
I -ftl 710 INTEGRATED INFOHATION SUPPOT SYSTEM (ZISS) OLUME 3 1/1
COMMON OATh MODEL S.. (U) GENEROL ELECTRIC CO
SCHEMECTADY NY PRODUCTION RESOURCES CONSU..

UWNCLfSSIFIED M LOOMIS ET RL. f-NOY 95 DS-621141310 FIG 12/5 ML

sonmhmhhmhhhhlmh||hEE|hhE|hI

11111o 1.0&.02

- I4 L=

6 J

-~ %

~kof .0~* e d

AFVAL-TR-86-4006
Volume V
Part 26

AD-A181 710

INTEGRATED INFORMATION
SUPPORT SYSTEM (IISS)
Volume V - Common Data Model Subsystem
Part 26 - Distributed Request Supervisor

Development Specification

General Electric Company
Production Resources Consulting
One River Road
Schenectady, New York 12345

Final Report for Period 22 September 1980 - 31 July 1985

November 1985

Approved for public release; distribution is unlimited.

PREPARED FOR: ..

MATERIALS LABORATORY
AIR FORCE WRIGHT AERONAUTICAL LABORATORIES v UN 3 0. 1987 -
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AFB, OH 45433-6533

87 6 0 0
• ,, ,' 1 ,-:, e W w.. ,- , .r , , , ,

NOTICE

When Govemment drawings. specifications, or other data are used for any purpose other than
in connection with a definitely related Government procurement operation, the United States
Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the
government may have formulated. furnished, or in any way supplied the said drawings.
specifications. or other data, is not to be regarded by implication or otherwise as in any
manner licensing the holder or any other person or corporation, or conveying any rights or
permission to manufacture, use, or sell any patented invention that may in any way be related

This report has been reviewed by the Office of Public Affairs (ASD/PA) and is releasable to the
National Technical Information Service (NTISJ At NTIS. it will be available to the general
public, including foreign nations.

This technical repo has been reviewed and is approved for publication.

DA/ID UL. JUD ON PROJECT MANAGER DATE
A V_ M

N1/

DA T

IGHT PA ERSON AFB OH 45433

FOR THE COMMANDER.

E ALD C. SHUMAKER, BRANCH CHIEF DATE
AFWAL/MLTC
WRIGHT PATTERSON AFB OH 45433

"if your address has chanoed, if you wish to be removed from our mailing list, or if the
addressee is no longer employed by your organization please notify AFWAL/MLTC, W.PAFB, OH
45433 to help us maintain a current mailing list."

Copies of this report should not be returned unless return is required by security ennrlarptimv
contractual obligations, or notice on a specific document

Unclassified
Sl~u" g~ass ~g.~e~hes Tig .osI November 1985

REPORT DOCUMENTATiON PAGE 07

Ua SUCuAiTv ci.&53A9.cAT6Oh AUT1691111V 3 OF5 lR&pqva~5Ii~ UsPOw

Approved f or public release;
2b 01C ;.Afiea? iatoov0t 6aADifh;scael UW& distribution is unlimited.

AFWAL-TR-86-4005 Vol V. Part 26

a& 6AMS O 0 PS1scMue. ORGAN~IZATION 0.a OfPICE $11 11804 T. tEA61 Of MUeIOR'tGO RGANIZATION

General 2lectric Company I AFWALIKLTC
Production Resources Consulting

&L. £91k55 (Calf. Smso n mZIP Cool U. £&ODOR" Ie~t Sasi Sao ZIP cowu)

s River Ike"
Schenectady. NT 13345 VPAFB. 0OH 45433-8533

as 111AM1 of 0 WNlta'es1p'.ofts ftf ou. ct swoosci. I. PSOC4009MINT 41116TOAMTE 105NTo0CAT&0#e taWMA90%

Air Foirce systems Command. USA? AA/L 731-0C5155

at £05558 ict. Sa gas ZIP Coal so soumeg. 0 UNDING~ NOSl*aFOomAN [CR0deT TAS NOOK uWI
Wright-leattersom A73, Ohio 45433 a 1. s T0. 810 I o 090

is. _____________________ Ti&5I0117 7500 1201
(See Reverse) ______

Ia. Ia~ft3tAi. £UYNRSI6
Loomis, Mary and Lipp, Mark

13s, awea Of AstOsR ls. lia covisso Ia. "oAs OF sPom? fro.. s. .& P ACE COW.'
VIOa) vechatiat UepeWP. 22 Sept 1680 - 3) hlyT Ins' 185 November 4

Ig. &iPi.IMtE7RY STAY~tEThe computer software contained herein are theoretical and/c
ZCAHPwe~ct rioity 201 references that In no Way reflect Air Torce-owned or -developeed
SCANPro~t Irie~tT 201computer software.

1135? @0315r coot S4.USACT T1115 Weaem sm mavrrm Ueefmasia e awas ~eft wk sumS..

1305 05

Is ?ACT qCaami an a~ ifemmo sai aashft ocrd emame

'he Common Data Model Processor (CDKP) Is a mechanism by which application
programs can retrieve and update data without knowing where or how the data
are stored. An application program poses requests to the CUMP, which
processes those requests against the databases In which the relevant data
are stored and then returns the results to the application program. The
Neutral Data Manipulation Language (NDML) is the means for posing requests

* to the CDHP. One component of the ODHP. called the NDKL Precompiler. generates
various programs (request processors or RPs. RP drivers. CS-ES transformers,
and local subroutine callers) that are tailored to satisfy the NIDM requests
In a particular application program. Another component of the CDHP. called

* the Distributed Request Supervisor (DRS). coordinates the operation of these
generated programs when they are Invoked by the application program at run-time.
This development specification describes the functions. performance.
environment. interfaces, and design requirements of the Distributed Request
Supervisor.

h~~*P'S~~iW ? SAW " WT coi wage D Unclassified

224 NAMSG 00 1115110041obE ItEolViaL sale PWtE T ~ MS 169 06%1NW1161 3 OPI CS SYNSO.

~~.ii~ U.ede j 3-255-wvs

DO ~ ~ ~ ~ ~ ~ ~ ~ os OFR I43 PAO APR bisab 0940"Teosoig. unclassified________

L L D F O R 1 4 3 . 8 A P 1 :
G S t j T V ? C ,A 5 8

1
C A ? 1 1 O f 7 0 4 4 P A G E

1.Title

Integrated Information Support System (ZISS)
Vol V - Common Data Model Subsystem
Part 26 - Distributed Request Supervisor

Development Specification

010

C a lk,,~

ty ode

.'
aDji

DS 620141310
1 November 1965

PREFACE

This development specification covers the work performed
under Air Force Contract F33615-80-C-5155 (ICAM Project 6201).
This contract is sponsored by the Materials Laboratory, Air
Force Systems Command, Wright-Patterson Air Force Base, Ohio.
It was administered under the technical direction of Mr. Gerald
C. Shumaker, ICAM Program Manager, Manufacturing Technology
Division, through Project Manager, Mr. David Judson. The Prime
Contractor was Production Resources Consulting of the General
Electric Company, Schenectady, New York, under the directinn of
Mr. Alan Rubenstein. The General Electric Project Manager was
Mr. Myron Hurlbut of Industrial Automation Systems Department.
Albany, New York.

Certain work aimed at improving Test Bed Technology has
been performed by other contracts with Project 6201 performing
integrating functions. This work consisted of enhancements to
Test Bed software and establishment and operation of Test Bed
hardware and communications for developers and other users.
Documentation relating to the Test Bed from all of these
contractors and projects have been integrated under Project 6201 "
for publication and treatment as an integrated set of documents.
The particular contributors to each document are noted on the
Report Documentation Page (DD1473). A listing and description
of the entire project documentation system and how they are
related is contained in document FTR620100001, Project Overview.

The subcontractors and their contributing activities were
as follows:

TASK 4.2

Subcontractors Role

Boeing Military Aircraft Reviewer
Company (BMAC)

D. Appleton Company Responsible for IDEF support,
(DACOM) state-of-the-art literature

search

General Dynamics/ Responsible for factory view
Ft. Worth function and information

models

i IS

DS 620141310
1 November 1985

Subcontractors Role

Illinois Institute of Responsible for factory view
Technology function research (IITRI)

and information models of
small and medium-size business

North American Rockwell Reviewer

Northrop Corporation Responsible for factory view
function and information
models

Pritsker and Associates Responsible for IDEF2 support

SofTech Responsible for IDEFO support

TASKS 4.3 - 4.9 (TEST BED)

Subcontractors Role

Boeing Military Aircraft Responsible for consultation on
Company (BEAC) applications of the technology

and on IBM computer technology.

Computer Technology Assisted in the areas of
Associates (CTA) communications systems, system

design and integration
methodology, and design of the
Network Transaction Manager.

Control Data Corporation Responsible for the Common Data
(CDC) Model (CDM) implementation and

part of the CDM design (shared
with DAQOM).

D. Appleton Company Responsible for the overall CDM
(DACOM) Subystem design integration and

test plan, as well as part of
the design of the CDM (shared
with CDC). DACOM also
developed the Integration
Methodology and did the schema
mappings for the Application
Subsystems.

iv

DS 620141310
1 November 1985

Subcontractors Role

Digital Equipment Consulting and support of the
Corporation (DEC) performance testing and on DEC

software and computer systems
operation.

McDonnell Douglas Responsible for the support and
Automation Company enhancements to the Network
(fcAuto) Transaction Manager Subsystem

during 1984/1985 period.

On-Line Software Responsible for programming the
International (OSI) Communications Subsystem on the

IBM and for consulting on the
IBM.

Rath and Strong Systems Responsible for assistance in
Products (RSSP) (In 1985 the implementation and use of
became MoCormack & Dodge) the MRP II package (PIES) that

they supplied.

SofTech. Inc. Responsible for the design and
implementation of the Network
Transaction Manager (NTM) in
1981/1984 period.

Software Performance Responsible for directing the
Engineering (SPE) work on performance evaluation

and analysis.

Structural Dynamics Responsible for the User
Research Corporation Interface and Virtual Terminal
(SDRC) Interface Subsystems.

Other prime contractors under other projects who have
contributed to Test Bed Technology, their contributing
activities and responsible projects are as follows:

Contractors ICAM Project Contributing Activities

Boeing Military 1701, 2201, Enhancements for IBM
Aircraft Company 2202 node use. Technology
(BMAC) Transfer to Integrated

Sheet Metal Center
(ISMC)

v

DS 620141310
1 November 1985

Contractors ICAM Project Contributing Activities

Control Data 1502, 1701 IISS enhancements to
Corporation (CDC) Common Data Model

Processor (CDMP)

D. Appleton Company 1502 IISS enhancements to
(DACOM) Integration Methodology

General Electric 1502 Operation of the Test
Bed and communications
equipment.

Hughes Aircraft 1701 Test Bed enhancements
Company (HAC)

Structural Dynamics 1502, 1701, IISS enhancements to
Research Corporation 1703 User Interface/Virtual
(SDRC) Terminal Interface

(UI/VTI)

Systran 1502 Test Bed enhancements.

Operation of Test Bed.

vi

DS 620141310

1 November 1985

TABLE OF CONTENTS

pale

SECTION 1.0 SCOPE................................... 1-1
1.1 Identification........................ 1-1
1.2 Functional Summary.....................1-4

SECTION 2.0 DOCUMENTS............................... 2-1
2.1 Applicable Documents...................2-1
2.2 Terms and Abbreviations...............2-2

SECTION 3.0 REQUIREMENTS............................ 3-1
3.1 Computer Progai Definition............3-1
3.1.1 System Capacities....................3-1
3.1.2 Interface Requirements..............3-1
3.1.3 Design/Implementation Differences . 3-2
3.2 Detailed Functional Requirements 3-3
3.2.1 Function DRSl Initiate

Subtransaction Processing.........3-3
3.2.2 Function DRS2 Schedule Stages.......3-7
3.2.3 Function DRS3 Initiate CS/ES

Transform Processing...............3-18
3.3 Special Requirements...................3-20
3.4 Human Performance......................3-20
3.5 Database Requirements..................3-20
3.6 Adaptation Requirements................3-20

SECTION 4.0 QUALITY ASSURANCE PROVISION.............4-1

SECTION 5.0 PREPARATION FOR DELIVERY................5-.

LIST OF FIGURES

Figure Title Page

1-1 AO of the CDMP Configuration Items...........1-2
1-2 DRS Module Interaction........................1-6

vii

DS 620141310
1 November 1985

SECTION 1

SCOPE

1.1 Identification

This specification establishes the performance, develop-
ment, test, and qualification requirements of a collection of
computer programs identified as Configuration Item "Distributed
Request Supervisor."

This CI-constitutes one of the major subsystems of the
mCommon Data Model Processor" (CDMP) which is described in the
System Design Specification (SDS) for the ICAM Integrated
Support System (IISS). The CDMP scope is based on a logical
concept of subsystem modules that interface with other external
systems of the IISS. The CDMP has been decomposed into three
configuration items: the Precompiler, the Distributed Request
Supervisor, and the Aggregator. The scope of the CDMP and its
configuration items are described in Figure 1-1 and the
following narrative.

Common Data Model Processor (CDMP)

The CDMP consists of three CIs that manage users' accesses
to distributed databases in IISS. Input to the CDMP consists
of user transactions, which may be in the form of neutral data
manipulation language (NDML) commands embedded in COBOL host
programs or NDHL commands phrased as stand-alone requests.
These development specifications address only the management of
embedded NDHL commands.

The Precompiler CI parses the application program source
code, identifying NDML commands. It applies external-schema-
to-conceptual-schema transforms on the NDNL command, and decom-
poses the conceptual schema command into single database re-
quests. These single database requests are each transformed
into programs (called Request Processors) to access the
specific databases to retrieve or update the data as required
by the NDML command. The 3DML commands in the application
source program are replaced by function calls which, when
executed, will activate the run-time query evaluation processes
associated with the particular NDML command.

1-1

DS 620141310
1 November 1985

zO

I0

lu 0

0

z 10
C) 0 .i

i: z WA
u ;; X;

age >

= Ma

a Auu A
ha LM -J Axi

0.C

Kg,
-z~

w 'Cfu

ZVIn a c 4

cc was-2

DS 620141310
1 November 1985

The Precompiler also generates a CS/ES Transformer program
which will take the final result of the query, stored in a file
ass a conceptual schema relation, and transform it into the
appropriate external schema relation.

Finally. the Precompiler generates a Join Query Graph and
Result Field Table, which are used by the Distributed Request
Supervisor during the run-time evaluation of the query.

The Distributed Request Supervisor (DRS) CI is responsible
for coordination of the run-time activity associated with the
evaluation of an NDHL command. It is activated by the
application program, which sends it the names and locations of
the Request Processors to be activated, along with run-time
parameters which are to be sent to the Request Processors. The
DRS activates the Request Processors, sending them the run-time
parameters. The results of the Request Processor executions
are stored as files, in the form of conceptual schema
relations, on the hosts which executed the Request Processors.
Using the Join Query Graph, transmission cost information, and
data about intermediate results, the DRS determines a good
strategy for combining the intermediate results of the NDHL
command. It issues the appropriate file transfer requests,
activates Aggregators to perform join, union, and not-in-set
operations, and activates the appropriate CS/ES Transformer
program to transform the final results. Finally, the DRS
notifies the application program that the query is completed,
and sends it the name of the file which contains the results of
the query.

The Aggregator CI is activated by the DRS. An instance of
the Aggregator is executed for each join, union, or not-in-set
performed. It is passed information describing the union or
join to be performed, including the file names containing the
operands of the union or join. The DRS ensures that these
files already exist on the host that is executing the
particular Aggregator program. The Aggregator performs the
requested union or join, storing the results in a file, whose
name was specified by the DRS, and is located on the host
executing the Aggregator.

The CDMP provides the application programmer with
important capabilities to:

1. Request database accesses in a non-procedural data
manipulation language (the NDML) that is independent
of the DKL of any particular Data Base Management

1-3

DS 620141310
1 November 1985

System (DBMS),

2. Request database access using a DML that specifies
accesses to a set of related records rather than to
individual records, i.e., using a relational DXL,

3. Request access to data that are distributed across
multiple databases with a single DXL command, without
knowledge of data locations or distribution details.

Information about external schemas, the conceptual schema,
and internal schemas (including data locations) are provided by
CDMP access to the Common Data Model (CDM) database. The CDX
is a relational database of metadata pertaining to IISS. It is
described by the CDXI information model using IDEF1.

1.2 Functional Summary

The overall objectives of this CI are to:

a. Determine the appropriate sequence of inter-database

JOIN, UNION and NOT-IN-SET operations required to
produce the result for a multi-database transaction.

b. Coordinate and control the interactions among a
user's Application Process (AP), the generated
Request Processors (RP) and the Aggregator(s) for
both single- and multi-database transactions.

Determination of JOIN, UNION, NOT-IN-SET

The DRS will calculate costs for each inter-site join,
union, and not-in-set possibility, select the alternative with
minimum cost and will generate the appropriate sequence of
join, union, and not-in-set operations that will collapse the
intermediate relations into the proper destination relation.
The sequence is generated at run-time by the DRS at the node of
the transaction's originating AP cluster.

The Distributed Request Supervisor receives information
about a set of intermediate relations, which are the result of
processing portions of a Transaction at the local databases.
Once all local processing is complete, the intermediate
relations must be joined together. The Distributed Request
Supervisor solves the problem of determining in which order
these relations should be combined, which includes the

1-4

DS 620141310
1 November 1985

sequencing of transmission of relations from one database to
another in order to perform the operations, in such a way as to
minimize the amount of data transferred. The operations are
performed by the Aggregator CI.

In order to process a transaction efficiently, the
Distributed Request Supervisor determines all possible inter-
database operations and calculates the transmission costs for
each possibility. It selects the operation with the least
cost, sends the appropriate transmission commands to the
identified Aggregator site, and updates information tables as
each is performed. If a join is chosen as the next step to
schedule, the two relations may not be partitions; only
"whole" relations are joined. After the last operation is
performed, the resulting relation is transmitted to the site at
which the result is to appear. A CS/ES Transform process is
then initialized to perform the required transformations.

AP/RP/Agregator Coordination

Each user AP that contains NDML requests has a copy of the
DRS, which it calls as a subroutine. All these copies are
exactly the same. Each copy is responsible for the coordina-
tion and control of all the local and remote RPs, Aggregators,
and CS-ES Transformers that are used to process the NDML re-
quests from its user AP (see Figure 2-1). A local RP is one
that is called as a subroutine by the DRS and that accesses a
database on the same node as the user AP. A remote RP is one
that is called via the NTM; the database it accesses may be on
the same node as the user AP or on a different node. The DRS
uses the NTM message handling facility to communicate with any
remote RPs and Aggregators. It calls any local RPs and
Aggregators and all the CS-ES transformers as subroutines via
the Subroutine Caller generated by PREl5. The only function of
the Subroutine Caller is to call a subroutine that is
designated by the DRS. This allows each copy of the DRS to
(indirectly) call a variety of RPs, Aggregators, and CS-ES
Transformers while still being identical to all other DRS
copies (PREl5 assigns the same name to all the Subroutine
Callers). If the DRS called these subroutines directly, the
subroutine call statements in each copy would have to be
different from those in any other copy.

The initiation of a transaction occurs when the AP sends a
message to the DRS to initiate activity on the specified
transaction. The DRS will then initiate the proper DRS tables

and Request Processors (RPs) in preparation for the first NDML

1-5

DS 620141310
1 November 1985

request from the AP. When the AP makes an NDML request, the AP
will 'go to sleep' and wait for the DRS response. The DRS will
activate/reactivate the proper RP(s). The DRS will wait until
the (RPs) have completed, then will decide if an Aggregator
needs to be called. If so, the DRS will do so and wait until
it receives a message from the Aggregator indicating
completion. The DRS will then either return directly to the AP
or call the CS/ES Transformer, whichever is appropriate.

USER
AP

SUBROUTINE
CALLS

DR8

ME.AGEo MErSAGE

!1-6

Us 8U ' UTINE REOT
CALLR

RIP CLEAGGREGATORS

DORIVER8;

SUBROTINE UBRCALLSCALLS SUBROUTINE--'
8UEROUTNECAALS

LOCAL LOCAL S1
RIP AGGREGATOR TASOMR

DRIVERJ

Figure 1-2. DRS Module Interaction

1-6

DS 620141310
1 November 1985

Since the proper execution of recovery units in the local
DBMSs requires that a specific AP communicate with a consistent
instantiation of a RP during the life of the AP recovery unit,
the DRS must guarantee that, once an AP initiates a recovery
unit, the RP to which the first local DML request was sent
(within the confines of the recovery unit) must be the RP to
which all further local DML requests (for the specific
DBMS/node) are sent, until the recovery unit termination re-
quest is received from the AP. Therefore, the DRS will main-
tain a table of the RPs for each AP with which the DRS is
communicating, regardless of the type of NDNL verbs being
executed by the AP.

Compile-time Activities

Compile-time activities include building skeleton process
information tables. At run-time, the Distributed Request
Supervisor sends messages for the local Request Processors to
begin processing. As the local Request Processors finish their
subtransactions, they send back information for the Distributed
Request Supervisor to use in deciding the sequence of steps to
be taken. The Distributed Request Supervisor then, as needed,
initiates file transfer requests, activates appropriate
Aggregators, and eventually activates the appropriate CS/ES
Transformer to transform the final result relation if a SELECT
was requested.

The major functions to be described in this document

for this CI are:

DRSI: Initiate Subtransaction Processing

DRS2: Schedule Stages

DRS3: Initiate CS/ES Transform Processing

1-7

DS 620141310
1 November 1985

SECTION 2

DOCUMENTS

2.1 Applicable Documents

Following is a list of applicable documents relating to
this Computer Program Development Specification for the system
identified as the Common Data Model Processor (CDMP)
Distributed Request Supervisor.

Related ICAM Documents included:

UM620141001 CDM Administrator's Manual

TBM620141000 CDMI, An IDEFI Model of the Common
Data Model

UN620141100 Neutral Data Definition Language
(NDDL) User's Guide

PRM620141200 Embedded NDML Programmer's Reference
Manual

UM620141002 ICAN Definition Method for Data
Modeling (IDEF1 - Extended)

DS620141200 Development Specification for the IISS
NDML Precompiler Configuration Item

DS620141320 Development Specification for the
IISS Aggregator Configuration Item

Other references include:

Astrahan, M.M. et al., "System R: Relational Approach to
Database Management," ACM Transactions on Database Sys-
tems, Vol. 1, No. 2, June 1976, pp. 97-137.

Bernstein, P.A. and Chiu, D.M., "Using Semi-Joins to Solve
Relational Queries," Journal for the Association for
Computing Machinery, Vol. 28, No. 1, January 1981, pp. 25-
40.

2-1

DS 620141310
1 November 1985

Bernstein. P.A. et al., "Query Processing in a System
for Distributed Databases (SDD-1)." ACM Transactions on
Database Systems. Vol. 6. No. 4. December 1981, pp. 602-
625.

Chang, J.H. "A Heuristic Approach to Distributed Query
Processing," Proceedings of the Eighth International
Conference on Very Large Data Bases, Mexico City,
September 1982, pp. 54-61.

Epstein, R.. M. Stonebraker, and E. Wong. "Distributed
Query Processing in a Relational Database System." Pro-
ceedings of the ACM SIGMOD International Conference,
Austin. June 1978, pp. 169-180.

Hevner. A.R. and S.B. Yao. "Query Processing in Distri-
buted Database Systems." IEEE Transactions on Software
Engineering, May 1979, pp. 177-187.

Rothnie. J.B. et al. *Introduction to a System for
Distributed Databases." ACM Transactions on Database Sys-
tems. Vol. 5, No. 1. March 1980, pp. 1-17.

Rothnie, J.B. and N. Goodman. "A Survey of Research and
Development in Distributed Database Management."
Proceedings Third International Conference on Very Large
Databases. Tokyo. 1977, pp. 48-62.

Takizawa. "Distributed Database System - JDDBS-1."
JIPDEC, Japan. 1982.

Wong, E. and K. Youssefi. "Decomposition - A Strategy for
Query Processing," ACM Transactions on Database Systems.
Vol. 1, No. 3, September, 1976, pp. 223-241.

2.2 Terms and Abbreviations

The following acronyms are used in this document:

APL Attribute Pair List

AUC Attribute Use Class

CDMP Common Data Model Processor

CI Configuration Item

2-2

DS 620141310
1 November 1985

CS Conceptual Schema

DML Data Manipulation Language

DRS Distributed Request Supervisor
(previously SS: Stager/Scheduler)

ES External Schema

ICAN Integrated Computer Aided Manufacturing

IS Internal Schema

NDNL Neutral Data Manipulation Language

RFT Result Field Table

RP Request Processor
(previously QP: Query Processor)

SDS System Design Specification

2-3

DS 620141310
1 November 1985

SECTION 3

REQUIREMENTS

3.1 Computer Program Definition

3.1.1 System Capacities

The DRS must operate within the capacity of the host
computer and is functionally dependent upon NTH Services.

3.1.2 Interface Requirements

3.1.2.1 Interface Blocks

This CI is the mechanism that determines the order of
aggregating intermediate results of accesses to distributed
databases, and coordinates interactions among the
AP/RP/DRS/Aggregators during updates.

There is & Distributed Request Supervisor program for each
site or host in the IISS network. An instance of the
Distributed Request Supervisor (DRS) program runs as a
subroutine to each user AP that contains NDNL commands. This
DRS takes on the role of master control program for all the
transactions from that user AP. Instances of Distributed
Request Supervisor at other sites become the master control
programs for transactions initiated at those sites.

'"he Distributed Request Supervisor CI has responsibility
for run-time scheduling of activities comprising distributed
database accesses and updates. It initates local Request
Processors and receives replies when they have completed. It
sends subtransactions to appropriate application clusters,
initiates file transfer requests to transmit intermediate
relations, and initiates corresponding Aggregators to perform
join, union, and not-in-set operations on intermediate rela-
tions. Finally, in an access operation, it initiates the
appropriate CS/ES Transformer process to transform the final
results.

The interfaces of each Distributed Request Supervisor
include input in the form of messages indicating completion of
activities under the Distributed Request Supervisor control and
the Join Query Graph from the Precompiler CI. Outputs are in
the form of *staging sequences" that direct activities of other

3-1

DS 620141310
1 November 1985

run-time modules.

3.1.2.2 Detail Interface Definition

The specific interface relationships of this CI to other
CIs and modules are described in detail for appropriate fun-
ctions in Section 3.2.

The DRS depends heavily upon three capabilities of the
NTH, and, without these facilities, will not properly function.

a. If a process dies or is killed, the NTH must notify,
via an unsolicited message, the parent process.

b. If a process dies or is killed, the NTH must kill all
processes which are children of the dead process.
The children processes must not be given the option
of continuing or dying; they must be killed.

c. The DRS will communicate with other processes via
messages which are guaranteed to be delivered. The
NTH must provide this facility in an efficient
manner, and must include a mechnanism to properly
handle the node-dropping/node-returning/node-isolated
problems.

3.1.3 Design/Implementation Differences

This section describes the significant differences between
the design of the Distributed Request Supervisor (DRS) that is
documented In this Development Specification and the software
that has been produced to implement the DRS. This section is
not concerned with minor differences, such as the exact
structure of tables that are passed from one module to another
within the DRS.

The only difference is the way in which CS-ES transformers
are invoked by user APs at run-time. The design indicates that
they are invoked via the Distributed Request Supervisor (DRS),
but the Precompiler software generates code into the user APs
to invoke them directly. This is possible because every CS-ES
transformer must run on the same host computer as its user AP.
Consequently, the DRS (ad the NTH) are not needed. This was
not forseen when the design was prepared and time did not
permit the design to be changed later. This difference affects
the PREIO and PREIS modules of the Precompiler as well as the
DRS. The design of PRElO should indicate that code is

3-2

DS 620141310
1 November 1985

generated into the user AP source program to invoke each CS-ES
transformer directly as a subroutine, rather than via the DRS
and a local subroutine caller (LSC). The design of PRE15
should not indicate that LSCs are generated containing code to
invoke CS-ES transformers. The design of the DRS should not
indicate that DRSs are involved in invoking CS-ES transformers.

3.2 Detailed Functional Requirements

The following subsections respectively document each of
the Distributed Request Supervisor major function identified
in Section 1.2.

3.2.1 Function DRSI: Initiate/Resume Subtransaction Processing

This function directs appropriate Request Processors to
begin or resume processing. The Request Processors were built
by the Precompiler CI and are co-located with their target
databases.

3.2.1.1 Inputs

Inputs to this function are:

0 The program ID (PID) and runtime parameters for each
Request Processor which is to be activated for the
NDNL request. Four data items are input for each
Request Processor to be activated: The PID, a code
indicating whether to use the LSC or the NTM, a
string containing the corresponding runtime
parameters, and the length of the string.

Run-time parameters are to be applied by the Request
Processors to the subtransactions. These parameters
are the values of the COBOL variables that were part of

the NDNL query. The first variable must contain the
CASE statement number generated by the Precompiler.

* Responses from the NTH as a result of the DRS START-
LOCAL requests for the RPs. These responses will
contain the Logical Channel ID and the local process ID
for the initiated RPs.

0 Join Query Graph corresponding to the NDML request
being processed.

3-3

DS 620141310
1 November 1985

* An attribute pair list. This list contains information
concerning the join fields of the join edges of the
Join Query Graph. This list will not be present for an
update request.

* A Result Field Table. This table contains information
about the result and join attributes of the query.
This list will not be present for an update request.

* A Request Processor Information Table (RPIT) (see
3.2.2.4).

The first input is received from the Generate Request
Processor function (PRE9) of the Precompiler CI. The other
inputs are from the Decompose CS NDNL function (PRES) of the
Precompiler CI.

A join query graph (JQG) corresponds to a CS NDNL
verb. Each node of a JQG represents an intermediate
relation that will result from processing a single
subtransaction, which accesses one database. Each edge of a
JQG represents an inter-database join, union, or not-in-set
operation between two relations. The set of edges represents
the join, union, and not-in-set operations that in combination
will result in the response to the CS NDNL transaction. The
format of the JQG is a table, with an entry for each edge of
the graph. Each entry contains the following information:

rell rel2 edge-type attr-ptr PIDI PID2

where:

rell - one of the edge nodes
rel2 - the other node
edge-type - (join) W 4

(union) - 5
(not-in-set) - 6

attr-ptr - A pointer into the attribute pair list.
It is null if the edge type is UNION.

PID1 - The PID of the Request procesor which will
create rell.

PID2 - The PID of the Request Processor which will
create rel2.

The format of the attribute pair list (APL) is a group of
linked lists of attribute pairs, one linked list for each edge of
the JQG. Each entry in each list contains the following:

3-4

DS 620141310
1 November 1985

roll rel2 attrl attr2 link

where:

roll = the name of one edge node
rel2 - the name of the other edge node
attrl - the Attribute Use Class number (AUC) of the

attribute of nell which is participating in
the join with attr2.

attr2 - The AUC of the attribute of rel2 which is
participating in the join with attrl.

link - a pointer to the next entry in the list. (A
join can have more than one join field
pair). The field is null if there are no
more entries in the list.

Each entry in the Result Field Table (RFT) has the

following format:

nel attr type size nd PID is-ptr

where:

reli - the name of the relation (subtransaction)
that contains the field

attr - the Attribute Use Class number (AUC) of the
field

type - the type of the field (alphabetic, numeric,
etc.)

size M the size, in bytes, of the field
nd - the number of decimal places maintained in

the field
PID - not used
is-ptr - not used

3.2.1.2 Processing

This function starts the processing of the subtransactions
that comprise a distributed database access or update. The
following steps are performed by this function.

1. Initialize the Relation Information Table (RIT). The
format of this table is described in Section 3.2.2.4.
An entry is placed in the RIT for each relation to be
constructed or accessed by a Request Processor. A
unique name is generated for each relation and placed

3-5

DS 620141310
1 November 1985

in the RIT. This name must be a legal file name for
the file system at the host where the relation will
be constructed. In addition, this step must
guarantee that the name will be unique over all
active queries in the system, including simultaneous
instances of the same query.

2. Replace the Rell and Rel2 values in the JQG with an
index number into the RIT, which corresponds to the
entry for the appropriate relation.

3. Replace the Rel values in the RFT with the
corresponding index number into the RIT, if this
request is an access request.

4. If the RPIT (Request Processor Information Table)
(see 3.2.2.4) has not been initialized for the
specific instance of the AP, or if an existing RPIT
has been set to "uninitialized" by the appearance of
an NDHL recovery unit termination request, the RPIT
is now initialized by establishing such a table with
one entry per RP name contained in the input message
stream. If the RPIT had already been established, go
on.

5. If Step 4 initialized the RPIT:

First, initiate each RP with RP-call-type "R" in
the QIT by issuing a STARTLOCAL message to the
NTH. Then, initiate each with RP-call-type -
"L" by calling it as a subroutine. The informa-
tion given to the subroutine or the NTH will
include the RP PID and the runtime parameters
for each RP. The CASE statement number passed
to the RP during this initiation phase is to be
zero.

The NTH will return, for each remote RP
initiated, the Logical Channel ID and the local
process ID. The Logical Channel ID is to be
placed into the corresponding entry in the RIT.

The local process ID for each remote RP is to be
placed into the corresponding entry in the RPIT.
The Host ID of the corresponding entries in the
RIT are to be set to the Host ID of the hosts
upon which each local or remote RP is running.

3-6

DS 620141310
1 November 1985

The status fields in the RIT are to be set to

"BUSY.

If Step 4 did not initialize the RPIT:

Update the RPIT with any RPs that have a PID in
the input message but do not currently appear in
the RPIT. For those RPs added to the QIT,
perform the functions stated in the above
description for a newly-initiated RPIT.

Processing a subtransaction involves performing local
restricts (a.k.a. selects), projects, and single-database
joins. These operators have been translated to the DML
appropriate for the local DBMS by the NDML/Generic DML
Transformer function (PRE7) and the RP Generator function
(PRE9) of the Precompiler CI. The local result relations
should contain only join attributes and (final) result
attributes.

3.2.1.3 Outputs

The outputs of this function are:

* STARTLOCAL messages that activate or resume remote
Request Processors. These messages contain the run-
time parameters of the subtransaction.

0 An initialized RIT, if the request is an access
request.

* The modified JQG, if the request is an access re-
quest.

0 An initialized or modified RPIT.

3.2.2 Function DRS2: Schedule Stages

This function iteratively determines the sequence in which
intermediate relations are combined to form the result of a
distributed database access. The sequence of join/union/not-
in-set activities may include both parallel and serial pro-
cessing.

3.2.2.1 Inputs

3-7

DS 620141310
1 November 1985

Inputs to this function are:

* Join Request Processor Graph corresponding to the
NDML request being scheduled.

* Result Field Table, if the request is an access
request.

* CS-ACTION-LIST, if the request is an access request.

* ENDLOCAL messages

" ENDJOIN, ENDUNION, ENDNOTINSET messages

* ENDFILESEND MESSAGES

* Request Processor Information Table

The Join Query Graph (JQG) and Result Field table (RFT)
inputs are also inputs to function DRS1 which modified them,
and are described in section 3.2.1.1.

The CS-ACTION-LIST (CSAL) is a list of the attributes
which will comprise the result relation. The order of this
list is the order of the attributes in which the CS/ES
Transformer will expect the final results to be. The format of
the CSRL is the following:

ent-class auc workptr type size nd

where:

ent-class W not used
auc W Attribute Use Class of the attribute
workpt.- W not used
type not used
size not used
nd not used

ENDLOCAL messages are issued by the Request Processors and
contain information about the intermediate relations that re-
sult from local processing. They arrive on the same logical
Channel ID as was assigned when the Request Processor was
initiated or via a parameter if the RP was called as a sub-
routine. ENDLOCAL indicates that processing of a
subtransaction has been completed. The form of an ENDLOCAL
message is:

3-8

DS 620141310
1 November 1985

ENDLOCAL length

where:

length - the number of tuples in the resultant
relation

ENDJOIN, ENDUNION, and ENDNOTINSET messages are issued by
the Aggregator CI and contain information about the relations
that result from combining intermediate relations and trans-
mitting them to another application cluster. As in ENDLOCAL
messages, they arrive on the same logical channel as was
assigned when the Aggregator was invoked or via subroutine
parameters.

ENDJOIN indicates that processing of an inter-database

join has been completed. The form of an ENDJOIN message is:

ENDJOIN length

where:

length - the number of tuples in the resultant
relation

ENDUNION indicates that the processing of an inter-
database union has been completed. The form of an ENDUNION
message is:

ENDUNION length

where:

length - the number of tuples in the resultant
relation

ENDNOTINSET indicates that the processing of an inter-
database not-in-set has been completed. The form of an
ENDNOTINSET message is:

ENDNOTINSET length

where:

length - the number of tuples in the resultant

3-9

DS 620141310

1 November 1985

relation

ENDFILESEND messages are sent by the File Transfer process
to acknowledge that a file has been sent as requested.

3.2.2.2 Processing

This function receives information about the results of
processing of intermediate results.

The following describes the algorithm used by this module
to control the runtime evaluation of a request. The general
strategy is to break the request into stages, execute the
stages serially, but execute the components of each stage in
parallel. The first stage is comprised of all the request
processors. Subsequent stages consist of file transfer re-
quests. join requests, union requests, and/or not-in-set re-
quests. Step 4, described below, determines which requests
comprise subsequent stages.

Step 1. Initialize Scheduler Tables

Create or update the following Performance
Information Tables (PITs):

a. Read the Transmission Cost Table (TCT) from a
file. There is one TCT file at each site. The
format of this table is described in Section
3.2.2.4.

b. For each entry in the RIT, calculate the width
of the relation to be constructed by the
corresponding request processor. This is
calculated by examining the corresponding
entries in the RFT. Enter each width into the
appropriate RIT entry.

c. Initialize the Cost Information Table (CIT).
Each entry in the CIT corresponds to a candidate
Union or Join action. The format of this table
Is described in Section 3.2.2.4. For each entry
In the JQG, there will be two entries in the
CIT. The first entry will have rell as the
source relation and rel2 as the dest relation,
and the other entry will have rel2 as the source
relation and rell as the dest relation. For

3-10

DS 620141310
1 November 1985

each entry placed in the CIT. set the source and
dest fields as just described, set the i-p field
to null, and set the edge-id field to the
appropriate index into the JQG.

Step 2. Process Incoming Messages

This step processes reply messages sent by the
Request Processors and Aggregators. The Logical
Channel ID, which is a part of each message, is used
to locate the entries in the RIT and CIT which
correspond to 'the relation created by the process
issuing the message.

a. Process ENDLOCAL messages

0 Update the RIT entry corresponding to this
message. Set the Length field with the
value returned in the message, and set the
Status field to REE.

* Scan the RIT. If there are any entries
with the Status field equal to Busy, then
go to Step 2. Else go to Step 3.

b. Process ENDJOIN, ENDUNION and/or ENDNOTINSET
messages

0 Update the RIT entry corresponding to this
message. Set the Length field with the
value returned in the message, and set the
Status field to FREE.

* Remove the corresponding CIT entry from the
CIT.

0 Scan the CIT. If there are any entries
with an i-p value of T or P. then to to
Step 2. Else go to Step 3.

c. Process ENDFILESEND messages

0 Locate the RIT and CIT entries associated
with the logical channel ID of the message.
Go to Step 4.3.

Step 3. Calculate Costs

3-11

DS 620141310
1 November 1985

This step removes duplicate entries in the CIT. and
calculates the cost for each remaining entry. If the
CIT is empty, then Function DRS2 is completed.

a. Remove all entries in the CIT which have the
same source and dest relation as a previous
entry.

b. If the CIT is empty, the RP operations requested
for the NDML request have been completed, with
the possible exception of an Aggregator step for
the termination of a recovery unit, and the CIT
is empty, the RPs that have been operating on
behalf of the AP must now be stopped. Each of
the RPs has, by this time, executed a local
recovery unit termination as a result of the
NDHL request itself. The DRS must now request
that the NTM terminate the RPs indicated by the
entries in the RPIT. Therefore, for each entry
in the RPIT, the DRS will send a termination
request to the NTN, indicating the host-id and
the local process id that is to be terminated.

c. Calculate the cost for each remaining entry by
multiplying the length of the source relation by
the width of the source relation by the trans-
mission cost factor. The lengths and widths are
obtained from the RIT, and the transmission cost
factor is obtained from the TCT. Put the cost
value in the corresponding entry in the CIT.

d. Calculate the average non-null cost in the CIT.
Call this average T.

Step 4. Process Join, Union, and Not-In-Set Edges

This step selects which join, union, or not-in-set
is to be performed next, updates the PITs
appropriately, sends FILE-TRANSFER messages, and
invokes Aggregators to perform the selected join,
union, or not-in-set.

a. Select the next Join, union, or not-in-set to
process.

9 Select the next lowest cost entry in the

3-12

DS 620141310
1 November 1985

CIT; call that entry c-i.

0 If c-i , T then go to step 2. (If c-I , T,
then all the actions of this stage which
can run in parallel have been initiated.
We must now wait for results to come in.)

0 If the edge-type is JOIN or NOT-IN-SET
(found in JQG) AND either the source or
dest relation appears elsewhere in an
CIT entry which has an edge type of UNION,
then go to Step 4.1.

0 If the status of either the source of dest
relation (found in RIT) is not FREE, then
go to Step 4.a.

b. Update the PITs

" Change the status field of the RIT, for the
source and dest relation entries, to BUSY.

0 Remove the other entry in the CIT with the
same edge-id.

" Add a new entry to the RIT, which
corresponds to the results of the join,
union, or not-in-set to be performed.
Create a unique file name for the re-
sults, and enter it into the entry. Set
the status to BUSY.

* Add an RFT entry for each attribute which
will appear in the result relation. All
fields of both the source and dest op-
erands, except Join or not-in-set fields,
will appear in the result relation. For
each join or not-in-set field, scan the
APL for an entry which contains it. If it
appears in the APL entry other than the
current one, then it must appear in the
result relation. Calculate the width of
the resultant relation, and place the
value in its RIT entry.

" Change all Rel fields in the JQG, CIT, and
APL whose value equals either the source or

3-13

DS 620141310
1 November 1985

dest relation RIT index, to the RIT index
of the result relation.

c. Send FILE-TRANSFER, JOIN, UNION and/or NOT-IN-
SET messages

0 If the source relation is not at the same
site as the dest relation, send the source
file. Update the appropriate RIT and CIT
entries with Logical Channel ID associated
with the file transfer, and change the Host
ID field appropriately. Set the i-p field
in the current CIT entry to T. Go to Step
4.a.

* Initiate the appropriate Aggregator to
perform the join, union, or not-in-set
operation, as designated by the edge-type.
If the Aggregator is to run on the same
node as the user AP and if an LSC
Aggregator is not already running, initiate
the Aggregator via the LSC; otherwise,
initiate it via the NTH. Update the
appropriate RIT and CIT entries with the
logical channel ID associated with the
join. Set the i-p field of the current CIT
entry to P. Set the Host-id field in the
RIT appropriately. The formats of the JOIN
and UNION messages are described in Section
3.2.2.3; that of the NOT-IN-SET message, in
AGGI.

0 If we got to Step 4.c as a direct result of
an ENDFILESEND message, then go to STEP 2,
else go Step 4.

3.2.2.3 Outputs

The outputs of this function are the FILE-TRANSFER, JOIN,
UNION, and NOT-IN-SET messages, and NTN requests for process
termination.

a. A FILE-TRANSFER message has the following format:

FILE-TRANSFER stage-id from-site to-site rell
rel2

3-14

DS 620141310
1 November 1985

where:

from-site - the current site location of

the relation
to-site - the destination site for the

relation
rell - the file name of the relation to

be sent

rel2 - the file name of the relation on

the to-site

b. A JOIN message has the following format:

JOIN rell rel2 result APL rell-rft rel2-rft
result-rft

where:

rell - the file name of one of the
relations to be joined

rel2 - the file name of the other
relation to be joined

result - the file name of the resultant

relation
APL - An attribute pair list of the

join field pairs for this
join.

rell-rft - An RFT for the fields of Rell
rel2-rft - An RFT for the fields of Rel2
result-rft - An RFT for the fields of the

result relation

c. A UNION message stage has the following format:

UNION rell rel2 result rft

where:

rell - the file name of one of the
relations to be unioned

rel2 - the name of the other relation to
be unioned

result - the file name of the resultant
relation

3-15

DS 620141310
1 November 1985

rft - An RFT for the fields of the

rell, rel2, and result relations.

d. See AGGI for the format of the NOT-IN-SET message.

e. An NTM message requesting process termination has the
following format:

STOP host-id RP-process-id

where:

host-id - id of the host upon which
the RP is running

RP-process-id - local process id of the RP
that is to be stopped

3.2.2.4 Internal Data Requirements

Working data requirements include the following per-
formance information tables (PITs):

a. Transmission Cost Table (TCT):

The TCT contains transmission rates between each pair
of application clusters and has the following format:

ac-I ac-2 cost

This table should already exist in a file at each
site.

b. Relation Information Table (RIT):

The RIT contains information about each relation in
the transaction, with the format:

rel-id length width status log-ch Host-ID

where:

rel-id - The file name where the relation
resides

length - number of tuples in the relation

3-16

DS 620141310
1 November 1985

width - size of one tuple. in bytes
status - the present status of the

relation (FREE or BUSY)

a. Request Processor Information Table (RPIT):

The RPIT contains information about each RP that is
currently operating on behalf of the AP. It has the
format:

AP-id AP-process-id RP-id RP-call-type
RP-host-id RP-process-id

where:

AP-id - program-id of the AP
AP-process-id - process id of the specific

instance of the AP on this
host

RP-id - program id of the RP
RP-call-type - code indicating whether the

RP is activated via the NTN
(type - "R" for remote) or
is called as a subroutine
(type - "L" for local)

RP-host-id = id of the host upon which
the RP is running

RP-process-id - process id of the specific

instance of the RP on
the specific host

d. Cost Information Table (CIT):

The CIT contains information regarding all possible
Inter-database joins and unions, with the format.

i-p edge-id source dest cost log-ch

where:

i-p a flag to mark the join as P
(in progress) or T (file
heirs transferred)

edge-id - the index of the particular
edge into the JQG

3-17

DS 620141310
1 November 1985

source - the RIT index of the
relation that will be
transmitted

dest - the RIT index of the other
relation

cost - the cost of transmitting the
source relation

log-ch - the logical channel ID
associated with the
Aggregator process which is
performing the join, union,
or not-in-set.

The cost value is determined by multiplying the
length of the source relation from the RIT times the
width of the source relation from the RIT, times the
appropriate cost formula from the TCT.

e. Result Field Table (RFT):

The RFT is originally input from the Decompose CS
NDNL function (PRE6), but must be updated to keep
track of result attributes as joins are processed.

f. CDNI Requirements:

The CDH1 entity classes that must be accessed in
order to determine the proper staging sequence to
service a transaction are the following:

66 record type

67 data field

network communications rates (initial
start-up cost plus cost per byte),
stored in a transmission cost table
(TCT).

3.2.3 Function DRS3: Initiate CS/ES Transform ProcessinR

This function activates the CS/ES Transformer module,
which was built by the Generate CS/ES Transformer (PREB)
function of the Precompiler CI, to prepare the result relation
for presentation to the original requesting application
process. It also notifies the application process that the
query processing is completed. It is executed only for access

3-18

DS 620141310
1 November 1985

requests.

3.2.3.1 Inputs

The inputs to this function are:

0 Indicator that the Cost Information Table (CIT) is
empty

9 Relation Information Table (RIT)

* ENDCONV message

The first two inputs are produced by function DRS2:
Schedule Stages. The last input is produced by a CS/ES
Transformer that was activated by this function. It indicates
that the requested CS/ES Transform has completed.

3.2.3.2 Processing

* If the final result relation is not stored at the
site of the CS/ES Transformer, a FILE-TRANSFER mes-
sage must be sent to move the file. The DRS waits
for the reply and updates the RIT.

* Call the CS/ES Transformer as a subroutine with an

activation message as a parameter:

CONV rell-name rel2-name length

where:

rell-name - the file name which contains the re-
sults in CS format

rel2-name - the file name which contains the re-
sults in ES format

length - the number of tuples in the relation

3.2.3.3 Outputs

The outputs of this function are the following:

" The file send message, if required, to move the final
result

* The activation message to the CS/ES Transformer.
" A transaction complete message, which is returned as

3-19

bA .MVc

DS 620141310
1 November 1985

a parameter to the application process requesting the
transaction. This message includes the file name of
the results.

3.3 Special Requirements

Principles of structured design and programming will be
adhered to.

3.4 Human Performance

Not applicable.

3.5 Database Requirements

Not applicable.

3.6 Adaptation Requirements

The system will be implemented at the ICAM IISS Test Bed
site located at the General Electric facility in Schenectady,
NY. The first Distributed Request Supervisor process will be
implemented on the VAX VMS host.

3-20

DS 620141310
1 November 1985

SECTION 4

QUALITY ASSURANCE PROVISION

Among the tests that should be incorporated into the

software are:

a. input data checks

b. interface data checks, i.e., tests to determine
validity of data passed from calling routine

c. database verification

d. operator command checks

e. output data checks

Not all tests are required in all routines, but error
checking is an essential part of all software.

The CI quality assurance provisions must consist of three
levels of test, validation and qualification of the constructed
application software.

a. The initial level can consist of the normal testing
techniques that are accomplished during the
construction process. They consist of design and
code walk-throughs, unit testing, and integration
testing. These tests will be performed by the design
team which will be organized in a manner similar to
that discussed by Weinberg in his text on software
development team organization (THE PSYCHOLOGY OF
COMPUTER PROGRAMMING, Van Nostran Reinhold, 1971).
Essentially a team is assigned tc work on a sub-
system or CI. This approach has been referred to as
"adaptive teams" and "egoless teams." Members of the
team are involved in the overall design of the sub-
system; there is better control and members are ex-
posed to each other's design. The specific advantage
from a quality assurance point is the formalized
critique of design walk-throughs which are a
preventive measure for design errors and program
"bugs." Structured design, design walk-throughs and
the incorporation of "antibugging" facilitate this
level of testing by exposing and addressing problem

4-1

DS 620141310
1 November 1985

areas before they become coded "bugs."

b. Preliminary qualification tests of the CI are per-
formed to highlight the special functions of the CI
from an integrated point of view. Certain functional
requirements may require the cooperative execution of
one or more modules to achieve an intermediate or
special function of the CI. Specific test plans will
be provided for the validation of this type of
functional requirement including preparation of
appropriate test data. (Selected functions from 3.2
must be listed).

c. Formal Qualification Test will verify the functional
performance of all the modules, within the CI as an
integrated unit, that accept the specified input,
perform the specified processes and deliver the
specified outputs. Special consideration must be
given to test data to verify that proper interfaces
between modules have been constructed.

4-2

DS 620141310
1 November 1985

SECTION 5

PREPARATION FOR DELIVERY

The implementation site for the constructed software will
be the ICAM Integrated Support System (IISS) Test Bed site
located at General Electric in Schenectady, NY. The required
computer equipment will have been installed. The constructed
software will be transferred to the IISS system via appropriate
storage media.

5 -1 U.S.(ovrnMe,nt Pr.ntng '_)fi'- e I(R / i4jw OI, I

'1 7.

