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K7  ABSTRACT

The interaction of two isolated lens-like eddies is examined with the

aid of an inviscid nonlinear model. The barotropic layer in which the

£ lenses are embedded is infinitely deep so that there is no interaction

between the eddies unless their edges touch each other. It is assumed that

the latter is brought about by a mean flow which relaxes after pushing the

eddies against each other and forming agfigure eight stucture. - -/, ' e

Using arguments based on continuity and conservation of energy along

the eddies edge it is shown that, once a figure eight"p-shape is estab-

lished, intrusions along the eddies' peripheries are generated. These

intrusions resemble 1armgO~or qentaclesand their structure gives the

impression that one vortex is Augging the other. As time goes on the

tentacles become longer and longer and, ultimately, the eddies are entirely

3 converted into very long spiral-like tentacles. These spiraled tentacles

are adjacent to each other so that the final result is a single vortex

I containing the fluid of the two parent eddies.

Because of the inherent nonlinearity and the: Nct thai thd piV014m is

three-dimensional (x, y, t), the complete details' of the above process

cannot be described analytically. It is, however, possible to show

analytically that the intrusions and tentacles are inevitable.

Upurpose, one of the interacting eddies is conceptually replaced by a solid
cylinder. Initially, the cylinder drifts toward the eddy; subsequently, it

is pushed slightly into the eddy and is then held fixed. The subsequent

events are examined in detail.

It is found that as the cylinder is forced into the eddy, a band of

I.. eddy water starts enveloping the cylinder in a clockwise manner. This

tentacle continues to intrude along the cylinder perimeter until it

f



ultimately reattaches itself to the eddy, forming a "padlock" flow. Using

the details of this process it is argued that, in the actual eddy-eddy

interaction case, intrusions must be established and that, consequently,

merging of the two eddies is inevitable.3
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1 . introduction

3 Isolated lens-like eddies are common in many parts of the ocean; they

usually result from meandering currents which close upon themselves and

pinch-off (see e.g., The Ring Group 1981, Lai and Richardson 1977,

Cheney 1977). Their abundance in the ocean and the, almost permanent,

presence of mean currents suggest that collisions of eddies are probably a

fairly common occurrence. The processes associated with eddy collisions

and the resulting encounters are the focus of the present study.

a) Backaround: So far, there has been only one set of observations of a

I direct eddy-eddy interaction (Cresswell, 1982, Cresswell and

Legeckis 1986). In this case, two anticyclonic lens-like eddies have

collided in the vicinity of the East Australian Current. Initially, they

I moved around each other but within a period of about 20 days they have

completely merged (Fig. 1). These observations have generated the interest

of Gill and Griffiths (1981) who, in a short communication, have pointed

out that if two inviscid eddies with zero potential vorticity are forced to

merge and conserve their potential vorticity during the merging, then the

final vortex would have energy that is larger than the sum of the individu-

al energies.

This conclusion can be easily demonstrated by considering the velocity

and depth of a zero potential vorticity vortex (see e.g., Nof 1981a,b),

vei a -fr/2 ; hi =i i- f2r/8g' (1.1)
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where v i and hi are the tangential velocity1 and depth, f the Coriolis 3
parameter, &I the "reduced gravity" [(SAp/p), with g the gravitational

acceleration, Ap the density difference between the layers and p the eddy

density)), and li is the depth at the center of the vortex (i.e., 1
fi = h (0)). Here, the subscript "i" indicates that the variable in

question is associated with the initial state (prior to any interaction or

merging) and the hat () indicates association with the center. The

subscript "f" will later be used to describe the final state.

The total energy of any radially symmetric lens-like eddy is, f
bh

E 2,p J .(V2/2 + g'z)rdrdz (1.2) 3

where b is the radius of the eddy. For a zero potential vorticity eddy,

(1.2) gives,

E1 = rfb i/192g' (1.3)

The volume of each vortex (Q) is found to be,

Q _ if2b14/16g' . (1.4)

For an interaction where potential vorticity is conserved, the final energy

of the merged vortices is, vf~bf6 /192g' . Here, bf is the final radius

which, from the volume conservation constraint (1.4), is found to be,

'For clarity, the definition of symbols is given in both the text and
an appendix.
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I bf = bi.(2)1 (1.5)

where bi is the original radius of each individual vortex. It, therefore,

follows from (1.3) that the ratio of the total final energy to the sum of

the initial individual energies is (21)6 - 42 •

Consequently, it is concluded that, in order for merging to occur,

3either energy must be supplied from an outside source, or that potential
vorticity is not conserved. In addition, if one accepts the idea that

physical systems tend to a state of minimum energy, then the above consid-

erations imply that the eddies' natural tendency is to split rather than

merge. It should be pointed out that, since for a zero potential vorticity

eddy, b - (8g'fi)i/f (where fi is the central depth), it follows from (1.3)

that

f f a 42fii (1.6)

implying that the depth increases during the merging. As mentioned, these

relationships were originally derived by Gill and Griffiths (1981).

For additional studies on eddies interaction the reader is referred to

Mied and Lindemann (1984), McWilliams (1983), McWilliams and Zabusky

(1982), Overman and Zabusky (1982), Melander et al. (1985), and

Christiansen and Zabusky (1973). While being informative, the latter

investigations are not directly applicable to the problem at hand because

they do not address lens-like eddies. The reader is also referred to the

laboratory experiments of Griffiths and Hopfinger (1986a,b) and the

analysis of Young (1985) which discuss the interaction of quasi-geostrophic

and geostrophic vortices. As pointed out in Nof and Simon (1986), these

eddies differ from our vortices because the latter are of finite extent

whereas the former are infinite.

-3-



b) Mthods: With the conclusions of Gill and Griffiths (1981) in mind,

we shall develop a theory for the merging of two blobs. The general

details of the proposed mrging mechanism are as follows. Two isolated

blobs are initially separated from each other; they are embedded in a I
lighter (or heavier) infinitely deep layer so that, initially, one vortex

does not "feel" the presence of its counterpart. The eddies are then

brought together by some mean flow which relaxes after it pushes one vortex

against the other. This creates a "figure eight" structure with a mutual

boundary along which the depth does not vanish (Fig. 2). We shall see that

because of the establishment of such a mutual boundary, the eddies cannot

remain separated. "Tentacles" are extended from one vortex to another and

merging rapidly occurs.

The essence of the theory is that the potential vorticity is altered

during the merging; namely, no external source of energy is required and

the final potential vorticity of the merged vortex is not identical to the

initial potential vorticity which each vortex has had. The details of our

proposed merging mechanism involve two main processes. The first is the

way in which each of the two vortices becomes entangled in the "tentacles"

of its counterpart and the second is the associated change in the potential

vorticity. The former can be explained in terms of relatively simple

dynamical considerations whereas the latter is believed to be a result of

shock waves which are present during the transient merging process.

Both processes are highly nonlinear; the interfaces of the blobs

strike the surface (or bottom) so that the depth variations are of 0(1) and

the centrifugal acceleration is of the same order as the Coriolis force so

that the Rossby number is also of 0(1). Because of this and the fact that

the general problem is three-dimensional (x, y, t), it is impossible to
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describe all its details analytically. It is, however, possible to prove

analytically that the formation of tentacles is inevitable; namely, it is

possible to show that once a "figure eight" and a mutual boundary are

established then each vortex must extend an "arm" around its counterpart

(Fig. 3). To show this, one of the vortices is, conceptually, replaced byIl
a solid cylinder and the flow resulting from slightly forcing the cylinder

into the remaining eddy is examined. Note that since our model is inviscid

it makes no difference whether or not the solid cylinder is rotating.

The main idea behind the above simplification is that both an adjacent

eddy and an adjacent cylinder are forcing a mutual boundary along which the

depth does not vanish. A similar simplification was used by Nof (1986a) to

describe the collision between the Gulf Stream and a warm-core ring.

However, there are two important differences between the Nof (1986a)

analysis and the present model. The first is that while curvature effects

are very important in the present study, they are entirely negligible in

the Nof (1986a) case. The second is that in the present case the volume of

the fluid surrounding the cylinder is finite whereas in the Nof (1986a)

study there is a continuous flow from one area to another. These differ-

ences make the present study considerably more difficult than that dis-

cussed in Nof (1986a). Despite these differences, many of the techniques 'e

used in the above study are also applied here. There is some (but limited)

over-lapping between the two articles because an attempt has been made to

make the present paper self-contained.

Because of the non-vanishing depth along the area in which the fluid

is in direct contact with the cylinder, an intrusion of eddy water along

the cylinder's perimeter is established. It propagates in a clockwise

manner until it ultimately reaches the eddy on the downstream side. At
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this point the intrusion reattaches itself to the eddy and the combined U
eddy-intrusion flow resembles the shape of a padlock. Because of reattach- .

ment the "padlock" flow is steady and, even though the problem is still

nonlinear, it is possible to obtain an analytical solution. This can be 3
achieved by using a constraint resulting from integrating the equations

representing the torque relative to the center of the cylinder. Much of

the analysis and discussion in the paper is devoted to the padlock flow.

The mere existence of a non-vanishinR padlock flow illustrates that intru-

sion of eddy water along the cylinder is inevitable. We shall see that, 3
consequently, one is led to the conclusion that interleaving and merging

must take place.

This paper is organized as follows. In Section 2 the general struc-

ture of the merging process is described in detail; this description is

largely qualitative. The simplification of the processes in question and

the equations governing the padlock flow are given in Section 3. Section 4

contains the appropriate scaling and Section 5 includes the solution for

the padlock flow. The results are discussed in Section 6 and summarized in

Section 7. A list of symbols is given in the Appendix.

2. The merging process

Consider again the two isolated blobs shown in Fig. 2. The blobs have

uniform density and the slightly lighter fluid in which they are embedded

is infinitely deep. Initially, the blobs do not touch each other so that

there is no repulsion or attraction. The equations governing the motions
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of blobs on the bottom are equivalent to those governing light blobs on the

3 surface or blobs of intermediate density "sandwiched" between two infinite-

ly deep layers. For convenience, we shall only discuss blobs on the bottom

of the ocean but it should be kept in mind that our results are also appli-

3cable to upper ocean eddies and eddies at mid-depth.
Suppose now that some mean flow has brought the two eddies together so

that the eddies' horizontal projection resembles the "figure eight" shape

and a mutual boundary is established (Fig. 2); after this happens the mean

flow relaxes. Our initial intuition tells us that the eddies' response to

the establishment of such a mutual boundary may simply consist of a local-

ized adjusted flow in the vicinity of point B. However, a close examina-

tion of the problem shows that this is not the case. To show this, consid-

er an application of thp Bernoulli integral to the streamline connecting

5 point A and B assuming, temporarily, that the flow is steady so that the

eddies' response (to the establishment of a mutual boundary) consists

indeed of a mere adjustment in the vicinity of point B,I
UA2/2 _ UB2/ 2 + g'hB  , (2.1)

where uA is the upstream speed (in the x direction) along the front (point

A), and uB and hB are the speed and depth at B.

Since hB is always positive, (2.1) implies that uB < uA* However, if

the steady response is in the manner shown in the lower panel of Fig. 2, as

we have temporarily assumed, then continuity implies that there must be

some convergence across the line connecting point B and the center of the

vortices. This suggests that uB > uA' The above conditions, required by

the continuity equation and the Bernoulli principle, are obviously

-7-
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incompatible, suggesting that there cannot be a streamline connecting A I
and B. Instead, it is expected that there will be a band of water flowing

around the eddies in a clockwise manner (Fig. 3). In other words, parti-

cles moving along the vortex edge (i.e., the front) do not have sufficient

energy to rise to point B and, therefore, must go around their adjacent

vortex where the fluid is lower.

A formal proof for the inevitable existence of the edge intrusion is

given in the following sections with aid of the so-called padlock flow.

However, it should be pointed out that for the special case corresponding

to uA - 0 (i.e., a vortex with a zero speed along the edge) no proof is

really necessary because under such conditions (2.1) can never be satis-

fied. The establishment of tentacles-like edge intrusions along the rims

of both eddies creates a structure similar to that displayed in Fig. 4a.

As time goes on the tentacles become longer and longer. Since the volume

of each vortex is finite the tentacles will ultimately form a single vortex

consisting of two adjacent spirals (Fig. 4b).

By eouating the volume of each individual blob to the amount of water A

drained via the lengthening of the tentacles it is possible to estimate the

total merging time. Specifically, suppose that cRd denotes the distance

that each vortex is initially "pushed" into its counterpart (where Rd is

the deformation radius which is of the same order as the radius of the

eddy) and that fi denotes the eddy central depth. Also, recall that the

intrusion advances in a similar fashion to a gravity current so that the

propagation rate is of the order of the Kelvin wave speed (cg'fi) [see

e.g., Griffiths (1986)]. With the aid of this information, we can now

equate the volume of each eddy [-O(R 2fi)] to the intrusion flux [(Rd , the

d d
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intrusion width, times the intrusion depth -O(cfi) and the intrusion propa-

gation speed -O(Cg'fi)f] multiplied by the merging time (tm). This gives,

I- t (fe 52 (2.2)

which shows that if the relative distance that each vortex is "pushed" into

- 4 I

the other is, say, 0.1 and the Coriolis parameter f is -10 sec , then

the merging time is roughly 30 days.

The above processes strongly suggest that merging will indeed take

place. There remain, however, two important aspects which need to be

addressed. The first is that we still need to prove that the intrusions

are indeed inevitable. The second is that we need to clarify the rela-

tionship between our proposed merging mechanism and the results of Gill and

Griffiths (1981) which show that either an external source of energy is

needed for the merging or that potential vorticity cannot be conserved

during the merging. The former aspect is discussed in Sections 3-5 whereas

the latter is addressed below.

The proposed merging process does not require an external source of

energy because the mean flow relaxes after the edges of the vortices touch

each other. This aspect of energy supply is supported by an independent

study involving laboratory experiments on the coalescence of lens-like

eddies (see Nof and Simon (1986)]. Consequently, one concludes that it is

the potential vorticity that must be altered during the merging. It is

-9- 1
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argued that this alteration is achieved via the action of shock waves2 in

the nose of the intrusion. The fact that intrusions contain shock waves is

not new. It was first pointed out by Benjamin (1968) for nonrotating S

flows. The laboratory experiments of Stern et al. (1982), Griffiths and

Hopfinger (1983), and Kubokawa and Hanawa (1984), and the analysis

presented by Simpson (1982) and Griffiths (1986) suggest that rotating

intrusions along straight coastlines also contain shock waves.

Also, the study of Nof (1986c) has demonstrated that the absence of

shock waves in an intrusion along a coast is only possible under special

conditions. That is, it has been demonstrated that steadily propagating

solutions which do not involve shock waves (i.e., the steepening of the

intrusions head is arrested by the surrounding flow) are only possible for

specific circumstances. These special solutions are not the most general

solution to the problem; the general solutions should involve steepening

and dissipation associated with depth discontinuities. In an independent

study, Nof (1986b) has demonstrated that rotating shock waves cause a major

alteration of potential vorticity. We, therefore, suggest that, as the

fluid is intruding along the adjacent vortex edge, its potential vorticity

is altered. Note that, during the merging, all the fluid in the vortices

is intruding so that the potential vorticity of all the fluid is altered.

Unfortunately, the detailed analysis of the shocks in the intrusion is

quite complicated. It is beyond the scope of this study and will be the

subject of a future investigation.

2By "shock waves" we mean organized depth discontinuities in which
there is a violent turbulent action. They correspond to a balance between
steepening and dissipative effects.

-10-
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The above considerations imply that it is not appropriate to assume

3 that potential vorticity is conserved as was done in Gill and Grif-

fiths (1981). In a similar fashion to the energy supply consideration,

I this conclusion is supported by the laboratory experiments of Nof and

Simon (1986). As we saw earlier (Section 1), if one assumes that potential

vorticity is conserved during the merging, then one arrives at the result

£ that the central final depth (fif) is larter than the central initial depth

(see Eq. (1.6)]. The laboratory experiments of Nof and Simon (1986) show,

on the other hand, that this is clearly not the case. In fact, it has been

found that the central depth decreases during the merging; for most of the

laboratory experiments the final central depth was about half of the

initial depth. This completes our qualitative description of the merging

processes.I

5 3. The steady "padlock" flow - governing equations and constraints

The present section has two aims. First, we want to show that the

eddy's response to the presence of the cylinder cannot consist of a mere

adjustment in the contact area (Fig. 5). Namely, we wish to prove that

there must always be a flow around the cylinder so that the time dependent

intrusion (Fig. 6a) is inevitable. The second aim is to find how the eddy

responds to the forced cylinder. Specifically, one would like to compute

the padlock flow speed, width and depth as a function of the distance that

the cylinder is pushed into the eddy. Because of the inherent nonlinearity

of the problem, which has not been removed by our simplification, it is

unlikely that one will be able to find analytical solutions for the whole

-11-
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field. Consequently, we shall make an attempt to find the desired flow I
pattern without solving for the entire field.

a. General description: Consider the system shown in Fig. 6b. The 5
origin of our coordinates system is located at the center of the cylinder;

it will become clear later that this choice is not arbitrary. The x axis

is perpendicular to the line connecting the center of the cylinder with the

center of the vortex; the y axis is a continuation of the above line and

the system rotates uniformly at f/2 about the z axis. The padlock flow is

embedded in an infinitely deep motionless layer; its potential vorticity is

zero. The way that the padlock flow is formed is not important for our

analysis. It is useful to point out, however, that one can think of

several ways by which it can be established. An obvious procedure is to

physically force the cylinder into an eddy. Another method is to, concep-

tually, pull out a long tube (containing heavy fluid which is not, neces-

sarily, at rest) in the neighborhood of a solid cylinder. The collapse of

the fluid initially contained in the tube should take place in a particular

location. Specifically, in the absence of the adjacent solid cylinder, the

edge of the formed lens should extend beyond the surface of the solid

cylinder.

Whatever generation method is used, there will be some period of

adjustment during which the lens depth would presumably shrink somewhat to

accommodate for the volume of the intrusion around the cylinder. Ultimate-

ly, a steady flow will be established and this final steady flow is the

focus of our study. At this final stage (Fig. 6b) the boundary of the

solid cylinder extends beyond the boundary of a zero potential vorticity

eddy whose depth and center are aligned with those of the padlock flow. We

-12-
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B define this latter vortex to be our "undisturbed" eddy; note that this eddy

9 is not identical to the initial lens due to the time dependent processes.

Additional comments regarding the differences between the two states are

made in Section 5h.

As stated, the manner in which the padlock flow is established is not

important for the present analysis. What we wish to find out is whether or

ft not the final adjusted state can only be associated with a padlock flow.

Namely, we ask the following question: Is there a solution corresponding

to a mere adjustment in the contact area? The answer to the latter ques-

tion would be positive if the width of the padlock flow turns out to be

Izero. We shall see that this is not the case; i.e., we shall see that

3there must be a flow around the cylinder whenever the edge of the undis-
turbed vortex extends beyond the surface of the cylinder (c 0 0).

5 b. Governing auations for reuions 1. 2 and 3: The governing equations

for the final adjusted state are the usual shallow water equations. For a

Ipadlock flow with zero potential vorticity we have,

av i/ax - aui/8y + f - 0 ; -- 1, 2, 3 (3.1a)

Sav. av i  Iah i

u _2 + vi + fuhi  9 :a ; i - 1, 2, 3 (3.1b)

ui -+v -+fu a

L_ rh ui + -'h (i Oj ay ; i - 1, 2, 3 (3.1c)

Iwhere u and v are the horizontal depth-independent velocity components in
the x and y direction, and the subscripts "1", "2" and "3" denote that the

variable in question is associated with regions 1, 2 and 3 respectively.

Note that because of the symmetry of the problem (i.e., v - 0; hx M 0 along

V-13-
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cross-sections 1, 2 and 3) the x momentum equation 'U, + v-u fvi

-9 1!h ) and the continuity equation (3.1c) imply that,

au~ - (3.2)1
ax

ava
In addition, note that, as in many radially symmetric eddies, ax is not

necessarily zero vhere x - 0 even though v - 0.

The boundary conditions for regions 1, 2 and 3 are,W

h, = 0 ; y- -r0(I 0 c - 442-Rd - 242-Rd P ~ (3.3a)

h, fi ; y --r0(l - c) - 24 2-Rd (3.3b)

u1 -va inO ; yin-r0 (1 - 2 42-Rd (3.30)

[Ui 2]y --r0(l - e) - 2q/2-R (2 -j [U [u2] - r0(1 + y,)(34

(u 2 2 + 2g'h 2J y --ro (U u2 + 2g'h 3J y - r. (3.5a)

h2- fi ; y --r0(1 - 0) - 24 2-Rd (3.5b)

U2 aV 2 M 0 ; y - -r0 (1 - c) - 242-R d (3.5c0

h 3 inO ; y - r0 1+ y,) ,(3.6)

where r. is the radius of the cylinder and R d is the deformation radius

based on the depth at the center of the padlock flow (i.e., where the speed

vanishes) so that the radius of the undisturbed vortex is 242-R d yj and-

Y3 denote the nondimensional locations at which the depths of the flow in

-14-



regions I and 3 vanish. Conditions (3.3a) and (3.6) state that the depth

of these flows vanishes at some unknown location; conditions (3.4) and

(3.5a) reflect the conservation of energy along the streamlines that bound

the flow from left and right (looking downstream). Namely, (3.4) and

(3.5a) are simply a result of an application of the Bernoulli integral to

the streamlines connecting G and E, and B and D (see Fig. 6b). Conditions

(3.3b) and (3.5b) state that at A the depths of the two regions are identi-

cal to some given depth (fi) and (3.3c) and (3.5c) reflect the requirement

for a vanishing speed at the center of the vortex.

It is important to clearly distinguish between the undisturbed state and

the initial state. As mentioned before, the undisturbed vortex is defined

as a zero potential vorticity vortex which is centered at the center of the

padlock flow (i.e., the point where the velocity vanishes) and has the same

depth as the maximum padlock flow (M); its radius is 242"Rd. The initial

state, on the other hand, is the state which leads to the intrusion and the

padlock flow - it is of no interest for the present study.

c. Constraints: The flows in the various regions are connected to each

other via (3.4) and (3.5) but there are two additional constraints that the

unknown variables must satisfy. The first results simply from continuity

and can be written in the form,

A B E

fulh~dy + f u2h2dy + fu~h3dy -0 (3.7)

G A D

-15-
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The second equation will be derived from the conservation of torque. I
As in Nof (1986a), we begin by noting that the moment of momentum corre- -

sponds to the cross-product of the position vector r and the momentum

equations, 3

y Uau +Vau - ,+g ah a u8vv 8v 8

au+-v- x -+ v-+ fu + g'

ax ay ax ax y (3.8)

To show that (3.8) provides an additional connection between regions 1, 2

and 3. it is multiplied by h and the continuity equation (3.7a) is incor-

porated. This gives,

a (hu2y) + y (huv) -fvyh + - (h2y)

ax ay 2 ax

a a g' a
- x- (huv) -- (hxv 2 ) - fuhx--- (h 2 x) =O ,(3.9) V

ax ay 2 ay g
which can be rearranged and integrated over the region shown in Fig. 7,

to give,

r ( g' - 'I dd
f f L (hu2y - f*y + h2 y - huvx) dxdy

. (huvy + f*x - - h2x - hxv2) dxdy = 0 (3.10)ffay2

where $ is a stream function defined by,

-= -uh ; -- vh (3.11)
ay ax

By using Stokes' theorem, (3.11) can be written in the form,

-16-
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U~ ( uy - f*y + L h2y - huvx) dy

V2
-O huvy -hxv 2 +f*x--h 2 xl dx .(3.12)I2

where # is the boundary of the flow. This equation can be further simpli-

5 fied by defining * to be zero along the edge where h - 0 and noting that

along any streamline udy - vdx. This gives,

B E

f (hu2 ,* + gh 2/2 )ydy + (h2 - f* + gh2/2) ydy

G D

+ 1  (-f*y + g-h2y/2) dy (f*x - g'h2x/2) dx - 0 (3.13)

5 B B

I In deriving (3.13) it has been taken into account that the sum of the

integrals of hu2y and huvy along BD vanishes because there is no normal

flow through the boundary of the cylinder.

The first two terms in (3.13) are the moments of the flow force in

regions 1, 2 and 3. The last two terms, on the other hand, represent the

torque corresponding to the pressure exerted on the cylinder by the sur-

grounding flow. Since we chose our origin to be in the center of the

cylinder and the pressure is always perpendicular to the surface with which

3 the fluid is in contact, we would expect this torque to vanish. It is easy

to show that since the cylinder surface is given by x2 + y2 - r0
2 , we have

xdx + ydy - 0 so that the sum of the last two integrals in (3.13) equals

g zero as expected. Hence, the integrated torque takes the simple form,
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A BJG (thiU 1 2 - f*1 + gthia/2) ydy + J (h2U2 2 - f2+ gh2 2/2) ydy
G A

E
+ D (h3u32 - f- 3 + glh32/2) ydy - 0 , (3.14)

where we have incorporated our special notation for the various regions.

Note that (3.14) does not involve any variables other than those of re- I
gions 1, 2 and 3.

4. Scalin mnd expan ion of the padlock flow

a) The basic state: Before discussing the scaling of the problem and the

general structure of the expansion, it is instructive to look at the

details of the basic state. The structure of the zeroth order state,

corresponding to the cylinder "kissing" an eddy with zero potential

vorticity, is not a priori obvious. To show this, consider the application

of the Bernoulli integral to the surface of the cylinder (3.5). It implies

that even when c - 0 the velocity along the cylinder surface is of 0(0)

because the eddy speed along the edge is 0(l) [see (1.1) with

r - 2(2g'fi) /f]. As in Nof (1986a), this means that the basic flow around

the cylinder is not zero; rather, it consists of an infinitesimal ribbon

flowing at a speed (2g'fi) . To find the details of this ribbon flow it is

noted that even though the basic state contains only an infinitesimal

strip, it must, of course, satisfy the equations of motion.
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U It is convenient to consider the potential vorticity equation and

9 momntum conservation in cylindrical coordinate (r, 6),

I Id (rV) + f 0 (4.1)
r drV
V2 d-

+ fv- g' - , (4.2)
r drI

3 where v is the tangential velocity, the bar (-) indicates association with

the basic state and we have assumed that the basic flow is purely tangen-

tial (i.e., v L - 0). The most general solution of (4.1) and (4.2) is,

fr a f2 1 a2v.- + - 1 02 2- ) -L (r: -) -r, (43)
a 2 r 8g r2rr) g

where a is an unknown constant and we have used the condition R - 0 at

r - r0 . Since at r - r0 the absolute value of the velocity must be (2g'fi)i

(in order to satisfy the Bernoulli relationship along the surface of the

cylinder), we find from (4.3) that,

a r.ro -2(2) R d (4.4)
2

where Rd = ('fi)'/f. Namely, for any given cylinder (r0 ), we must take a

specific value for a. For simplicity, we shall consider only cylinders

with r0 w 2(2) Rd so that a - 0. Other cylinders can, of course, also be

considered and the solution, which will be shortly derived, can be easily
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extended to cylinders with all diameters. However, such extended solutions

do not provide any new physical insights and, therefore, are not presented.

b) Scaling: In the subsequent analysis the following nondimensional

variables will be used,

u, - uI(g'fl)i v* vf(g'h)i h* - h/fl

X* -X/Rd ; y* y/Rd ; ro* ro/R d = 
2 (2 )1 r - r/Rd (4.5)

- ,/[g'(fi) 2/f ; Rd - (g')/f o

Note that in regions 1 and 3, which are located far from the contact area,

the flow is taken to be purely tangential. In region 2, however, some

deviations from radially symmetric motion are possible because of the

presence of the cylinder. In view of this, we shall use polar coordinates

for regions l and 3 and Cartesian coordinates for region 2. [The subscript e

will denote association with polar coordinates (i.e., ve is the azimuthal

speed) whereas the lack of a subscript will indicate that the variable in

question is associated with Cartesian coordinates. ] For region 1 it is

convenient to transfer the coordinate system and use cylindrical coordi-

nates (i, ) centered at the center of the padlock flow [0; -r0 (2 - )I.

In terms of the nondimensional numbers defined by (4.5), the governing

equations for this region are,

dr (r vel) + 1 - 0 ; (vei) 2/r + ri dr (4.6a)
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3 where r, are related to the original coordinates system (x*, y*) via,

U rsing - y* + 2(2)1(2 - c) ; rcos6 - x* (4.6b)

(i.e., y - y* + 2,2(2 - ) ; x - x*]. For region 3 it is not advantageous

to transfer the coordinates system. We, therefore, take,

1 d *12/* + - dh3* (4.6c)-- (r*ves*) + 1 - 0 ; (V63)/ 0 r-
r* dr* dr*

The nondimensional equations for region 2 are found from (4.5) and

(3.1) to be,

8 -- a--+ - 0 (4.7a)
x* ay*

av2* 3h2*

2 *8V2+ U2 82 (4.7b)
8x* ay*

a
- (h2*u2*) - 0 (4.7c)

where we have taken into account that v2* - 0 because of symmetry. Note,

however, that, as mentioned before, the terms containing av2*/ax* are not

necessarily zero even though v2* - 0. The boundary conditions (3.3 - 3.6)

take the form,

hi* - 0 ; y* - -2(2)1(3 - C - Y1 ) (4.8a)

hj* - ; y* - -2 (2 )1(2 - c) (4.8b)

uj' M v1* a 0 ; y* - -2(2)1(2 - ) (4.8c)
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-* 2(2)1(3 - - ) - [u * 2(2 )1( 1 + s

(U2 *)2 + 2h12 *] -2(2)1P 3 - *)2 + 2h3 *]y - 2 (2 )1 (4.10a)

112* - 1 ; y* - -2(2)1(2 - 0) (4.10b)

U2 aV 2* M 0 ; y* - -2(2)1(2 - 0) (4.10c)

113* - 0 ; y* - 2(2)1(1 + YO) (4.11)

Similarly, the constraints (3.7) and (3.14) can be expressed as,

-2(2)1(2 - 09 -2(2)1 2( 2 )1(1 + YO)J u1.*h,1*dy + J U2*h2*dy* + J u3*'h3*dy* 0 (4.12)

-2213- c -YO) -2(2)1(2 - 92(2)1

and,

f [hI *Ux*) -* + (hl*)2 /2]y*dy* + f [hx*U2* ) - *2* + (h2*)2/2] y*dy*

-2(2)1(3 - c - yj) -2 (2 )1(2 - 0)

-2(21(1+ ys)

+ fJ [13 *(U 3 * )2 - *3* + (h3* )2/2] y*dy* = 0

(4.13) a
c) Perturbation expansion: As in Nof (1986a), the expansion in c is not

straightforward for two reasons. First, as already pointed out, the basic

state (v 0) contains speeds of 0(l). Secondly, the choice for the origin
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of the coordinates system implies that the basic flow is a function of C.

3 Recall that the choice of the origin for the coordinate system was "im-

posed" by the use of the integrated torque. If the origin were in any

3 other location, then the integrated torque associated with the pressure

along BCD would have remained nonzero thus making it impossible to connect

the three regions. It will become clear shortly that while these condi-

tions make the expansion somewhat more involved they do not present any

fundamental difficulty.

It is assumed that, for regions 1 and 3, the expansion has the form,

ve 2+€e(1) (2)
-i/2 + 6,61 + C 2 e1 + . . (4.14a)

I1  - (-)2/8 + 6 (1) +Cf (2)

f - + 621( + . . . (4.14b)

Y Y1 (1) + 2 Y1 (2) + (4.14c)

ve3* w -r*/2 + cve3  + 2ve3 + (4.15a)

(r*)2/8 + ch3  + C h3  + . (4.15b)

Y3+ . , (4.15c)

where (4.3) and (4.5) have been used to express the terms corresponding to

the basic state. Note that, as before, the tilde C) denotes association

with a polar coordinates system whose origin is located at the center of

the eddy instead of the center of the cylinder (x* - y* - 0). The rela-

tionship between r and x* and y* is easily found from (4.6b) to be,
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S (X*) 2 + [y* + 2(2 (2 - } (4.15d) "

As in Nof (1986a), the expansions (4.14 - 4.15) take into account that 3
the width of the flow around the cylinder (y3 ) is O(cRd) because this is

also the width of the flow blocked by the cylinder (i.e., section BB',

Fig. 6b). In other words, the width of the flow in region 3 is of the

order of the distance that the cylinder is "pushed" into the eddy. The

depth near the cylinder boundary in region 3 must be of the same order as

the depth at B because the blocked transport is 0(g'hB2/2f) and the trans-

port at cross-section 3 is 0(g'h3w
2/2f) [where h3w is the depth near the

wall at region 31. Namely, a Taylor series expansion (around the edge of

the undisturbed eddy) for the depth at B shows that hB - O(efi) and, conse-

quently, hsw - O(cfi). These scales are consistent with the scales that one

finds along the immediate vicinity of the rim of any lens-like eddy.

As mentioned, in region 2 the flow is not necessarily radially symmet-

ric so that the expansion is,

u -*= [y* + 2(2)1 (2 - )]/2 + CU2(1)+ 2U2 (2 ) + . (4.16a)

- +x*/2 + cv2  + £2V( 2) + . . . (4.16b)

h2- - [y* + 2(2) (2 - c) 18 + ch2
(  + c2h 2(

2 ) + . . . (4.16c)

Recall now that because of our choice for the origin of (x*, y*), our basic

state contains c when it is expressed in terms of x* and y*. While this

does not create any difficulties, it is perhaps more appropriate to express

(4.16a) and (4.16c) in the form,
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I

o,*- [y+ (2)]+ ( 2(') (2)1) + +2 U. .(. (4.17a)

2

-2 (y- + 4(2)1) /8 + C(h2(') + y*(2)1/2) + C2 (h2 (
2 ) - ). . . (4.17b)I

In this form, the power series are expressed in a way that clearly sepa-

5 rates the zeroth-order terms from the remaining terms. Hereafter, the

first terms in (4.17) will be referred to as u2 (0)and h2  , respectively.

5. Solution for the padlock flow

a) General solution for reion 1: Substitution of (4.14) into (4.6) and

elimination of the terms corresponding to the basic state3 gives the O(c)

equation,

1d

- i 9 1 -0(51

The solution is: =01  A1 /r, where A, is an unknown constant. Since

e (1) cannot approach infinity at the center of the vortex ( 0 = 0) we find

that,
~(1)

e =A, - 0 (5.2)

3Recall that the zeroth-order state was defined as a zero potential
vorticity vortex with a depth identical to the maximum padlock flow depth.
It is centered where the orbital speed of the padlock flow vanishes.
Namely, when e - 0, the basic vortex is kissing the cylinder.

r -25-



and fi~)- B, where B, in a constant to be determined. At the center of a

the vortex the depth 1i must match the undisturbed depth (fi - 1) because of N

our definition of the basic state. Hence, we have B, - 0 and

fie - 0 (5. 3a)

Also, with the aid of (4.8a) one obtains,

( 0 (5.3b)5

It is a simple matter to show that, in a similar fashion to the first-order3

solution, the second-order solution in region 2 also vanishes, i.e.,

(2)~- (2) (2)
fi' Vol Y 0 .(5.3c)

b) Simplified eacuations for region 2: From (4.16) and (4.7) one finds

the 0(c) equations,

- - - (5.4a)
ax* ay*

U2(0) '2 + 2()/ =- (5.4b)
ax* ay*

a [(I - (y*)2/8Ju2(') + h2(1)/2] 0 (5.4c)
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I The 0(C2 ) balances are,

p~~~a 8;_____________ 1 -(5.5a)

solution for region 3: By substituting (4.15) into (4.6c) and

Seliminating the basic state, one obtains the equations,

u ( ) Uv(  ) + cr*v (2)1 +0(c 3 ) _ 0 (5.7)

3 r* d r* 1r I38

0-M)* dh3 (1) (5.8)

V dr*

It will become clear shortly that the term containing feio2) is actually

0(c) and not 0(c2 ) so that it must be included in the 0(c) balance.

To simplify the structure of (5.7), it is recalled that the first-

Gorder flow (in region 3) takes place within a distance of 0(c) from the

cylinder surface so that, as in Nof (1986a), one may introduce the trans-

formation,

r* 2(2)1(1 + c&*) where 0(l)

-27-
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In term of this now variable, (5.7) is,

1 dv + C dv (1) (2) + 0(e2) -03

2(2)~ d&* 12(2) d*

which shows that dves(')/d&* - 0. This and (5.8) give, I

y8e() '- Bs h3 (1) -A3  (5.9) 3
where B. and As are constants to be determined from the boundary condi-M

tions. Substitution of (5.9), (4.15), (5.2). (5.3) and (4.14) into the

polar version of the boundary conditions (4.9) and (4.11) gives,

i- 2(2)i(1 + cylFlr*/2 - 2(2)1 ( 1+ (5.10 )

[1 - (r* )2/8] + cAs 0 ; r* - 2(20 ( 1 + CY 3() (5.11)

which, with the aid of (5.3b), yields,

B3 - (2)fY3( 1 ) A, -a 31 (5.12)

By now, most of the first-order solution for region 3 has been derived; the

only part that is still missing is Y 3 . As we shall see, there are two

equations and a boundary condition (4.10a) which we have not used yet. The

latter immediately gives,

(2) U2  -h 2  at y* -2(2)~ (5.13)
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5 d) The torcue constraint: Since (h3*) - 00y3) - 0(C) it follows that the

third integral in (4.13) is, at the most, Q(gZ). With the aid of the

I transformation j a y* + 2000i( - 0) and (5.3b), the approximate form of

£ (4.13) (Up to 0(C2)] can be rewritten as,

*0 J fi [jIjj - #1 + (fil)2/2] [-2(2)1(2 - Od

+ J [V 2 2  - i2 + 6f 2 )2/ 2] [~- 2(2)1(2 - c)]dj + O(C2) . 0 (5.14)

where, as before, the tilde C) above the variables u, * and h indicates
that they are expressed in terms of i. i. Substitution of (4.14), (4.17),

S (5.2) and (5.3) into (5.14) and elimination of the basic state gives,

S i2*52*"21 + (a2 (0) 2()2 - *2(' + fi O2 (' )]( - 421d

*0
+ [ 0 (a2())2 ((1) ) h /2] (y- - 4( ) + -(2 0

I ~ ~2(2)1 5.5
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This equation can be further simplified by noting that the second integral

is associated with the area where fi2
( ) - 0(c), and i2 (

0
) 

- 0(C2 ) so that

it is, at the most, of 0(C2). Hence, to 0(c), (5.15) reduces to, I

U2 ( )(12) + (a2 (0) ) 
2fi2 (1) - *2(1 + 1i2  fi 2 ](y - 4(2)1)dj

Ji2()

0 1
+ 0(c2) =O

which, in terms of the 
x*, y* coordinates, is,

-2(2)1

[2h2(
0)u2 (

0 )u2 (I) + (u2())
2 h2 (1) - *2( + h2

( ° h2( I]Y*dy* + O(C2 ) - 00
(5.16)

A solution satisfying (5.16), the boundary condition (5.13) and the govern-

ing equations (5.4a-c) is simply,

U2() h2 2(1) 0 (5.17)

This leaves only one unknown, s( ) , which will be computed from the O(c 2 )

balances.

The fact that the situation displayed in Fig. 5 is impossible can now

be shown even without computing the specific value of y3  . To show this

suppose, temporarily, that the situation shown in Fig. 5 is possible. Then

application of the Bernoulli principle to the streamline associated with

eddy edge implies that since the depth perturbation at B is 0(c), the

perturbed velocity along the edge must also be of 0(c). Relation (5.17)
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I

Ishows, however, that this is impossible indicating that the streamline
associated with the edge cannot pass through point B.

3 e) The second order balances: Two comments should be made before

discussing the 0(C2) equations. The first is that the O(c) continuity

I equation is automatically satisfied by the 0(c) solution that we have

3 derived for region 2. The second is that although the O(C 2) continuity

constraint involves the 0(e) variables in region 3, it also involves the

5 O(c 2) variables in region 2. In other words, as in Nof (1986a), it is

necessary to find the 0(02 ) solution in regions I and 2 in order to obtain

I the 0(e) solution in region 3.

In view of this, we shall consider now the O(C 2) potential vorticity

equation, the momentum balance, and the local continuity balance for

5 region 2 [equations (5.5a-c)] which have the solution,

u2 (2) = 6y8= m ; h 2 ( -6y 2/2 (5.18)

where 6 is a constant to be determined.
(2) (2)

This solution satisfies the boundary 
condition u2  = V 2  =

h2 ( 0 at x* - y* - 0 as required. Together with the first and

Isecond-order solutions for the various regions and the second-order
solution for region 1 [relation (5.3c)], the second-order balance of the

integrated continuity equation gives,

1 + 26 - (,() ) 2  (5.19a)

Similarly, the second-order balance of the integrated torque (4.13) yields,

pq -31-
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3.4676 - 3 + G())3 0 .(5.19b)

Equations (5.19a) and (5.19b) have the solution,

Y(1) - 1.316 ; 6 - 0.366 (5.19c)

and this completes the derivation of the solution.

f) The complet, solution: The total solution for region 1 is,

-l j/2 + 0(0~)

h1* -[ - (j)2/8] + 0(e')

vj* 0 0(5.20a)

w 0 + 0(C3)

In terms of the non-transformed coordinates [see (4.6b)], it takes the form,

Uj*- y*+ 44)2- 42-c + O(cs)

h -=1 - (y* + 442)'/8 1+ c(y* + 442)42/2 - C2 + 0(C') i (5.20b)

v 1* O M ; y, -0 O (C3)j

where, as pointed out earlier, the terms of 0(c) in (5.20b) are not actual

dynamical perturbations but rather a result of our choice for the origin of

the coordinate system.

Similarly, the solution for region 2 is,

-2 j'/2 + 0.366 C2 + 0(E3))

hj 1 (j)2/8] 0.183( )2E 2 +0(E 3)(52c
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I
which in the (x*,Y*) coordinates can be written as,

u2* - (y* + 442)/2 - 42-c + 0.366(y* + 442)C 2 + O(cs)

i h2* [1 - (y* + 442)2/8 ] + c y* + 442>12/2

I - [ + do,, <o,,(5.20d)

v- [.183(y* + 442)2 + 1] C2 + (C')

For region 3, the solution 
is,

US* -y*/2 + 1.861c + 0(C 2 )

h3* - 1 - (y*)2/8 + 2.632c + O(c2 )

l3* - 1.316c + O(C2 ) (5.21)

v3* M 0

Note that since y,*, the width of the intrusion around the cylinder, is

if not zero for c # 0 there must always be a flow around the cylinder as

stated before. Recall that the solution in regions I and 2 had to be

carried to o(C2 ) because otherwise the continuity and torque constraints

would not have been sufficient to close the problem. The flow in region 2

remains unaltered to 0(c); the portion of the eddy flux that is "blocked"

5 by the cylinder is simply diverted from its original position to the

perimeter of the solid cylinder. The solution demonstrates that, to matter

how small the penetration of the cylinder into the vortex, a current

5engulfing the cylinder must always be present.

5 g) Impossibility of rotational motion around the solid cylinder: It is

known from the theory of point vortices in potential flow that, when a

Ipoint vortex is placed near a solid wall, a translatory motion of the whole
vortex is established. One can, therefore, ask whether or not the padlock

flow can rotate around the solid cylinder. Even though we have not stated

it specifically, have effectively assumed in that
itseiialwe hvefetelasudinour foregoing analysis ta
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such a situation is impossible. Namely, we have considered only flows U
which are stationary.

It is a simple matter to show mathematically that a rotational motion

of the whole padlock flow cannot be established because of the impossibili-

ty of balancing the centrifugal force; this will be demonstrated in the

following analysis. Before doing so, however, it is useful to consider the

cause of the migratory motion in the linear homogenous case (i.e., a

barotropic point vortex situated near a wall). The cause can easily be

traced to the fact that the mass flux is initially not balanced. Specifi-

cally, suppose that, at t - 0, a vortex is suddenly cut by an infinitely

long plate which represents a wall; at t > 0 the plate is situated at, say, "

distance w from the eddy center. Under such conditions, the initial mass

flux between the vortex center and the wall is smaller than the vortex flux

away from the wall. Since vorticity is conserved, the distance between the

eddy center and the wall cannot accommodate the larger undisturbed eddy

flux.

As a result, the whole vortex starts migrating along the wall. The

drift adds to the absolute speed (and, hence, to the mass flux) in the

region between the center and the wall and subtracts from the speed in the

area between the center and the region away from the wall. This is done in

such a way that, when the eddy is migrating, the mass flux between the

center and the wall is equal to the flux between the center and the region

away from the wall. Consequently, there is no longer mass imbalance. In

our case (i.e., the padlock flow with vanishing depth along the edge) a

similar cause for a migration does not exist, i.e., because of the intru-

sions there is no imbalance in the mass flux. In view of this, it is

expected that there will not be any rotational migration in our case.
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We shall now show, in a more quantitative fashion, that there is I
indeed no rotational motion. To show this, suppose, temporarily, that

there is a steady rotational translation so that the whole padlock flow

(shown in Fig. 6b) rotates counterclockwise around the center of the solid

cylinder at an angular speed w. Under such conditions, the flow in a

coordinate system rotating at a rate w appears to be steady and the govern-

ing momentum equations are (see e.g., Holton, 1972),

au au ., 8h(52a

u + - (f + 2)v - 5.22a)

8v av .,
uL + v L + (f + 2w)u -w 2y M--y (5.22b)

where u and v are the speeds in the rotating system. In these equations,

there are two new terms; the first (2wv and 2wu) is associated with a

modification to the Coriolis parameter and the second (W 2x and w2y) is

related to the centrifugal force.

By integrating (5.22b) over the whole volume of the padlock flow,

taking into account the fact that the area is not a simply connected region

and the known properties of line and surface integrals, one ultimately

finds,

L ~h2 dx -W2f hydxdy (5.23)

where the term on the left hand side is a clockwise integration around the

solid cylinder.

The term on the right hand side of (5.23) represents the centrifugal

force which is, of course, directed away from the center of the solid
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cylinder [i.e., in the negative y direction (Fig. 6b)]. The term on the 3
left, on the other hand, represents the pressure exerted by the cylinder on

the padlock.flow. Intuitively, one would expect the fluid pressure to be

high in the region near the eddy (i.e. in the vicinity of point B in

Fig. 6b) and low in the region away from the eddy (i.e., near point D).

Consequently, the total integrated pressure on the cylinder will be

directed at the positive y direction; the associated integrated pressure on

the padlock flow will be directed in the opposite sense (i.e., the negative

y direction). The two terms in (5.23) are, therefore, directed in the same

sense (i.e., the negative y direction) and cannot balance each other.

Hence, we conclude that there is no force to balance the centrifugal force

induced by the migratory motion and, consequently, there will not be any

rotation around the cylinder.

h) Relationship between the final flow and the initial state: The

detailed structure of the initial state depends, of course, on the way that

the padlock flow is established (see Section 3a). Suppose, for a moment,

that the padlock flow was formed by forcing the solid cylinder into a

vortex. Since the padlock flow has zero potential vorticity and we saw

earlier that potential vorticity is altered during the transient intrusion

process, the vortex which was originally present prior to the forcing of

the cylinder had potential vorticity different from zero. As mentioned,

the value of this "initial" potential vorticity is not important for vur

analysis because we did not intend to solve the time-dependent problem. We

assumed, however, that there exists an initial state which leads to a zero

potential vorticity padlock flow. By considering the fact that the total -

volume of the fluid is conserved during the transient adjustment process, .
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I one finds that, a) the central depth of the original vortex must have been

5 ~O( 2fi) higher than the maximum final depth (fi), and b) the original radias

was O(C2Rd) larger than the final radius in region 1.

I

1 6. General ceinnts

Before discussing the application of our results to actual merging in

the ocean, it is appropriate to comment on the "replacement" of one of the

interacting eddies by a solid cylinder. An obvious similarity between a

* colliding eddy and a colliding cylinder is that both features are expected

to exert a pressure on the eddy as they collide with it, and both features

have similar geometry in the x, y plane. As we saw earlier, the exerted

pressure is the key to the merging process and, therefore, it is believed

that a solid cylinder provides an adequate "analog."

However, there are also some important differences between the solid

cylinder and an actual eddy. For example, although both the actual eddy

and the solid cylinder are subject to pressure forces, the former can

adjust itself to the surrounding pressure, whereas the latter remains

unaltered. In addition, as pointed out earlier, the actual eddy is drained

via the intrusions so that a steady state is not reached before a complete

5 merging is achieved.

While we should be on guard against oversimplified models (such as

this one may seem, at first, to be), attacking the complete merging problem

analytically appears to be hopeless. Even numerical integrations cannot

provide the desired solution because of the difficulty in handling fronts

(h - 0). Some simplifications are, therefore, necessary and examination of
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the cylinder-eddy interaction is useful for understanding the basic pro-

cesses in question. Namely, the results of our analytical study pinpoint

the effects which one should look for in more complicated and more realis-

tic models. For example, laboratory experiments appear to be a natural

tool for examining the complete problem. The results of such a study

support the present findings and are reported in Nof and Simon (1986).

As far as the application of our general merging process to

Cresswell's (1982) study is concerned, it appears that the essential

dynamics may be similar. Because of the simplifications involved, a

detailed quantitative comparison is, obviously, impossible. However, the

fact that our model suggests a mechanism for eddy merging is, of course, in

agreement with Cresswell's observations. The time scale for merging

irelation (2.2) which gives - 30 days for c - 0.1 and f - 10"' sec " 1 ] is

also appropriate even though it is difficult to say what the actual value

of e should be.

A potentially serious difference between Cresswell's observations and

the present study is the fact that Cresswell's eddies were with unequal

densities whereas our model addresses eddies with identical densities. It

is easy to see, however, that such a difference is not major because all

that it implies is that the mean position of the intrusions along the rims

will not be taking place on the same level. Instead, the mean position of

the intrusions will take place on different levels as shown schematically

in Fig. 9. The major cause of the merging - the establishment of a mutual

boundary with a nonzero vanishing depth - is present in both the collision

of eddies with equal densities and the collision of eddies with unequal

densities. The laboratory experiments of Nof and Simon (1986) on eddies

with unequal density support these considerations.
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I An additional aspect of Cresswell's study that is not present in our

5 study is the observation of a clockwise migration of the entire eddies

(Fig. 1). It is difficult to say what the causes of such an effect could

5 be but it might be a result of the transient merging process which we have

not studied in detail.

I
7. Smary

A conceptual model for the merging of two isolated lens-like eddies

has been developed with the assumptions that: i) the eddies are embedded

I in an infinitely deep barotropic fluid; ii) with the exception of shock

3 waves which are presumed to be present during the transient merging pro-

cess, all motions are frictionless and hydrostatic.

5Our attention has been focused on two lens-like eddies (with equal
densities) which are pushed against each other by a mean flow that relaxes

after the eddies are in contact. It is argued that the establishment of a

3"figure eight" structure (associated with a mutual boundary with a nonzero
depth) forces the generation of "tentacles" and "arms." These features

correspond to intrusions along the eddies' edges; they result from the fact

that particles along the peripheries do not have sufficient energy to rise

to the mutual nonzero depth (Fig. 2). The establishment of tentacles

gcauses the eddies to wrap around each other (Fig. 3). As time goes on, the

tentacles become longer and longer so that they effectively "drain" the

3 vortices. Ultimately, a single vortex corresponding to two adjacent

spirals is formed (Fig. 4).

While the details of the above process can be easily described in a

qualitative manner, it is impossible to prove the complete process
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analytically because it is both nonlinear and three-dimensional (x, y, t). £
It is, however, possible to prove analytically that the establishment of

tentacles is inevitable. To show this, we have conceptually replaced one

of the interacting vortices by a solid cylinder (Figs. 5 and 6). This 3
simplification removes the time dependency from the problem because there

is now only one tentacle which, upon engulfing the cylinder, forms a steady

"padlock" flow. Using a constraint associated with the conservation of

torque (i.e., moment of momentum) and a perturbation scheme, we have

constructed the detailed solution even though the simplified problem is

nonlinear.

With the aid of the above model, it has been shown that two lens-like

eddies which are compressed against each other will merge within the period
s/2f)-

- O(C f0 (where e is the relative distance that each vortex is

squeezed]. It is argued that during the merging the potential vorticity of

the vortices is altered via the action of shock waves near the nose of the

tentacles. This is based on: a) several studies [e.g., Griffiths (1986)]

which have shown that transient intrusions contain breaking waves or shocks

and b) a recent study (Nof, 1986b) which illustrated that shock waves cause

major alterations in the potential vorticity. The details of the potential

vorticity alteration by the action of shock waves in the intrusion is quite

complicated and is beyond the scope of this study; it will be the focus of

a future investigation.

Because of the difficulties involved in analytically (or numerically)

analyzing the complete merging process, laboratory experiments are a

natural extension of the present investigation. One such study is the

laboratory experiment of Nof and Simon (1986) where the coalescence process

has been examined in detail. For a comprehensive description the reader is
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I referred to the above article but it is worth pointing out here that the

laboratory experiments support the contention that merging takes place via

the establishment of tentacles, and that potential vorticity is indeed

altered during the merging.

I
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APPENDIX I
List of Symbols

A,, B, Integration constants associated with (5.1) 3
A3, B3 Integration constants associated with (5.7) and (5.8).

Their relationship to y ( ) is given by (5.12).

b Radius of eddy for energy calculations (Section 1).

E Total energy (kinetic plus potential).

f The Coriolis parameter.

9' "Reduced gravity" (gAp/p where g is the gravitational

acceleration and Ap is the density difference between the

layers).

fi Maximum depth of vortex (i.e., depth at the point of no

speed); it is also the maximum depth of the padlock flow at

point A.

hB  Depth at point B (Fig. 2).

h* Nondimensional depth (h/Wf).

i, f Section 2 - subscripts which denote the initial and final

state (respectively). In Section 3, "i" (1, 2, 3) denotes

association with various regions (3.1).

Q Volume of vortex.

r Radius in polar coordinates whose origin is located at the

center of the solid cylinder.
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I Rd Deformation radius ($,)i/f.

Ua In Section 3 - radius of solid cylinder (Fig. 6b); in

Section 4 it is shown that, for our case, r0 is also the

radius of the undisturbed vortex, 2(2g'fi)i.

r* Nondimensional radius in a polar coordinates system with an

origin at the center of the cylinder.

U r, e Nondimensional radius and angle in a polar coordinate system

whose origin is located at the center of the undisturbed

vortex (i.e., center of padlock flow).

3 tm Merging time.

uA. uB Speed along the x axis (i.e., in a Cartesian coordinates)

for points A and B (Fig. 2).

I u, v Speeds in Cartesian coordinates whose origin is located at

the center of the solid cylinder (Fig. 6b).

u*, v* Nondimensional speeds in Cartesian coordinates whose origin

3 is located at the center of the solid cylinder (Fig. 6b).

3u (°  v °) Velocity and depth (in Cartesian coordinates located at the

h(  of the solid cylinder) of the undisturbed vortex.

a(0) (0) The undisturbed velocity and depth in a Cartesian coordinate

fi(0) system located at the center of the undisturbed vortex.

u(1), v( 1), First and second-order perturbations to the basic flow (in.

h u Cartesian coordinates located at the center of the solid

v (2) (2) cylinder).

U
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vei Initial orbital speed in polar coordinates whose origin is I
situated at the center of the vortex.

vet Nondimensional orbital speed and depth in a polar

coordinates whose origin is located at the center of the 3
undisturbed vortex.

w The distance between the center of a point vortex and a wall

(Section 5).

I
x, y, t Space and time coordinates in a Cartesian coordinates whose

origin is situated at the center of the solid cylinder. 5
x, y Space in a Cartesian coordinates located at the center of

the undisturbed vortex (point A, Fig. 6b). It is related to

x, y by, y - j242 (2 - ) ; x - x.

x*, y* Nondimensional Cartesian coordinates in a system whose

origin is situated at the center of the solid cylinder.

a An integration constant associated with the solution of

(4.1).

Y1 Distance between the edge of the padlock flow (in region 1)

and the edge of the undisturbed vortex (nondimensionalized

by 24 2Rd).

Y3 Distance between the edge of the intrusion (in region 3) and

the surface of the solid cylinder (nondimensionalized by

24 2Rd).

A nondimensional coefficient associated with the second-

order flow in region 2. It is found to be equal to 0.366. -
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I C In Section 2 - the distance that each vortex is "pushed"

into the other (Fig. 2); in Section 3 - the distance between

the edge of the undisturbed vortex and the edge of the

cylinder (Fig. 6b). Note that the undisturbed vortex is

3 defined as a zero potential vorticity lens which is aligned

with the center and depth of the padlock flow (i.e., it has3 the same center and depth as the padlock flow).

3 4, Stream function.

Nondimensional stream function.

W The rate at which the padlock flow rotates around the solid

3cylinder. In Section 5 it is shown that it is zero.
Integration in a counterclockwise (clockwise) manner along a

closed curve.

-
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3Side view (before collision)

3mutual
boundary

I Side view (immediately after collision)

vortexex

Top view (immediately after collision)

U

Figure 2. Schematic diagram of the interaction of two isolated

lens-like eddies. A side view of the eddies prior to any
contact is shown on top. The middle and lower panels
display the side and top views of two eddies which are
touching each other due to, say, an advective current.
The shape shown in the lower panel is referred to as the
"figure eight" structure.
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intrusion of vortex 1
along the edge of

vortex 2

Klei (

intrusion of vortex 2 along
the edge of vortex 1
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Figure 3. The beginning of the double intrusion along the edges of
the eddies.
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Figure 4b. Schematic diagram of the edge intrusion in the final
~stage. Note that complete merging occurs because theI intrusions "leak" all the fluids of the vortices.
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Figure 5. A schematic diagram of a hypothetical response to a
forced cylinder. The vortex is adjacent to the solid

cylinder which has been slightly forced into it. The
diagram illustrates an adjustment which is confined to
the contact area; as shown in the text such a situation
cannot exist. Instead, there must be an intrusion around

the cylinder (Fig. 6a) so that, ultimately, a "padlock"
flow is established (Fig. 6b).
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Figure 6a. The initial intrusion stage. Ultimately, the intrusion

reattaches itself to the eddy and a steady "padlock" flow

is established.

.I



I y
region®

\, ' / edge of theIundisturbed vortex

.. centered at A

SFigure 6b. Schematic diagram of the "padlock" flow. Point A is
defined as the point at which the speed of the padlock
flow vanishes; fi is the depth at A and the radius of the

~undisturbed vortex (which is centered at A #nd has a
maximum depth fi) is 242Rd [where Rd =(g'fi)=/f].
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Figure 7. An illustration of the integration area for the
computation of the torque associated with the padlock
flow.
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Figure 8. The geometry in the vicinity of region 2.
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intrusion of intrusion of
vortex 2 vortex 1I

Eddies with equal densities

intrusion of intrusion of
vortex 2 vortex I

U

Eddies with unequal densities

i

Figure 9. A cross-section of pairing vortices. The upper panel

shows eddies with identical densities; their merging is

qualitatively displayed in Figs. 3 and 4. The lower
panel displays eddies with unequal densities. While the
merging is generated by the establishment of a mutual
boundary with a nonvanishing depth as in the equal
density cave, the final Pituation is different from that
displayed by Pig. 4a. Here, instead of forming two
adjacent spirals, the lighter vortex is "climbing" on top
of the heavier lens. This is supported by the laboratory
experiments of Nof and Simon (1986).
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