AD-A181 235 INTEGRATED INFORMATION SUPPORT SYSTEM (IISS) VOLUME 4
1155 SYSTEM PART 2..(U) GENERAL ELECTRIC CDTSE¥E=ECTRDV

NY PRODUCTION RESOURCES CONSU.. M R HURLBU
UNCLASSIFIED 01 NOV 83 5D5620140009

'3
E.

-

i

" i ". PR~

Ny *| . b
Q‘ ‘l LW “) 6“ ..‘ \.‘ ".‘ "
l

I R ﬂ' ﬂ

l TS ST
!' At l“v

I

€ egbe o
ATV ,., 6’ 'é' W 'n L ‘m‘

i 1) .

E““EEEEE
E
L

o

MICROCOPY RESOLUTION TEST CHART
NATIONAL sunuu oF smcmns -1963-A

ST 2 P s T

. G ¢ e G » ¢ ———

\',:u' 8 .‘l K

Al

\"“ " .n' ‘t‘
Q

» '-‘. ."
R

nn.t'.\,.n:.v

LN
N\“.

'5
g:\

| ()]
l‘.
LY

i
\,'

S
i

OTIC FILE COEY Lo

AD-A181 235

AFVAL-TR-86-4006
Volume 1V
Part 2

INTEGRATED INFORMATION

SUPPORT SYSTEM (IISS)

Volume IV - IISS System

Part 2 - System Design Specification

General Electric Company
Production Resources Consulting
One River Road

Schenectady. Kew York 12345

Final Report for Period 22 September 1980 - 31 July 1985
November 1985

Approved for public release; distribution is unlimited.

AIR FORCE SYSTEMS COMMAND

* ELECTE
MATERIALS LABORATORY JUN 1 6 1887
AIR FORCE WRIGHT AERONAUTICAL LABORATORIES

WRIGHT-PATTERSON AFB, OH 43433-6533

S R X R S AN S P AN PO N X IO M AL GO DO NSNS SBIAAR IO A A R A XL P R

NOTICE

When Governmen! drawings. specifications, or other data are used for any purpose other than
in connection with & gehniiely related Government procurement operaton, the United States
Government thereby incurs no responsibility nor any obligation whatsoever, and the fac! that the
government may have formulated. furnished. or in any way supplied the said drawings.
specifications. or other data. is not 10 be regarded by implication or otherwise as in any
manner licensing the hoider or any other person or corporaton, or conveying any rights or
permission 10 manufacture. use. or sell any patented invention that may in any way be related
thereto.

This report has been reviewed by the Office of Public Affairs (ASD/PA) and is releasable 10 the
Nanonal Technical Informanon Service (NTIS) At NTIS. it will be available to the general
public. including foreign nations.

This technical report,has been reviewed and is approved for publication.

slla 19l
DATE 0

FOR THE COMMANDER:

ERALD C. SHUMAKER. BRANCH CHIEF DATE
AFWAL/MLTC
WRIGHT PATTERSON AFB OH 45433

"if your address has changed. if you wish to be removed from our mailing list, or it the
addressee is no longer employed by your organization please notify AFWAL/MLTC, W-PAFB, OH
45433 10 help us maintain a current mailing list.”

Copies of this repont should not be retumed unless return is required by security consirderatinne
contractual obligations, or notice on a specific document

}.

"y

cL Aot A\v
y

S : e - : : ~--epaep Ay} atrdbaul o0} p
adinbad ‘wsiueyssw ay) sapiaosd pue paUIBUIEW S1 1900 BRE(UOHWOD W " HJIORGa €
v a4y 18307 B B1A pPa1lauu0d4aqul *sdajnduodr snoauaboualay fiq pajJdoddns seaseqejep s

noauabfioualal uo quapisad elep 40 voljedbaqul jo swalqoud By sassaJppe §STT A1
- ed1412%adg Burtungaegnuey aledsoday FO SIXajUO0I BY} W1 HOTRLEALHT UDTQBWIOFUY P N
ve juawabeuew uoiqewdoiut 4o sqdaduod ayy 1597 pUR 3jeUSUOWSER pUF arrbilgsasur o :
31 pasn quarRuodIAue Burqndwod 3sa8q.e 51 wapshs 140ddng uoljewdojuy pajesbiagur &cw

Uaclassified

T GBCUR'TY CLABS P1CATiON DF Tuil 408

REPORT DOCUMENTATION PAGE
1o AEPDAT SECUNITY CLABSISICAYION 1t AESTAICTivE MARR INGS
Onclassified
20 BECURITY CLASS $:CATION AUTHORITY 3 OISTRIBUTION AVAILABILITY OF REPOAT
- . 1ic rel :
T OECLASS S ICATION/DOWNERADING SCnEDULE css:::;:s::: s ual l::t:.
6. PERPORMING ORGARIZATION ASPORT NUMBEAS) rt MONITORING ORCANMTATION AEPORTY NUMBLA®:
APVAL-TR-86-4008 Vol IV, Part 3
e~ e e S ——
6a NAME DF PEASOAMING ORGANIZATION :;ncl SYMBOL [%e NaME OF MONITOAING DAGANIZATION
ppiissdis)
Ceneral Rlectiric Cospany XLTC
Production Resouroes Consuvitiag AFVAL/
e ADDOALES (Ciny. San ans RIP Code) . ADOARESS 01y, Sau ans BIF Cose
3 River Road
Scheaectady, ST 13348 VPAFB, ON 43433-8833.
G NaME OF FUNDWGBIONEONING . OFFI1CE SYMBOL [0. PROCUREMENT ETAVMENT IDENTIFICATION NUMBE A
ORBANIZATION 6f qpplosdis) :
rP e mmu-“"o-—-a. . AYVAL/HLYC 733818-80-C-8188
. ADOAEES iCiry. Sae and EIP Cotn)
vaR WORK YUNIT
Vright-Patterses AT3. Chie 43433 ®o. wo.
a2 01
" ngete oy 6 1
(See Reverse)
12 PEASONAL AVTHOAS)
Nurlbut, M. R., Dedean, J. P., Althoff, J. L., and Barker, §. .
130 TVPE OF REPORT 30 TilE COVEARD 16. DATS OF REPORTY (¥r., Me.. Doy/ $5.9408 COUNTY
Pisa)l Techaieal Bepert 82 Sept 1080 - B2 July 3088 1088 Beveaber 193
. SUPPLEMENTARY NOTATION The computer softvare contaised herein are theoretical and/or

veferences that i3 80 way reflect Air Foroe-owaed or -developed
TCAN Preject Prierity 8301 oooiiier’sortvare. Y

19 COsAT) CODES 10.8VEMCT TEAME 1Contnur oo erw & assemer) ond ulvalf) by biash apmbor)
(I 1N - (] ln .-.
31308 0908

" A-vuaamumcmummummo
v LY

“This technical report discusses the System Design § ifications of
the ICAM Integrated Information Support System (I1I85). The report
allocates the functionality to five CPCI's, the Network Transaction
Manager (NTM), the Common Data Model (CDM), the User Interface (UI),
the Virtual Terminal Interface (VTI) and Communications Subsystems.
Scenarios are presented to support the identification of the
functional specifications of each subsystem. -{ - -

20 DISTRIBUTION/AVAILABILITY OF ABSTAACT 21 ABSTRACT BECURITY CLASSIP ICATION
wweLassigonmnnted I saut as sor. G ovic wans D Uaclassified
220 Naut §F ALSPOE1DLE INDIVIOUAL 220 TELEPHONE NUMEEA 23¢ OPPICE SYMEOL
Gaeluds A%e Code:
Davie L. Judsen 813-283-007¢ ATVAL/MLTC
—

DD FORM 1473, 83 APR SOITION OF 1 4aN 73 © DBSOLETS. Onclassified
. SECURITY CLARSIPICATION OF T PAGE

11. Title

Integrated Information Support Syst .
Vol TV - T1ss Syseen | TTOTt System (1185)

Part 2 - System Design Specification

A S D 86 1476
17 Jul 1986

Accession For

FTIS GRA:I g
PTIC TAB

Unannounoced 0
Justitication

By.
Distridbution/
Availability Codes

Avail and/or
Dist Special

LI R O A D 0
S L b (e m ORI OO0
A O A I O N OLOICR 'n"u".l"w".o"to", '

SDS620140000
1 November 1985

PREFACE

This system design specification the work performed under

. Air Force Contract F33615-80-C-5155 (ICAM Project 6201). This
contract is sponsored by the Materials Laboratory, Air Force
Systems Command, Wright-Patterson Air Force Base, Ohio. It was
administered under the technical direction of Mr. Gerald C.
Shumaker, ICAM Program Manager, Manufacturing Technology
Division, through Project Manager, Mr. David Judson. The Prime
Contractor was Production Resources Consulting of the General
Electric Company, Schenectady, New York, under the direction of
Mr. Alan Rubenstein. The General Electric Project Manager was
Mr . Myron Hurlbut of Industrial Automation Systems Departiment,
Albany, New York.

Certain wvork aimed at improving Test Bed Technology has
been performed by other contracts with Project 6201 perforaing
integrating functions. This work consisted of enhancements to
Test Bed software and establishment and operation of Test Bed
hardware and communications for developers and other users.
Documentation relating to the Test Bed from all of these
contractors and projects have been integrated under Project 6201
for publication and treatment as an integrated set of documents.
The particular contributors to each document are noted on the
Report Documentation Page (DD1473). A listing and description
of the entire project documentation system and how they are
related is contained in document FTR620100001, Project Overview.

The subcontractors and their contributing activities were
as follows: '

TASK 4.2

Subcontractors Role

Boeing Military Aircraft Reviewer.
Company (BMAC)

D. Appleton Company Responsible for IDEF support,

(DACOM) state-of-~the-art literature
search.

General Dynamics/ Responsible for factory view

Ft. Vorth function and information
models.

114

00, P TP YR, R W LS LA HERA S ERCHE

Subcontractors

Illinois Institute of
Technology

North American Rockwell

Northrop Corporation

Pritsker and Assocliates

SofTech

TASKS 4.3 - 4.9 (TEST BED)

Subcontraciors

Boeing Military Aircraft
Company (BMAC)

Computer Technology
Associates (CTA)

Control Data Corporation
(CDpC)

D. Appleton Company
(DACOM)

SDS620140000
1 November 1985

Role

Responsible for factory view
function research (IITRI)

and information models of

small and medium-size business.
Reviever.

Responsible for fattory view
function and information
models.

Responsible for IDEF2 support.

Responsible for IDEFO support.

Role

Responsible for consultation on
applications of the technology
and on IBM computer technology.

Assisted in the areas of
communications systems, system
design and integration
methodology, and design of the
Network Transaction Manager.

Responsible for the Common Data
Model (CDM) implementation and
part of the CDM design (shared
with DACOM).

Responsible for the overall CDM
Subsystem design integration
and test plan, as wvell as part
of the design of the CDM
(shared with CDC). DACOM also
developed the Integration
Methodology and did the schema
mappings for the Application
Subsystems.

iv

Subcontractors

Digital Equipment
Corporation (DEC)

McDonnell Douglas
Antomation Company
(McAuto)

On-Line Software
International (OSI)

Rath and Strong Systems
Products (RSSP) (In 1988
became McCormack ¥ Dodge)

SofTech, Inc.

Software Performance

Engineering (SPE)

Structural Dynamics
Research Corporation
(SDRC)

SDS620140000
1 November 1985

Role

Consulting and support of the
performance testing and on DEC
software and computer systems
operation.

Responsible for the support and
enhancements to the Network
Transaction Manager Subsystem
during 1984/1985 period.

Responsible for programming the
Communications Subsystem on the
IBM and for consulting on the
IBNM.

Responsible for assistance in
the implementation and use of
the MRP II package (PIOS) that
they supplied.

Responsible for the design and
implementation of the Network
Transaction Manager (NTM) in
1981/1984 period.

Responsible for directing the
work on performance evaluation
and analysis.

Responsible for the User
Interface and Virtual Terminal
Interface Subsystems.

Other prime contractors under other projects who have
contributed to Test Bed Technology. their contributing
activities and responsible projects are as follows:

ICAY Project Contributing Activities

Contractors

Boeing Military 1701,
Aircraft Company 2202
(BMAC)

2201, Enhancements for IBM
node use. Technology
Transfer to Integrated
Sheet Metal Center
(1ISMC).

SDS620140000
1 November 1985

Contractors ICAM Project Contributing Activities

Control Data 1502, 1701 IISS enhancements to

Corporation (CDC) Common Data Model
Processor (CDMP).

D. Appleton Company 1502 I1ISS enhancements to

(DACOM) Integration Methodology.

General Electric 1502 Operation of the Test
Bed and communications
equipment .

Hughes Aircraft 1701 Test Bed enhancements.

Company (HAC)

Structural Dynamics 1502, 1701, IISS enhancements to

Research Corporation 1703 User Interface/Virtual

(SDRC) Terminal Interface
(UI/VTI).

Systran 1802 Test Bed enhancements.

Operation of Test Bed.
NOTE

Revision A of this System Design Specification has been
made at the end of the project to update the document to reflect
what was actually accomplished, or the "As Built" design. The
initial design to reflected the best thinking as to what was
desirable and believed to be possible at the time it was
designed. 1In most cases the design has been carried out, but in
some cases the full capability has not yet been provided. Such
cases have been marked as "(Future)” in this revision so as not
to lose the thinking that went into this design and to also be
accurate as to what is actually implemented.

In other cases, the design or equipment configuration
indicated was initially implemented but then changed as the
project progressed. Where important, or possibly misleading,
these "Initial Implementation® capabilities are also indicated.

In this revision there were minor revisions made to all
sections except that of the User Interface (Section 3.1.3),
which was revised extensively to reflect the actual
implementation of the User Interface which had considerably more
capability than the original design, and which had changed some
architecturely from the concepts originally presented.

SECTION

(O
.
[

OIG'O! N -
N

N -

SECTION

O UGB N MUAWUN=O D=0

-
2w N

N
() QW « anNN N
» —

.
—

SDS620140000
1 November 1985

TABLE OF CONTENTS

SOOPEciticiiteerencenanannonnnns
Identification
Functional Summary

REFERENCESccciciieinnnnnannnns
Applicable Documents
Terms 8 Abbreviations
System Overview

Backgroundc000...
Relationship of the Test Bed
to Other ICAM Projects
Strategy for Evolution
Summary of Expected Benefits
of the Test Bed and IISS
Test Bed System Overview
Hardware Architecture
Software Architecture

REQUIREMENTSietiinrenceocnnnenn
System Definition
Network Transaction Manager
Configuration Item
Network Transaction Manager
Mission Statement
Network Transaction Manager
Functional Areas
Network Transaction Manager
Operational Scemario
Network Transaction Manager
Functional Specifications
Common Data Model Configuration
Item i e
CDM Mission Statemeat
CDM Functional Areas
The User Interface
Configuration Iter
User Interface Mission
Statement
User Interface Functional
AT@AS ittt i i
User Interface Operational
Scenariosc i,

vii

SDS620140000
1 November 1985
TABLE OF CONTENTS (Continued)
Page
3.1.3.4 Functional Specifications 3-95
3.1.4 The Virtual Terminal Interface
Configuration Item ceeeneean 3-110
5.1.4.1 Virtual Terminal Mission
Statement ceeeen 3-110
3.1.4.2 Virtual Terminal Functional
Areasiiiieiiennnanns 3-111
3.1.4.3 Virtual Terminal Operational
Scenarios, 3-111
3.1.4.4 Virtual Terminal Functional
Specifications 3-116
3.1.5 The Communication Subsystem
Configuration Item 3-118
3.1.5.1 Communication Subsystem Mission
Statement, 3-118
3.1.5.2 Communication Subsystem
Functional Areas 5-119
3.1.5.3 Communication Subsystem
Operational Scenarios 3-119
5.1.5.4 Communijication Subsystem
Functional Specifications 3-136
3.2 Interfacesciiiiiinnnnnn 3-139
3.2.1 Information Interfaces 3-140
3.2.2 Services Provided 3-141
3.2.2.1 Integrated Application Programs.. 3-141
3.2.2.2 Non--Integrated Application
Processesccoiiuunn. 3-141
3.2.2.3 Common Data Model 3-141
3.2.2.4 Distributed Database Processes .. 3-143
3.2.2.5 Local Database Management
Systems L i i, 3-143
3.2.2.6 Network Transaction Manager 3-143 .
3.2.2.7 User Interface 3-149
3.2.2.8 Communications 5-149
3.2.2.9 Test Bed Monitor 3-150
3.2.2.10 Interprocess Communications 3-150 ‘
3.2.2.11 Virtual Terminal Interface 3-150
3.2.2.12 Host Operating Systems 3-151
3.2.3 Protocols and Messages 3-151
3.2.3.1 AP Lo AP e 3-151
3.2.3.2 AP to CDMciiiininnn.. 3-152
3.2.3.3 AP to NTM 3-152
viii

SDS620140000
1 November 1985

TABLE OF CONTENTS (Continued)

Page
t 3.2.3.4 AP to UI iiiiinuenn. 3-152
i 3.2.3.5 CDM to CDM¢ciciievunnnn 3-152
: 3.2.3.6 NTM to NTMccvuenen. 3-152
SECTION 4.0 QUALITY ASSURANCE PROVISIONS 4-1
v 4.1 General ittt q4-1
) 4.1.1 Responsibility for Test 4-1
‘ 4.2 Special Tests and Examinations 4-1
Y
! SECTION 5.0 PREPARATION FOR DELIVERY 5-1
5.1 Hardwareciieeenennnnnnn 5-1
K 5.2 Software 5-1
¢ 5.3 Documentation 5-1
. 5.3.1 NTM Programmer's Manual 5-1
' 5.3.2 NTM Operator’'s Manual 5-1
' 5.3.3 Common Data Model Administrator's
Manual¢c0iiiiinnnnn. 5-2
E §.3.4 Precompiler User’'s Guide 5-2
b 5.3.5 NDML User’'s Manual 5-2
K 5.3.6 UIMS User’'s Manual 5-2
« $.3.7 VTI Programmer’'s Manual 5-3
h §.3.8 Forms Processor Application
Programmer Manual 5-3
» 5§.3.9 Interim Forms Editor Manual 5-3
s 5.3.10 NDDL User‘'s Guide 5-3
‘
; LIST OF ILLUSTRATIONS
‘ Figure Title Page
i
g . 2-1 Interconnection of Heterogeneous
‘ Systems via Local Area Network 2-12
' 3-1 NTM Configuration Tree 3-2
’ 3-2 Cluster APsciiiuiieninennnnn. 3-5
3-3 Ease in Implementation 3-6
; 3-4 Host 1 e e 3-7
! 3-5 I1ISS Architecture - Conceptual Model 3-8
! 3-6 NTM Environment on One AP Cluster 3-9
v 3-7 NTM Environment on UI WS 3-10
3-8 NTM Environment on COMM WS 3-11
} ix
; |
.I
D

A . . > . LA L . . PR . o . . R
.!".!‘l ..l'.».l‘?.l'. u‘!‘n A t.','\‘,‘-.v 08 9t St ‘.\q‘, 48,0 0% 'ﬂ"t. \ ."J .-0 i..\ .0 I T m.lt ". ' " l‘. (WA .'I X P Mo Ny .. Non V(N 1 “- R} ?‘Q A3 e TUR P 4

o

3-9

3-10
3-11
3-12
3~13
3-14
3-15
3-16
3-17
3-18
3-19
3-20
3-21
3-22

3-23
3-24
3-25
3-26

3-27
3-28
3-29

3-30

3-31
3-32
3-33

3-34
3-35
3-36
3-37
3-38
3-39
3-40

3-41

SDS620140000
1 November 1985

LIST OF ILLUSTRATIONS (Continued)

Page

Operate Network Transaction

Manager Functions 3-15
Manage Messages Functions 3-16
Manage Processes Functions 3-17
Maintain Operability Functions 3-18
Communicate with Application Process 3-19
NTM Architecture Test Bed Overview 3-21
Spawning Schedulercc0iuee.n. 3-25
Message Authentication 3-29
NTM IDEF1 Concepts 3-31
NTM IDEFl Concepts 3-32
End-to-End Addressing 3-33
Guaranteed Delivery 3-37
CDM - Configuration Tree 3-56
A-O Develop Integrated Application

ProCessSesciieieiueencccnncnnnnas 3-58
A-O Operate CDMiiiieinnnnn. 3-59
A0 - Operate CDM Functions 3-60
Al - Maintain CDM Data Functions 3-61
Develop Integrated Application

PrOCESEE@S0ciuctenceccennncannennn 3-66
Precompile Application Process 3-69
NDML Precompiler Environment 3-70
Distributed Query

Scheduling Control 3-75
User Interface Configuration

8 o - 3-84
User Interface Management System 3-85
Display/Retrieve a Form 3-88
Filling Out a Form - User

Viewpoint i, 3-89
Control Diagram - Form Processor 3-90
Form Processor Start Up 3-92
User Log On Scenarioccievvennn. 3-93
Application Generation 3-95
VTI Configuration Tree 3-112
Interface to a Real Terminal 3-113
Data Acquisition, Conversion,

Transmission i, 3-114
Interface to an Existing

Application Program 3-116

3~-42
3~-43

3-44
3-45

3-46
3-47
3-48
3-49
3-80

3-51

3-52
3-83

SDS820140000
1 November 1985

LIST OF ILLUSTRATIONS (Continued)

Page

Communication Subsystem:

Configuration Tree0ceuvn. 3-120
Test Bed Local & Wide Area Network

Configurationt 3-122
Genet Permanent Virtual Circuit 3-123
VWriting & Reading into

Mail BOXitiiiecncnncacnenncnns 3-127
Interhost Communication ¥ Overview 3-134
Message Scheduling (Interhost) 3-131
Line Protocol Transmission 3-133
IISS Test Bed System Overview 3-142
I1ISS Test Bed Software Information

Interfacescciieennrnconccnns 3-144
Structure of a Typical IISS

Application Process000u.. 3-148
Predefined Query Processing 3-146

Example Protocols Between 11SS
Test Bed Processesc.ccivuenenn. 3-183

SDS8620140000
1 November 1985

SECTION 1
SCOPE

1.1 lIdentification

This specification establishes the conceptual design of the
system identified as the Integrated Information Support System
(I1ISS) otherwise referenced as the ICAM Test Bed. This system
is intended to be a computing environment that provides
integrated data management facilities and distributed processing
for heterogeneous databases resident on heterogeneous computer
systems interconnected via a Local Area Network. This computing
environment is Lo be used for demonstrating the integration of
the data produced by three distinct manufacturing subsystems:
Shop Floor Management (MCMM), Decision Support (IDSS) and
Material Requirement Planning (MRP).

This document has been prepared by Project Priority 6201M
of the Air Force's ICAM program. This project is conducted by
the General Electric Company, with the participation of other
contractors as presented in the Preface of this document and
supported by various consultants and contributors.

This project is sponsored by the Manufacturing Technology
Division of the Air Force Vright Aeronautical Laboratories.

1.2 Functional Summary

The Integrated Information Support System (IISS) is a test
computing environment used to investigate and demonstrate and
test the concepts of information management and information
integration in the contexts of Aerospace Manufacturing.
Specifically, IISS addresses the problems of integration of data
resident on heterogeneous databases supported by heterogeneous
computers, interconnected via a Local Area Network. A Common

*Four data classes are defined as follows:

Class I - data totally managed by CBIS

Class II - data directly accessed by CBIS, but externally
managed

Class III - data subject to CBIS standards and procedures

Class IV - data subject to CBIS guidelines

A fifth class, defined as "private data," is totally outside of
the control of the CBIS policies and procedures.

SDS620140000
1 November 1985

Data Model is maintained and provides the mechanism required to
integrate the data. 1Initial data integration is targeting the
Class II environment; however, IISS is required to be extensible
to the Class I data environment. The definitions of the Class I
and Class II data environments appear in Section 2.2.

SDS620140000
1 November 1985

SECTION 2
REFERENCES

2.1 Applicable Documents

1. ICAM Documentation Standards, ICAM Document IDS
180120000A, December 28, 1981. '

2. A.D. Little, ICAM Computer Based Information System
(CBIS), System Environment Document, ICAM Document SED
310140000, September 1981.

3. A.D. Little, ICAM Computer Based Information System
(CBIS). State of the Art Document, ICAM Document SAD
310140000, September 1981.

4. A.D. Little, ICAM Computer Based Information Sysiem
(CBIS), System Requirement Document, ICAM Document SRD
310140000, September 1981.

5. Control Data Corporation & Dacom, 1ISS Test Bed CDM
System Requirements, March 3, 1982.

6. General Electric Company, Test-Bed System Requirement
Document, Revised June 11, 1982.

7. 8SofTech, ICAM Test-Bed Interim Standards and Procedures,
ICAM Document ISP 620150000, February 1982.

8. 1ICAM Program Office, The Integrated Sheet Metal Center,
September 30,1981.

9. N. Tupper, Memorandum for the Record, October §, 1981.

. 10. SofTech, 1ISS Test Bed Network Transaction Manager
System Design Specification, Document 1098-7, June 1982.

. 11. General Electric Company, Test Bed System Specification,
revised August 23, 1982.

A listing of all of the documents produced as part of the
final report of the project may be found in the Final Technical
Report Volume I (FTR620100001).

. A AT RN e
DRI RN PO RN NN A R AR L RN KA K N M

e, 0N) ARG H
P W . N i,

8DS6820140000
1 November 1985

2.2 Terms and Abbreviations

Active: Computer-enforced (at compile time or at run time).

Activity Framing: Feature which allows to declare a set of
Application Processes as being part of a single operation which
makes sense from the user viewpoint. All database changes
contained within an activity frame are incorporated or else none
are jincorporated in the databases.

Application Process: A cohesive unit of software that can be
initiated as a2 unit to perform some function or functions.

Application Process Cluster: The logical grouping of
Application Processes and of one Message Processing Unit (MPU)
NTM component.

Application Subsystem: An Application Subsystem consists of one
or more application processes and performs specific
manufacturing management functions. Instances of ICAM
Application Subsystems are: MC-MM, IDSS, a commercially
available MRP Systenm.

Class II Data: Data for which query activity is under direct
control of the IISS and for which update aotivity is under
indirect control of the IISS.

Common Data:

1. Data used by more than one Application Subsystenm.

2. Data updated by one Application Subsystem and used by
another.

3. Data planned to evolve into a category described by (1)
or (2) above.

Common Data Model: Describes common data application process
formats., screen definitions, etc. of the IISS and includes
conceptual schema, external schemas, internal schemas, and
schema transformation operators.

Data Integrity: Improved quality, consistency and
recoverability. The Test Bed common data is subject to the
following integrity checks:

1. Type checking

* # - K AY A
LU P

g ¥ A a2 P s oY

8D8820140000
1 November 19088

2. Existence checking
3. Edit checking (7-digit telephone number)

4. Attribute value checking (shirtsize = small, medius,
large)

Deadlock: Two processes are said to be dead locked when each
process is waiting on the other to complete before proceeding.

Domain Check: Operation which ensures that the values of a
given attribute lie vwithin some prescribed set of values. These
values may be continuous, discrete, numeric or non-numseric.

Expert/Novice Mode: The User Interface supportis the coancept of
Expert/Novice mode of user interaction. 1In the novice mode, the
user receives tutorial assistance from the system to guide his
selection of system features and functions. 1In the expert mode,
the time-consuming tutorial assistance is suppressed for maximsum
efficiency.

Form: Predefined screen format description. The description
includes the Textual, cursor positioning., data-checking
information required to display or input data into 11SS.

Guaranteed Delivery: Test Bed provided service which ensures
the delivery of a message to its destination even if the
destination process is unavailable at the time the message is
issued.

Integrated (Test Bed) Application Process: An Application
Process which:

1. Uses the Neutral Data Manipulation Language to retrieve
Class Il data which may be distributed on several
databases resident on the Test Bed.

2. By the end of the contract, it uses the local database
manipulation language to update the local database to
which it is bound.

3. Performs its terminal input/output operations on the
Test Bed terminals.

4. 1Is controlled from the Test Bed terminals.

2-3

1 A" JRIONANT 1 S N
O AT AR NANINT SO AAIRIAOEOA OO 7 SO

S8DS8620140000
1 Movember 1985

Non-Integrated (Test Bed) Application Process: An Application
Process which: ‘

1. Does not use the Neutral Data Manipulation Language to
retrieve Class II data. The Local database Management
System data manipulation language is used for local
database manipulation (update. retrieval).

2. Perforas its terminal Input/Output operations on the
Test Bed terminals.

3. 1Is controlled from the Test Bed terminals.
Non Procedural Query: Value stated query. The query statement

focuses on what needs to be retrieved rather than on how to
carry out the retrieval operations.

Paired Message: A message which contains either a:

a. Request for a reply, or
b. Reply to a uniquely identified request.

Pre-defined Query Application Processes: Information processing
functions implementing predefined data query application
processes. The code required for implementation is predefined
(manually if necessary) precompiled and linked.

Response Time: Duration of wall clock time between submission
of a user request and receipt of the first character of output.

Synchronization Point: Quiet point where the following is true:

1. The Test Bed databases are in a consistent state

2. The state of the queues of pending application process
is known and avajilable for future reference

3. The state of the databases is known and available for
future reference

4. The state of the queues of pending application process
and the state of the databases have been given a common
identifier.

System Clean Point: State of the system which satisfies to:

» a » kT P T A" AT A 2" M At P " --y--q.‘\
»

\ [F Sof " LIPS] » » » oA -*
DR | .l‘ e ‘l' ‘l l"'l‘.‘(“ c.l‘n § Y \‘l’l'o.l'i,l MU AL G LAY I'.\‘q VW0 UM AU i S Ui h WA, A,

SD8620140000
1 November 1985

1. The test bed databases are in a consistent state
2. The state of the databases is known and available

o S. The state of the queues of pending messages is known
« and available.

System Quiet Point: Period of time during which the following
is true:

1. The dispatch of messages triggering the execution of
application processes is suspended.

K 2. All dispatched application processes are closed
N (processing is completed).

X 3. 8ystem quiet points are invoked and terminated under
&v control of the Test Bed operator or Test Bed control
P mechanism.

Terminal Control VWords: A neutral representation of terminal
. features implemented by specific control characters.

¢: Test Bed Utilities: Test Bed functions that either provide Test

O Bed operability or facilitate the execution and terminal

iR input/output operations of the Application Processes resident on
' the Test Bed.

ﬁg Time to Complete: Duration of wall clock time between

g; submission and completion of a user request.

¢

1

e User Interface: Test Bed services which facilitate the man

machine dialogs between the Test Bed services, some of the

by Integrated or Non-Integrated Application Process resident on the
o Test Bed and the Test Bed user. The User Interface services are
£X available through the Test Bed terminals.
!

B 2.3 system Overview

e 2.3.1 Background

o The objective of this project is to establish and operate a
ﬂh Test Bed to validate the concept of Integrated Applications

‘ supported by an Integrated Information Support System (IISS). ‘
In addition, the project is to establish a set of interim
standards and procedures to guide the design of the IISS and to
provide guidance to other ITAM projects. Finally, a set of

2-5

!

e ‘ . “ - i - . ~r AL 2 -
BN DA T S B s B R S T LT N S Dy o M OO o T D O Sy O D e D CN N O

SDS620140000
1 November 1985

requirements is to be established which will be the basis for
enhancements to the IISS.

This project is intended to provide the test and
demonstration vehicle for the ICAM Information Support Systea
concepts described in the 30 September 1981 "Integrated Sheet
Metal Center" (Threads Document) and the Project Priority “3101
Computer Based Information System (CBIS) Requirements Document.”
As the strategy for evolution to the “CBIS data Class II" and
"CBIS data Class I" (see footnote on Page 1-1 for a definition
of the data classes) environments is developed and implemented,
the associated costs and benefits can be tracked against the
baseline system.

The ICAM products being considered by the Project Priority
2201/2 contractors for implementation in the Integrated Sheet
Metal Center (ISMC) can be implemented first on the Test Bed.
In this process, the problems of rehosting the software,
integrating multiple ICAM products, and demonstrating
performance will be identified and solved, thus reducing the
risk to the ISMC implementator. Cost and performance
evaluations of the products can be done within the Test Bed.

ICAM products not chosen for implementation in the ISMC can
also be installed on the Test Bed, providing the same evaluation
benefits and reduction ¢f risk to other potential users.

2.3.1.1 Relationship of the Test Bed to Other ICAM Projects

The first Test Bed demonstration is to include the shop
floor control system from Project Priority 6103 (Manufacturing
Control Material Management - MCMM), integrated with appropriate
modules of a commercially available Manufacturing Resource
Planning (MRP) system. This integration will be supported by
appropriate tools from the Integrated Decision Support System
(IDSS), similar in capability to the "mid-configuration”
described in the ICAM Program Office’'s 30 September 1981 ISMC
"Threads Document.”

The contents of the subsequent demonstrations will depend
on several factors and come from several sources. For example,
they could come from requirements’/recommendations from within
this Test Bed project, from the ICAM Program Office., from other
ICAM Projects (particularly ISMC Projects 2201/2), and from
industry in general. Enhanced capabilities in the manufacturing
systems applications area (technical and control threads) will
come mainly from projects 85501 (IPS) and the Integrated Decision

2-6

| ‘ ,
P g e

-

..,,‘
SR
P XA

Fu
3
“

‘t

ut

PGHOASO0AN
Yats, et gy

UK

OBCAG 0 OO0
DSOS N \, Y L

SDS620140000
1 November 1985

Support Systems (IDSS) projects 8203 and 8205. System

Engineering Methodology (SEM) tools will come from SEM Project
1701.

The Test Bed project has worked and will continue to work
closely with other related ICAM projects in determining system
requirements, defining standards and procedures for the initial
implementation, and identifying deficiencies and voids in the
available components. Beyond the functional and application
areas, methods to be used in all aspects of the system life
cycle are also to be addressed. Aspects to be coordinated with
the SEM (System Engineering Methodology - ICAM Project Priority
1701) includes: data definition methods; database design; use
of the data dictionary; structured analysis methods; system
specification techniques;: prototype development: standards for
data definition; data manipulation; message definition:; and
documentation standards and performance analysis techniques.

Needs and priorities for enhancements will be defined by
the ICAM Program Office based on recommendations from the Test
Bed project coalition and related projects. Requirements for
the enhancements will be defined by this Project (6201).

Project Priority 1701M (SEM) will have the responsibility for
designing and building the required software and defining the
required standards, procedures, and guidelines based on the
requirements. To facilitate the coordination of this Project
6201 with Project 1701, an informal working arrangement has been
established with the Project 1701 Prime Contractor.

2.3.1.2 Strategy for Evolution

It has been estimated that in large U.S. corporations, most
of the existing computer applications will be redesigned over
the next 10 to 20 years. It is further expected that, due to
the rapidly changing computer technology. the construction
techniques and operation modes of new applications will bear
little resemblence to those of existing systenms.

The Project Priority 3101 CBIS coalition provided a set of
six principles as guides in formulating a solution for the
(relatively) near term which are also extensible for the
expected longterm trends. Individually, each of these
principles reflects state-~-of-the-art technology:. however, they
have not been implemented together to yield an integrated
system. These principles are stated as follows:

1. 1IISS is a key mechanism for the integration of

2-7

qqqqqqqqq

SDS620140000
1 November 1985

computerized manufacturing. It defines, controls, and

executes actions affecting information among various .
functionally independent subsystems, based on the use

of common data.

2. 1I1ISS employs a coordinated database approach to support
information resource management of various application
systems in a closed loop environment within
manufacturing.

; 3. 1I1ISS implementation strategy employs several stages of
data and application control which allow for increased
usage of facilities as management seeks to gain greater
benefits from the IISS.

4. 1ISS operates as a transaction oriented system
responding interactively to user commands, rather than
to prescheduled batches of computer progranms.

' 8. 1IISS is accessible from geographically dispersed
locations.

: These principles and other results of the CBIS project were
inputs to establish a starting point, extended and were further
articulated by the ICAM Program Office and the Project 6201

: coalition. Requirements, specifications, and the overall system

" design are being developed with a view of both short and

long-term implementation plans for the Test Bed. To help focus

attention on the long-range needs of the test bed, projections
on the future direction of computer systems architecture, and
the manufacturing environment to the year 1990 and beyond, and
the impact this will have on the Test Bed technology. have been
developed. This is published as the "Test Bed Migration Path" in
Appendix C of the System Requirements Document (SRD620140000).

YR

The "cost drivers" which the ICAM CBIS Requirements
Definition (Project Priority 3101) defined as critically .
associated with the CBIS environment are summarized in the
following nine categories, all of which are being considered as
part of the Test Bed 1ISS design: .

1. Data independence - making computer data files
independent of the programs which use them. |

: 2. Data nonredundancy - minimizing the number of
occurrences of the same data in different files.

' 2-8

¥

be
ty

3
L]
*

)
]

v

Lk
¢
-
.
5

SDS620140000
1 November 1985

3. Data relatability - facilitating the changing of file
structure based on specific "views" required by
different programs and transactions.

4. Data integrity - improving data quality, comsistency,
and recoverability.

5. Data accessibility - providing low-cost, user-friendly
access to data stored in various files and computers.

6. Data shareability - ensuring that many programs can
access the same files simultaneously without degrading
performance.

7. Data security - ensuring that data are isolated from
users who should not have access to it.

8. Data performance - providing proper controls for
changing the CBIS environment over time as changing
user needs cause the basic system requiremeants to
change.

9. Data administration - supplying appropriate standards,
procedures, and guidelines to ensure consistent
evolution of the CBIS environment as demands and
technologies change.

Implied above is the need for the IISS to operate in a
aixed environment containing old and newly developed
applications. It is clearly recognized that the existing
applications must be supported, while techniques for technology
development and new applications development are concurrently
provided.

2.3.2 Summary of Expected Benefits of the Test Bed and 1ISS

The Test Bed will serve as a step toward realizing the full
benefits of a CBIS as represented by the "cost drivers®™ in the
preceding section (Section 2.3.1.2). It will also serve as a
facility to assist others to achieve these benefits faster and
with less risk. Some of the benefits of the Test Bed may be
summarized as follows:

1. Provide testing facility for individual ICAM software
products.

2. Demonstrate initial integration of ICAM products.

2-9

} . _ e A LY » » - ry o - AL PTRILTE . -
RO S IO M MR N X Mol W , L 2] AW Tk l“l'.q.. ALY R R (’ 2 3% WS a5, ‘If * W1/ LR AN

SDS620140000
1 November 1985

e Data integration via the Common Data Model

e Techniques and procedures for more extensive
integration of program functions

Provide a site for demonstration and evaluation of ICAM
products.

e Applications

e Methodologies

e Information support system

Reduce risk to subsequent users of ICAM products.
Provide standards, guidelines, and procedures.

e For development of ICAM products

e For evaluation/adoption by industry

Demonstrate strategy for transition from current
application processing and development methods to use
of the evolving techniques which will subsequently

reduce cost and increase system flexibility.

e Distributed heterogeneous systems, distributed data,
and distributed processing.

e Independence of application data from considerations
of actual internal storage organization and database
Management System access techniques.

¢ Reduced data redundancy.

e Automated data validation and constraint checking
through the Common Data Model.

e Transaction-oriented applications.
e Standardized user interface (similar menu 1
construction for all applications, standard user)
"HELP" procedures, standard error messages, etc.).

e Control of execution, in a consistent manner, of 1

2-10

SDS620140000
1 November 1985

processes on different computers using different

. operating systems.
e Facilitation and control of the passing of data and
. - messages between processes on the same or different
‘ computers. ‘

e Consistent error handling throughout the systea.

] e System-wide control of startup, shutdown, restart,
o and recovery.

e Application programs written using relational
database languages referencing nonrelational
databases.

) e Independence of application program from the
e computer on which the user terminal is located.

X e Independence of application program from the

characteristics of the terminal on which it will be
¢ used.

W e System-supported translation of information formats
0 to host-specific representations.

2.3.3 Test Bed System Overview

W The following is an overview of the presently envisioned
Hardware and Software Architecture.

) 2.3.3.1 Hardwvare Architecture

The hardware architecture of the Test Bed supports the
interconnection of the heterogeneous computer systems required
to demonstrate the functionality of the Test Bed (Figure 2-1).

ehe e

L TR, e
T
e lelel

The Test Bed hardware architecture supports the
interconnection of three computer systems via a Local Area
. O Network (LAN) complemented by Wide Area Communication Services.

S e
e e

p 2-11

K \‘4

ot A PO - 1 (] 394,08, 4% .4 0 j MY OGN ¥ !
e '.t"»"‘l-"-,“'.c"fa“:-":-'O:s".o"tv",t".\‘l.c"’.u'\.v".v‘ YRR SO AR TN S MACTIR W TR N T T O et U et LI A

8D8620140000

1 November 1985

AI0MON ©dIY [ed0]
viA swoq84iS SnosuadolsloH JO UOTIOIUUODOIIIUI ‘-2 dInd1d

12V A0S WA

v

|
— WS anU £
|] w.

w

— bt _— T A
_ T - :
_ _e3100m03 J0ms _ — T 1 3
NUOM L I8 d
] J all@ln_. vigv oM — :
shed $2C v30 .,n
_ VSV ‘MWL WA ¥2)4508 ‘_ _ o W _ .
— NINDIA N0 _ _ _ =
— o WY ¢ — QM
Rt 1IN0 13408 =
— — — w0 084784 SVA — -
[} >] | — -d M-.

K
[

]
13

TSRS
QOO R LM

)
»

Ty

o0
l.f.

)

"9 l.

SDS620140000
1 November 1985

The three computers embedded in the Test Bed are:

1. A Honeywell Level 6 computer supporting the MCMM
database and MCMM application programs.

2. A VAX 11/780 computer or equivalent supporting:
" e Test Bed User Interface
) ® Test Bed Common Data Model
R e IDSS 2.0 and its database

3. An IBM 3081 computer supporting an MRP package to be
: selected in conjunction with the IPS Project Priority
' 5501 team (see Figure 2-1).

I The Test Bed makes use of a Local Area Network to
interconnect the Honeywell Level 6 and the VAX 11/780 which are
in close geographical proximity. This approach offers high
throughput, ease of installation, expansion capabilities, and
supports the process-to-process communication capabilities

5y required to integrate the heterogeneous databases present in the
iy Test Bed environment.

gt The Test Bed makes use of Wide Area Communication lines to
extend the functionality and usefulness of the Test Bed to
computers which are geographically remote.

¢ 1. A synchronous leased line provides medium speed

¥ ‘ communication capabilities to the General Electric

A owned IBM 3081 located 3 miles away from the computer
center used to develop the Test Bed. (Later moved to Ge
: facility in Rockville, Md., and then to a Boeing

o facility in Wichita, Ka.)

2. Asynchronous lines are provided to interconnect the
i ICAM (CIDS) (Initial Implementation) and ISMC
% development computers to the Local Area Network

. hardwvare, as well as to interconnect ISMC development
f terminals to the VAX 11/780 of the Test Bed through the
i User Interface.

ty The Test Bed hardware architecture allows for expansibility
“ and flexibility.

1. The Test Bed hardware architecture can be expanded to

2-13

SDS620140000
1 November 1985

the MAX Configuration described in the Threads
Document. Back end data machines and/or additional
general purpose computers can be interconnected via the
Local Area Network.

2. The Test Bed hardware architecture can be expanded to a
full size production system with minimal changes to the
software.

2.3.3.2 Software Architecture

The major software subsystems are also indicated in Figure
2-1.

2.3.2.2.1 Distributed Application Data on Heterogeneous
Databases

The application data are distributed in heterogeneous
database management systems, themselves resident in
heterogeneous processors. This approach allows for the
integrated query of existing databases by new integrated
applications without conversion of the database.

2.3.3.2.2 Class 1I Data Integration

The Test Bed software and system utilities support Class 11
(see footnote, page 1-1) data inquiries. These inquiries may be
directed toward any database resident in the Test Bed, and are
under the direct control of the Test Bed Common Data Model
Processor. System utilities perform data integrity checks
selectively on the data being retrieved in the system. The
early implementation of the Test Bed supports updates on the
databases bound to the Application Subsystems. Update
activities are under the control of the Application Subsystems
and are under indirect control of the CDM to the extent that
data entry and messages are checked by the CDM. The data
integrity checks performed include edit, domain, and range
checking. The data required to support the data integrity
checks are contained in the Common Data Model and are under
control of the Common Data Model Administrator. Data inquiries
use the Test Bed Neutral Data Manipulation language to query
Common Data contained in the databases integrated by the Test
Bed. The Test Bed Neutral Data Manipulation Language allows the
definition of nonprocedural queries which are independent of the
structure of the database(s) being accessed. System services
allowv the retrieval of data contained in more than one database
in more than one system.

2-14

— W AR ..

—— .

SDS620140000
1 November 1985

2.3.3.2.3 User Interface and Data Query via Preplanned

Transactions

In the early 1983 implementation, user interface and data
query are accomplished by preplanned transactions and messages.
This method will evolve toward ad-hoc inquiries as development
of the Test Bed continues after early 1983. Inforsation queries
via preplanned transactions support the manufacturing scemarios
which have been identified and constitute a natural first step
toward ad-hoc query. Message integrity checking is supported by
system functions, and is performed selectively. The information
required to support the message integrity checks is contained in
the Common Data Model and is under the control of the Common
Date Model Administrator. (Message integrity checking: Future)

2.3.3.2.4 Integration and Coordination Through the Common Data
Model

The Common Data Model is a resource which is maintained in
a centralized fashion to support the following functions:

e Define logical structure of the information common to
tvo or more Application Subsystems. The definition
includes entities, their attributes, and the
relationships between entities.

e Define the domain and values of the entities.

® Access control or authorization information identifying
the operations that can be accessed by a particular
user.

e Define the format of the data as stored.

e Catalog of Common database procedures such as schema
translation, schema definition, Neutral Data
Manipulation statement translation, data translation
procedures.

e Locate the specified data in the logical data structure
(Test Bed Conceptual Schema).

e Convert query requests to fit the locations of the data
and the required processing.

o Aggregate the responses from the various databases.

2-15

SDS620140000
1 November 1985

e Check for the validity and completeness of update
requests (Class II environment).

e Support the user interface. :

2.3.3.2.5 Integration and Coordination Through the Integrated
Network Transaction Manager

The Common Data Model provides a repository for the data
describing the data, procedures, and policies shared among the
various IISS Application Subsystems.

The Network Transaction Manager provides the operational
implementation of the above concepts, the control of the
execution of transactions, the control of the flow of messages
through the network, the restart and recovery requiremeants, and
the monitoring of performance.

The Network Transaction Manager is invoked to carry out the
following functions:

e Dispatch of messages through the IISS Network

e Follow-up on open transactions

o Logging, time stamping of messages

e Monitoring of system performance (Future)

e System synchronigzation

e Restart of the 1ISS system

e Restart and recovery of the databases (Future)

e Control of Application Subsystems

The Network Transaction Manager controls the execution of
application subsystems by processing the Transaction Message
queues built on each node. The queues provide the necessary
buffering action resulting from the asynchronous nature of the

Test Bed Application Subsystem.

2.3.3.2.6 Guaranteed Delivery of Messages

The Network Transaction Manager is also invoked to

- e -

[

SDS620140000
1 November 1985

guarantee the delivery of messages. This service is provided to

facilitate the migration of the Test Bed to the Class 1
environment. -

. ‘This capability guarantees that messages will be delivered,
even if the destination application subsystem is temporarily
unavajilable. To that effect, the messages are uniquely
identified at the level of the IISS by journalizing the message
type and Application Subsystem of origin, and by time stamping.
Time stamping and journaliszing allow for the chronological
reconstruction of the transaction input stream. This technique

supports the recovery of unavailable nodes or Application
Processes.

It should be further noted that the systea can guarantee
that the message was given to the destination process, and even
that the process acknowledged having completed processing. The
system cannot, however, guarantee that the receiving process
actually did process the message and perform the requested
functions, or, for that matter, that the message was even read.
The proper processing of messages is totally dependent on the
receiving application process and cannot be controlled or
guaranteed by the IISS system.

2.3.3.2.7 Standard User Interface

Test Bed User Interface

A Test Bed User Command Language simplifies the task of the
user when interacting with the Test Bed. User inputs are
through a forms system including menus, formatted data displays,
and forms for data entry. The inputs are then formulated into
standard messages that are sent to the application processes in
the proper host computer.

The User Interface thus provides a unified format to invoke
Test Bed System Utilities as well as to support the user

dialogues of Application Subsystems specifically designed for
the Test Bed.

Virtual Terminal

The proliferation of terminal hardware and the wide
disparity in capabilities and features of commercially available

terminals create an interfacing problem between IISS and its
terminals.

2-17

S » } . . -
NN O A T s, T O S A S T A A A Y

R

- -

T e e ga S

1

¥ QO ¥ WAL RNt e AT I 0 (e e T RO
AN "‘-""&’.l“!“' RIS 4"’""\ ORI .a‘l.\“!- B0 ‘o’u"‘. AN AT A A ».n.\ 9 VR 2 e fa 10

SDS5620140000
1 November 1985

This problem is resolved by defining a specific set of
terminal features and protocols which must be supported by the
I11ISS software. This set of features and protocols comstitutes
the IISS virtual terminal definition.

Specific terminals are then mapped against the IISS virtual
terminal software by specific software modules written for each
type of real terminal interfaced to IISS. This approach is
consistent with the layered software philosophy of IISS since it
permits the interfacing of a wide variety of terminals without
changes to the 1IISS application programs.

System-Wide Forms and Protocols

User forms and user protocols are defined at the IISS
system level. These forms and protocols define the manner in
which the IISS user interfaces with IISS. The forms are data
structures with attributes which are enforced by the foras
package. Mandatory fields, alphanumeric fields, and numeric

only fields are examples of the attributes which are enforced by
the forms package.

The forms and protocols are defined by data stored in the
CDM, and as such are very flexible and extensible.

o P
" l.‘..' 1,58

»

SDS620140000
1 November 1985

SECTION 3

REQUIREMENTS

3.1 System Definition

3.1.1 Netvork Transaction Manager Configuration Item

3.1.1.1 Network Transaction Manager Mission Statement

The Test Bed is a distributed computer system made up of
cooperating processes. As an example of cooperating processes,
consider the processing of a distributed query. 1In this
example, processes resident on several hosts are cooperating in
the retrieval, selection, unit and format conversion of data
resident on several databases.

The Network Transaction Manager performs the coordination,
communication and housekeeping functions required to integrate
the Application Processes and System Services resident on the
various hosts into a cohesive system. The management of mail
boxes, message queues, application processes, to name a few, are
examples of System Services provided by the Test Bed.

3.1.1.2 Netwvork Transaction Manager Functional Areas

The configuration tree of the NTM is shown in Figure 3-1.
Figure 3-1 shows three major functional areas:

o Manage Message

e Manage Processes

e Maintain Operability

The Test Bed is a message-driven system. The Test Bed uses
messages to request the execution and termination of Application
Processes and system services. Messages are also used to
exchange data between Application Processes and System Services.

The Manage Message functional area of the Network
Transaction Manager is responsible for the management of these
messages.

The Application Processes resident on the Test Bed need to

41,00, %00

SDS620140000
1l November 1985

RECEIVE
MESSAGE

INTERPRET LOG MESSAGE AUTHORIZE
SEND

INITATE

TRANSACTION
MANAGER

MONTOR ﬂﬂﬂimﬂf
COMMUNICATE

Figure 3-1. NTM Configuration Tree

START-UP

SDS620140000
1 November 1985

be managed according to the processing needs of the environment.
Managing Applications include functions such as loading,
initiation, and terainating processes. These functions are
included in the Manage Processes functional area of the Network
Transaction Manager.

The Maintain Operability functional area of the NTM
contains the functions required to create, modify, maintain the
processing environment of the Test Bed. The creation,
modification and maintenance of the processing environment calls
for processing capabilities to support startup, shutdown,
recovery and monitoring of the Test Bed.

3.1.1.3 UNetwork Transaction Manager Operational Scenario

The Network Transaction Manager Operational Scenarios
presented here are introduced for the sole purpose of supporting
the identificatior of the functional specifications to be met by
the Network Transaction Manager. These scenarios are not meant
to imply a specific implementation of these functional
specifications. Consequently, the final design of the Network
Transaction Manager may implement scenarios which differ from
the scenarios shown in this subsection.

3.1.1.3.1 NTM Environment

To describe the environment of the NTM, it is necessary to
introduce the concept of an AP Cluster.

On an intujtive basis, an AP Cluster consists of processes
related to one application as viewed by the user. Examples of
Test Bed AP Clusters are the MCMM, the MRP, and the IDSS AP
Clusters. The formal definition of the AP Cluster concept is
given in Section 2. 1In the Test Bed, every Application Process
is uniquely addressable.

Communications and Control with each AP Cluster is
accomplished via Network Transaction Manager. In the Test Bed
environment, the AP Clusters may res.de on different hosts, thus
the various instances of the NTM may present some differences to
reflect the different operating system environments in which
they happen to operate.

SDS620140000
1 November 1985

3.1.1.3.2 NKTM Architecture

The AP Cluster concept introduced above offers the
following significant advantages:

1. The Application Processes which most frequently access
a database are grouped on the AP Cluster containing the
database supporting these processes. This grouping
minimizes the frequency of off-host data accesses.

2. An instance of the NTM is associated with each AP
Cluster to simplify the message traffic. All
communications related to one AP Cluster are routed
through that AP Cluster NTM. This approach streamlines
the type of communications which must be supported.
This concept is graphically illustrated on Figure 3-2
and on Figure 3-3. The first figure shows a system
which allows the Application Processes to Communicate
directly with one another. The second figure shows a
system which routes all communications through specific
communication programs. This second approach is
retained for the Test Bed, and is illustrated on Figure
3-4. This last figure shows the impact of the multi
host environment of the Test Bed on the Architecture of
the Communication and NTM Subsystenms.

More specifically, Figure 3-4 shows that not only each AP
Cluster has its own NTM, but that in addition, each host owns an
additional AP Cluster, with its own NTM, to communicate with all
other hosts. The AP Cluster used to communicate with other
hosts is called the COMM AP Cluster.

The above concepts and definitions lead to Figure 3-5
showing a conceptualization of the NTM architecture. The key
features of this figure are:

1. The User Interface AP Cluster, and Virtual Terminal
Interface

2. The CDM Processor AP Cluster
3. The NTM operator AP Cluster

4. The NTM supports communications between any two AP
Clusters shown on the diagram

This figure is, however, a conceptualization. The cross

SDS620140000
1 November 12385

o Wb A G0 O O Eh > W D S @& & --.‘

---I--_----_--_-__-__,I'
3
:

S a >

Figure 3-2. Cluster APs

bar matrix arrangement shown has no implication on the
architecture of the Test Bed. The Test Bed NTM architecture is
more fajthfully represented on Figure 3-4. The Communication
Subsystem described in Seotion 3.1.85 supports the architecture
of Figure 3-4.

The interaction of the NTM and its environment is depicted
on the IDEFO diagram shown in Figure 3-6. Vith respect to this
diagram, the following observations are made:

1. All messages, whether Inter or Intra AP Cluster
messages, are received and handled by the NTM.

2. The NTM places requests to the host operating systems
to initiate and/or abort specific Application
Processes.

3. The NTM receives status information from the host
operating system.

SDS620140000
1 November 1985

‘\~‘-7_"’
AP CLUSTER

\, FOR EASE IN IMPLEMENTATION
) OF THE COMMUNICATIONS, THESE
/ PATHS CAN BE COLLECTED AND

/" SERVICED BY SOME NETWORK OR
COMMUNICATION SYSTEM

Figure 3-3. Ease in Implementation

4. The NTM delivers messages to the Application
Processes. These messages may be viewed as input data
to the Application Process.

5. The NTM receives messages from the Application
Processes. These messages may be viewed as output
data from the Application Processes.

6. The NTM transmits all messages to their destinations,
whether inter or intra off AP Clusters.

Figure 3-7 and 3-8 are variations on the theme shown in
Figure 3-9. Figures 3-7 and 3-8 are drawn for the COMM (inter
host) Application Process and for the User Interface. From an
NTM point of view, Figures 3-6, 3-7, and 3-8 are identical. From
an Application point of view, Figures 3-7 and 3-8 show the
additional input/output requirements specific to the User
Interface and COMM AP Clusters.

:
:

.

b e O AT A AN LAY N SN S, AU S OO M AOR AU A e

SDS620140000
1 November 1985

Figure 3-4. Host 1
3.1.1.3.3 NTM Functional Description

Figure 3-9 is the Top level of an IDEFO diagram portraying
the functionality of the NTM. This diagram shows the three
major functional areas identified earlier and their interaction.

Figure 3-10 details the MANAGE Message functional area.

This figure shows that messages, once received by the NTM, are

checked for authorization, logged and routed. A message header
* is appended by the NTM to facilitate the routing and
interpretation of the message. At this level of description,
the Route and Send Message function includes the routing and
sending of a message to an off AP Cluster, on AP Cluster, or
maintain operability Application Processes.

Figure 3-11 details the Manage Processes functional area.
This figure shows that messages are interpreted and either used
to control Application Processes or to communicate with
Application Processes.

SDS620140000
1 November 1985

19poR 1enydaouon - 9anj0931Yoly SSII "G-¢ dxndid

N 3H1 20 3ONVISM
40 01 YW VJQ %D@ !@u N0 SINIS3td3H X08 XOV8 ML
Y2USATD &V 24V
20V4UN SININOJIN0D TWNOLLONNS UVIONI SXD018
WO 13sN dING | | HOLINOW SNOLLOINNOD JLVION SINN :ON393
)) S B)
1 1 1
N00 Y N v | [oumad dav|| 4o adv
NN WIN NN WIN
. XD
NN OV
W L w He
. - YL
I w17 @
: XJNGD
u - -
¢ WY 12 oY
e WN T
NI 2V /
* = < - -
T1 vioav \ -

3-8

MSG. TO OFF-AP CLUSTER

MSG. TO ON-CLUSTER AP

SDS620140000
1 November 1985

0S PROCESS
CONTROL REQUEST

MESSAGE, HOST,
AND AP CLUSTER

=)

PROCESSING
AT AP

05 REQUEST

0S PROCESS CONTROL RESPONSE

MSG. FROM ON-CLUSTER AP

Figure 3-6. NTM Environment on One AP Cluster

VIEWPOINT: SYSTEM ENGINEER

SA I0 uOo juSWUOITAUT WIN "4-C 9andrg

SDS620140000
1 November 1985

ALITVNOLLONAS N ONVASUIONN :3504uNd UIIMONI WALSAS ‘LNIOIMIA
S3H3S
h s ——
3
S..mmsz .

- WU043d _.E&&:
TUNINEL IV uIsN
Y3SN 01 95N) NOu4

_L ISNOJS3Y OUINDD SS3006d SO BN
(@]
¢ n
1530034 SO ©
30N3S
dV HIUSITIONO WOk BSW 1|
1S3N03 JOHINOD
: $53004d SO
dV H3ISNIONO 01 9SW ' .
: NIN e’
- . T YT
¥3LSN 10440 0L 'ISW HAUSAT) dv-440
SININFANOIY DNISSII0U WOoud IS
FVAIN NIN
NOLLINGIIO H31SNTD S1S3N03Y

sSDS620140000
1 November 1985

MSG. TO OFF-CLUSTER
MSG. 70

MSG. TO ON-CLUSTER AP
3-]
PURPOSE: UNDERSTAND NTM

0S PROCESS
CONTROL REQUEST
2
Figure 3-8. NTM Environment on COMM WS

!

0S PROCESS CONTROL RESPONSE

j |
| E”':"’Tﬁ T é E
w g5t . 2
73 331 !
gg E

3-11

DT IN I LD]

SDS620140000
1 November 1985

The initiate Application Process function includes the
scheduling of such initiation. The scheduling information is
contained in the message initiating the process.

The Abnormally Terminate Application Process functions
include the termination of an Application Process and the
housekeeping actvities related to such termination. 1In the Test
Bed, termination of an Application Process may be accompanied by
the termination of the query processors and data aggregators
initiated by that Application Process. Data aggregators, and
query processors are described in Section 3.1.2. The infor-
mation required to keep track of active query processors and
data aggregators its maintained by the NTM. For example, a
chained list links the various processes (query processors, data
aggregators, transformers) to the Application Process which
required these services.

Figure 3-12 details the Communicate with Application
Process function. Messages are accepted from and delivered to
Application Processes. Messages are also paired on an
Application Process basis. This supports the detection of
unanswered messages and the initiation of corrective action, by
the receiver, in the event of a time out. The NTM message
pairing capabilities allow the detection of end to end problems
(such as the failure of one Application Process to return an
expected reply) as well as to detect host and local area network
failures. The NTM on the originating AP Cluster detects time
out conditions and reports the time out to the process which
originated the message.

The detection of malfunctions in the LAN is performed by
the COMM subsystems.

Figure 3-13 details the Maintain Operability functional
area. This functional area is shown to breakdown into the
following key functions; and relates to the IISS System
Software:

e Start up (IISS on host)

® Restart

e Shutdown (IISS on host)

e Test Bed Recovery

® Monitor and Record Resource Usage

3-12

o

7

SDS620140000
1 November 1985

The Maintain Operability functions are also shown to
communicate with the IISS operator. The operator acts as the
controller of the Maintain Operability of the IISS System
Software, and as such is the recipient of the maintain
operability status messages issued by the System Software.
These messages may also be stored in a file for archive and
analysis purposes. Status messages issued by user supplied
Application Processes are routed to the user by the IISS
software.

The availability of Application Processes and IISS status
and error information is dependent upon the services provided by
the host operating systems. Consequeantly the extent and
availability of such information varies froam operating system to
operating system. Status and error inforsation is gathered via
a combination of IISS and host operating utilities according to
host-dependent procedures.

The Recovery function addresses the recovery of the Test
Bed system and its databases. The recovery of the databases
themselves is achieved via the roll back and journalization
facilities provided by the various database managers. One of
the NTM's role is to ensure the synchronization of the recovery
operations and to injtiate the recovery once the system is at a
quiet point.

3.1.1.3.4 NTM/1ISS Start Up Scenario

The NTM/IISS start up scenario listed here is given for the
6201M implementation of the Test Bed. The current design calls
for the start up of the Test Bed to be initiated from the host
consoles. A start up command must be typed on each of the host
consoles. Subsequently, the Test Bed may allow for a
centralized start up of the system (Figure 3-14).

The start up of the Test Bed Software is thus as follows:
1. On the VAX:
The IISS operator initiates the “START IISS" procedure
file under control of VAX VMS.
This procedure starts up the following Al Clusters:

a. Common Data Model Request Processor

b. User Interface

3-13

onon: L0 OCO0GONC0 OO NGONOND
R T R e i R O A A G A G N0 Y

-~
b

s

N
o

SDS620140000
1 November 1985

c. Any NTM (for example, IDSS) .

d. The COMM Vork Stations with the VAX/Honeywell and
VAX/IBM communication services -

Each AP Cluster initiates its own request for CDM data
to the CDM request processors. On completing its
prescribed start up steps, each AP Cluster reports its
status to the console used to initiate the start up.
The above step then injtializes the NTM tables, the VTI
configuration tables and the User Interface local form
storage. Any information required by the user work
station NTM is down loaded from the CDM.

J 2. On the Honeywell:
The IISS Operator initiates the "START 1ISS" procedure
file under control of GCOS MOD400 from a Honeywell
console.

This GCOS MOD400 procedure file starts up the following
AP Clusters:

a. The COMM VWork Station with the Honeywell/VAX and
Honeywell/IBM communication services

b. Any User work station NTM (for example, MCMM)

Each AP Cluster initiates its own request for CDM data
to the CDM processor. On completing its prescribed
start up step, each AP Cluster reports its status to
the console of the Honeywell. The above steps
initialize the NTM tables. The AP Clusters are started
in the sequence listed above. The Honeywell/VAX COMM
AP Cluster must be operational for the Honeywell start
up to proceed. As each AP Cluster becomes operational,
it notifies VAX IISS console. 1In the event of .
difficulties, the error messages generated during start
up are displayed on the Honeywell console.

3. On the IBM 3033:
The start up procedure described above is repeated on
the IBM 3033. The procedure is initiated under control
of MVS from an IBM console.

The AP Clusters brought up on the IBM 3033 are:
a. The COMM Vork Station with the Honeywell/VAX and

3-14

SuUO[3ouUNd J@devuvR U0} OesSuURIl YIOA}9N drexado ‘6-¢ 2andid

SDS620140000
1 November 1985

ALTIVNOLLONN WIN ONVISUIONN 3500u0d WIINONI WALSAS ‘INIOAMIIA
. 901SIUSUVIS - -
. Owvsmws anev | h
"~ B0IVE340 S50 01 9SW] NIVLNVIY SIVEFIN SNINLS NV VIVA 0N
a ﬁ ISNOIS3Y
04INGD
| -
gﬁi& . ¢ -— _ = w.
$S3906d 35530084
- _ JOVNVIN e o dv "
- 2USN1INO
dv E2USNTON0 01 SN) UNOL) Dom
‘SOSM
NOUMN0 WIS | oswav
ONV 4SOH ‘DS | 41SNTON0)
SIOVSSIN
90103 ONY DS | PN | wusno-0
N0t IS

e
HISNT40 01 ISK

SIIVSSIN NOLLINIII0 431SN 1)
NOLUVY3JO0 SSH 1D ONV 1SOH "9SN &

suotjound sodessoN adeuey "Ol-¢ aandid

HIINIONI WILSAS -LNIOIMIIA

SDS620140000
1 November 1985

FOVSSIN ALITVNOLLONNS INAN GNVISHIONN :3S0duNd
ON3S [
IUNCY ey Tﬁ: 89501
INW AS Y3LSNTD 30 WOYS
Sfvis ‘SIS ONV GALI3 ‘SOSW
| JDVSSIN |
901 W AB W A8
REEER G193 ‘SIS 319334 'SOSW
H3ISNTI NO
N0 ‘SIS o
)
U3IGVIH
JIVSSIN |
3134W0D
"OM 0L S9SN SNIVIS
9 'OSIN NO SNLLVAS ON3S
—?
‘SISK J9VSSIN
QIZRIOHLNY | JZHOHLNY e
‘O 0L .
2 SN NO L
SNIVIS GNIS 'ON 0L ‘SISW|® 29vSSIN
1vny03 3dAL AS : SNIVIS 9 9SW| 13U |=——
901 SLWNV430 Y3OVIH | 308N0S GNV 3dAL |NO SNIVIS ON3S| 333034 | SOSW

SNOLLINIII0 H31SN1D ONY 1SOH 9SW | 19

suoyjound S98$9001g 9deuey " 11-¢ 2anItd

SDS620140000
1 November 1985

. HIINIONT WILSAS LNIOGMIA
‘OSN ALITVNOLLONNS WAN ONVASU3ONN :3S0dtiNd
SNIVIS 4V
EINoY 30
01 95N 2
— dv H31SNTI NO
0 W04 ‘ISW
ry SNIVLS ON3S 3 9SW VivD
svis wdy| 04 MY 3SNOAS3Y SNLVI (>
153003 40 “LnHs| NMDCLHS dv il N
SNUVIS dY 1S3N0N 0
ATTVAHONSY dv IVNINYIL
S00L 0] | TVWUONGY 3 NMOGLNHS
1S3N0M dV NMOQLNHS F3 ‘ a
WULNG) HO 2AVNINU3L S$S3I204d dS SNVIS ISNOJS
$S3004d SO — _ NOLLYOIddV dV 193NN0D 0LLNGD
-— 1] 2AVILN SAUVIIIN $53004d SO
2
DMV
NNGD B LN NOLLV | g
WL suvis v v | | MY uooav i
[izTE VT IRE L E ISN dV
2 1SOH 95N SM 9 9SW 1SOH ' ‘95N 1SOH "9SW

NOLLINE0 LS NOLLINLI30 NOLINL0 | NOLNEIID SM MILSII NO
‘430 95N
NOLLING30 H31S1V1D ONV 1SOH “9SW | 12

SDS620140000
1 November 1985

suoyjounyg X3yrrqerado utejujey "21-¢ aIndird

ALITYNOLLONNS WIN ONVISYIOND :3S0dtNd HIINIONI WILSAS ‘LNIOAMIIA
SNIVIS
ISV (=
S39VSSIN
Hivd
j
JONIHLNII0
AN0INLL
SNVLS ONIS
dV HALSNTO NO [4 3904d ©
0L 35K NOLIVONdY n
0= 01 J9VSSIN SNLVLS ON3S ONV '9SW W w
SNIVLS ¥IAN30
AY3AN30 7
Sfuvis VM 9SK|Y so300ud
60 = WNOD J - NOLLVO \ddV a

| | |SNUVLS 14300V NOYS ONIS-TIV)

20 - 0L "OSW 14330V VIA dV

4V HAUSTII NO 430 9SW | — ! o oo

INOUJ 9SW q §
430 YALSN1Y
ONV 9SW

378Vl SNUVIS dv QAUvadN 2D (&)

t -
i | N

SDS620140000
1 November 1985

S
-

LOG
0S PROCESS CONTROL
REQUEST

-
-
TO NSS

OPERABILITY MSGS.
REQUESTS| | staTus &

OPERATOR
STATISTICS

$11 |compLETEe
st

MONITOR &
RECORD

Y ¥ REQUESTS
—o{ SHUTDOWN
N
STARTUP STATUS {RESTART STATUS | StuTpown starus (STATUS_1 1

C1| MSG. & ERROR LOGS
STATUS

‘%V"SWUW
]
4

'l'#
—a~1 RECOVER

0S PROCESS CONTROL RESPONSE

Figure 3-13. Communicate with Application Processes

STARTUP
REQUESTS
1

L

FINITION
MODAA Y | STARTWP

STARTUP

RESPONSE

SHUTDOWN RESPONSE

Qrdnumwmmmsum

RECOVER RESPONSE

SYSTEM STATUS
FROM MM

PURPOSE: UNDERSTAND NTM FUNCTIONALITY
: SYSTEM ENGINEER

MSG. HOST &
CLUSTER DE

R 3-19

] . A - . . N N N - R
v BAGAGHOIGHOAONN 0 g))
OO OO OO MO B N R B Y N Y O M X N NN W a0 g Pt s b X

SDS620140000
1 November 1985

Honeywell/1IBM communication services

b. Any User Work Station NTM (for example, MRP)

3.1.1.3.5 NTM/IISS Shut Down Scenario .

The shut down of the IISS system can be initiated from any
IISS terminals by an IISS operator with the proper author-

ization.

The shut down is graceful and complete. To that

effect, the following capabilities are provided:

1.

Warning messages are sent to all IISS terminals. These
messages are repeated at reasonably spaced time
intervals.

Further IISS logins are disabled when a system shut
down is in process.

Processes are allowed to run toward completion for a
reasonable grace period (for example, 15 minutes).

This includes the query processors and data aggregators
initiated by the Application Processes.

Status of queues are saved on each processor. (Not
implemented, nor possibly desireable in near future)

Processes, data aggregators, query processors still
running at the end of the grace period are killed under
IISS operator control.

The shut down process proceeds first with the
termination of User Application Processes, and second
with the termination of Test Bed Services.

A message is sent to the host console upon completion
of the shut down.

The shut down of the IISS system can be initiated on a

host by host basis from the host consoles. This

capability serves as a back-up in the event of LAN and .
communication malfunctions.

3.1.1.3.6 NTM/IISS Host Shutdown Scenario

The shut down of a selected host of the Test Bed proceeds
vith the same logic that followed for the shutdown of the entire

0 Rt Y by W A b

3-20

AR R R

SDS620140000
1 November 1985

Figure 3-14. NTM Architecture Test Bed Overview

.
S -
T T T L G gttt PRI R e By e R

. . - "~ KPR R a RPN o ;
OO OO X M .6 UG I N i M RO s - X o 1 RO W 2 WY

- -

SDS620140000
1 RNovember 1985

Test Bed. 1In fact, the shutdown of the entire Test Bed is
viewed as the shutdown of each host, per the above scenario. The
shutdown procedures are described in the operator’'s manual.

The following steps are carried out during the shutdown of .
the Test Bed software:

1. The status of the message queues are checkpointed (Mot
implemented)

2. The application processes still running at the
expiration of the shutdown count down period are killed
under supervision of the IISS operator.

3. The Test Bed System Services (NTM, OP AP Cluster, COMM
AP Cluster, etc.) are terminated.

The above steps are repeated on each host.

3.1.1.3.7 NTM/IISS Host Start Up Scenario

By the same reasoning, the start up of a selected host is
performed as explained in the section entitled "NTM/IISS Start
Up Scenario”. The scenario is, however, limited to one host.
The start up of any host other than the CDM does not progress
past the request for CDM data if the CDM host is not already up.

3.1.1.3.8 IISS Recovery Scenario

The IISS Recovery Scenario is not addressed in the early
release of the Test Bed. Definition of the functionality and

implementation of the recovery mechanism is an enhancement to
the Test Bed.

D i e T |
3.1.1.3.9 Application Process Scheduling

The NTM initiates Application Processes at the request of ‘
the Test Bed user or at the request of Application Processes
already running. The initiation of the data aggregators and
query processors are examples of this second eventuality. The ‘
initiation of the Application Process is only performed for
authorized requests. The initiation is prioritized and proceeds
on a FIFO basis at equal priority. The execution of some
Application Processes may be linked to wall clock time, time
delay, or may be conditional to some event.

The information required to control the initiation of

3-22

; p ; 7S] W
IO R IO IR O NN L N NN M S O LT S OO0 R Oth o'n‘ A 0, R AN N X Rty

SDS620140000
1 November 1985

Application Processes (priority, schedule, condition) is carried
by the Application Process request message.

Consider Figure 3-15. The scheduling of the Application
Process initiation is controllied by the scheduler. The
scheduler keeps an on-going watch of the Application Process
queues containing the requests for start up time and may be
deactivated wvhen the system is executing a Quiet Point Command
or vhen the system is about to be shut down. The scheduler may
be reactivated upon Command to resume processing of Test Bed
Application Processes.

The NTM supports multiple instances of a given Application
Process. Multiple instances of Application Processes may be
created in response to requests froa multiple users.

The NTM automatically initiates additional instances of
application processes which have been granted the privilege to
have multiple instances. This privilege is declared in the CDM.
The data describing the Application Processes defines the
maximum number of instances which can be running simultaneously.
The CDM Administrator authorizes the duplication of selected
Application Processes.

3.1.1.3.10 Maintain Directory of Active Application Processes

The NTM receives status information from the operating
system of the local hosts. This information is used to create
and to maintain a list of active application processes on the AP
Cluster. This list is used to clean up an AP Cluster whenever
an Application Process is aborted or terminates.

3.1.1.3.11 Maintain Directory of Offspring Application
Processes

The Test Bed Application Processes generate offspring
application processes whenever they perform a distributed query
or update. 1In the distributed query environment, these
offsprings include data aggregators and query processors. The
NTM maintains a list of the data aggregators and query
processors which have been requested by the query scheduler.
This list is used to abort the data aggregators and query
processors in the event that the parent Application Process
terminates or is aborted. The list identifies the offspring
application process, the target AP Clusters and the parent
Application Process.

3-23

! .~ ARA " AR AW P o AP TN -
L R A N O OO AU OO A R O A O A P A‘.eh".l.o.l'ueﬂl. (N O™ e 0..‘; OLN AU T\ ie

SDS620140000
1 November 1985

3.1.1.3.12 Application Process Termination

For integrated Application Processes, the normal and
abnormal termination of an Application Process is known to the
NTM. The NTM receives status information from the local host
operating system. The NTM provides the following services upon
the termination of an Application Process:

1. Normal Termination
The name of the Application Process that terminates is
removed from the AP Cluster active application process
list. Usage statistics for the Application Process are
recorded.

2. Abnormal Termination
In the event of abnormal termination of an Application
cancelling the active offsprings of that Application
Process which may still be active or queued up for
execution. The NTM performs this task by taking
advantage of the offspring application process list to
notify the AP Clusters which may be processing or about
to process the aborted Application Process offspring
application processes. The NTM's on these AP Process,
the NTM assumes the responsibility for Clusters make
use of the active application process directory to
abort active offsprings (data aggregators, query
processors) or to remove these offsprings from the
spawning request queues.

The NTM’'s of the offspring nodes report the completion
of the clean up operation to the NTM of the cancelled
Application Process AP Cluster. The abnormal
termination process continues with the steps described
under the normal termination scenario.

3. Housekeeping
The IISS operator may invoke the abnormal termination
process described above to free the system from
Application Processes and Offsy-ing Processes which
have not been cancelled following the normal
termination of an Application Process. This
eventuality may occur with improperly written
Application Processes or in the event of
hardwvare/software failures.

3-24

SDS620140000
1 November 1985

REQUEST TO
0S TO INITIATE

APPLICATION
PROCESSES

SYNTAX OF
0S PRIMITIVES

AP 1D TO BE INITIATED

R Es-
r -

PROCESSES
f
AT CLoCK

Figure 3-15. Spawning Scheduler

ENABLE/DISABLE
STAHTT, P f}lﬂm

INITIATION
SCHEDULER
AP CLUSTER INITIATION REQUEST

COMMANDS

3-25

,f‘ *

. s P e e RN A RO T O OO O
et W, Lt o T T e VR R M A A SR R G RIS A S

n®§ e

SDS620140000
1 November 1985

3.1.1.3.13 Exception Handling

The NTM is actively involved in the handling of exception
calls made by an AP Cluster Application Process to the local
host operating system. For the Test Bed to act as a cohesive
and robust system, the following functions need to be performed:

1. The occurrence of an exception call in an Application
Process must be reported to the initiator (persom or
software) of that Application Process. The report must
include sufficient information for the initiator to
decide on a course of action.

2. The report must be in a standard format so that the
interpretation of the error condition is not dependent
upon the host on which it occurred.

3. Exception calls must be logged for further analysis and
trouble shooting.

The above functions are implemented on the Test Bed by
allowing the NTM to intercept the exception calls to the
operating system. Thus the NTM can notify the initiator of the
Application Process of the type of error which occurred. The
local error codes are first converted to the Test Bed (Neutral)
error codes. The Test Bed error codes and the host error code
mapping information are contained in the CDM. Exception calls
originating in the Test Bed system service software are reported
to the IISS operator. Such calls could indicate serious
problems with the 1ISS system software.

T -

3.1.1.3.14 Communication with Application Processes

"

e

The NTM communicates with Application Processes via mail
boxes. These mailboxes are named, created and operated via the
primitives described in Section 3.1.5 (Communication Subsystem).
The primitives described in Section 3.1.5 support multiple
instances of the same Application Process.

-

- > =

3.1.1.3.15 Message Authorization

The NTM is the funnel through which all Test Bed messages
flow. This is the natural place for message authorization
enforcement. 1In the Test Bed data, access privileges are
granted to Application Process via the schema granted to it, and
security is enforced by controlling the access to the
Application Processes themselves.

SDS620140000
1 November 1985

Consider Figure 3-16. This figure shows the various data
access mechanisms used in the Test Bed.

Application Process Number One (APPl1) has been granted
access to databases 1 and 2, via the external schema granted to
it by the CDM Administrator. The precompiler has generated the
query processors QPll and QP12. APPl can thus invoke these two
query processors. If User 1 has been granted access rights to
APPl, it thus can query databases 1 and 2.

Assume, for the sake of discussion, that User 2 has not
been granted access rights to databases 1 and 2, and hence does
not have the schema information required to precompile the
necessary query processors QP21 and QP22 required to access

databases 1 and 2 from an Application Process to which he has
access privileges.

User 2 can thus only gain access to database 1 and 2 by
invoking directly or indirectly an Application Process such as
APPl. The direct accessing of QPll and QP12 is not deemed
feasible since these two precompiled query processors are tied
(message destination, control) to APPl. 1In the Test Bed, each
Application Process and each user is granted through its legal
user role authority to send and authority to receive messages
from and to other users. This scheme is used to prevent the two
access paths shown in dotted lines on Figure 3-16. The NTNM is
charged with enforcing the transmit and receive rights of each
application, by comparing the source and destination information
contained in the message with the authority to send and
authority to receive granted to each user. This information is
defined in the CDM by the CDM Administrator. All communications
between Application Processes are routed via the NTM.

The above scheme can, however, be easily defeated. If APPI1
creates a private copy of the data, no control on the access to
this private copy can be exercised through the Test Bed system.
Administrative procedures or other automated procedures (prepass
of the code) can be used to disallow this possibility.

3.1.1.3.16 Message Header

The NTM appends a header on all messages it receives from
the Application Processes. This approach allows for the
layering of protocols.

For example, the header contains the message category,
source, destination information and various flags (logging,

3-27

SDS620140000
1 November 1985

statistics, etc.) controlling the kind of message handling
services to be invoked. '

The NTM strips the header before handing the message over
to its destination.

3.1.1.3.17 Message Logging

The NTM serializes and logs messages. The logs are kept on
the host where the message originates. The message serial
number is the concatenation of the AP Cluster identification
number and of the serial number sequentially assigned to the
message in the AP Cluster where it originates. Messages are
time stamped as necessary. The time stamps are obtained from
the host system clock and specify date, time of day.

3.1.1.3.18 Message Routing

The NTM routes the messages to their final destination.
To that effect, the NTM appends a physical address to the
message. The message physical address is derived from the
logical address supplied by the user and from the logical to
physical maps provided by the CDM. Undefined logical addresses
are flagged to the user.

The user supplies a logical address which uniquely
identifies the Application Process at the system level.

The system, however, through the mapping tables defined in
the CDM will expand this logical address to a physical address.

The NTM, through the mail box naming rules, establishes the
proper end to end correspondence which exists at any point in
time between the various instances of cooperating Application
Processes.

The above concepts are reflected in Figures 3-17 and 3-18.

3.1.1.3.19 Message Pairing

The NTM pairs messages. That is, it keeps track of the
request and response message pairs flowing through the system.
A time out allows the detection of unanswered messages. The
Application Processes which initiated the unanswered request
message of a message pair is notified of the time out. It
initiates any recovery or contingency action it may support.

IR 2 DL LI -, . Ny T
R I S TR

SD8620140000
1 November 1985

-

T e

hd

Ab
T

Pt

-~

Figure 3-16. Message Authentication

P
"

f 3.1.1.3.20 Error Logging
': L]
ﬂ The NTM logs errors in an error file. A file is maintained

on each host and can be accessed centrally by the 1ISS operator.
The file can be cleared under control of a procedure activated
by the operator. The files are maintained locally to increase
the likelihood of capturing error messages. (See Section

g 3.1.1.3.3

.-

‘e

3

IR AW

Al

Socoumey - D : TR0 AT YY)
; “:"T.’?nl.:‘t‘?“ 4(“,!'!’A!“,.A‘tfl““ﬂ“xﬂ‘-"lY‘i‘.'&'n‘l‘."‘n'5’4.l .'6‘.'&‘.'.‘.'\‘:\..“ .’t._u.l.g'i..‘.l,.l't'\l\‘Q.o' oy .l.l.. ' R A Y L& 4

e 1w o

- -

-

P AL

D)

CREML PACTANNC 7O TASLERIK Pa il TUN 1M TS TSI & i ANTIR AU R T\ SFEAR YU » . v .oy gh 74 g 3 * TR TLR PO TER

SDS620140000
1 November 1985

3.1.1.3.21 Message Integrity Checking

Message integrity checking enhances the reliability and
security of the Test Bed system. Message header integrity
checks are performed by the NTM. Message data integrity checks
are performed by the destination Application Subsystem. These
checks are supported by Common Data or by Private Data known to
the subsystem. The NRTM checks the data targeted to its own use.

1. Integrity Checking of the Header

This type of integrity check is performed by the NTM of
the AP Cluster originating the message, and is
performed in inter host as well as intra host
communications.

For example, the header integrity check includes the
following checks:

a. Edit of each field

b. Reasonableness of the user-defined fields
In the event of errors, the sender is notified. The
correction of the errors is left to the sender. The
error message is logged in the Test Bed error file.

2. 1Integrity Checking of the Data Section of NTM Bound
Messages (Future)

This type of integrity checking is performed by the
receiver of the message. The data supporting this
integrity check is supplied to the RTM by the CDM, on
an AP Cluster basis and may be kept locally for
performance reasons. The types of data integrity
checks include:

a. Number of data elements expected in the message

b. Edit of each data element (alphanumeric, numeric,
strings). Each data element editing information
describes the number of symbols expected.

c. Range check of each data element (for numeric data
types)

d. Domain check

- f.*j- 4 e S A) e ™ o S Y " (y g

(TR WA WL

» » LR WL] - - o e P e LN
l“.l ..,l‘l’.'.'u"“,‘ o‘lal.l‘.’l’o. ,.. AL AN A AT RS AN 44 at) l.;. I M SR ORI R IR ORI WRHESALERTEHIS, 150 Ca .;.. ([S X}

P

A

’
AP CLUSTER NAME
SOURCE
TINA

SDS6820140000
1 November 1985

MAILBOX #
LEGAL USER

12

ROLE

LOG-ON STATUS NAME

PASSWORD

LI A SO TN) MK 0} () 0L) s g
O I o O N ML WO o ST J5 T MR B N Y W YO M L e O G S S e A S A S Y A LW DS T TR Dt i X

Figure 3-17. NTM IDEF1 Concepts

SDS620140000
1 November 1985

i

AP STATUS

APPLICATION
PROCESS

é 2| &

-3 S
et
: §., 5

aig Q _ogiggé %
Ewwiyl B 3
%J el :

MACHINE STATUS
HOST MACHINE

3-32

ba syt) v i ¢ Y s, o OO . LA ~AT 1 ,
S A A T S A e e e e N VR e Rt A D G S T 7 i BB i s G e,

8DS8620140000
1 November 1985

X2
X2

(OFF HOST),

PROCESSES Y AND Z (ON HOST).

*
B .“ *
«v‘ez [
st g »

END TO END ADDRESSING IS PROVIDED
BETWEEN MULTIPLE INSTANCES
OF PROCESSES X AND Y

¥3

AN x
AT RUNTIME

AT INTIATE TIVE

.
-

Figure 3-19. End-to-End Addressing

o
24
NTM
NTM
COMM

24

Y3
3

Y3

X 3-33

)
L
|.’.:

]

4
A TRy
ala‘t‘nﬂﬁl 'l‘ ‘A.x‘l Pd) !‘ %‘ \.. A

&

SDS620140000
1 November 1985

In the event of detected errors, the sender of the
message is informed of the presence of errors. The
correction of the errors is left to the transmitting
Application Program. The error message is logged in
the Test Bed error file.

3.1.1.3.22 Message Guaranteed Delivery

Vhen requested, the NTM guarantees the delivery of messages
given to it by an Application Program. Messages to be handled
in a guaranteed delivery mode are of the appropriate message
type and use special interface services.

Guaranteed delivery is a service provided by the NTM for
interhost and intrahost communications between Application
Process Clusters or within the same Application Process
Clusters. Figure 3-20 shows how guaranteed delivery messages
are transmitted and acknowledged. The Application Process which
originates the message (source) receives acknowledgement from
NTM 1 after the message has been journalized on non-volatile
memory (File 1). The NTM on the AP Cluster of the destination
Application Process (NTM 2) acknowledges receipt of the message
after the message has been journmalized in non-volatile memory
(File 2). The destination process acknowledges receipt of the
message explicitly (via an acknowledge message) to the AP
Cluster NTM 2.

Attempts to deliver the message are initiated when either
one or the following conditions occurs:

o Message is first received by NTM 1 or by NTM 2

o Destination AP Cluster is restarted

e Destination Application Process is initiated

The guaranteed delivery messages are time stamped and
logged. A utility allows the scanning of the log and extracting
the messages whose ages exceed a given threshold. Such messages
are displayed on the IISS operator console for disposition by
the 1ISS operator. The display includes the following
information:

e Time stamp

® Source, destination

—~—
e T e e

PR
o T o

e e .

.
-~

o

T

i ———

e e e e e

A

T AN AV, B AT)) W1 0 ¥ OO
Pt S ey ~".~""e"fa"“ Q'i.»'"ﬁ".q'l.u"fo“.v“ 0“0' 0'0 Jel T ".veitl'"c"‘.0‘0!0".l."l!‘ed"tl",O.‘:l.“.!".i" SN MM T UM N

SDS8620140000
1 November 1985

e Full message contents

3.1.1.3.23 System Statistics Gathering

The NTM gathers the following system usage statistiocs:

e Message type, serial number, time stamp

e Application Process start and stop time

The NTM statistics gathering capabilities ocan be controlled
on a message-by-message basis or on a system wide basis through
NTM configuration data defined by the System Administrator and
downloaded from the CDM at start up time to the NTM.

The statistics are kept in files on each of the Test Bed
hosts. This approach is simple. The statistics files can be
accessed and cleared by the 1ISS operator with proper authority.
The reduction of the raw data provided by the system statistics
gathering capabilities include the following computation:

e Message type (total number)

e Message to a specific destination (total number)

e Message from a specific source (mean, std deviation)

e Application Process run time (mean, std, deviation)

Vendor supplied accounting packages resident on the various

hosts supplement the statistics provided by the Test Bed

Software.

3.1.1.3.24 Datza Downloading

Each NTM is responsible for requesting its
configuration/operational support data from the CDM when
restarted. Thus each NTM sends to the CDM request processor a
downloading message request which identifies the AP Cluster and
required information which is returned by the CDNM.

3.1.1.4 Netwvork Transaction Manager Functional Specifications

The functional specifications implied by the scenarios
presented in Section 3.1.1.3 are identified and are presented in
this Section.

3~35

'. .‘l"\"ﬁ Py S .‘l.. |'|l .\

"""""""""

§ Ly W)
R MUK AN

S8DS620140000
1 November 1985

3.1.1.4.1 Update NTM Table (Future)

Mission: To initiate and to implement the dowmnloading, as
required, of CDM data needed to support the
operation of the NTM.

Functional Specifications:

1. Formulate request for NTM data by transgmitting a
message to the CDM Request Processor. The message
uniquely identifies the originating NTM.

2. Receive the NTM data transmitted by the CDM.

3. Check the NTM data transmitted by the CDM.

4. Initialize the NTM tables and store NTM data received
from the CDM.

8. Detect non-response from CDM request processor.
6. Log error in Test Bed error file.

7. Report completion of download operation and status to
host IISS operator station.

3.1.1.4.2 Receive and Interpret Message

Mission: To receive and to interpret messages sent to the NTM by
the Application Processes or by the COMM Subsystem.

Functional Specifications:

1. To name uniquely the mail boxes to be used in
communicating with one specific instance of an
Application Process

2. To detect when a mail box has been written into

3. To read the message contained in the mail box

4. To provide any acknowledgement, if required, to the
transmitting process

$. To remove the header of the message, if required

i AR N LA DS P Y29 20 S Fumad 0SS DAL RS AL AT I 31y W SIS R NS N, A O A

8DS620140000
1 November 1985
6. To identify the nature of the message
To route to its proper destination

8. To detect Application Process message initiation
requirement

9. To detect Application Process completion message

10. Above functions are implemented by making use of the
communication primitives desoribed in Section 3.1.8

3.1.1.4.3 Authorize Message (Future)

Mission: To enforce the legal source/legal destination
constraints declared for the NTH messages, and to
report exceptions.

Functional Specifications:

1. To enforce the legal source constraints associated with
a given AP Cluster

Figure 3-20. Guaranteed Delivery

3.1.1.4.4 Complete Message Header

Mission:

Functional Specifications:
1.

SDS620140000
1 November 1985

To enforce the legal destination constraints associated
with an AP Cluster ‘

Legal source and legal destination constraints are

defined in the CDM by the System Administrator. The .
legal source and legal destination constraints are

defined on an Application Process basis.

To log violation of the legal destination and source
constraint on the error log

To notify the transmitter Applioation Process of legal
destination constraint violations

To obtain legal source and legal destination
constraints

To allow the definition of AP Cluster authorization
privileges, as well as authorigation by specific
Application Processes.

Example: MCOMM, * : All NCHMM
Example: MCMM, 26: Only MCMM 26

To formulate and to append the proper NTM header to a
message transmitted to the NTM for processing.

To obtain all the information from the source
Application Process. For example:

e Message type
e Destination (logical) ,
e Delivery trigger

e Message length

e Data type (ASCII/EBCDIC or (BINARY)

"

ooy .
RN M

7.
8.

SDS620140000
1 November 1985

To obtain all the predefined information supplied for
the message. For example:

e Logging flag

e Statistics flag '

e Test flag

e Integrity check flag

e Guaranteed delivery

e Message priority

To create the follovwing information:

e Message serial number (on an AP Cluster basis)
e Message time stamp (on a host basis)-only if logged
To obtain from the NTM configuration:

e Logical source name

To obtain the length of the message header containing
the above information

To format the above information in a header per the
format specifications described in Section 3.3

To report any errors to the source Application Process

To log any error in the Test Bed error file

3.1.1.4.5 Log Message

Mission: To create a permanent, user-readable record of the

messages transiting in the Test Bed environment. This
record is a complete description (header, data
section) of the message.

Functional Specifications:

1.

"t . “\"L “},“.4'.‘ PR

To obtain the message logging information from:

a. The message header

3-39

. ~ AW A YA ' ' AL g PR (A
GGG ORI RO D O AN Y 0y ,).‘!i ADNISO0 OO D00 O 1'3'!‘“!'.’

6.

SDS620140000
1 November 1985

b. The NTM operational option data defined in the CDNM.

To log messages whenever the message header flag or the
CDhM-defined log message system flag is set. (Future - .
initially all messages are logged)

Vhen appropriate, to log the information (header, data)
contained in the message

The record is kept in the message log file kept on each
host

To allow for the centralized access of the message log
file by the IISS operator

To allow for the selective clearing of the file by the
IISS operator according to a procedure

3.1.1.4.6. Send Message

Mission:

To route and transmit message to its appropriate
destination.

Functional Specifications:

1.

To determine the physical destination address of the
message from its logical destination address

To decide whether the message is to be routed on AP
Cluster, off AP Cluster, or off host

To transmit the message to the COMM AP Cluster for off
host transmission. The message is to be transmitted to
the appropriate mail box, according to the priority of
the message

To obtain acknowledgement of receipt, if required

To detect and report, if appropriate, the following -
error conditions to the message initiator:

a. Destination address is unknown (mailbox not found)

b. Destination address is the initiator itself

¢c. Destination address is an inactive process

SDS620140000
1 November 1985

6. To log the above error conditions in the Test Bed error
. file

g 7. Above functions are implemented by making use of the
g - communication primitives described in Section 5.1.5

3.1.1.4.7 Interpret Message Type

Mission: To examine and to differentiate between messages of
‘ different types for the purpose of providing proper
) NTM actions and responses.
e Functional Specifications:
1. To obtain the message type information
2. To recognize all valid message types

)
o S. To invoke the proper NTM processing of the incoming
o message

4. To detect and report undefined message types

3.1.1.4.8 Initiate Application Process

» Mission: To request the local host operating system to load and
’ to execute a given Application Process.

ﬁ Functional Specifications:

r

i? 1. To apply the following scheduling rules to select the
%, Application Processes to be initiated:

I e Selection based on absolute time (Future)
N ° Priority based selection rules (Future)

o - Higher message priority first, lower priority
~ last

- Messages of the same priority are scheduled on
X a first in first out basis

- Lower priority messages are aged whenever a
higher priority message is selected (future)

SORE

o T

3-41

-~

DO O R A RO A RO O O LT 4IRS ST AT T I

8DS620140000
1 November 1985

2. To formulate a request to the local host operating
system to load and execute the Application Process
described in the message extracted from the message
queues

3. To create, to name, new mailboxes

4. To maintain the higher and lowver message priority
queues. Maintenance functions include:

. e Removal without omission or duplication of messages
. that have been dispatched

[Detection of overflow
° Reporting of errors in queue management

: 5. To obtain status information from the host operating
' system

. 6. To maintain the list of active application processes

7. To report the failure of initiating an Application
Process to the requestor, if appropriate, and to log
the failure, with appropriate error description in the
Test Bed error file

N

8. To record the Application Process identification and
; time of day in the Application Process Activity Log
d (start time) (Future - Activity Log).

3.1.1.4.9 Terminate Application Process

Mission: (1) to perform the housekeeping operations associated
with the normal termination of an Application Process,
and (2) to perform the error notification and
housekeeping operations associated with the abnormal .
termination of an Application Process.

Functional Specifications: .
1. To detect the termination of an Application Process

2. To recognize normal and abnormal termination conditions

3-42

o . . A —_ .
A A A A A A A SO A A G IO O R RO b U R DA O D OO0 1l ¥ ST AT SR ¥

S CIS VUM P RO
.‘._l‘q,.»“ 3 " N

SDS620140000
1 November 1985

In the event of normal teramination:

a.

b.

d.

To record the Application completion time in the
Application Process Activity Log (Future)

To clear any mail boxes used to communicate with
the Application Process just terminated

To notify the requestor of the terminmation (if
required

To maintain the list of active application
processes

In the event of abnormal termination:

a.

b.

To record the Application termination time in the
Application Process Activity Log (Future)

To obtain the termination code or status from the
local operating system

To generate the appropriate Test Bed error code
equivalent to the local operating system abnoraal
termination code

To notify the requestor of the abnormal termination
condition, if required.

To clear any mail boxes used to communicate with
the Application Process just terainated

To initiate the termination of any offspring
Application Processes of the Application Process
(Future)

To update the directory of active Application
Processes by deleting the Application Process just
terminated

To update the directory of offspring Application

Process by deleting the offspring Application
Processes identified in Step ¢

3-43

Al

4
2

3.1.1.4.

Mission:

SDS620140000
1 November 1985

10 Exception Handling

(1) to gain knowledge of exception calls placed by any
on AP Cluster, Application Subsystems and Test Bed
System Services; and (2) to log and notify requestors
of such calls.

Functional Specifications:

1.

3.1.1.4.

Mission:

To keep informed of all exception calls to the local
operating system generated from within the AP Cluster

To obtain the error status code associated with the
exception call and the identification of the offending
Application Process

To map the local operating system error codes into
equivalent Test Bed error codes

To record occurrence of errors and identification of
offending Application Processes into Test Bed error
file

To notify the requestor/initiator of the Application
Process of the error status as appropriate.

11 Communication with Application Process

To accept messages and to deliver messages to the
Application Process.

Functional Specifications:

The above mission is accomplished by making use of the Send
message and Receive message functional capabilities described in
Sections 3.1.1.4.6 and 3.1.1.4.2.

3.1.1.4.

Mission:

12 Message Pairing

To match message pairs (question/answer) and to report
open pairs at the end of time out period.

Functional Specifications:

1.

2.

To recognize messages requesting pairing services

To extract the identity of the expected messages in

3-44

. , , - A KA X o A R T)
D O e A D e A A o Y N e L T LA AT AT AN w e, T o et e Ty h T

L Mk ava e o6

SDS620140000
1 November 1985

reply to the message requesting pairing processing

To initiate a watch dog timer upon receipt of the
pairing processing request message. The source
defining the time out period (CDM or message, or system
default) and the duration of the time out. (Release 2.0
implementation is “system default”)

To close the pair when the expected message is received
and to disable the watch dog timer

In the event of a time out, to notify the Application
Process who initiated the message requesting pairing
processing

To record the occurrence of the time out in the Test
Bed error file. The record jidentifies:

e The Requesting Application Process

e The message type and/or serial number requesting
pairing processing ‘

e The time of day

e The destination Application Process

3.1.1.4.13 Error Logging

Mission:

(1) to log the occurrence of an error with sufficient
information to identify:

e The nature of the error

e The offending process

e The end user of the process
e The time of day of the error

and (2) to gain access to the log from a central
location (I1SS operator) with an authorized procedure

Functional Specifications:

1.

To maintain an error logging file on each Test Bed host

RN

SDS620140000
1 November 1985

To allow access to this file by an authorized user

To support the chronological ordering of the error file
obtained by concatenating the local error files
maintained on each host (Future)

To allow the clearing of the error file under control
of an authorized user with an authorized procedure

To log the following information for each error:
¢ Nature of the error in Test Bed error codes

e Unique jdentification of the offending process
e End user of the offending process

e Time of day of the error

3.1.1.4.14 Message Integrity Checking

Mission:

(1) to detect messages which have: (a) improperly
formulated headers, (b) improperly formulated data

sections (Future); and (2) to report and log such
conditions.

Functional Specifications:

1.

To allow header integrity checking control via NTM
operating options defined in the CDM. (Future: Rel 2.0
- options defined in NTM)

To allow data integrity checking control via NTM
operating options defined in the CDM (Future). In the
early implementation, Application Processes are
responsible for message data integrity checking.

To support header and data integrity checking control
at the NTM and system level.

To support data integrity checking control on a message
basis. (Future) 1In the follow-on implementation, this
service is provided if either:

a. Data integrity checking is requested in the message
header

- : n T > ORI YN NN SN % (TR N NS o LY
R L D W s T O WA Lt O TR 0T S N AN St O M B WA o -\\ N N NN AN 25

AL S AL LN oL

WK AN N AR

- - o e ae

- e 4

SDS620140000
1 ¥ovember 1985

b. Or if data integrity checking is requested at the
system level via information provided by the NTM.

Data integrity checking may, in addition, be specified

to be performed by the NTM or by the Application
Process.

To perform, when requested, the following message
header integrity checks:

e Editing of each fielad

® Self consistency of the following user defined
fields:

- Message type

- Destination

- Delivery trigger
- Data type

To perform, when requested via CDM flag, the following
message data section integrity checks: (Future)

e Number of data fields
e Editing of each field
e Range checking of each data element

The data used to support the above checks is defined in
the CDM and downloaded to the NTM tables on start up.

The CDM definitions recognige:

e Integer notation

e Floating point notation

e String notation (n characters)
o Undefined range

e Upper, lower range limits

3-47

|

r—mnmmmmw WL W R IR TR P U ST LTW U

SDS620140000
1 November 1985
e Domains

7. To report the occurrence of errors to the message
initiator via predefined Test Bed error codes

8. To log the occurrence of the error in the Test Bed
error file. The record includes:

® Message type

® Message serial number
® Message initiator

e Error code

e Time of day

9. To prevent the propagation of an erroneous message
through the Test Bed

3.1.1.4.15 Resource Usage Statistics

Mission: To gather the following Resource Usage Statistics:
e Usage frequency
e Processing time
e Message frequency
e Process response time
Functional Specification:

1. For each message, to gather the following information
at the sender and receiver AP Cluster: ’

® Message type
e Message serial number

e Message time stamp

2. TFor each Application Process, to gather the following
information on the Application Process AP Cluster:
(Future - Application Process logging files are not in

SDS620140000
1 November 1985

the Release 2.0 implementation)

e Application Process name

e Start time

e Completion time

e Above information is gathered if it is available

To log the above information in files maintained
locally (message logging file and Application Process
logging file (Future))

To support the querying and concatenation of the
message logging files and Application Process logging
files from a central location (Future).

To clear the message logging and the Application
Process logging files by an authoriszed user

To compute the following statistics from the
concatenated message and Application Process logging
files: (Future - The raw data is collected but not
processed to obtain this information in Release 2.0)

° Message frequency by message type

e Application process usage frequency by application
process type

° Application process processing time (mean, std dev)
by application process name and for all application
processes

e Application process response time (mean, std dev)
by application process name and for all application
processes

3.1.1.4.16 Guaranteed Delivery

Mission:

To guarantee selectively the delivery of messages to
Application Processes.

Functional Specification:

To provide the following guaranteed delivery services

3-49

J - \J »aw -

T O

Mission:

SDS620140000
1 November 1985

to messages requesting this service

To acknowledge the receipt of a guaranteed delivery
message to the initiating Application Process or to the
NTM forwarding such a message.

To initiate the delivery of such a message to its next
delivery point until an acknowledgement is received
from the delivery point (NTM or ApplicationProcess)

Attempts to deliver the message are initiated when
either one of the following occurs:

e Message is first received

e Target AP Cluster is restarted

e Target Application Process is initiated

To notify the 1I8S operator in the event of failure to
deliver the guaranteed delivery message. Falilure to
deliver such a message is recognised vhen the age of
the message exceeds the age limit set for the AP
Cluster. In the event of delivery fajlure, the
following information is provided to the IISS operator:

(Future - Release 2.0 is a manual process Lo review
message files)

o Time stamp of messages (date, time of day)
e Source, destination
e Contents of message (header, data section)

To record guaranteed delivery failures in a special log
on the host where the fajilure was detected

3.1.1.4.17 Svystem Status Broadcast

To broadcast system status information to all I1IISS
users. The I1ISS operator initiates the broadcast and
supplies the text of the message to be broadcasted.

Functional Specification:

System service which allows the broadcast to all
terminals

SD8620140000
1 November 1985

2. 8Service can be invoked by:
a. 1ISS operator
b. Privileged programs

3. Operator or privileged program supplies text of
broadcast

S.1.1.4.18 IISS Start Up

Migsion: To start up 1IS8S Software Services on a Test Bed host.
Start up operations are initiated by the I1SS
operator.

Functional Specifications:

1. To accept IISS operator start commands and data inputs
from the 1ISS operator comsole, or from a command file

2. To start up the 1188 Software Services required to
support the functionality of the Test Bed:

a. To initiate, in the proper sequence, the IISS
softvare modules required to support the

Application Cluster Configuration assigned to the
host.

b. To carry out the start up scenario for the specific
host application cluster configuration (loading of
operational option data, dialogs with other hosts,
etc.).

S. To report the completion (or any error message) of the
1185 Software 8Services start up to the 118§ operator.

3.1.1.4.19 11188 Shutdowvm

Mission: To shutdown the 1ISS Software Services running or
dormant on a Test Bed host. Shutdown operation is
initiated by the 1ISS operator.

3.1.1.4

1.

Mission:

1.

SDS620140000
1 November 1985

Functional Specifications:

To accept IISS operator shutdown commands either from:
a. The host IISS Operator Console, or
b. A shutdown message transmitted by the NTM

To broadcast shutdown messages to all IISS terminals
at a frequency prescribed by the IISS operator

To monitor processes still active at the end of the
shutdown countdown period and to report the identities
of these processes to the IISS operator

To terminate, under the direct control of the IISS
operator, those processes found active at the end of
the shutdown period

To save all pertinent information required for the
restart of the Test Bed without omission or
duplication of application processes and without the
loss of concurrency between the databases, journals,
and application process request queues. (Future)

To terminate all IISS Software Services in the proper
sequence

To report the completion of the shutdown operations to
the IISS operator

.20 1ISS Restart

1) To restart the 1I1S8S Software Services on a given
Test Bed host; 2) To achieve synchronization with
other Test Bed Application Processes and to maintain
database concurrency. Restart is initiated by the
IISS Operator.

Functional Specifications:

To accept IISS operator restart commands and data
inputs from the 1ISS Operator Console or from a
Command file

To startup the 1ISS Software Services required to

8D8620140000
1 November 1985

support the functionality of the Test Bed

a. To initiate, in the proper sequence, the I1ISS
Software modules required to support the host
Application Cluster Configuration.

b. To carry out the startup scenario for the specific
host Application Cluster configuration

c¢. To achieve synchronization of all Application
Process request queues in the IISS system, without
omission or duplication of application processes
(Future - request queues are not saved during
shutdown)

d. To maintain concurrency of the on host databases
with the other databases integrated in the Test
Bed

3. To report the completion (or any error message) of the
restart of the IISS Software Services to the 1ISS
operator

3.1.1.4.21 IISS Recovery gFuturez

Mission: To perform the recovery of the IISS databases,
Journals, and application process request queues,
without omission or duplication. The IISS recovery is
initiated by the 1IISS operator.

Functional Requirements:

1. To ensure that Recovery processing is equivalent to
normal processing

2. To accept Recovery initiation commands and other
recovery input data from the 1ISS operator

3. To be able to roll back, roll forward to and from an
I1SS operator designated checkpoint

4. To re-apply the stream of application processes
submitted during normal processing without omission or
duplication

5. To allow the exclusion., under IISS operator control,
of one or several application process types from the

SDS620140000
1 November 1985

stream of application processes submitted to recover
the databases .

6. To maintain concurrency between application process
queues, database journals, and the databases
integrated in the Test Bed

7. To suspend normal processing while perforaing the
recovery operations

8. To notify the IISS operator of the completion (or any
error messages) of the recovery operation

3.1.2 Common Data Model Configuration Item

3.1.2.1 CDM Mission Statement

The Common Data Model serves two purposes in the
implementation of the Test Bed.

First, The CDM is a repository of system information. This
information is used at compile time or at run time. The
information contained in the CDM is used to support all
operational phases of the Test Bed life cycle: maintenance,
application development and operation.

Second, the CDM allows application processes to query
Common Data distributed among the Test Bed databases without
regard to its location and format.

3.1.2.2 CDM Functional Areas

The configuration tree of the CDM is shown on Figure 3-21,
which shows three major functional areas:

° CDM Maintenance
o Application Development
) CDM Request Processor :

3.1.2.2.1 CDM Maintenance Functions

The CDM Operational Scenarios presented here are introduced
for the sole purpose of supporting the identification of the
functional specifications to be met by the CDM processor. These
scenarios are not meant to imply a specific implementation of

S8D8620140000
1 November 1985

these functional specifications. Consequently, the final design
of the CDM processor may implement scenarios which differ from
the scenarios presented here.

3.1.2.2.1.1 Operational Scenarios

The description of the Common Data, that is the Common Data
Model and the system data, must be entered, edited and
retrieved. ‘

The CDM Maintenance Operations referenced above are
performed by the CDM Administrator. These operations are
represented on the attached IDEFO diagram entitled "Operate
Common Data Model", node Al (Figures 3-22, 3-23, 3-24, and 3-28
for the IDEFO diagrams).

The following narrative supports the discussion of the
“Maintain CDM Data” node. Vith respect to this node, one can
drav the following remarks:

1. A schema of the CDM must first be built in order to
reirieve, store and edit any CDM information.

2. To ensure a self consistent CDM, the relationship of
any u te to the CDNM entity or atiribute definition
must checked. A minimum level of checking includes
uniqueness checking. The sheer amount and the
diversity of the data items to be stored in the CDM
militate for computer assisted cheoking.

3. Any update to the CDM takes place once the checks
listed above have been performed and did not reveal
any errors.

4. The data dictionary relationships supported by the CDM
are automatioally updated as part of the update
function.

8. The version number of the CDM is likewvwise
automatically maintained. To be useful, the CDM
version numbering system must be of sufficient
granularity to avoid recompilation of application
processes unaffected by a change in the CDM data.
(Future)

SDS620140000
1 Rovember 1985

3.1.2.2.1.2 CDM Maintenance Functional Specifications

The CDM Maintenance functions are performed by the CDM
Maintenance utilities to create, revise and expand the CDM data.

The CDM Maintenance utilities perform the following
functions:)

1. Access Control: Access ocontirol to all CDM Maintenance
functions are perforamed under strict access control.
Access control is enforced via passvord and user nase.

2. CDM Data Access: The following data manipulation
functions are provided:

e CDNM Data Entry Functions
e CDM Data Update Functions
e CDM Data Edit Functions

COMMON DATA MODEL
[1
CoM NON COM REQUEST
MAINTENANCE DEVELOPMENT
[1 1 1
INTEGRATION -] [CONGEPTUALY
NDOL PRECOMPLER | | oML SYNTAX EXTERNAL
METHODOLOGY TRANSFORMER
I 1
rrnenss (:m(‘iur NDOML '“] SCHEMA
[}
FonTaan_cobe [PECIMALATON | TRANSFORMS
- 1
. r I 1 —
QUERY QUERY QUERY DATA
[nsoomm SCHEDULER PROCESSOR AGGREGATOR

Figure 3-21. CDM - Configuration Tree

SDS620140000
1 November 1985

e CDM Data Selective Retrieval Functions

e CDM Data Reporting Function

e CDM Data Delete Function

The above functions are applicable on all CDM data.
S. CDM Data Definition: The above data eantry functions

are used to define all data known to the CDM. The data

known to the CDM includes:

e CDM Schema

e Application External Schemas

¢ Test Bed Conceptual Schema

e Integrated databases Internal Schemas

e MNMappings Existing Between the Above Schemas

e Domain Information

e Range Information

® Network Resources (location of AP Clusters,
databases, configuration) (Future)

e Test Bed Security Information (Future)

e User Interface Support Information (Future)

e Virtual Terminal/Real Terminal Mappings (Future)
e Error Messages (Future)

o MNessage Format Definition (Future)

e Application Process description (single instance,
queue driven....) (Future)

4. CDM Data Checking: The following CDM AQata checking
functions are provided:

e Unjiqueness of relation names at the conceptual level

3-87

I N ARSI M POCH OO G M SO A O OO O G N G IO S AL A M UL T T D% DL A L O T i AN U

............

. ““ﬂnh\ N

SDS620140000
1 November 1985

898380014 uoyqeotiddy pejradesur dorsasg 0-v "22-¢ aandry

(SSU) HIINON3 WILSAS LNIOIMIA
$3SS300Ud NOLVIIIddV GILVUIILNI 30 SIS AININDOTIAI0 AJLUNIQI 01 ‘ISOdUNd

43000
HIUIWNOI3Yd NOLLVIIIddY

SUIUIN0I WIN ‘NINGV-NGD

4 ' !

3-58

- -

S3NAON LHO0dINS ? $35S300td NOLLY I ddV VYIN3HIS TVNLI3INOD
$S300Ud NOLLYIIddV 031VHIILNI d013A30

ﬂ

1S3N0N 1SINOM | SININIHINOM
TIVISNI NOUVUINOO3Ud| SuIsn
AUNGUISID

HOLVULISININGY NILSAS

]
]
]
1
0
t
+
i

T e O A N A L e o o S TN N e T TS LT S R S DL YT

"

WO L0 TR DO MM AN

SDS620140000
1l November 1985

INTERFACE

DATA REQUEST

COM ADMINISTRATOR
‘ :
Figure 3-23. A-0 Operate CDM

FS?COM DATA PRECOMPILER

|
.

=
T

COMMON DATA
DESCRIPTION
PURPOSE: TO MODEL COM FUNCTIONS
VIEWPOINT: NSS SYSTEM ENGINEER

SDS620140000
1 November 1985

.
e

COMMON DATA META DATA
PRECOMPILER DATA

l
|

DATA REQUEST
SUPPORT

NS COM
DATA REQUEST
}
coM
DATA
COM REQUEST
PROCESSOR

e

Figure 3-24. A0 - Operate CDM Functions

MAINTAN]m DATA

NCE
REQUEST
COM
DATA
‘ At
COM MAINTENANCE
SERVICES

COM-A
COMMON DATA
DESCRIPTION

3-60

R ORGACHCAAIGSONGAGANAOAGINNIANN (' At WP ' CaXa
R R N O R i A X S Y e T D OO D D T O L S

SDS620140000
1 November 1085

—

COM DATA RELATIONSHIPS

Em)

o
i

3-61

MAINTAN
COM DATA

OICTIONARY |

Figure 3-25. Al - Maintain CDM Data Functions

SDS620140000
1 November 1985

¢ Uniqueness of entity names at the conceptual level

e Uniqueness of attribute use class names at the
conceptual level

e Uniqueness of key class names at the conceptual
level

CDM Data Dictionary: The following data dictionary
functions are provided:

¢ Index of Conceptual Entities
® Index of External Entities
® Index of Internal Entities

® Cross Reference of External Entities and Application
Processes

¢ Glossary defining the various entities, attiributes,
relationship

CDM Version Number: A CDM data version numbering
scheme is provided. This scheme maintains
automatically the version number of the information
used by an Application Process and the version number
of the CDM data used to compile the Application
Procecs. Version number identifies CDM data changes
that require recompilation of Test Bed Application
Processes and downloading of CDM data. (Future)

CDM Integration Methodology Utilities: The declaration
and checking of Extended IDEFl constraints are
supported.

CDM database Recovery and Concurrency Control

The recovery of the CDM database is supported via the
recovery mechanisas provided by the CDM database
manager (ORACLE).

3.1.2.2.1.3 Implementation Steps

To reduce development cost and to meet the deve. opwer:

schedule, the CDM Maintenance functions arc i1mplesented
stepwise fashion.

A0-A181 235

" INTEGRATED INFORWATION SUPPORT SYSTEM (I1SS) VOLUME

"
1155 SYSTEM PART 2..<U)> GENERAL ELECTRIC CO_SCHENECTADY
NY PRODUCTION RESOURCES CONSU.. M R HURLBUT ET AL.

01 NOV 85 SDS620140000

ST T C
. 4
- :
= a §22 -
= L Q20
“\ || Sz .
= I8

o)
O
I S
o

i

MICROCOPY RESOLUTION TEST CHART
NATIONAL suauu oF stmmnns -1963-A

e W e .

. A
- .- . " .
‘. . o-' e S - e e
''''''' -

! t."ﬂ' ."v NI v‘ -
S ! ‘13 k‘ '3‘*"1 W8, t t
: \ ’ by (' \.'
sttt O g ‘ :.'-, A, ..‘.
. \)

ooy
ﬂ::f;.‘.;,‘x 5' ’ .n f 5 i % a W | .
AINON l"l"a’ ‘ " ‘Q‘H ‘in ﬂ B0
A I,. .' ,\',,.v‘ “ 0. Q:! \'.
=T e ‘o‘ AEYN u.“ " . “"' ‘ .C‘ :'C“.u‘t
l ‘ 2,0

SDS620140000
1 November 1985

Step 1 is implemented by making use of the maintenance
utilities provided by the database Manager supporting the CDNM.
The ORACLE Relational database Manager has been selected for the
CDM. As part of its standard utilities, ORACLE provides:

® Access Control

® Access from a VAX Rative Terminal

e Data Entry

Step 2 would include all other functions not included in
Step 1. The following list applies to the ORACLE
implementation:

® Access to Maintenance Utilities from an IISS Teraminal

e Access through the NRDML to the CDM data

o Forms assisted maintenance of the CDM

3.1.2.2.2 Application Process Development

3.1.2.2.2.1 Operational Scenario

The development steps of an integrated Application Process
are portrayed in the IDEFO diagram shown on Figures 3-26 and
3-27.

Vith reference to this diagram, the major steps of the \
development of an integrated Application Processes are:

1. Establish Data Requirements of Application Process

Based on the data requirements of the user, the CDM
establishes an External Schema suitable to support the
application process contemplated. If all entities and
attributes required by the application process already
exist in the Conceptual Schema, this operation reduces
to formulating an External Schema which is a subset of
the Conceptual Schema. Otherwise, the new entities
required by the new Application Process under
development must first be added and integrated in the
Conceptual Schema, and reflected in appropriate
Internal Schemas.

i
LTSI TS N .)'\\\."-\\\\N
LW, LS WS

L e e @

SDS620140000
1 November 1985

From an operational viewpoint, the definition of the
External Schema and any addition to the existing
Conceptual Schema are performed by the CDM
Administrator (for data security reasons). The CDM
Administrator uses the Test Bed Neutral Data Definition
Language to define the required schemas.

Once the External Schema has been developed by the CDM
Administrator, a report of the External Schema is then
obtained and communicated to the Application Developer
(application programmer).

For data security reasons, however, the External Schema
is referenced by name in the Application Process and is
directly obtained by the Precompiler from the CDM.

This approach guarantees tight data security, since the
Application programmer cannot modify the schema and
hence his data access privileges, without explicit
action from the CDM Administrator. The printout of the
External Schema conveys the information required by the
Application Developer to write the integrated
Application Process.

N

Generate Code of Application Process
2a. Integrated Applications (Class II Environment)

Based on the user requirements and on the External
Schema developed; the Integrated Application Developer
designs and codes the required Application Process. In
the Test Bed, the Application Process is either a COBOL
or Fortran program which queries data distributed
across the Test Bed databases as if the data was
contained in a single database bound to the
Application. All data queries are formulated via the
Test Bed Neutral Data Manipulation Language. The 1/0
operations are performed via Test Bed supported 1/0
services. User interaction is facilitated by the Test
Bed provided User Interface. This interface supports
forms management, data checking and menu handling .
capabilities. The Application programmer references

the user interface services via procedure calls.

2b. Existing Applications

Existing Applications need to be brought under the
control of the NTM to be under the control of the 1ISS

3-64

. y - S S , .
e e e L R s".-”h-?‘.o".."kc'i'.»‘-,t’f.n".ui‘."",-",-",0",-.'.!.“:'\(.‘ai"-‘&"z"‘d"d U et M M N O O O A i

R B)

ot

SDS620140000
1 November 1985

user. This is done by making existing applications
come under the control of the Test Bed known to the
CDM. This definition information is used to update the
relevant NTH tables, and permits the IISS user to cause
the execution or the cancellation of existing
applications from the IISS user teraminal. Existing
Applications, in general, perform Imput/Output
operations to the user terminal and to the database and
files supporting them. Database and file 1/0
operations of existing appliocations are, in general,
satisfactory to the 1188 user and do not need to be
disturbed when the application is brought under the
control of the the Test Bed.

On the other hand, the terminal 1I/0 operations need to
be redirected via the NTM to take place the IISS user
terminal. The redirection of teraminal 1/0’'s can be
acocomplished either by:

Modifying the 1/0 statements contained in the existing
Application Process Code so as to perfora the
nondatabase 1/0 via the NTM and UI services provided
by the Test Bed (Send Message, Receive Message, Output
Screens, etc.), or

Modifying some to the system 1/0 routines that are
linked with existing applications so as to effectively
redirect the 1/0 operations to the NTM. This
approach, which works well on some machines (e.g., IBM
CICS) and does not require customized modifications of
each application, is not, however, possible on all
machines.

Precompile Code of Application Process

Isolate and Replace NDML Statements

The above development steps result in a COBOL or
Fortran program which implements the logic of the
intended Application Process. The program thus
written is not however compilable by the host provided
COBOL or Fortran compiler. The reasons for this are
that the programs contains:

[A reference to an external schema specified in the
Test Bed NDDL not recognized by the host.

° NDML statements which are not recognized either by

3-65

8DS620140000

1 Rovember 1985

898390014 uotqwo}1ddy pejwsdeqjur doyeasqg °"92-¢ aandiyg

SH30V0)
ST WIN0D
clr
] T [o
SN0 1404nS 3] 31M1anti ok ¥08S3008d
888.55.:&— J
_ ov i @eisa VW3OS
- g% ..w__m,ga: _ ..888&,“_.35
SIOVSSIN oW TUIN0IN4 NOLY ISy m
$530044 NOLYONALY G MIN00 } ~ } ¥
o $S3006d
o Ry
amaues 0| dwas || weewmo
NVHLHO04/10809 I h
Maom| Y ‘
Al
VW3OS
TYNELDG |
| vwaos

SINININNDI H3SN TVILIIINGD

B A AL R AN T a4 e e 0 T T £

SD8620140000
1 November 1985

the COBOL or Fortran compiler or by any of the
host supported database managers.

Thus, the integrated application programs must be
precompiled to remedy the above problems. The precompiler will,
in addition, transform the WNDML statements into procedures which
can be executed by the database managers integrated by the Test
Bed. The problems associated with the aggregation and data
transforms pertaining to the distributed environment are also
resolved by the precompiler.

In the 6201M implementation of the Test Bed, the
precompiler is resident on the VAX and is bound to the CDM
database manager. In the same environment, all queries are
precompiled by the VAX precompiler and distributed to the host
for final compilation. The 1ISS system conoepts and design
allovw these functions to be performed on the Honeywell or oan the
IBM computers.

Per the above scenario, the Test Bed precompiler generates
the following classes of output:

1. Precompiled application process code
Single node query processors (COBOL code)
Data aggregators (tables)

Query stager/scheduler (tables)

o & O N

Conceptual to external transformers (COBOL code)
6. Error message

The precompilation process is shown in Figure 3-27, and the
interaction of the precompiler with its environment is
shown in Figure 3-28. The precompiled application process
code is now a COBOL or Fortran Program in compilable
format, where the NDML statements have been suppressed and
replaced by procedures which initiate messages to the
corresponding single node query processors and data
aggregators.

Once successfully precompiled, the precompiled application
process source code files are sent to their respective
hosts for compilation. These transmissions take place via
the Network Transaction Manager.

3-67

¥

e e - Y

* o -~
7% N e

- -

P

1
.

Sb.

3c.

AN I l,u,}.rg"ru ACGHGA LSS

SDS620140000
1 Rovember 1985

Formulate Single Node NDML Query

The single node query processors are COBOL procedures
vhich query data from a single database. As such,
these procedures contain data manipulation statements
which are specific to the target database managers.
Also, the query processors are tailored to the target
data structure.

The steps required to generate the single node query
processors are these:

e The multi node conceptual NDML query is decomposed

into a set of single database NDML query processors.

e The resulting multi node conceptual NDML query is

analysed and an optimizing decomposition/aggregation

strategy is formulated. The strategy reflects the

storage characteristics of the distributed databases
as expressed by the Internal Schemas or rather their

conceptual equivalent.

e The multi node conceptual NDML query is decomposed

into a set of single database NDML query processors.

Generate Query Processor

e For each single database NDML query processor, an
internal schema access path is determined. The
access path reflects the data structuring
characteristics of the database holding the data.

This information is derived from the internal schema

of the database.

e A COBOL procedure based on the access path

determined above is then automatically generated.
This procedure is non-database manager

specific(although it reflects the data structure of

a specific database) and as such contains generic
CODASYL data manjpulation statements.

e In addition to the logic required to carry out the

data retrieval operations, the query processors
contain the logic required to transform the data

retrieved from the internal format and units to the

format and units prescribed by the Conceptual

3-68

At . ¢

€ i TN Y A) . Wy g P ¢,
() LA “l“ ‘«s\ (N N A }\';" ~'.\' .g“.l“." KRR W e n (™ B) "hﬂc.t‘v 2,370 Vg Vg WPy

) "I.l."u -

S8DS620140000
1 November 1985

. y i
Jg\usmsvsmm
SINGLE NODE QUERY
b
NOML QUERY QUERY GRAPH
GENERATE
AGGREGATION
INFORMATION

COMPILABLE APPLICATION PROCESS CODE
QUERY

Figure 3-27. Precompile Application Process

f1v1

EXTERNAL, CONCEPTUAL,

LOCAL EXTERNAL SCHEMAS FORMULATE

APPLICATION/FORTRAN
PROCESS COBOIAS

U3UdN0I3Ud
TNON

qusuuoxjAul I911dwoossd THAN °82-¢ 2andid

‘NVH1H04/70800

. -

(e X'
o ®
o0
O™
¢
I
a1
w o
=
[]
- SI9VSSIN U0BH3
~“NOUVIWE03NI NOUVS3U99V VIVA
-
SY0SS3006d A43N0 300N 31ONIS
" SHIvd SS330V 300N JIONIS
- (HJVY9 AH3ND NIOD
- AD31IVHLS AUINO
3000 $530084
NOLLYOIIddV 318V UIW0D

HOLVHLSININGY NAD

L1]

SYN3HJS XVLNAS TNON

HOLVHLSININGY WILSAS

3000
$5$300Ud NOUVIIddV

3-70

N 7wy T AT At

".'q'. X

A r e S A W e e W P

SDS620140000
1 November 1985

Schema. The transformation to the conceptual format
and units allow performance of data integrity checks
prior to aggregation as well as simplifying the
declaration of the data integrity checking support
information.

e Once the generic query processor has been generated,
the generic CODASYL data manjipulation languages are
replaced by the specific data manipulation
statements recognized by the target database
manager.

3d. Specify Data Aggregation Step

The query aggregators perfora the Join and Project
Operations required to assemble the data specified by
the distributed query. These join and project
operations are specified at precompile time by the
precompiler. The join operation allows assembly of
data contained in two relations sharing a common
attribute on a tuple by tuple basis, whereas the
projection operator allows discarding of attributes not
relevant to the query at hand.

The query graph which reflects the strategy required to
fulfill the distributed query assigns the nature,
sequence and location of the operations performed by
the various aggregators.

The data aggregators aggregate data presented to them
in conceptual format and units. Likewise, aggregators
present data to other aggregators in the same format.
However, the last aggregator routes the aggregated data
to the conceptual to external transformer. This module
performs the format and unit transformations required
to return data in external conceptual formats and units
. to the querying Application Process.
The data aggregators aggregate data supplied by two
different data sources. These sources may either be
. another data aggregator or a query processor.

3e. Specify Query Scheduling
The query scheduler controls the processing of a

distributed query through scheduling and staging
instructions specified by the precompiler. The control

ERYLJ) : €LV AR L ey W L T T IS P I IS LIS s
‘l?.‘l";,.l\.‘l?pil:»bd?.‘\:“i..‘f,‘l*glli..t:.‘\".l’l‘l:"l.q. ||“ . A \ Y "‘,Iﬂ(R W S £ »-) * Y, A - ’f q 'l’ o .‘ o .

[WD o & e

P

) , R e STy R ove. AN WS R ~)
P T 3 R RO T N N A AN S ICTH N IR 70 Db o AN T e e s T T S

SDS620140000
1 November 1985

functions performed by the query scheduler include:

® Monitoring the status of the various query
processors, data aggregators, and conceptual to
external transformer involved in the distributed
query processing.

e Scheduling of the data aggregation operations to
minimize the transmission time (main controllable
component of cost of a distributed query).

The scheduling of the data aggregators is performed
dynamically, at run time, by the query scheduler.

The query scheduler uses actual data byte counts
supplied by the query processors and data aggregators
to decide on the location of the next level of the data
aggregation operations. Figure 3-29 illustrates the
control and data flow originated and received by the
query scheduler.

The query scheduler has the following responsibilities:
® Request initiation of the query processors

® Request initiation of the data aggregators

® Request initiation of the conceptual/external
transformer

e Dynamic selection of the data aggregation sequence

® Monitoring of status messages sent by the data
aggregators and query processors

e Signalling to the application process (status, data)
The implementation of the query processors assumes that
the query processors do not receive any intermediate
results from data aggregators or other query
processors. This simplification allows the parallel
initiation of all query processors.

Distribute and Install Modules

Once the query processors have been generated, they
must be distributed to their respective hosts,

3-72

1 o, 1

> ¥ LT RN
l\. v he .ﬂ.;".o\ LU X

b §

SDS620140000
1 November 1985

compiled, assembled and linked.

The compilation, assembly and linking steps are
performed by the compiler, assembler and linker of the
respective host where the module (query processor or
data aggregator) is to run.

The source code for the modules are transmitted from
the VAX to the target host via the Network Transaction
Manager. The operational data controlling the data
aggregators is distributed, at run time, via the NTN.

3.1.2.2.2.2 Functional Specification

The development of integrated Application Processes via the
above scenario implies:

1.

2.

A schema integration methodology to setup the Common
Data Model

A Neutral Data Definition Language to declare Common
Data Rzsources in an Integrated Application Process

A Neutral Data Manipulation Language to retrieve data
contained in heterogeneous databases

A precompiler to substitute the Neutral Data
Manipulation Language statements with a set of
cooperating procedures performing the data retrieval
operations specified

The xunctional specifications of each of the above building
blocks required to develop integrated Application Processes are
as follows:

1.

Schema Integration Methodology

A methodology is required to define external and
conceptual schemas in a flexible and unambiguous
fashion.

The methodology to be developed focuses on:

e Degree of normalization required to build a
conceptual schema that can be expanded/contracted
with minimum impact on existing schemas (external,
conceptual, and internal).

SDS620140000
1 Rovember 1985

e Guidelines for the efficient integration of existing -
databases. ’

® Mappings between external, conceptual, and internmal
schemas . .

2. Neutral Data Definition Language
A Neutral Data Definition Language (NDDL) is provided
by the Test Bed. Neutral refers to the non-database
specific aspect of the data definition language
provided by the Test Bed. The Test Bed NDDL is used to
describe the various schemas of the integrated Test Bed
databases.
The Test Bed NDDL thus must support the definition of:
e External schemas
e Conceptual schemas
e Internal schemas

e The mappings existing between the schemas listed
above

e Relational schemas

e Network schemas

e Entities or relations

e Attributes in a relation or in a record

e Domain definitions compatible with COBOL

e Attribute ranges (numeric, Boolean)

e External schema name

e Hierarchical schema (or future enhancements)
e Attribute unit and format representation

® Derived attributes

"o S S O S A S R }J{?:}E}?klffflklflfo“lifl*l

SDS620140000
1 November 1985

/

DATA
AGN%?“UN

APPLICA
PROCESS
QUERY
STAGER/
\\\
Figure 3-29. Distributed Query Scheduling ® Control

-
e

STATUS
~=—=——4 QUERY DATA

INITIATION REQUEST
DATA BYTE COUNT

SDS620140000
1 November 1985

External schemas are referenced by application
processes. The external schema is not physically
distributed, it is kept in the CDM and is referenced by
the application process. This reference is used by the
Test Bed precompiler at compile time.

3. ©Neutral Data Manipulation Language
A Neutral Data Manipulation Language (NDML) is provided
by the Test Bed. The NDML is used to query the data
contained in the databases integrated by the Test Bed.
The Test Bed NDML functional specifications are:
e To be a relational oriented language
e To be compatible with COBOL

e To be non procedural

o Each statement is delimited by easily recognizable
characters

e To support the retrieval of a set of tuples
e To use variables definition compatible with COBOL

e To return a status code (completion, error) upon
execution

e To support queries embedded in a COBOL program

e To support retrieval queries qualified by the
following predicates:

~ Equal

- VNot equal

- Greater than .
- Greater or equal
- Less than or equal

Less than

M A N A TURSURL AL AL)

4a.

To

To
at

To
To

To

Boolean
Boolean
support

support
least 4

support
support
support

SDS620140000
1 November 1985
operator AND
operation NOT (FUTURE)
retrieval from one or more relations

at least retrieval queries constrained by
level of qualifiers

restriction (selection) operations
natural and equal join operations

projection operations

Not to cause a locking of the database when querying
data '

To use variable definitions compatible with FORTRAN

To support requests embedded in a FORTRAN program

To support update requests embedded in a COBOL
program

To support insertion of a single tuple

To support modification of a set of tuples

To support the deletion of a set of tuples

The initial implementation of the 6201 NDML is not

intended to support distributed data updates. However,
the NDML syntax and implementation shall include update
commands .

Application Process Precompiler

The Test Bed Precompiler performs the following
functions:

Prepass of COBOL Application Process Code

® Prepass COBOL 74 Source Code

e Recognige invoked external schema by names.

SDS620140000
1 November 1985

e Recognize all NDML statements and replace these
statements by equivalent comment statements
® For each NDML statement:
- Assign a unique number to the query scheduler
- Insert a procedure call to the uniquely
identified query stager/scheduler controlling the

execution

- Establish work area to receive the data in a
COBOL compatible fashion

4b. Formulate Single Database Query
e Obtain external schema from CDM

e Transform external NDML query into conceptual NDML
query

e Formulate query decomposition based on data location

e Decompose NDML conceptual query into NDML conceptual
single database query

e For each subquery:
- Assign unique number to the subquery
- Generate query processor

4c. Generate Query Processor

To generate the single database query processors

implied by one NDML query, the precompiler needs to

perform the following functions:

e Formulate access path

e Generate code for query processor or generate
equivalent tables to perform required data

retrievals

e Insert internal schema - if required

e Insert data format operations

3-78

‘. RSN A . q Ly - 1 "t "y . 1 R ¥
"I.'_’l"‘t’g'l...‘"f,‘l"“"l‘b‘ ‘ﬁ"vzl‘ .-“.l.. ln‘.. I."l‘..I..‘\‘.‘.‘-‘\.4..'w'|'l".-'5'\.."".l“..“"".Q‘l't’..i‘..l.““.'| l'b. 'g.. .l'...‘ \ .‘Q‘."' [.‘s.tl.‘n...‘\ "N ‘Q \) .' ..l "l?"\ .O"'O “l

4d.

SD8620140000
1 November 1985

e Insert data to perform data integrity checks

e Insert code to generate byte counts for retrieved
information

e Insert code to transmit retrieved information byte
count and retrieval status to the query scheduler

e Insert code to store retrieved data into a
designated file

e Specify the format of the data handed to the query
processor

¢ Use standard error messages and status information

e Generate status code (error, completion) upon
execution

In the 6201M implementation, the query processors are
restricted to target the following database managers:

e IDS II on Honeywell Level 6, operating under GCOS
MOD400 VO3 (Limited Tests)

o IDMS on IBM 3081 under MVS

e IDBMS on VAX for IDSS AP Cluster (IDSS 2.0) (Not
Tested) '

e VAX-11 DBMS

® ORACLE on VAX for the CDM AP Cluster

e TOTAL on IBM

e IMS on IBM (Limited Tests)

e ISAM or VSAM (Future)

e Other database management systems (Example DB2)
Specify Data Aggregation Step

To specify the data aggregation step, the precompiler
performs the following functions:

3-79

SDS5620140000
1 November 1985

e Formulate aggregation operations to be performed
(equal join, not equal join, semi-join (future), and
union)

e Provide data aggregator operational information to
the data aggregator

e Specify the format of the data supplied by the query
processors

The data aggregators use the data supplied by the
precompiler to perform the following functions:

e Formulate aggregation operations to be perforamed
(equa; Join, not equal join, semi-join (future), and
union

e Obtain required internal schemas to create work area
to receive and process data

e Provide error signaling logic (using standard error
messages)

e Obtain, aggregate and output data supplied by query
processors

e Generate the byte count of the aggregated data and
report the byte count and status information to the
query scheduler.

® Accept format of data supplied by the query
processors

e Generate status code (error, completion) upon
execution

4e. Specify Query Scheduling

To specify the query scheduling step. the precompiler
performs the following functions:

® Determine the possible data aggregation sequence and

* Semi-join is a future performance enhancement

A
‘1"“

.'?9"9\' !

SDS6820140000
1 November 198S5

location

e Invoke the query scheduler from the Application
Process

The query scheduler uses the data supplied by the
precompiler to perform the following functions:

e Request initiation of query proocessors
o Request initiation of data aggregators

e Request initiation of conceptual/external
transformer

e Select dynamically and control the data aggregation
sequence

e Request time out service from the NTM

e Request the cancellation of all query processors,
data aggregators, conceptual/external transformer,
related to a given distributed query, in the event
of errors

e Receive, interpret and report error messages
received from the query processors, data aggregators
and conceptual/external transformer

4f. Generate Conceptual External Transformer

To generate the Conceptual-to-External Transformer. the
precompiler performs the following functions: i

e Obtain the conceptual-to-external unit
transformation from the CDM

e Obtain the conceptual-to-external format conversions
from the CDM

e Invoke the conceptual-to-external transformer from
the Query Scheduler

The Conceptual-to-External Transformer uses the data
supplied by the precompiler to perform the following

3-81

RN D TN PO TP A RN T P on F R P P 30 W MR o\ o ML L NN LWL) P

Y)
I LML Y AL

SD8620140000
1 November 1985

functions:

e Carry out the conceptual-to-external unit
transformations

e Carry out the conceptual-to-external format
oconversion

e Report errors to the query scheduler

4g. Precompiler Characteristics and Constraints
e Precompiler is portable
e Precompiler is written in COBOL 74

e Precompiler is designed to allow extension to other
non-COBOL high order languages

e Precompiler initial implementation is the VAX, uses
, DML of CDM database manager and is controlled from
| native terminal

e Precompiler issues error messages when required

e Precompiler can be invoked by the NTM and make use
of the NDML

e Precompiler is structured to support ad-hoc query
processing

3.1.3 The User Interface Configuration Item

3.1.3.1 User Intefface Mission Statement

The IISS system requirement document identifies a need to
provide users with an overall view of the system as an
integrated application rather than as a collection of disjointed
programs. Users need to be able to invoke the various Test Bed
subsystems such as MCMM, MRP and IDSS from a single terminal in
a consistent manner even though the applications may reside on a
number of different computer systems.

Additionally, the User Interface should support the

development of "User Friendly" application programs that are
flexible and maintainable.

3-82

2 b

" . N " p. - . .
R A AN »'»‘:J.u o, "~.‘.w-,“‘~: () u"a,'.i-. l"'h. L1 S0AN D Vi T P S R .. = P Pt Yo Rk P e A Y

—_ -
e -

SDS620140000
1 Rovember 1985

3.1.3.2 User Interface Functional Areas

The function of the Test Bed User Interface is two fold.
First, the UI provides an environment that not only allows but
encourages good user interface design. Secondly, the UI
provides a run time environment that supports interactive
dialogue. These two subsystems are called the User Interface
Development System and the User Interface Management System. The
various functional areas making up the UIDS and UIMS are shown
on the User Interface Configuration Tree given in
Figure 3-30.

Figure 3-30 shows two major functional areas:
e User Interface Development System (UIDS)
e User Interface Management System (UINMS)

The UIDS is a set of tools that assist application
developers with forms maintenance, report writing and rapid
application generation. These tools are avajilable to the user
as part of the UINMS.

The User Interface is a forms based system. This means
that all communication between an application program and the
user is done through electronic forms on a video teraminal
screen. Electronic forms are full screen template displays that
act as prompts or memory joggers to users as they fill in input
data items.

The UIDS provides two facilities for editing forms:

e The forms can be edited using a language called the
Forms Definition Language which is compiled with the
Forms Language Compiler.

e The forms can be edited through the use of an
interactive application that prompts the user for form
characteristics and allows for freestyle form layout.

The UIDS Report Writer and Application Generator are based
on extensions to the Forms Definition Language for program
generation.

The UIMS is the run time Ul. It performs the functions
which are interactive. As such, the UIMS interfaces with the
user through an interface to the Virtual Terminal or neutral

3-83

R RN LS AN S LR ARSHED

SDS620140000
1 November 1985

User Interface

)

|

+- User Interface Management System

| |

i [

| +--—-+-- User Interface Services
! |

[+-- Form Processor

| |

| +-- Virtual Terminal

i [

] +-- Application Interface
|

|

.

User Interface Development System
!
! +-- Forams Language
)) ! Compiler
L Form Editor --—-—-vcecccewe- +

+~-- Forms Driven
Form Editor

+-- Report VWriter

|
+-- Rapid Application

+

|

|

I

|

I

|

+-- Application Generator --+
!

!

i Generator
]

+

-~ Text Editor

Figure 3-30. User Interface Configuration Tree

Test Bed terminal. The UIMS interfaces with application
programs through the Application Interface to the Form Processor
wvhich handles screen processing commands. The Application
Interface is bound to the Application Process and contains the
necessary functions to extract data from a form sent to it, to
fill out a form, and to initiate messages to the Form Processor
as well as receive messages from the Form Processor.

Figure 3-31 illustrates the above concepts. This figure
shows that the transactions exchanged between the Form Processor
and the Application Interface are handled by the NTM. A

3-84

e

0 P Wy ; > e L u e A
I e COONINEN LR IR A MM S T e ‘:‘0’: ‘»‘l’:‘,t‘:‘n'»‘c‘. l‘!. 85NN o R ‘ LY h (Y ¥

description of the NTM itself can be found in section 3.1.1 of
this System Design Specification.

3.1.3.3 User Interface Operational Scenerios

SDS620140000
1 November 1985

Applicetion

Applicetion
interfece

NTH

. The User Interface Operational Scenarios presented here are
introduced for the sole purpose of supporting the idemtification
of the functional specifications to be met by the User
Interface. These scenarios are not meant to imply a specific
implementation of the functional specifications. Consequently,
the final design may implement scenarios which differ from the
scenarios in this section.

Hessoges

) Virtee
Terminal

Form
Processor

Virtuel
Terminel

Figure 3-31. User Interface Management Systenm

3-85

Device
Oriver

‘> -

- W

- -

e .4

PN L

v
5

. Y \ . W, n® n » X -
ML L T e O T O N i o O 4 T T L D T, il A e R A L) o

SDS620140000
1 November 1985

The Test Bed User Interface supports the following modes of
operation:

e Forms Mode
e Form Editing Mode
e Application Generation Mode

In the following sections is a description of these three
(3) modes of operation.

3.1.3.3.1 Forms Mode Operational Scenario

The forms mode allows the displaying of predefined forms
for the purpose of requesting data from the user or for the
purpose of presenting data to the user.

Thus, forms can be used to display data, to input data or

to control the execution of Application Processes on the Test
Bed.

The forms which are displayed have been predefined and

catalogued on the CDM. Each form can be uniquely retrieved by
its name or ID.

The following definitions are convenient when discussing
the Test Bed forms mode of operationmns.

e A Form is viewed as a template defining fields and their
attributes. The strength of the Test Bed forms
processor is derived from the single and shared
definition of all fields and variables referenced by

forms. The forms are defined in the Common Data Model.
(Future)

e Form data are the actual values contained in the fields
of the form. These values may either be input
interactively by the user or may be supplied by the
Application Process as output data. The Test Bed forms
processing uses the attribute definitions available from
the Common Data Model to perform data integrity checking
at the level of the User Interface. This approach
offers the following advantages:

1. Errors are detected at the data entry point, where

. Ak K KK al

CPINTAIn ROy

» ‘*u ‘V

w

. ’ § v) 4, (]
e A A IO AW o P Tt Tt O e AN P T »

SDS620140000
1 Movember 1985

they may be corrected
2. Errors are not propagated through the system

3. Data integrity checking is consistent and
transparent to the application

® A form instance is a filled out form, that is the
collection of a form and a single set of fora data.
This definition can take two different representations;
vhen viewed by the user a fora instance is defined as
above, when viewed by an Application Process a form
instance reduces to form control data, fora data, and
form name. The format of the data is avajilable to the
Fora Processor.

Displaying a Form To Be Filled Out

Consider Figure 3-32. A form to be used for user input is
placed on the list of forms to be displayed (Display List). The
form to be displayed is referemced by its fora name. Frequently
used forms may be downloaded from the CDM at start up time and
placed on the 1ist of open forms (Open List). Less frequently
used forms are requested on an ad-hoc bagis from the CDM. An
error code is generated and routed to the Application Process
vhen a requested form cannot be found.

Filling Out a Form

Consider Figure 3-33. The form to be filled out is
presented on the IISS terminal. The user fills out the form, to
the best of his abilities. 1In doing so, the user may perfora
some local editing procedures to correct typos or other errors.
Typos are corrected by invoking the special function keys
(backspace. etc.) defined and supported by the host terminal
driver. When the form is filled out to the satisfaction of the
user, the ENTER key is depressed on the terminal. This causes
the data integrity checks to be performed.

Invoking the Help Facility

When filling out a form, the user may invoke the Help
Facility. Help may be a message or an entire form. After

invoking the Help Facility, the user may return to the original
form.

3-87

TVl gy WL » " ” - L) -
hCLORUGIR st IO T N .

SDS620140000
1 November 1985

——— ame

Put
Applicetion
Process
Rgtri eve f:u—;
r%SR form
Open List Definiton

Display List Display

Form

User

Figure 3-32. Display/Retrieve a Form
View of Forms (FUTURE)

Form views allow customization of forms. A view is a form
vhose fields map to those of another form (the base form). 1If a
field is changed on the view it is also changed on the base form
and vice versa. However, the attributes of the view override

those of the base form. This allows the view to ..ave different
initial values.

SDS620140000
1 November 1985

Application

User

Figure 3-33. Filling out a Form - User Viewpoint
Transmitting a Form

Upon completing the filling out of a form, the user
indicates his willingness to transmit a form by depressing a
function key. This action causes the data integrity checks to
be performed unless the function key depressed indicates that
the user would prefer to quit processing the form. The data
integrity checks are supported by the data contained in the form
itself. This approach eliminates the need for additional CDM
access. Error messages are issued to the user when appropriate.
Only error free forms are transmitted, thus keeping network
traffic to a minimum. The Test Bed is a message driven system.

Data is transmitted from the User Interface to the Application
by means of a message.

Outputting a Form Instance

Data generated by an Application Process may be output as
form data associated with a form. This form instance is
displayed at the request of the Application Process. When the
user has viewed the data, he may signal his willingness to view
more data by entering a (next form) control character. This
action allows more data to be displayed on the terminal.

3-89

sy = e > b

i] TR » PP ” [
e . v 0 i)
b ey T R W g At LT T N R N R S R it W e U TN U e MM I A

SDS620140000
1 November 1985

Outputting a Form To Be Filled Out from an Application

The Application Process which has needs for input data may :
make its needs visible to the user by requesting that a form be
displayed and filled out by the user. The specific Application
Process issues a "display form" command for that purpose. The
"display form" command contains the name of the fora to be
displayed.

Controlling the User Intérface

The User Interface assumes one of three major states:
® ACCEPT USER DATA

e ACCEPT APPLICATION DATA

® PROCESS FORMS

The PROCESS FORM state itself is made up of the
following states:

- DISPLAY FORM

- ACCEPT USER DATA

- INTEGRITY CHECKING
- INITIATE MESSAGE

These states are shown on Figure 3-34.

Application
Data

Figure 3-34. Control Diagram - Form Processor

3-90

WP WOt W T

SN LAYy

SDS620140000
1 November 1985

Upon cold start or restart, after completing the startup
procedure, the User Interface enters the ACCEPT USER DATA state
and awaits user input. The PROCESS FORM state is entered
whenever a command requesting form processing is received from
the user or from the Application Process. Such command
indicates the number of the form to be displayed or otherwise
processed. Normal exit from the PROCESS FORM state can take
three forms:

e Return to the ACCEPT USER DATA state
¢ Return to the ACCEPT APPLICATION DATA state
® Re-entry of the PROCESS FORM state

This last eventually allows the chaining of forms, as is
encountered in menu processing. The information controlling
normai exit from the PROCESS FORM state is either contained in
the form being processed or is contained in the commands sent to
the form processor by the user or by the Application Process.
This approach is flexible and simple. Abnormal exit from the
PROCESS FORMS and ACCEPT APPLICATION DATA must be accommodated.
This is necessary in the event of a malfunction of an
Application Process or in the event of a change of mind from the
user. Abnormal exit from either state leads to the ACCEPT USER
COMMAND state, leading the User Interface ready to accept user
inputs and commands. The exit command is supplied by the user
and acts as an interrupt.

The Run Time User Interface

Figure 3-31 depicted the interaction of the User Interface
with an Application Process. As seen in that figure, an
Application Process places calls to the User Interface
Application Interface to which it is linked. 1In return it
receives data. Requests made by the Application Process are
transformed into messages by the Application Interface routines.
These messages are transmitted by the NTM to the Form Processor,
which services the requests as explained in the previous
paragraphs. Forms instances or user data are, in return,
transmitted as messages by the Form Processor over the NTM.
These messages are then interpreted by the Application Interface
and the data is extracted in a form suitable to the Application
Process. To reduce network traffic to a minimum, a complete
forms instance is transmitted, and the data is kept by the Form
Processor. Thus, subsequent calls by the Application Process on
data available to the Form Processor can be answered locally

3-91

Mot Yo

....... ,- ~ AT
R P P A O S I I P N N N R N N AT A A N AN A A N T AN A N

R AR R LR PO PUT PUR L) TN O T TN AN AN AT E ARV RE PUW TUS FUR WL TUE U TUN 7L el LA U TR R

.....

.\\\\‘

SDS620140000
1 November 1985

without retransmission over the network.

This run time portion of the User Interface is called the
User Interface Management System.

3.1.3.3.1.1 Form Processor Operational Scenario

Several operational scenarios are contemplated for the Test
Bed Form Processor.

Cold Start/Restart Scenario

The Form Processor is cold started or restarted by a device
driver following a User Logon request. The Form Processor then
is ready for operation and displays the first logon form and
enters the "ACCEPT USER COMMAND/DATA" state. The above concepts
are illustrated on Figure 3-35 entitled "Foram Processor Start

up“®.
Device r_m_!r-_mr_){ Form
|

Driver aform Processor

Figure 3-35. Form Processor Start Up
User Log On Scenario

Test Bed User Log On/Log Off scenario is viewed as a
particular case of conducting data integrity checking on a form
instance. 1In this case, the form used is a log on/log off form,
and the form data is related to the log on/log off operations.
¥hen processing the logon form, the Form Processor requests CDM
data from the CDM by sending a message requesting the start up
data to the CDM request processor. The CDM contains the profile
data for each user. This table defines the password and roles
that are valid for a user-i.d. The table is created and
maintained by the CDM Administrator and is stored in the CDM.
Failure to log on prevents the user from gaining access to the
forms used to control the Application Processes and Test Bed
services. These concepts are shown on Figure 3-36.

3.1.3.3.2 Form Edit Operational Scenario

The forms used by the User Interface are predefined and
stored in the CDM. These forms are retrieved and transmitted to
the Form Processor when a request is made for them by the
application. The Form Editor is used to define forms and to

3-92

SDS620140000
1 November 1985

control the storage, editing and deletion of forms which have
been already defined. The Forms Driven Form Editor makes use of
forms to facilitate the definition of new forms and to control
maintenance operations on the form database segment of the CDM.
Access to the Form Editor is controlled, as is the case of any
program having CDM update privileges. The Form Editor is
operated by any application developer with sufficient authority.

The following information is required to define a new form:
a. The name to be given to the foram

b. The format of the foram

c. The names of forms used within the new fora (if any)
d. The fields contained in the form which are common data

With the above information, the application developer first
identifies an existing schema or creates an external schema,
using the Test Bed Neutral Data Definition Language (NDDL), to
reference the fields to be defined to their respective CDM
definitions. This linkage ensures an error free and effective
transfer of the data constraints associated with each element.
Second, the application developer creates a new form description
which is uniquely named, within the application. The new form
description contains:

a. The name of the external schemas to be referenced

Display
Form
log on
e me

form
/lo. on dote. log on dote

Check

USER integrity

belp dete srrer
oer velid passwerd,
[ICA wvelid roles
. gy
comM

b sl

Figure 3-36. User Log on Scenario

3-93

8DS620140000
1 November 1985

b. The dimensions of the form
c¢. For each subform invoked:
e The name of the subform ‘

® The position (x,y) of the top. left corner of the
subfora

d. For each new field invoked:
)
E o The name of the variable
4

e The position (x,y) of the left most characters of
the variable

K] e The graphic attributes associated with the field

N; e The name of the indirect form associated with the
o field (help, etc.)

e. For each textual element included:
" o The character string to be shown
X e The position (x,y) of the left most character

e THE GRAPHIC ATTRIBUTES ASSOCIATED WITH THE TEXTUAL
fielad

f. The name of the next form to be displayed or whether
control is returned to the ACCEPT USER COMMANDS state
or to the ACCEPT APPLICATION COMMANDS state (Future)

€. Security information associated with the form, that is,
the role of the user having access to the form

The position (x,y) of each field can either be defined by
its relative position or graphically (graphic definition: .
future). The Form Editor can be invoked from an IISS terminal.
The Form Editor communicates with the CDM processor via the NTNM.
: The CDM processor performs the CDM updates., edits.

by 3.1.3.3.3 Application Generation QOperational Scenario

Application programs can be described using an Application

3-94

PEE A e

‘ - NP
AR S e T L S T @S T g A T

et L)
M"J’\I..‘,t Vb "A.*

SDS820140000
1 November 1985

Definition Language (ADL). The ADL is similar in syntax to the
Forms Definition Language (FDL) and contains both FDL and
Neutral Data Manipulation (NDML). The ADL can be compiled to
produce an application program that accesses the CDM via foras.
Figure 3-37 describes the application generation.

A report program is a special kind of program generated by
the Application Generator. Paging and other formatting
characteristics of the report depend on the data to be displayed
within it. The language used to describe reports is called the
Report Definition Language (RDL) and the portion of the
Application Generator used to compile the RDL is called the
Report ¥Writer.

3.1.3.4 Functional Specifications

The functional specifications implied in the scenarios
presented in Section 3.1.3.3 are identified and presented in
this section.

-

'~ - o~

Applicetion

Source
Code
“—— -
Applicetion Generste T
Definition Applicetion
Lenguage Definition

*® o o

Form
Definition

———

Figure 3-37. Application Generation

-

3-95

\l":i“:o".0"’0“?|":0"f0. .0".0"’0":v.'.q"tl"’v“‘.l.'to.‘.0‘.0":0":0 SOOI ST ..o ‘.o‘u\.c e) \ .o'l.v"to"..'“!o"c L) ".c“!“l".u"n

R

RO

SDS620140000
1 November 1985

3.1.3.4.1 User Interface Management System

Form Processor Start Up

Mission: To ready the Form Processor for user interaction upon
user logon to the VAX host under an IISS account.

Functional Specifications:

l. To initialize the Form Processor, and all modules
associated with it.

2. To initiate a message to the NTM. This message
identifies the Form Processor.

3. To display the first form to be displayed on the
Terminal.

4. To place the Form Processor in the "Accept User
Command" State

User Logon

Mission: To ensure that only authorized users may gain access to
the Test Bed Command forms.

Functional Specifications:

1. To display the Test Bed logon form. The Test Bed logon
form requests that the following data be supplied:

e User-i.d.
e User role
e User password - not echoed

2. To validate the above information against access data
supplied by the CDM

3. To reject unqualified answers by repeating step one
4. To record user statistics ior qualified users

5. To display the first page of the Command selection menu

LRS! AT 0T T K TN TR N R Ay oy
L o ’l ‘ \ ‘l‘." “‘..".n'!‘u’l‘u" -.l) . ‘5‘1.0.|.‘ Al l." 0""‘“!"‘0“‘\“‘!' N ‘I“’ ~ . N ' " \ ~ |‘l 0» 2T v, ! N » A A LA

SDS620140000
1 November 1985

6. To place the Form Processor controller in the ACCEPT
. USER COMMAND state

Form Processing

Mission: To perform the operations required to process forms:
e Retrieval of a predefined form
e Display of the form
e Filling out of the form (from the user point of view)
e Data integrity checking
e Help facility
e Vindow management

' § Text editing

Functional Specifications:

1. Retrieval of a Predefined Form

a. Accept the name of the form to be retrieved. The
name of the form to be retrieved is supplied by an
Application Process.

! b. Determine whether or not a given form name is
stored in the Form Processor forms table.

¢. Retrieve a given form name from the Form Processor
forms table.

d. Query the CDM to request the downloading of a form.
This capability is required whenever the form is
not available locally. The form to be downloaded
is specified by its name.

q e. Formulate and display appropriate error messages,
| if necessary, on the terminal.

f. Clear form

3-97

G m&m&&m&m&m&m&gﬁj

a.

4 a.

SDS620140000
1 November 1985

2. Display of a Predefined Form

Display a Blank Fora - A form which is intended to
be filled out by the user is first retrieved as
explained in the operational scenario.

Display of a Form Instance - A form instance is
created by first retrieving the blank form as
explained above, and by adding to it the data
defined by the user or by the Application Process.

3. Filling Out a Form by the User

The form to be filled out is first displayed (see Display
of a Blank Form - item 2a above). The user designates the field
he wishes to fill by positioning the terminal cursor in the left
most character position of the field to be filled. Characters
entered by the user are added sequentially in the field.

Cursor Position Control - The user may fill the
field in the sequence he desires. To start
entering data, the user positions the cursor in the
first character position of the field to be filled
out. The following cursor motions are supported:

e One space motions (right, left, top, bottom)

e Tab control

e Next line

® Beginning of line

Data Entry - The user then types in the data, on a
character basis.

The Form Processor detects the following
conditions:

o Field overflow

e Data entry outside a field

The Form Processor recognizes a special character
which indicates that the user has completed the
data entry operations.

8DS620140000
1 November 1985

4. Data Integrity Checking

. Once a form has been filled out by the user, it is
checked for integrity. The following capabilities are
provided:

a. Edit Check Each Field - Each field entered on the
form is checked against the edit constraints
defined for it in the External Schema attached with
the form. The edit checks which are performed
include:

e Numeric fields
e Alpha fields
® Predefined number of characters

b. Range Check Each Field - Each field which has
passed the edit check is then checked for range.
Upper and lower limits of each data item is defined
in the External Schema attached with the form. The
range checks which are performed include:

e Upper limit check
® Lower limit check

Ranges are not restricted to be nontinuous. Range
information may include combinations of continuous
and discrete values. Ranges may be defined as

tables of authorized numeric or non-numeric values.

c¢. Flag Errors - The errors detected by the edit check
and range checks are reported to the user. This is
done by signalling out the field(s) in error. The
edit checks and range checks are conducted on the
entire form before control is passed to the
Application Process.

* d. Form Processor Control - The Form Processor is
controlled as follows:

e No errors detected - control is given to the
MESSAGE INITIATOR state, and the process of
initiating a message begins

3-99

SDS620140000
1 November 1985

e Errors have been detected - control is given to
the ACCEPT USER DATA state and the user is given
the opportunity to correct his errors. ‘

S. Help Facility

A help form is a form associated with another form or field
which provides additional information or explanation of the data
to be entered.

a. Invoking the Help Form - A means by which the user
can invoke the help forms associated with the form
or with the given field within the form is
provided. The operational procedure shall, in
either case, be similar.

b. Nesting Levels - A help form may be associated with
any form, even if it is a help form. However, for
practical considerations, five level nesting is
considered.

¢. Returning to the Original Form - A facility shall
be provided to enable the user to return directly
: to the original form from any level of help,
: without backtracking through the help forms
invoked.

d. Defining Data on a Help Form - Data may be directly
entered on the help form, and automatically be
inserted on the original form. (FUTURE)

6. Window Management

Windows are spaces that are rectangular in shape that are
reserved for form placement. W¥Windows are contained in forms.
Application Processes and users manipulate windows.

Application Processes must be able to perform the following
activities at run time:

a. Add a form to a window
b. Replace a form in a window

¢. Remove a form from a window

3-100

! o~ . . . " e - np - LT AR W T2 AT AT T T A
‘f‘-':\‘."-'.‘-‘?‘."'ﬂf’.‘f LA * AL X N 't"'u'- WIOE O o bRt UL D-D- I Y .. W N "‘.'*ﬂ". JN¥

SDS620140000
1 November 1985

Users must be able to perform these activities at run
time:

a. Scroll a form within a window
B b. Move a window
c. Shrink a window
7. Text Editing

Users must be able to perform these text editing functions
: on data items:

a. Cut and paste
b. Global search and replace
Cc. Repeat
d. Set margin
Message Initiation

Mission: To initiate the messages required to:
a. Request data from the CDM
b. Send data to an Application Process
c. Send data to the Virtual Terminal
Functional Specifications:
1. Formulate the following CDM requests:
¢ Request for user profile data (password, role)
® Request for specific form data
2. Formulate the following Application Process requests:

e Upload of the form data., form name to the
Application Process

e Upload of the Form Processor status and error
condjtions

3-101

SDS620140000
1 November 1985

Formulate the following Virtual Terminal requests:
e Request for user entered data
e Request for cursor position
e Request for function key pressed by user
The messages formulated by the Message Initiator shall
be in a well defined and structured format. The format
exhibits:
e A header
e A data body
Message header contains the information required to
control the User Interface Management System. The data

body contains the information which may be required to
support processing.

Form Processor Monitor

Mission:
coordinate the actions of the Form Processor in response to:

a.

b.

1.

hﬁ%&(&&@ﬁkﬂﬁ@ﬁﬁﬁ

To control the operations of the Form Processor and to

User commands

Application Process Commands

Functional Specifications:

The Form Processor Monitor allocates control of the
Process Forms functions to the Virtual Terminal, or to
the Application Process.

The Form Processor Monitor allows the Virtual Terminal
to regain control of the Form Processor at anytime.
This is done on an interrupt like basis. In this
event, the Application Process, if any, is terminated.

The Form Processor Monitor waits on an acknowledgment
from the Virtual Terminal to go to the next form or
next state. Standard function keys are defined for
that purpose.

3-102

T UTEEUHTER & 7 FRENRANANS

SDS620140000
1 November 1985

4. The Form Processor Monitor recognizes a set of function
keys (or combination of keys). These keys are
consistent, and always produce the same effect. The
following keys are recognized:

e Quit
e Enter
e Help

Application Interface

Mission: To facilitate the control and the manipulation of
forms and forms data by an Application Process.

Functional Specifications:

1. Control of the Form Processor
The Application Interface facilitates the control of
the Form Processor by the Application Process. To that
effect, the Application Interface offers a set of
commands which can be invoked by the Application
Process. The set of commands supported by the
Application Interface is given below:
e Remove form
e Display form
e Display form instance
e Read form
e Read form instance
e Display error message

2. Data Manipulation Primitives
In addition, the Application Interface allows the

manipulation of data forms by the Application Process.
To that effect, the Application Interface supports the

3-103

a S 4T Vv ¢ RY A P D P e o N NG A
DO WA AN U R Y RN TN R T RIE ¥ M N R e 2 e 0 T 0 W T W

mm NIIIWIT
SDS620140000
1 November 1985
following data manipulation primitives:
e Read field value by name *
e Read previous value by name ‘
e VWrite field value by name
® Query field attribute by name
e Set field attribute by name
X The above operations are performed locally by the Fora
) Processor which maintains a local copy of the form
) instance displayed by the Virtual Terminal.
3. Stored Forms Instance Primitives
‘ Form instances can be saved locally. This capability
: provides memory to the Form Processor. Previously
R defined data can be selectively retained for further
; processing. To that effect, the Application Interface
supports the following stored forms instance
s operations:
¥
§ e Save form instance (future)
§
! o Get form instance
| e Delete form instance (future)
; 3.1.3.4.2 User Interface Development System
Forms Definition
, The definition of the forms include the following sections:
: 1. Forms Identification
e Application name .
e Form name
The system wide form name is made up by the
concatenation of the application name and of the form
name.
3-104
}&"1_1‘:."1, ' yile.‘"\jl',"4'-‘l'i?"a(“‘lt‘.h{‘?i“"n‘..’., A .,t.‘.h".."h h". A. l’sl A . 1 \‘ A l Jc't i.“: v v "- '." 2 4 W.‘ *"‘ 'F"': . . it

SDS620140000
1 November 1985

Form Control Definition

Name of the help form associated with this form

Relative position of the form on the screen, with
respect to the origin: Origin is taken to be the
top. left corner of the screen, for the top level
form. The location of the origin of any other form
is controlled by the containing foram.

Textual Element Definition

Relative position of the top left character of the
Textual element being defined.

Length and width of the text being defined (length
and width are computed automatically).

Display attributes of the Textual element.

Field Definition

Length and width of the field

Relative position of the field top left most
character with respect to the origin of the form in
vhich the field is defined.

Name of the variable to be stored in the field.
Variable is referenced by its name as shown in the
External Schema.

Display attributes granted to the field.

Field name (optional).

Field Information for an Existing Field

Set a field equal to another (defined) field.

Prompt Field

Name of textual field to be prompted, or
Name of the field to be displayed

3-108

-

SDS620140000
1 November 1985

Form Editor

The following functions are provided by the Form Editor:

" 1. Define Forms

! Forms definition is forms oriented. A form is
0 predefined for each of the sections of a form:

e Form identification
e e Form control information
N o Textual element definition
e Field definition
e Prompt field definition
I 2. Add Fiela
Fields can be added to an existing form by using the
: o add field capability. The add field utility allows the
: definition of a field as defined previously.

» 3. Delete Field
»
]

A field defined in an existing form can be deleted via
9 this utility.

) 4. Set Field Attribute

' An attribute of a field can be set (or reset) by this
utility. The user needs to define the name of the

y attribute and its value (Boolean, integer).

L)
B 5. Save Form
]

This utility is used to save on secondary storage (in
the CDM) a form which has been defined by the user.

6. Get Form

o

This utility is used to retrieve a form. The form may
either be retrieved from the CDM or from the Form
Processor table (if available).

Cw
)

< -

3-106

R A -

0
;\
]
L eOnOng UNOO0NON000 10 . l S, W W0 ¢
e et e e L i e S S RS e S A e R N

> g, Ty N Wy | PP 0 S G ST R S VA Y
)k -.n.l.& e e, A LS, '. ‘- . D oy,

SDS620140000
1 November 1985

7. Delete Form

This utility is used to delete a foram stored in the
CDM

: 8. Error Processing

¢ The Form Editor provides the following type of error
processing:

® Check for uniqueness of names of forms
i e Check for dimension constraint
e Check for undefined attribute constraints
The Form Editor is viewed as any other process using
the forms capability of the User Interface. Hence, it

can also invoke all of the following Active Instance
operations:

TN R A

e Show form

o Clear form

, e Query field attribute
® Save instance

e Get instance

.

e Delete instance

Report W¥Writer

. Mission: To provide a means to translate textual definitions of
g reports into programs that generate the reports.

Functional Specifications:

1. Textual Output

‘g o -

The background template for the report is a form. It
is specified using the Form Definition Language.

3-107

y - ~
v Ty oy " ¥ KBl " QUKD ; N RG]
OGO Lol i o O O OB DGO Ol o it e AT A T 0 0 S RS W 0 VAL L S Pt A A gt B S T T Rt RN

SDS620140000
1 November 1985
2. Database Operations
All database operations are described using the Neutral
Data Manipulation Language (NDML) and are performed by
the CDNP.
3. Statistical Summarization
Simple statistical computations may be performed upon
item values and included in the output. The
computations include:
e Count
® Sum
e Average
o Minimum
4. Picture Specifications
Each item field that is mapped to CDM data may have a
picture specified to define the output format. The
editing provided includes numeric and alphanumeric
specification, leading zero suppression, decimal
placement, leading sign indicators, currency symbols,
and placement of embedded coamas.
5. Exceptional Conditions
Tests can be established for certain exceptional
conditions. An action or group of actions can be
specified to occur when the condition arises.
Practical applications of this facility include output
of headers, footers, statistical summaries and paging.
The following exceptional conditions are recognized:
® Change in the value of an item
® Page overflow

e Startup of report

3-108

RV B O W e Vet POV

SDS862014G000
1 Rovember 1985
6. Exception Actions

. The following actions can be taken when an exceptional
condition occurs:

- e Page ejection
e Change of fora
e Setting of a data item
e Database query

Rapid Application Generator

Mission: To provide a means to translate textual definitions of
interactive database applications into programs that access :
databases via the CDM. X
Functional Specifications:
1. Application Definition
The application is defined by using an Application ‘
Definition Language that subsumes the Forms Definition)
Language. :
2. User Interaction

The user of the generated application may perform the
following activities:

e Filling out form templates

e Menu picking

e Item selection by cursor position
e Function key Selection :

As a result of the user interaction the following
activities are performed by the generated application:

e Switching between functions

e Database modification

3-109

;"\"’;

. $
3 OCRIONILAOT 3 3, | . % B % I - - » L3S W
R OO O U A A IACRRCR S OUMR MR M A= S TR SO CRL AT RGP i i M = ™ 3 e e Tom N SR W MM AN,

SDS620140000
1 November 1985

3. Database Operations

All database operations are described using the Neutral
Data Manipulation Language (NDML) and are performed by
the CDNMP.

4. Security and Access Control

Security and access control is provided through the
mechanism of conditional forms and triggers sensitive
to particular item field values. Thus, the
functionality offered to a particular user can be
restricted by not displaying a form containing options
for certain database operations or by not enabling
certain function keys. Further, other forms informing
the user of restrictions on access can be displayed
instead.

5. Conditional Actions

Conditional actions are those triggered by the
occurrence of an event defined in an ON statement. Any
number of actions can be triggered by a single event.
They involve both form processor actions and database
transactions. It is primarily the conditional actions
vhich determine the course of the execution of the
application.

3.1.4 The Virtual Terminal Interface Configuration Item

3.1.4.1 Virtual Terminal Mission Statement

The mission of the Virtual Terminal Interface is to afford
terminal independence to the Application Process and Test Bed
System Services. More specifically, the Virtual Terminal
Interface provides:

e Terminal protocol independence
e Terminal character independence

e Terminal feature independence to the Test Bed
Applications and Services.

3-110

g bip S g R gl t" R R R R L AN 7R M LU L U AR R TN AN W LR YUK R U LN RN A R TR TR T »

-]
U AT)V,

SDS620140000
1 November 1985

3.1.4.2 Virtual Terminal Functional Areas

The various functional areas making up the Test Bed Virtual
Terminal Interface are shown on the Virtual Terminal Interface
configuration tree given on Figure 3-38.

Figure 3-38 shows two major functional areas:

e Virtual Terminal Definition

e Virtual Terminal Implementation

Virtual Terminal Definition

The Virtual Terminal defines a set of characters, teraminal
features and data exchange protocols which are considered
standards in the Test Bed System. Any Application Subsystem or
Test Bed Service written specifically for the Test Bed assumes
that it is interfaced to a terminal offering the character set,
terminal features and data exchange protocols defined for the
Virtual Terminal Interface.

Virtual Terminal Implementation

The Test Bed Applications must however ultimately
communicate with a hardware terminal. It is the function of the
Virtual Terminal Interface (VTI) to provide the necessary
character and protocol conversion procedures. Likewise, the VTI
provides the mappings that may be required to implement any
Virtual Terminal Features on a specific hardware terminal.

3.1.4.3 Virtual Terminal Operational Scenarios

The Virtual Terminal Interface operational scenarios
presented here are introduced for the sole purpose of supporting
the identification of the functional specifications to be met by
the Virtual Terminal Interface. These scenarios are not meant
to imply a specific implementation of the functional
specifications. Consequently, the final design may implement
scenarios which differ from the scenarios shown in this Section.

3.1.4.3.1 1Interface to a Real Terminal

The most natural role for the Virtual Terminal is to
interface with a Real Terminal. This scenario is illustrated on
Figure 3-39. This figure shows the VTI interfacing with the

3-111

, IR L L Ry T 30 P T v Tt PN Y --,-_.‘y..-_-..\~w\ LIS S I T
0 A T TR N WG TG CRCR NG e R AT, o O e Ly LY AL TN G (RN (\ -

ANy

SDS620140000
1 November 1985

VTI STD Features

/ »
/
/
VT Definition / VT Enhanced Features N
o o o o ——— B e e e e - - ——— - - . - - *
| \
[\
| \
| \ VTI Protocol
{ e ——————————— *
|
|
Virtual }
Terminal Interface |
o e e - = - - - - —— 4
]
|
| Protocol Conversion
| e e e e - = o = - — — —— o ———
[/
| /
[/
| / STD Feature Conversion
o —————— B e e o o = - = - — —— - - - —— *
VT Implementation \
\
\ Enhanced Feature
\ Simulation

Figure 3-38. VTI Configuration Tree

hardware terminal through the terminal driver provided by the
host operating system. The VTI is also interfaced with the User
Interface Form Processor. ‘

In this role, the Virtual Terminal performs the following
functions:

1. Data Acquisition from the Real Terminal
The VTI receives data from the real terminal according

to a protocol. This protocol can either be character,
line, or block oriented.

3-112

a2 w

SDS620140000

po 1 November 1985
TERMINAL

Figure 3-39. Interface to a Real Terminal

2. Data Conversion from Real Terminal to VTI

Once the VTI has acquired data from the Terainal
Handler, it may proceed to convert the characters
received into the VTI character set. At this point, it
must be noted that character conversion cannot be
assumed to be context free. Some terminals (like the
VIP 7200) use escape sequences which are several
characters long. The sequence of characters indicates
the type of the user interrupt, and the characters
included in the sequence are context dependent.

3. Data Transmission to the User Interface Form Processor

The VTI data, which has now been converted to the VTI
character set, with all terminal dependent character
sequences eliminated is then transferred to the User
Interface. This data transfer is done on a
pre-negotiated protocol (character, line, block). The
data is now punctuated by control characters taken from

. the set of VTI control characters. These control
characters are used to indicate the occurence of things
such as: line feed, carriage return, cursor control,
etc.

3-113

U A Y TN X I DAL 7 e AT AN

SDS620140000
1 November 1985

4. Receiving Data from the Form Processor

The Virtual Terminal receives data from the User
Interface Form Processor whenever the User Interface
Form Processor wishes to communicate with the hardware
terminal. The Virtual Terminal Interface is invoked to
that effect by the Form Processor. The data supplied
by the Form Processor is, by definition, in the
standard Virtual Terminal format.

5. Data Conversion from VTI to Real Terainal

The data presented to the Virtual Terainal Interface is
converted so the character set of target hardware
terminal and the VTI control characters are replaced by
the control characters of the target terminal. Once
this conversion has been completed, the VTI invokes the
Terminal Handler of the host operating system. Figure
3-40 shows the mechanics involved in acquiring,
converting and transmitting data to the User Interface
Form Processor. This figure assumes that the VTI is
not directly controlling the I/0 Terminal Handler. The

(tesk spawn)
e Wp, ste.

fitne torminetor]

TERTNAAL

Ctopn =)

Figure 3-40. Data Acquisition, Conversion, Transmission

3-114

' ", W I W a o W Lo ol om0 A LR TR
T e R R R T A A R A e A YA

SDS620140000
1 November 1985

I/0 handler is shown to be under the control of the
host operating system.

6. Feature Mapping

Some hardware terminals may not offer any hardware
implementation support for all of the standard terminal
features assumed for the Virtual Terminal Interface.
For such terminals, it may then be necessary to
simulate some of the desired Virtual Terminal feature
by a well thought out sequence of operations which are
implementable on the hardware terminal. This process
is referred to as feature mapping.

3.1.4.3.2 Interface to an Existing Application Program

Terminals are not the only entities in the Test Bed which
offer or assume specific terminal features. Programs written
around a specific terminal hardwvare exhibit characteristics of
that terminal. Such programs are said to be terminal dependent,
and in fact are the general case, rather than the exception.
The Virtual Terminal is also used to grant to those existing
programs the terminal independence required for integration in
the Test Bed. 1In this role, the Virtual Terminal perforas all
of the functions and services described in the previous section
(Section 3.1.4.3.1). Refer to Figure 3-41. This figure shows
that an existing Application Process invokes the Virtual
Terminal Interface via a procedure call. Data is also passed to
the Virtual Terminal Interface. This data is stored in a table,
or perhaps in a file. The Virtual Terminal Interface performs
the necessary conversion, and generates the equivalent VTI data.
Once the conversion process is completed, the VTI transfers the
data to the Network Transaction Manager. Invoking the Virtual
Terminal Interface from one existing Application Process
requires that either one of the following methods be used:

1. Modify the existing Application Process and replace the
I/0 statements with calls to the Virtual Terminal
Interface subroutines. This can be done manually or
automatically with a suitable precompiler.

2. At link time, replace the host standard I/0 library
with a library of functions including the Virtual
Terminal Interface subroutines. These subroutines have
the same names than the host 1I/0 subroutines. Figure
3-41 also describes the process by which data is
transmitted from the Network Transaction Manager to the

3-115

o

A" 4. B - 3

- 4

a & o =

T e e I T Y S Y K

SDS620140000
1 November 1985

existing Application Process. This process parallels
the process used to transfer data from the existing
Application Process to the NTNM.

3.1.4.3.3 Interface to a New Application Program

In this context, new Application Program means an
Application Program specifically written for the Test Bed. New
Application Programs are using, by definition, the terminal
features offered by the Virtual Terminal Interface. Thus, new
Application Programs do not require any of the conversion
otherwise performed by the Virtual Terminal Interface.

5.1.4.4 Virtual Terminal Functional Specifications

The functionai specifications implied in the scenario

presented in Section 3.1.4.3 are identified and presented in
this section.

3.1.4.4.1 Virtual Terminal Feature Definition

Mission: To provide the definition of a set of common terminal
features and protocols used throughout the Test Bed.

Figure 3-41. Interface to an Existing Application Progranm

3-116

8SDS620140000
1 November 1985

RS Functional Specifications:

. The Virtual Terminal Interface definition includes:
o 1. ASCII character set (lower case and upper case) as
% . standard VTI characters
% 2. The folloving minimum set of VTI Control characters or
kN sequences :
- e To indicate the end of line
g e To indicate the feeding of a new line
: e To position the cursor
g ® To clear the screen
0 e To indicate the end of a data block
?; e To indicate a user interrupt
. e To indicate any of the VTI features listed below in
) paragraph 4

[]
Kot
-y ®
¥y
l’.
\.‘ ®
l°|
)
®
%
128
u‘) o
b
%
o' R
N ®
(.‘
L
-3 o
L]
:‘t
W
i
1)
EX) Y
)
o
(.
; o

‘r;:
o
v

3. The following minimum set of VTI features:

Block mode display/input

Reverse video

Blinking

Bold (bright)

Dim (half-bright)

Underscore

Bell

No echo

Upper case

Lower case

3-117%

a4 Y

L4 N .

1 b . . : T RT Y \ ~] .

i S S T TS I R AT T B A LS I R Y e

SDS620140000
1 November 1985
e Size of screen
4. The following minimum set of VTI protocols:
e Block VTI/Real Terminal
e Block VTI/VTI

3.1.4.4.2 Virtual Terminal Implementation

Mission: To implement the Real Terminal/Virtual Terainal
protocol, character set and feature transformation
required to achieve terminal independence.

Functional Specifications:

1. The implementation of the Virtual Terminal supports the
following functions:

e Character set conversion
e Feature mapping
e Protocol conversion

2. The following real terminals are used for demonstration
of the VTI concept:

e DEC VT-100
e Honeywell VIP 7200
e Lear Siegler ADM-3

3. An instance of the Virtual Terminal Interface supportis
one instance of the real terminal type.

4. The Virtual Terminal Interface can be expanded to
include new features, and to support via software
simulation functionality limited terminal hardware.

3.1.5 The Communication Subsystem Configuration Item

3.1.5.1 Communication Subsystem Mission Statement

The Communication Subsystem provides Communication Services
to the Test Bed Subsystems. The Communication Services allow on

3-118

! SDS620140000
1 November 1985

e host interprocess communication and inter host communication
o between the various Test Bed Subsystems.

3.1.5.2 Communication Subsystem Functional Areas

- The configuration tree shown on Figure 3-42 identifies the
following functional areas:

) Communication Hardware

o ® Local Area Network
) ® Vide Area Network

¥y Communication Software

o e Inter Process Communication

h
LY
< e Inter Host Communication
)
gi e Configuration & Maintenance
3.1.5.3 Communication Subsystem Operational Scenarios
o Figure 3-43 shows the demonstration hardware environment of
. the Test Bed. This figure shows the Local Area Network and the
ﬁs Wide Area Network services used to interconnect the IBM 3033
) computer to the Local Area Network. The same figure also shows
" the wide area services used to support remote software
o development on each of the Test Bed hosts, as well as on the
N CIDS development system (CIDS during initial phase only).
"\
o 3.1.5.3.1 Local Area Network
s Refer to Figure 3-43. The Local Area Network is composed
, of the BUS Interface Units of the GENET Local Area Network.
h These units are shown interconnected by a coaxial cable, with
Q, : each bus interface unit properly tapped into the cable.
LA {
R

The Honeywell Level 6 and the VAX are shown to communicate
» with their respective bus interface units via two RS-232-C
' communication lines.

'ﬁl The IBM 3081 is shown to be connected via synchronous
. modems and a leased telephone line to a cluster controller

: located in the room containing the Honeywell Level 6 and the
o VAX. The cluster controller communicates to a bus interface
,'i »

bt

o 3-119

B Oy e TS A TR B R A RPN Ty 3 3 SISO NI N I N I I I I N NN NN N ST A W

LOCAL AREA NETWORK

WIDE AREA

COMMUNICATION
SUBSYSTEM

INTERHOST INTERPROCESS

COMMUNICATION COMMUNICATION

[
L

3-120

COMMUNICATION
CONFIG. /MAINTENANCE

SDS620140000
1 November 1985

Configuration Tree

Figure 3-42. Communication Subsystem:

Mg wat b g wal g gV guh W AE Ee o @b gk v p 8 s b'adt . L aig gt : PO UYLV WU A TR U AP LR

P e e

U e o e

SDS620140000
1 November 1985

unit via 2 RS-232-C lines. A third RS-232-C is used to connect
an asynchronous development terminal to the IBM 3081.

The cluster controller performs the multiplexing and
demultiplexing of the traffic carried by the synchronous line
into the two asynchronous lines shown. In addition, the cluster
controller also performs the synchronous/asynchronous protocol
conversion as well as the ASCII/EBCDIC character conversions.

St b -

The GENET Local Area Network is used in the Permanent
Virtual Circuit Mode (PVC). The Local Area Network supports the
3 Virtual Circuits shown on Figure 3-44.

The Virtual Circuits shown on Figure 3-44 are permanent,
that is these circuits are set up when the Local Area Network is
povered up, and are maintained until the system is shut down.
iy The configuration data required to set up these virtual circuits
P and to configure the six RS-232-C ports is stored in the GENET
Configuration ROM Memory.

b I,

Figure 3-44 shows clearly that with the permanent Virtual
Circuit approach outlined above, one RS-232-C port on each
machine is dedicated to the bidirectional communication
operations with a given computer. This port/host assignment is
N known to the communication software.

: The Local Area Network described above clearly allows for
the distributed processing required to support the operation of
the Test Bed. Each host is capable of transferring information
bidirectionally with every other host. The approach described
here is used since no overhead is incurred to set up and tear
down Virtual Circuits.

Y'Y

3.1.5.3.2 Wide Area Network

-

Consider Figure 3-43. The IBM 3081, which is located some
three miles away from the other computers, is interfaced to the
cluster controller via synchronous modems and a leased telephone
line.

- -~ -

A line multiplexer allows the multiplexing of local and
remote terminals to any of the Test Bed hosts. This convenience
is of major significance when considering that software
development can be carried out remotely by the various ICAM
subcontractors having need to access the Test Bed. This
configuration allows SofTech, CDC, P¥A and other ICAM
subcontractors to gain access to any host of the Test Bed, in

-

e >

3-121

R R)

L}
1)
.'n'.'ﬂ G ;\ X 1'.\10.\!...0.'10.",\.'. '! ..».10“ “"NO_\'L J‘\) ol n’,'.a ."‘.".0. .n o.-. ¥ V N ‘lt'. o.a' AT LA n |n' \ N \ ‘ e '-"

SDS620140000
1 November 1985

uogaeandiyuo)
AI0MION VOIV OPIA 8 [e00T peg 1891 ‘gp-¢ aandid
T18vD WIXV0D
LN 1NN LN
30ViuUN OVHIUM 3OVIU3LNI
sne sne sna
azsy a2 Sy 7T ™ >
ot S a2 sy %2 S o2 sy
L [
aﬁ‘a . ‘
H30UINGD
HONASY w3isn QNN gasv
1HONAS ® h S 01
XVA Sﬂé.:zw SSH 9 T1IMAINOH
azsy
o .
a2 Sy &z sy
SYIHLO 'VId
(HJ3140S "SOID *2a2)
STVNINGAL U WUVIN SIVNINY3L SSH
AN3NA013A30 V201 W /N3N0 13A30 I10W3Y
180E NI

3-122

iy

:

-~
-
<A

P

o

WIAY

DA A RO RO Y L T B e S,

8SDS620140000
PVC: PERMANENT VIRTUAL CIRCUIT 1 November 1985

BM 3081

. ONEYWELL 6| VAX

CLUSTER

i T — B
[}]

E Ve en (] /] :
\oewer _ __ J

Figure 3-44. Genet Permanent Virtual Circuit

native mode. Likewise, this configuration allows any remote
terminal to become an IISS terminal.

The line multiplexer is also used to multiplex terminals
located at SofTech or at General Electric to the Central ICAM
Development System (CIDS). This allows SofTech and General
Electric developer to share a leased telephone line to CIDS,
located in Cushing, Oklahoma (Initial phase).

The line multiplexer arrangement described above thus
supports development activities and forseeable Test Bed
experimentation scenarios.

3.1.5.3.3 Inter Process Communication Scenario

The Test Bed software is composed of many processes. These
processes are either System Services or Application Processes,

. and are in general highly independent. Processes which are
coresident on one host communicate with one another via the
Interprocess Communication (IPC) Primitives provided by the Test
Bed system software. Processes which reside on different Test
Bed hosts communicate with one another via the lInterhost
Communication (IHC) services provided by the Test Bed systenm
software.

3-123

RIC AMRMERNBRNNNAX] 0 O] f g Wy ¥ o WA AL " TR ANy
1“\}.‘.'\"’,“*_‘.“':‘,‘lhil'.“a',‘l',‘a'-,?l’..l.-..t',‘l‘.‘l'.‘ UK S AR ROV AN S Ua TR My T i e Dt T A s T 10 O i ot T UK A R o WO M AGYHY

o pa S o s g 3 b

S an Sn S oS¢ £

SDS620140000
1 November 1985

The following scenario describes the sequence of operations
typical of a communication between two processes coresident on
the same processor. This scenario describes the communication
activities which take place between the Network Transaction
Manager (NTM) and a typical process called Process X. This
scenario is presented here for the following reasons:

a. In the Test Bed, all communications are routed via the
Message Manager portion of the NTM. This rule is
convenient since it allows the grouping of the manage
message functions in one module, and since it also
allows for a highly structured design. The problem of
supporting communication between n times n applications
is thus reduced to a much simpler problem, namely that
of communicating between any process and the NTNM.

b. Communications between the NTM and the COMM process
used for interhost communication is a particular case
of the above case. The simplification encountered in
this very important case of interprocess communication

are pointed out in the discussion of interhost
communication.

The following scenario is implemented when the NTM on the
AP Cluster where Process X resides receives a message requesting
that Process X be initiated. The discussion presented here
applies to the initiation of the first or any additional
instance of Process X on the AP Cluster.

3.1.5.3.3.1 Establishing Mail Boxes between Process X and the
NTM

a. On AP Cluster NTM operations:

1. The NTM receives a message requesting that an
additional instance of Process X be initiated.

2. The NTM creates a unique name for the instance of
Process X.

3. The NTM calls upon the local host operating system
to create a new instance of Process X.

b. New Process X operations

The following actions are taken by the newly created

3-124

-

SDS620140000
1 November 1985

instance of Process X. The new instance of Process X is created
by the local host operating system in response to the initiate
Process X request placed by the NTM in Step a.3 above.

1. The newly created instance of Process X obtains the
name of the mail boxes it must use to communjicate with
the NTM on AP Cluster. The names of the mailboxes are
predefined to the NTM Run Time Routines bound to the
Process X.

2. The newly created instance of Process X creates the
input mail box it uses to obtain data from the NTM.
This input mail box is named according to the name
given to the AP which is obtained from the local
operating systenm.

3. The newly created instance of Process X signals to the
NTM that it is running normally and is ready to accept
data from the NTM by writing into the NTM input mail
box.

3.1.5.3.3.2 V¥riting and Reading into the Mail Box

a. Writing into the NTM input mail box

Consider Figure 3-45. Once the input and output mail
boxes have been identified and created per the above
procedure, Process X writes into the input mail box of
the NTM by invoking the communication service used to
write into a mail box. The call is placed by Process
X, and the call conveys to that communication service
the following data:

® Name of the buffer (in Process X) which contains the
data to be transmitted

e Name of the NTM input mail box to be written into
Messages written into a mail box are queued on a
FIFO basis.

The logic of the host operating system or
interprocess primitives prevents overwriting a mail
box which has not been read by the NTM.

If the attempt to write in the input mail box was
successful, Process X continues processing.

SDS620140000
1 November 1985

Reading the NTM input mail box

Consider Figure 3-45. The host operating system (or
IPC primitive) detects the fact that Process X wrote
into the input mail box of the NTM.

This allows the Communication Service for Reading Data
from input mail box to proceed with the reading of the
data contained in the mail box. This communication
service also copies the input mail box data into the
NTM buffer.

This Communication Service also returns status
information to the NTM. In the event of a successful
transmission, normal NTM processing continues. In the
event of errors in the transmission, the NTM logs the
error code in the error log and takes appropriate
action.

3.1.5.3.3.3 Clearing Mail Boxes

The mail boxes created by Process X to communicate with the
NTM must be cleared when Process X terminates. Clearing the
mail boxes returns memory storage to the buffer pool.

Two eventualities must be considered when clearing the mail
boxes used by Process X to communicate with the NTM. The first
eventuality is the normal termination of Process X, and the
second is the abnormal termination of Process X.

3.1.5.3.4 Process Synchronization

Process synchronization capabilities are required in any
system made up of cooperating processes. In the Test Bed,
process synchronization is achieved via the WAIT primitive.

A process which needs to be synchronized with another
process utilize a combination of the Receive, Set-Timer, and
Wait primitives. The Receive primitive accepts data from the
mail box of the process with which synchronization is desired.
The Set-Time primitive is used to detect a synchronization
failure and the Wait primitive returns to the calling programs
when either the timer elapses or the expected data is received.

The above scenario may lead to anyone of the following

bkt T TRRCTO G T P TR T il Yol T AR

S5DS620140000
1 November 1985

STATUS

. DATA AVALABLE
%4
\

\

HOST
OPERATING

SYSTEM
|

/
[
’
/
’
/
,I
>~
’ DATA
AVALABLE ¢
(VAX)
N
\

/
/
N\

\

DATA AVARLABLE

(1BM, L6)
STATUS

Figure 3-45. Writing & Reading into Mail Box

DATA

3-127

N - PR Wy @y g, Ny Cpw g W A LA PN L o U
R T R A N L AR A A A R AL R R LRI AR R SR AN REREREY,

W VE ATW W WIFG Al B . ey

SDS620140000
1 November 1985

g

outcomes:

o~

1. The program target of the synchronization request)
supplies a synchronization message and the WAIT
primitive returns to its calling program thereby
achieving synchronigation.

-~
-

g

U

‘;‘0

0 2. The target program fails to supply a message and a

") count down timer terminates the WAIT primitive which
returns an error message to its calling program.

; 3.1.5.3.5 Inter Host Communication

!

b Figure 3-46 shows an overview of the Inter Host

) Communication Subsystem. This figure illustrates the following

' concepts:

e 1. The NTM on the COMM AP Cluster routes all inter host

' traffic

»

0 2. A COMM Subsystem is dedicated to communication with a

' particular host, and as such transmits and receives on

o an RS-232 port dedicated to a specific host.

Y

o 3. Each COMM Subsystem uses two queues to communicate with

s the NTM on the COMM AP Cluster. One queue is dedicated

b to inbound messages, whereas the other queue is
dedicated to outbound messages.

$ 4 The COMM Subsystems invoke a count down timer to detect

line failures.

-~

5. The COMM Subsystems use the local host operating system
I/0 handler to control their respective ports.

:: 6. The inbound and outbound queues can contain more than
N one message at a time. From COMM point-of-view, the
e gqueues are handled on a FIFO basis. Any scheduling of
: the messages (both in and outbound) is performed by the
2 NTM on the COMM AP Cluster. COMM is responsible for
2 segmenting messages which exceed the size of the
N communications data blocks. The COMM is also

M responsible for assembling the various data message

} segments into a message prior to routing to the NTM.

[3-128

~ ot

. . . N ' - AN A S WO L T A . T
f:?’ﬂ,"n.!‘ﬂ!‘t’\ '..\’,'A An) l‘.“u'?‘.".‘d".‘. l‘.‘y!l... Ny .I"m".'.l,.d .O.‘tl ':0 48,0 0.4%, -l“-\ AL) .‘ NN S .| B AN ¥

SDS620140000
1 November 1985

3.1.5.3.5.1 Message Scheduling (Future)
(Initial message scheduling is on a FIFO basis.)

The NTM is responsible for scheduling the messages to be
transmitted by COMM. The scheduling is based on the following
rules:

1. The messages from all Application Processes on an AP
Cluster are examined for the highest priority om a
round robin basis.

2. Consecutive messages to be transmitted to COMM do not
belong to the same Application Process queue unless all
other queues are empty.

3. Messages which are not selected (passed over) for
transmission because of insufficient priority are aged
to ensure that they are not indefinitely delayed in a
busy, higher priority environment.

4. Back pressure is applied, if necessary, through the
round robin scheduling by skipping those queuwes which
cannot be transmitted because of insufficient space on
the corresponding queues. This implies status feedback
from the receiving AP Cluster.

Figure 3-47 supports an illustration of the message
priority scheme implementing the above rules. A discussion of
the message scheduling scenario follows:

Messages issued by Application Processes APl, AP2, and AP3,
are transmitted via mail boxes to the NTM. These messages are
gqueued by the NTM. The queue is processed according to the
above rules, and messages selected are either send to COMM or to
another NTM on the same host.

The messages are transmitted to the COMM AP Cluster NTM via
mory. The messages are segmented into message segments when
required and queued for transmission by COMM.

Upon reception by COMM (on the other host), the message
segments are reassembled and then transmitted to the COMM AP
Cluster NTM. The messages are then placed in the mail boxes of
the Application Processes. When a mail box is filled to the
peoint that additional messages cannot be delivered, back
pressure is applied to the sending NTM via message indicating
the mail boxes to be skipped by the round robbin scheduler.

3-129

...........

P

-

Re gy ~an

P s 8 O P
. . d ” »
[AR BES .c‘... .h 1 R AT 6N A o " 4" .5 -' B ¥ ¥4 .

p gt VTRV PURLU Y. PL PUPURPUPUNU LY

SDS620140000
1 November 1985

Figure 3-46. Interhost Communication & Overview

This message is sent by the receiving AP Cluster to the
transmitting AP Clusters.

3.1.5.3.5.2 Transmission Error Detection

To improve the reliability of the messages received by the
receiving COMM program and forward to the NTM, the COMM program
performs error detection and provides acknowledgement (positive
and negative) to the sending COMM program.

3.1.5.3.5.3 Line Protocol Handling

The line protocol implemented in the Test Bed establishes a
master slave relationship between the sender and the receiver.
The master is keeping track of the time out events and is
responsible for terminating the transmission.

It must be noted that the Honeywell Level 6 and IBM 3081
computers do not support full duplex communication through their
line 1/0 handlers.

Figure 3-48 shows the line protocol contemplated for the
Test Bed, and supports the following discussion.

3-130

Y) g e m R T S SR AT DT A S S)
L4 f\f*f 'S f."..'.,.v "%n'! e, AR, LR AR N 'n‘-_..'_-.. .

-

8DS620140000
1 November 1985

~
»
w
]
]
[
o
-
o]
-
~
0
g
-
~
§
-]
0
]
a
<
[
L
Q
=
&
hf
]
®
2
=)
e
-t
[

S

BACK PRESSURE

- e P G e @ i G Glp GED D GER B D B0 @B

SM| SELECTIVE SCHEDULING

3-131

0 9 OIS AN SR RSN TR |

S8DS8620140000
1 November 1985

Idle state
The COMM program enters the Idle state when:
a. First started

b. When no message segment vas received, no message
segment remains to be transaitted and no message is
queued for transmission

Make line bid

The COMM program indicates its wvillingness to act as a
master by sending a message to the other host. If the
other host is able to act as a slave, it will
acknovledge the request by sending a line granted
message.

Compute ¥ wait backoff time

If the other host was in the process of bidding for the
line, a backoff time is computed to delay by a fixed
amount of time the retransaission of the mext line bid
message. In the Test Bed, only two COMM programs may
collide. These programs are configured with two
markedly different backoff time constants. This simple
scheme ensures that the second line bid attempt will
not collide. It also implies a primary or favored role
for one of the two COMM programs on one transaission
line.

Time Out

A fixed time out timer is initiated by the Master after
every transmission Fajlure for the slave to respond
within the time interval causes the master to
retransait. After a fixed nuaber of retries, the line
is assumed to be dowvn and the fault is reported to the
FTM. Thais time out technique applies to the linme
bidding as well.

Get first message segment n

The COMM programs enters this state vhen a lime-granted
message 15 received from the other COMM program The
COMM progras under discussion has thus gained control
of the line and is ready for transmissionThe message

3-132

SDS620140000
1 November 1983

uoissiEsuell [000303d OULT "9v»-¢ sindi4d

A IR

3-133

SDS620140000
1 November 1985

to be transmitted is assumed to be N message segment

long, with the first segment to be transmitted being .
number one.
6. Transmit message segment n .

The COMM program proceeds with the transmission of
message segment n. The COMM program appends a
transmission header and trailer to the data block. This
header contains the following information:

e Cyclic transmit sequence number (1, 2, 3) which
allows the detection of duplicate and missed blocks.

e Cyclic receive sequence number
e Control byte containing:

- Line bid indicator

- EOT marker

- Continued message flag

-~ ACK or KRAK mark and cyclic transmission indicator
of faulty segment

- Binary/native flag
The trailer contains the message segment check sum.
Once the transmission of the message segment has
been completed, the COMM program waits for an
acknowledgment from the receiver.
7. Get next message segment (n = 2,N)
A positive acknowledge from the receiver indicates that
no errors were detected and that the transmission may
proceed with the next message segment. .
8. Repeat m times
A negative acknowledge from the receiver indicates that
an error was detected. The receiver indicates in its

negative acknowledge the number of the message segment
to be retransmitted. The retransmission sequence is

3-134

. LE* N ‘' B, %
R \"\\A'. LA AN e ‘_‘l’; ‘.l."h’.‘, '. Mo b “l.h\ .*l..!l‘hl‘hb!\l'..l!"\ [N "I .‘_‘."}. (AU A DA RN ARAN KA N W .\I RANSHS ;‘..Jl"‘l il.'\."a‘

SD8620140000
1 November 1985

attempted m times before the COMM program assumes that
a hard failure is present in the systea.

9. Send EOT

The master sends a message containing the EOT control
flag when transmission is complete. This message does
not contain data, and is used by the receiver to detect
the end of the transmission.

10. Grant line

Vhen the COMM program is in the Idle state, it responds
to a line bid from its partner by a line granted
message to indicate that it can assume the role of the
slave.

11. Receive ¥ acknowledge message segments

Vhen in the slave mode, COMM proceeds with receiving
and checking the message segments sent to it. COMM
provides a negative acknowledge when:

e The NTM input mail box is full
e The message segment is out of sequence
e The message checksum is in error

The acknowvledge messages may be accompanied by message
segments when there are messages to be transamitted by
the slave to the master. The slave to master
transmission proceeds as described above. A slave time
out is required to detect failures in the master or in
the Local Area Network. In this event, the slave
returns a fatal error message to the NTM.

Configuration & Maintenance

. The Configuration of the Communication Subsystem includes:
e Port/Host Assignment

e Port Configuration

e Line Back Off Time Constraint (primary, secondary)

ot

v, ..‘ |: L YA L

SDS620140000
1 Rovember 1985

The above assignments are data driven. Thus

reconfiguration does not imply recompilation. Whenever
feasible, the configuration data is kept in the CDM and is
downloaded at startup time. This approach does not apply
to the minimum communication capabilities required to boot
the 1IISS System. The configuration data for the minimum
boot system is however data driven, and is contained in

tables supported by the local hosts.

3.1.5.4 Communication Subsystem Functional Specifications

The functional specifications implied in the scenarios

presented in Section 3.1.5.3 are identified and presented in

this Section.

Local Area Network

Mission: To interconnect the VAX, Honeywell and cluster
controller via Permanent Virtual Circuits.

Functional Specifications:
® A minimum of 3 permanent Virtual Circuits
e A minimum of 6 RS-232-C configurable ports
e Error detection
e Hardwvare diagnostics
e Configuration data is stored in ROM memory

Wide Area Network

Mission: (1) to interconnect the IBM 3081 with the cluster

controller, and (2) to multiplex 4 lines to the VAX,

Honeywell Level 6 and to the cluster controller.
Functional Specifications
1. Cluster Controller
e EBCDIC to ASCI1 conversion
e Synchronous to Asynchronous protocol conversion

e Single Line 4800 bauds modem to support leased

3-136

- Y .n e L3 L L] » 9
O A R N S O AN AT OO R R A OO O N O € o e e e K X

SDS6230140000
1 November 1985

telephone line

. e Protocol compatibility with GE and Boeing IBM 30xx
computers
‘ ® A minimum of 7 R§-232-C ports to be

multiplexed/demultiplexed into the synchronous line
2. Line Multiplexer

e Multiplex switched network telephone lines into the
following equipment:

- VAX RS-232-C port
- Honeywell RS8-232-C port
- Cluster Controller RS§-232-C port

- CIDS leased telephone line (Initial)

- Progido MODEM capabilities for dialup lines (Bell
103

- Multiplex local terminals into the above listed
equipaent

Inter Process Communication

Mission: To provide Communication Services supporting on host,
process Lo process communiocations operations. The
primitives support setting up., operating, tearing down

the communication resources under norsal and abnorsal
termination modes and error processing.
Functional Specifications

o Generate unique mail box identifiers for communication
betwveen a given instance of a process and the NTM.

e Create the input and output mail boxes bearing
identifiers developed above

o Communicate identification of mail boxes to the NTHM

® VWrite into mail boxes

SDS620140000
1 November 1985

Read from mail box when mail box has been written into

Notify NTM of the nature of the errors detected by the
IPC services

Obtain name and sise of buffer where data is to be
stored

Detect buffer overrun
Detect reading from an empty buffer

Clear mail boxes when terminating

Interprocess Communication

Mission:

To provide Communication Services supporting inter-
host, NTM to NTM communjcation. The primitives
support setting up, operating, tearing down the
communication resources under norsal and abnorsal
termination modes and error processing.

Functional Specifications

Maintain inbound and outbound message queues
Provide FIFO message processing with same priority level
Detect failures in Local Area Network

Provide bidirectional communications between any two
hosts

Detect transmission errors (incomplete messages, bit
drop out)

Detect message duplication

Support master/slave line protocol described in
3.1.8.4.3

Provide message segement check sum
Append transaission header

Append message end flag

3-138

SDS620140000
1 November 1985

e Provide ACK/NACK on block receive

® Retransmit n times before declaring a hard failure.

Number of retries is defined with configuration data

d Configuration 8 Maintenance
Mission: (1) to configure the Communication Subsystem to allow

booting the IISS software, (2) to download the
configuration data not required for booting, and (3)
to maintain the configuration data.

Functional Specifications

R Ly 11 2T e e g TN o S AL ot B

Create and maintain local tables containing minimum
configuration data for booting

Download CDM supported configuration data upon request
from the hosts

Create and maintain the CDM supported configuration
data tables

3.2 Interfaces

This section describes the system-level interfaces between
the principal IISS Test Bed software subsystems. An overview of
the Test Bed is shown in Figure 3-49. The major software
components identified in this figure are:

Integrated Application Programs (AP's)
Non-Integrated Application Programs (MCMM, MRP)
Common Data Model (CDM)

Distributed Database System (DDBS) Processes
Local Database Management Systems (DBMS)
Network Transaction Manager (NTM)

User Interface (UI)

Communication Subsystem (COMM)

Test Bed Monitor

3-139

|
1
]
i
|

SDS620140000
1 November 1985

The obvious interfaces are the lines drawn between
components in Figure 3-49. However, there are several levels,
or “layers”", of interfaces and there are also "protocols”
between components that are not shown in this figure. For
example, three important components not shown in the figure are:

] Interprocess Communications Subsystem (IPC)
e Virtual Terminal Interface (VTI)
° Host Operating Systems

The following subsections describe the system-level
information interfaces, the services to be provided, and the
protocols to be established between software subsystems in the
IISS Test Bed. Additional detail on interfaces can be found in
the individual Configuration Item Development Specifications
(Ds's) and Product Specifications (PS's) to be developed for
each software subsystenm.

3.2.1 Information Interfaces

This section describes more detail about the kinds of
information exchanged between software subsystems. Since
information could potentially be exchanged between any pair of
software components, a matrix is used to show all of the
possible connections. A matrix showing the 12 categories of
software components identified above is presented in Figure
3-50. The software components are listed along the diagonal.
Each row indicates that output and the corresponding column
indicates the input it may receive. Hence, information flows
clockwise. For example, an Integrated Application Process (row
1) may send query requests to Distributed Database Processes
(column 4) and will receive files of requested data in return
(row 4, column 1). Where no interface exists between a pair of
software components, large X's are placed in the corresponding
boxes .

Figure 3-50 shows how each of the software components fit
into a system framevork. Components with many interconnections
such as the NTM are clearly shown to be critical elements in the
system. Other components such as the User Interface, Local
DBMS ‘&, and Telecommunications are shown to be relatively
independent subsystems.

3-140

N A Tk . -

S T R .

P

’
s
A
A
[

QOO it HAN PN AR X > A l“l"l..li X

SDS620140000
1 November 1985

3.2.2 Services Provided (Internal Interfaces)

This section presents the 1ISS system interface
requirements by describing the services to be provided by each
of the major software components. The services provided by a
software component are typically a subset of the functioms it
must perform. These are the functions it will be called upon
directly by other software components to perform. For example,
the NTM will be called upon to send messages between applicatin
processes. This is a service. The NTM must also validate
message header information and route messages to their

destinations, but these are not considered services in this
context.

3.2.2.1 Integrated Application Programs

Integrated application programs provide "external® services
to IISS users and may cooperate with other Test Bed programs.
However, application programs are not considered to serve in any
subordinate role with respect to other Test Bed software.

Hence, no "internal” services are associated with application
programs.

The service interfaces supported by other Test Bed software
components and used directly by application programs are
summariged in Figure 3-51. This figure shows the structure of a
typical application program as consisting of COBOL source code
and several layers of service routines which will be provided
from Test Bed software libraries. The first-level interfaces
connect the application program with the User Interface,
Distributed Database Processes (through precompiled Neutral Data
Manipulation Language (NDML) statements), and the Network
Transaction Manager. The lower-level interfaces show the
connections with Interprocess Communications and the host
operating system. Hence, Figure 3-51 reiterates the interfaces
described by the top row and first column of the N-squared
matrix shown in Figure 3-50.

3.2.2.2 Non-Integrated Application Processes

Non-Integrated application programs neither provide nor use
Test Bed related services.

3.2.2.3 Common Data Model

The CDM has two principal roles in the Test Bed
environment. One is maintaining an accurate picture of the data

3-141

.....

SDS620140000
1 November 1985

A9TAI9A0 WO334S pad 1991 SSII "6b-¢ aandid

i)
<_—.<o <_<e_
a» 49
SWE0 SWB0
1 |
W (wnow)
v av
GAUVHIUN S800 Sa00 GUVHIUN
NON _ NON
[|
- & 9 -
(7]
SS) pem————""""] NN $800]m “..8_
0 1001 > 43SN SSi
dv VNG
HA “ HOLINOW BV 30VIIUNI W
0381531) ‘
08L/41 XVA

3-142

DA AT A D TN 8 o ca e S o S

SDS620140000
1 November 1985

stored throughout the Test Bed computer network. The other is
making this information available to Test Bed system and user
processes. Maintenance of the CDM database is the
responsibility of the CDM database administrator and is not
considered a service. Providing data to Test Bed processes,
hovever, is a service. The mechanisa for calling upon CDM
services is through NDML statements. Translation of NDML
statements is a CDM function, but it is not considered a
service. The requirements for the NDML syntax are shown in the
CDM Processor Development Specifications. The syntax of NDML
statements and the techniques for embedding queries in COBOL and
Fortran programs form the CDM interface, and are fully described
in the NDML Precompiler Development Specifications.

3.2.2.4 Distributed Database Processes

Figure 3-52 depicts the configuration of processes required
to perform a query for distributed data. All of these processes
(except the application process initiating the request) are
"owned” by the CDM and only provide services for query
processing. However, distributed queries are the most complex
scenarios of communicating processes considered for the Test Bed
environment, and they have “driven” the requirements for the
NTM. Hence, the top layer of CDM internals has been exposed at
the system level. The services provided by each of the
components shovn in Figure 3-352 are outlined below:

e Distributed Request Supervisor (Stager Scheduler)
® Local Request Processors

e Data Aggregators

e Conceptual to External Schema Transforaser

3.2.2.5 Local Database Management Systems

Each local DBMS represents a unique interface for the local
database request processes discussed above. These interfaces
and the services a DBMS must provide for query execution shall
be addressed in the NDML Precompiler and Local Request Process
Generator design documentation.

3.2.2.6 Netwvork Transaction Manager

Application Processes., Distributed Database Processes
(DDP°'s), the User Interface. and other Test Bed programs will

3-143

A e G A

ot SO

SDS620140000
1 November 1985

1
I nﬁi
i bl

Al
mh,

Opur Systun v serviaes ast groviind by B Yoot Bod envbrensunm .

Figure 3-50. IISS Test Bed Software Information Interfaces

* AN Segrotd Yoot Bud prneseete wie B C awrvhies o0 saan lpvyd 9 oMEt Migrgrensee Cumstizetinng

8D86201 40000
1 November 1985

$S800J1d
uwojyworiddy g8II tewosdis © Jo 9amqoniais ‘1g-¢ oandid

$99JA49S WeIsAs BupiesadQ 150H

$OUINOY 934AISS Odl

SaUjIN0Y 9DJAL9S WLN

saujIN0Yy
TWAN ®JjAIRS
pejjdwod-a.ad In

%po) 934n0s 10809 P3|1dWOD

3-145

O

e ORI,

IR

(Bl S N

. o"c" "‘-

l' l‘*

0

!"'I.f.'. ' '

)
“ B EREY Y

P
t e,

N

Juissecosy Liead pouiepeid ve-¢ sandiy

———m——c——e——=d

3-146

SD86301 40000
1 November 1085

call wpoa the NTH for 4 major cstegories of servioes:

® Prooess Logos aad Logoff
o Imitiating and Tersinating Prooesses

o Sending and Receiving Nessages
o Obtaining Status of Nessages and Processes

Each of these categories is expanded ia following
paragraphs

The mechanisas for iavoking these servioes is through a
library of servioe routines which is to be linked into each

oalling program (see Figure 3-851). This techaique allows
to viev APs. database processes. and the Ul as sisply
“processes ° It also allows the FNTH to effectively hide
details of FNTH message headers. packet sise. and the IPC
interface froa NTHN users. The NTN must therefore provide
following servioces.

3.2.2.6.1 Process Logon apd Logoff

1 Enable programs initiated under local operating
to establish commections to the 1188 Test Bed.

32262 Process Initiation and Tersination

1 Enable authorised processes to initiate other

the ™M
the
the

systems

processes Initiated processes may reside in Lhe same
application cluster. in different application clusters

on the same host, or in application clusters on
hosts .

other

2 Enable delayed process initiation. The delay may be
until a specified time in the future or for a specified

elapsed time froa the time of the request.

3 Enable initiation of multiple instances of a process --
vithout having to wait for one instance to complete

before i1nitiating the next.

4. Enable an authorized process Lo abort another process.

S. Enable a process to wait until another process or
application cluster becomes avajilable.

SDS820140000
1 Rovember 1985

3.2.2.6.3 8Send and Receive Messages

1.

Enable a process to send a message over a logical
channel to another process. Messages may require a
response (i.e., paired messages and guaranteed-delivery
messages). Messages may also be either binary data
vhich is to be received exactly as sent, or text which
may require character code conversion when transmitted
between hosts.

Enable a process to receive a message from a specified
logical channel.

Enable a process to receive the next message arriving
on any channel.

Enable a process to wait until a message arrives
(Receive with a wait).

Enable a process-to check for the presence of an
incoming message (with or without actually obtaining
the message) either from a specific channel or from any
channel .

Enable a process to acknovwledge the successful
completion of processing in response to a
guaranteed-del ivery message.

Enable a process to indicate that it is under test and
that its messages should not be allowed to corrupt
norsal system operation. (Future - Test mode indicator
can be set/reset, but interpretation is AP specific).

3.2.2.6.4 Obtain Status of Messages and Processes

DAY v \
..‘e‘.‘l.l.'\ .‘l'.‘u‘.'ﬁ’. y WA

1.

AT N
U OO R

Enable an authorized process to obtain the logical
names of the host and application cluster in which
other processes reside, as well atcr the names of its own
host and application cluster.

Enable an authorized process to obtain the status of
hosts, application clusters, and processes.

Enable a process to obtain all necessary information
(e.g.. user’'s identification, the User Interface
process name, and a suitable logical channel) to send
informative messages to the user whose initial request

3-148

o S e et A f N IR Y IR LE LS T V4 WA
S0 & H "‘ ey .‘.o“.ld ") l“..' I P K N " "y Sty O NP A

> L * £

SD8620140000
1 Movember 1985
caused its execution.

4. Enable a process to check the status of any
guaranteed-delivery messages it has issued. (Future)

5. Enable a process to check the status of any sessages
for which replies are expected. (Future)

3.2.2.7 User Interface

The User Interface provides a number of services to IISS
users such as simple menu-driven control of programs and a
convenient “"help” function. However, the interface desoribed in
this section focuses on the services provided by the UI to other
Test Bed software components -- principally Application
Programs. The UI must provide the following services to ocontrol
the display of forms and data, and retrieve user input:

1. Select foras to the displayed from a collection of
previously defined, stored forams

Ingsert data into fields before they are displayed

Display part or all of a foram on the user’'s soreen

& O BN

Ailow field values to be updated on the soreen

(4]

Erase part or all of a display
6. Accept data from the user’'s keyboard

3.2.2.8 Communications

The principal role of the Communications Subsystem is to
provide host-to-host message (packet transfer). The Test Bed
software architecture has allocated two COMM processes (one at
either end) for each pair of communicating machines, as shown in
Figure 3-49. Hence. messages sent via a given COMM process go to
only a single destination. The only routing and distribution
function performed by COMM processes is in handling high- and
lov-priority messages which are sent and received on different
IPC channels but are transritted between machines over a common
communications channel (Message priority = Future). The
services provided by COMM, therefore, are:

1. Transmission of messages received from its associated
NTM process to its COMM counterpart on another host

3-149

T

808020 1 40000
1 Noveaber 1985

2. TForvarding of messages received from its correspoading
COMN process to its associated NTN prooess

3.2.3.9 Test Bed Monitor

e Performance monitoring

e DNoarecoverable failure handling

3.2.2.10 Iaterpr 1] joat)

The obicottvos of the Iaterproocess Commuaniocatioas
Primitives (IPCs) are to provide a machine-indepeadeat. COBOL
interface for communjicatioa betweean cooperating ocoacurreat
processes. In the 1IES Test Bed eaviroameat., applicatioa
programs vill be provided higher-level! message-passing services
by the NTH. IPC services are expected to be used, direotly,
only by Test Bed “systea” softvare swoh as the FNTN aad OOMM.
The services the IPC Primitives sust provide for these
subsystems are the following:

1. Establish comamunication channels between prooesses.
2. Send messages over estadblished comsuniocation chaanels .

3. Receive messages over established communiocation
channels.

4. Suspend a calling process for a specified period of
time or unti) an incoming message arrives.

(Note: "Communication channels” are implemented by a
"Mailbox" conocept.)

3.2.2.11 Virtual Terminal Interface

The function of the Virtual Terminal Interface (VTI) is to
insulate application programs and other Test Bed softvare froa
the special characteristics of individual display terainals. .
Each brand of computer terminal uses a different set of control
characters and different control sequences to clear the screen,
position the cursor. highlight text, scroll displayed
information. etc. The service provided by the VTI is the
conversion of standard control characters and control sequences
as needed to support the terminals connected to Test Bed
computers. The standard internal character set and control

SD8880 1 40000
1| Bovember 1988

s vill be desoribed in the VTI Developaent
Specificatioa.

33.2.12 Nogt Qperating Dystess

Nost\ operating systems previde Lhe ruan-tine ecavircassat for
all of the seftware cempeneants desoribed abeve. Some of Lhe
specific reun-tiee servioces Lhey provide incliwde:

1. Systes ocalis fer isterprecess ceanuniocatien
8 8Systes calls for process iaitiation and tersinatioa

3 1/0 iesitives feor | \ and outiput Lo user tersimals.
the lesal ares ne . and ether peripherals.

3.2.3 Protecels and Nessages

The servioces desoribed above are iaplessated in a
distributed processing eavirocaseat like 1188 by emchanging
“ssssages” betveea programs. Vhes two !ro(rnnn of prooesses
cooperate to deliver servioces. Lhey sust establish a set of
rules and agreed-upon messages which, together. are ocalled a
;;;otoool', The message distribution servioes supportied by the

. 1PC., and CONN subsystess provide a basis for isplesentiag
these protoocols.

The complexity of Test Bed process intercoanections causes
coafusion about the distinctltion betveen iaterfaces asd
protocols Figure 3-83 shovs two views of proocess interaction.
On the left is shown a °“macro-level” view of a protocol between
tvo appliocation processes This protoool is implemsented by
interfaces vith the NTM A similar protocol existis between the
NTH processes and. at the bottos level. a telecommuniocations
protocol isplements the actual transfer of the data. On tLhe
right-hand side of Figure 3-83 is shown a “microscopic”™ viev of
the interface betwveen the application and NTH processes at the

) left This view depicis a protocol between that application
process and the NTH that is implemented by interfaces with the
IPC. The 1188 Test Bed macro-level protocols are described in
the following paragraphs.

3.2.3.1 AP to AP
Protocols and messages exchanged between cooperating

Application Programs (e.g§.. in a distributed AP) must be defined
by the application designers. This information could ultimately

3-181

. ..‘(Ns...: " ..A“ "I'.';”'\"f'c"j'!':l

S$D8630140000
1 November 19088

reside in the CON to allov the NTHM to validate the exchange of
sessages at rua-tise.

3.2.3.23 AP to CODM

The protocol between an Application Program and the CDN s
distributed database prooesses is eabedded and effectively
hiddea vithia the NDML. This allows an Applicatioan Progras to
completely avoid direot dealiags with Lhe messages exohanged
betveesa it and the CDN processes. The ocoateat and format of
these messages are defined dy the CDN Precompiller.

3.3.3.3 AP Vo NN

The protocol betwveen Applicatioa Programs and the WNTN is
oubedded vithia the library of NTN servioce routimes vhioch sust
be liaked iato every Test prograa. This siniasises the

ltes oa NTH message characteristics swch as header
information and message (pachet) leagth wvithin programs. The
conteatl and format of the NTN “nessage eavelope” are defined by
the NTH.

3. 2.3.4 AP to U

The protocol between Application Programs and the User
Interface are embedded vithin the library of Ul service routines
to mininise dependencies on the types of messages exchanged vith
the Ul. The fors and content of Lhese messages are defined by
the Ul

3.3.3.5 CDM to CDM

Nessages exchanged betwveen distributed database processes.
including local database request processes. are defined by the
CDN. TFurther detajl on these messages vill be presented in the
CDM Development Specification.

3.2.3.6 NTH to NTHM

Nessages exchanged betwveen NTM processes. either to forwvard
messages between Application Process Clusters or for NTN process
sanagesent. are defined by the NTHN. Further detail on these
messages will be presented 1n the NTHM Development Specification

3-182

298880044

POE 1884 SSII weGAIeg §1000303d oidwexy 'og-

i

>
00830eyg

"Rttty

AJIA T3ATT-0NOVN

gs
i}

SDS6820140000
1 November 1985

SECTION 4

QUALITY ASSURANCE PROVISIONS
Requirements for formal tests/verifications of the IISS
system design characteristics and operability will be specified
based on the hardware used. combinations of developed softwre,
as well as the developed implementation schedule. Vhile a
detailed Quality Assurance Plan cannot be developed at this
time. oritical mainisus requirements have been identified.
4.1 General

A simplified breakdown of a system bujild and validation
against functionality requirements would include the followving
major activities:

e Develop and Verify Program Modules

e Develop and Verify Programs

e Develop and Verify Subsystem NModules

e Develop and Verify Subsystieas

e Develop and Verify System

e Volume Test System
Testing/validating will be performed as required as part of each
of these activities. The testing procedures will be designed to
validate that the functionality developed in the design has been
fulfilled.

4.1.1 Responsibility for Test

. Test/validation responsibility will be divided based on the
contractor or subcontractor involved in the program module,
program, and subsystems module.

Responsibility for testing/validating subsystems and
systems will fall to the involved contractor and the user.

4.2 Special Tests and Examinations

Whenever software has been purchased, the vendor shall be

SDS620140000
1 Rovember 1985

responsible for insuring that the package will match the

functional specifications previously developed and provided to

the vendor. (It is expected that vendors will be responsible N
for insuring the packages perforam whatever functions are

necessary to support the functiomality requested.) .

- - - -

- - ~ -yap A AT »
Sttty bty SR e e L L R R RV R CLTRRLGE

LA FLEE o W

SDS620140000
1 November 1985

SECTION 5
PREPARATION FOR DELIVERY

5.1 Hardwvare

The Test Bed hardware owned by the Air Force is scheduled
to be delivered to the Air Foprce when it is no longer required
to support the TestBed programsatic activities. The hardware
shall be delivered in accordance with Alir Force instructions,
schedule, and at Air Force expense.

5.2 Software

The software developed under Project 6201M shall be
delivered to the ICAM program office in accordance with the Test
Bed Configuration Management Plan. The Software Configuration
Management Plan for is published in the Final Technical Report
Volume I (FTR620100001) and in the documents for the Software
Configuration Management (SCM) system listed in the Appendix of
the final report.

5.3 Documentation

The following Users Manuals have been prepared under
Project 6201M and will be delivered to the ICAM program office
in accordance with the Test Bed Configuration Management Plan.
See the Final Technical Report Volume 1 (FTR620100001) for a
complete list of all documents delivered under this contract.

5.3.1 NTM Programmer's Manual (Services)

This manual describes the services provided to I1ISS
programmers by the Network Transaction Manager. These services
are used by 11SS Application Programs to send messages to and
receive messages from other programs in IISS. This document is
useful to programmers who are building IISS component programs
and need to embed currently available NTM service calls in their
programs. The document includes notes on restrictions, helpful
hints, and reports on experience gained on the NTM.

5.3.2 NTM Operator’'s Manual

The NTM Operator’'s Manual describes the procedures and
message exchanges taking place during the various phases of the
NTM operational life cycle. Operator commands, IISS error

5-1

P AP RA N WA R -r‘-FIhIQ.I.'.’?I!P‘.‘!'\
A% v, \" O

. ‘l .

Ad

h R L R

¥

SD88201 40000
1 Noveaber 1985

codes. NTNM table maintenance prooedures. and NTM troubleshooting
procedures are also given.

5.3.3. Common Data Nodel (CDM) Adajinistrator s Namual

The primary focus of the CDN Admimistrator s NHamual is
placed upon the Scheme Intergration Nethodology which is
intended to guide a CDM adaministrator is buildiag aad
maintaining the CDM database. Four sodels are provided as
components of the methodology. Two of the models are IDEFO
models. These models address buildiag the imitial coaoceptual
schema and its incremental expansion. The CON Administrator s
Manual reflects the experience gained in integrating the MRP and
MC-MM subsystems.

5.3.4 Precompiler User's Guide

The Precompiler User s Guide describes the procedures to be
followed to precompile the NDML statesents embedded in a OCOBOL
source prograa. This manual describes the fumctiomns to be
invoked. the naming coaventions of the intermediate files. and
the commands to be executed to reviev the source listing and the
listing of the code generated by the Precompiler

5.3.85 NDML User s Manual

This sanual describes the requiremsents. theoretical
foundation, commands and syntax of the 1ISS Neutral Data
Manupulation Language. The Commands section of the manual
consists of syntax and examples of the stand-alone NDML
statements. Each NDNML clause is described. The Embedded NDNL
section describes the use of loopin. constructs containing NDHL
statements. and states restrictions on the use of looping.
constructs containing WDML statements within a COBOL program
The BNF (Backus-Naur Form) includes a formal BNF description of
the stand-alone form of the NDAML.

5.3.6 UIMS User s Manual

The User Interface Management System Services (UIMS) Manual

describes the forms and services availabe to the 11SS user In
particular. the manual describes how to choose a function. to
change password. to define an application. to define a command.
to update a command, to define command parameters. and to
execute an application. The manual contains examples and error
messages.

8DS620140000
1 November 1985

$.3.7 VTI Programmer's Manual

The Virtual Terminal Interface (BTI) Programmer's Manual
describes how to add a new terminal type to the Virtual Terminal
Interfaces. The manual describes, in detail, the four files
saking up the VTI terminal type definition. These files are:
the Definition File. the Lexical Analyzer Table, the Parser
Table. and a Command Generation Table. The naming convention
for each file is also given.

5.3.8 Forms Processor Application Programmer Manual

This document describes the callable interface to the Form
Processor and is intended for the IISS application Programmers.
The Fora Processor routines use predefined forms to give
programs the ability to read input and write data to terminals.
The manual describes in detail each of the services provided and
callable routines.

$.3.9 Interim Forms Editor Manual

The Interim Forms Editor is based on a Digital Equipment
Corporation IMS Forms Editor. The Interim Forms Editor Manual
describes the data required to define a form and the
restrictions bearing on the form definition process.

5.3.10 NDDL User's Guide

The NDDL User 's Guide describes the syntax and semantics of
each NDDL command. It describes how to use the language. It
does not describe the role of maintaining the CDM which is found
in the CDM Administrator’'s Manual.

(¢,
J
“

