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Trace driven simulation and hardware measurement are the techniques most often used :
to obtain accurate performance figures for caches. The former requires a large amount Wt
. l . . l h h r . h . l h l . . ..0.9“33

of simulation time to evaluate each cache configuration while the latter is restricted to e
measurements of existing caches. An analytical cache model that uses parameters "-:w:::’o.f
extracted from address traces of programs can provide estimates of cache performance \f{s
and show the effects of varying cache parameters. By representing the factors that "t
affect cache performance, we develop an analytical model that gives miss rates for a e
given trace as a function of cachesize, degree of associativity, block-size,
multiprogramming level, task switch interval, and observation interval. The predicted B
values closely approximate the results of trace dme simulations while requiring only a BN
small fraction of the computation cost. - = ¢ DEE
Key Words and Phrases: Cache, cache model, interference, locality of references, F
measurement and analysis, multiprogramming, program behavior, run length; start up, e
trace driven simulation, working set. ,:::I::.,
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1 Introduction

1.1 The case for the analytical cache model

Two methods predominate for cache analysis: trace driven simulation and hardware
measurement. The survey article by Smith [21) uses the former technique extensively,
while a comprehensive set of hardware measurements is presented by Clark [6]. Other
examples of cache studies using the above methods include (3,5,9,11,24,20,23,1]. These
techniques provide an accurate estimate of cache performance for the measured bench-
marks. The problem is they cannot be used to obtain quick estimates or bounds on
cache performance for a wide range of programs and cache configurations. Simulation
is costly and must be repeated for each possible cache organization.! Large caches
requiring longer traces for simulation exacerbate the problem. Multiprogramming ef-
fects are seldom studied using simulation due to the lack of multitasking traces; the
availability of such traces (1] introduces additional dimensions over which simulations
must be done. Hardware measurement, which usually involves costly instrumentation,
requires an existing cache and gives data for only one cache organization (sometimes
with possible size variations [6]). Furthermore, simulation and measurement inherently
provide little insight into the nature of programs and the factors that affect cache per-
formance. Analytical models on the other hand, if simple and tractable, can provide
useful “first cut” estimates of cache performance. Simple models provide more intu-
ition, but may lack the accuracy of more complex models. Therefore, if more detailed
results are needed, simulations can be carried out to fine-tune the cache organization.

There are added advantages to having a simple model for cache behavior. For ex-
ample, an understanding of the exact dependence of cache miss rate on program and
workload parameters can identify those aspects of program behavior where effort would b
be best justified to improve cache performance. Cheriton et. al. [4] suggest that build- e
ing caches with large blocks (cache pages), in conjunction with program restructuring Al
to exploit the increased block sizes, could yield significant performance benefits. A o)
cache model that incorporates the spatial locality of programs would be useful in an- -
alyzing the effects of various program restructuring methods. In addition, this model
could be incorporated into optimizing compilers to evaluate tradeoffs in decisions, such
as procedure merging, that affect cache performance. Also, in a multiprogramming v
environment, the tradeoff between higher resource utilization and degradation in cache %
performance with the level of multiprogramming can be easily assessed with a simple )
analytical cache model.

1.2 Overview of the model

Our cache model is hybrid in nature, involving a judicious combination of measurement
and analytical techniques yielding efficient cache analysis with good accuracy. Since
the intended application of our model is to obtain fast and reliable estimates of cache
performance, the time spent in measurement of parameters from the address trace and,
more importantly, in model computations must be significantly less than simulation.
To minimize the number of parameters that have to be recorded and stored, average

!Stack processing techniques can sometimes be used to reduce the number of simulations {16).




quantities are often used instead of detailed distributions. This also decreases com-
putation time. Besides, the bottom line of interest may be an average, for example,
the miss rate. Mean Value Analysis (MVA), an example of this approach [15], gives
accurate predictions of computer system performance using average measured system
parameters to drive analytical models. MVA has been a key motivating factor in our
cache modeling efforts.

Our model predicts cache miss rates for various cache organization and workload
parameters. The miss rate is chosen because it is a key performance figure. Cache
performance data for a given address trace is derived in two steps. First, we analyze
the reference stream and record a few parameters assuming some basic cache orga-
nization, for example, a direct mapped cache of size 1K words and unit block-size.
The basic organization can be chosen in the neighborhood of the cache type of inter-
est to improve accuracy of the results. The model parameters, which are extracted
from an address trace, are meaningful by themselves and provide a good indication of
cache performance. In the second step, we vary cache and workload characteristics and
project cache performance from the model. The model includes cache parameters such
as cache-size, degree of associativity, and block-size; and workload characteristics such
as multiprogramming level and the time between process switches. Cache miss rates
can be derived by representing the following factors that cause cache misses:

1. Start-up effects: When a process begins execution for the first time on a pro-
cessor, there is usually a flurry of misses corresponding to the process getting
its initial working set into the cache. These first-time misses are due to start-up
behavior. In the early portion of any trace, a significant proportion of the misses
in a large cache can be attributed to start-up effects. This effect is also observed
when a program abruptly changes phases of execution. Since miss-rate statistics
for different phases of the same program are often widely uncorrelated, just as
those of different programs are, each phase has to be separately characterized for
maximum accuracy. However, for simplicity, or if the phases are short or if phase
changes are small, their effects can be smoothed into the non-stationary category.
Start-up effects are excluded when warm-start (or steady-state) miss rates are
needed [8]. Inclusion yields cold-start miss rates.

2. Non-stationary behavior: This refers to the misses that occur when references
are fetched for the first time after the start-up phase. Non-stationarity is a time
dependent effect that occurs when a program changes its locality gradually. Any
program performing the same sort of operation on each element of a large data
set shows this behavior. Subtle changes of phase over small intervals of time,
corresponding to change in cache working set, can also be modeled as a non-
stationary effect. Often all phase behavior within a trace can be conveniently
treated as non-stationary. While the overall miss rate might not be in error, the
resulting transient miss rate, as predicted by the model, would show a smoother
variation than in practice.

Start-up and non-stationary behaviors are evident from working set plots [7] of
programs. Working set plots have a roughly bilinear nature with a sharply rising
initial portion corresponding to start-up, and a gradual slope thereafter denoting




non-stationarity.?

.

The misses caused by the above two effects are dependent on the block-size -
assuming that a block is fetched from the main store on a cache miss. Increasing
the block-size (up to a limit) takes advantage of the spatial locality in programs
and reduces cache miss rate. A model of spatial locality is proposed to account
for this effect.

3. Intrinsic interference: Due to finite cache size multiple memory references of
a process may compete for a cache set and collide with each other. If the number
of cache sets is S, then all addresses that have the same index (i.e., a common
value for the address modulo S) will have to be in the same cache set. Interference
misses occur when these references have to be fetched after being purged from
the cache by a colliding reference of the same process. This effect depends both
on how the addresses are distributed over the address space — a static effect, and
the sequencing of references, a dynamic effect.

The static characterization is based on the assumption that any reference has a
uniform probability of falling into any cache set. The hashing operation (e.g., bit
selection) that maps the large address space of programs to the much smaller cache
space effectively randomizes the selection of any given cache set. Our results, and
also those of Smith [22], show that this assumption is quite reasonable. The
dynamic component is represented using a measured parameter from the trace
called the collision rate. Unlike the distribution of blocks in the cache, which is
dependent on the cache-size, the collision rate is shown to be reasonably stable
over a wide range of cache and block sizes.

4. Extrinsic interference: Multiprogramming is an additional source of misses
because memory references of a given process can invalidate cache locations that
contained valid data of other processes. The impact of multitasking, not widely
considered in previous cache studies, is particularly important for large caches [1]
where a large fraction of the misses tend to be clustered near process switch points.
Extrinsic interference will increase with the level of multiprogramming and de-
crease with the quantum of time that a process executes before being switched
out. Other causes of extrinsic interference such as I/O and cache consistency
invalidations are not included in this study but could be added.

Extrinsic interference is modeled in the same manner as intrinsic interference
with only the static characterization being necessary. The dynamic component,
characterized by the collision rate in intrinsic interference, is not needed because
a collision can happen only once per colliding reference after a process switch.

All the above effects will be considered in deriving a comprehensive model of cache
behavior. Start-up effects and extrinsic interference characterize the transient behavior
of programs, and non-stationary effects, intrinsic and extrinsic interference determine

steady-state performance. The extent to which each effect contributes to the miss rate ';
is a strong function of the cache organization and workload. In small caches misses 3
are predominantly caused by intrinsic interference, whereas in caches large enough to J

7Please see Figure 13 for an example working set plot.




hold the working set of the program, non-stationarity and extrinsic interference are the
important sources of misses. '

1.3 Related research

Our approach differs from some of the earlier memory hierarchy modeling efforts that
tend to focus on some specific aspect of cache performance but did not adequately
address the issue of a comprehensive cache model.

Some of the early memory hierarchy studies use empirical models. Chow [13] as-
sumes a power function of the form m = ACP for the miss ratio, where C is the size
of that level in the memory hierarchy, and A and B are constants. They do not give a
basis for this model and do not validate this model against experimental results. Smith
[21] shows that the above function approximates the miss ratio for a given set of results
within certain ranges for appropriate choices of the constants. However, no claims are
made for the validity of the power function for other workloads, architectures, or cache
sizes.

The Independent Reference Model [2] is used by Rao to analyze cache performance
[17]. This model was chosen primarily because it was analytically tractable. Miss rate
estimates are provided for direct-mapped, fully-associative, and set-associative caches
using the arithmetic and geometric distributions for page reference probabilities. A
problem with this technique is that it assumes fixed page sizes and the number of
parameters needed to describe the program is very large. Furthermore, validations
against real program traces are not provided.

Smith focused on the effect of mapping algorithm and set-associativity [22] using two
models, a mixed exponential and the inverse of Saltzer’s linear paging model [19], for
the miss ratio curve of a fully associative cache. The miss-rate formulas compared well
with trace driven simulation results. However, separate characterization is necessary
for each block-size, and time dependent effects and multiprogramming issues are not
addressed.

Haikala (10] assessed the impact of the task switch interval on cache performance.
He uses a simple Markov chain model to estimate the effect of cache flushes. The
LRU stack model of program behavior (25] and geometrically distributed lengths of
task switch intervals are assumed. The model is reasonably accurate for small caches
where task switching flushes the cache completely and pessimistic for large caches where
significant data retention occurs across task switches [1].

Strecker [27] analyzes transient behavior of cache memories for programs in an inter-
rupted execution environment using the linear paging model for the miss ratio function.
The analysis accounts for data retention in the cache across interruptions. The form
of the miss ratio function used is (a + on)/(a + n), where n is the number of cache
locations filled; a and b are constants obtained by measuring the program miss rates
at two cache sizes. Predicted miss rates of several real programs run individually and
interleaved for various execution intervals compare reasonably well with trace driven
simulation results.

The transient behavior of caches is also studied by Stone and Thiebaut [26]. They




calculate the minimum number of transient cache refills necessary at process switch
points as a function of the number of distinct cache entries touched by the program,
also called the program footprint, for two processes executing in a round robin fashion.
However, they do not give a method of obtaining the footprint and validation of their
results is also not provided.

:

The effect of block-size was not included in the above studies; program behavior :‘:.‘;
had to be separately characterized for each block-size. Kumar [14] investigates spatial o
locality in programs. Kumar proposes an empirical technique to estimate the working ?!

set of a program for different block sizes. The miss rate calculated as a function of
block-size is shown to correlate well with the results of trace driven simulation. Besides
being specific to block size effects, the study has certain drawbacks. Validation is
carried out only for very large caches to exclude the effect of program blocks colliding
with each other in the cache. Hence, only start-up effects can be considered to be
adequately modeled in this study.

12 e

The above papers have been valuable milestones in analytical cache modeling and
have characterized various aspects of cache behavior. However, the program models
used and the assumptions made in most studies tailored the analysis to some specific
cache parameters limiting the scope of their application.

In the following section, we first describe a basic cache model taking into account
start-up, non-stationary, and interference effects for a direct mapped cache with a fixed
block-size. Section 3 extends the model by including the effect of set-size, block-size
and multitasking. A discussion of the results of our experiments and model valications
against several address traces are provided in section 4. Section 5 summarizes the
model and our results.




2 A basic cache model

This section describes a model for direct-mapped caches with a fixed block-size. The
total number of misses is calculated as the sum of the misses due to start-up, non-
stationary, and intrinsic interference effects. Only one process, i, is assumed to be
active. In general, all parameters associated with this process will be subscripted with
the letter i. However, for simplicity, we will bring in this subscript only when necessary
to distinguish between processes.

A notion of time in the context of a reference stream is necessary to study the
transient behavior of caches. We assume that each reference represents a time step.
We also define a larger time unit called a time granule (tg) for use in the model. A time
granule is sequence of 7 references. Average parameter values are calculated over a time
granule. Processes are assumed to execute on the processor for an integral multiple of
time granules and switch on a time granule boundary. This may not be the case in real
life, but, as we shall see, this approximation is still useful in predicting average cache
performance.

Cache organizations, C, are denoted as a triple (5§, D, B), where S in the number
of sets, D is the set-size or degree of associativity, and B is the block-size or line-size in
four byte words. For a detailed description of the cache terminology used in this paper
please refer to Smith’s survey paper [21}. In other studies S has been called number of
rows, D the number of columns, and B the cache page-size. The cache-size, in terms
of blocks, is the product of the number of sets and the set-size. It is assumed that a
block of data is transferred between the main store and the cache on a cache miss.

We have tried to validate the basic model at every step against simulation results.
For intermediate results, we use an address trace of Interconnect Verify (IV) of length
400,000 references. Interconnect Verify is a program used at Digital Equipment Cor-
poration’s Hudson site to compare two connection net lists. Our trace is a sample of
IV operating on a cache chip.

First we need some definitions:

r: The number of references per time granule. A typical value is 10,000. As we shall
see in the discussion on sensitivity analysis in the appendix the choice of r is not
critical to the analysis. Ideally, 7 should be bounded below by the average time
spent in start-up activity>.

T: Total number of time granules of a process i, or the trace length in number of
references divided by r.

t: Represents a particular time granule. t varies from one to T.

u(B): The average number of unique memory blocks accessed in a time granule by the
process. Clearly u is a function of block-size. u is similar to the working set with
7

parameter r as defined by Denning [7].

3A definition for the start-up period is provided in Appendix A
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U(B): The total number of unique memory blocks used in the entire trace. In the basic
cache model, we drop the use of B and use the notation U since the block-size
is kept constant. In practice, U is less than T * u because many references are
common across time granules.

m(C,t): The miss rate for process i up to and including its t*» time granule for cache
C : (S,D, B). This is the total number of misses d1v1ded by the total number of
references in the first ¢ time granules.

| SRR o AL L. | B

Kt

2.1 Start-up effects: p
o~
=
, ..
The initial filling of the cache causes start-up misses. Let us assume for a moment that -
all these misses happen in the first time granule. Note that time granule size is usually E‘i
chosen to be large enough to account for most of the start-up activity. Then for the o
first time granule, the miss-ratio due to start-up effects is the ratio of the number of -,;
unique references accessed in that time granule to the total number of references: =z
u T
m(C, l)uartup = ; ":::
I
The start-up component decreases monotonically with time because the number of %}
start-up misses is constant: :
u
m(C, t)startup == (1) -

Tt
The above formula shows that even if the cache filling takes more than one time granule,
the miss rate will be in error only as long as cache filling due to start-up takes place.
This term becomes’ vanishingly small for large traces. For Interconnect Verify, with a
block-size of one word, and r chosen to be 10000, the average number of unique memory
blocks accessed in a time granule, u(1), is 1624.

2.2 Non-stationary effects:

Equation 1 considered the misses that occur in fetching blocks for the first time during
the initial time granule and did not take into account the fact that in each time granule
the process could be renewing parts of its working set. For example, this behavior is
seen when a program is operating at any instant on a small segment of a large array
of data. As the program moves to new portions of the array, these new references will
give rise to an added component of misses.

In our model, the first time granule has a large number of new blocks, which is the
initial working set u. In subsequent periods, only a fraction of these will be renewed.
Let f, be the fraction of unique references, u, that are new in every time granule. In
keeping with our assumption of the average being a good predictor of the actual value,
we can estimate the total number of non-stationary misses as the number of unique
blocks in the entire trace minus the initial start-up misses. On dividing by T, the total
number of time granules, the average number of non-stationary misses in a time granule
is obtained. The ratio of this quantity to u gives f,:

U-u
T u

fu=

DASASRRA LT - ‘-"-'~'-;"
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where, U are the number of unique blocks in the entire trace and T are the total number
of time granules represented by the trace. Thus the cumulative number of misses up
to the t** time granule due to non-stationary effects, is

.

\ fu u (t h 1)
X
"; and the corresponding miss rate is obtained by dividing the number of non-stationary
e misses by the number of references, tr,
: u t—-1
" m(C, t)non:tutionary = ; é—('t—'l (2)
'}'
5 Interconnect Verify, with a block-size of one word, has, u(1) = 1634, U(1) = 7234,
T = 40,and f, = (7234-1624)/(40%1624) = 0.0863. Note that the non-stationary

component of misses over the entire trace is over four times the start-up component.

R 2.3 Intrinsic Interference:

Some cache misses are caused by multiple program references competing for the same
- cache block. This effect lessens as cache-size grows larger because fewer references on
) the average compete for any given cache block. To include this effect in the model, we
need to estimate the number of collision induced misses that will occur as a function of
b cache-size. In general, the set-size or associativity plays an important role, but for the
tt present, the analysis assumes a direct-mapped cache. As mentioned before, estimation
of interference misses involves both a static and a dynamic factor.

2.3.1 Static Characterization

L For the static characterization, the distribution of program blocks into cache sets will
be modeled. From this model, the number of blocks that collide with each other will be
estimated. We define a collision set as a set that has more than one block mapped to
it, and, a colliding block (or an interfering block) any block that maps into a colliding
set. In other words, a colliding block is one that could be potentially displaced from
the cache by another block.

P A Nt S A

The key assumption we make in our derivations is that a program block has a
uniform probability of being in any cache set. Many factors contribute to the validity of
this assumption. First, the hashing operation that maps the large process address space
to the smaller number of sets in the cache randomizes the selection of any given set.
This is not entirely true (especially for small block-sizes and simple hashing functions
such as bit selection) because reference streams are highly sequential in practice, and
given that a set has been recently occupied, the probability that an adjacent set will be
accessed is higher that average. This factor causes estimated miss rates to be generally
higher than actual. This is less of an issue in physical caches because virtual pages.
often sequential, can be mapped to an arbitrary physical page; but the correlation
within a page is still high. In virtual caches, the Process Identifier (PID) is sometimes
hashed in with the address used to index into the cache causing references of different

«
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system tend to reside in different segments of the address space, they are mutually
independent with respect to the cache sets they occupy.

Assuming random placement in the cache, the probability, P(d), that d blocks fall
into any given cache set (depth of overlap d) has the binomial form. As usual we leave
out the dependence of this probability on B for notational brevity.

P(d) = (3) (g)d (1--';-)“ (3)

Note that the probability that a block maps into a given cache set is 1/5, and that d
blocks map into this cache set is (1/5)4; (1 = 1/5) is the probability that a block does
not map into the given set.

To validate this model, the number of blocks that map into a set at a depth of
overlap d is calculated for Interconnect Verify. The correspondence between calculated
and observed values (Figure 1) for a wide range of cache-sizes (1K to 64K bytes) is
very close. Considering depths of up to seven, which includes 99% of the references,
the mean and maximum errors in estimation are less than 15% and 42% respectively
for a 4K byte cache. There are two caveats to this error presentation. First, in our
mean value modeling approach, only the mean error is important, and second, noting
that errors in the tail of the function do not significantly affect the predictive capability
of the model, a better indication of performance is provided by focusing on depths less
than five which corresponds to 95% of the references. The mean and maximum errors
in this range are 2% and 4% respectively. The component of error in the intrinsic
interference dominated miss rate attributable to inaccurate calculation of the number
of overlapping blocks for the 4K byte cache is only 2.6%, which further corroborates
our argument.

The number of interfering blocks can be calculated straightforwardly from Equa-
tion 3. Collisions will not occur in any cache set that has at most one program block.
Hence, in a direct-mapped cache, the probability that a cache set has no colliding blocks
is P(0) + P(1), and the number of such non-colliding blocks is S » [0 * P(0) + 1 = P(1)},
which is SP(1). In general, for any number of sets S, we can compute the number of
interfering blocks to be the difference between the number of unique memory blocks
and the number of blocks that do not collide, or,

Number of inter fering blocks = u — § P(1) (4)

Figure 2 shows colliding blocks as a function of the number of sets. For small caches,
all the blocks collide yielding a maximum of u colliding blocks, and for large caches
this number approaches zero. Again the correspondence between predicted and actual
values is quite good with average the error 14% and the maximum error 72%. The
large error in 64K sets is of little consequence because the miss rate is predominantly
start-up dominated; the impact of incorrectly estimating the number of colliding blocks
on the miss rate for a cache with 64K sets is less than 9%. The mean and maximum
errors excluding 64K sets are 8% and 33% respectively.




Figure 1: Number of blocks of size one word (4 bytes) that map into a cache set with
depth of overlap d. Values on the figure indicate cache-size in number of sets.
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Flzure 2: Number of collision blocks as a function of the number of sets.




2.3.2 Dynamic Characterization

The above formula gives just the number of colliding blocks, or the static portion;
it does not indicate when colliding blocks actually induce misses, nor does it tell us
anything about the number of times that the blocks actually purge each other from
the cache (the dynamic component), which is what we need to compute the miss rate.
First, we will derive some loose bounds on this number and on the miss-rate component
due to intrinsic interference, then present a more accurate characterization of the miss
rate.

We define a dead block to be one that is not going to be referenced in the future.
A live block, on the other hand, is still active. The minimum number of misses occur
if every colliding block that is brought into the cache lands on top of a dead one. For
example, if two variables that compete for a cache block are live only in alternate halves
of a time granule the number of collision induced misses due to these two blocks will
be zero. However, if colliding references are very finely interleaved, then these will
cause thrashing in that cache block. Thus, a miss is induced by a collision only if
the displaced block is live. In our model, the average number of times a reference is
repeated per time granule is 7/u giving rise to a possible maximum of r/u intrinsic
interference misses per colliding reference.

Let the collision rate, c, be the average number of times a live colliding block in
the cache is purged due to a collision in a time granule. In other words:

_ Number of times live variables are purged in a direct mapped cache per tg
- Number of colliding re ferences

f

(5) =$E"

The actual miss rate due to intrinsic interference is given by, 2 ‘.3
.

M(C’ t)intrimic = ¢ Number Of coj.liding references x ‘

N

_ clu-S PO " ;

p
We now need a characterization for the collision rate, ¢, which is bounded as

0<e< —

u
The high value is attained when the cache has only one set and every reference is a
miss. The collision rate, ¢, will depend on a number of factors including the number of
times loops are executed in the given program and the time interval between the live
periods of colliding blocks. Intuition leads us to believe that ¢ will be approximately
the same for different cache sizes for any given program up to the point where the cache
becomes small enough that all cache sets are filled. Beyond this ceiling point, ¢ will
monotonically increase until it reaches its maximum, 7/u, for S = 1. Our experiments
(presented in Appendix A) show this to be true. Thus, we can measure a value for ¢
from the given trace for a representative direct-mapped cache with a block-size of one
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g
and number of sets So. We will use this value of ¢ in miss-rate projections for moct
other cache sizes and organizations as well.* Hence, we derive ¢ as follows:
_ Number of times live variables that are purged in a tg when S = Sy
€= Number of colliding re ferences
For our example we choose So = 1024. Total number of live references purged in
Interconnect Verify per time granule is 2391; the probability that only one block maps
into a given cache set, P(1) = 0.32; number of unique references in a time granule,
u = 1624; and the number of colliding references = 1624 - 1024 « P(1) = 1291.
The collision rate
2391
c= 1291 = 1.9
We need to verify whether c is stable over different numbers of sets. Table 1 com-
pares calculated and actual values of ¢ for Interconnect Verify, and we see that c is
reasonably stable and the variations do not seem to show any pattern.
No. sets | ¢ measured | ¢ calculated
1K 1.9 1.9
2K 2.0 1.9
4K 2.1 1.9
8K 1.6 1.9
16K 1.9 1.9
32K 2.2 1.9
64K 1.2 1.9
Table 1: Collision rate for various cache-sizes.
Summarizing, the basic cache model for direct-mapped caches gives the miss rate as
a sum of start-up (Equation 1), non-stationary (Equation 2), and intrinsic interference
effects (Equation 6):
u ¢
m(C,t) = =1+ fult =1)] + —[u~SP(1)] (7)
In steady-state (t tends to c0) the miss rate becomes independent of start-up effects:
uf, ¢
= + ;[u - SP(].)].
This simple cache model predicts miss rates for direct-mapped caches with a fixed
block-size both as a function of time and cache-size. Figures 3 and 4 compare the
results of the simple model with trace driven simulation results using the benchmark
Interconnect Verify. Further validations against other traces are provided after the
following section. The IV trace has 400,000 references. Block-size is chosen to be 1
word. So for parameter extraction was LK. ¢
*The exceptions are discussed in the Appendix. i
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Miss rates for various cache-sizes as a function of time granules are in Figure 3.
Prediction is quite accurate for caches of size 1K sets (mean error 6%, maximum error
30%), 16K (17% and 30%), and 64K sets (13% and 35%). In the 4K set cache (mean
error 25%, maximum error 28%) the estimated values are lower than the actual values
because both ¢ and the number of colliding blocks are underestimated. Miss rate is
substantially overestimated for small caches in the first time granule (1X and 4K caches
in Figure 3) because the model assumes that intrinsic interference is uniform over time.
In practice, the initial portion of a trace has a relatively few intrinsic interference misses
since most of the misses are attributable to start-up activity. Prediction suffers more
in smaller caches because the intrinsic interference miss-rate component is higher. This
problem is easily fixed by only including intrinsic interference misses from the second
time granule onwards. Prediction for the 64K set cache is quite good despite ¢ being off
by almost 60% because the number of colliding blocks is so small as to make intrinsic
interference an insignificant component in the miss rate. Interconnect Verify shows a
subtle phase change near the 20th time granule, which the model cannot detect because

of its averaging property.
Figure 4 shows miss rates as a function of the number of sets. Estimated miss rates
are very close to actual for caches ranging from 128 sets to 64K sets. The predicted

curve yields a good overall fit to the actual curve even though individual miss rates may
be in error. Differences are usually attributable to erroneous estimates of the collision

rate c.

Masrats %

68 § EE&a66E

Figure 3: Miss rate vs. time granule for caches with 1024, 4096, 16384. and 65536 sets.

Actual values represent simulated miss rates.
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3 A comprehensive cache model

In the previous section we derived miss-rate estimates for a single process using a
direct-mapped cache and a given block-size. We now extend the model to include
set-size (degree of associativity), block-size, and multiprogramming.

3.1 Set-size

The intrinsic interference term is affected when set-size is changed. If the set-size
is D, only those cache sets with more than D competing blocks will have collisions.
Thus, the number of colliding blocks decreases monotonically with increasing degree of
associativity D when the number of sets, S, is constant. The effect of set-size on the
collision rate, ¢, is more subtle. Recollecting that in a collision set a miss is induced
if a live block is purged, more blocks can co-exist in a set without purging each other
if the set-size is increased, thus decreasing ¢. Clearly, both the static and dynamic
components that comprise intrinsic interference depend on set-size. As before, we first
derive the static component, followed by the dynamic part.

3.1.1 Static characterization

To estimate the number of colliding blocks for any set-size D, we start with the prob-
ability, P(d), that d blocks fall into any given cache block as in Equation 3.

u 1 d 1 u=d
d) = = -
Pd) (d)(S) (1 s)
The number of sets that have d competing blocks is therefore S P(d). The number of
blocks that collide, for a cache with degree of associativity, D, is obtained by subtracting

the total number of blocks that overlap with depth less than D from the total number

u:
dmD

u~ Y SdP(d)
d=0

Figure 5 shows the number of colliding blocks in the Interconnect Verify trace for
caches with set-sizes one through 16. The number of colliding blocks decreases with
set-size for most caches. For the 1\ set case, however, the converse is true. This can
be explained as follows: Consider a cache with § sets and set-size D. Let set sy of
this cache have d. < D blocks mapped into it, and set s; have d, > D. Further, let
the positions occupied by the two sets in the cache be 5/2 apart. Of the two, by our
definition, only s, is a collision set and the number of colliding blocks contributed by
8y and 3, is d,. Now, keeping the cache-size the same the set-size is doubled. Because
the number of sets is halved, the blocks in the two sets (totaling d_ +d.) will land into
the same cache set. It is easy to see that the number of colliding blocks will be less
than before if d_ + d, <= 2D and greaterif d_ +d, > 2D. Because the latter case
is often possible for small caches, the number of colliding blocks can actually increase



with greater set-size.> As we shall confirm later, this behavior can reduce the advantage
of associativity for small caches.

The correspondence between observed and predicted values .n Figure 5 is good.
The mean and maximum errors for a 1K set cache are 1% and 2% respectively; for a
2K set cache 5% and 16% respectively; and 38% and 88% respectively for a cache with
4K sets. As stated before, the tail portion of the curves can be off by a large relative
amount and do not contribute significantly to the final result. In this case, the relative
error in our colliding block estimate for set-size 16 is unimportant because the miss
rate is start-up dominated; and in fact, the corresponding errors in miss rate for a 4K
set cache is less than 5%. Hence, the mean and maximum errors for a cache with 4K
sets not including set-size 16 become 25% and 33% respectively.

r — G
- =« Estimate
L Cache-size= 1004

Figure 5: Number of colliding blocks vs. D. Cache-size is specified in 4 byte words.

3.1.2 Dynamic characterization

We need the collision rate, or the average number of times a block collides, in addition
to the static factor. For caches with set-size greater than one, the replacement algorithm
has to be considered in determining the average number of times a block collides. Since
we do not have use information, modeling LRU replacement is hard. Appendix B
shows how ¢(D) can be obtained for set-sizes greater than one from the value of ¢
measured from a direct-mapped cache (Please see Equations 5 and B.2). This method
approximates random replacement. The results can be used as a good estimate for
the miss rates given by other non-usage based replacement schemes such as FIFO [21].

3The miss rate, however, deteriorates only if the collision rate, ¢, does not correspondingly decrease.
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Smith also shows that random replacement has about ten percent worse cache miss
rate than LRU replacement on average. Thus, our predicted miss rates can be used as
a loose estimate on those with LRU repiacement also.

The total number of collisions in a time granule due to intrinsic interference is the
number of colliding blocks weighted by the collisicn rate, ¢(D). The aggregate number
of misses per time granule due to intrinsic interference in a cache with S sets and set-size

D is therefore

¢(D) [u(B) - Z Sd P(d)] (8)

and the corresponding intrinsic miss rate component is

=D
m(C, Dintrinsic = "(D ) [ u(B) - Z Sd P(d)] : (9)
d=0

3.2 Modeling spatial locality and the effect of block-size

The derivations in the previous sections assume that the block-size is kept at some
constant value throughout all measurements and analysis. We now consider the effects
of changing block-size. By increasing the block-size, we can take advantage of the
spatial locality in address streams because the number of unique blocks is a decreasing
function of the block-size. The dependence of ¥ and U on the block-size is determined
by two factors: the distribution of run lengths and the distribution of space interval
between runs.

The distribution of run lengths is needed to estimate the effect of changing block-
size, where a run is defined as a maximum stream of sequential references. As an
example, if some data objects are isolated words, then we will need one block for each
of these data items for most reasonable block-sizes. Runs of length B aligned on block
boundaries will be contained in blocks of size B. Further, if blocks cannot be aligned
on arbitrary word boundaries then the alignment of the given run within a block will
also matter.

The second factor accounts for the capture of muitiple runs by a single block. While
run lengths usually range from one to ten words, empirical cache studies have shown
that block-sizes far in excess of ten words can still capture additional localities. This
effect can be explained by the fact that a large enough block can capture more than
a single run. Thus, we need the distribution of space intervals between runs to predict
the usefulness of increasing block-sizes beyond average run lengths.

The ensuing discussion uses the distribution run-lengths to characterize spatial lo-
cality in programs. From this characterization the miss rate dependence on block-size is
determined. Appendix C extends the discussion by considering the effect of capturing
multiple runs in a single block.

3.2.1 Run Length Distribution

A direct method of obtaining run-length distributions is to measure it from the address
trace of the program. Unfortunately, direct measurement encounters two problems.
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First, typical address traces contain interleaved streams of instruction and data ad-
dresses. Even after separating these streams, the data addresses from the stack and
the heap could be interleaved. For example, a VAX trace can contain a sequence start-
ing with an instruction address, followed by addresses of the first, second, and third
operands. Sequentiality of this nature® has to be detected in the address traces to
derive run length statistics. An efficient method (albeit approximate) of separating
these streams and identifying runs is to sort the references in successive segments of
the trace.

The second problem is that an accurate characterizaticn of run-lengths mandates
the use of a large number of parameters - one for every possible run-length. To keep
computation and the number of parameters to a minimum, we propose a simple Markov
model to depict the spatial locality in programs. Then, an approximate distribution
of run-lengths will be derived from two average parameters measured from the address
trace.

In general, an n stage Markov model is required (Figure 6(a)) to characterize run-
lengths, where n is the largest run-length in the trace. In the figure, state R1 cor-
responds to the beginning of a run; state Rk is reached if the first k addresses are
sequential. fi; is the probability that the next address will be sequential given that the
first k addresses are. Since the longest run is of length n, the probability of a sequential
reference in state Rn is zero, and a new run is begun with probability one.

In practice, the complication of a n stage model is not actually necessary; we can
make a good approximation using a two stage model. The reason is quite simple.
Addresses typically fall into two categories: those that form part of a run of unit
length and those that do not. The former are called singular references. Addresses
(in particular data) have a reasonably high probability (1 — f;;) of being a singular
address”. Further, given that an address is non-singular, it has a high probability of
having a sequential successor (fii, 1 = 1,2,3,...,n). Instruction streams, and clustered
accesses in data structures display this behavior. We have observed that non-singular
addresses show a memoryless property to some extent. I.e., the probability that a non-
singular address has a sequential successor does not depend strongly on the number of
preceding addresses in the run.

The values of fj, for Interconnect verify are: f, = 0.56, fiz = 0.72, fi3 = 0.70,
fia = 0.84, fis = 0.86, fis = 0.90, and fi7 = 0.8. The values of fi;x for £ > 1 are
quite close. This confirms that we can approximate the n stage Markov model by a two
stage model as in Figure 6(b). fi remains the same. fi2 is chosen to be the weighted
average of the other fi4s. For Interconnect Verify, f; = 0.56 and fi; = 0.85.

The probability of any run being of length [ is given by,
R(l) = l—fllv [ = 19
fu fi7? (1= fa), 1> 1L

%. R(l)
’-,E Furthermore, the probability of being in state R; in the steady state [28,12] is the
' fraction of references that begin a new run, the reciprocal of which gives the average

®Rau presents an interesting discussion on this issue [18].
"This is the reason why a two stage model is chosen; a one stage model would fail to capture the
dichotomous nature of reference patterns.
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-fi1
1-fi2

(a) An n stage Markov model 'i-'*
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1-fl1
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(b) A two stage Markov model 3 "{‘

Figure 6: Markov models depicting spatial locality in programs.
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run length:
¢ 1°v=1+f11-f12

1~ fa
and the number of unique runs is the number of unique references divided by the
average run-length, that is 4(1)/l,,. Figure 7 shows the distribution of run-lengths for
Interconnect Verify. The dotted line is the approximation using the above simple two
stage model.

(10)

The next step is to calculate u(B), the number of unique blocks contained in the
trace. We define the cover for a run to be the set of blocks that have to be fetched on
average to bring the entire run into the cache. Note that a reference to any word in
a block causes the whole block to be fetched. We start by assuming that a cover for
a run can contain at most one run. Then, for a run of length /! with ideal alignment
(the run starts on a block boundary), at least [ /B | blocks are needed. In gene.al,
the alignment is random and the average number of blocks needed to contain a run of
length /, or the cover-size, is given by the following equation:

) -1
Cover size = | + — (11)
B

For example, assuming a block-size of four words, exactly one block is needed for a
run of length one. For a run of length two we need at least one block. Two blocks are
used up if the run is aligned such that it crosses block boundaries. This happens with
probability 1/4. So, the cover-size, or the average number of blocks allocated to the
run is 1.25. Lacking the inclusion of multiple runs in a cover, each cover will waste a
fraction of a block given by the following formula:

-1 { B-1
(“’T)'E-T

In the above example three words are unused.

Hence, the total number of unique program blocks for a given block-size B corre-
sponding to u(1l) unique words is the average number of blocks needed to cover a run
of length { times the number of runs of length {, summed over all {:

=00
w(B) = "“) Z R(I) (1 + ——1) (12)

o

i; Figure 8 compares predicted and actual values of u( B) as a function of block-size for
[ Interconnect Verify. The mean error in the estimated values is 33% and the maximum
B is 115%. However, the mean and maximum errors are less than 5% and 8% for block-
[ ] sizes up to 8 words. Thus, the above simple model is sufficient for block-sizes less than
;,',; about 8 words. For greater block-sizes, the model incorrectly predicts that u(B) is
|

insensitive to block-size. The cause of this error lies in our assumption that a block can
capture only a single run. Because average run lengths are of the order of four, larger
blocks will be mostly empty haviag little impact on u(B) in the model.

L4
.

ST

Actually, the probability of a block capturing more than a single run is non-
negligible if the distance between the runs (inter-run interval) is small. as is often
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Figure 7: Distribution of run-lengths for the benchmark IV. R(!) is the provability that
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the case, and it becomes necessary to include inter-run intervals in our discussion. For
a detailed characterization of spatial locality please refer to Appendix C. Basically, the
cover size for a given run, as calculated in Equation 11, includes a fraction of a block
that could presumably cover neighboring runs. The portion of the block utilized for
other runs, determined from a measured average inter-run interval and the run-length
distribution, is subtracted from the cover size to yield the actual number of words
allocated to the run. u(B) is then computed as in Equation 12.

17onr

L

----- Estimate using only the run-ength distnbution
Actua

Figure 8: Average number of unique blocks, u(B) in a time granule, r, vs. the block-size

B.

The miss rate can now be estimated using u(B) and U(B) calculated as shown
above. The relevant miss rate formulation (as in Equation 7) is repeated here including
the dependence on the block-size B.

d=D
E} mc.n = 2y pm -0+ Llum -3 sapsa| o
¢ d=0
v
!d Appendix B provides a discussion on the impact of block-size on the collision rate
; c¢. Basically, the collision rate is not significantly affected by a change in the block-
size for most cache sizes. Note that the collision rate reflects the dynamic sequence
- of referencing to various program localities (blocks), and a locality can be expected to
::: have a similar dynamic behavior as its component words.
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3.3 Multiprogramming

The discussion thus far assumed single process execution. Because workloads of real
systems usually consist of multiple processes, and single process models tend to be
optimistic, multiprogrammed cache models are necessary to accurately depict cache
performance. Large caches can often hold the entire working set of a single process.
In this case most misses occur immediately following a process switch when a process
needs to refill its data purged by intervening processes.

The following discussion assumes round robin scheduling with constant duration
time slices; in general, time slice lengths can be measured, or picked from an appropriate
distribution with the constraint that each time slice equals an integral multiple of time
granules. Let mp! represent the multiprogramming level and ¢, represent the number
of time granules in a time slice. Our derivation assumes that the cache is physically
addressed, or in the case of a virtually addressed cache assumes that each process
has a unique process identifier (PID) that is appended to the cache tags to distinguish
between the virtual addresses of different processes. Flushing the cache on every process
switch can also be modeled in an even simpler manner. We concentrate on the miss
rate for a process i. Let m;(C,t;) be the aggregate miss rate for process i after its tit
time granule, and, as before, let the average number of blocks of process i used in a
time granule be u;.

Let carry over set denote the set of references that a process leaves behind in a cache
on being switched out and re-uses on its return, and v;(B) be the average number
of blocks in the carry over set. The notion of a carry over set yields an accurate
characterization of the transient nature of cache misses due to multiprogramming. It is
easy to see that the maximum number of misses that can occur after a process resumes
execution after being switched out is v;( B). The number of blocks in the carry over set
is bounded above both by cache-size and program working set size. Thus, in a smalil
cache multiprogramming induced misses are smaller in number than in a large cache.

Using the notion of a carry over set the effect of multiprogramming on cache per-
formance is computed as follows. Suppose that a process i has been scheduled to run
on the processor after being switched out. There would have been mpl — 1 processes
between instances of process i. Due to these mpl — 1 intervening processes some frac-
tion, f;.(mpl), of the blocks in its carry over set gets purged. The resultirg additional
misses will be equal to the product of f; ,(mp{) and the number of blocks in the carry
over set. The number of blocks in the carry over set in a cache with number of sets
S, set-size D, and block-size B, is approximately given by the sum of all the blocks in
cache sets that do not collide:

d=D
vi(B) = Y_ 5d Pd). (14)

d=0
This is not strictly true because we have excluded cache entries that could potentially be
purged due to intrinsic interference. The implicit assumption is that a colliding variable
is more likely to be purged due to intrinsic interference than due to the intervening
processes. This makes the miss rate estimates slightly optimistic. v;( B) could also be
computed by summing all cache resident blocks of process i to give pessimistic miss
rate estimates. To arrive at a more accurate estimate of the carry over set, a fraction,
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equal to the ratio of the size of the time granule and the time slice, of the program
blocks in the cache that are more likely to be purged by intrinsic interference can also
be included in the carry over set.

Then, the equation for the miss rate component due to multiprogramming, as shown
below, is similar in form to Equation 2 which was derived for non-stationary behavior.
The main differences are: (1) the working set size is replaced by the size of the carry
over set, v;(B); (2) fiu, the fraction of references renewed, is replaced by f;,, the
fraction of references purged; and (3) the time parameter is adjusted to add in the
extrinsic misses once every time slice, ¢,.

vi(B)fi.u(mﬂ) L(tl - I)J

1
tiir t, (13)

mi(C, ti)eztrinaic =

We need to derive an expression for f;,(mpl), the probability that any reference in
the carry over set is purged due to extrinsic interference. To model flushing the cache
on every process switch, we can set f;,(mpl) identically to one. For physical caches,
or virtual caches with process identifiers, f; , can be estimated by applying Binomial
statistics to the carry over set of process i and the set of references of all intervening
processes. Denoting the number of unique blocks of all intervening processes as u;(B),

J=mpl
uy(B) = Z u;(B)

J=1, i

and applying binomial statistics we derive the probability, P(d), that d blocks fall into

any given cache set:
Uy 1 d 1 uy—d
o= () (' (-3

Before proceeding with the derivation, a discussion of the replacement issue in the
multiprogramming context is necessary. The intrinsic interference model uses random
replacement because the order of use of blocks required to model LRU replacement is
not available . However, for multiprogramming, LRU replacement is the natural choice,
because the order of execution of processes determines the reference order. Consider
the case where process i having just relinquished the processor is followed by mpl — 1
intervening processes. Clearly, if LRU replacement is used, the references of process
i will be purged before those of the intervening processes. In the ensuing derivation,
LRU replacement is first used for simplicity, followed by a discussion on how random
replacement can be modeled.

Continuing with the model of process i followed by mpl — 1 processes, a block of
process i can get purged from a give cache set only if the sum of blocks of processes
i (say d) and all intervening processes i’ (say e) exceeds the set-size D. Also note
that the number of blocks of process i purged in any cache set is the minimum of
(1) the number of blocks of process i in that set, d, (2) the set-size D, and (3) the
difference between the sum of the number of blocks of process i and ', and the set-size
D, or (e +d - D). Cases (1) and (2) are trivial, while case (3) deserves comment.
This handles the situation where d <= D. As many as D — d blocks out of e of the
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intervening processes can co-reside in the set. The remaining, e - (D-d) = e+d- D,
will collide with the blocks of process i. The number of blocks of process i that get
purged in any one set is therefore

d=D e=u;(B)
" P(d) Y. MIN(d,D,e+d- D)Py(e),
d=0 e=0

which is simplified to yield

d=D e=u;,(B)
S P(d) >, MIN(d,e+d - D)Ps(e)? (16)
d=0

e=D+1

The total number of blocks of process ¢ that get purged is the number purged per
set times the number of sets S. The fraction of the blocks that are purged out of the
carry over set of process ¢ is then,

fiw(mpl) =

S TR P(d) TR MIN(, e +d - D)Pu(e) -

N

which is substituted into Equation 15 to yield the miss rate component due to extrinsic
interference.

Random replacement, modeled in slightly different fashion, assumes that all blocks
in a fully occupied cache set are equally likely to be purged, irrespective of which pro-
cess they belong to. Hence, a block of process i in a collision cache set is displaced
with probability d/D by random replacement, as opposed to probability one by LRU.
Thus the inner summation in Equation 16 will now include an additional factor, d/D.
Contrary to intuition, the extrinsic interference miss rate component with random re-
placement can actually be smaller than that due to LRU replacement. The explanation
is that unlike the LRU scheme random replacement can cause extra collisions amongst
blocks of the executing process itself before the blocks of previous processes are com-
pletely purged from a set, which shifts misses from the extrinsic category to intrinsic.
Therefore, even if the expected number of extrinsic interference misses for the given
process decreases, the the total number of misses induced by collisions (intrinsic and
extrinsic) is still expected to increase. We also conjecture that shifting misses from the
extrinsic to intrinsic category will reduce the bursty nature of misses particularly at
process switch boundaries.

This concludes the derivation of the cache model in the multiprogramming environ-
ment. The overall miss rate is the sum of the four components calculated in Equations 1.
2,9, and 15:

. d=D
mi(Ct) = 24 fi - 1) + L2 ) - T sp@
1 =0

(B) (ti-1)

% B
+ ——‘m fuompl) [ =] (18)

* A similar equation for two processes was derived simultaneously and independently by Stone and
Thiebaut {26].
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4 Applications of the model

Our cache model has been applied to study a number of cache organizations. Cache per-
formance for multiprogramming workloads is also analyzed. Three benchmark traces
are used in the uniprogramming cache study: interconnect verify (IV1), which is a
DEC program to compare two interconnection net lists in VLSI circuits; a microcode
address allocator (AL1); and MILS, an instruction level simulator for the MIPS proces-
sor designed at Stanford (TMIL1). The first two traces were obtained using an address
tracing scheme called ATUM (1], and TMIL1 was obtained by tracing a VAX-11/780
using the T-bit technique. For the multiprogramming case, MUL10, a trace obtained
using ATUM showing ten active processes is used. The processes include FORTRAN
and Pascal compilations, numerical benchmarks SPICE, LINPACK, and JACOBI, a
string search in a file, an assembler, a linker, an octal dump, and a microcode address
allocator.

Figures 9 through 11 show plots of miss rates versus cache-size for a variety of
block-sizes and degrees of associativity for the three uniprogramming traces, [V1, ALI,
and TMIL1. Corresponding cache performance figures obtained through trace driven
simulation for both LRU and random replacement are also shown to assess the accuracy
of the model. Analytical model results are shown in solid lines, LRU replacement results
in dashed lines, and random (or FIFO) replacement in dotted lines. All cache-sizes
are in bytes. Mean and maximum errors in miss-rate estimates over all cache-sizes for
random replacement are shown in Table 2. We also present the error in hit rate because
for very low miss rates the percentage error in miss rate can be very high, but may not
significantly affect performance.

Figures 9(a), 10(a), and 11(a) show the miss rate as a function of cache-size for
direct-mapped caches. The miss rates for block-sizes of 4 and 16 bytes are shown.
Prediction is quite good for all the benchmarks and block-sizes for a direct-mapped
cache. The mean error in miss-rate estiruates is about 15%. The hit-rate error is much
better at about 1% percent as seen from Table 2.

The miss rates for caches with a set-size of two are shown in Figures 9(b), 10(b),
and 11(b). Interestingly, the intrinsic interference component of the miss rate becomes
insignificant (miss-rate curve bottoms out) after a cache-size of 32K bytes for two-way
set-associative caches, while it is important for direct-mapped caches even as large as
128K bytes. In certain portions of the miss-rate curves, the predictions are lower than
simulated miss rates for set-size two. This can be iraced to an underestimation of the
collision rate, c.

Figures 9(c), 10(c), and 11(c) show the variation of miss rate with cache-size for a
block-size of 4 bytes and set-sizes of one and two. For benchmarks AL1 and TMIL1, the
miss rate does not drop below one percent for caches larger than 8K words implying that
most misses are due to start-up and non-stationary effects. In Figures 9(d), 10(d), and
11(d) the block-size is 16 words and set-sizes are one and two. Note that associativity
is not particularly useful for small caches.

Figure 12 summarizes the study of cache performance for multiprogramming work-
loads. To keep our analysis simple, we exclude the effect of shared system code and
data between processes. As before, dotted curves represent simulated miss rates and
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Figure 9: Miss-rate vs. cache-size for the benchmark Interconnect Verify. In (a), (b)
set-size is constant, and in (c), (d) block-size is constant. Solid lines represent model
calculations, dotted lines represent simulation results for random replacement, and
dashed lines correspond to simulation results for LRU replacement.
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constant, and in (c), (d) block-size is constant. Solid lines represent model calculations.
dotted lines represent simulation results for random replacement, and dashed lines
correspond to simulation results for LRU replacement.
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2 1 15(42(1[418|36 |24 |11 271 | 8
2 4 19 (4511 (3 126{45(1 (3|26 |55 (1| 7

Table 2: Percentage error in estimated miss rates and hit rates. Z and é represent mean
and maximum errors respectively.

solid curves show estimates. For this experiment, we focus our attention on one process
in the trace. The curve with the triangle symbol shows the miss rate for the process
assuming that the process has its own separate cache. This is the uniprogramming
miss rate for that process. The diamond symbol corresponds to the miss rate of the
process assuming that each process is assigned a unique process identifier (PID) which
is appended to the tag portion of the address. This method also approximates the miss
rate in a physically addressed cache. The bullet symbol depicts the miss rate when the
cache is flushed on every process switch. Lacking PIDs, a virtual cache that is flushed
on every process switch performs poorly relative to the other schemes for cache-sizes
greater than 32K bytes. This is because a significant fraction of the references of a
process are reused across process switches. All the schemes perform the same for small
caches. Because very large caches can simultaneously hold the working sets of a number
of processes, the miss rates of large caches for the PID scheme and for uniprogramming
are very similar.

In general, the model predictions are similar to those of trace driven simulation.
However, the model does not capture the sharp and often abrupt changes in miss rate
that many programs display. For example, in Figure 9(a), IV1 shows a sharp drop in
miss rate in going from a cache-size of 16K to 32K bytes, while the predicted behavior
shows a smooth trend. The estimated results are most accurate if the trace parameters
are measured from a cache in a close vicinity of the cache types of interest. This
provides a useful strategy to obtain fine tuned results. For example, parameters could
be measured keeping the block-size fixed throughout the analysis.

In general, parameter extraction is reasonably straightforward, but may require
analyzing the entire trace if maximum accuracy is desired; parameters can otherwise
be extracted from sample segments of the trace. While u and U - the average num-
ber of unique references in a time granule and in the entire trace respectively - are
easily measured, some of the other parameters deserves more comment. The collision
constant, ¢, is obtained by simulating a typical cache. If the cache is small enough.
the entire trace need not be necessary because once steady state is reached only a few
more references need be simulated to give a good indication of ¢. The spatial locality
parameter, f1, is simply the fraction of singular addresses in the trace; fj; can be
derived using Equation 10 and the measured average run-length (ratio of the number
of runs to the number of references in the trace). Depending on the desired accuracy
in multiprogramming results, either an average time slice parameter or a distribution
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Figure 12: Miss-rate vs. cache-size (K bytes) for multiprogramming. Block-size is 16
bytes and cache is direct-mapped.

(measured or assumed) can be used.

We concentrated on the effects of various cache parameters on the miss rate. An-
alyzing the sensitivity of the miss rate on various program and workload parameters,
another interesting area, is the subject of ongoing research.

5 Conclusions

An analytical model for caches driven by a few parameters measured from program
traces has been presented. A judicious combination of measurement and analytical
techniques reduce computation time without significantly sacrificing accuracy. Cache
performance due to start-up effects, gradual locality changes in program execution,
contention for a cache block, and multiprogramming can be quickly estimated for most
cache parameters of interest, including cache-size, block-size, degree of associativity,
trace-size, and multiprogramming level. Furthermore, explicitly displaving the sensi-
tivity of the miss rate on various program and workload parameters helps identify areas
in which further research in improving cache performance would be fruitiui.
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Appendices

A Sensitivity of the miss-rate on time granule 7

The choice of r in the cache model has been rather ad hoc; we now examine the
sensitivity of the miss-rate for uniprogramming to this choice. We will concentrate
only on the intrinsic interference component because the sum of the start-up and
non-stationary components of the of the miss-rate for the entire trace is simply the
ratio of the total number of unique references to the total length of the trace and
hence does not depend on the choice of the time granule 7. The choice of r directly
affects the parameter u, which is the average number of unique references in a time

granule.

The following equation gives the intrinsic miss-rate component for direct mapped
caches:

c[u(B) - § P(1)]

r

m(Cv t)intriruic =

Replacing the collision rate and P(1) by their respective formulae and gathering the
factors that are independent of u into the constant K shows the complete dependence
of the intrinsic miss-rate component on u:

wp) 1~ (1-4)"
‘U(l) 1=~ (1 - g{o_)"(l)

m( C, t)t'ntrt'n.ﬂ'c =K

If r is chosen to be at least as large as the start-up portion of the trace, then
variations in = will not affect the miss-rate significantly because u changes very
gradually after the start-up region, and the ratio of u(B) and u(1) will be relatively
stable.

Since the discussion hinges on the definition of a start-up period, we will digress a
little to analyze some of the common notions of start-up time. Recall that for the
purpose of our model the start-up period in a trace is the time (or number of
references) required to bring the initial working set of the program into the cache for
the first time. This definition is solely a function of the program and independent of
the cache organization. Because the initial working set of a program is hard to
quantize precisely, estimating the start-up period in a trace is non-trivial.

The cold-start period is a related term and was defined by Easton and Fagin [8] in the
context of a fully associative cache to be the number of memory references from an
initially empty cache until the number of misses equals the cache-size in blocks.
Although this definition allows precise measurement of the cold-start period, it is
inappropriate in our case because (1) it depends on cache-size, (2) in small caches
start-up misses can occur even after the cache has been heavily filled, and (3) in large
caches, non-stationary misses can occur long before the cache is filled. Furthermore.
the notion of a cache filling up is relevant only to fully associative caches.
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': A pertinent definition for the start-up period that is not a function of cache-size, but
)

" solely dependent on the address trace in question is based on the working set model

(7] of program behavior.® The number of unique blocks used by a process in a time

' granule increases rapidly as the time granule is increased from zero to some value and

‘-" increases only gradually thereafter causing working set curves to have a bilinear

0 . nature (please see [25]). We will define the start-up portion to be the region of the

- working set curve before its knee point. The latter part will then represent the

N non-stationary region. Figure 13 shows u(1l) as a function of time granule size = for
the benchmark Interconnect Verify. The knee occurs between ten and fifteen

i . thousand references. The dotted line, which is the derivative of the working set curve,

ng is the number of additional blocks accessed for a given increase in granule size. After

W about 10,000 references the increase in u is small and steady.

There is one caveat, however, in this discussion. For phased programs the working set

curve will show slightly different behavior, although the nature of the curve in any
one phase is still expected to be the same provided the phases are long enough for the

‘.
g working set model to apply. As before, the start-up period is measured from the
:’ working set of the initial phase, and the rest of the first-time misses are swept into the

- non-stationary category. Traces showing multiple short phases (e.g., for inter-active
i workloads) may theoretically exhibit very long start-up times; but for such behavior a
- large portion of the misses will be start-up induced anyhow.
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Figure 13: Number of unique references per time granule, u(1), versus granule size r.

Returning to our earlier discussion on the stability of the collision rate, once T is

*Cold-start period for large non fully-associative caches, which is also an interesting issue. is not

further addressed this paper.
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greater than 10,000 references, increasing it further will cause little change in u(1)
and still less in the ratio of u(B) to u(1). Thus, we have showed that choosing
greater than the start-up period will cause the intrinsic miss rate to be insensitive to
changes in r. For smaller values of r, u varies enormously and potential for large
errors exist. However, since changes proportional to u(B) and u(1) are expected in
the numerator and denominator of the intrinsic miss-rate equation, the differences
should cancel out to first order and the miss-rate should be reasonably stable.
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B Characterization of the collision rate ¢

The intrinsic interference model uses the collision rate ¢ — the ratio of the total
number of collisions to the number of colliding blocks - to quantize the dynamic
interference component among program blocks. The product of the static number of
colliding blocks and the average number of times a block collides, ¢, gives the average
number of misses in the cache due to intrinsic interference in a time granule. The
thesis is that ¢ is reasonably stable for caches of different numbers of sets (rows) and
block-sizes (line-sizes). The collision rate, however, varies with set-size (associativity
or number of columns) and is not stable when the cache becomes much smalier than
the size of the program working set. This section has the following parts to address
these issues:

1. Provides an intuitive basis and some measured data for the assumption that ¢ is
stable for different cache sizes.

2. Extends ¢ to all cache organizations.

B.1 On the stability of the collision rate

We present the following argument as as intuitive substantiation of the claim that ¢ is
constant for most cache sizes and organizations. This is also verified by our
measurement data, a sample of which is presented in Table 3 for Interconnect Verify.
A direct mapped cache with block-size of 4 bytes is assumed in the ensuing discussion
unless otherwise stated.

Recalling, a collision set is a set with multiple blocks mapped to it, and a colliding
block is a block that maps into a colliding set. As an illustration, Figure 14 shows a
direct-mapped cache with 8 sets, S0 through S7. A block is denoted by a shaded
rectangle. The number of collision sets are two (53 and 56) and the number of
colliding blocks are five (B1, B2, B3, BS, and 56). The average number of collisions
per block in a collision set will be an increasing function of the number of blocks
present in that set. Clearly, the more the number of blocks in a collision set the
greater the probability that a block will be purged by intervening references, and
hence greater the collision rate. Therefore, ¢ will show similar behavior to the
parameter ¢’ that we define to be the number of colliding blocks in an average collision
set. Note that ¢’ is not ured to es**mate ¢ Tn the cabe shewr 'r Tigure ¥4 ¢/ = 2.5.

Lquation 3 gave the probability that a set has d blocks mapped to it. We repeat the
equation here making the approximation that the binomial distribution tends to the
Poisson for large u; and small (1/5):

g
e
‘;.'»
5
e

Pld) = —=2— (19

’d

As derived eatrlier, the number of colliding blocks is u, — SP(1) and the number of
colliding sets is S{1 — P(0) = P(1)), yielding,
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The following plot (Figure 15) gives the variation of the above function. We also plot
the collision rate, ¢, to check the correspondence. Clearly, ¢’ (and hence a
corresponding c) is stable for cache sizes as low as 512 words because, above this
value, both the number of collision sets and colliding blocks decrease in the same
proportion with cache-size. Below 512 words, ¢’ increases rapidly (¢ shows a similar
anomalous upward trend) because the denominator starts to decrease in proportion to
S and the numerator stays constant at u;. Thus, ¢ can be expected to remain stable if
the cache-size is greater that the working-set estimate, u;. In addition, changing
block-size does not effect ¢ for large caches as can be verified from Table 3. The
rationale is that the dynamic behavior of program blocks is statistically similar to
that of their component words. For instance, if two words collide with each other in
the cache, then the two blocks that contain the words will also collide at the same
rate. The collision rate does depend on the set-size and on cache-size for small caches.
This will be the subject of our discussion in the next section.

B

B B wesses
s

B s

8RB 2G

Collision sets: S3, S6
Colliding blocks: B1, B2, 83, BS, 86

Figure 14: Collision in a cache.

B.2 Estimating variations in the collision rate

We first derive ¢ for non-unit set-sizes. Let ¢( D) denote the value of ¢ for a cache with
set-size D. In a direct-mapped cache, a relerence to any but the most recently
referenced address in the set will cause a miss. For a larger set-size, however,
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S l D I B [ Coll-blks l Misses-LRU I Misses-FIFO | ¢-LRU | ¢-FIF | c(est)

Vary Number of Sets

Table 3: Measured variation in the collision rate for [V. Coll-blks represents the number
of colliding blks, Misses-LRU and Misses-FIFO the number of collision induced misses
for LRU and random replacement respectively, c-LRU and ¢-FIFO, the measured values

3211 1 1624 6859 6859 4.2 4.2 4.0
64| 1 1 1624 5658 5658 3.5 3.5 3.6
128 | 1 1 1624 5049 5049 3.1 3.1 3.1
256 | 1 1 1622 3908 3908 2.4 2.4 2.7
512 | 1 1 1557 3106 3106 2.0 2.0 2.3
1024 | 1 1 1282 2391 2391 1.9 1.9 1.9
2048 | 1 1 914 1798 1798 2.0 2.0 1.9
4096 | 1 1 609 1305 1305 2.1 2.1 1.9
81921 1 1 254 413 413 1.6 1.6 1.9
16384 | 1 1 161 308 308 1.9 1.9 1.9
Vary Set-size
1024 | 1 1 1282 2391 2391 1.9 1.9 1.9
512 | 2 1 1355 1593 1680 1.2 1.2 1.3
256 | 4 1 1418 1404 1511 1.0 1.1 1.0
16384 | 1 1 161 308 308 1.9 1.9 1.9
8192 | 2 1 30 32 42 1.1 1.4 0.9
4096 | 4 1 8 10 19 1.2 2.3 0.5
Vary block-size
1024 1 1 1 1282 2391 2391 1.9 1.9 1.9
512 | 1 2 908 1784 1784 2.0 2.0 1.9
256 | 1 4 607 1268 1268 2.1 2.1 2.3
128 | 1 8 410 1017 1017 2.5 2.5 2.4
64| 1|16 283 1037 1037 3.7 3.7 2.9
16384 | 1 1 161 308 308 1.9 1.9 1.9
8192 | 1 2 126 230 230 1.8 1.8 1.9
4096 | 1 4 93 163 163 1.7 1.7 1.9
2048 | 1 8 74 122 122 1.6 1.6 1.9
1024 | 116 65 102 102 16| 16| 19

of ¢ for LRU and FIFO replacement, followed by the estimated value of c.
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Figure 15: Estimating the collision rate c.

reference to as many as D — 1 blocks beside the most recently referenced one may not
cause a miss. Assuming random behavior, the probability of a hit to any one of the d
blocks mapped into the set is (D — 1}/(d ~ 1). Note that the most recently referenced
block is excluded because its effect has already been included in ¢. The corresponding
probability of a miss is one minus the above quantity. Therefore, ¢(D, d), the collision
rate for a set of size D with d overlapping blocks is ¢(1) weighted by this fraction,

where, as before, ¢(1) is the collision rate for a direct-mapped cache with the same

number of sets.

(D, d) = ¢(1) (1 - -3-—_:%)

We can then obtain an average of ¢(D,d) over all d’s as:

4=%.1¢(D,d)dP(d)
=B dP(d)

(D)=

Table 3 shows the variation in ¢ for the benchmark IV1. Estimated values of ¢ and
also measured values using both LRU and random replacement are provided. The
number of colliding blocks and the actual number of collision induced misses for LRU
and FIFQ replacement schemes are also shown. S, D, and B, represent the number of
sets, set-size and block-size respectively. ¢ seems relatively stable for direct mapped
caches when the cache size is greater than half u;(1). However, predictions of ¢ for
non-unit set-sizes are often optimistic. Note that even large errors in estimating ¢ will
not affect the miss-rate if the number of colliding blocks is very small. For example, a
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% 64K byte cache organized with an associativity of 4, FIFO replacement, and block-size :§
of 4 bytes, yields 8 colliding blocks, and only 19 collision induced misses for IV1. The N
. 78% error in the collision rate estimate clearly causes little error in the 2% miss-rate.

,: We now provide a method of estimating the collision rate when the number of sets is

X much smaller than the number of program blocks. This region of the cache

‘:: organization spectrum is only of marginal interest and hence this discussion is

" provided mainly for the sake of completeness. We had shown earlier that ¢ is bounded

' as 0 < ¢ < 7/u, the maximum being attained when the cache has only one set.

& Furthermore, Figure 15 shows that ¢’ is inversely proportional to S for very small

& caches. This leads to a rough approximation of c.

L%

::' We denote the stable value of ¢ by c¢o measured for the representative cache with

" S = So. Let Sy, to be the power of 2 less than and closest to u;. When the number of

‘ sets falls below S, all the sets will be occupied with a high probability. Then,

. empirical results show that ¢ can be increased in inverse proportion to the log of the

& number of sets up to its maximum value for § =1 as:

(4

W T log(S) )

: c=c —_]=-c l - ———— 20

i ot [(u-‘) 0] ( log(Sw.) (20)

;. Figure 15 shows the measured and calculated values of ¢c. For number of sets less than

b 512 the log approximation appears to be quite good.
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C Inter-run intervals and spatial locality e

!
We showed earlier that the distribution of run-lengths alone is not sufficient to ﬂ
characterize the spatial locality in programs especially for block-sizes in excess of 8 .
words. We address this issue in this discussion by calculating the number of blocks -
needed to contain the reference stream in a slightly modified fashion to account for :'»3
blocks that contain portions of more than a single run. The initial derivation assumes :_'::3!

that the entire inter-run interval distribution is available, but later we will present a =
simplified formulation that requires just the average inter-run interval and gives
comparable results.

As before, cover-size for a run is the average number of blocks that have to be fetched

to bring the entire run into the cache. Due to random alignment of the run, B-1
words in the cover are unused by the run on average; allocating all these extra words

to the run inflates working set estimates as shown in Figure 8. The number of blocks o

in a cover actually allocated to contain the run!? is i,
b

R

= Number of blocks needed to cover that run 9

\

— number of blocks that include neighboring runs '-*

= Cover size for the run
Number of words that include neighboring runs Ry

Blocksize 5
s
If the run-length is / and the block-size is B, the number of words in the caver (or set '.i
of blocks that contain the run) that do not contain any valid part of the run in 2
question is B — 1. Let ezc = B — 1 denote the excess number of words and let
N (ezc) denote the number of words out of ezc that are utilized for neighboring runs. )
This means that the number of blocks actually used up by the given run is jﬁ.
-
I-1 N{ezc) U
1 + _B - B p 04
and the total number of blocks as calculated before (see Equation 12) is ,"
O
- *
u(1) ' [ I-1 N(ezc)] W
B)= RN+ —— - d
u(B) ,av?::l |1+ =5 5 (21) i
The total number of unique blocks in the entire trace, U( B), is also calculated as a:;:
above. We now need to derive the function N(ezc). Let I(intvl) be the distribution !::3:
of inter-run interval lengths. Then, the expected number of words out of those left .ﬂ;:
over in the cover (ezc) that are used in covering the first adjacent run is given by, (X4
intvl=n {=00 A.
Z I(intvl) Z: R(DMIN(l,exc — intvl) ':i:
intvi=1 =1 .‘.‘
o
where, o
AW
%Including both both forward and backward neighbors. X
L] q)
R
41 A
"
L]
e
b
ol l"::
4T Ry 8 X0y, : ‘:‘.\
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I(intvl) = probability that an interval is of length intvl, and

R(l) = probability that a run is of length /.

Note that the maximum number of addresses of any run that can be covered
is eze — intvl. N(ezc) can then be calculated in a recursive fashion, as follows:

intui=exc {=oc0

N(ezc) = Z I(intwl) Z R(I)[MIN(l,ezc - intvl) + N(eze — intvl — 1)] (22)

intui=1 I=1
with N(exzc < 1) = 0. g::
It is also reasonable to sacrifice some accuracy and lump the intervals into two values, 13
I, and co, where all interval sizes up to the maximum block-size of interest are ,
averaged to give I,,, and the remaining are categorized as co. Then, 9:',.'_».\
Lo, Dby
l=00 ;"‘q.
N(ezc) = fr,, Y R()[MIN(l,ezc - I,) + N(ezc - I, = 1)], (23) g8
I=1 LChe
b
and N(ezc < 1) =0 R
In the above equation, fr,, is the fraction of intervals that are averaged to give I;,. In =
the implementation, it is worthwhile to pre-calculate R(!) and N(ezc) and store the Wiy
values in arrays and use dynamic programming to eliminate recursion. A c:
The total number of unique program blocks in a time granule, u(B), and those in the .;o"
entire trace, U(B), can then be calculated as shown in Equation 21 using the above e
formulation of N (ezc). Figure 16 shows the variation in u(B) as a function of -
block-size to compare actual and predicted values. The predicted values are obtained ‘{:
using a measured average inter-run interval. These were not appreciably different .':
from those calculated using the complete distribution of inter-run intervals. The R,
variation in u(B) using just run-length distributions is also shown. The difference ;::

between the dotted and the dashed curves can be attributed to the capture of ;
multiple runs separated by inter-run intervals. The mean and maximum errors for the .;-;::
estimate using inter-run intervals are 19% and 64%, while those for the estimate ;!:'0
excluding inter-run intervals are 33% and 115%. Y ::::
(L
W
:‘:‘e"
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----- Estimate using only the rundength distribution
« = « Estmate including the average inter-run interval
1500 |- — Actul

Figure 16: The average number of unique blocks in a time granule, u(B), versus the
block-size B. The estimate using inter-run intervals is more accurate that with just the
run-length distribution.
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