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Joseph Oliger
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1. Introduction

Recent and projected developments in supercomputers, numerical grid gen-
eration techniques and computational algorithms for the compressible Euler and
Navier-Stokes equations portend a major revolution in the manner, pace, cost of
design and the resulting performance of aerodynamic systems. To realize these po-
tential benefits, certain closing developments in computational technique must be
made in order to effect a highly accurate, reliable, efficient and productive simula-
tion environment for aerodynamic design analysis.

A primary need of the developments is to achieve the capability for a user to
easily, rapidly and accurately perform flowfield calculations among problems of dis-
parate and realistically complex geometries. The natural approach to realizing this
objective with comparatively straightforward extensions of existing finite difference
computational technology is through the use of systems of quadrilateral patched
meshes.

Such systems can be either/both composite (joined) or overset (disjoint). In
the former case adjacent patches share a common boundary, or at least parallel
boundaries in the case of mesh patch overlap for purposes of applying numerical
boundary conditions. With composite meshes, patch boundaries are piecewise fitted
to segments of physical or computational boundaries or embedded flow structures.
As shown by Lombard, et al1, composite mesh systems, that may have numerically
useful properties of geometric continuity across patch boundaries, admit topolog-
ically singular global meshes that have the capability to connect computational
regions of great (really any) geometric complexity. However, situations exist where
multiple mesh topologies, each naturally related to some different piece of geome-
try or flow structure, offer greater flexibility and accuracy than composite meshing
alone. Examples involve multiple bodies that may have relative motion or weak
shocks that bear little geometric relationship to boundaries of the flow domain. In
such cases systems of disparately oriented and at least partially overset grids as
proposed by Berger and Oliger 2 allow arbitrarily high resolution of all features of
the flowfield.

To make efficient, productive use of patched meshing strategies requires a body
of new computational tools and methodology that are the objectives of the present
research. The needed factors are: (1) a simple procedure for generating patched
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computational meshes with freedom of point and gradient specification on all patch
boundaries; (2) improved upwind algorithm/numerical boundary condition proce-
dures for semi-autonomous implicit but unconditionally stable conservative coupling
of solutions on a system of multiple patched meshes; and (3) computer graphics,
particularly a simple algorithm for constructing contour plots on systems of over-
set patched meshes. The glue that is to bind these tools together in a simulation
requiring minimum human intervention to adapt to new configurations is a flexible
parameter controlled multiple mesh data structure. An important objective of the
program is to test the evolving techniques in appropriate problems.

2. Research Accomplishments

This annual report, the first under contract F49620-85-C-0081, summarizes the
research accomplishments of the first three years of a continuing program. In the
first year of the program the emphasis was placed on the most crucial and challeng-
ing objectives - patched grid generation and robust upwind algorithm/boundary
procedures for rapid relaxation on multiple meshes. The first year's effort3 sufficed
to create some needed tools of algebraic grid generation and to establish an opera-
tionally explicit but unconditionally stable upwind algorithm/numerical boundary
condition procedure for systems of patched meshes. The techniques were tested in
comparatively simple problems.

In the second year's effort 4 the techniques were implemented in 2-D and tested
against internal aerodynamics problems of moderate geometric complexity. The
upwind algorithm was extended from two to three spatial dimensions. A simple,
effective algorithm for contour plotting on domains covered by multiple patched
meshes was created to exhibit results.

In the third year the 3-D upwind implicit relaxation algorithm was implemented
on a system of composite patched grids. The techniques in two and three space
dimensions were tested against realistic internal/external aerodynamics problems
of challenging geometric complexity. Within the framework of one of the problems,
a continuing study of alternate composite and overset patched meshing topologies
demonstrated a strategy of superior balance in mesh point utilization for overall
resolution of flow structures on the domain.

Also in the third year, new implicit TVD schemes were constructed to improve
the nonlinear stability of second and third order accurate spatial differencing. One
of the latter was implemented in a consistent second order method in both time and
space and applied in an unsteady strong shock diffraction problem around a model
hypersonic space transportation vehicle (AOTV).

Algebraic Grid Generation

The concept of patched meshing in which complex domains are broken up into
many geometrically regular and topologically rectangular subdomains leads natu-
rally to the use of efficient algebraic techniques for the construction of the individual
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mesh patches. To obtain the desired smoothness properties over the global mesh
in the vicinity of patch boundaries, a technique that permits specification of point
distribution and gradient on all boundaries was devised. The technique - termed
generalized transfinite interpolation 5 - makes use of a parameterized general cubic
polynomial for the coordinate curves. Regularity of the mesh is obtained by em-
ploying continuous distributions of the parameters of the curves within judiciously
chosen bounds based on analysis. Stretching functions such as that of VInokur's are
used to distribute points and blending functions are used to distribute parameters
of the curves between lateral boundaries.

A novel feature of the technique is the introduction of the comner singularity
from analysis to govern distribution of points and parameters in the vicinity of
boundary slope singularities. At such points, the method thus obtains the desired
properties of mesh smoothness to the interior. A global mesh solution obtained with
the method for a backward step problem is shown in Figure 1. Here the solution
was generated in two patches, one containing the exterior corner and the other the
interior corner. The solution was matched analytically at the patch interface.

Early in the second year, in the process of attempting to apply the generalized
transfinite interpolation technique in a variety of 2-D problems, it became evident
the method was too sensitive to parameter selection among too many options, was
confusing and ultimately required too much artistry to meet the objectives of sim-
plicity and user friendliness set for the products of the research. Further, the lack
of an analytical solution to corner problems blocked the straightforward extention.
of the technique to 3-D.

With some reflection it became evident to us that the difficulty lay in trying
to accomplish too much in a single step process. Rather, borrowing the tools of
the algebraic technique and redefining the process in multiple steps with interactive
computer graphics sets, we could define a straightforward procedure to meet the
desired ends.

The approach that has been implemented is in the realm of two boundary
methods, in that one pair of opposite sides of a patch is regarded as prescribed and
often includes a portion of a physical boundary. The other pair of sides is formed
of the left and right limiting members of the family of generalized cubic coordinate
curves joining the initially given two boundaries. In either 2-D or 3-D the general
cubic coordinate curve has the simple form

= r. +(r~- r)f (U) + 9.1g(u) + a2 (U)(1

where
f(U) = u2 (3 - 2u)

g(U) =U(1 _-)

h(u) u u2 (U -1
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Equation (1) is a herrnite interpolation of value (1:) and gradient (g) on the two
boundaries and is parameterized in terms of u which varies from zero to unity. The
scalings of SL and gI influence the shape (curvature) of the curve between any pair
of end points. The specification of a discrete set of u values using a generalized
distribution function such as that of reference 5 defines the nodal intersections with
the other family of coordinate curves.

In our implementation, the left and right limiting (lateral bounding) coordinate
curves are developed interactively on a graphics terminal or workstation to have
the desired configurations. The parameters of these lateral bounding curves are
then blended with polynomial weighting functions to describe the general cubic
coordinate curve over the intervening also discretized interval.

The lateral patch boundaries are essentially control devices that specify shape
and distribution to surrounding regions. As such they are placed where needed -

at breaks in body surface geometry and as terminators or transition guides from
regions of strong shape variation to regions of very regular mesh. In fact the mesh
generation problem, particularly for geometries with any substantial complexity, is
a problem of multiple length scales. The purpose of multiple patching is to isolate
regions of comparable scales and on which subdomains the solution is comparatively
regular and can be conveniently fit by simple functions.

Once a primary grid is generated by the technique described above it can be
interactively improved by modifying parameter blending and point distribution in-
cluding point redistribution along the alternate family of coordinate lines implicitly
defined by the nodes on the cubic coordinate curves. The latter operation is in
the spirit, if not the detailed implementation, of a two step generalized transfinite
interpolation.

Another secondary operation that we employ is the modification of coordinate
lines in the vicinity of a boundary to smoothly enforce local normality. The latter
operation like all the procedures has been programmed as a convenient tool requiring
minimal input to apply at a boundary. Finally, a parameterized tension spline that
provides an analytical description of a curve amongst discrete data is a tool that
has proved useful in the latter operation, in effecting redistribution of points along
coordinate curves of either family and for fitting numerically specified boundary
data. In Figures 2 and 3 are shown respectively typical examples of 2-D and 3-D
mesh planes generated with the simplified technique.

Upwind Implicit Relaxation Algorithm/ Boundary Procedures

Under the contract we have devised a new single level operationally explicit
but effectively implicit algorithm for gasdynamics. The algorithm is particularly
appropriate for multiple patch mesh systems because each solution sweep operation
on any patch is decoupled from any other. Thus the method is not only very storage
efficient and simple to program including the coupling at patch boundaries but, also,
can make excellent use of parallel computing in several straightforward ways.
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Previously the Beam-Warming factored implicit algorithm7 with the Baldwin-
Lomax thin layer viscous approximation s has provided the basis for two similar
space marching (PNS) procedures9'10 for the compressible Navier-Stokes equations.
These PNS methods which are highly efficient - requiring half the data storage and
a small fraction of the computer time of two level time dependent methods - have
proven effective for flows 11," 2 with favorable streamwise pressure gradient or with
relatively small adverse pressure gradients. However, in the presence of a strong ad-
verse pressure gradient such as occurs in a wing or fin root regions the contemporary
PNS methods suffer numerical stability problems and may infer streamwise separa-
tion even where separation doesn't occur13 . In such unseparated (perhaps weakly
separated) regions, numerical stability has been maintained at the price of employ-
ing large amounts of artificial viscosity with a resulting loss in predictive accuracy
and knowledge of the actual state of the flow. Where strong streamwise separation
occurs the methods are unstable and cannot proceed. Particularly for the increas-
ingly relevant laminar flow situation that will be encountered at very high altitude
by aerodynamic systems such as orbital transfer vehicles (OTV's) and space shut-
tles, streamwise separation becomes a likely occurrence 14 in compression corners
associated with canopies, pods, flared bodies, wing or fin roots and deflected con-
trol surfaces. Thus a more general technique is needed that is inherently stable for
all types of upstream influence. At a minimum the mixed elliptic-hyperbolic prob-
lem requires global iteration, preferably with type dependent differencing. More
background on this problem area is given in the first annual report 3 .

New Universal Single Level Scheme CSCM-S

The CSCM flux difference eigenvector split upwind implicit method' 5 1 6"1 7 for
the inviscid terms of the compressible Navier-Stokes equations provides the natural
basis for an unconditionally stable space marching technique through regions of
subsonic and streamwise separated flow. In such regions the split method can be
likened to stable marching of each scalar characteristic wave system in the direction
of its associated eigenvalue (simple wave velocity). In supersonic flow, where all
eigenvalues have the same sign, the method automatically becomes equivalent to the
referenced PNS techniques based on the Beam-Warming factored implicit method
with the Baldwin-Lomax thin layer viscous approximation.

Compared to contemporary central difference methods, the CSCM character-
istics based upwind difference approximation with its inherent numerical stability
leads to greatly reduced oscillation and greater accuracy in the presence of captured
discontinuities such as shocks, contacts and physical or computational boundaries.
The correct mathematical domains of dependence that correspond with physical
directions of wave propagation are coupled with well posed characteristic boundary
approximations16 naturally consistent with the interior point scheme. The result is
a faster sorting out of transient disturbances and substantially more rapid conver-
gence to the steady state. The splitting and the associated time dependent implicit
method have been described in detail in references (15) and (17) for quasi 1-D and
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2-D planar or axisymmetric flow.

In the following, we will sketch the differences between the time dependent
method and the new space marching technique which we designate CSCM-S. The
discussion will begin with the quasi 1-D inviscid formulation, present some results
elucidating the properties and performance of the method, then give additional de-
tails entering into multidimensional inviscid and thin layer viscous procedures and
present some 2-D solutions obtained with the new single level scheme in problems
solved previously' 7 with the time dependent method. Lastly N sketch a 3-D im-
plicit method of planes algorithm and give some results for an axisymmetric nozzle
flow over a backward facing step.

Quasi 1-D Formulation

The general jth interior point difference equations for the time dependent
CSCM upwind implicit method for the inviscid advection terms is

(I+A+V+A-A)6q= A+,Aq) _ I - A-Aq) . (2)

where V and A are backward and forward spatial difference operators. Here q is
the conservative dependent variable vector and F is the associated flux vector. In
the notation the interval averaged matrices between node points j and j + 1 are
indexed j. For simplicity, the right hand side of equation (2) is written for the first
order method. Higher order methods in space are given with results in references
15 and 17. In equation (2) the CSCM flux difference splitting is

(A+ + -)Aq AF + + AF- = AF (3a)

with
A± (VTI±T -'-)X A±= (3b)

and 1
2 (1 sgn(A)) (3c)

exhibiting the similarity transformation that diagonalizes the constructed1 5' 17 flux
difference Jacobian A. Here A is a diagonal matrix of the interval averaged eigen-
values that through the truth function diagonal matrices I ± make the decisions
about directions of characteristic wave propagation and whether or not to send
signal to the solution point. Thus in equation (2) the piece of the flux difference
splitting A+Aq)j-1 represents the convection of characteristic wave contributions
in the positive coordinate direction from grid point j - 1 to solution point j and A-,
in the negative direction from j + 1 to j. As the result of incorporating multiplica-
tively the (local) time step (for pseudo time relaxation) and the spatial (divided)
differences in the matrices, the numerical eigenvalues are Courant numbers for the
characteristic waves whose speeds are u, u + c and u - c, with c the sound speed.
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Central to its accurate shock capturing capability, the CSCM conservative flux
difference splitting has the Roe"8 "property U" embodied in equation 3a.

With 6q = q, + - q,, equation (2) defines a two level linearized coupled block
matrix implicit scheme that can be solved by a block tridiagonal procedure. In
reference (17) a new (DDADI) approximately factored alternating sweep bidiagonal
solution procedure for equation (2) is presented that is shown to be very robust
and is operationally explicit, i.e. requires only a decoupled sequence of local block
matrix inversions rather than the solution of the coupled set. For the forward sweep
the bidiagonal solution procedure can be written

(I + A+ - A-)bq*. = RHS +.A+bq*j_ 1  (4)

Fc the linear problem, i.e. constant coefficient case of stability analysis, equation
(4) is equivalent to the single level space marching procedure

(I + -A--)bq*i = X~- i A 3 . (5)

Nonlinearity enters in the single level space marching form (5) in that at each step of
the forward sweep the matrices A+ are averaged between q*j-1 and q' rather than
homogeneously at the old iteration level n. Similarly, a companion backward space
marching sweep that is symmetric to equation (5) and that is intimately related to
the backward sweep of the alternating bidiagonal algorithm of reference (17) is

-_ n+l
(I -X+ - -)6qj -A+Aq*)i- 1 + A-q - A-q n + 1 (6)

The method given by equations (5) and (6) is von Neumann unconditionally sta-
ble for the scalar wave equation. The analysis shows the significance of DDADI
approximate factorization in rendering both the forward and backward sweeps sep-
arately stable regardless of eigenvalue sign. Consequently as the local Courant
number becomes very large, the robust method becomes a very effective (symmetric
Gauss-Seidel) relaxation scheme for the steady equations, a fact which substantially
contributes to the very fast performance that will be demonstrated.

At a right computational boundary on the forward sweep we solve the charac-
teristic boundary point approximation17

+ I+)bq Aq N+N (7)

qn+1 = q; and at a left, on the backward sweep

n -n+1
(A-- A-)ql = A-q - A - q 2 (8)

7



Following the solution of equations (7) and (8) the conservative state vector is
iteratively corrected" to maintain the accuracy of prescribed boundary conditions
while not disrupting the representation of the computed characteristic variables
running to the boundary from the interior. Analysis of a model system with upwind
differenced scalar equations and coupled boundary conditions was related to the
linearized bidiagonal scheme1 7 by Oliger and Lombard1"; the analysis also strongly
supports the numerically confirmed robust stability of the present nonlinear method
for gasdynamics. A useful result of reference 19 that simplifies the procedure of
reference 17 is that on the forward sweep there is no need for a predictor step at
the left boundary J = 1; thus, the solution sweep begins at J =2. Similarly, the
backward sweep begins at J = N - 1.

With the updating at each step, where in equation (6) 6q3 + -q j - it is
clear that the symmetric pair of equations (5) and (6) serve to advance the solution
two pseudo time (iteration) levels; whereas, the linear alternating bidiagonal sweep
algorithm of reference (17) advances the solution only one level. To maintain con-
servation to a very high degree, in single sweep maxching in supersonic zones we
iterate (at least) once locally at each space marching step. The local iteration serves
to make the eigenvectors in the coefficient matrices consistent with the advanced
state and thus provides improved accuracy for the nonlinear system. It appears
effective to do this inner iteration everywhere, i.e. in both subsonic and supersonic
regions, as the number of global iteration steps to convergence with two inner iter-
ations has been found reduced by a factor of three to four. Since the computational
work per two steps is about the same for the single level and two level schemes, and
beyond the fact that one saves a level of storage in the space marching algorithm,
the question arises: Can one get solutions in less computational work through faster
convergence with the nonlinear space marching algorithm?
One Dimensional Results

First, we present results for supersonic flow with no shock in Shubin's diverging
nozzle. In purely supersonic zones, the experience with the present method is that
the solution can be marched accurately in one global iteration, as ought to be the
case. Figure 4 shows the exact solution (in solid line) and the computed result
from the first forward sweep. It is evident that the method correctly predicts
the solution to plotting accuracy in one forward sweep. With subsequent sweeps
the error (the difference between the exact and the computed solution) reduces to
machine accuracy in less than three global iterations. In fact, by increasing (from
two) the number of inner iterations on the solution procedure at each space marching
step, convergence to prescribed accuracy can be guaranteed in one forward sweep.
This is also true of contemporary locally linearized unsplit methods in supersonic
flow.

With the globally iterative nonlinear space marching formulation, early expe-
rience in two quasi 1-D nozzle problems with mixed supersonic-subsonic zones is
that solutions are obtained in roughly an order of magnitude fewer iteration steps

8



than had been required with the previously fast pseudo time dependent technique
and block tridiagonal solving.

The two nozzle problems which are described and solved by Yee, Beam and
Warming2 0 and solved with the CSCM time dependent technique in references (15)
and (16) are Shubin's diverging nozzle flow and Blottner's converging-diverging
nozzle flow. Both problems involve unmatched overpressures at the outflow which
result in internal shock terminated supersonic zones and subsonic outflow. For
the experiments involving flow of mixed type the same initial data given by Yee,
Beam and Warming - a linear interpolation between inflow and outflow values for
effectively exact solutions of the problems - is used that was used previously with
the time dependent approach.

For flows of mixed type, in Figures 5 and 6 respectively, results are shown for
successive forward and backward sweeps for five global iteration steps with Shubin's
and Blottner's nozzle flows. In both cases, the exact solution as given by Yee, Beam
and Warming is shown in solid line and the present computational results solved
on a 51 point mesh, in boxes. Blottner's nozzle flow is shown converged after 10
global iteration steps. There is substantial evidence in other results not shown that
with further work the number of global iterations required to compute flows such
as Blottner's can be reduced by a factor of two, to about five.

In Figure 7, we show a subcritical, i.e. completely subsonic, flow solution
computed in only two global iteration steps for the Blottner nozzle geometry with
different inflow conditions. Here the exact analytical solution derived by Venkata-
pathy is shown in solid line and our computed results in boxes.

The alternating direction sweeps in our method have been derived directly out
of theory for solving the implicit set of difference equations. However, one can see
mechanistically (numerically speaking) that omitting the backward sweep from the
pair and globally iterating only with the forward sweep equation (5) will result in
permitting the influence of a subsonic outflow boundary (or interior disturbance) to
propagate upstream only one grid point per global iteration. In such a case, which
relates to other global iteration methods found in the literature and that also sweep
only in the main flow direction, the rate of convergence is greatly inhibited relative
to symmetric sweeping by a factor of order roughly the number of grid points in the
subsonic zone. Mathematically, this inhibition is the result of the failure to include
in the implicit process the effect of the eigenvectors governing upstream influence
but instead treating these waves explicitly with effective CFL unity.

In Figure 8 we illustrate the progress of the transient solution to the subcritical
nozzle problem after 15 forward sweeps, with the backward sweeps omitted. One
can clearly see that the wave influence of the outflow boundary has progressed only
15 mesh points forward of the outflow boundary. In Figure 9 the transient solution
is shown after 60 steps which is beyond one characteristic transit time (equivalent
to 50 mesh intervals) for the upwind wave to reach the inflow boundary. In Figure

9



10 we show the history of the RMS error in the primitive variables. The solution is
found to converge to roughly the same RMS error after three characteristic times
(150 steps) as the solution obtained with the symmetric alternating sweep sequence
after only 3 global iterations.

Blottner's supercritical nozzle problem which involves subsonic inflow acceler-
ating through a sonic point to a supersonic zone terminated by a shock to subsonic
outflow is the most computationally demanding of the test cases and indicates the
capability for the method to compute simply and consistently over the subsonic
forebody and base regions of blunt bodies in supersonic flow. Thus the need for
separate time dependent codes will be obviated by this new method.

Finally, in Figures 11 and 12, we present the convergence history for the present
nonlinear scheme and the linearized time dependent scheme for completely subsonic
and supersonic nozzle flows. The x-axis shows the number of iterations each scheme
requires to reduce the exact error to five orders of magnitude for various Courant
numbers. It is evident that the present scheme converges extremely fast at all CFL
numbers compared with the method based on the linearized block tridiagonal solver.
Two Dimensional Formulation

For two dimensional flow, assuming a marching coordinate C, inviscid terms

B+V" + B-An (9a)

and
-B - (9b)

are added to the left and right hand sides respectively of both the forward and back-
ward sweep equations (5) and (6). For viscous flow, second centrally differenced,
thin layer viscous terms are also added in the 77 direction as is conventionally prac-
ticed, e.g. Steger 1 . With the terms for the ij cross marching coordinate direction,
the technique now becomes an implicit method of lines. Along each r7 coordinate
line, one can solve the equations coupled with a block tridiagonal procedure. Alter-
natively, a further DDADI bidiagonal approximate factorization can be employed in
the 77 direction and solved either linearly as in reference (17) or nonlinearly as here
in the direction. As shown in the quasi 2-D numerical experiments of reference
(17), DDADI bidiagonal approximate factorization is stable for viscous as well as
inviscid terms. Finally in reference (17) there is a relevant discussion of the reduced
approximate factorization error that attends using DDADI in one or more space
directions.

Two Dimensional Results

We present results for a 450 - 150 axisymmetric transonic nozzle flow previously
studied experimentally by Cuffel, Back and Massier2 2 and computationally by Cline,
Prozan, Serra and Shelton (all referenced in (22)) and ourselves' 7 . In Figure 13 we
show results after 10 steps of an early computation run at a local CFL number of

10



14 with the present first order single level scheme. Except for the addition of an
error correction procedure' s to counter numerical inflow boundary condition drift,
a factor which has improved the present solution in the vicinity of the axis, the
effectively converged results found here are the same as those given for the two
level scheme in reference 17. (As long as the problem has a unique solution, the two
schemes must give equivalent results since the right hand side difference equation
sets, including boundary approximations, are the same.)

For the solution given in Figure 13, we noted a very rapid rate of reduction
in residual, three orders of magnitude in ten steps. This compares with 60 steps
given in reference (17) for the solution obtained with the two level scheme. The
rapid convergence found in this transonic problem for the CSCM-S method with
viscous terms provides the reasonable expectation of similar fast results to be ob-
tained without viscous effects. Thus the method in multidimensions appears to have
attractive potential for an improved transonic Euler solver as well as Navier-Stokes
solver.

Next, we present first order inviscid and viscous results for an inlet problem
shown in Figure 14. The pressure contours for the first order inviscid solutions
are shown in Figure 15. Figure 16 shows the first order viscous results. The vis-
cous computation shows the presence of the leading edge shock. The flow structure
compares very well with the theoretical (for the inviscid case) and other computa-
tional results. In Figure 17, the inviscid and viscous wall pressure are compared
with the exact solution (inviscid). Figure 18 shows the convergence history of the
RMS residual of all the conservative flow variables for the inviscid problem solved
at CFL = 100 with 4 inner iterations at every axial location. For the inviscid case,
only forward marching was carried out and backward marching was omitted. The
solution has converged for practical purposes at the end of the first sweep. The
residual reaches machine accuracy in 10 iterations. In reference 23, we show the
residual reduction versus inner iteration number in single sweep solutions for super-
sonic flow and compare results with contemporary PNS procedures. Finally in work
described in reference 24 we have applied the single level scheme to the solution of
the coupled forebody captured shock layer and massively separated wake flow of a
hypersonic axisymmetric AOTV.

Three Dimensional Method of Planes Algorithm

In reference 23 we presented a symbolic algebra for DDADI approximate fac-
torization and derived single level relaxation schemes. The algebra is based on the
implicit difference stencil of the implicit method. Here we will show how the ap-
proach can be used to derive an symmetric Gauss-Seidel implicit method of planes
relaxation algorithm.

The unfactored three dimensional linearized implicit method can be represented
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by the symbolic matrix expression

B-
I C-

-A +  D - A-
-C+ ;- I

-B+

On the block diagonal the matrix D = I + A+ - A- + B + - B- + C+ - C-. A
once DDADI approximate factorization in the coordinate direction leads to the
expression

B- B-I1 -1c- I C-
-A +  D * * D A-

-C+ J I -C+ I 1-B+  -B+

By analogy with the derivation of the single level scheme for quasi 1-D flow from
DDADI bidiagonal approximate factorizatlon we identify the above expression with
the alternate space marching implicit method of planes algorithm

Forward Sweep

-C +  D C- 6qn = RHS[ qf'+, q
-B +  I

Backward Sweep

-C6+ - D  "-16q, + = RHS[ qn+l , y+1"*+

In the planes the coupled block matrix problem can be further simplified by the
approximate factorization

[-C+, D, C- ]D - 1 [-B + D B-]6q=RHS (lOa)

which leads directly to the block tridiagonal solution sequence

[-C + D C- 6q = RHS (10b)

-B + D B- 16q= D6q* (10c)
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Three Dimensional Results

This 3-D space marching algorithm has been tested against an axisymmetric
viscous flow problem of a supersonic RL-10 nozzle exhausting over a backward facing
step into a cylindrical shroud.

In Figure 19 we show a 3-D perspective view of the wall surface mesh in the
quarter sector for which we solved. A section of computational mesh in a longitu-
dinal plane through the axis is shown in Figure 20. For such planes, Figures 21 and
22 show pressure contour and velocity vector plots that exhibit the expected flow
structures - a weak shock in the nozzle diffuser, a strong expansion at the nozzle
exit with subsequent recompression shock off the shroud wall and, lastly, a substan-
tial region of streamwise separated flow under the backward facing step. The Mach
contour plot of Figure 23 for a cross flow data plane in the shroud shows the ex-
cellence with which the method and, in particular the lateral boundary conditions,
numerically maintain the axisymimetry of the solution.

Patched Mesh Boundary Procedures
In previous work Lombard, et al1l' 1 7 and Oliger and Lombard19 gave stable

implicit procedures for computing the solution at external boundaries of a com-
putational domain. Those procedures generalized the work of Kenzer to matrix
coupled linearized boundary conditions complementing a set of advective difference
equations (associated with well posed characteristics) to the boundary.

Under the present contract we have explored the problem of implicitly cou-
pling at interior patch boundaries the global solution on a system of multiple patch
meshes. The approach we have taken in this research is numerical experimenta-
tion among a number of boundary treatment approximations to the solution of the
continuous domain problem. For comparison purposes with previous single mesh
results, numerical experiments were performed with the well tested two level pseudo
time relaxation CSCM scheme at the interior points of the mesh patches.

Quasi 2-D Studies

Our first experiments, to be described here, dealt with breaking a single co-
ordinate line into segments and solving sequentially on each the equations for a
quasi 2-D viscous compressible flow. The model problem, with which we experi-
mented in reference 17 for an uninterrupted mesh, is a transient pipe flow resulting
from an initially nonequilibrated pressure between the axis and wall boundaries.
Three kinds of cases were run with the two-level linearized implicit procedure; all
featured sequential solving on patches with at least one point of overlap. Case 1
had frozen boundary data, obtained from the solution on neighboring meshes in an
operationally explicit manner. Specifically at left and right first computed interior
points of a patch, we solved the bidiagonal equations respectively

(I+A+ - A-A)6q2 - Aq- (A+ -- )q2 _ A-q3 (11a)

13

6%



and

(I - A +.A+V)6qN...l = A+q N' 2- A--) q- - A-q N (11b)

Here the symbols n indicate the "frozen" boundary data coming from the solution
on the interior of an adjoining and partially overlying patch which was at the old
iteration level in the global procedure. In Case 1 the solution on all the grids was
effectively updated at the same time.

Case 2 featured reverse sequential cycling of the two level time dependent solu-
tion procedure through the grids on alternate global steps. In the forward sequence
the right interior patch boundaries were (a) frozen or (b) computed with one-sided
characteristic boundary conditions obviating any change in the characteristic data
from outside (to the right of) a patch. The left interior patch boundaries inherited
implicit data (6q) from the solution on the computed patch to the left. In the
backward sequence all the roles were reversed including the directions of forward
elimination and back substitution in the tridiagonal matrix inversion procedure.

Case 3 featured cycling through the patches in the predictor (forward elimni-
nation) step of the solution procedure, inheriting implicit left boundary data as in
Case 2. Then the patches were cycled through in reverse order on the corrector
(back substitution) step. The result (save for interpolation if data points of the
grids were interlaced) is identically equivalent to solving on an uninterrupted single
patch mesh.

The results of the three sets of experiments were comparable for local time
steps based on constant CFL number up to about 50. Beyond that the rate of
convergence of the solutions for Cases 1 and 2 diminished and at sufficiently high
CFL number failed to converge. The effort involved in Case 2 with the two level
scheme was not rewarded relative to the simple procedure of Case 1. Within the
framework of the single-level symmetric Gauss-Seidel implicit relaxation scheme,
which is linearly equivalent to the bidiagonal scheme employed at the boundary,
Case 2a is operationally no more difficult than Case 1 and more closely approximates
Case 3. Case 2b has a consistency problem that inhibits firm convergence.

Figure 24 compares RMS residual (density) convergence history for Cases 1
and 3 with three mesh segments with two cells of overlap'and run at CFL 25. As
one might expect, the effectively uninterrupted mesh procedure is found to converge
(two to three times) faster for about the first 50 steps through the major transient.
After that the performance is comparable. The performance of the frozen boundary
treatment Case 1 with five segments at CFL 25 was found to be not materially worse
than with three segments, but the performance degradation with increasing CFL
was found to proceed faster with increasing number of patches.

From the results of the quasi 2-D experiments and extrapolation from experi-
ence with the single level scheme, we observe that the simple boundary procedure
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with frozen conservative variable data taken from the solutions at either iteration
level n or n + 1 on adjacent meshes and coupled implicitly by alternating direction
sequential solving through the patches has robust stability to sufficiently high CFL
number to yield a rate of convergence meeting our needs.

Two Dimensional Patch Boundary Treatment

In earlier work solving the Euler equations on multiple patch meshes Benek,
et al.2e employed linear interpolation of the conservative variables from the interior
solution of one mesh to give Dirichlet boundary data for the other. With sev-
eral points of mesh overlap at the mesh boundaries, transonic solutions obtained
with central differencing exhibited considerable oscillation in the vicinity of shocks
propagating through the boundary region. Eberhardt 2 7 with the code of Benek,
et al.2s attempted to reduce the oscillation and attendant stability problems en-
countered in the vicinity of a bluff body shock intersecting an embedded patch
boundary by introducing a characteristic computed boundary point approximation
with scalar upwind difference equations in Riemann variables. In his procedure,
interpolation was performed only on the variables whose characteristics ran to the
patch boundary from outside the computational domain. Eberhardt based the de-
cision about domain of dependence of the characteristics on eigenvalues computed
within the patch domain. When this decision was compatible with the flow, then
the characteristics boundary procedure gave markedly superior results compared
to interpolation of conservative variable data, which leads to solution overspecifica-
tion in subsonic zones. In other cases where incorrect domain of dependence was
inferred, the characteristic boundary procedure was unstable.

Here, based on our quasi 2-D studies described above, we give a simple, ro-
bustly stable implicit approach to computing solutions of the conservative equations
of gasdynamics on either composite or overset meshes. Without requiring special
flux conservative operators, but rather, interpolating conservative variable data at
mesh boundaries, the implicit upwind method is accurate and relatively free of
oscillation where shocks intersect interior patch boundaries. In a supersonic inlet
problem with an expansion and reflected shocks, we exhibit the capability to conve-
niently carry out with rapidly convergent implicit methods for systems of equations
the adaptive refined meshing strategy in overset patches proposed by Berger and
Oliger 2 . Further, the test case shows concretely in a realistic aerodynamic problem
the savings in mesh points (about an order of magnitude here in two dimensions)
for similar accuracy that flow structure aligned adaptive patched meshing affords
compared to uniform grid refinement.

The factors in our approach are supported by previous research by ourselves and
generically by others cited in reference 28 and are proven in numerical experiments
reported here and elsewhere29 . We employ an implicit conservative upwind scheme
CSCM 17 with which in the present work we can solve to either first or second
order spatial accuracy the Euler or compressible Navier-Stokes equations in two-
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dimensional planar or axisyrnmetric flows. The flux difference split upwind schemes
of generalized Roe form such as 05CM have a number of qualities that make them
ideal for the purpose of solving on discontinuous patched mesh systems.

First, conservative schemes in the Roe form satisfy Roe's property U that
guarantees the correct speed for captured shocks. The OSOM scheme has been
tested in a wide variety of internal and external transonic and hypersonic flows' 7 2 3

and has been found to capture strong and weak shocks accurately in location and
with little oscillation. The shock transition is particularly sharp, about two mesh
cells wide, on an aligned grid; and this factor will be accommodated as much as
possible in our adaptive patched mesh strategy.

Second, in the Roe form, the difference operators on conservative variable data
represent the effects of differencing to characteristic data only for disturbances prop-
agating toward the given node and reject the mathematically unstable contribution
from disturbances that may be propagating downwind of the node. The one sided
upwind difference operation represents identically 30 the (split) conservative partial
flux difference between the nodes. To the extent that the data from an adjacent
mesh is consistent with the solution, the associated upwind partial flux difference
to that data will serve to provide at convergence consistency of the partial flux
convective into the given mesh from its neighbor, and vice versa for signals of the
other eigenvalue sign. Thus the method acts within truncation error to provide the
similar continuity of the flux tensor among patched grids that exists in the physical
solution across shocks and that would obtain on a single grid alone. The correct
domain of dependence coupled with the well posed characteristic boundary point
approximations 17 tend not to support oscillatory disturbances but convect them
out of the flow domain.

Third, one sided difference interval averaged eigenvalues let majority rule de-
termine the direction of local signal propagation. When applied, as we do, to a
difference operator between boundary data obtained from an adjacent mesh and
the local mesh solution point, the data of both meshes participate in making the
decision as to whether an incoming signal is being sent. Both in concept and from
our experience, this factor seems to overcome the inter-mesh communication diffi-
culty experienced by Eberhardt"7 with his characteristic boundary procedure.

Lastly, with the 05CM difference equations, with diagonally dominant approx-
imate factorization 17 .2 3 that retains on the diagonal the contributions from both
sets of eigenvalues in what is effectively an absolute value Jacobian matrix, we can
solve the equations either with two data level linearized block implicit methods' 7

or with a single data level relaxation technique 23 that is substantially more rapidly
convergent than the linearized implicit procedures. As can be inferred from the
theory and numerical experiments of reference 23, the use of DDADI on the solu-
tion point while differencing effectively explicitly to data obtained from an adjoining
mesh (which may be at either the old (n) or new (n+1) level) is unconditionally sta-
ble. When the solutions on the patched meshes are alternately updated using either
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the linearized implicit or relaxation methods the global procedure is implicit. As
will be shown here, the robust stability of the global procedure has been confirmed
to approximately coarse mesh CFL 100.

One point that has not been touched on is the form of interpolation that we
use. Differencing to interpolated data is equivalent to a weighted sum of differences
operating on the interpolants. It is intuitive that for robust stability each of these
assumed upwind differences ought to be well posed. This implies that the inter-
polation weights should all be positive and the domains of dependence of all the
interpolants should be outside (i.e. on the assumed side) of the solution point with
respect to its mesh interior. Neither of these properties was shared by the data
interpolation schemes used by Benek, et al.2 or Eberhardt 2 7.

Finally, extending a direction of Benek, et al.26 , we do not compute on sections
of coarser meshes underlying patches of overset refinement. Our data structure and
automated procedures for the consequent partitioning of meshes are described in
reference 31. The partitioning concept in which coordinate lines of a patch have
differing (index) lengths in computational space also leads to useful possibilities
including, as will be shown here, fitting mesh patches obliquely to boundaries, e.g.
to sharply capture reflecting shocks.

Interior Boundary Treatment - First Computed Point Formulation
In Equations (2) - (8) we sketched the development of the single level relaxation

algorithm and the treatment at external boundaries of the global computational
domain. Here we describe the treatment of an interior patch boundary. The left
hand side of equation (2) has the tridiagonal structure

A I+A -A , A- (12)

In relation (12), the central block which we call D can be seen to contain the
absolute values of the eigenvalues for signals propagating to the solution point from
either left or right. Indeed, the simplified approximation to equation (2)

Dbqa A q n (A+ - _)q. A ,_qn,n+1 (13)T+ +1+D~ Aqj-1 3~

leads to an operationally explicit implicit relaxation procedure 23 that is uncondi-
tionally stable either as a computed interior patch boundary point or general interior
point relation. Here n, n + I means data from either time level. If the interior point
implicit solution procedure is two level, then the term of equation (12) at the inte-
rior point j - 1 or j + 1 will be linearized (assumed at the n + I level) as in equations
(11a) or (11b).

For left or right boundary points, the frozen (i.e. not computed on the patch)
data at j" - 1 or j + 1 in equation (13) is gotten from adjacent patch mesh data.
If the mesh system is composite and mesh lines cross the boundary to the solution
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point, then the frozen boundary data is the solution point data of the adjoining
mesk. For the case of nodes on lines ending at the patch boundary, which relates
eqially to composite mesh with lines of either patch ending at the boundary or to
overset meshes, the frozen data is got by interpolation of adjacent mesh patch data
to the boundary point location.

Linear interpolation to an included point on a coordinate line or within a
polygonal cell involves only positive weights on the interpolant data. In most of
the numerical experiments made to date with overset grids we have employed a
bilinear interpolation3 l based on the four corner points of the overlapping mesh cell
enclosing the frozen boundary point. However, with less data processing a linear
interpolation involving the three corner points on the including triangle (Figure
25a) generalizes to the use of the four corner points of the enclosing tetrahedron in
three dimensions.

In the composite mesh case, Figure 25b, interpolation is naturally along an
interior coordinate line paralleling the zonal boundary. Such interpolation is
one-dimensional for a two-dimensional problem and two-dimensional for a three-
dimensional problem. The generic composite grid problem just destribed and which
we have tested among the numerical experiments to be reported in the next section
also serves as a gedanken model problem for the overset mesh case. Possible solu-
tions that come to mind by analogy are shown in Figure 25c and Figure 25d. In
both figures the interpolation is along two point coordinate line segments (or three
point triangular surfaces in 3-D) of the adjacent mesh and thus is a direct analog
with the attendant data requirements of the composite mesh case.

We use stable and consistent first order differencing and interpolation at the
boundaries regardless of the order of accuracy of the difference approximation in the
patch interiors. Since the divided differences of the computed boundary point ap-
proximation are of the same accuracy as the interpolation, the approaches sketched
in Figures 25c and 25d may be regarded as letting the difference operator perform
the interpolation (to uniformly spaced data Figure 25a) in the direction away from
the computed boundary. Thus, to the extent that the solution is locally well rep-
resented by a linear function the approaches sketched in Figures 25a and 25c and
25d are equivalent. The treatment shown in Figure 25a, however, requires the same
dimensionality of the (triangular) interpolation procedure as that of the problem
and one higher than for the (linear) treatment of Figures 25c and 25d.

As a final theoretical point regarding data exchange at patch mesh boundaries,
we note here that equations (11) imply 30

AF ±I = A:+ AF (14)

Hence we may equivalently write the right hand side difference operators of equation
(13) directly in terms of flux components. An advantage of this approach is that
the flux components normal to the shock discontinuity are continuous across the
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discontinuity. Thus interpolating flux data from one grid to serve as needed bound-
ary data of another can be a smoother more accurate procedure than interpolating
conservative variable data.

We close this section by noting that, consistent with the 2-D interior point
schemes, 17 23 we difference along the computed boundary coordinate line with op-
erators written for the boundary aligned coordinate. In the diagonally dominant
approximate factorizations that we employ in multidimensions, the convective ma-

trices with absolute values of the eigenvalues for both coordinate directions are
retained in the diagonal block.

Two Dimensional Numerical Experiments

To achieve both accuracy and robust stability in this difficult problem area,
particularly with overset meshes, theory can provide insight into what to attempt,
but the acid test of numerical methods is performance in relevant numerical exper-
iments.

We present here some sample results with major findings from a substantial
number of experiments 28 designed to test various aspects of the accuracy and sta-
bility question for the conservative system of equations for gasdynamics solved on
patched meshes.

The numerical experiments to be discussed here involve solution of an inviscid
flow in a Mach 5 inlet with 100 compression ramp that we have employed in previous
experiments with first and second order upwind methods on uniform meshes"7 . The
problem involves two of the generic kinds of flow structure, shock and expansion
fan, which are not possible to resolve both efficiently and to the extent desired on
uniform mesh. As the result of interaction of the expansion fan with the compression
corner and reflected shocks, they curve in non simple regions for which the exact
solution is not known analytically. The coarse base level grid of the experiments
has 26 x 26 points.

Composite Grid with Boundary Overlap

As a simple test of employing frozen interpolated boundary data, we show in
Figure 26a and 26b the grid and density contours for a patched mesh with two
full cell overlap and refinement with twice as many mesh points in the streamwise
direction in the lower patch. Thus every other mesh point at the upper interior
boundary of the lower patch is interpolated between computed conservative variable
data of the upper patch along the common streamwise coordinate line. This test
case solving sequentially on the patches with the first order method is numerically
stable with local time steps based on CFL 100. There is no oscillation in the solution
in the vicinity of the patch boundary (shown) and refinement in the lower patch
has served to sharpen the solution in that region, though high gradient regions of
the solution are very smeared on the coarse, nonaligned meshes.
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Solutions on Uniformly Refined Mesh

As a standard for comparison with results from overset patched refinement, we
show in Figures 27a and 27b pressure contours for first and second order upwind
methods on 101 x 101 point uniform grids, i.e. 4 times refined in each coordinate
direction.

Adaptive Refinement in Overset Grids

Based on a uniform coarse mesh solution similar to Figure 26b, the coarse mesh
was overlaid with two refined mesh patches (Figure 28a) aligned with the compres-
sion corner and reflected shocks. Note in the reflection region, the two overset
patches have been constructed to share the same coordinate lines for superior grid
communication. The coarse grid is segmented (broken) under the overset patches
and the refinement is segmented to terminate at the reflecting boundary (symmetry
plane). In Figures 28b and 28c respectively, we show pressure contours for the first
and second order upwind methods on the overset grid.

Discussion

While the adaptive refinement about doubled the coarse mesh, the shock struc-
tures treated are better resolved than with the uniformly refined mesh in 16 times
the points. Thus the results demonstrate an order of magnitude improvement in
data efficiency to be gained by overset refinement. We sketch in Figure 28d a
strategy of refinement for the as yet untreated expansions of the problem.

Graphics for Patched Grids

Graphics is an important tool to develop and debug numerical codes and an-
alyze numerical results. In some problems, contour plots of certain flow quantities
such as pressure and Mach number are sufficient to look at; in other problems, one
may need to look at velocity vectors to understand the solution better. In the case
of multiple grids, complication arises due to the fact that solutions in more than
one grid are available in some regions of the flow domain and the global solution
needs to be composed from solutions on individual grids.

Graphics for Single Grid Solution

Before we deal with multiple grid graphics, we outline how we analyze the
single grid solutions. Since multiple grid solutions are made up of single grid solu-
tions, insight into the single grid graphics will help to understand the multiple grid
graphics plotting strategy. In the process of solving problems there are three roles
for graphics. First, the grid and the starting solution can be checked. Second, as
the solution evolves, graphics can be used as a tool to debug and understand the
time evolution of the solution process. Third, the converged or the final solution is
plotted to study the physics and compare the present solution with other solutions.
Most of the above tasks can be grouped into three categories of plotting: 1) Grid
plotting; 2) Contour plotting of various scalar flow quantities and velocity vector
plotting; 3) Comparison plotting. Here we deal with the first two.
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Grid Plotting

Single grid plotting is done by essentially drawing straight line segments. We
use the commercial macro plotting package DISSPLA* for all plotting purposes.
Our plot program links the macro DISSPLA program. Only higher level commands
need to be defined on the plotting program and all the lower level commands are
defi 'ned in the DISSPLA program and are transparent to the users. Given the
ordered set of grid points, the grid plotting routine calls the line segment drawing
command for every line segment and plots the grid. Since only discrete grid values
are used in all the finite difference calculations, the representation of the grid by
linear elements is most appropriate and no interpolation or smoothing is necessary.

The same philosophy is adhered to in plotting contour curves of flow quantities.
Independent of the order of the scheme and the solution accuracy, the solution is
available only at discrete node points and any attempt to represent the solution in
a smoother sense can only corrupt the solution. With this in mind, we use a fast,
simple and robust contour plotting routine.

Contour Plotting

Contour plots for the two dimensional problems are very useful to show how
accurately shock and other flow structures have been captured. Any scalar flow
quantity, such as pressure, density, Mach number, temperature, stream function or
vorticity can be plotted for various constant contour levels. The general method
for plotting contour levels are given in the following section. First, the desired flow
quantities are calculated from the dependent variable solution vector at all grid
points and the contour subroutine is called with the set of contour values. The
contour subroutine computes and plots the various contour curves, usually in the
physical domain.

Since any finite difference/ finite volume formulation solves the flow field in an
ordered set of grid points/cells, the construction and the execution of the contour
program is structured on the basic grid cell. We draw all contour curves cell by cell

as we sweep through the complete grid. At the corners of a cell, flow function F hasI
values F1, F2, F3, F4. It is desired that the contour curve for function level FC
need to be plotted. Then along each side of the base grid cell, where cross over points
of the contour curve EC occur, they can be found through linear interpolation.
By connecting sequentially the cross-over points encountered among the sides, one
obtains the part of the contour curve or curves in a given cell corresponding to 6the contour value FC. By repeating this process for all cells, the complete set of
contour curves for the whole domain can be found.

Since the interpolation used to find the contour curve in the base cell is only

linear, the accuracy of the contour curve inside the cells is also linear. This does

*DISSPLA is a trademark of ISSCO.
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not mean that the solution represented by the contour curves is first order. The
discrete solution at the nodes is at as high an order as the solution technique. If
one used higher order interpolation to represent the discrete data, then the contour
curves represent not just the solution but non-physical/extra smoothing. Higher or-
der interpolations to represent discrete data can also result in an oscillatory solution
representation when such is not the case.

Velocity Vector Plotting

Apart from the contours, at times it is also desirable or necessary to look at
velocity vectors. This may be to study the location of separation and reattachment
points and to see the size of the separation zone. The development of the bound-
ary layer and shear layer can also best be shown by velocity vector plots. The
present graphics code provides the option of plotting velocity vectors. To plot the
velocity vectors, at every grid point, a line vector with or without an arrow head
proportional in length to the absolute value of the velocity at the given grid point
is drawn. Instead of the velocity vectors, an option is provided to plot just the
velocity direction. In problems where the magnitude of the velocities may change
drastically, it has been found convenient to plot the velocity direction.

Graphics for the Multiple Grids

The multiple grid graphics code is based on the single grid graphics code. In the
multiple patched grid solution procedure grids are constructed to overlap. When
more than one grid is used to solve the flow problem, the major question that arises
is what to do in regions where the grids overlap. The solution is obtained in all
of the grids and so there are regions in the flow field where multiple solutions are
available. The accuracy of the solution on each grid is influenced by grid fineness and
grid topology, among overlapping grids the solution accuracy can be quite different.
Since the solutions in overlapping regions do not have the same function values or
accuracy, any attempt to represent them there will exhibit some non-smoothness.

Though it is true that the solution in the overlapping region is multivalued, if
the solution procedure assures smoothness and continuity to the interface boundary,
then any one of the solutions in the overlapping region could be used to represent
the global solution. In the solution procedure, we order the grids with assigned
indices in some sequence. The graphics plotting is done in the reverse sequence. In
general, the coarsest grid is the first grid, and any finer grid interior to it will have
a higher index value. To plot the solution in the global domain, the grid with a
highest number (finest grid) and most accurate solution will be plotted first. Next
the solution in the lower grids will be plotted sequentially. In regions of overlap,
only the finer grid with higher index values is used. It is of interest to note that
the base grid is subdivided by the higher level grids and solution in the finer grid
regions (except for minimal necessary overlap) are available only from the finer grid
solutions and not from the coarse grid.

In Figure 28a we have shown an example of overlapping grids for a supersonic
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inlet problem. Figure 28b shows the pressure contour in the global domain. To
obtain this plot, the pressure contours in the refined and shock aligned grid were
plotted first (with the single grid contour plot). Before the contours in the base grid
were plotted, the previously plotted refined grid region was "blanked out" so that

no contour lines of the coarse grid solution could subsequently be plotted inside
the region. Blanking a curve bounded region is accomplished without special effort
using a feature of the DISSPLA graphics program. Finally, the base grid solution
is plotted only in the non-blanked regions. For all partitioned grids, like the base
grid in this case, we have a special subroutine that plots the contour curves on the

integrable cells of the base grid. The part of a contour line outside of a blanked
region for a cell partially overlapping such a region is plotted up to the blanking
boundary.

The above choice of solution representation does not guarantee smoothness
and continuity of contours along the boundaries of overlapping grids. The available
discrete solution itself is nonsmooth due to the spatial discretization error being
different in each grid. Without adding additional smoothing, it is not possible
to represent the multiple grid solution with smoothness and continuity. We have
chosen not to add any smoothing but to represent the best available solution. The
technique has a virtue of exhibiting the extent of truncation errors between grids
and making evident places where more refinement may be needed. In our numerical
studies, the above choice of contour plotting in multiple grids seems to represent
the solution very well.

Implicit Upwind TVD Schemes with DDADI Approximate Factorization

Methods of higher than first order accuracy in the spatial difference approx-
imations are not monotonicity preserving, i.e. lead to oscillation and nonlinear
instability, particularly in the vicinity of shock and contact discontinuities. This
problem can be overcome by a local reduction to first order based on a change in
eigenvalue sign 15 , "7 or with greater generality (and effectiveness in multidimensions)
by the use of flux limiters. Locally one dimensionally monotonicity preserving or
total variation diminishing (TVD) limiters have been given by van Leer 32 ' 3 3 for t-

the scalar equation with Fromm's method. The first of these, now operating on
conservative split partial flux differences, has been extended to systems of equa-
tions by Yang 3 4' 3 5 . A second limiter has been given by Harten36 for an (unlimited)

Lax-Wendroff central difference method. Harten's limiter switches to upwind dif-
ferencing in expansions. Similar to the limiter of reference 33 for Fromm's scheme,
but written for the scalar characteristics representation embedded in the splitting
of systems of equations, are limiters given by Chakravarthy and Osher3". They
have given, in a simple one parameter format, the general class of spatially second
order biased upwind schemes that are linear combinations of central and upwind
differencing. The above three limiters were extended in partial flux difference split
pieces to systems of equations and adapted to implicit methods in reference 38.

23

.................................. .. --;



Unconditionally stable linearized block implicit schemes in delta form can be
constructed, e.g. Warming and Beam30 , with first order upwind differencing on the
left hand side (LHS) of the difference equations and second order biased upwind
(flux limited) differencing on the right hand side (RHS). Approximate factorizations
of the LHS block matrix lead to labor and storage efficient, locally one dimensional
solution procedures that may be block tridiagonal, block bidiagonal, or approxi-
mately scalar17 '4 ° '4 1.

Implicit schemes with LU decompositions for hyperbolic equations were con-
structed by Jameson and Turkel 42 . One of their important findings is that the
resulting three-dimensional alternating direction algorithm is unconditionally sta-
ble in the linear case and also yields a steady-state solution which is independent
of time step so long as each factor of the L and U decompositions is diagonally
dominant.

For upwind schemes, Lombard, et. al. 1 7 have given a simple diagonally dom-
inant approximate factorization (DDADI) that retains the contributions (absolute
values of the eigenvalues) for all coordinate directions on the diagonal block in each
factor. The approach leads to ADI block tridiagonal and block bidiagonal schemes
that have been found in numerical experiments to be more robust than approxi-
mate factorizations 7 ,4 3 in which eigenvalue contributions are separated among the
factors. The DDADI approximate factorization has also led to a class of signifi-
cantly more rapidly convergent single data level algorithms2 3 that use symmetric
Gauss-Seidel relaxation.

In the present study, following the DDADI approach, we describe new upwind
second-order TVD implicit algorithms for the Euler and Navier-Stokes equations.

Some preliminary computational results are presented for 2-D and axisymmet-
ric flows.

Numerical Algorithms

We consider the 2-D Euler equations of gasdynamics in general curvilinear
coordinate system

a,Q +,94F + a,G = 0 (15)

where Q = Q/J and F = (CP+ G)/J, G = (iizP+ri (,)/J, and J = Cr - Gl s
the metric Jacobian. Where Q = (p, pu, pv, e)T is the conservative variables, F =
(pu,pu2 + ppuv,u(e + p))T and G = (pv,pvu,pv2 + p,v(e + p))T are the flux
vectors in Cartesian coordinates. Here p is the gas density, u, v are the gas velocity
components, p the pressure and the total energy e = p/(i- 1) + lp(U2 + V2 ).

We employ splittings of the adjacent two point conservative flux difference in
the Lombard-Yang generalized Roe forms 44 '

A + =-A A4AQ = A.AQ (16a)

-A+AF A+AAQ (16b)
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with the projection operators A ( - (M T i T 1M u-) providing partitioning
according to the signs of the eigenvalues by I = I(I ± sgn(A)). Here the matrices

V-1 and T-I give the discrete difference transformations between conservative and
primitive, and primitive and characteristic variable representations respectively.

With two splittings CSCM1 7 and CFDS3 5 we can construct implicit upwind
schemes, respectively, linearizing the flux differences in the forms (16a) and (16b).

The first-order upwind implicit scheme using backward Euler time differencing
and linearization based on the form 16b, for example, can be given as

[I+ hA kA. ,kA +h ,k +,kA + hBk_ _ ,k-B + hBk+Ak+ BIQ'k

= RHSe + RHS, = RHS (17)

where
RHS = -'-hA_ Aj_,F - h.+,k A+i,kF

and
RHS, = -hBtk_.I Aj k G - hB k+ Ay,k+ i G

Here h is the time step, and

7' =jk - Q1k

Ai_ ,kF =Fj, k-Fj-,k:, Aj,k+ G = Gj,:+ - Gj,k

Block Tridiagonal Approximate Factorization for the Implicit LHS

We will couch the remainder of the discussion of some efficient solution proce-
dures in a simplified notation based on the form 16a with obvious correspondence
to the form 16b. Then equations (17) can be expressed in the matrix form

[-A + , -B + ; I + IAI + IBI ; B- , A- 16Q = RHS (18)

The LHS of equation (18) may be approximately factored in the DDADI form

I[-A + , D , A-]ID-'[-B + , D , B- !6Q (19)

with D = I + JAI + IBI. Equation (19) gives the block tridiagonal solution sequence

[-A + , D, A- 6Q*=RHS

[-B + , D, B-]6Q= D6 Q(

Qn+= Qn + 6Qn
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Second Order TVD Schemes

The RHS of the above schemes based on equations (17) is only first-order in
time and space, and in general is not sufficient for flow resolution. In this study
we further investigate the possibility of replacing the RHS by robust second-order
methods and retaining the unconditionally stable LHS to achieve an efficient algo-
rithm for steady-state calculations.

In the following we give two second-order flux limited difference approximations
written for the C direction. As is common practice, the schemes are written as a
first order method with added flux limited correction terms that in the absence of
limiting render the method second-order accurate.

Scheme I, Adapted Lax-Wendroff/Harten

First, a modified flux vector is defined for a hyperbolic system of conservation
laws based on the characteristic flux difference splitting concept. Then the limited
second order method couched as a first order upwind method is

RHSf = -hA k A I 'm - h k Ai+.,kFm (21)

where FM is the modified flux vectors. The value of FM at nodal point j, k is given
by

FM = Fj,k + Ei,k (22)

where F is the original flux vector and E is an additional vector of second order
correction terms remaining to be defined.

The column vector E at nodal point j,k is Ej,k = (elj,,,e2j,A, ... , e4i,k) T with
its I components given by

Cb,, = Stj+,h min(I ij,+j hI, 1EII','Ab)' when E, +. ,h Lj_, 0,

=0, when eit+g,,et _-,A < 0, (23)

where it,+, (I = 1, 2, ..., 4) are components of the following column vector

E+j, = sgnA,+jkA,+j ,F/2 - hAj+.,kAi+I,kF/2 (24)

and
t = sgn(,g ) (25)

The sgn A in equation (24) is given by

sgn a = MT~diag{sgn aj,}T7M - ' (26)
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In equation (21) with (22) the first order terms

AIAF = AF' (27)

can be represented alternatively using the flux vector splittings of Steger and
Warming43 or van Leer 46 . The latter introduces numerical dissipation that ren-
der solutions in the vicinity of shocks and contacts monotone.

Scheme I can be implemented as an implicit relaxation scheme as in equation
(17) or as a second order time accurate time split explicit method given by

Qfl 2 = LfLnLnLfQk (28)

For the Le operator in the C-direction, we have for example the first intermediate
result

Q,k = QIk + RHSe (29)

with RHSe given by equation (21). Results for Scheme I in an implicit relaxation
method applied in transonic flow have been given in reference 38. Here we give re-
sults for the explicit scheme with van Leer 46 flux splitting for the first order upwind
terms4 7 applied 48 to 2-D unsteady strong shock diffraction around a hypersonic or-
bital transfer vehicle (AOTV) configuration. The unsteady problem has potential
relevance both in maneuver and in simulating the effect of nonuniformity in the
upper atmospheric flight regime.

Figure 29 shows the body shape in a computational grid generated with the
interactive algebraic procedure. In Figures 30a and 30b respectively we show pres-
sure and Mach contour plots at an instant in time for a case run at Mach 30, y =
1.1 and 150 angle of attack. Other work 49 has shown important dependencies such
as shock standoff distance and temperature on the value of -y. In future work we
will introduce aspects of the present accurate and robust numerical methodology
into upwind codes incorporating variable -y based in equilibrium and nonequilibrium
reacting gas procedures.

Scheme II, Adapted and Extended Fromm/van Leer, Chakravarthy-Osher
The scheme is

(RHS)f = -hAFt - hAF I

h- +
+ (EFt -AFy+) + (AF 3 +i- AF ;) (30)

where the AF and AF are respectively backward and forward limited flux differ-

ences. Following reference 37 for example,

AF++ = (M T)3 +.minmod (Aft ,3Af+_))

and

AF+_j = (M T)j_ minmod (Aft,3Aft). (31)
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Here the characteristic partial flux differences are

Af'- IT- 1 !W' AF (32)

and
minmod(x, y) = sign(x) maxO, min (Ixj, y sign(z))].

As an alternative to limiting the characteristic partial flux differences we also con-
sider here a new scheme limiting in the conservative split partial flux differences, in
conformity with scheme I. Then we replace equation (31) with, for example

-Fj+i = minmod(AF. ,3AF.t_1) (33)

Scheme I can be disected to show that in regions of compression the scheme
yields a second order central difference approximation and in regions of expansion,
second order upwind. Chakravarthy and Osher3 7 gave a one parameter family of
flux limited second order schemes that can be seen to be linear combinations of the
central and upwind methods. The Fromm scheme given here for illustration is the
case of -1 central and . upwind methods. Another case with 2 central differencing
and 3 upwind, yields a third order accurate method.

Computational experiments with the one parameter family of second order
schemes for the advective terms of the compressible Navier-Stokes equations have
been performed in the context of a much tested 450 - 150 transonic nozzle problem,
Figure 31. Figure 32a shows Mach contours in the vicinity of the throat for the
unlimited second order upwind method. Limiting in both the characteristic and
conservative partial flux difference pieces has been carried out. Here we show in
Figures 32b and 32c Mach contours for the Fromm scheme with the two approaches
to limiting. The unlimited upwind scheme captures the weak shock somewhat more
sharply but is considerably liss robust. Limiting in the conservative flux split pieces
is simpler to implement and, taking into account eigenvector variation, may have
better nonlinear stability than limiting in the characteristic representation; but the
solution also appears less smooth behind the weak shock.

Application of 3-D Single Level Algorithm
to Multiple Nozzle Flow on Segmented Composite Mesh

A clustered multi rocket nozzle shrouded exhaust system provides a problem of
relevant kind and geometric complexity typical of those needing advanced compu-
tational techniques to analyze. Here the symmetric Gauss-Seidel implicit method
of planes algorithm described earlier is adapted to a segmented composite grid.

The grid covers a "pie slice" sector bounded by symmetry planes through a
circular array of engines around a single engine at the center. The symmetry planes
pass through the axis of the center engine and either through or between the nozzles
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of the outer engines. Figure 33a shows a 3-D perspective view of the surface mesh
of the computational domain. Figure 33b shows a symmetry plane mesh through
the center and an outer engine, and Figure 33c, the projection of a cross stream
mesh surface in the shrouded exhaust region. Figure 34, which relates to Figure
33c, shows the segmented composite mesh coordinate topology. Where the index L
is for the azimuthal coordinate 0 of the outer engine associated mesh patch and,
similarly, K is for the radial like coordinate q, the center engine associated mesh
patch sector is naturally mapped onto a segment of the outer engine grid topology
with continuity of the q coordinate in K1 + 1 _ K < KMAX and 1 < L < LI.

Boundary Conditions

The segmented composite mesh approach requires the facility to impose differ-
ent boundary condition procedures on limited segments of coordinate curves piece-
wise fitted to boundaries. Segments of viscous wall boundary are treated with
implicit characteristic based procedures as described in reference 17. Boundary
segments of inviscid symmetry planes can be treated by differencing to out of do-
main data obtained by applying symmetry relations operationally and explicitly
but with unconditional stability based on DDADI as explained earlier in this report
for interior patched mesh boundaries. Alternatively, symmetry boundaries can be
treated completely locally like inviscid walls by an implicit matrix procedure involv-
ing characteristic relations to the boundaries, augmented by local invariance of the
zero normal velocity component as in reference 17, and extrapolations of tempera-
ture and tangential velocity components through constructed stable characteristic
like relations as described in reference 50.

Singular poles such as at K = 1 and KMAX of the grid topology are buried at
half cell spacing in the mesh. Operationally explicit DDADI differencing is carried
out from first interior points to cross pole data obtained from symmetry conditions
as given in Figure 34 for the pole at K = 1.

Figure 35 shows Mach contours on a cross flow coordinate surface intersecting
the backward facing step outside the exit of the outboard nozzle. This region is
impacted by the complicated interaction of a weak shock exiting the nozzle and
an expansion fan whose strength at the nozzle exit corner is influenced by the
size of the local backward facing step. Figures 36a, b and c show Mach contours
for longitudinal mesh surfaces associated with the outer nozzle flow. The surfaces
intersect the inter nozzle symmetry plane, respectively, in the Li corner, at the
minimum step between outboard nozzles, and at the maximum step in the corner
where the shroud intersects. The latter figures show the nozzle weak shock, the base
corner expansion and then the recompression shock against the symmetry plane,
and finally the extensive flow separations in the corners. The extent of departure
from axisymmetry in the plume region caused by the azimuthally varying base step
heights can be appreciated. Figure 36d shows Mach contours in the symmetry plane
through the inner and outer nozzle centers. Here appears the turbulent viscous wake
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of the inter-nozzle exit step as another captured feature of the multi-nozzle plume
flow.

Computational Experiments in Patched Mesh Topology
and Solution Accuracy

For high Reynolds number viscous flows, particularly for massively separated
base flows computed in the efficient Baldwin-Lomax thin layer approximation, mesh
topology has a great deal to do with accuracy of the resulting solution. Occurring
in numerous aerospace applications, separated base flow is of significant interest to
predict for it's impact on drag and moments on aircraft, projectiles and tactical
missiles. It is of interest for efficient design of dump combustors and to avoid
chemical erosion problems in liquid propellant injector systems. Base flow is also of
interest for thermal protection requirements on multi-rocket powered vehicles such
as the Space Shuttle and hypersonic reentry bodies such as the Galileo Probe and
the Aeroassisted Orbital Transfer Vehicle (AOTV).

In recent years, the evolving computational capability for viscous flows has
led to attempts to analyze such base flows numerically. The widely perceived
need to assess the accuracy of the techniques particularly for solving the compress-
ible Navier-Stokes equations for turbulent base flows, has led to experiments with
broadly participated computational efforts featuring axisymmetric afterbody flows
with a centered propulsive jet. The time dependent Navier-Stokes solutions have
been computed by Deiwert, Andrews and Nakahashi5 1 and Sahu and Nietubicz3 2 .
A novel feature of that work is the use of flow structure adaptive meshing.

Of particular relevance here are computations of Sahu and Nietubicz3 2 and
Thomas, Reklis, Roloff and Conti53 for the MICOM model tactical missile
experiment 54 at freestream Mach number 1.4. The axisymmetric flow experiment
featured a tangent ogive cylinder body, Figure 37, terminating in a square cylindri-
cal base. A centered nozzle with flush exit occupied only 0.2 base diameters of the
model which was 9 diameters long. The nozzle exit Mach number was 2.7 for an
underexpanded jet with pressure ratio 2.15 relative to freestream.

Sahu and Nietubicz 52 employed the Beam-Warming 7 central difference algo-

rithm with the Baldwin-Lomax s algebraic turbulent eddy viscosity model and the
thin layer Navier-Stokes approximations. Since viscous terms were not applied in
the streamwise direction, the base wall was treated inviscidly. Thomas, et al. 53 , who
employed the Thomas and Lombard version of the central difference algorithm, ap-
plied the full Navier-Stokes equations with eddy viscosity computed from alternative
two equation turbulence models. Both groups of computations were made without
knowledge of the experimental results except for data given along a line 1.6 diam-
eters upstream of the base to serve as an inflow computational boundary. Unused
data was also given on a lateral boundary 1.6 base radii from the model axis.

Both insight and computational experiments suggest there are two ways that
topology influences solution accuracy. The first is through the efficiency of utiliza-
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tion of mesh point resources to achieve balanced resolution. The second is through
alignment with and natural accurate capture of flow structures on the mesh.

Here we report on the first two parts of a continuing capsule study of the impact
of computational meshing strategies on solution accuracy in propulsion base flow.
The MICOM model problem with the experimental and previous computational
data base was chosen as the vehicle for the study. The first part of the study
dealt with two complementary composite mesh topologies. The first is a dual wrap-
around composite mesh constructed in two blocks. The second is a composite step
mesh constructed in three blocks. Based on the techniques described earlier in this
report, the blocks of smooth mesh are generated algebraically in subpatches.

The step mesh, shown in Figure 38b, is similar to those employed in references
52 and 53, and naturally fits and is simple to construct for (near) right angle cor-
ners such as occur at the cylinder wall and nozzle exit junctures with the base. The
wrap around mesh, Figure 38a, provides a continuity of the thin layer viscous ap-
proximation around the base corners and is thought to generally make most sense
of locally one dimensional algebraic eddy viscosity modeling (modified Baldwin-
Lomax) which we employ here. Details of the turbulence model and the application
of the CSCM method are given in reference 55.

Propulsion Base Flow Results
For the two base flow meshes, we present results in Mach number contour plots.

The results for the two meshes in comparison with each other and with the results
of Sahu and Nietubicz 52 and Thomas, et al.33 are quite interesting and informative.

In Figures 39a and 39b we show Mach contour plots for the wrap-around and
step base flow meshes. The two plots exhibit the same flow structures - expansions
at the nozzle and upper base corners, followed by weak turning (recompression)
shocks in the outer wake flow and inner jet flows, large stagnant separation bubbles
in the base region, Mach disc and reflected shock in the jet flow, and finally wake
expansion downstream of the recompression neck behind the turning shocks.

In addition, we see shear layers emanating from the nozzle and upper base
corners and turning with the recompressing flow to be carried down the wake. Also
evident in the figures is the effects of the structure of the slow recirculating flows
in the separated base region. All the above structure is in very good qualitative
agreement with that shown in plots in reference 52 and 53.

Considering the contour plots and the associated meshes among our results and
those referenced, two observations come to mind. The first is that different solutions
obviously express different structures with greater or lesser accuracy. The second
is that all the meshes employed here and in the references cited employ locally
one dimensional clustering and stretchings that emphasize resolution in certain
regions or directions at the expense of others. Where grid points are well distributed
relative to resolving a particular flow feature, it is sharp and (presumably) well
located. Where not, the converse holds. Another more significant mesh dependent
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feature is apparent in the formation region of the shear layers from the nozzle base
corner. In the wrap-around mesh case of Figure 38a, the boundary layer separates
a short distance around the corner at the base wall, whereas, in the step mesh case
the separation appears sharply at the corner. Associated with this mesh topology
dependent phenomena are observable differences in the angle and possibly energy of
the expansion jet down the near base shear layer. The wrap-around grid has much
better resolution near the tail of the separation bubble, and also generally better
resolution over shear layers on either side of the bubble.

What one might term simple composite mesh schemes of the type employed in
Figures 38a and 38b have the obvious flaw that they are comparatively inflexible
with regard to continued grid point clusterings throughout the mesh once clustering
has been initiated of necessity somewhere, as for example in boundary layers. The
rigidity leads to wasted mesh point resources in some inappropriately clustered
regions at the expense of needed resolution in others.

The techniques of multiple patched meshes with overlap to stably exchange
data through interpolation at interior patch boundaries as described earlier in this
report offer the freedom to utilize mixed topologies and commit mesh resources
as appropriate to various zones of the problem. The second part of the study
employed the multiple patched grid techniques to effect globally a hybrid topology
of the wrap-around and step mesh types.

Figure 40a shows the patched grid in the large where it appears as a step mesh
but with less clustering in the base wake region via a vis Figure 38b. The wrap-
around feature is incorporated in patches of refined overset mesh that are local to
the upper and lower exterior corners at the base. Figure 40b shows a local detail of
the overset patch boundary at the lower (nozzle exit) comner. Also shown are the
overlapping boundaries of other grid patches that intersect in the vicinity.

Figure 41 shows a Mach contour plot for the solution on the hybrid grid. By
comparison with Figures 39a and 39b, all flow structure features of the solution on
the multiple patch grid appe.- more sharply resolved though the total number of
points in each global grid is comparable. Finally, Figure 42 provides a comparison
of base pressure results among computations and the experiment of Petrie and
Walker5 4 . Except near the nozzle exit corner, the results for our computation on the
step mesh of Figure 38b is quite close to that of Sahu and Nietubicz5 2 and to reduce
confusion is not plotted. All the computed results show a similar wave pattern in the
base associated with the two counter-rotating circulation cells. That this structure
is not apparent in the experimental results raises some questions. Further study
of this problem as to mesh topology, adaptive refinement and turbulence modeling
will prove useful in advancing understanding in the difficult and important area of
base flow computation.
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3. Professional Personnel

Professional researchers who contributed to this project are
Dr. Charles K. Lombard, Principal Investigator
Professor Joseph Oliger, Consultant
Dr. Marcel Vinokur, Consultant
Dr. Ethiraj Venkatapathy
Dr. Jorge Bardina
Dr. N. Nagaraj
Dr. J. Y. Yang
Dr. R. C.-C. Luh

4. Interactions

The research described in this report has to this point been partially presented
in the form of a paper on algebraic grid generation by Vinokur and Lombard (refer-
ence 5), a SIAM meeting paper (reference 19) by Oliger and Lombard on boundary
procedures for bidiagonal alternating sweep schemes and a Computational Fluid
Dynamics Seminar at NASA-Ames Research Center by Lombard on the Univer-
sal Single Level Implicit Algorithm. The latter invoked tremendous interest and
discussion.

The research has spawned four meeting papers on the single level relaxation
algorithm - references 23, 24 and 25 and

Lombard, C.K., Raiszadeh, Farhad and Bardina, Jorge: "Efficient, Vectoriz-
able Upwind Implicit Relaxation Algorithms for Three-Dimensional Gasdynamics,"
SIAM Spring Meeting, Pittsburg, PA, June 1985.

Six papers have been written on interior patch boundary treatment, data struc-
ture and applications of patched mesh systems. These are references 28, 29, 31 and
55 of the present report and

Lombard, C.K. and Venkatapathy, Ethiraj: "Implicit Boundary Treatment for
Joined and Disjoint Patched Mesh Systems," Workshop on High Reynolds Flows,
Nobeyama, Japan, September 1985.

and
Lombard, C.K., Bardina, J., Venkatapathy, E., Yang, J.Y., Luh, R.C.-C., Na-

garaj, N. and Raiszadeh, F.: "Accurate, Efficient and Productive Methodology for
Solving Turbulent Viscous Flows in Complex Geometry," Presented at the 10th In-
ternational Conference on Numerical Methods in Fluid Dynamics, Beijing, China,
June 1986 and soon to be published in a bound volume Lecture Notes in Physics.

The research has given rise to two papers on the 3-D CSCM-S relaxation al-
gorithm with application to multi rocket engine exhaust flow, a problem of interest
to and partially supported by AFRPL. The papers are
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Bardina, Jorge and Lombard, C.K.: "Three Dimensional CSCM Method for the
Compressible Navier-Stokes Equations with Application to a Multi-Nozzle Exhaust
Flowfield," AIAA 85-1193, June 1985.

and
Lombard, C.K., Bardina, Jorge and Raiszadeh, Farhad: "Shrouded Multi-

Rocket Engine Plume Flow by an Efficient Upwind Relaxation Algorithm for the
Compressible Navier-Stokes Equations," annual meeting of the JANNAF Exhaust
Plume Technology Subcommittee, San Antonio, Texas, May 1985.

5. New Discoveries

The Universal Single Level Algorithm for the compressible Euler or Navier-
Stokes equations is a new discovery in numerical methods that promises to result
in substantial efficiencies in data storage, programming, machine time and human
productivity.
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Figure 1. Portion of an algebraically generated
computational mesh for a flow domain containing an
external and an internal corner.
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Figure 2. Representative 2-D mesh generated with
simplified interactive algebraic procedure.
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Figure 3. Representative 3.-0 mesh generated with simplified
interactive algebraic procedure.
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15 global iterations with forward marching sweeps only.
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xFigure 9. Solution to subcritical nozzle problem after60 global iterations with forward marching sweeps only.
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Figure 14. Schematics of the supersonic inlet flow problem.
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Figure 16. Pressure contours from the first order viscous
solution for the inlet after 20 global sweeps with a 51 x 51
stretched mesh. Note the leading edge shock.
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Figure 18. Convergence history of the RMS of
the residuals for the inviscid first order inlet
problem with 4 inner iterations per global sweep.
Note at the end of the first sweep the residual
has reduced and the solution has converged for all
Practical purposes.

Figure 19. Perspective view of the wall surface mesh for
the quarter sector computational domain of an RLo10 rocket
nozzle exhausting over a backward step into a cylindrical
shroud.
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Figure 20. Longitudinal mesh plane for the problem of Figure 19.
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Figure 22. Velocity vector plot for the mesh plane of Figure 20.
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Figure 23. Mach contour plot for a cross flow
mesh plane in the shroud.
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Figure 24. Test on three patches of implicit
stability and rate of convergenceof (circles)
computed boundary point operator differencing
to frozen data in adjacent patches; (solid
line) effectively continuous grid method.
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Figure 25. Boundary condition interpolation procedures. Solution points 0 , inter-
po ation points X , interpolant data points El

25a. Triangle interpolation for overset 25b. Line interpolation for composite
mesh. mesh.

25c. Line interpolation for overset 25d. Line interpolation for overset
mesh. Straight line extrapolation. mesh. Extrapolated lines turned

in composite mesh analog.

grid density contour

Figure 26. Test of stability of implicit numerical procedure exchanging frozen bound-
ary point data between patched grids.
26a. Two patch computational mesh, line 26b. Density contours for mesh 26a.

interpolation.
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Figure 27. Pressure contours
computed on 101 x 101 point

uniform mesh.
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Figure 28a. Shock aligned patched grids Figure 28b. Pressure contours from first
for the inlet problem, order solution on patched grid.

result to bee4 effetiv fore captur of

Figure 28c. Pressure contours from sec- Figre 28d. Sketch of patched adaptiveond order solution on patched grid. ,,-,h topology concluded from present
results to be effective for capture of
flow structure of the inlet problem.
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Figure 29. Computational mesh for NASA-Ames model drag brake AOTV.

Figure 30. Contour plots for unsteady shock diffraction
solutions around the model AOTV.
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Figure 32a Mach contours in vicinity of throat
for unlimited second order upwind method.

r

3 3 .

Fiur 32 Mac cotusfrFomsshm iue3cMc otusfrFomsshm

wit adpe 6hkaath- e liiewt iie4nsltprilfu ifr

Scem ,Ia enes Scee l

ii'l i~ lil llll~ Ilil ll' l~l l~li llliliill- lIl & a " % A4 A



Figure 33a. Perspective view of 3-D surface mesh for the
computational domain of the multiple nozzle jet exhaust problem.

20.0-0

I

0.0-

-2.0-

0.0 -.0 .0 0.0 12.2 .0 4 .0 .0 .0 2.0 3.0
X

Figure 33b. Computational mesh in the symmetry plane throughthe center and outer engines.
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Figure 33c. Computational mesh projected onto a cross flow

plane in the shroud.
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Figure 34. Segmented composite mesh coordinate topology.
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Figure 35. Mach contours on a crossflow coordinate
surface intersecting the backward facing step outside
the outboard engine nozzle.
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Figure 36a. Mach contour plots in the (outboard engine) azimuthal
coordinate plane intersecting the Li corner (Figure 34).
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Figure 36b. Mach contour plots for azimuthal plane intersecting
the small step at the upper symmetry plane.
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Figure 36c. Mach contour plots for azimuthal plane intersecting
the maximum backward facing step at the intersection of the shroud
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Figure 36d. Mach contour plot in the symmetry plane through the
inner and outer nozzle centers.
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Figure 37. Micom tactical missile model.
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Figure 38a. Double wrap-around mesh for inner and outer flows.
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Figure 3gb. Mach contour plot for the step mesh.
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