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I INTRODUCTION

The goal of this project is the development of optical signal processing architectures
and techniques that are suitable for processing information in two dimensions and yet
utilize principally one dimensional transducers. The method that we use to accomplish this
is time and space integrating processing and it allows the implementation of very powerful
analog signal processing architectures using well developed acoustooptic devices as input
electronic-to-optical transducers. This in turn makes it possible in many instances to apply
in the immediate future these architectures to applications that require two dimensional
signal processing capability. We have applied our methods to synthetic aperture radar,
image recognition, two dimensional spectrum analysis of one dimensional signals and
adaptive phased arrays. In previous years we have developed several specific acoustooptic
architectures for each application area and we have experimentally demonstrated at least
one architecture in each category. A direct consequence of our work in this area has
been the initiation of development programs in industrial and government laboratories to
build architectures that we have developed under this contract for specific applications.
For instance, there are at least five acoustooptic synthetic aperture radar processors (a
system developed at Caltech under this contract) that have been constructed in industrial
laboratories and there are active development programs in each of the four application areas
we mentioned above. In this report we present our results in each of the four application
areas during the past year.

The emphasis of our work in the radar imaging area has shifted to inverse synthetic
aperture radar (ISAR). In ISAR the object that is being imaged is moving usually in
a trajectory that is not completely known. Therefore ISAR is a much more demanding
signal processing problem than SAR because the trajectory of the moving object needs to
be estimated in addition to forming the radar image once the trajectory is known. The
approach that we have developed is to cast the ISAR problem as an optimization problem.
An image is formed using the current estimate of the trajectory, and then an “energy”
function is calculated that is mininum when the image is sharply focused. The estimate of
the trajectory is then modified to decrease the energy function and thus focus the image.
Depending on the characteristics of the target trajectory, it can take hundreds of iterations
for the algorithm to converge. In SAR, where the trajectory is assumed known, only a ___
single iteration is required. Therefore the computational speed that is required for ISAR
(at least when our algorithm is used) is several orders of magnitude higher than SAR.
Current digital signal processing techniques have sufficient processing power to do the
SAR problem in real time. The reasons that optics can be advantageous in certain SAR
applications is not speed, but rather low power consumption and size. For real time ISAR
imaging however in applications where the target trajectory is not known the required
speed is beyond the capabilities of digital signal processing techniques. An analog optical

implementation however has sufficient processing power to tackle the problem in real time — -———
. . . . . .

with reasonably low power requirement and system complexity. The energy formulation Oijff

of the ISAR problem is described in section II. vpor
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During the past year we completed the experimental demonstration of the
programmable acoustooptic image correlator. In this system an input image is detected by
a TV camera and applied to the optical system as a video signal through an acoustooptic
device. The reference is stored in a digital memory and entered into the system through a
one dimensional array of LEDs. In section III we show that if the reference is stored with
only one bit of accuracy, then the performance degrades only marginally. The capacity of
the correlator (defined as the maximum number of distinct objects it can classify correctly)
is reduced by a factor of only .57. In addition the traditional training algorithms that exist
for programming the correlator can be readily modified to accommodate the binary format
of the reference. In section IIl we present a binary version of the perceptron algorithm. The
significance of the above results is that the design of the electronic portion of the optical
correlator is simplified drastically. The experimental demonsrtration of the acoustooptic
correlator performing multiple target recognition is also reported in section III.

Two different acoustooptic architectures for performing two dimensional spectrum
analysis were demonstrated. The first is a Mach-Zender interferometer with two
orthogonally oriented acoustooptic devices in each of its arms. The two arms of the
interferometer interfere on a two dimensional CCD where the 2-D Fourier transform
accumulates through temporal integration. The description of this system and its
experimental demonstration has been published as a paper (reference 2 in section IV).
The second architecture is a multiplicative one (the light from one acoustooptic device is
then rediffracted from a second that is orthogonally oriented. This second architecture
is described in section IV and it is more insensitive to mechanical vibrations than the
interferometric approach. The interferometer however has its own advantageous features
which are better light efficiency and simpler demodulation requirements at the output to
separate the signal from teh bias terms.

Section V reports our progress in the area of adaptive filters. In previous years we have
demonstrated single channel acoustooptic filters that utilized a combination of temporal
and spatial integration. This year we concentrated on broadband phased arrays. [n this
case jammers may be present anywhere within a bandwidth as high as one gigahertz.
The adaptive processor must then place nulls in both the temporal frequency domain and
the direction of arrival of the jammer to effectively cancel the interference. Again this
is a problem that is extremely demanding computationally and analog optics provides a
uniquely effective solution. For example, for a GHz bandwidth. 100 antenna elements in
the array, and 100 taps within each channel, the computational rate required sitnply to do
the broadband beamforming is 10!'* multiplications per second. In addition the weights
for each weight must be adaptively calculated in real time which further increases the
computational load. It is very unlikely that a technology other than analog acoustooptic
signal processors will be capable in the forseeable future of achieving this processing rate
with reasonable power consumption and system complexity.
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I1 ISAR IMAGING

The theory and technology of producing synthetic aperture radar images of stationary
targets from moving platforms have been well developed and utilized!. As SAR imaging
requires precise knowledge of the relative motion between radar and target it is not possible
to directly produce SAR images of targets which themselves move beyond the control of

the imaging system. Inverse synthetic aperture radar (ISAR) is an attempt to overcome
this difficulty?-3.

I1.1 SAR Imaging Fundamentals

Consider a three-dimensional rigid target whose reflectivity at any point in space is given,
in a coordinate system fixed on the target, by f(r) (That f(r) does not depend on time is
a statment of the constraint that the target is a rigid body). Any relative motion between
this target and an imaging radar will be described as seen in the target’s coordinate system;

that is the radar moves along a trajectory, R(t), while the target remains fixed. It wi'l be
assumed that the change in R{t) over the duration of a single pulse can be neglected

If the radar transmits a pure tone, g(t) = /2™t and the target consists of a small
volume d?r centered on r with reflectivity f(7) the received signal will be given by

S(t) - dgrf(r‘)eﬂﬂ’uu(t ~2{r‘~ﬁ”"-)'

If the target consists of a collection of such volumes, and if multiple reflections and shad-
owing effects are neglected. then the received signal will be given by

s(t) . /d'"‘,-f(,.')eﬂwul.(t 20F é:/(:).

If R > r then the far-field approximation gives |r - é! = R - €g - ¥ where e is the unit
vector in the R direction. Consequently the received signal is given by

.‘;(t) . e]27ru.,(t—2R/c)/dzrf(r)ej'z:r"";f“e}u r

: . 2v
I oY g oo,
- e]?rrl/u(t ZR/L)[l( eR)-
c

; In other words the radar receives the (spatial) Fourier transform of the object, at spatial

2 p
‘ ‘) . . . .

N frequency v 1 along the ray in Fourier space defined by €. on a temporal carrier.

08 '
th If the radar instead transmits a signal with a finite bandwidth,
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it follows that the received signal will be given by

B/2
" ' s(t) = e”’”‘"("?R/C)/ du{G(u)e’ﬂ"”R/"F(2—(U—+—Uolé‘R)]eJ'2""",
‘ c

~-B/2

Mixing s(t) with e 727v:(t=2R/¢) Foyrier transforming and multipling the result by

X G(v) _j27u2R/c  _Rjo < .
! H({v) = {0(,(”1;& T , f/? 3 v < B2
' otherwise
ey, will%roduce
2(v +vo) . v
) W(U) = F(_.(_c_h)eR)rect(_E).

By If the radar does this for N different rays, é’fq, 0<k <N -1,it will produce samples
e of the target’s Fourier transform over some volume of Fourier space. These can then be
i inverse transformed producing the function f(7) to within the resolution permitted by the
gk finite size of the volume. This is the basic principle of synthetic aperture radar.

;‘:' I1.2 Two-Dimensional Imaging

The special case of a two-dimensional geometry is considered in this paper because — 1)
" It has important practical applications; almost all work in the literature deals with this
case, and 2) it greatly reduces the complexity of the problem for analysis and computer
A simulation, yet the results readily generalize to three-dimensions. For a two-dimensional
oy geometry €% - ‘cosf,sinf|. Consequently a two-dimensional target, f(z,y). gives rise
to a sequence of N Fourier samples described by

2(v + ), .
'..;.: F -(fc~ ’);cos0k,sm0k])rect(u/b’)

MR

5 < rect(u/B) [ do [y flzper e,

A
==
1A
P

R A very important class of problems results when the small angle conditions,

) 2v
! cos 0k = 1, sin 0k =~ 0k1 ( - yo)nmr - Bym.uam[u/fc 2
; c

Siy hold. Then the Fourier samples “decouple” into a cascade of one dimensional transforms

| p2v )
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1,0k ) /'iyefz”"‘-"’f"* /duocn(u/n)ef”' C Ui f(r,y), 0< k<N -l
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Resolution in r is achieved via “range compression” —

) ) B/2 . 2+ ] Sv+egp) I
o / dv eI / dger?" T4 f(g,y) = f(z,y) + Bsine( ).
::0 -B/2 c/2B
tw::
i What is left are the samples
il 2m 2y . z
e sz/deJ Y% f(z,y) « Bsinc(——=).
..’J
. .
f:fv The quantity ¢/2B = Az, the z resolution, defines the width of a “range bin”. The rest of
' the discussion will center on achieving y resolution within any given range bin (fixed z).
" For clarity, therefore, explicit dependence on z will no longer be shown.
.‘;l'!
‘,::E' Resolution in y is thus achieved by inverting
‘::::n
Y ;2
Fy =/dyf(y)e]myo“, 0<k<N -1,
i
N - . . . .
i::a, which is done by simply inverse transforming via
i
t:'.“ " 1 2n g
- —— Fre I3z 9% 11.2.1
‘ f(y) N Y Fi ( )
A".“ k
4
';‘ = [ dn f(n) i e’ s (n—y)bx
'«“.’ - r’ ’7 N - ¢
L‘e k
ey If the problem is well posed (if it is at all possible to form an image) then the quantity
;:t'{ in brackets will be a sinc-like function with some main lobe width Ay. Since the actual
:m:: function depends on the 8¢ in a very complicated way, the following approximation will be
e employed -
l =~ 2
— N 5T ¥ 5 - y). (11.2.2) |
N I
ld ;
4
';{ [t should always be remembered that this is a “delta” function only on a scale larger than
e Ay (it really has a finite width). [n view of (I1.2.2) it follows that to within the finite
' resolution Ay. f(y) = f(y).
T
l:: Notice the implicit assumption that K for each pulse — R -~ (needed for mixing
L and filtering) and the 8, are known. This is the case in SAR imaging. For ISAR imaging,
5 8 N
':uf. ‘ however, the trajectory is unknown a priori. What one has instead are estimates R, 8.
' Since radar is a range measuring device, accurate “gross-range” estimates, Ry, are much
,;‘_ more straight forward to obtain than are the “aspect” angles, 8, through techniques such
_,-;: as point-target referencing or echo correlating. Therefore discussion below is confined to
v::;i estirnating the aspect angles.
v ' 5
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The N aspect angle estimates, § = (0},, e By 1), define an N dimensional state space.
With each point in state space is associated an image —

f(y;é) :/dnf(,’) ['IIVZ 'W('lek_yl?k)] —/dﬂf( (47 0)
k

For § # @, h is in general not a “delta” function, and consequently f(y) % f(y). In its most
general form, then, the ISAR problem is to search state space for the point corresponding
to the “true” image. (Notice that, because of the small angle assumptions, h has a form

which is invariant under y — y/a,0_.—> af. Consequently all images associated with a given
ray in state space are scaled (in y only) versions of a single image. This fact is what makes
ISAR as it is currently described in the literature?® possible. One merely assumes that
0k x k; the actual constant of proportionality is not needed. Hence there is no need for
parameter estimation and the problem reduces to an inverse Fourier transform. However
this approach only works for trajectories consistent with this assumption.)

I1.3 State Space Statistics

Assume the range bin consists of N point-targets located at positions y, = nAy, i.e.

N-1

= Z fr€¥"6(y — nAy) (rr.3.1)
n=0

where f and ¥ are the magnitude and phase of the reflectance. Then the returns are given

by
Fy = Zf ¢l s MAYOk jUm Z‘ Frmel U el Mk
m
where ¢ = 2:{/%5’01:. If the target is reconstructed using trajectory estimates Ok - Ok + €k

then the image pixels are given by

fod ]. ™ . I 1 -~ -~
- JWm J(mer-nor) - JVm Jm nYéy —)nes
fn = N 2 fme E € =y E fme g e e
m k m k
and hence

n l -~ . - ~ — - 4 £
fn["? - N L mefpe]("’"' v,;.) L Lej(m n)bk =i (p n)dig Jnlee f1)
’ m p k !

If the € are treated as independent, identically distributed. random variables with
density p(e) then the expected value of | f,'? can be computed as !

LLfmf,,el v w"}_‘}‘el m Mg J(p mlbipe anine t0)
\'Z !

(11.3.2)
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Mt The expected value of the random term is

NS E[e—jn(ek—c‘)] — ffd( p( e ]ne 2 = P( )'2 if k #l
L 1, if k=1

or more compactly
Ele=/™e=<)] = |P(n)|? + é(1 — |P(n)|?). )

Substituting (4) into (I1.3.2) it follows that

N P(n)i? o e Con
E||fal?] = LI(V—Z) sznfpe](w"‘ ¥p) ZZCJ( )k =7 (p—n) 1 (11.3.4)
m p k l
P:Q.t‘ (1 — |P Yo (m—p)é
.:f:::'l +_—__ Z ZCJ( ¥p) Ze](m p)dx

By (I1.2.2),

B :’} A Zei(m—x’)d’k ~ Népp, = Z Zej(m—n)m e (P—n)ér Nz&mnépn-
o p PR

et Using this in equation (I1.3.4) gives the final result —

R BlA = e - G 5 g (1135

R Equation (I1.3.5) says two things — errors in the trajectory estimate: 1)degrade the
Mo image pixels from an intensity of f2 to f2|P(n)|? (the first term), and 2)give rise to a noise
e floor (the second term). As an example let

i’;,. then
:E;."b' and (I1.3.5) becomes

S5 - . o 1 - e (no)- ~
e R T (11.3.50)

w0
” The pixels farthest frori the y 0 axis (n large) have on average both a higher noise |
W level and a lower reconstruction intensity. Thus the image deteriorates from the extremities ?
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X
inward. This is as expected since a small error in aspect angle causes a phase error which
grows proportional to y. To make this statment quantitative a signal to noise ratio can be
defined as the ratio of the first term in (I1.3.5) to the second —

‘."\a"!'

e,

Wy 2 |P(n)i?

s SNR(n) = dn 1P (11.3.6)

bR E,, 1 —|P(n)?

":“'u

. where |

ki 8

e Eav = 5 2 f

B m

o 0y

B For the p(e) used in the above example (I1.3.6) becomes

e 2

RO SNR(n) = I . (I1.3.6a)

e Eay elno) —1

U"

“c’ . . . . . . . S .

¥ ::. which clearly displays the pixel deterioration relative to the noise floor with increasing n.
Figures II.1 and II.2 show computer simulation verification of (I.3.5a) with N = 16,0 =

,n.;g o 0.5, for a range bin with point-targets at pixels 0 and 7.

ool

\3 I1.4 Energy Functions

LA

ISAR imaging can be treated as an optimization problem with respect to the state space
parameters ¢,. The central task then becomes the formulation of an “energy” function
v describii.g the quality of the reconstruction. Without some a priori assumptions about
the nature of the image to be reconstructed it is impossible to say whether a given recon-

» ok e ok b
VLA

%
- AP AN &

»z struction is “good” or “bad” since all images are equally likely. Thus image reconstruction
) schemes generally contain a substantial amount of a priori assumptions as to the form
o'!;b' of the original image. The more specific the assumptions the more discerning an energy
;. ’ function that can be constructed.
.:' ; Our research has so far concentrated on energy functions for an important class of
i targets namely binary-random-phase targets. These targets have the property that f, is
B 0 or 1 while v, is arbitrary. Such a target model should be well suited to ISAR imaging
1\".':‘ of aircraft in flight and ships at sea since such targets consist of a nearly uniform. highly
1::::;0", reflective object (metal) against a poorly reflective backgr(fund (air or water). It can then
.::::'v' be stated a priori that a good reconstruction will have f, ? very nearly 1 or 0 with no
other values allowed. An energy function making use of this knowledge is

Y

;,,u'.' . , >\ P R

oy N (,lffy. ) Lo LR

5 S S T LR T
% = ICS

.‘ where o and p are constants to be chosen. Clearly F is non-negative and assumes its
':E: global minimum value of 0 when the binary image is faithfully reconstructed. F assumes
By

e 8
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the value 1 when all pixel energies assume the value . The normalization factors in the
denominators insure that E is continuous as | f,|? moves across the threshold.

Using (I1.3.5a), choosing a to be E;,, and then substituting into (I[.4.1) gives E,
(1 — e=(n9)*)P and hence
N

-1
(1 - e (no) )p

1
’V

for the energy of the mean image. This function is monotonically increasing in ¢. and
hence has no local minima. It is also independent of the distribution of binary point-
tar'ts, depending only on their total number through £,,.

I1.5 Simulation Results

We have run computer simulations using the range bin model given in (I1.3.1) with N = 16.

Starting with some trajectory, 5, we added noise to produce an initial estimate, 50, then
computed the corresponding initial image and its energy as given by (II.4.1). From there
an optimization algorithm (having no knowledge of the true trajectory) was used to search
state space for progressively “better” images. Figure I[.3 shows a range bin consisting of
8 point targets. Figure I1.4 is the image corresponding to an initial trajectory estimate
while the image in figure I1.5 corresponds to a point in state space eventually reached by
the algorithm.

While the above approach is completely general, it requires a search over a space
with N degrees of freedom. For large N this may not be practical. At the expense of
generality we can reduce the degrees of freedom by parameterizing the trajectory (e.g.
0 = a k - azk? + ...) with M parameters where M < N. Our goal is then to obtain
faithful estimates — a,,ay...apr. Figures I1.6 and II.7 show results for the case vV -
16, M = 2, where the target is that in figure I1.3; figure [1.6 corresponding to the initial
parameter estimates and figure I[.7 corresponding to the improved estimates obtained by
the optimization algorithm.

I1.6 Optical Processing

nThe optical implementation of the matched filtering process described in equation
[1.2.1 is straight forward. All we must do is to place the samples in the front focal plane of
a Fourier transforming lens such that the transverse position of Fy is proportional to 8.
That is we must produce a transmittance in this plane given by

T(r) ) Fed(r - aby)
k

where a is some constant. Due to the Fourier transforming property of the lens we get in
its back focal plane a field (x and y are the transverse coordinates in the front and back

9
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focal planes respectively)
f(y) = /dIT(I)e—ﬁﬂy(r//\-J) — Z er—ﬂvryc’k(a/hf)_
k

where A, is the optical wavelength and f is the focal length of the lens. Comparing this
4y expression to the right hand side of equation I[.2.1 we see that they are identical except
for a different scale factor in the exponent. As we have already seen this merely scales the

] image produced accordingly.

The transmittance T(z) can be produced by putting the samples on a carrier and
; then feeding them into an acoustooptic device with sample F) entering the device at a
time proportional to fx which is our best current estimate of 0r. When all the samples
N have entered the device a short laser diode pulse effectively freezes the position of the
-, samples and produces the image f(y)

-~ If we let the image fall on a photodetector array we can read out the pixel intensities
?_ : serially, computing the energy E, in equation [I.4.1 as each pixel emerges and by keeping
"-5; a running sum we will have computed the total energy E when the last pixel emerges.
e This energy value is then feed back to the circuitry which determines when the samples
) will be feed into the acoustooptic device at the next iteration.
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figure II.1 - mean of 100 images made with sigma=0.5
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figure II.2 - equation II.3.5a with sigma=0.5
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k3 II1 LED BIPOLAR CORRELATOR
o II1.0 Introduction
“W'

{3 .
::::: Ever since Vander Lugt demonstrated optical matched filtering in 1964!, the main stream
AAX of optical pattern recognition has been correlation type image recognition. In addition to

the ease of implementation by optics, matched filtering type correlator is also insensitive

,;fv to any shift in position of the input pattern. Besides using a Fourier transform filter,
::;u: matched filtering can also be implementated by using a correlation plane filter. The success
:4:3: of either scheme, however, is limited by the availability of linear spatial light modulators
LY

with sufficient dynamic range and accuracy. Subsequently, we resort to the use of a bipolar
spatial light modulator. In this report, we address the issues of the feasibility of using an

X image plane bipolar filter for correlation and the performance of bipolar filters versus linear
e ge p P
. filters in terms of output signal to noise ratio. We also investigate the possibility of usin
LB g
o a single bipolar filter for multiple patterns recognition; some algorithms of so doing; and
; gle bip
e the storage capacity of the bipolar filters corresponding to those algorithms. In the last
i p g
. four sections, we describe an optical system designed to implement the linear perceptron
W > classification procedure using a bipolar filter.
\
R
e II1.1 Bipolar correlators
[
We begin our investigation by first analysing the performance of thresholding the input
W . . . . .
:.' image?. The performance that we adopt here is SN R, the signal (correlation peak) to noise
o (additive noise and side- lobe) ratio. Let f(7,j) be the image to be recognized. Assume
E: : f(t,7) to be a discrete sequence of independent, identically distributed Gaussian random
aled variables with zero mean and variance a}. The input image to the correlator is the sum
'i. of f(i,7), the image to be recognized, and n(i, ), an additive noise image. Here, we also
‘:E:," assume n(1,) to be an independent, discrete sequence of Gaussian random variables with
G zero mean and variance 02. The thresholded image is defined as
¢ ::
"o
¥y . .. ey o
Sh 2 1 if f(i,7) +n(i,)) > 0O;
Ly) =9 . L = 111
s f(.J) { -1, if otherwise. ( )
g'ﬂ
3
'?",w.' The reference image k(7. ) is obtained by thresholding f(z.):
-
'y . o
— .y b i) 20 (111.1.2)
Vi 1. otherwise.
Yt
.
-‘.‘:: The correlation between the thresholded input and reference images is then given by
N ON
’:':u g(t', ") 2: Z: Flh( -y - 1) (111.1.3)
1':‘ 1 ]
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The signal to noise ratio, defined as

E?g(0,0)]

NR' = : /g Irr.1.4
S| varlalr 'L, 1, 7' #£0 ( )
can be shown to be
1 1 2 o
SNR'=N*|_ + —tan™(SNRin) where SNVR,, = 2L. (I11.1.5)
¥ On

In order to see the effect of thresholding the input image, we compare SNR’ with the
signal to noise ratio that is obtained if the input image is not thresholded. It can be shown
that in this case

N2SNR?,
1+SNR?

The two SN Rs are plotted in Figure III.1.1 as a function of SNR? . As can readily be
observed from the plot, the correlator with input image thresholded is only marginally
degraded for high input SNR.

SNR = (I11.1.6)

I11.2 Bipolar rotation invariant filters

Mathematically, any pattern f(r,8) can be decomposed into an infinite sum of its circular

harmonics3,
x0
= Y falr)e ", (I11.2.1a)
n=-o00
where
= /f(rﬂ)e’""’do- (I111.2.1b)

Thus, if the pattern is correlated with any component of its circular harmonics fr(rle" jnd
the magnitude of the output is rotation invariant. Furthermore, if any component of
circular harmonics is recorded on a Fourier transform hologram, the resulting filter is also
shift invariant.

Computer generated bipolar filters were generated from the first two orders of cir-
cular harmonics of the letter A using the algorithm described by eq.(I11.2.1).
correlations of the letters A,B,C,and D and the binary CGHs were evaluated. The result
is presented in Figure II[.2.1. The intra-class recognition using the zeroth order circular
harmonics is remarkable. However, the inter-class discrimination performance is barely
satisfactory. In order to obtain good discrimination performance, cross correlations using
bipolar filters generated from different circular harmonics have to be evaluated. A comnpro-
mise between the inter- and intra- class discrimination performance will determine which
bipolar filter to be used.

Numerical
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II1.3 Generalized bipolar filters

In this section, we examine the possibility of designing linear bipolar filters for recognizing
multiple objects. One immediate extension of such a design, if it can be done, is to
incoporate information corresponding to multiple versions of a certain object in a filter
to achieve invariance (e.g. rotation and/or scale). We investigate two schemes that may
accomplish this goal.

The first scheme is a derivative of the well known 2-category perceptron invented in
the 60's'. Basically, a 2-category linear perceptron is a machine consisting of a weight
pattern w trained by a certain algorithm utilizing the set of all input patterns {f,,} such
that the output

N2

g = sgn [Z w(i,j)fm(i,j)] = { +1if fm b.elongs to ¥; (111.3.1)

— —1 otherwise.
tl]

We confine our attention to one of the simplest perceptron training algorithm, which is
as follows: The set of input patterns is arranged as a repetitive sequence of patterns, i.e.
{{l,fz, o fM gL -}. The weight vector is trained by the elements from the sequence
one at each time,

whtl = wk 1 ok, w! = some initial vector, (I11.3.2a)
where

. +1 if g* == sgn|w* f_']:—landka\II
o =4¢ -1 if gk = +1and f* ¢ ¥; (111.3.25)
0 otherwise.

The algorithm has converged when the correct response is obtained for each input vector.

A bipolar perceptron can be defined by modifying the linear perceptron simply by
replacing w by a bipolar weight pattern. The training algorithm can also be modified to

whel = sgnlwk - akfk: (I111.3.3)
The result of the rate of convergence of a bipolar perceptron trained using the above
algorithm is shown in Figure I[[.3.1. An ordinate reading of 10! iterations means the
binary perceptron did not converge within 10? steps. Even though a convergence proof
does not exist, preliminary computer simuations do indicate a bipolar solution weight
pattern can be obtained provided the dimensionality .V is high enough. The statistical
capacity with N = 16 is shown in Figure [[1.3.2. Note that the capacity curve starts to
roll off at approximately M, the number of stored vectors, equals to 2N /3, whercas the
capacity curve of a linear perceptron (not shown) does not roll off until M .. V. This can
be explained by the fact that the solution region of a linear perceptron may not contain a
bipolar point. In such case, a bipolar vector does not exist which classifies all input vectors
correctly.
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-~y
,"EE' The second scheme that can be used to recognize multiple patterns is described below.
For ease of comparison. we first analyse the ordinary {non- bipolar) linear filter of the
Ly second scheme designed for the desired purpose. Consider the following algorithm: the
:"' operation to be performed is given as
.
R - £ fon bel v
! ~, . .. +1 if f,, belongs to ¥;
- R N = . 1134
g 5gm [Lh(l Nmli J)J { —1 otherwise, g )
% ¥
. D)
D)
::i where W is the class of objects to be recognized. The filter ~(:, ) is generated by formiag
’;::' a weighted sum of all the input patterns, i.e.
M
v h(5,5) = o frmr (3, 5), (111.3.5q)
- -
:' 3 where ) bel "
apy = {+1 if fonr .e ongs to ¥; (I11.3.5b)
5 -1 otherwise.
N To see that the above scheme is capable of recognizing multiple objects, rewrite equation
-\ (II1.3.4) as
2y
N M
i g  sgn {am.\'szn(i,j) + Z Z am fm(1,7) fme (2, 7). (I11.3.6)
"J 1,7 m'#Em
o
Y
‘jh The RHS of the above equation is composed of two terms, namely, the signal (first) term
' and the noise (second) term. Provided that the signal term is sufficiently large comparing
o to the noise term, the correct response is expected.
R ¢
kﬁ. 4 Our next task is to obtain a theoretical estimate of the capacity of the filter. We define
‘ the capacity to be the number of vectors M, that can be stored in a filter with vanishingly
1, small probability of error for sufficiently large dimensionality N. Assuming f,.(i.J) to be
- a discrete sequence of bipolar-valued independent random variable, i.e.
‘7,
&

P [rn(l',j‘) = l h P‘fm(l-,]') = l =12
! (111.3.7)
. p S oy p o
% fm(’-./)‘fm’(‘v]) ‘fm(t,j),
' it can be shown that
e V2

: ' M.~ RE
i b S (11:4x)
. 4 -

‘, Shift invariance can be incoporated into this system by modifying the operation to be

N: .
i gi', ) = sgn [2: i) i g e )| = { ] B belome 0¥y

-1 otherwise.
.“. l,]
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O [n such case, the capacity M, can be shown to be
' j"_l ’
N2
gt M, ~ . (I11.3.10)
o 16inN
‘f\
TN . . . .
o The digitally computed correlations of random sequences (statistics given by eq.(I11.3.7))
AN and the linear weighed-sum filter with different number of vectors stored are shown in
. Figure II1.3.3. It can be seen from the simulated results that as the number of vectors
7' N stored in a filter increases, so do the magnitudes of the sidelobes. This phenomenon
Ew accounts for the limit of the number of vectors that can be stored in a weighed sum filter.
Ol . . . . . N . . -
.' - The histogram of capacity with dimensionality N equals 128 is also shown in Figure [11.3.4.
B The mean of the histogram agrees with the theoretical result.
Mg For the bipolar analog of the above scheme, consider the same operation given by
-Q: equation (II.3.4). In this case, the filter is generated by bipolarizing the filter given by
MiA; equation (IIL.3.5). It is given as follows,
:!"f o
'3 h(i,7) = sgn [Z &t o (i,j)]. (I11.3.11)
\: » m’
'a' : _ .. . .
s Using the same statistics for the stored vectors, it can be shown that the capacity of a
o bipolar weighted sum filter is only reduced by a factor of 7/2.Thus
l"_ 2 N?
[ My ~ — , I11.3.12
. :_-: T 16in N ( )
et .
e for filters with shift invariance incoporated, and
J
- 2 N2
e My~ = —., (111.3.13)
o 7w 8InN
gl
RO% for filters without. Computer simulated correlations of random vectors and the bipolar
'> filter formed by the above algorithim are shown in Figure [[1.3.5. Note that the magnitude
N of the peak decays as the number of vectors stored increases in this case. This phenomenon
| "{', is understandable, since as M increases, the relative information of each vector stored in
K ::: the filter decreases. The histogram of capacity of the corresponding bipolar filter is also
ey

shown in Figure [[[.3.6. The mean of the histogram agrees with the theoretical result.
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IT11.4 Optical System Implementation

Elsewhere we have described a two-dimensional incoherent acousto-optic image correlator?®
and have discussed various advantages associated with this form of processing. Here we
will describe the implementation of bipolar correlations using such a system. The basic
system architecture is shown in figure (II.4.1) and consists of a 16 element vertical LED
array in the reference plane, an acousto - optic device (AOD) in the input plane, and a
CCD camera in the output plane. An IBM PC is used to load reference image data into
the electronic memory shown. The data is read out to the LEDs, 32 bits at a time in such
a way as to modulate the intensity of the it* LED with consecutive pixel values of the /"
reference image line. A 2 bit D-A converter preceeding each LED allows for representation
of up to 4 distinct intensity levels per pixel. In the applications reported here, three of
these levels are used to represent an unbiased bipolar signal (-1,0,1) as a biased unipolar
signal (0,1,2). The imaging optics and signal timings are such that the TDI output of the
CCD is proportional to the correlation between the bipolar input and reference images
plus some bias term. The :** LED is intensity modulated by the current :

Ai(t) = [1 + ai(t)|rect(t/Ty)

where a,(t) represents the bipolar signal associated with the ¢** line of the reference image,

and T} is the reference image width. The jt* line of the input image results in an intensity

modulation of the diffracted light after the AOD (assuming uniform incident intensity)

that is given by :

t—z/v
T,

B,(t — z/v) =1 + b;(t — z/v)]*rect( )

where b,(t) is the bipolar signal associated with the j** line of the input image, and T3 is
the TV horizontal line time plus blanking interval. Using this we obtain the nt* line of
the CCD output as :

n.':n. oc
Cn(x) = Z / An M -n(t)Bni (t + z/v)dt
nt=n-M+17 "
n'=n T
= / [l+an:,,M_n(t)Hl+bn:(t+1:/v)i2dt ([[[1])
non-M-+-1" T
n"_:*n T
= Tn(x) + 2 L / anr oM - n(8)bo(t + 2;v)dt
nton-M-17-T

where T, (r) is the bias signal on the nt® output line, M is the number of CCD lines and
the correlation time T is given by : T = T| + T5.

In order to obtain the true correlation a(x, n) «b(x,n) we clearly must remove the bias
term from equation (III.4.1). It is important to note that under the condition :

< a(t) >=<b;(t) >= 0 ¥ i,j (I11.1.2)
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o:::o:: _ where the symbol <> represents the expectation or average value, the bias signal T, (r) is
S independent of the input and reference signals.
L)
. > II1.5 Correlation Results
O
;'..' We have implemented the above system and have obtained correlation results as shown
in figure (III.5.1). In our experiments, the three images shown in figure (IIl.5.1a) were
gl presented to the TV camera as the input scene. The input scene signal was first passed
’;"4.1 through a DC block in order to remove any bias . After also removing the horizontal and
j'" vertical sync pulses the signal was amplified and a constant level was added. This level
Y','::::: was adjusted so as to insure that the input signal was strictly positive. For a bipolar input
scene then , this unipolar signal is simply the [1 + b(t)| described earlier. This modifie.'
o signal was used to amplitude modulate a 50 MHz RF carrier which was then applied to
e the AOD.
s if;: Various reference images were generated using an IBM PC. Each reference image was
5 ::. 16 lines high by 32 pixels wide however, by virtue of the bipolar encoding scheme employed,
;‘;,,‘ a data array of 32 bits by 32 bits was necessary to represent one image. At the beginning
;r.',‘.:" of each input image horizontal line time, the 32 lines of reference data were read out to
‘:;e:!. the LEDs. Preceeding each LED was a 2 bit resistive ladder network used to convert two
:::" , bits of digital data into one of the 3 appropriate analog levels. The output correlations
‘::::‘: are shown in figures (IIL.5.1b,c,d) for various reference images. As can be seen from the
figures, the system exhibits good cross correlation suppression and strong autocorrelation
e peaks.
8
:":".
;Ejl:l: I11.6 Bias Considerations
) [n order to represent a bipolar signal in light intensity, a constant bias is added to the
:' si.gnal before modulation. The presence of this bias term .in A(t) and B(l). results in the
AL bias termn T,(z) in the system output. Removal of T, (z) is therefore required before the
) _f': true correlation may be observed. Shown in figure (II[.6.1) is a typical line of the bias
YNy signal T,(z). As expected, the bias signal is approximately triangular, characteristic of
- the correlation between the two rectangular functions associated with A(¢) and B(t).
S Removal of the bias function T,(r) is achieved by first generating a bias reference
El'j image and a bias input image. A recording of the 2-D output correlation of these two
dN images is exactly T,(z) assuming the conditions of eq. [I.4.2°. Thereafter, in order to
D retrieve the true correlation from the system output, T, (r) may be subtracted from C,(r)
- on a pixel by pixel basis. This will yield the desired signal :
:._:' a(z.n) «b(z,n) - Cp(z) Ta(r)
:.';" [f the condition of eq. 1I1.4.2" is not satisfied then the bias term 7, (r) becomes signal
”.' dependent. In general, it is easily shown that the bias signal is given by :
nn . t rv
o To(x) - L / s 2an . ar a(t) t bae(t rov)rect(t Ty)rect( T )dt
. ": n-n- M+l :
PO (111.6.1)
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5
5"‘,
W
"!;‘
g
1.0
';:* We see that the first term is the typical triangular bias ; however, the second term is in
" fact signal dependent. Various schemes for removing the second term from eq. [I1.6.1
. may be envisioned. One particularly straightforward method would be to simply record
";: the two signals :
::‘:v:
" L)
AR '
i | SO Loz
iyt signall = Z an:,,M_n(t)rect(t/Tl)rect(T—)dt
nt=n-M+1" T 2
i:(v
il nr T t—zjv
s:: signal2 = Z / bnr (t — z/v)rect(t/Ty)rect( -)dt
) menmer T :

and perform a pixel by pixel subtraction off line as we did with the signal independent
& term. It is important to note that if the quantity of interest is the inner product of two
n images rather than the entire 2-D correlation, then the condition of eq. [II[.4.2] may be
'f relaxed somewhat. In this case it is necessary only to have equal numbers of 1s and -1s
: over the entire image to insure signal independent bias.

-:': II1.7 Implementation of a Linear Descriminant Function
O
:" The above system has been utilized in a pattern recognition scenario. Taking advantage
e of the flexibility afforded by the computer generated reference images, it is possible to
" form arbitrary linear combinations of these images to generate more powerful filters. A
il LDF based on three images was generated using a bipolar perceptron type algorithm as
o described in section II.3. In our experiments the algorithm was init’alized with the filter :
WYy
o w'= Y IMGi- Y MG,
’,,‘f‘, i in ¥, i in Wy
oy
ex where ¥ and W, are the two classes and IMG; is one of the three images to be classified.
1., Since only three levels may be represented in our system, a threshold arithmetic must be
oM implemented. That is, when executing the above algorithm we have that 1 - I - 1 and
e that —1 — 1 = —1. Although there is no guarentee of convergence in the bipolar case, we
: ,‘:: observed convergence for all three dichotomies. The LDF as found above was used as the
e reference image while the three seed images were placed in the input p'ane. The results
::’ .'_: for three different class assignments are shown in figure (I[1.7.1). We see that successful
fal classification was achieved for all three of the nontrivial dichotomies possible.
5
i
.nj:: II1.8 Conclusion
o

We have shown that the performance, in terms of output S.VR and storage capacity, of
.* bipolar correlation filters does not severly degrade when compared to conventional cor-
50 relation filters. As a matter of fact, bipolar SLMs are free of the problems of limited
22 |
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O\ dynamic range and non-linearity. We have also presented experimental results pertaining
v to an incoherent acousto-optic correlation architecture. The particular system we describe
. implements bipolar correlations between a TV scene and a computer generated reference
r\ image. Good correlation results have been obtained. We have also successfully imple-
- mented a two class decision machine using this correlator. Many issues still remain to be
o5 researched. For instance. how a bipolar filter is optimized is one of them. How a bipolar
perceptron is trained to recognize multiple objects is another example. For a certain set of
- data, a bipolar filter which will make the right decision in recognition may not exist at all.
[t is, nevertheless, the authors’ belief that the probability of having such a bipolar fiiter
approaches one for sufficiently high dimensionality.
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S Figure 111.2.1. (a) Zeroth order circular harmonic binary CGH. (b) Image of 4 A’s of
v different orientations. (c¢) Computer simulated correlation result of (a) and (b).
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b Figure I11.2.1. (d) Image of of the letters A,B,C and D. (e) Computer simulated correlation
W result of (a) and (d).
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Figure [11.3.3. The simulated correlations of the linear weighed-sum filters of different num-
ber of stored vectors and some of their stored vectors. The threshold level for recognition
is one half of the energy of each vector.
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(2) Input scene top: IMGI. middle: IMG2, bottom: IMG3
(b) Correlator output for reference image = IMG1

(c) output for ref. = [MG2

(d) output for ref. = IMG3
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(a) Correlator Output for Class 1 = IMG1+IMG2 / Class 2 = H
(b) Class 1 = IMG1+H / Class 2 -= IMG2
(c) Class 1 = IMG2+H / Class 2 = IMG1
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IV MULTIPLICATIVE TIME AND SPACE INTEGRATING _

ACOUSTQO-OPTIC SPECTRUM ANALYZER

IV.0 Introduction

In this section we will describe multiplicative time and space integrating (TSI) acousto-
optic architectures for spectrum analysis of images and of 1-D signals. The TSI approach
is used which combines the best features of 1-D space integrating and 1-D time integrating
spectrum analyzers'. Wagner and Psaltis have previously demonstrated experimentally
an additive architecture for folded spectrum processing of 1-D signals®. In this section
we describe and experimentally demonstrate a multiplicative processor suitable for finding
the 2-D Fourier spectrum of images. The information signal is fed into a Bragg cell and a
lens takes the Fourier transform in the coarse frequency (x) direction of the image. In the
second Bragg cell, the DFT signal is entered which along with the time integrating CCD
calculates the Fourier transform in the fine frequency (y) direction of the image. We begin
the section by describing the principles of TSI processing. The space integrating spectrum
analyzer is described using 1-D time signals and 2-D video images as inputs. Then, the
Discrete Fourier transform (DFT) based time integrating spectrum analyzer is described
and experimental results are given. The possible TSI architectures are given and analysis
is carried out. Experimental data is presented and system performance issues such as bias
removal techniques are discussed. We end with a summary of the processor and its possible
applications.

IV.1 Principles of TSI Processing

Fig.IV.1.1 shows the basic setup for a TSI architecture for spectrum analysis. Bragg cells
are used as input SLMs because of their high bandwidth. The input signal s(t) is a long
1-D signal that cannot be enclosed in the time window of the Bragg cell. This leads to
representing s(t) as a space-time raster f(x,n) where n is the laser diode pulse number.
This raster then passes through a Fourier transforming lens with power in the x-direction
giving another space-time raster F,(u.n) which consists of spatial Fourier transforms of the
windowed signal s(t). Next, the raster F(u,n) is spectrally resolved in temporal frequency
by using time integrating Fourier transform modules. The output of the system is a
folded spectrum of the input s(t). The motivation for dividing the 2-1) Fourier transform
operation into a space integrating lens Fourier transform and N time integrating Fourier
transforms comes from the separability of the 2-D Fourier kernel as noted in equation
(IV.1.1). Figure [V.1.2 shows the basic principle of folded spectrur systems originally
shown by Thomas®. Possible inputs s(t) to a folded spectrum system can be a narrowband
highly coherent signal burried in white noise (SETI) or a video signal from a camera
pointed at an image f(x,y).? A video signal has a natural rastering mechanism,therfore the
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X, 2-D folded spectrum output is the 2-1) Fourier spectrum of the input video image.

=V -1
ol F(u,v) = 2: J/‘ f(z,n)e 125 drle 135 (1V.1.1)
n=0 A

i IV.2 Space Integrating Spectrum Analyzer

.::*4' Figure IV.2.1 shows the optical setup for the SI Spectrum Analyzer. The field amplitude
h at  he detector plane is

F('t) = / 5(t - f)e‘ﬂ”%dre'l“’t = (vS(uv)e I3 « Asinc(Au) e 7!
A v

b where v is the acoustic signal velocity in the Bragg cell and $(¢) is the complex diffracted
e signal.

Using the reference signal r for hetrodyne detection, the intensity on the detector
u plane is

I(z',t) = [vS(uv)e 724 « B(u)' + it

For a single tone input

s(t) = acos(2n f't)

Wiy the intensity is

ey , : |
i I(z'.t) = a*B*(u - f—) ~ir*«<2arB(u - f—)cos(?nf’t « ) |
(0] v v

Ve Taking the pulsing action of the laser diode into account every T seconds, the intensity on

the nt* pulse is

E) +r?+2arB(u - &)cos(2n6n'l' + 1) (1V.2.1)

) [(',n) = 'a*B%(u -
= v v

I
':: where B(u) is the general blurr spot taking into account the finite aperture of the Bragg
cell and acoustic apodization effects. Also,

) ’vk,‘,- R
Jlog 66

o a - ja\e’n

Equation (Iv.2.1) shows that for a single tone input, the output of the processor con-
sists of a constant bias term, a signal dependent bias term positioned according to the
Sy signal coarse frequency f. and a sampled temporal modulation at the signal fine fre-
"y quency. The third term contains the original input signal, except it has been heterody ned
N to baseband by the pulsing action of the laser diode. It is this temporal modulation that

) 0 (A0 0 O v A
‘ls\?\ﬂg \&‘l‘ﬂ.\'v"h'..ld'tﬁc“!p?l’ytﬁggti.g‘l_..l!:.l_p,‘ E.‘L“‘ S, .l"g‘l"'l!'.Q



allows us to use time domain spectral analysis schemes, such as the DFT algorithm to
resolve the signal into higher resolution spectral components. In order to avoid aliasing
effects between the bandlimited signals in each coarse frequency blurr spot.we need to

satisfy the Nyquist criteria .i.e
1 2
— > —
T T,
where T is the sampling time of the laser diode and T, is the aperture of the Bragg cell.
When s(t) is a video signal where f, represents the n‘* video line, the field amplitude
on the detector plane can be written as

E(u,n)=~K[F,(u) + B(u)) (1V.2.2)

where K is a scaling factor. For a camera looking at a tilted grating image with a spatial
frequency ug in the x coordinate direction (fast temporal variation) and frequency vg in
the y (slow) direction,

fn(z) = cos2mup(z + nd)]

uUn>
D—UTU

<
o= 2vT,

v
¢ = vTv"2
Uy
where T, is the video line time. In this mode of system operation, the laser diode pulsing
rate should be set equal to the video line rate.i.e. T = T, For example, if we have a

grating with variation only in the x direction, ( vy = 0), from equation (IV.2.2) we get
E(u,n) = K'B(u — uo) + B(u + ua)’ ([v.2.3)
and for a variation only in the y direction of the image,
E(u.n)~K B(u)cos(2rv,nX) (I1V.2.1)

)(:UT

From equation (IV.2.3) it is clear that the fast spatial frequency variations along the x
direction of an image can be resolved in the Fourier plane by using an acousto-optic device
as an input transducer and a Fourier transforming lens to spatially channelize these fast
frequencies into coarse frequency bins. Equation (IV.2.4) tells us that spatial variations
of frequency vy along the y direction in the image are converted by the pulsing space
integrating acousto-optic spectrum analyzer to a sampled temporal variation of the same
frequency in a coarse frequency bin. This temporal variation can then be channelized
into its fine frequency bins along the y direction by using the DFT algorithm based spa-
tially distributed time integrating modules generated by using imaging optics and a CCD
detector array. Figure [V.2.4 shows the grating video images.
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v,‘a
.ic::'
';;'.‘::: IV.3 Time Integrating Spectrum_Analyzer Experiment

2
" We have used the DFT Algorithm approach to time spectrum processing*. The DFT
,s:::(:: algorithm is described by
::'.‘:‘:. n=N-1 .
:.'I.q S(k) = s(n)WN
R

Wy =e ¥

g ‘
‘;1,_ where S(k) is the 1-D Fourier spectrum of the input signal s(n).This operation can be
S’n broken up into a summation over n of the products of the input signal samples with its
PN . . A . .
e corressponding DFT matrix columns. As the DFT matrix is symmetric, we require only

half the terms in a DFT column. The analog nature of each column is sinusoidal with a
half cycle increase with each increasing DFT column. The DFT matrix represented as a ‘
1-D signal is a stepped frequency chirp signal that can be written as i

N-1
d(t) = Z cos[nAw(t — nT)|rect|

n=0

t—nT

| (Iv.3.1)

We used a personal computer to generate the DFT signal. The DFT mask and the half cycle
step behavior are shown in Figure IV.3.1. This method calculates the Cosine transform
i.e. the real part of the Complex Fourier Spectrum. The spectrum analysis is performed
along the length of the DFT column which acts as a spatially distributed local oscillator

P (DLO) in time. The frequency of the oscillators increases from the top (DC) of the column
;" I to the bottom (half the Nyquist sampling frequency). If one of the input signal frequencies
"-"i coincides with one of the DLO beads, it beats with it to build up an interference peak
ey at the location of that DLO bead. In this way, the frequency components of the input
) signal are resolved into the fine frequency bins along the DFT column (y) direction. Figure
:;:.::: IV.3.2 shows the optical system set up in the laboratory. The laser diode is pulsed at the
;::,".0 video line rate and the input signal s(t) into the Bragg cell is
Y
:::: s(t) = cos{(wp + 6)t] + d(t)coswot
gt where wy is the center frequency of the Bragg cell. The signal s(¢) is imaged on to the
‘:' .,: CCD via the +1 diffracted order light from the Bragg cell with appropriate single sideband
:::: : filtering done in the Fourier plane of cylinderical lens C2. The light intensity integrated
,:f::: on the CCD is
A n=N-1 1
[ _ - {we =) (nT - ") + ~Jlwa(nT %f-)-‘rn‘—\;*—’—yIIQ
(¥) = ) e 46 ,
n =0
n (Ve
I(y) =C : cos(wsy + ,’3)8”1( )
v sina
where A
1 w
T Al
“ 2( v y)
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«~s and 3 are signal dependent spatial frequency and phase terms and C is constant bias
term. Typical value for w; is = 1.86 cycles per mm which gives only a few cycles on the
CCD surface giving a very low modulation. Therfore, we see peaks located at the sinc
type function maximum position y = O—T; corressponding to the signal fine frequency 6. In
our experiment. é is varied from DC to 7.8 KHz which corressponds to the bandwidth of a
video image along its vertical (y) or slower direction. Figure IV.3.3 shows the experimental
results without bias removal. The peak moves along the imaged DFT signal ridge with

changing fine frequency.

IV.4 Architectures for TSI Spectrum Analysis

Figures IV.4.1 and IV.4.2 show two possible TSI architectures for spectrum analysis
using crossed Bragg cells , imaging optics, a pulsing laser diode , CCD detector array
and supplementary electronics. The general signal chain for both systems is as follows.
The DFT signal d(t) added to a reference bias a is mixed up to the center frequency o
of the Bragg cell before being used as input to the acousto-optic device. This composite
signal s;(t) is then imaged on to the CCD plane with appropriate single sideband spatial
filtering. In the other orthogonal Bragg cell,we enter the sum of a reference chirp ¢(¢t) with
the information signal v(t) (eg. video,tones) that has been mixed to the Bragg cell center
frequency. A lens takes the Fourier transform of the signal s;(¢) in the AO device and this
spectrum is made to coincide with the detector plane. The electric field incident on the
CCD detector plane is

E - / it — Dyeirmurgr(,y(e + )
A v

v

where
s1(t) = [v(t) ~ c(t) coswnt
s2(t) =la + d(¢t)coswnt

n=N -1

L falt ~ nT)rect(-

n- 0

t-nT

for a video signal.
n-N 1

c(t) - 2: cos b(t - nT)erect( —T—A)

n

and d(t) is defined by [V.3.1. Taking into account the pulsing of the laser diode (6(¢t nT))
and the single sideband filtering. we get the intensity on the ng, pulse as

. 3 ~ ~ . w2 .
E, b= w(Fa(vu) - Cleu)) « AsincAul'a ¢ e /77 (IV.1.1)

On expanding equation (IV.1.1) (see appendix A), and collecting similar terms, we get
the total time integrated intecferomertically generated charge distribution recorded on the
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CCD after a frame time to be given by

n=N-1
| i Aw
I(u,y) = KRe. Y (Fa(u) « B(u))cos(n v“’-y); - K\~ K3 (Iv.4.2)
n=9

where the first term gives the 2-D Cosine transform of the input signal and K; and K rep-
resent constant bias and signal dependent bias terms respectively. K is a scaling constant
and we have assumed that the reference chirp spectrum is uniform over the bandwidth of
the information signal. The general blurr spot B(u) has been used in the analysis. For
a continous time signal as input, the first term of equation (/V.4.1) represents the folded
spectrum of the input. On the other hand, for a video signal input, it gives the 2-D video
image spectrum. See appendix A for the impulse response of the system corressponding
to the two types of input. The architecture in figure IV.4.1 although analytically sound
has two important practical limitations. In order to achieve high spectral resolution using
present day hardware .i.e.AOD’s, CCD’s, the focal length of the imaging lenses runs into
meters. Secondly, for ideal operation the single sideband filtering has to be done in the
plane of the second Bragg cell which is not possible because of the thickness of the crystal
and its support casing. The architecture in figure IV.4.2 solves both these problems by
using crossed cylinders for imaging. This imaging method gives lens values that assure
overall short system length and desired demagnifications for compatibility with the CCD
detector specifications. In our case, we used 10 cm and 15 cm cylinderical lenses to achieve
the desired demagnifications.

Figure [V.1.3 shows the laboratory setup of the architecture in Figure IV.1.2. The
system timing is zontrolled by the CCD detector 7.16 MHz internal oscillator. The CCD
blanking signal is used to generate a 15.734 KHz laser diode trigger signal with a pulse
width of 100 nsec. This corressponds to a light flash every video line time. The anamorphic
gaussian beam profile of the laser diode is collimated by the spherical lens such that the
long axis is along the x direction of the SI AOD aperture. The Bragg diffracted light
from the first AOD is Fourier transformed by a spherical lens in the x direction and
recollimated in the y direction giving a slit of light positioned in the aperture of the second
AOD. The Bragg diffracted light from the second AOD is imaged on to the CCD using the
crossed cylinders. In the Fourier plane of the cylinder with power in the y direction. the

:':. appropriate spatial single sideband filtering is done. The AOD’s used in this experiment are
8¢ slow shear mode Telirium Oxide devices with an aperture time of 70 usec and bandwidth
% of 10 MHz. A 60 MHz center frequency is used for the AOD’s. The reference chirp is

stored in a digitally programmable read only memory (PROM) and read out each laser
diode trigger pulse using the CCD pixel clock and a digital-to-analog converter. Figure
[V.1.4 shows a reference chirp oscilloscope trace that was used in the experiments. The
chirp, being digitally generated is perfectly coherent at every laser diode pulse. The DFT
signal is generated by an IBM-PC image processing work station that is locked to the CCD
detector clock. For video signal inputs, the CCD camera is locked to the CCID detector
array by using special synchronizing circuitry. For folded spectrum processing of tones,
the laser diode trigger frequency is adjusted according to the Nyquist criteria.
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Experimental results from this processor are shown in figures [V..4.5 and IV. 1.6 for a
fine frequency analysis bandwidth of 7.86 KHz. The processor is operated with a coarse
frequency resolution of 80 KHz per pixel. Data in figure IV.4.5 corressponds to a fine
frequency variation from DC to 7.8 KHz with a zero coarse frequency variation. We
see the interference peak move from left(DC) to right(7.86 KHz) along the DC coarse
frequency bin. Figure IV.4.6(a) shows the 2-D folded spectrum of a single tone input
where the position of the peak gives the coarse and fine frequencies. Coarse DC position
corressponds to the base of the picture. Figure [V.4.6(b) shows the 2-D video spectrum
of a tilted grating used as the video image. The DC of the fast (coarse) variation along
the x direction of the image corressponds to the central bin between the two peaks on the
pic ®ire. The slow (fine) variation along the y direction of the image corressponds to the
left to right movement of the peak along each fast frequency bin. We get two peaks instead
of one because the video signal is mixed with 60 MHz before entering the Bragg cell giving
an amplitude modulated signal whose spectrum has two sidebands located symmetrically
around the 60 MHz carrier frequency. The single tone experiments are carried out using a
signal generator whose frequency is varied around 60 MHz. The 2-D results corresspond
to spectrums after electronic bias subtraction.

IV.5 Bias Removal Techniques

Bias separation from the desired signal is always an important issue in interferometric
time integrating processors. We discuss three ways in which the bias can be removed.
Pixel by pixel electronic bias subtraction can be done by using two synchonously operated
CCD'’s, one to record the signal plus bias terms and the other for recording bias terms.
[n our experiments. we used a PC based image processing work station with a frame
grabber to store the bias for subtraction. Another approach is to place the desired signal
on a spatial carrier which is converted to a temporal variation by the natural readout
mechanism of the CCD and then bandpass filtered by appropriate electronics. In the TSI
processor, the 2-D spectrum can be placed on a spatial carrier by mixing the DIF'T signal
by an frequency offsetted Bragg cell center frequency signal eg. 60.1 MHz and using a time
delayed reference chirp signal. The bias subtraction and carrier demodulation methods of
bias removal do not solve the problem of limited system dynamic range as processing is
done after the detection of the signal. The effective system dynamic range at the output
is

SBR
DR. - DR (1 - SBR)
where DR is the dynamic range of the output detector (CCD) and SBFE is the signal to
bias ratio on the detector. In most Tl systems, SBR is much less than one. One way of
solving this dynamic range problem is using a photorefractive crystal for bias removal’.
The desired spectrum is generated on a spatial carrier along the crystal side and is read
out by a Bragg matched beam. The possible architecture for the TSI spectrum analyzer
using a photorefractive crystal is shown in figure [V.5.1. This architecture has definite
attractions such as higher light efficiency, better system dynamic range and no reference
chirp requirement in the signal chain. In addition, the single sideband filtering does not
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f.‘:‘: have to be done in the Bragg cell aperture and this system can process higher space-
o ) bandwidth signals as the resolution of the photorefractive crystal is much greater than
ol that of the CCD detector. As this system is not common path, it is more sensitive to
s jitter.
v
»
"."s. N IV.6 Processor Performance Issues
wan The Caltech processor shown in figure IV.4.3 achieved coarse and fine frequency res-
:»;:' olutions of 80 KHz and 100 Hz respectively. The number of coarse and fine frequency
.: resolution bins corressponded to 384 and 491 respectively. The bandwidth of the system
::,?v is controlled by the bandwidth of the reference chirp which is programmed in a high speed
PROM to 5 MHz for video signal inputs. Modulation depths of 30 percent were obtained.
IR The Caltech processor performance is limited by nonuniformities in the reference chirp
::' ‘_\: spectrum due to inhouse electronics, the limited temporal coherence of the high power
>, hitachi laser diode and intermodulation product terms resulting from AOD and amplifier
::,“ nonlinearities. The coarse frequency resolution is limited by CCD pixel size, focal length
s of Fourier transforming lens, AO cell aperture and apodization effects. For the video pro-
ahse cessor, the ideal coarse frequency resolution of 15.7 KHz could be obtained by using a
;,: larger focal length lens and smaller CCD pixels. The fine frequency resolution is limited
o by integration time of the CCD which corressponds to 60 Hz. Note that using carrier
gg', demodulation for bias removal reduces the number of frequency bins along the carrier di-
rection. For using a photorefractive crystal such as Bismuth Silicon Oxide (BSO) for bias
& _,. removal in our proposed architecture we need arounc} 8 W pulsed or 12.6 mW continous
ﬂ'&:' power to record gratings with an Argon laser beam °. This high power requirement can
",':.._",' be reduced for test purposes if we wait a few video frames before reading the integrated
o spectrum on the crystal using the Helium-Neon readout beam. The principle of operation
bR involves the coherent addition of the image spectrum over successive video frames to build
O up enough charge density for recording gratings on the crystal. Another important issue to
’»S_, A note is that in a multi-tone signal input environment, the TSI processor will not introduce
2 ., crosstalk because each tone is spatially separated in the Fourier plane thus giving cross
,:j;‘. Y terms that have negligible contributions.
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Appendix

This appendix gives the derivation of equation [V.4.2 starting with equation 1V.4.1
given earlier.For simplicity of the analysis, we have assumed the u = 0 axis to corresspond
to the position of the Bragg cell center frequency (wy) on the CCD plane. The intensity
on the n:s pulse given in equation [V.4.1 can be written as

I, = (S -~ C)(a~+d) (1)

where 'S’ and ‘C’ are Fourier spectrums of the information signal and reference chirps
respectively taken by the space integrating Bragg cell spectrum analyzer and ‘a’ and *d’
are the reference bias signal and the spatially filtered and hetrodyned to baseband DFT
signal respectively. ‘a’ is a real quantity and ‘d’ is given by

d - e__JnA".)

Using the above relations and expanding equation (1) we get

I, = 2RelaSC~Re(d)] + (1 + a*),C|* + 2|C* Re(ad)

2
+ (1+a%)[S[? + 2/S2Re(ad) + 2(1 + a?) Re(SC") )

Note that the reference chirp is a perfectly coherent chirp with no dependence on n
as the same digital chirp is generated every laser diode pulse. Re in equation (2) stands
for real value of a function. Equation (2) consists of 6 terms where the first term gives
the 2-D spectrum, the second and third terms give the constant bias term and finally the
fourth,fifth and sixth terms give the signal dependent bias term. Assuming the reference
chirp spectrum C is uniform over the information signal bandwidth and has an arbitary
fixed phase which can be taken to be zero for simplicity of analysis, we can write C = Cy
where C., is a constant. Now taking the summation over all the .V laser diode pulses to
find the charge distribution on the CCD , the first term in equaticn (2) gives

n=N-1
I =2aCoRe| Y SRe(d). (3)

n=0

Substituting in equation (3) the value of S for a video signal and the value of d . we get
the desired 2-1) spectrum

n=N ~1
R nAw
Ii(u.y)  KRe L (Fn(u) « B(u))cos( - y) (1)
n=1u t
where K is a constant term involving the constant terms Cj and a and the finite size of
the CCD detector array in the u and y directions. We have used the generalized blurr spot
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B(u) to account for the finite aperture of the Bragg cell in the SI direction. The second
and third terms of equation (2) on summation give the constant bias term A’} to be

V3
K, = NCoz(l +a?) - 2aC<)2cos(ay)sm({—~yl (5)
sin(3y)
Aw
=(NV-1})—
a = )5,
Aw
ST

where the first term in equation (5) gives a constant bias level and the second term gives a
fine frequency DC ridge along y = O with a very slow spatial modulation undetectable by
the CCD. Now taking the summation over n of the fourth,fifth and sixth terms in equation
(2), we get the signal dependent bias term K3 as
sin(Npy)
sin(3y)
Note that the absolute value operation on S(u,n) in equation (2) removes the time depen-
dence in the spatial Fourier transform taken by the lens giving only the coarse frequency
bias ridge terms in equation (6). The first and third terms in equation (6) give bias terms
positioned at the signal coarse frequency ridges. The constant a, depends on the fine
frequency of the signal. The second term gives the coarse frequency ridge crossed with the
fine frequency DC ridge. Combining the results from equations (4), (5) and (6) we get the
total time integrated charge distribution on the CCD to be
n:in -1 A
I{u,y) = KRe Y (Falu) « B(u))cos(nébfy)} LK, - Ky (7)

n -4

Ky = N(1 +a?)|S(u)|* + 2a]S(u)|*cos(ay) +2Cs(1 + a*)|S(u)'a;  (6)

The impulse response of the system for a video image input with a spatial frequency u. in
the x-direction and spatial frequency v, in the y-direction of the image is

sin(.V)
ly=cos A B(u -uy) - B(u - uc 8
i ('7) szn(‘y) . ( )) ( T “)1 ()
n (N - Du=re X(V 1)
- Aw
v - oren X

2v y

where we used the fact that the modulation along y is slow. We will get two peaks
positioned at the coordinates u = un.y - ‘..’mn,“;: and u == wu,.y - 2mue X:};

For a single tone input signal with f. and f; the coarse and fine frequencies respec-
tively, we get the impulse response of the system as

sin(N€ .
[ =cos(3) ( c\) B{u f) (9)
stn(§) v
A
[ .
$ nfsl Y
This time we get one peak located at u ’; vy 7ffT J where £ is a fine frequency
dependent constant phase term.
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ol V. Adaptive Broadband Array Processin
o y Processing
S}
 +te .
R V.0 Introduction
n'\l
vy
N2 .
.o‘.‘ Adaptive signal processing techniques for processing broadband phased arrays are pre-
\J . . . .
! sented. After discussing the essential differences between narrowband arrays and broad-
v band arrays, optimal forms for the broadband space-time filters are derived. Adaptive
“;:C processing systems which converge to the optimal forms are then presented. Acousto-optic
: implementations using multi-channel acousto-optic devices are presented. One particu-
::@ lar implementation makes use of a photorefractive crystal as a time-integrating detector
" (11,12].
)
o
44t
! V.1 Narrowband Processors in Broadband Environments
YLl
:::'o
- The extension of adaptive filtering techniques to the space-time domain is applicable
,'Q\_ for sonar and radar signal processing where the outputs from an array of sensors must be
Lo weighted and summed to optimally estimate a signal in the presence of noise '1-3]. When
4 N ) .
5@ the array processor encounters only narrowband signals centered at a common carrier
oy, frequency, fy, the filter structure shown in Fig. V.1 is identical to that of the temporal
i filter except that the input samples are the outputs of the sensors instead of a tapped
-*;:' delay line. In such applications, only spatial discrimination of signals is required. and the
o jammer nulling capabilities of such systems are quite good as long as the jammers are
"..' . . .
iy narrowband. The output can be described by the following equation
W
L 0h)

N
iy 2(8) = ) hnua(t), (V.1)

:. n-1

%

e::‘. _

il where .V is the number of elements in the array and h, is the adaptively controlled weight
B for the n;x sensor output un(t).

:;:' After suppressing the temporal carrier term erp{j2n fot}, the signal received by the

oG ) . .
"3‘ nen element due to a narrowband signal arriving at an angle # from boresight can be

R expressed as
:_l. un(t) = a(t)erp{ Jj2nf,sinfnd/c}, (V.2)
where ¢ is the speed of light. a(¢t) is the slowly varying envelope of the signal. and d is the
""j‘;:', spacing between the array elements. The goal of the adaptation is the minimization of
o the mean squared error between the actual output of the processor and a desired signal.
b . The scenario with which we will be concerned is the one where the desired signal is known
to be on boresight, and interference from directions other than this must be suppressed.
::::: : This is sometimes known as sidelobe cancellation 1. An examnple of narrowband nulling
:gc;: is shown in Fig. V.2, where the array gain pattern for a uniformly weighted array and the
R
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minimum mean-squared error gain pattern for receiving a signal on boresight and rejecting
a jammer of the same frequency at a sidelobe angle are plotted.

Although the jammer is received at a sidelobe angle and is attenuated relative to the
signal, the power of the jamming interferences is typically much larger than that of the
signal, and so the summed output of the uniformly weighted processor will be dominated
by the interference. {n this case. the optimum pattern to which the adaptive processor
converges places a perfect null precisely at the direction of the interference.

Given the size of the array (.V - the number of receiving elements), an upper bound
on the number of spatial jammers of the same frequency f., that the array is able to reject
can be established. The my, jammer from a set of M jammers can be represented by an
V-element vector u!™ whose n¢, element is given by
(m) — erp{ - 27 fisin8,nd c}. (V.3)

Un

Simultaneous nulling of all of the M jammers leads to the system of equations

u(ll) ul L uf\}) h, 0

: hy :

(M) (fw) h (M) S I PN (V.4)
U,l u2 e uA\- .

S S92 SN hN I\

where s represents the signal vector, and the last equation of the system arises from the
constraint that the signal be accepted. If the jammers are distributed spatially such that

the vectors {g(m)}:ﬂ and s are linearly independent, then in order for a solution h
to exist. there can be at most .V equations in the system. yielding the upper bound of
M < N - 1. The linear independence condition is akin to that of general position in
pattern recognition 9 and assures that the jammers are irregularly distributed in space.

Since the narrowband arrays assign only one weight per sensor, no consideration of the
temporal content of the received signal is taken. The spatial distinction of a signal is judged
based on the observed differences in the phase of the signal as received by each element.
If a particular jammer contains many frequencies spread over a significant bandwidth,
each component will result in a unique relative phase difference from element to element
and hence will look like a multiplicity of jammers directed at different angles. Thus, if a
narrowband processor encounters a sufficiently wideband interference in some direction.
it will use up all of its degrees of freedom (the adjustable weights) to null this single
directional noise.

Two examples are shown in Figs. V.3 and V.1, where the minimum mean-squared
error array patterns are plotted for a boresight desired signal and a multi-frequency jammer
incident at # 60 . The element spacing in each case is

'.qu
foo 85 fcand Tf.. with the signal power and the power in each jamming frequency being

equal. For each case (Fig. V.3, Fig. V.4), a gain pattern for each jamming frequency is
plotted, since the array response is frequency dependent. Fig. V.3 depicts the response of
a 2 element array, and it is clear that only the frequency .85 f, is nulled perfectly, while Fig.
V.t. which corresponds to a 4 element array, shows perfect nulling for all three frequencies.

. The jamting frequencies are
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Fig. V.1 Narrowband Array Processor
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Fig. V.2 Narrowband Sidelobe Cancellation (arrow indicates the an-
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tern; b)minimum mean squared error array gain pattern (Jammer inci-
dence angle is 50~ !
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V.2 Optimum Broadband Systems

In narrowband applications, bandpass filters are used to assure a narrowband signal
and noise environment as shown in Fig. V.1, but where signals with large bandwidths
must be processed, such filters cannot be used. Even in broadband noise environments.
we would like the .V element array to be capable of cancelling .V — 1 jammers in general.
regardless of their respective bandwidths. This requires that more degrees of freedom
be available for the output of each sensor than the single weight that the narrowband
processor provides. Shown in Fig. V.5 is an .V element array processor that satisfies
the requirements for operation in broadband environments by passing the output of each
sensor through a linear time-invariant filter, or equivalently, a tapped delay line 5-7.
While spatial discrimination is still made possible by the spatial sampling done by the
array of sensors, the additional capability of making distinctions based on the temporal
content of the received signals is offered by the array of filters.

An optimum choice of the linear filters based on the mean squared error criterion can
be made in the present scenario of a desired signal incident on boresight and broadband
jammers from other directions. Let s(t) represent the desired signal which is assumed
to derive from a stationary random process with zero mean and autocorrelation function
given by R(r) = E{s(t + r)s™(t)]. Since the desired portion of the received signal arrives
on boresight, there is no dispersion, and each element receives an identical desired signal
as(t). The interference that arrives from different directions will induce signals in each
element with different delays.

Let v,(t) be the interference component received by the n;; element, assumed also
to derive from a zero mean stationary random process with covariance function given by
Ymn(T) = E vyt ~ 7)v;(t). The total signal received by the n;, element is therefore
given by u,(t) = as(t) - v,(t). The output of the array processor is given by

L/ wn(t - 7)dr. (V.3)

n=1

The problem is to minimize the mean-squared error
Chalr) = E 2(t) - s(t) 2. (1)

by varying the filter kernels h, (7). By using simple variational arguments, it is shown
in Appendix B that the minimizing solution for h,(7) must satisfy the system of lincar
integral equations

N -
X/ hopdr) aR(t 1) - vn(t 1) dr - R(t). (V.7)
mo 1 <
where n 1.2,..... V. Transformation of the above systemn to the frequency domain vields
N
Y Hum(f) aS(f) - Tma(f) S(f). (V. %a)
mo1
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Here S(f) is the spectral density function of the signal and I',,,,(f) is the cross-spectral
density matrix of the interference, given by the Fourier transforms of the corresponding
covariance functions, and H,(f) is the frequency response of the rns filter of the array.
For comparison, the corresponuing equation for a narrowband processor with a single
complex weight u,, for the mp receiving element is

N
Z TAN ja + Cmn; =1, forn=1.2.....N, (V.8b)

m =1

where a is the amplitude of the received signal component on boresight and C,,, =
E v, v, . the covariance matrix of the noise components. A comparison of Eqs. V.8a
and V.8b shows that the optimal broadband strategy is to simply provide an optimum
narrowband weight for each frequency f. Thus, the optimum broadband system reduces
to a channelized system of optimum narrowband sub-systems.

If we now assume that the signal spectrum is approximately white (e.g., spread spec-
trum codes) with spectral density S, and the received signal component is small compared
to the noise so that aS, <« 1, then Eq. V.8 can be approximated by

Y Hul)Tmal(f) = S0 (v.9)

The frequency-dependent response of the individual filters can now be varied to compensate
for the spectral characteristics of the environment, whereas the narrowband processor
offered no such flexibility with its single, frequency-independent weight for each sensor.

V.3 Directional Cancellation of a Single Broadband Interference[2,4-6]

The example of a cancellation of a multi-frequency intzrference given in Fig. V.1
shows that a narrowband array processor suppresses a broadband jammer by placing the
null over a wide region near the interference direction. This is true in general for any nar-
rowband array processor with a number of elements sufficiently large to null a broadband
interference. A large number is needed because the array pattern shifts with frequency.
By solving Fq. V.9 explicitly for the case of a single broadband interference incident at an
angle A, with respect to boresight. we will show analytically that the broadband system
suppresses the interference with a null that does not shift with frequency. placed precisely
at #,.

et «r(t) be the broadband interference waveform incident at an angle 8, with respect
to boresight . so that the ny, element receives the relatively delayed version a(t nA). where
A dsinf e Assume that the interference waveform is derived from a zero mean station-
ary random process with the autocorrelation function given by ~(r) £ at - 7)o (t).
the covariance between the interference received by the nyp and mep elements is given by

T Foolt -7 mNa (t nd .
(5] Ealt o r md)atlt nd) 1o,
4r - (n m)A).
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The inclusion of sensor or receiver noise that is uncorrelated for each element and assumed
to be white with spectral density o2 yields

tmn (1) = (7 = (n = M)A) = bmnb(r)0? (V.11)

~

as the covariance of the total noise present in the m, and n;s elements. The noise cross
spectral density matrix, required for the optimal solution, is the Fourier transform of the
above expression. [t is given by

an(f) = e.rp{j27rf(n - m)A}Sa(f) - 6mn0g- (‘/.12)

The particularly simple form assumed by the noise cross spectral density matrix en-
ables the inversion of Eq. V.9 to be carried out explicitly. It can be shown that the solution
of Eq. V.9, which gives the optimum form for each filter, is given by

Ho(f) = (So/od){1 - ezp{-jn fA(N + 1 - 2n)}

sin(rfNA) 2

—_———S5 + NS .

Ay S/ ok + NS, (1)

The gain pattern that results from this choice of filters can be determined by computing the

array response to a monochromatic plane wave signal at various frequencies and incidence

angles. Specifically, if we let 8 represent the incidence angle of this probe beam, the gain
pattern as a function of the probe frequency and angle is given by

(V.13)

in(nfNA'
9(£.8) = (ezp{ - jrf(N - lm'}sm/oé){%%a%z
- exp{- jrf(A" - A)(N + 1) %%T(%}\;—A)) (V.14)

sin(nfN(A" = A)) Su(f)

sin(rf(A" - A)) (0 ~ NSu(f)) g

where A’ = dsinf ‘c. At incidence angles other than that of the interference. 8,, the second
term is small since A £ A’ so that
, . sin(nfVA') .

g(f.0 #8,) ~ (S0 exp{-jrf(N + NNAY L7 ) Vi1

g(f ) = (Sujof)exp{ i f( ) sin(m fA7) ( )
which is simply the array pattern with uniform weighting.

When we probe near the interference. however, so that 8 ~ 6,, then the second term
vecomes appreciably large and the gain necomes
2 : : sin(7fNA)
g(f. 0 =80,) =~ (S, 0)erp af(N - Ay -- "7 -
U105 0) = (5. oR)erp jaf(¥ - )27 ES .

{1 NVS.(f) (ol - NS.(f)}-
With the assumption that the interference power is large compared to that of the detector

noise so that NS, (f) - - 02, the gain becomes zero near the interference direction. Note
also that this null in the array pattern remains fixed for all frequencies where there is

sufficient interference power to overcome the detector noise.




V.4 Adaptive Array Processor

As in the strictly temporal case, the adaptive broadband sidelobe canceller also uti-
lizes convolvers and correlators to accomplish the desired task. However, because of the
multi-dimensional nature of the signals (spatial and temporal), arrays of correlators and
convolvers must be employed. The basic system is shown in Fig. V.6.

The output of the processor is simply the sum of all of the signals from the array
elements and a feedback signal, which is derived from a cascade of multi-channelcorrelation
and convolution operations performed on the output and input signals. The output is fed
back to the first block, which calculates the correlation between the output signal and the
N input signals from the array elements. Each of the resulting correlation functions, given
by (u.(t) = 2(t)), n = 1,2,.... N, is then convolved with its corresponding input. The .V
convolved results are summed to give

i =G unl(t) + (un(t) « 2(t)) (V.17)

as the feedback signal, where G is the feedback gain.

To show that the adaptive processor approximates the optimum response, however,
the output must first be expressed in the form of Eq. V.5, where the impulse respon :e
for each array filter is explicitly shown. We will show that the equation describing the
filter impulse response functions, h,(t}, n = 1,2,.... N, of the adaptive processor is
approximately equivalent to that of the minimum mean-squared error processor given by
kq. V.9

In order to clarify the analysis to follow, we redraw the schematic of Fig. V.6a as
shown in Fig. V.6b so that as in the Frost architecture (Fig. V.5). the output from

individual filters can be identified and described. Here, the output of the n,, filter is given
by
G
yn(t) / ho(t  7T)u,(r)dr.
~x

or equivalently. Y, (f)  Ha(f)Uo(f) where Yo(f) is the Fourier transform of y,(t). The
overall output is then given by z(t) N y.(t). Inspection of Fig. V.6b yields

—

Ialt) wup(ty o (t) « 2(t) o, (t)
(VoIN)
O(t) () (F) ] e ().
]
where o(t) is the Dirac delta function. Since r, (1) ho(t) « u, (). the nnpulse response
of the ny, filter is described by

ho(t) &) Gl (1) « =(t)
\

o(t)  Clup(t) « X o b)) s ko (1)

e |

(V. 19)
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Taking the Fourier transform of the above equation and rearranging yields

Y bam = GUA()Um(f) Hm(f) = L. (V.20)

m

where U, (f) is the Fourier Transform of u,(t). If the feedback gain G is sufficiently large

so as to leave the first term of Eq. V.19 negligible compared to the second, then Eq. V.20
becomes

GY Ui(N)Um(fHm(f) = L. (v.21)

The: is of the same form as the optimum equation, Eq. V.9, provided that the input SNR
is sufficiently low so that we can identify u; (f)um(f) as the estimate of the noise cross
spectral density matrix [';,,(f). The particularly simple form of Eq. V.20 can be inverted,
however, to give a closed form solution for the adapted filtering functions. The derivation
is analogous to that leading up to Eq. V.13 and yields

Ui(f) et Um(f)
1+ G YN Un(f)?

Suppose that the total signal received by the array consists of a weak probe signal on
boresight represented by p(t) whose Fourier transform is P(f) and strong interference
signals incident in other directions, the noise received by the n;s, element represented
by v,(t) whose Fourier transform is V,(f). Thus, the total input is given by u,(t) =
p(t) + vn(t). The probe is sufficiently weak as to only negligibly affect the determination
of the filtering functions H,(f) so that approximately,

H.(f) =1~

, n=1,2,.,N. (V.22)

-« N
o) 1= VAU e V)

3 , n=12_,N. (V.23)
1+ G [Vim(f)[2
The output is described by
N
Z(f) = )_ Ha(NUn(f)
=t (V.21)

- [1 ERAVIRENEY)




As expected. the second term is effectively suppressed if the feedback gain can be made
large.

V.5 Optical Implementation

The optical implementation of the adaptive sidelobe canceller is a fairly straight-
forward extension of the optical techniques used for the temporal systems described in
Chapter 3. The extension is made simply by using arrays of convolvers and correlators
to handle the N input signals from the antenna array sensors. The input spatial light
modulators to be used are multi-channel and single channel acousto-optic devices that
offer large dynamic range and can operate on broadband signals. We concentrate first
on a space-time integrating system that involves the use of a photorefractive crystal to
perform the time integration. A strictly space integrating array processor is described in
Section V.6.

The basic task of the processor is to form the feedback signal given by Eq. V.17.
Note, however, that since correlation can be expressed as un(t) * 2(¢) = u,( -t) « z(t), and
convolution is both an associative and commutative operation, the feedback signal can be
expressed equivalently as

N

a(t) - Gz(t) « Y unlt) vup( t). (V.26)

n=1

This rearrangement suggests that we can modify the system architecture somewhat by first

computing an autocorrelation function of each input signal, adding the autocorrelations




PN 1
R
e it
i
'::g., and convolving the summed result with the output, z(¢), to form the feedback signal as
L illustrated in Fig. V.7.
o For the purpose of discussion, however, we adhere to the strict interpretation of Eq.
:' X V.17 as discussed in V.4. As shown in Fig. V.6a, the output is first correlated against
::::1.. each of the .V input waveforms, and each resulting correlation is then convolved with its
':: corresponding input. The .V convolution-correlation signals thus produced are summed
to form the feedback signal. The multi-channel correlations are performed using time
-‘!;,s integration and the convolution with the output signal is achieved with space integration.
R 7 Shown in Fig. V.8 is the multi-channel correlator, where the output autocorrelations
:' . are written as modulations of an index grating formed on the crystal by the photorefractive
’{‘ ', effect. More specifically, AOD1 and AOD?2 are arranged to operate in a coherent, additive
' architecture. The single channel AOD1 diffracts a portion of its input light. This passes
ey through AOD?2 without being affected because of Bragg mismatch and is imaged onto the
o crystal to yield the amplitude z(¢ + /v — T/2)ezp{j27 fo(t + z/v)} in the crystal plane.
. "‘ The multi-channel AOD? diffracts the undiffracted beam from AOD1, which is aligned to
:l", be well matched to its acoustic gratings to yield the optical amplitude
o Y un(t - z/v - T/2)ra(y)ezp{i2n fo(t — z/v)},
e "
.‘\"-‘_1_':
:‘;-_,: also imaged onto the crystal. Here r,(y) characterizes the vertical confinement of the
acoustic beam in each channel of the multi-channel AOD and can be approximated by
: .' V-1
s - (n— )y,
:5:}:' ro(y) = (‘T_l@)rect g—(——éy—z _Elﬂ{ , n=1.2 N, (V.27)
o
o
) by being the acoustic beam width and yo the separation between neighboring channels,
t'.".;"' where .V is assumed to be odd.
:" These two amplitudes are incident at an angle with respect to each other. Since
3.::"‘ both have the same Doppler-shift in frequency, an intensity grating is seen by the crystal.
3’..‘:: In fact. an array of one-dimensional modulated index gratings, each confined vertically
. by r,(y). is formed within the crvstal. [t can be shown that the modulation functions
" ‘_. are proportional to the desired correlation functions, and specifically, the diffracted light
Ao due to the n. grating when the crystal is illuminated by a plane wave is given by 8
,:‘: E.(x,y)exp{- j2n f,(2z v)}. Here
NGt z
. En(r,y) x r,,,(y)/ erp(t' ) ru(t' v T 2)z(t'-r e T 2)dt
’: }t r.v Tr2 (‘2\)
f::'.. , x rn(y)/ un(t')z'(t' - 2rv)dt'.
f:l:‘. t-r. v - T 2 r
B In this equation. the exponentially decaying window function has been approximated by a
.g: rectangular window of temporal duration 7. The resulting integral is proportional to the
;":ﬁ correlation function of u,(t) and 2(t) with 2r /v as the shift variable.
f:q:"
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To complete the task of forming the feedback signal, we combine the previously de-
scribed correlators with a space integrating convolver, resulting in the system shown in
Fig. V.9. The added portions are the multi-channel AOD (AOD3) which is driven by
the system output z(t), some imaging optics, and a single photodetector. Since the auto- 1
correlations are available at a compressed horizontal spatial scale, 2z/v, a combination of |
cylindrical and spherical lenses C1,L5,L6 is used to anamorphically image AOD3 onto the
crystal. This anamorphic imaging provides a 2:1 demagnification ratio in the horizontal
direction and 1:1 in the vertical.

A portion of the He-Ne read beam is diffracted by AOD3 and passes through the
crystal unaffected since its propagation direction is not properly Bragg-matched to the
correlation gratings in the crystal. The DC beam from AOD3, however, is arranged to
be Bragg matched to the gratings and reads out the correlation functions. If the acoustic
velocity in AOD3 is v, the same as that of AOD1 and AOD2, and all of the AODs are
driven at the same frequency, fo, then the read beam diffracted by the crystal and that
diffracted by AOD3 are collinear and interfere temporally at fo because of the Doppler shift
induced by AOD3. The diffracted light amplitude just behind the crystal due to the crystal J
gratings is proportional to Y E.(z,y)exp{j2n fo(—2z/v)}, and the diffracted light from |
AOD3 evaluated at the same plane is 3 exp[j27 fo(t — 2z/v)|un(t — 2z/v — T/2)r,(y). ‘

The sum of the above two amplitudes are Fourier transformed by lens L7, and the i
resulting intensity distribution is integrated across the Fourier plane by a sufficiently large !
photodetector. If w is the width of each AOD, the result is the output photocurrent 1

w/4
i(t) x Re {exp{j?rrfot} Z/ / (z,y)un(t — 2z/v - T/2)dyd1:}

-w/4
~ DCterms
w/4 t-z/v-T/2
x Re{ezxp{j2n [t} / / / ra(y)u,(t)z(t" +2r/v) )
{ L w/4 t—-z/v-T/2 -1 " " (‘/29)

un(t — 21:/v — T/2)dt'dydz} + DCterms
T/4 t—z/v-T/2 ‘
x Re{ezp{j2r fot} Z/ / u,(t)z(t' + 2z,v) !
T/aJt—-z/v-T/2-71 ‘
un(t - 2z/v — T/2)dt'dx} + DCterms.

The high frequency term centered at f, is approximately equal to the desired feedback
signal given by Eq. V.17. The output of the system z(t) is then formed by subtracting the
feedback signal from the sum of the input signals Y~ un(t) to yield

7‘1 T/4
z(t) - Llu" (¢) Tr / / vt - B -T;2)z(t) -t + 3- T/2) a0)
un(t 29 - T/2)dt’d[3}.

where 3 r v, T - w,v, and G is the feedback gain. Here we have assumed that the
signals received by the array are all centered at f, and that they drive the AODs directly
after being amplified.
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MYy By deﬁning an equivalent impulse response, h,(a), for the system such that z(¢)
. Y. j_ un(t — a)da, Eq. V.30 can be expanded further to give

i GRNCURC2D oy M Y BETE R

.' (V.31)
1

m(t'+t+ﬂ-T/2—a)un(t—2ﬂ—T/Z)dadt'dﬂ}.
W'
\ jﬁ An equation that describes the impulse response can then be derived by noting that the
: ?\0 output appearing on the left side of the above equation can be expressed, using the impulse
‘:' : response. With the assumption that the integration time, 7, is long enough to warrant the
" approximation sinc|fr]| = §(f), the resulting impulse response equation is given by

UN W
‘ oo

G B3-T/2 :
e ha(8) = 6(3) - (-)rect[—/] > exp{j2rf'(3 - « — T/2)}
") T T - V.32
W
ol ha(@)Uy (f)Um(f")df"da,
';'.l"‘ where U, (f) is the Fourier transform of the n., input signal u,(t). Taking the Fourier
3 N transform of the above equation gives
1 ¢
W *
B Ho(f) =1- GZ/ exp{jn(f - f)T}sinc (f' = /YT|Hn(f YU (fYUn(f')df'. (V.33)
)
Vi m
L ?
This is very similar to the optimal equation discussed in V.2 if we identify the product

'* U (f)Um(f) as an approximation of the required cross spectral density matrix. In par-
. s ticular, the effect of the finite convolution time is to distort the spectral properties of
‘) the input noise field. Thus, the optical implementation is expected to place a spectrally
;:*g" broader null in comparison with the interference bandwidth, but the spatial characteristics

J . .. .
! _,f. remain similar to the optimal case.
'f_:ﬁ.

l"a,

g V.8 Adaptive Array Processor with Variable Look Direction
DY
; X The array processor described thus far is a sidelobe-cancelling system where the max-
;’“. imum sensitivity (the “look direction™) is always constrained to be in the direction of
Ko boresight.* In this section, an acousto—optic processor is presented which is an extension

of the ternporal active processor described in to the space-time domain. The optical archi-

E.? tecture considered uses space integration as Opposed to the photorefractive implementation
:.‘: considered in the previous section. The optimizing criterion used is that of maximizing
::‘n:. the output SNR (signal detection) and the signal need not arrive on boresight.

::::. The scenario considered is that where a signal waveform s(¢) is incident on the array at

" a known angle 8 with respect to boresight. and noise (possibly broadband) from directional
_"-‘ - - s - -

‘::‘:: * The look direction can be changed by introducing appropriate delays in the signals
‘j:s' received by each element before they are processed.

iy
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::::: sources corrupt the received signal waveform. Let s,(t) = s(t - n(d/c)cos8) be the signal
waveform received by the n,) element. The total signal received by the n,, element is then
s given by un(t) = sn(t) + vn(t), where vn(t) is the sum of all noise terms. Here d is the
\ :; array element spacing, and c is the speed of light.
¢ :; The output of a general space-time filter can be expressed as
." .
gt Z / n(t — 7)dr, (V.34)
f!z\"o
)
by
)
::"‘.' where u,(¢) is the complex envelope of the total rf signal (centered at f;) received by the
e neh array element, and hn(t) is the filtering function for each channel. A similar expression
is obtained for the optically implemented space-time filter using two multi-channel AODs
a shown in Fig. V.10. This system is coherent, and the output can be shown to be given by
4
'*\' N T/2
N = T >3 / n(t =7 = T/2)hg(t + 7)dr, (V.35)
l‘.':' :
f- where the filtering function h,(t) is used to drive the second AOD, and ¢, is a constant
, Tr:'_: that depends on laser power, AOD diffraction efficiencies, and the quantum efficiencies
ol of the detectors. The only differences from the general filter (Eq. V.34) are limited
'o,ﬁ accumulation time and the time compression of the output. This is of little consequence
. since signal detection rather than estimation is considered here. The noise v, (t) present
_\ in the received signal is modeled by a zero-mean random process with a covariance matrix
o iven b
given by
iy Tmn (t) = Elvm(t)v, (t = 7)]. (V.36)
) It can be shown through variational arguments that the choice of h,(¢), for which the SNR
4'-» of the AO space-time filter is maximum at a specified time t,, must satisfy the following
-,'J system of integral equations:
¥y
\; N ~o )
'l Z / Ymn (T — B)hm(B)d3 = As; (to — 1), n=1,2,...N. (V.37)
m= — 00
e
AN
::E: The details of this derivation are given in Appendix B.
".:: For adaptivity, we need to calculate and continuously update the filter function to
:". drive the output to the optimum result. As with the temporal active processor, the output
s'ﬂlp p
must be correlated with the input to produce the appropriate filter function. Since the
E;'—o; array processor has .V inputs and one output, this requires that we correlate NV signals
;:,'. with a common one. This can be achieved with the arrangement shown in Fig. V.11. That
_'::l:l figure shows the use of a multi-channel AOD driven by the .V antenna element outputs in
':':.: conjunction with a single channel AOD driven by the processor output signal.
‘ The complex envelope of the output of the nys detector element is given by
e" -
Yy p
s ez [V . ‘ »
B ra(t) = T y(t + t)u,(t +2r— T/2)dr, (V.3%)
1y ~-T/4
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Fig. V.11 Multi-Channel Acousto-Optic Space Integrating Correlator
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KX _ where ¢, is a constant that depends on the laser power. AOD diffraction efficiencies, and
3 . N .

. the quantum efficiency of the detector. For proper correlation to appear at each output,
o the signal driving the single channel AOD must be time-compressed by a factor of two.
::-.'3 This is indeed the case for the system described. Thus, the AOD implemented space-time
;{~ filter and the .V channel correlator with a single reference are compatible.

e Shown in Fig. V.12 is the array processor block diagram that shows the interconnec-
. tions required: it is a direct extension of the temporal ~ *ive processor to two dimensions.
:‘_, The output from each antenna element is correlated with the processor output to produce
L~ the filter function for that element. The “steering vector™ s;( -t) determines the look
:- direction of the array and also is the temporal reference signal used for the detection of
o, . .

iy the desired signal s(t).

Fig. V.13 shows the optically implemented adaptive array processor with the AOD

o implemented space-time filter in the upper branch and the .V channel correlator in the
N . e . . .

ON lower one. By combining Eqs. V.35 and V.38, the equation that determines the filter

Ry function h,(t) is seen to be

K

¥ 4 T 2 ‘i

i Scicr ¢~ B . .

3 ho(t)y = so( t-t) G- u,(t ~ 2 beta - T, 2)

», n T2 n ’ .

,p‘.,). m A -T. 4 (Vl}g)

Y ,

WY Um(t =3 7 T 2)h,, (¢t -~ 3 - 1)dIdr.

b

. _'\,

[ A . . . . . S .
where (7 is the feedback gain. ['nder conditions of low input SNR and large feedback gain.

N Eq. V.39 can be transformed to the frequency domain to yield

.;:_ v -

o erpt 2= ft ),\',f(f)x-(.'m(‘g(\_‘ Hm(f)/ U (fYUm(f) .

) e 1 - (“O)
Y erpys(f ST Asine(f [T Asinc(f [T . 2df".

.'::: where S, (f) s the Fourier transform of s, ().

,}: For comparison. consider the Fourier transform of Eq. V.36: the optimum filter equa-
"1 ton is given by

o0 N UL L) derp( J2rfE)S(f), (V.11)
2

. where I w(f) is the spectral density matrix. Identifving the integral in Fq. V.40 as the
ora stmoothed estimate of the cross spectral density matrix of the input noise vector, Eq. V.10
A < approximately equivalent to Fq. Vot However, the effect of the finite time integration
‘o window i~ seenin the stmoothing of the noise spectrum.
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Appendix

Optimum Broadband Array Processors

The optimum broadband array-processing systems discussed in Chapter V are derived
in this appendix. The two optimality criteria considered are the mean squared error and
the maximum output SNR conditions. Simple variational arguments are used to derive
the necessity conditions for these criteria. Since the costs to be minimized are quadratic
functionals of the impulse responses that are varied, these necessity conditions are sufficient
as well, and so describe the systems uniquely. Throughout this appendix, the noise received
by the n:s array element is represented by v.(t) which is assumed to be a zero mean,
stationary, random process with covariance ymn(7) = E{vm(t)v,. (¢t — 7).

Minimum Mean Squared Error Sidelobe Canceller

We model the desired signz! by a zero-mean stationary random process s(t) whose
autocorrelation function is given by R(r) = E[s(t)s™(¢t — 7)]. Let the total signal (desired
signal plus noise) received by the n¢s element be represented by u,(t) = s(t) + v, (t). Since
the scenario of interest focuses on a signal arriving on boresight, each element receives the
same desired signal without dispersion.

The form of the processor is shown in Fig. V.5, where the parameters that must be
optimized are the NV impulse response functions. The output signal is given by

N o
z(t) = Z/_ B (7)un(t ~ 7)dr, (A1)

and the cost to be minimized is given by

Cha(t) — E z(t) - s(t)?
2:):// R, (3)ha(r) R(3  7) - vnm(3 1) drds
- R(0) {X/ vhn(r)R( Ndr - e},

(A2)

where we have assumed the noise and signal portions to be statistically independent.
[et iz,,(t) represent the optimum filter for the n,, element. and let g, (f) represent any
other impulse response function. In order for il,,(f) to be the cost-minimizing ~olution,
the perturbed cost function ¢ iy,,(f) - g, (H) must have a minimum value at the point
0 g oo Joy 0. where ayp and a; are teal. The two conditions that express this
mathematically are

7 .
(" h,(t) - g, () 0,
’)’YI( ' ' ( \,‘
o) - o
' h, ) oy, () 0.
vy W
R
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Carrying out the above calculations leads to two equations which combine to yield

Z/_OO gn(r){Z/_oo hin(B)[R(B = 7) + Yam (B — 7)|d3 - R*(r)}dr = 0. (A4)

Since g,(t) is an arbitrary function in Eq. A4, the terms within the braces must sum
identically to zero. This gives the following condition that the optimum filter must satisfy:

: S [ R BIRE - 1) + vm(8 - )8 - B (1) =0, (45)

which is both necessary and sufficient because the cost functional is quadratic. This is the
generalization of Wiener’s result to the space-time domain of broadband phased arrays.

Mazimum Output SNR Array Processor

We now consider the task of signal detection, using the array processor of Fig. V.5.
The signal is a known waveform s(t), which arrives at an angle # with respect to boresight,
and the noise field is the same as that discussed for the MMSE (Minimum Mean-Squared-
Error) processor. The total signal received by the n;, element is therefore given by

un(t) = sn(t) ~ va(t), (46)

where s, (t) = s(t — ndcos8/c) is the signal waveform as seen by the nys element.
The output is given by

e(t) = X/_‘ un(t  1)ha(r)dr. (AT)

Since the processor is linear, the signal component can be readily identified from the noise
at the output. The output signal and noise are described, respectively by

e.-‘!jﬂ.ll(') 2':/ 4 -"',,([ :’)h,,(f)lfr,

. (AN)
€nq.(t) L ralt rYha(n)di.
The goal is to maximize the output SNR given by
v o) o
SNVHK o , Y
Foen o)

at a prescribed time f




An equivalent problem is to minimize the output noise power while constraining all
admissible impulse responses to give the same output signal amplitude at ¢,. In particular,
the functional expressed by Eq. A9 can be maximized by minimizing the cost given by

Qlhn(t)] = Ellencise(to)?] - /\{Z/;oc $n(to — T)hp(r)dr — ¢}
=X [ b @ram (@ - ryaras (A10)
- /\{Z/_ $n(to — T)ha(7)dr - c}.

where the constraint e,;gnqai(to) = ¢ has been included through the use of the Lagrangian
multiplier A.

Again, representing the optimum filter by iz,,(t) and an arbitrary function by gn(t),
we apply the conditions given by Eq. A3 to obtain

3 /:” gn(r){Z/—m Ynm (B ~ 7)h(B)dB — Asn(ty - 7)}dr = 0. (A11)

Since g,(t) is an arbitrary function, the terms within the braces must sum identically to
zero, yielding the condition

2:/70 Ymn (T - Ihm(3)d3 - A s (L, 7). (A12)

which is the matched filter result generalized for phased-array processing. The Lagrangian
multiplier A is immaterial since it merely multiplies all .V filters by a constant factor and
has no effect on the output SNR. Therefore, kq. A12 describes the optimum result to
within a constant factor.
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