible.
A Shown in Fig. V.12 is the array processor block diagram that shows the interconnec-

tions required; it is a direct extension of the temporal - 'ive processor to two dimensions.
The output from each antenna element is correlated with the processor output to produce
the filter function for that element. The "steering vector" s, ( -t) determines the look
direction of the array and also is the temporal reference signal used for the detection of
the ,esired signal -;(t).

Fig. V.13 sho s the optically implemented adaptive array processor with the AOD
implemented space-time filter in the upper branch and the N channel correlator in the
lower one. By combining Eqs. V.35 and V.38, the equation that determines the filter
function h,(t) is seen to be

h ,(t) 7 s,( t . t,,) G lie p ] u' (t- 2 beta T 2)T2 f T 4 (V.39)rnl

u, (t - .3 r T 2)h,(t - 3 - r)d3dT.

where G is the feedback gain. Under conditions of low input SNR and large feedback gain.
Eq. V.39 can be transformed to the frequency domain to yield

f ).; (f) ;

v x p ( 2 7 I ' I n( v . 10 )

e.rp j (f f')T .I .oric (f f')T .sinc (f f')T 2df',

k her , e f i-th ['O i ,rier tran4ormn of ., (t).

Fo-,r cornjpari-oi. Ctro.ider the Fourier transform of Eq. V.36: the optimiim filter equa-
I lon is g ilvi b

\f I' ) ... (f;II,,(f) Aerp( j2,rft,)S (f), (V. I1)

% 'rv I _, .. (fJ is the jpwtral ,,rlit. muatrix. hdentifin g the integral in Eq. V.O as the
'.r ,ot ,, e-tirn t,, of the ,ro- -pectral den,-ity riatrix of the input noise vector, Eq. V. 10
i4 ,ppr, l\irfrltI, e ,iv; .,iir to l-q. V. it. toeover, the effect of the finite time integration

1,rl I- - il III t,,-rl''t t 1i, ot" thoI e roi-c >pectrurn.
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Appendix

Optimum Broadband Array Processors

The optimum broadband array-processing systems discussed in Chapter V are derived
in this appendix. The two optimality criteria considered are the mean squared error and
the maximum output SNR conditions. Simple variational arguments are used to derive
the necessity conditions for these criteria. Since the costs to be minimized are quadratic
functionals of the impulse responses that are varied, these necessity conditions are sufficient
as well, and so describe the systems uniquely. Throughout this appendix, the noise received
by the nth array element is represented by vn(t) which is assumed to be a zero mean,
stationary, random process with covariance Imn(r) = E[vm(t)v;(t - T)].

Minimum Mean Squared Error Sidelobe Canceller
We model the desired sign,! by a zero-mean stationary random process s(t) whose

autocorrelation function is given by R(r) = E[s(t)s'(t - r)]. Let the total signal (desired
signal plus noise) received by the nth element be represented by u, (t) = s(t) + v, (t). Since
the scenario of interest focuses on a signal arriving on boresight, each element receives the
same desired signal without dispersion.

The form of the processor is shown in Fig. V.5, where the parameters that must be
optimized are the N impulse response functions. The output signal is given by

N 0

z(t) - J__ h,(r)un(t -- r)dr, (A1)

and the cost to be minimized is given by

C h,(t) -- E z(t)- s(t) 2 1

>__ ~h h,(3)h,(r)' R(3 r) + t.,(3 r) drd,3
'4 r f n

. , X) (,-12)
n~R(0) { f h,(r)n( r)dr T c}

"here we have assumed the noise and signal portions to be statistically irdh(,periilt.
Let h , (t) represent the optimurn filter for the nh elerrien t. and let q9(t) repre ,tit amr

oither inpul.e resporw furiction. In order for 1i,,(t) to he the 'ot-r tiruinui/iuug .Ohuitio..
the perturb.d cost fumrntin C hd,.(t) • ollq (t) nm ,t hav a nrriffirru valum at the poirt
to ORI JOI 0. where ojh and o+i are, real. The t~%o corioditiow, that expre,s, thi.-
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Carrying out the above calculations leads to two equations which combine to yield

Z J g"(r){,] h'(i3)[R(i3 - r) I nm(/ - r)1d3 - R'(T)}dr = 0. (A4)
n 0

Since g,(t) is an arbitrary function in Eq. A4, the terms within the braces must sum
identically to zero. This gives the following condition that the optimum filter must satisfy:

- (O)[R(,3- r) + -Ynm(O - r)jd,3 - R'(r) =0, (A5)

which is both necessary and sufficient because the cost functional is quadratic. This is the
generalization of Wiener's result to the space-time domain of broadband phased arrays.

Maximum Output SNR Array Processor
We now consider the task of signal detection, using the array processor of Fig. V.5.

The signal is a known waveform s(t), which arrives at an angle 0 with respect to boresight,
and the noise field is the same as that discussed for the MMSE (Minimum Mean-Squared-
Error) processor. The total signal received by the nth element is therefore given by

u (t M 7S r (t) (.6)

where s,,(t) = s(t - ndcosO/c) is the signal waveform as seen by the nth element.
The output is given by

-- 0
n ( n d

Since the processor is linear, the signal component can be readily identified frorn the no i(,
at the output. The output signal and noise are described, respect iely b.w

(t) . t r h ,,( ),

e .... ,,o.. J ', t r h , r ,;

The gofl is to riaxlirri,/e the oiutiplt SNFH gi1.'. t,,.
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An equivalent problem is to minimize the output noise power while constraining all
admissible impulse responses to give the same output signal amplitude at to. In particular,
the functional expressed by Eq. A9 can be maximized by minimizing the cost given by

Qh(t)]= E[jenotj,(to)12] - A{Z]___ s,(to - r)h 7 (r)dr - c}

n --O.aZ >n 7J J -  hn(T)h(3) Ynm(/3- r) drd3 (AlO)

0O

- A{ZY- f sn(to - r)hn(r)dr - c}.

where the constraint esignal(to) = c has been included through the use of the Lagrangian
multiplier A.

Again, representing the optimum filter by hn(t) and an arbitrary function by 9,(t),
we apply the conditions given by Eq. A3 to obtain

v gn (r){- Ynm (3 - r)h' (O)dO - Asn(t)- r)}dT =0. (A 11)

- Since gn(t) is an arbitrary function, the terms within the braces must sum identically to
zero, yielding the condition

>. / -mn(r 3)hm(3)d3 A'.(t,, r). (.412)
m

which is the matched filter result generalized for phased-array processing. The Lagrarigian
multiplier A is immaterial since it merely multiplies all N filters b, a constant factor ant
ha., no effect on the output SNR. Therefore. Eq. X12 describes the optirmit resllt to
within a constant factor
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