
D-AliS 235 INTEGRATED INFORMATION SUPPORT SYSTEM (IISS) VOLUME 4 1/1-i
IISS SYSTEM PART 2..(U) GENERAL ELECTRIC CO SCHENECTADY
NY PRODUCTION RESOURCES CONSU. M R HURLBUT ET AL.

UNCLASSIFIED 91 NOV 85 SDS629140990 F/O 12/5 NL

mohhohEohhhhEI
EhhmhshmhhmmEE
smmhEmhhhhhshE

&2 J2

1~11 Lms 13261 32

i . 11.251 16 1

mAoop RESOLUT" TEST CHT
t4A1109L 64JREAU OF STANDARS-163-

01FILE GOO!

AD-AI181 235
AFVAL-TR-86-4006
Volume IV
Par t 2

INTEGRATED INFORMATION
SUPPORT SYSTEM (IIS5)
Volume IV - IISS System
Part 2 - System Design Specification

General Electric Company
Production Resouroes Consulting
One River Road
Schenectady. New York 12345

Final Report for Period 22 September 1980 3 1 July 1985

November 1985

Approved for public release; distribution is unlimited.

DT[C
ELECTIEK

AIR FORCE WRIGHT AERONAUTICAL LABORATORIES

AIR FORCE SYSTEMS COMMANDSD
WRIGHT-PATTERSON AFB, OH 45433-6533 E

87 6 12 120

NOTICE

When Government drawings. specifications, or other data are used for any purpose other than
in connection with a detinitely related Government procurement operation, the United States
Government thereby incurs no responsibility nor any obligation whatsoever, and the fact that the
government may have formulated furnished or in any way supplied the said drawings.
specifications, or other data. is not to be regarded by implication or otherwise as in any
manner licensing the holder or any other person or corporation, or conveying any rights or
permission to manufacture. use. or sell any patented invention that may in any way be related
thereto

This report has been reviewed by Me Office of Public Affairs (ASD/PA) and is releasable to the
National Technical Information Service (NTISi At NTIS. it will be available to the general
public, including foreign nations.

This technical repo has been reviewed and is approved for publication.

DA ID L. JUDJOI PROJECT MANAGER DATEA WA LTC/ I
IGHT PAT'ERSON AFB OH 45433

FOR THE COMMANDER:

ALD C. SHUMAKER. BRANCH CHIEF DATE
AFWAL/MLTC
WRIGHT PATTERSON AFB OH 45433

"If your address has changed. if you wish to be removed from our mailing list, or if the
addressee is no longer employed by your organization please notify AFWAL/MLTC, W.PAFB, OH
45433 to help us maintain a current mailing list."

Copies of this report should not be returned unless return is required by security enniorati~nn
contractual obligations, or notice on a specific document

, " ','',4 W Vr V N 't V , P ' ,'K

V - 01- C-

al0 mm

C- 0> u

~UL 1 03

ME', -0 U -.C

Z:t L 4 . 0

CL--4 UCv

:E m .- O

Uo.O 0 -

'V L

0) C- 00

r -T0 L

u LI ~i4..) Z 0

E . 000 L C--!)

.4. . 4. .) 01 LW

4-' o c4 ai

w tft .. t

(nJ 0C

0 z CL r~l&

-P c: a;w 0 m fa

L J !BL al --
0 -V 1. 1 01

ir , 0

t

-" T U"0
M0 L-O tA

0 L- -0-0 Z

zII0 M Z-

71~

08Ca-T g6!@sAs~ Of TWO*&$

REPORT DOCUMENTATION PAGE
to AGOoST UCuQ1a? C&*USI9.CA?5ot t I. aeTAICTvAv W&AILSIs

Dec lassiSfied

£ppaeowed ter rbli So elsse:
310 N iAS' gasgswaS*sO cs3ib ~ies a unlmite.

d. IAPAMSS @S~bi6ysa aOeT 0~94401s moawevslews s44Ms.Aa400e SIPOS? busES

AALz-1-56-4000 V*1 IT. fast 2

*a bS 0 ISFSSmsSS@SaaM5# 599.03 STUSO16 01141.0 bs 0 ue1TAfto5 *S~oslAYT

Osaer&% l 3otrc omipay
FPoase l.sefwoes Cessutsg£ALi

SGeANIM j * 311124 AE 4443

Lir rves systeme Ommd 3551 81VAIdI 5135044

(3..AO Vm" Ir1 WOKm1

Eawiut.3. .,Manena. J. V.. Aliheff. J. L... ad Dasee. 8.
136 TYCS Of UP"5? 1211 flog COVIABS I&5?S5 OPO Pn fe.. S..s so. pASE COUN.T

VMAlYmI 96S sw a2 so"t lo - s fty MST Is" Nov.eme 102
is 5u99&.SUoYAv NOTATION noe sMptew Software sestalmed hotels are uthottlal 0nd/or

gem. project ftIewity 6201 uef~wrObOO tht AD S MY "sfloot Air Teno-Owaed or -4evel sped

C~oopute software. 5

96iTCOs -AsseC Tatm ous.oa wwdrlormneebaf ta"moer

iUs ATACT dcanw as aso &puva 04 f010 Ww

:,This technical report discusses the System Design Specifications of
the ICM Integrated Information Support System (1189). The report
allocates the functionality to five CPCI's, the Network Transaction
manager (NTH). the Comon Data Model (CDRI). the User interface (UI).
the Virtual Terminal Interface (VTI) and Communications Subsystems.
Scenarios are presented to support the Identification of the
functional specifications of each subsystem.-

to DISS No *uWT1" lrAeI .IT V Of &"TRSACT 21 85AC? ISCUSSYWCLAS~oAV§sOs'e5

usCAM.I3IEI~D VU $&a * se. Q WI.C unt D olalled

I S al2 55Eft. I__ _ _ _ _ _ _ _ _

m~usy g..ae~ca~Of *oTIee PACE

11. Title

Integrated Information Support System (IISS)
Vol IV - IrSS System
Part 2 - System Design Specification

A S D 86 1476
17 Jul 1986

ylUs GRA&I
AoeesioU For

DTIC TAB
Unannowzoed 0

Dvitrbution/
Availability CodO
-- Avail an/Or

Dist Spoial

.01

we-Oft

Ul

SDS620140000
1 November 1985

PREFACE

This system design specification the work performed under
Air Force Contract F33615-80-C-5155 (ICAM Project 6201). This
contract is sponsored by the Materials Laboratory, Air Force
Systems Command, Wright-Patterson Air Force Base, Ohio. It was
administered under the technical direction of Mr. Gerald C.
Shumaker, ICAM Program Manager, Manufacturing Technology
Division, through Project Manager, Mr. David Judson. The Prime
Contractor was Production Resources Consulting of the General
Electric Company, Schenectady, New York, under the direction of
Mr. Alan Rubenstein. The General Electric Project Manager was
Mr.-Myron Hurlbut of Industrial Automation Systems Department,
Albany, New York.

Certain work aimed at improving Test Bed Technology has
been performed by other contracts with Project 6201 performing
integrating functions. This work consisted of enhancements to
Test Bed software and establishment and operation of Test Bed
hardware and communications for developers and other users.
Documentation relating to the Test Bed from all of these
contractors and projects have been integrated under Project 6201
for publication and treatment as an integrated set of documents.
The particular contributors to each document are noted on the
Report Documentation Page (DD1473). A listing and description
of the entire project documentation system and how they are
related is contained in document FTR620100001, Project Overview.

The subcontractors and their contributing activities were
as follows:

TASK 4.2

Subcontractors Role

Boeing Military Aircraft Reviewer.
Company (BMAC)

D. Appleton Company Responsible for IDEF support,
(DACOM) state-of-the-art literature

search.

General Dynamics/ Responsible for factory view
Ft. Worth function and information

models.

iii

SDS620140000
1 November 1985

Subcontractors Role

Illinois Institute of Responsible for factory view
Technology function research (IITRI)

and information models of
small and modium-size business.

North American Rockwell Reviewer.

Northrop Corporation Responsible for factory view
function and Information
models.

Pritsker and Associates Responsible for IDEF2 support.

SofTech Responsible for IDEFO support.

TASKS 4.3 - 4.9 (TEST BED)

Subcontractors Role

Boeing Military Aircraft Responsible for consultation on
Company (BNAC) applications of the technology

and on IBM computer technology.

Computer Technology Assisted in the areas of
Associates (CTA) communications systems, system

design and integration
methodology, and design of the
Network Transaction Manager.

Control Data Corporation Responsible for the Common Data
(CDC) Model (CDM) implementation and

part of the CDM design (shared
with DACOM).

D. Appleton Company Responsible for the overall CDM
(DACOM) Subsystem design integration

and test plan, as well as part
of the design of the CDM
(shared with CDC). DACOM also
developed the Integration
Methodology and did the schema
mappings for the Application
Subsystems.

iv

SDS620140000
1 November 1985

Subcontractors Role

Digital Equipment Consulting and support of the
Corporation (DEC) performance testing and on DEC

software and computer systems
operation.

McDonnell Douglas Responsible for the support and
Automation Company enhancements to the Network
(NoAuto) Transaction Manager Subsystem

during 1984/1985 period.

On-Line Software Responsible for programing the
International (OSI) Communications Subsystem on the

IBM and for consulting on the
IBM.

Rath and Strong Systems Responsible for assistance in
Products (RSSP) (In 1985 the implementation and use of
became McCormack & Dodge) the KRP II package (PIOS) that

they supplied.

SofTech, Inc. Responsible for the design and
implementation of the Network
Transaction Manager (NTM) in
1981/1984 period.

Software Performance Responsible for directing the
Engineering (SPE) work on performance evaluation

and analysis.

Structural Dynamics Responsible for the User
Research Corporation Interface and Virtual Terminal
(SDRC) Interface Subsystems.

Other prime contractors under other projects who have
contributed to Test Bed Technology, their contributing
activities and responsible projects are as follows:

Contractors ICA! Project Contributing Activities

Boeing Military 1701, 2201, Enhancements for IBM
Aircraft Company 2202 node use. Technology
(BAC) Transfer to Integrated

Sheet Metal Center
(ISMC).

V

SDS820140000
1 November 1985

Contractors ICAM Project Contributing Activities

Control Data 1502, 1701 IISS enhancements to
Corporation (CDC) Common Data Model

Processor (CDMP).

D. Appleton Company 1502 IISS enhancements to
(DACOM) Integration Methodology.

General Electric 1502 Operation of the Test
Bed and communications
equipment.

Hughes Aircraft 1701 Test Bed enhancements.
Company (MAC)

Structural Dynamics 1502, 1701, IISS enhancements to
Research Corporation 1703 User Interface/Virtual
(SDRC) Terminal Interface

(UI/VTI).

Systran 1502 Test Bed enhancements.
Operation of Test Bed.

NOTE

Revision A of this System Design Specification has been
made at the end of the project to update the document to reflect
what was actually accomplished, or the "As Built" design. The
initial design to reflected the best thinking as to what was
desirable and believed to be possible at the time it was
designed. In most cases the design has been carried out, but in
some cases the full capability has not yet been provided. Such
cases have been marked as "(Future)" in this revision so as not
to lose the thinking that went into this design and to also be
accurate as to what is actually implemented.

In other cases, the design or equipment configuration
indicated was initially implemented but then changed as the
project progressed. Where important, or possibly misleading,
these "Initial Implementation" capabilities are also indicated.

In this revision there were minor revisions made to all
sections except that of the User Interface (Section 3.1.3),
which was revised extensively to reflect the actual
implementation of the User Interface which had considerably more
capability than the original design. and which had changed some
architecturely from the concepts originally presented.

vi

SDS620140000
1 November 1985

TABLE OF CONTENTS

Pafe

SECTION 1.0 SCOPE 1-1
1.1 Identification 1-1
1.2 Functional Summary.....................1-1

SECTION 2.0 REFERENCES.............................. 2-1
2.1 Applicable Documents...................2-1
2.2 Terns & Abbreviations.................2-2
2.3 System Overview........................2-5
2.3.1 Background.......................... 2-5
2.3.1.1 Relationship of the Test Bed

to Other ICAM Projects...........2-6
2.3.1.2 Strategy for Evolution............2-7
2.3.2 Summary of Expected Benefits

of the Test Bed and ZISS...........2-9
2.3.3 Test Bed System Overview............2-11
2.3.3.1 Hardware Architecture.............2-11
2.3.3.2 Software Architecture.............2-14

SECTION 3.0 REQUIREMENTS............................ 3-1
3.1 System Definition......................3-1
3.1.1 Network Transaction Manager

Configuration Item.................3-1
3.1.1.1 Network Transaction Manager

Mission Statement................3-1
3.1.1.2 Network Transaction Manager

Functional Areas.................3-1
3.1.1.3 Network Transaction Manager

Operational Scenario.............3-3
3.1.1.4 Network Transaction Manager

Functional Specifications........3-35
3.1.2 Common Data Model Configuration

Item......................3-54
3.1.2.1 CDM Mission Saent......3-54
3.1.2.2 CDM Functional Areas..............3-54
3.1.3 The User Interface

Configuration Itex................. 3-82

3.1.3.1 User Interface Mission
Statement........................ 3-82I

3.1.3.2 User Interface Functional
Areas............................ 3-83

3.1.3.3 User Interface Operational
Scenarios........................ 3-85

vii

L WWZ-6 a ~ o I,; S I &P

SDS620140000

1 November 1985

TABLE OF CONTENTS (Cont inued)

Page

3.1.3.4 Functional Specifications 3-95
3.1.4 The Virtual Terminal Interface

Configuration Item 3-110
3.1.4.1 Virtual Terminal Mission

Statement 3-110
3.1.4.2 Virtual Terminal Functional

Areas 3-111
3.1.4.3 Virtual Terminal Operational

Scenarios 3-111
3.1.4.4 Virtual Terminal Functional

Specifications 3-116
3.1.5 The Communication Subsystem

Configuration Item 3-118
3.1.5.1 Communication Subsystem Mission

Statement 3-118
3.1.5.2 Communication Subsystem

Functional Areas 3-119
3.1.5.3 Communication Subsystem

Operational Scenarios 3-119
3.1.5.4 Communication Subsystem

Functional Specifications 3-136
3.2 Interfaces 3-139
3.2.1 Information Interfaces 3-140
3.2.2 Services Provided 3-141
3.2.2.1 Integrated Application Programs.. 3-141
3.2.2.2 Non.-Integrated Application

Processes 3-141
3.2.2.3 Common Data Model 3-141
3.2.2.4 Distributed Database Processes .. 3-143
3.2.2.5 Local Database Management

Systems 3-143
3.2.2.6 Network Transaction Manager 3-143
3.2.2.7 User Interface 3-149
3.2.2.8 Communications 3-149
3.2.2.9 Test Bed Monitor 3-150
3.2.2.10 Interprocess Communications 3-150
3.2.2.11 Virtual Terminal Interface 3-150
3.2.2.12 Host Operating Systems 3-151
3.2.3 Protocols and Messages 3-151
3.2.3.1 AP to AP 3-151
3.2.3.2 AP to CDM 3-152
3.2.3.3 AP to NTM 3-152

viii

I

SDS620140000

1 November 1985

TABLE OF CONTENTS (Continued)

Page

3.2.3.4 AP to UI 3-152
3.2.3.5 CDM to CTM 3-152
3.2.3.6 NHh to NTH.........................3-152

SECTION 4.0 QUALITY ASSURANCE PROVISIONS 4-1
4.1 General 4-1
4.1.1 Responsibility for Test 4-1
4.2 Special Tests and Examinations 4-1

SECTION 5.0 PREPARATION FOR DELIVERY 5-1
5.1 Hardware 5-1
5.2 Software 5-1
5.3 Documentation 5-1
5.3.1 NTH Programmer s Manual 5-1
5.3.2 NTM Operator's Manual 5-1
5.3.3 Common Data Model Administrator's

Manual 5-2
5.3.4 Precompiler User's Guide 5-2
5.3.5 NDML User's Manual 5-2
5.3.6 UIMS User's Manual 5-2
5.3.7 VTI Programmer's Manual 5-3
5.3.8 Forms Processor Application

Programmer Manual 5-3
5.3.9 Interim Forms Editor Manual 5-3
5.3.10 NDDL User's Guide 5-3

LIST OF ILLUSTRATIONS

Figure Title Page

2-1 Interconnection of Heterogeneous
Systems via Local Area Network 2-12

3-1 NTM Configuration Tree 3-2
3-2 Cluster APs 3-5
3-3 Ease in Implementation 3-6
3-4 Host I 3-7
3-5 IISS Architecture - Conceptual Model 3-8
3-6 NTM Environment on One AP Cluster 3-9
3-7 NTM Environment on UI WS 3-10
3-8 NTM Environment on COMM WS 3-11

ix

SDS620 140000

1 November 1985

LIST OF ILLUSTRATIONS (Continued)

Pan~e

3-9 Operate Network Transact ion
Manager Functions 3-15

3-10 Manage Messages Functions 3-16
3-11 Manage Processes Functions...................3-17
3-12 Maintain Operability Functions...............3-18
3-13 Communicate with Application Process.........3-19
3-14 NTH Architecture Test Bed Overview...........3-21
3-15 Spawning Scheduler........................... 3-25
3-16 Message Authentication.......................3-29
3-17 11Th IDEFi Concepts........................... 3-31
3-18 11TM IDEFi Concepts........................... 3-32
3-19 End-to-End Addressing........................3-33
3-20 Guaranteed Delivery.......................... 3-37
3-21 CDM - Configuration Tree.....................3-56
3-22 A-0 Develop Integrated Application

Processes................................... 3-58
3-23 A-0 Operate CDM.............................. 3-59
3-24 AO - Operate CDM Functions...................3-60
3-25 Al - Maintain CDM Data Functions.............3-61
3-26 Develop Integrated Application

Processes................................... 3-66
3-27 Precompile Application Process...............3-69
3-28 NDHL Precompiler Environment.................3-70
3-29 Distributed Query

Scheduling ff Control........................ 3-75
3-30 User Interface Configuration

Tree....................................... 3-84
3-31 User Interface Management System.............3-85
3-32 Display/Retrieve a Form......................3-88
3-33 Filling Out a Form - User

Viewpoint................................... 3-89
3-34 Control Diagram - Form Processor.............3-90
3-35 Form Processor Start Up......................3-92
3-36 User Log On Scenario......................... 3-93
3-37 Application Generation.......................3-95
3-38 VTI Configuration Tree....................... 3-112
3-39 Interface to a Real Terminal.................3-113
3-40 Data Acquisition, Conversion,

Transmission................................ 3-114
3-41 Interface to an Existing

Application Program......................... 3-116

x

SD8620 140000
1 November 1985

LIST OF ILLUSTRATIONS (Continued)

3-42 Communication Subsystem:
Configuration Tree..........................3-12o

3-43 Test Bed Local if Wide Area Network
Configuration............................... 3-122

3-44 Genet Permanent Virtual Circuit..............3-123
3-45 Writing &f Reading Into

Hail Box.................................... 3-127
3-46 Interhost Communication & Overview...........3-134
3-47 Message Scheduling (Interhost)...............3-131
3-48 Line Protocol Transmission...................3-133
3-49 1155 Test Bed System Overview................3-142
3-50 XISS Test Bed Software Information

Interfaces.................................. 3-144
3-51 Structure of a Typical 1188

Application Process.........................3-145
3-52 Predefined Query Processing..................3-146
3-53 Example Protocols Between IISS

Test Bed Processes.......................... 3-153

xi

SDSO140000
1 November 1985

SECTION 1

SCOPE

1.1 Identification

This specification establishes the conceptual design of the
system identified as the Integrated Information Support System
(IISS) otherwise referenced as the ICAM Test Bed. This system
is intended to be a computing environment that provides
Integrated data management facilities and distributed processing
for heterogeneous databases resident on heterogeneous computer
systems interconnected via a Local Area Network. This computing
environment is to be used for demonstrating the integration of
the data produced by three distinct manufacturing subsystems:
Shop Floor Management (CICHE), Decision Support (IDSS) and
Material Requirement Planning (MRP).

This document has been prepared by Project Priority 6201M
of the Air Force's ICAM program. This project is conducted by
the General Electric Company, with the participation of other
contractors as presented in the Preface of this document and
;upported by various consultants and contributors.

This project is sponsored by the Manufacturing Technology
Division of the Air Force Wright Aeronautical Laboratories.

1.2 Functional Summary

The Integrated Information Support System (IISS) is a test
computing environment used to investigate and demonstrate and
test the concepts of information management and information
integration in the contexts of Aerospace Manufacturing.
Specifically, IISS addresses the problems of integration of data
resident on heterogeneous databases supported by heterogeneous
computers, interconnected via a Local Area Network. A Common

*Four data classes are defined as follows:
Class I - data totally managed by CBIS
Class II - data directly accessed by CBIS, but externally
managed
Class III - data subject to CBIS standards and procedures
Class IV - data subject to CBIS guidelines
A fifth class, defined as "private data," is totally outside of
the control of the CBrS policies and procedures.

1-1

SDS620140000
1 November 1985

Data Model is maintained and provides the mechanism required to
integrate the data. Initial data integration is targeting the
Class II environment; however, IISS is required to be extensible
to the Class I data environment. The definitions of the Class I
and Class II data environments appear in Section 2.2.

1-2

SDS620140000
1 November 1985

SECTION 2

REFERENCES

2.1 Applicable Documents

1. ICAM Documentation Standards, ICAM Document IDS
150120000A, December 28, 1981.

2. A.D. Little, ICAM Computer Based Information System
(CBIS), System Environment Document, ICAM Document SED
310140000, September 1981.

3. A.D. Little, ICAN Computer Based Information System
(CBIS). State of the Art Document, ICAN Document SAD
310140000, September 1981.

4. A.D. Little, ICAN Computer Based Information System
(CBIS), System Requirement Document, ICAN Document SRD
310140000, September 1981.

5. Control Data Corporation W Dacom, IISS Test Bed CDM
System Requirements, March 3, 1982.

6. General Electric Company, Test-Bed System Requirement
Document, Revised June 11, 1982.

7. SofTech, ICAM Test-Bed Interim Standards and Procedures,
ICAM Document ISP 620150000, February 1982.

8. ICAN Program Office, The Integrated Sheet Metal Center,

September 30,1981.

9. N. Tupper, Memorandum for the Record, October 5, 1981.

10. SofTech, IISS Test Bed Network Transaction Manager
System Design Specification, Document 1098-7, June 1982.

11. General Electric Company, Test Bed System Specification,
revised August 23. 1982.

A listing of all of the documents produced as part of the
final report of the project may be found in the Final Technical
Report Volume I (FTR620100001).

2-1

SDS620140000
1 November 1985

2.2 Terms and Abbreviations

Active: Computer-enforced (at compile time or at run time).

Activity Framing: Feature which allows to declare a set of
Application Processes as being part of a single operation which
makes sense from the user viewpoint. All database changes
contained within an activity frame are incorporated or else none
are incorporated in the databases.

Application Process: A cohesive unit of software that can be
initiated as a unit to perform some function or functions.

Application Process Cluster: The logical grouping of
Application Processes and of one Message Processing Unit (NPU)
NTH component.

Application Subsystem: An Application Subsystem consists of one
or more application processes and performs specific
manufacturing management functions. Instances of ICAN
Application Subsystems are: KC-MN, IDSS, a commercially
available NRP System.

Class II Data: Data for which query activity is under direct
control of the IISS and for which update activity is under
indirect control of the IISS.

Common Data:

1. Data used by more than one Application Subsystem.

2. Data updated by one Application Subsystem and used by
another.

3. Data planned to evolve into a category described by (1)
or (2) above.

Common Data Model: Describes common data application process
formats. screen definitions, etc. of the IISS and includes
conceptual schema, external schemas, internal schemas, and
schema transformation operators.

Data Intefrity: Improved quality, consistency and
recoverability. The Test Bed common data is subject to the
following integrity checks:

1. Type checking

2-2

8DMS20140000
I November 1965

2. Existence checking

3. Edit checking (7-digit telephone number)

4. Attribute value checking (shirtais. - small, medium,
large)

Deadlock: Two processes are said to be dead looked when each
process is waiting on the other to complete before proceeding.

Domain Check: Operation which ensures that the values of a
given attribute lie within some prescribed set of values. These
values may be continuous, discrete, numeric or non-numeric.

Expert/Novice Node: The User Interface supports the concept of
Expert/Novice mode of user interaction. In the novice mode, the
user receives tutorial assistance from the system to guide his
selection of system features and functions. In the expert mode,
the time-consuming tutorial assistance is suppressed for maximum
efficiency.

Form: Predefined screen format description. The description
includes the Textual, cursor positioning, data-checking
information required to display or input data into IISS.

Guaranteed Delivery: Test Bed provided service which ensures
the delivery of a message to its destination even if the
destination process is unavailable at the time the message is
issued.

Integrated (Test Bed) Application Process: An Application
Process which:

1. Uses the Neutral Data Manipulation Language to retrieve
Class II data which may be distributed on several

* databases resident on the Test Bed.

2. By the end of the contract, it uses the local database
manipulation language to update the local database to
which it is bound.

3. Performs its terminal input/output operations on the
Test Bed terminals.

4. Is controlled from the Test Bed terminals.

2-3

8D6620140000
1 November 1985

Non-Intefrated (Test Bed) Application Process: An Application
Process vhich:

1. Does not use the Neutral Data Nanipulation Language to
retrieve Class II data. The Local database Management
System data manipulation language is used for local
database manipulation (update, retrieval).

2. Performs its terminal Input/Output operations on the

Test Bed terminals.

3. Is controlled from the Test Bed terminals.

Mon Procedural Query: Value stated query. The query statement
focuses on what needs to be retrieved rather than on how to
carry out the retrieval operations.

Paired Message: A message which contains either a:

a. Request for a reply, or

b. Reply to a uniquely identified request.

Pre-defined Query Application Processes: Information processing
functions implementing predefined data query application
processes. The code required for implementation is predefined
(manually if necessary) precompiled and linked.

Response Time: Duration of wall clock time between submission
of a user request and receipt of the first character of output.

Synchronization Point: Quiet point where the following is true:

1. The Test Bed databases are in a consistent state

2. The state of the queues of pending application process
is known and available for future reference

3. The state of the databases is known and available for
future reference

4. The state of the queues of pending application process
and the state of the databases have been given a common
identifier.

System Clean Point: State of the system which satisfies to:

2-4

SDS620140000

1 November 1985

1. The test bed databases are in a consistent state

2. The state of the databases is known and available

3. The state of the queues of pending messages is known
and available.

System Quiet Point: Period of time during which the following
is true:

1. The dispatch of messages triggering the execution of
application processes is suspended.

2. All dispatched application processes are closed
(processing is completed).

3. System quiet points are invoked and terminated under
control of the Test Bed operator or Test Bed control
mechanism.

Terminal Control Words: A neutral representation of terminal
features implemented by specific control characters.

Test Bed Utilities: Test Bed functions that either provide Test
Bed operability or facilitate the execution and terminal
input/output operations of the Application Processes resident on
the Test Bed.

Time to Complete: Duration of wall clock time between
submission and completion of a user request.

User Interface: Test Bed services which facilitate the man
machine dialogs between the Test Bed services, some of the
Integrated or Non-Integrated Application Process resident on the
Test Bed and the Test Bed user. The User Interface services are
available through the Test Bed terminals.

2.3 System Overview

2.3.1 Background

The objective of this project is to establish and operate a
Test Bed to validate the concept of Integrated Applications
supported by an Integrated Information Support System (IISS).
In addition, the project is to establish a set of interim
standards and procedures to guide the design of the IISS and to
provide guidance to other ICAM projects. Finally, a set of

2-5

- - - p -

SDS620140000
1 November 1985

requirements is to be established which will be the basis for
enhancements to the ISS.

This project is intended to provide the test and
demonstration vehicle for the ICAM Information Support System
concepts described in the 30 September 1981 "Integrated Sheet
Metal Center" (Threads Document) and the Project Priority "3101
Computer Based Information System (CBIS) Requirements Document."
As the strategy for evolution to the OCBIS data Class 110 and
"CBIS data Class In (see footnote on Page 1-1 for a definition
of the data classes) environments is developed and implemented,
the associated costs and benefits can be tracked against the
baseline system.

The ICAM products being considered by the Project Priority
2201/2 contractors for implementation in the Integrated Sheet
Metal Center (ISMC) can be implemented first on the Test Bed.
In this process, the problems of rehosting the software,
integrating multiple ICAM products, and demonstrating
performance will be identified and solved, thus reducing the
risk to the ISMC implementator. Cost and performance
evaluations of the products can be done within the Test Bed.

ICAM products not chosen for implementation in the ISMC can
also be installed on the Test Bed, providing the same evaluation
benefits and reduction of risk to other potential users.

2.3.1.1 Relationship of the Test Bed to Other ICAM Projects

The first Test Bed demonstration is to include the shop
floor control system from Project Priority 6103 (Manufacturing
Control Material Management - MCII), integrated with appropriate
modules of a commercially available Manufacturing Resource
Planning (MRP) system. This integration will be supported by
appropriate tools from the Integrated Decision Support System
(IDSS), similar in capability to the "mid-configuration"
described in the ICAM Program Office's 30 September 1981 ISMC
"Threads Document."

The contents of the subsequent demonstrations will depend
on several factors and come from several sources. For example,
they could come from requirements/recommendations from within
this Test Bed project, from the ICAM Program Office, from other
ICAM Projects (particularly ISMC Projects 2201/2). and from
industry in general. Enhanced capabilities in the manufacturing
systems applications area (technical and control threads) will
come mainly from projects 5501 (IPS) and the Integrated Decision

2-6

SDS620140000
1 November 1985

Support Systems (IDSS) projects 8203 and 8205. System
Engineering Methodology (SEX) tools will come from SEN Project
1701.

The Test Bed project has worked and will continue to work
closely with other related ICAM projects in determining system
requirements. defining standards and procedures for the initial
implementation, and identifying deficiencies and voids in the
available components. Beyond the functional and application
areas, methods to be used in all aspects of the system life
cycle are also to be addressed. Aspects to be coordinated with
the SEX (System Engineering Methodology - ICAN Project Priority
1701) includes: data definition methods; database design; use
of the data dictionary; structured analysis methods; system
specification techniques; prototype development; standards for
data definition; data manipulation; message definition: and
documentation standards and performance analysis techniques.

Needs and priorities for enhancements will be defined by
the ICAN Program Office based on recommendations from the Test
Bed project coalition and related projects. Requirements for
the enhancements will be defined by this Project (6201).
Project Priority 1701M (SEX) will have the responsibility for
designing and building the required software and defining the
required standards, procedures, and guidelines based on the
requirements. To facilitate the coordination of this Project
6201 with Project 1701, an informal working arrangement has been
established with the Project 1701 Prime Contractor.

2.3.1.2 Strategy for Evolution

It has been estimated that in large U.S. corporations, most
of the existing computer applications will be redesigned over
the next 10 to 20 years. It is further expected that, due to
the rapidly changing computer technology, the construction
techniques and operation modes of new applications will bear
little resemblence to those of existing systems.

The Project Priority 3101 CBIS coalition provided a set of
six principles as guides in formulating a solution for the
(relatively) near term which are also extensible for the
expected longterm trends. Individually, each of these
principles reflects state-of-the-art technology; however, they
have not been implemented together to yield an integrated
system. These principles are stated as follows:

1. IISS is a key mechanism for the integration of

2-7

SDS620140000
1 November 1985

computerized manufacturing. It defines, controls, and
executes actions affecting information among various
functionally independent subsystems, based on the use
of common data.

2. IISS employs a coordinated database approach to support
information resource management of various application
systems in a closed loop environment within
manufacturing.

3. IISS implementation strategy employs several stages of
data and application control which allow for increased
usage of facilities as management seeks to gain greater
benefits from the IISS.

4. IISS operates as a transaction oriented system
responding interactively to user commands, rather than
to prescheduled batches of computer programs.

5. IISS is accessible from geographically dispersed
locations.

These principles and other results of the CBIS project were
inputs to establish a starting point, extended and were further
articulated by the ICAM Program Office and the Project 6201
coalition. Requirements, specifications, and the overall system
design are being developed with a view of both short and
long-term implementation plans for the Test Bed. To help focus
attention on the long-range needs of the test bed, projections
on the future direction of computer systers architecture, and
the manufacturing environment to the year 1990 and beyond, and
the impact this will have on the Test Bed technology, have been
developed. This is published as the "Test Bed Migration Path" in
Appendix C of the System Requirements Document (SRD620140000).

The "cost drivers" which the ICAM CBIS Requirements
Definition (Project Priority 3101) defined as critically
associated with the CBIS environment are summarized in the
following nine categories, all of which are being considered as
part of the Test Bed IISS design:

1. Data independence - making computer data files
independent of the programs which use them.

2. Data nonredundancy - minimizing the number of
occurrences of the same data in different files.

2-8

SDS620140000
1 November 1985

3. Data relatability - facilitating the changing of file
structure based on specific "views" required by
different programs and transactions.

4. Data integrity - improving data quality, consistency,
and recoverability.

5. Data accessibility - providing low-cost, user-friendly
access to data stored in various files and computers.

6. Data shareability - ensuring that many programs can
access the same files simultaneously without degrading
performance.

7. Data security - ensuring that data are isolated from
users who should not have access to it.

8. Data performance - providing proper controls for
changing the CBIS environment over time as changing
user needs cause the basic system requirements to
change.

9. Data administration - supplying appropriate standards,
procedures, and guidelines to ensure consistent
evolution of the CBIS environment as demands and
technologies change.

Implied above is the need for the IISS to operate in a
mixed environment containing old and newly developed
applications. It is clearly recognized that the existing
applications must be supported, while techniques for technology
development and new applications development are concurrently
provided.

2.3.2 Summary of Expected Benefits of the Test Bed and IISS

The Test Bed will serve as a step toward realizing the full
benefits of a CBIS as represented by the "cost drivers" in the
preceding section (Section 2.3.1.2). It will also serve as a
facility to assist others to achieve these benefits faster and
with less risk. Some of the benefits of the Test Bed may be
summarized as follows:

1. Provide testing facility for individual ICAM software
products.

2. Demonstrate initial integration of ICAM products.

2-9

'Vw-

SDS620140000
1 November 1985

* Data integration via the Common Data Model

o Techniques and procedures for more extensive
integration of program functions

3. Provide a site for demonstration and evaluation of ICAM

products.

" Applications

* Methodologies

" Information support system

4. Reduce risk to subsequent users of ICAM products.

5. Provide standards, guidelines, and procedures.

" For development of ICAM products

" For evaluation/adoption by industry

6. Demonstrate strategy for transition from current
application processing and development methods to use
of the evolving techniques which will subsequently
reduce cost and increase system flexibility.

" Distributed heterogeneous systems, distributed data,
and distributed processing.

" Independence of application data from considerations
of actual internal storage organization and database
Management System access techniques.

" Reduced data redundancy.

" Automated data validation and constraint checking
through the Common Data Model.

" Transaction-oriented applications.

" Standardized user interface (similar menu
construction for all applications, standard user
"HELP" procedures, standard error messages, etc.).

" Control of execution, in a consistent manner, of

2-10

SDS620140000
I November 1985

processes on different computers using different
operating systems.

" Facilitation and control of the passing of data and
messages between processes on the same or different
computers.

" Consistent error handling throughout the system.

* System-wide control of startup, shutdown, restart,
and recovery.

* Application programs written using relational
database languages referencing nonrelational
databases.

9 Independence of application program from the
computer on which the user terminal is located.

* Independence of application program from the
characteristics of the terminal on which it will be
used.

* System-supported translation of information formats
to host-specific representations.

2.3.3 Test Bed System Overview

The following is an overview of the presently envisioned
Hardware and Software Architecture.

2.3.3.1 Hardware Architecture

The hardware architecture of the Test Bed supports the
interconnection of the heterogeneous computer systems required
to demonstrate the functionality of the Test Bed (Figure 2-1).

The Test Bed hardware architecture supports the
interconnection of three computer systems via a Local Area
Network (LAN) complemented by Wide Area Communication Services.

2-11

8D6620 140000
1 November 1985

0

0 9

0 4

I cgs

2-12

SDS620140000
1 November 1985

The three computers embedded in the Test Bed are:

1. A Honeywell Level 6 computer supporting the HCHM
database and MCMM application programs.

2. A VAX 11/780 computer or equivalent supporting:

* Test Bed User Interface

* Test Bed Common Data Model

* IDSS 2.0 and its database

3. An IBM 3081 computer supporting an ERP package to be
selected in conjunction with the IPS Project Priority
5501 team (see Figure 2-1).

The Test Bed makes use of a Local Area Network to
interconnect the Honeywell Level 6 and the VAX 11/780 which are
in close geographical proximity. This approach offers high
throughput, ease of installation, expansion capabilities, and
supports the process-to-process communication capabilities
required to integrate the heterogeneous databases present in the
Test Bed environment.

The Test Bed makes use of Wide Area Communication lines to
extend the functionality and usefulness of the Test Bed to
computers which are geographically remote.

1. A synchronous leased line provides medium speed
communication capabilities to the General Electric
owned IBM 3081 located 3 miles away from the computer
center used to develop the Test Bed. (Later moved to Ge
facility in Rockville. Md., and then to a Boeing
facility in Wichita, RKa.)

2. Asynchronous lines are provided to interconnect the
ICAM (CIDS) (Initial Implementation) and ISMC
development computers to the Local Area Network
hardware, as well as to interconnect ISMC development
terminals to the VAX 11/780 of the Test Bed through the
User Interface.

The Test Bed hardware architecture allows for expansibility
and flexibility.

1. The Test Bed hardware architecture can be expanded to

2-13

SDS620140000
1 November 1985

the MAX Configuration described in the Threads
Document. Back end data machines and/or additional
general purpose computers can be interconnected via the
Local Area Network.

2. The Test Bed hardware architecture can be expanded to a
full size production system with minimal changes to the
software.

2.3.3.2 Software Architecture

The major software subsystems are also indicated in Figure
2-1.

2.3.2.2.1 Distributed Application Data on Heterogeneous
Databases

The application data are distributed in heterogeneous
database management systems, themselves resident in
heterogeneous processors. This approach allows for the
integrated query of existing databases by new integrated
applications without conversion of the database.

2.3.3.2.2 Class II Data Integration

The Test Bed software and system utilities support Class II
(see footnote, page 1-1) data inquiries. These inquiries may be
directed toward any database resident in the Test Bed, and are
under the direct control of the Test Bed Common Data Model
Processor. System utilities perform data integrity checks
selectively on the data being retrieved in the system. The
early implementation of the Test Bed supports updates on the
databases bound to the Application Subsystems. Update
activities are under the control of the Application Subsystems
and are under indirect control of the CDM to the extent that
data entry and messages are checked by the CDM. The data
integrity checks performed include edit, domain, and range
checking. The data required to support the data integrity
checks are contained in the Common Data Model and are under
control of the Common Data Model Administrator. Data inquiries
use the Test Bed Neutral Data Manipulation language to query
Common Data contained in the databases integrated by the Test
Bed. The Test Bed Neutral Data Manipulation Language allows the
definition of nonprocedural queries which are independent of the
structure of the database(s) being accessed. System services
allow the retrieval of data contained in more than one database
in more than one system.

2-14

SD6620140000
1 November 1985

2.3.3.2.3 User Interface and Data Query via Preplanned
Transact Ions

In the early 1983 Implementation, user interface and data
query are acoomplished by preplanned transactions and messages.
This method will evolve toward ad-hoc inquiries as development
of the Test Bed continues after early 1983. Information queries
via preplanned transactions support the manufacturing scenarios
which have been identified and constitute a natural first step
toward ad-hoc query. Message integrity checking is supported by
system functions, and is performed selectively. The information
required to support the message integrity checks is contained in
the Common Data Model and is under the control of the Common
Date Model Administrator. (Message integrity checking: Future)

2.3.3.2.4 Integration and Coordination Through the Common Data
Model

The Common Data Model is a resource which is maintained in
a centralized fashion to support the following functions:

9 Define logical structure of the information common to
two or more Application Subsystems. The definition
includes entities, their attributes, and the
relationships between entities.

* Define the domain and values of the entities.

* Access control or authorization information identifying
the operations that can kbe accessed by a particular
user.

" Define the format of the data as stored.

" Catalog of Common database procedures such as schema
translation, schema definition, Neutral Data
Manipulation statement translation, data translation
procedures.

* Locate the specified data in the logical data structure
(Test Bed Conceptual Schema).

* Convert query requests to fit the locations of the data
and the required processing.

* Aggregate the responses from the various databases.

2-15

L 11 ALP'.

SDS620140000
1 November 1985

" Check for the validity and completeness of update

requests (Class II environment).

" Support the user interface.

2.3.3.2.5 Integration and Coordination Through the Integrated
Network Transaction Manager

The Common Data Model provides a repository for the data
describing the data, procedures, and policies shared among the
various IISS Application Subsystems.

The Network Transaction Manager provides the operational
implementation of the above concepts, the control of the
execution of transactions, the control of the flow of messages
through the network, the restart and recovery requirements, and
the monitoring of performance.

The Network Transaction Manager is invoked to carry out the
following functions:

" Dispatch of messages through the IISS Network

" Follow-up on open transactions

" Logging, time stamping of messages

" Monitoring of system performance (Future)

" System synchronization

" Restart of the IISS system

" Restart and recovery of the databases (Future)

" Control of Application Subsystems

The Network Transaction Manager controls the execution of
application subsystems by processing the Transaction Message
queues built on each node. The queues provide the necessary
buffering action resulting from the asynchronous nature of the
Test Bed Application Subsystem.

2.3.3.2.6 Guaranteed Delivery of Messages

The Network Transaction Manager is also invoked to

2-16

SD6O2140000
1 November 1985

guarantee the delivery of messages. This service is provided to
facilitate the migration of the Test Bed to the Class I
environment.

-This capability guarantees that messages will be delivered,
even if the destination application subsystem is temporarily
unavailable. To that effect, the messages are uniquely
identified at the level of the 1ISS by Journalizing the message
type and Application Subsystem of origin, and by time stamping.
Time stamping and journalizing allow for the chronological
reconstruction of the transaction input stream. This technique
supports the recovery of unavailable nodes or Application
Processes.

It should be further noted that the system can guarantee
that the message was given to the destination process, and even
that the process acknowledged having completed processing. The
system cannot, however, guarantee that the receiving process
actually did process the message and perform the requested
functions, or, for that matter, that the message was even read.
The proper processing of messages is totally dependent on the
receiving application process and cannot be controlled or
guaranteed by the IISS system.

2.3.3.2.7 Standard User Interface

Test Bed User Interface

A Test Bed User Command Language simplifies the task of the
user when interacting with the Test Bed. User inputs are
through a forms system including menus, formatted data displays,
and forms for data entry. The inputs are then formulated into
standard messages that are sent to the application processes in
the proper host computer.

The User Interface thus provides a unified format to invoke
Test Bed System Utilities as well as to support the user
dialogues of Application Subsystems specifically designed for
the Test Bed.

Virtual Terminal

The proliferation of terminal hardware and the wide
disparity in capabilities and features of commercially available
terminals create an interfacing problem between IISS and its
terminals.

2-17

SD8820140000
1 November 1985

This problem is resolved by defining a specific set of
terminal features and protocols which must be supported by the
IISS software. This set of features and protocols constitutes
the IISS virtual terminal definition.

Specific terminals are then mapped against the IISS virtual
terminal software by specific software modules written for each
type of real terminal interfaced to IISS. This approach is
consistent with the layered software philosophy of IISS since it
permits the interfacing of a wide variety of terminals without
changes to the IISS application programs.

System-Wide Forms and Protocols

User forms and user protocols are defined at the IISS
system level. These forms and protocols define the manner in
which the IISS user interfaces with IISS. The forms are data
structures with attributes which are enforced by the forms
package. Mandatory fields, alphanumeric fields, and numeric
only fields are examples of the attributes which are enforced by
the forms package.

The forms and protocols are defined by data stored in the
CDM, and as such are very flexible and extensible.

2-18

SD8620140000
1 November 1985

SECTION 3

REQUIREMENTS

3.1 System Definition

3.1.1 Network Transaction Manager Configuration Item

3.1.1.1 Network Transaction ManRaer Mission Statement

The Test Bed is a distributed computer system made up of
cooperating processes. As an example of cooperating processes,
consider the processing of a distributed query. In this
example, processes resident on several hosts are cooperating in
the retrieval, selection, unit and format conversion of data
resident on several databases.

The Network Transaction Manager performs the coordination,
communication and housekeeping functions required to integrate
the Application Processes and System Services resident on the
various hosts into a cohesive system. The management of mail
boxes, message queues, application processes, to name a few, are
examples of System Services provided by the Test Bed.

3.1.1.2 Network Transaction Manager Functional Areas

The configuration tree of the NTM is shown in Figure 3-1.
Figure 3-1 shows three major functional areas:

" Manage Message

* Manage Processes

" Maintain Operability

The Test Bed is a message-driven system. The Test Bed uses
messages to request the execution and termination of Application
Processes and system services. Messages are also used to

*exchange data between Application Processes and System Services.

The Manage Message functional area of the Network
Transaction Manager is responsible for the management of these
messages.

The Application Processes resident on the Test Bed need to

3-1

r ''.Z..

SDS620140000
I November 1985

II

L: to
/0

3-2

SDS620140000
1 November 1985

be managed according to the processing needs of the environment.
Managing Applications include functions such as loading.
Initiation, and terminating processes. These functions are
included in the Manage Processes functional area of the Network
Transaction Manager.

The Maintain Operability functional area of the NTH
contains the functions required to create, modify, maintain the
processing environment of the Test Bed. The creation,
modification and maintenance of the processing environment calls
for processing capabilities to support startup, shutdown,
recovery and monitoring of the Test Bed.

3.1.1.3 Network Transaction Manager Operational Scenario

The Network Transaction Manager Operational Scenarios
presented here are introduced for the sole purpose of supporting
the identificatio of the functional specifications to be met by
the Network Transaction Manager. These scenarios are not meant
to imply a specific implementation of these functional
specifications. Consequently, the final design of the Network
Transaction Manager may implement scenarios which differ from
the scenarios shown in this subsection.

3.1.1.3.1 NT! Environment

To describe the environment of the NTH, it is necessary to
introduce the concept of an AP Cluster.

On an intuitive basis, an AP Cluster consists of processes
related to one application as viewed by the user. Examples of
Test Bed AP Clusters are the MCHM, the MRP, and the IDSS AP
Clusters. The formal definition of the AP Cluster concept is
given in Section 2. In the Test Bed, every Application Process
is uniquely addressable.

Communications and Control with each AP Cluster is
accomplished via Network Transaction Manager. In the Test Bed
environment, the AP Clusters may resde on different hosts, thus
the various instances of the NTM may present some differences to
reflect the different operating system environments in which
they happen to operate.

3-3

"1
j

SDS620140000
1 November 1985

3.1.1.3.2 NTM Architecture

The AP Cluster concept introduced above offers the
following significant advantages:

1. The Application Processes which most frequently access
a database are grouped on the AP Cluster containing the
database supporting these processes. This grouping
minimizes the frequency of off-host data accesses.

2. An instance of the NTM is associated with each AP
Cluster to simplify the message traffic. All
communications related to one AP Cluster are routed
through that AP Cluster NTH. This approach streamlines
the type of communications which must be supported.
This concept is graphically illustrated on Figure 3-2
and on Figure 3-3. The first figure shows a system
which allows the Application Processes to Communicate
directly with one another. The second figure shows a
system which routes all communications through specific
communication programs. This second approach is
retained for the Test Bed, and is illustrated on Figure
3-4. This last figure shows the impact of the multi
host environment of the Test Bed on the Architecture of
the Communication and XTM Subsystems.

More specifically, Figure 3-4 shows that not only each AP
Cluster has its own NTM, but that in addition, each host owns an
additional AP Cluster, with its own NTM, to communicate with all
other hosts. The AP Cluster used to communicate with other
hosts is called the COMM AP Cluster.

The above concepts and definitions lead to Figure 3-5
showing a conceptualization of the NTM architecture. The key
features of this figure are:

1. The User Interface AP Cluster. and Virtual Terminal
Interface

2. The CDM Processor AP Cluster

3. The NTM operator AP Cluster

4. The RTM supports communications between any two AP
Clusters shown on the diagram

This figure is, however, a conceptualization. The cross

3-4

SDS620140000
I November 1985

I S

* S

II

II

S S
S I

d
I

I S

APctsi

se I

Figure 3-2. Cluster Als

bar matrix arrangement shov, ha~s no implication on thearchitecture of the Test Bed. The Test Bed ITH architecture ismoe faithfully represented on Figure 3-4. The Communication
Subsystem described in Seotion 3.1.8 supports the architecture
of Figure 3-4.

The interaction of the NYM and its environment is depicted
on the IDEFO diagram shovn in Figure 3-. Vith respect to this
diagram, the folloving observations are made:

1. All messages. vhether Inter oIntra P Cluster

Figre 3-.CutrAdle

messages, arewreceived and hande by the NT.

archtecureof lhe est Bd ThTt ed MosttctreI

2. The u plesrequests to he hostToperating syste sjTo Intate and/or ar specific ApplicatIn

digathollwn orvaotlationsr ae

Processes.

3. The NTH receives status information from the host
operating system. -5

SDS620140000
1 lovember 1985

% %

I t

- -S - I

AP LUSTER

SSERVICED BY SOME NETWORK ORJ. Th COMMUNICATION SYSTEM

Figure 3-3. Ease in Implementation

4. The NTh delivers messages to the Application
Processes. These messages may be viewed as input data
to the Application Process.

5. The NTM receives messages from the Application
Processes. These messages may be viewed as output

data from the Application Processes.

6. The XTh transmits all messages to their destinations,
whether inter or intra off AP Clusters.

Figure 3-7 and 3-8 are variations on the theme shown in
Figure 3-9. Figures 3-7 and 3-8 are drawn for the COMM (inter
host) Application Process and for the User Interface. From an
NTM point of view, Figures 3-6, 3-7, and 3-8 are identical. From
an Application point of view, Figures 3-7 and 3-8 show the
additional input/output requirements specific to the User
Interface and COMM AP Clusters.

3-6

SDS620140000
I November 1985

HOST-I
AP /LUS APCLUSTER

e %

.4

% %

%% %

-2 J

Figure 3-4. Host 1

3.1.1.3.3 NT Functional Description

Figure 3-9 is the Top level of an IDEFO diagram portraying
the functionality of the NTM. This diagram shows the three

major functional areas identified earlier and their interaction.

Figure 3-10 details the MANAGE Message functional area.
This figure shows that messages, once received by the 1TH, are

checked for authorization, logged and routed. A message header
* ~ is appended by the 11Th to facilitate the routing and

interpretation of the message. At this level of description,
the Route and Send Message function includes the routing and

sending of a message to an off AP Cluster, on AP Cluster, or
maintain operability Application Processes.

Figure 3-11 details the Manage Processes functional area.
This figure shows that messages are interpreted and either used
to control Application Processes or to communicate with
Application Processes.

3-7

- n i " " '1"0r-

SDS620140000
I November 1985

0

0

I J'

3-84

SDS620 140000

1 November 1985

.
0

IIIII IJUJ IIPIIA.'' l l

SDS620140000

1 November 1985

30
5I

I ~II ~' I
0

W4

7-I

3-10

SDS620140000

I November 1985

iii I.
vi I

3w

III i "I i

8
0

3-11

.,..

'-=A

SDS620140000
1 November 1985

The initiate Application Process function includes the
scheduling of such initiation. The scheduling information is
contained in the message initiating the process.

The Abnormally Terminate Application Process functions
include the termination of an Application Process and the
housekeeping actvities related to such termination. In the Test
Bed, termination of an Application Process may be accompanied by
the termination of the query processors and data aggregators
initiated by that Application Process. Data aggregators, and
query processors are described in Section 3.1.2. The infor-
mation required to keep track of active query processors and
data aggregators is maintained by the NTH. For example, a
chained list links the various processes (query processors, data
aggregators, transformers) to the Application Process which
required these services.

Figure 3-12 details the Communicate with Application
Process function. Messages are accepted from and delivered to
Application Processes. Messages are also paired on an
Application Process basis. This supports the detection of
unanswered messages and the initiation of corrective action, by
the receiver, in the event of a time out. The NIT message
pairing capabilities allow the detection of end to end problems
(such as the failure of one Application Process to return an
expected reply) as well as to detect host and local area network
failures. The NTM on the originating AP Cluster detects time
out conditions and reports the time out to the process which
originated the message.

The detection of malfunctions in the LAN is performed by
the COMM subsystems.

Figure 3-13 details the Maintain Operability functional
area. This functional area is shown to breakdown into the
following key functions; and relates to the IISS System
Software:

* Start up (IISS on host)

* Restart

* Shutdown (IISS on host)

* Test Bed Recovery

* Monitor and Record Resource Usage

3-12

SDS620140000
1 November 1985

The Maintain Operability functions are also shown to
communicate with the IISS operator. The operator acts as the
controller of the Maintain Operability of the IISS System
Software, and as such is the recipient of the maintain
operability status messages issued by the System Software.
These messages may also be stored in a file for archive and
analysis purposes. Status messages issued by user supplied
Application Processes are routed to the user by the IISS
software.

The availability of Application Processes and II8S status
and error information is dependent upon the services provided by
the host operating systems. Consequently the extent and
availability of such Information varies from operating system to
operating system. Status and error Information is gathered via
a combination of 1188 and host operating utilities according to
host-dependent procedures.

The Recovery function addresses the recovery of the Test
Bed system and its databases. The recovery of the databases
themselves is achieved via the roll back and journalization
facilities provided by the various database managers. One of
the NTM's role is to ensure the synchronisation of the recovery
operations and to initiate the recovery once the system is at a
quiet point.

3.1.1.3.4 NTM/IISS Start Up Scenario

The NTM'IISS start up scenario listed here is given for the
6201M implementation of the Test Bed. The current design calls
for the start up of the Test Bed to be initiated from the host
consoles. A start up command must be typed on each of the host
consoles. Subsequently, the Test Bed may allow for a
centralized start up of the system (Figure 3-14).

The start up of the Test Bed Software is thus as follows:

1. On the VAX:
The IISS operator initiates the "START IISS" procedure
file under control of VAX VMS.

This procedure starts up the following AT Clusters:

a. Common Data Model Request Processor

b. User Interface

3-13

SDS620140000
1 November 1985

c. Any NTX (for example, IDSS)

d. The COHN Work Stations with the VAX/Honeywell and
VAX/IBM oommunication services

Each AP Cluster initiates its own request for CD data
to the CD) request processors. On completing its
prescribed start up steps, each A? Cluster reports its
status to the console used to initiate the start up.
The above step then initializes the NTh tables, the VTI
configuration tables and the User Interface local form
storage. Any information required by the user work
station NTH is down loaded from the CDM.

2. On the Honeywell:
The IISS Operator initiates the "START IISS" procedure
file under control of GCOS MOD400 from a Honeywell

console.

This GCOS MOD400 procedure file starts up the following
AP Clusters:

a. The COMM Work Station with the Honeywell/VAX and
Honeywell/IBM communication services

b. Any User work station NTM (for example, MCXM)

Each AP Cluster initiates its own request for CDM data
to the CDM processor. On completing its prescribed
start up step, each AP Cluster reports its status to
the console of the Honeywell. The above steps
initialize the NTM tables. The AP Clusters are started
in the sequence listed above. The Honeywell/VAX COMM
AP Cluster must be operational for the Honeywell start
up to proceed. As each AP Cluster becomes operational,
it notifies VAX IISS console. In the event of
difficulties, the error messages generated during start
up are displayed on the Honeywell console.

3. On the IBM 3033:
The start up procedure described above is repeated on
the IBM 3033. The procedure is initiated under control
of MVS from an IBM console.

The AP Clusters brought up on the IBM 3033 are:
a. The COMM Work Station with the Honeywell/VAX and

3-14

SDS620 140000
I November 1985

ld 0

*17

Ed Is

P4

0)

3-15

SDS620 140000
1 November 1985

4W
lids.

5.39§1 A

I! j

cIi
3-16

SDS620140000
1 November 1985

vi _______ _A

81

____lliliU

Its,7
0
0

ItI

titi
3-17

L ry

SDS620 140000
1 November 1985

s RIM

0
gas

u.3

I .9=

3-18

z~jz k" - .r N
aM il 1111La N k '

SDS620140000
I November 1985

-Cii
y~FA

I ____ _____ ___?A

-~ 1 111 I J10

0

to

Id.

3-19

SDS620140000
1 November 1985

Honeywell/IBM communication services

b. Any User Work Station NTM (for example, MRP)

3.1.1.3.5 NTM/IISS Shut Down Scenario

The shut down of the IISS system can be initiated from any
IISS terminals by an IISS operator with the proper author-
ization. The shut down is graceful and complete. To that
effect, the following capabilities are provided:

1. Warning messages are sent to all IISS terminals. These
messages are repeated at reasonably spaced time
intervals.

2. Further IISS logins are disabled when a system shut
down is in process.

3. Processes are allowed to run toward completion for a
reasonable grace period (for example, 15 minutes).
This includes the query processors and data aggregators
initiated by the Application Processes.

4. Status of queues are saved on each processor. (Not
implemented, nor possibly desireable in near future)

5. Processes, data aggregators, query processors still
running at the end of the grace period are killed under
IISS operator control.

6. The shut down process proceeds first with the
termination of User Application Processes, and second
with the termination of Test Bed Services.

7. A message is sent to the host console upon completion
of the shut down.

8. The shut down of the IISS system can be initiated on a
host by host basis from the host consoles. This
capability serves as a back-up in the event of LAN and
communication malfunctions.

3.1.1.3.6 NTM/IISS Host Shutdown Scenario

The shut down of a selected host of the Test Bed proceeds
with the same logic that followed for the shutdown of the entire

3-20

SDS620 140000
1 November 1985

0

54

3-21

" A~'- 'A "f\. & " &Ar.A -A'- rAP -AL-P-i0

SDS620140000
1 November 1985

Test Bed. In fact, the shutdown of the entire Test Bed is
viewed as the shutdown of each host, per the above scenario. The
shutdown procedures are described in the operator's manual.

The following steps are carried out during the shutdown of
the Test Bed software:

1. The status of the message queues are checkpointed (Not
implemented)

2. The application processes still running at the
expiration of the shutdown count down period are killed
under supervision of the IISS operator.

3. The Test Bed System Services (NTH, OP AP Cluster, COHN
AP Cluster, etc.) are terminated.

The above steps are repeated on each host.

3.1.1.3.7 NTM/IISS Host Start Up Scenario

By the same reasoning, the start up of a selected host is
performed as explained in the section entitled "NTM/IISS Start
Up Scenario". The scenario is, however, limited to one host.
The start up of any host other than the CDM does not progress
past the request for CDM data if the CDM host is not already up.

3.1.1.3.8 IISS Recovery Scenario

The IISS Recovery Scenario is not addressed in the early
release of the Test Bed. Definition of the functionality and
implementation of the recovery mechanism is an enhancement to
the Test Bed.

3.1.1.3.9 Application Process Schedulinx

The NTM initiates Application Processes at the request of
the Test Bed user or at the request of Application Processes
already running. The initiation of the data aggregators and
query processors are examples of this second eventuality. The
initiation of the Application Process is only performed for
authorized requests. The initiation is prioritized and proceeds
on a FIFO basis at equal priority. The execution of some
Application Processes may be linked to wall clock time, time
delay, or may be conditional to some event.

The information required to control the initiation of

3-22

SDS620140000
1 November 1985

Application Processes (priority, schedule, condition) is carried
by the Application Process request message.

Consider Figure 3-15. The scheduling of the Application
Process initiation is controlled by the scheduler. The
scheduler keeps an on-going watch of the Application Process
queues containing the requests for start up time and may be
deactivated when the system is executing a Quiet Point Command
or when the system is about to be shut down. The scheduler may
be reactivated upon Command to resume processing of Test Bed
Application Processes.

The NTH supports multiple instances of a given Application
Process. Multiple instances of Application Processes may be
created in response to requests from multiple users.

The NT automatically initiates additional instances of
application processes which have been granted the privilege to
have multiple instances. This privilege is declared in the CDM.
The data describing the Application Processes defines the
maximum number of instances which can be running simultaneously.
The CDM Administrator authorizes the duplication of selected
Application Processes.

3.1.1.3.10 Maintain Directory of Active Application Processes

The NTK receives status information from the operating
system of the local hosts. This information is used to create
and to maintain a list of active application processes on the AP
Cluster. This list is used to clean up an AP Cluster whenever
an Application Process is aborted or terminates.

3.1.1.3.11 Maintain Directory of Offspring Application
Processes

The Test Bed Application Processes generate offspring
application processes whenever they perform a distributed query
or update. In the distributed query environment, these
offsprings include data aggregators and query processors. The
NTM maintains a list of the data aggregators and query
processors which have been requested by the query scheduler.
This list is used to abort the data aggregators and query
processors in the event that the parent Application Process
terminates or is aborted. The list identifies the offspring
application process, the target AP Clusters and the parent
Application Process.

3-23

SDS620140000
1 November 1985

3.1.1.3.12 Application Process Termination

For integrated Application Processes, the normal and
abnormal termination of an Application Process is known to the
NTM. The NTM receives status information from the local host
operating system. The NTH provides the following services upon
the termination of an Application Process:

1. Normal Termination
The name of the Application Process that terminates is
removed from the AP Cluster active application process
list. Usage statistics for the Application Process are
recorded.

2. Abnormal Termination
In the event of abnormal termination of an Application
cancelling the active offsprings of that Application
Process which may still be active or queued up for
execution. The NTM performs this task by taking
advantage of the offspring application process list to
notify the AP Clusters which may be processing or about
to process the aborted Application Process offspring
application processes. The NTM's on these AP Process,
the NTM assumes the responsibility for Clusters make
use of the active application process directory to
abort active offsprings (data aggregators, query
processors) or to remove these offsprings from the
spawning request queues.

The NTM's of the offspring nodes report the completion
of the clean up operation to the NTM of the cancelled
Application Process AP Cluster. The abnormal
termination process continues with the steps described
under the normal termination scenar'o.

3. Housekeeping
The IISS operator may invoke the abnormal termination
process described above to free the system from
Application Processes and Offsj-ing Processes which
have not been cancelled following the normal
termination of an Application Process. This
eventuality may occur with improperly written
Application Processes or in the event of
hardware/software failures.

3-24

SD8620 140000
1 November 1985

0

12

3-250

SDS620140000
1 November 1985

3.1.1.3.13 Exception Handling

The NTH is actively involved in the handling of exception
calls made by an AP Cluster Application Process to the local
host operating system. For the Test Bed to act as a cohesive
and robust system, the following functions need to be performed:

1. The occurrence of an exception call in an Application
Process must be reported to the initiator (person or
software) of that Application Process. The report must
include sufficient information for the initiator to
decide on a course of action.

2. The report must be in a standard format so that the
interpretation of the error condition is not dependent
upon the host on which it occurred.

3. Exception calls must be logged for further analysis and
trouble shooting.

The above functions are implemented on the Test Bed by
allowing the NTH to intercept the exception calls to the
operating system. Thus the NTM can notify the initiator of the
Application Process of the type of error which occurred. The
local error codes are first converted to the Test Bed (Neutral)
error codes. The Test Bed error codes and the host error code
mapping information are contained in the CDM. Exception calls
originating in the Test Bed system service software are reported
to the IISS operator. Such calls could indicate serious
problems with the IISS system software.

3.1.1.3.14 Communication with Application Processes

The NTM communicates with Application Processes via mail
boxes. These mailboxes are named, created and operated via the
primitives described in Section 3.1.5 (Communication Subsystem).
The primitives described in Section 3.1.5 support multiple
instances of the same Application Process.

3.1.1.3.15 Message Authorization

The NTM is the funnel through which all Test Bed messages
flow. This is the natural place for message authorization
enforcement. In the Test Bed data, access privileges are
granted to Application Process via the schema granted to it, and
security is enforced by controlling the access to the
Application Processes themselves.

3-26

Q

SDS620140000
I November 1985

Consider Figure 3-16. This figure shows the various data
access mechanisms used in the Test Bed.

Application Process Number One (APPI) has been granted
access to databases 1 and 2, via the external schema granted to
it by the CDK Administrator. The precompiler has generated the
query processors QP1l and QP12. APPI can thus invoke these two
query processors. If User 1 has been granted access rights to
APPi, it thus can query databases 1 and 2.

Assume, for the sake of discussion, that User 2 has not
been granted access rights to databases 1 and 2, and hence does
not have the schema information required to precompile the
necessary query processors QP21 and QP22 required to access
databases 1 and 2 from an Application Process to which he has
access privileges.

User 2 can thus only gain access to database 1 and 2 by
invoking directly or indirectly an Application Process such as
APPI. The direct accessing of QP11 and QP12 is not deemed
feasible since these two precompiled query processors are tied
(message destination, control) to APP1. In the Test Bed, each
Application Process and each user is granted through its legal
user role authority to send and authority to receive messages
from and to other users. This scheme is used to prevent the two
access paths shown in dotted lines on Figure 3-16. The NTM is
charged with enforcing the transmit and receive rights of each
application, by comparing the source and destination information
contained in the message with the authority to send and
authority to receive granted to each user. This information is
defined in the CDH by the CDM Administrator. All communications
between Application Processes are routed via the NTM.

The above scheme can, however, be easily defeated. If APPl
creates a private copy of the data, no control on the access to
this private copy can be exercised through the Test Bed system.
Administrative procedures or other automated procedures (prepass
of the code) can be used to disallow this possibility.

3.1.1.3.16 Hessage Header

The NTH appends a header on all messages It receives from
the Application Processes. This approach allows for the
layering of protocols.

For example, the header contains the message category,
source, destination information and various flags (logging,

3-27

SDS62O140000
1 November 1985

statistics, etc.) controlling the kind of message handling
services to be invoked.

The NTH strips the header before handing the message over
to its destination.

3.1.1.3.17 Message Loffing

The NTM serializes and logs messages. The logs are kept on
the host where the message originates. The message serial
number is the concatenation of the AP Cluster identification
number and of the serial number sequentially assigned to the
message in the AP Cluster where it originates. Messages are
time stamped as necessary. The time stamps are obtained from
the host system clock and specify date, time of day.

3.1.1.3.18 Message Routing

The NTM routes the messages to their final destination.
To that effect, the NTM appends a physical address to the
message. The message physical address is derived from the
logical address supplied by the user and from the logical to
physical maps provided by the CDX. Undefined logical addresses
are flagged to the user.

The user supplies a logical address which uniquely
identifies the Application Process at the system level.

The system, however, through the mapping tables defined in
the CDM will expand this logical address to a physical address.

The NTM, through the mail box naming rules, establishes the
proper end to end correspondence which exists at any point in
time between the various instances of cooperating Application
Processes.

The above concepts are reflected in Figures 3-17 and 3-18.

3.1.1.3.19 Message Pairinz

The NTH pairs messages. That is, it keeps track of the
request and response message pairs flowing through the system.
A time out allows the detection of unanswered messages. The
Application Processes which initiated the unanswered request
message of a message pair is notified of the time out. It
initiates any recovery or contingency action it may support.

3-28

'"U,~ .%'! d II

SDS620 140000
1 November 1985

UNAATHIM USE 2

towAI ACCESS

/ O
- IATHN

ACCESS
AMP,

WP?

Figure 3-16. Message Authentication

3.1.1.3.20 Error Lo~fIn

The UTM logs errors In an error file. A file is maintained
on each host and can be accessed centrally by the IISS operator.
The file can be cleared under control of a procedure activated
by the operator. The files are maintained locally to Increase
the likelihood of capturing error messages. (See Section
3.1.1.3.3)

3-29

SDS620140000
1 November 1985

3.1.1.3.21 Messafe Integrity Checking

Message integrity checking enhances the reliability and
security of the Test Bed system. Message header integrity
checks are performed by the NTH. Message data integrity checks
are performed by the destination Application Subsystem. These
checks are supported by Common Data or by Private Data known to
the subsystem. The NTH checks the data targeted to its own use.

1. Integrity Checking of the Header

This type of integrity check is performed by the NTM of
the AP Cluster originating the message, and is
performed in inter host as well as intra host
communications.

For example, the header integrity check includes the
following checks:

a. Edit of each field

b. Reasonableness of the user-defined fields
In the event of errors, the sender is notified. The
correction of the errors is left to the sender. The
error message is logged in the Test Bed error file.

2. Integrity Checking of the Data Section of NTM Bound
Messages (Future)

This type of integrity checking is performed by the
receiver of the message. The data supporting this
integrity check is supplied to the NTM by the CDM, on
an AP Cluster basis and may be kept locally for
performance reasons. The types of data integrity
checks include:

a. Number of data elements expected in the message

b. Edit of each data element (alphanumeric, numeric,
strings). Each data element editing information
describes the number of symbols expected.

c. Range check of each data element (for numeric data
types)

d. Domain check

3-30

SD8S20 140000
I November 1985

IF 0

3-41

Owunr0

SDS620 140000
I November 1985

itoIT-
3-3

L oam l!'~l~lY29r&" 1,11ii! ,k

8D8620 140000
I November 1985

.to

411-

3-33

.......

SD8620140000
1 November 1985

In the event of detected errors, the sender of the
message is informed of the presence of errors. The
correction of the errors is left to the transmitting
Application Program. The error message is logged in
the Test Bed error file.

3.1.1.3.22 Message Guaranteed Delivery

When requested, the NTM guarantees the delivery of messages
given to it by an Application Program. Messages to be handled
in a guaranteed delivery mode are of the appropriate message
type and use special interface services.

Guaranteed delivery is a service provided by the NTH for
interhost and intrahost communications between Application
Process Clusters or within the same Application Process
Clusters. Figure 3-20 shows how guaranteed delivery messages
are transmitted and acknowledged. The Application Process which
originates the message (source) receives acknowledgement from
NTE 1 after the message has been Journalized on non-volatile
memory (File 1). The NTE on the AP Cluster of the destination
Application Process (RITE 2) acknowledges receipt of the message
after the message has been journalized in non-volatile memory
(File 2). The destination process acknowledges receipt of the
message explicitly (via an acknowledge message) to the AP
Cluster NTE 2.

Attempts to deliver the message are initiated when either

one or the following conditions occurs:

" Message is first received by NTE 1 or by NTE 2

" Destination AP Cluster is restarted

" Destination Application Process is initiated

The guaranteed delivery messages are time stamped and
logged. A utility allows the scanning of the log and extracting
the messages whose ages exceed a given threshold. Such messages
are displayed on the IISS operator console for disposition by
the IISS operator. The display includes the following
information:

" Time stamp

* Source, destination

3-34

9DO620140000
1 November 1985

9 Full message contents

3.1.1.3.23 System Statistics Gatherinj

The NTH gathers the following system usage statistics:

" Message type, serial number, time stamp

" Application Process start and stop time

The MTN statistics gathering capabilities can be controlled
on a message-by-message basis or on a system wide basis through
NTH configuration data defined by the System Administrator and
downloaded from the CDI at start up time to the UTH.

The statistics are kept in files on each of the Test Bed
hosts. This approach is simple. The statistics files can be
accessed and cleared by the IISS operator with proper authority.
The reduction of the raw data provided by the system statistics
gathering capabilities include the following computation:

" Message type (total number)

" Message to a specific destination (total number)

" Message from a specific source (mean, std deviation)

" Application Process run time (mean, std, deviation)

Vendor supplied accounting packages resident on the various
hosts supplement the statistics provided by the Test Bed
Software.

3.1.1.3.24 Data Downloading

Each NTH is responsible for requesting its
configuration/operational support data from the CDM when
restarted. Thus each 1TH sends to the CD) request processor a
downloading message request which identifies the AP Cluster and
required information which is returned by the CD).

3.1.1.4 Network Transaction Manager Functional Specifications

The functional specifications implied by the scenarios
presented in Section 3.1.1.3 are identified and are presented in
this Section.

3-35

SDS620140000
1 November 1985

3.1.1.4.1 Update NTH Table (Future)

mission: To initiate and to implement the downloading, as
required, of CDK data needed to support the
operation of the NTH.

Functional Specifications:

1. Formulate request for NTH data by transmitting a
message to the CID Request Processor. The message
uniquely identifies the originating KTH.

2. Receive the NTH data transmitted by the CDM.

3. Check the NTH data transmitted by the CDM.

4. Initialize the NTH tables and store NTH data received
from the CDM.

5. Detect non-response from CDM request processor.

6. Log error in Test Bed error file.

7. Report completion of download operation and status to
host IISS operator station.

3.1.1.4.2 Receive and Interpret Hessafe

Mission: To receive and to interpret messages sent to the NTH by
the Application Processes or by the COHN Subsystem.

Functional Specifications:

1. To name uniquely the mail boxes to be used in
communicating with one specific instance of an
Application Process

2. To detect when a mail box has been written into

3. To read the message contained in the mail box

4. To provide any acknowledgement, if required, to the
transmitting process

5. To remove the header of the message, if required

3-36

SDS620140000
1 November 1985

6. To identify the nature of the message

7. To route to its proper destination

8. To detect Application Process message Initiation
requirement

9. To detect Application Process completion message

10. Above functions are implemented by making use of the
communication primitives described in Section 3.1.5

3.1.1.4.3 Authorize Nessage (Future)

Mission: To enforce the legal source/legal destination
constraints declared for the YTH messages, and to
report except ions.

Functional Specifications:

1. To enforce the legal source constraints associated with
a given AP Cluster

FAcK 1

Figure 3-20. Guaranteed Dl!ivery

3-37

AC ACKZZ~

SDS620140000
1 November 1985

2. Toenforce the legal destination constraints associated
with an AP Cluster

3. Legal source and legal destination constraints are
defined in the CDH by the System Administrator. The
legal source and legal destination constraints are
defined on an Application Process basis.

4. To log violation of the legal destination and source
constraint on the error log

5. To notify the transmitter Application Process of legal
destination constraint violations

6. To obtain legal source and legal destination
constraints

7. To allow the definition of AP Cluster authorization
privileges, as well as authorization by specific
Application Processes.

Example: HC)W, * All HCIM
Example: HCIM, 26: Only MCXH 26

3.1.1.4.4 Complete Message Header

Mission: To formulate and to append the proper NTH header to a
message transmitted to the NTh for processing.

Functional Specifications:

1. To obtain all the information from the source
Application Process. For example:

" Message type

* Destination (logical)

* Delivery trigger

M Message length

* Data type (ASCII/EBCDIC or (BINARY)

3-38

SDO620140000
1 November 1985

2. To obtain all the predefined information supplied for

the message. For example:

* Logging flag

0 Statistics flag

* Test flag

e Integrity check flag

e Guaranteed delivery

* Message priority

3. To create the following information:

* Message serial number (on an AP Cluster basis)

e Message time stamp (on a host basis)-only if logged

4. To obtain from the NTH configuration:

* Logical source name

5. To obtain the length of the message header containing
the above information

6. To format the above information in a header per the
format specifications described In Section 3.3

7. To report any errors to the source Application Process

8. To log any error in the Test Bed error file

3.1.1.4.5 Log Message

Mission: To create a permanent, user-readable record of the
messages transiting in the Test Bed environment. This
record is a complete description (header, data
section) of the message.

Functional Specifications:

1. To obtain the message logging information from:

a. The message header

3-39

SDS620140000
1 November 1985

b. The NTH operational option data defined in the CDM.

2. To log messages whenever the message header flag or the
CDI--defined log message system flag is set. (Future -
initially all messages are logged)

3. When appropriate, to log the information (header, data)
contained in the message

4. The record is kept in the message log file kept on each
host

5. To allow for the centralized access of the message log
file by the IISS operator

6. To allow for the selective clearing of the file by the
IISS operator according to a procedure

3.1.1.4.6 Send Message

Mission: To route and transmit message to its appropriate
destination.

Functional Specifications:

1. To determine the physical destination address of the
message from its logical destination address

2. To decide whether the message is to be routed on AP
Cluster, off AP Cluster, or off host

3. To transmit the message to the COMM AP Cluster for off
host transmission. The message is to be transmitted to
the appropriate mail box, according to the priority of
the message

4. To obtain acknowledgement of receipt, if required

5. To detect and report, if appropriate, the following
error conditions to the message Initiator:

a. Destination address is unknown (mailbox not found)

b. Destination address is the initiator itself

c. Destination address is an inactive process

3-40

SDS620140000
1 November 1985

6. To log the above error conditions in the Test Bed error
file

7. Above functions are implemented by making use of the
communication primitives desoribed in Section 3.1.5

3.1.1.4.7 Interpret Message Type

Mission: To examine and to differentiate between messages of
different types for the purpose of providing proper
NTH actions and responses.

Functional Specifications:

1. To obtain the message type information

2. To recognize all valid message types

3. To invoke the proper NTH processing of the incoming
message

4. To detect and report undefined message types

3.1.1.4.8 Initiate Application Process

Mission: To request the local host operating system to load and
to execute a given Application Process.

Functional Specifications:

1. To apply the following scheduling rules to select the
Application Processes to be initiated:

0 Selection based on absolute time (Future)

e Priority based selection rules (Future)

- Higher message priority first, lower priority
last

- Messages of the same priority are scheduled on
a first in first out basis

- Lower priority messages are aged whenever a
higher priority message is selected (future)

3-41

SDS620140000
1 November 1985

2. To formulate a request to the local host operating
system to load and execute the Application Process
described In the message extracted from the message
queues

3. To create, to name, new mailboxes

4. To maintain the higher and lower message priority
queues. Maintenance functions include:

" Removal without omission or duplication of messages
that have been dispatched

* Detection of overflow

* Reporting of errors in queue management

5. To obtain status information from the host operating
system

6. To maintain the list of active application processes

7. To report the failure of initiating an Application
Process to the requestor, if appropriate, and to log
the failure, with appropriate error description in the
Test Bed error file

8. To record the Application Process identification and
time of day in the Application Process Activity Log
(start time) (Future - Activity Log).

3.1.1.4.9 Terminate Application Process

Mission: (1) to perform the housekeeping operations associated
with the normal termination of an Application Process,
and (2) to perform the error notification and
housekeeping operations associated with the abnormal
termination of an Application Process.

Functional Specifications:

1. To detect the termination of an Application Process

2. To recognize normal and abnormal termination conditions

3-42

SDS620140000
1 November 1985

3. In the event of normal termination:

a. To record the Application completion time in the
Application Process Activity Log (Future)

b. To clear any mail boxes used to communicate with
the Application Process Just terminated

c. To notify the requestor of the termination (if
required)

d. To maintain the list of active application
processes

4. In the event of abnormal termination:

a. To record the Application termination time in the
Application Process Activity Log (Future)

b. To obtain the termination code or status from the
local operating system

c. To generate the appropriate Test Bed error code
equivalent to the local operating system abnormal
termination code

d. To notify the requestor of the abnormal termination
condition, if required.

e. To clear any mail boxes used to communicate with
the Application Process Just terminated

f. To initiate the termination of any offspring
Application Processes of the Application Process
(Future)

g. To update the directory of active Application
Processes by deleting the Application Process just
terminated

h. To update the directory of offspring Application
Process by deleting the offspring Application
Processes identified in Step f

3-43

SDS620140000
1 November 1985

3.1.1.4.10 Exception Handling

Mission: (1) to gain knowledge of exception calls placed by any
on AP Cluster. Application Subsystems and Test Bed
System Services; and (2) to log and notify requestors
of such calls.

Functional Specifications:

1. To keep informed of all exception calls to the local
operating system generated from within the AP Cluster

2. To obtain the error status code associated with the
exception call and the identification of the offending
Application Process

3. To map the local operating system error codes into
equivalent Test Bed error codes

4. To record occurrence of errors and identification of
offending Application Processes into Test Bed error
file

5. To notify the requestor/initiator of the Application
Process of the error status as appropriate.

3.1.1.4.11 Communication with Application Process

Mission: To accept messages and to deliver messages to the
Application Process.

Functional Specifications:

The above mission is accomplished by making use of the Send
message and Receive message functional capabilities described in
Sections 3.1.1.4.6 and 3.1.1.4.2.

3.1.1.4.12 Message Pairing

Mission: To match message pairs (question/answer) and to report
open pairs at the end of time out period.

Functional Specifications:

1. To recognize messages requesting pairing services

2. To extract the identity of the expected messages in

3-44

SDS620 140000

1 November 1985

reply to the message requesting pairing processing

3. To initiate a watch dog timer upon receipt of the
pairing processing request message. The source
defining the time out period (CDH or message, or system
default) and the duration of the time out. (Release 2.0
implementation is "system default*)

4. To close the pair when the expected message Is received
and to disable the watch dog timer

5. In the event of a time out, to notify the Application
Process who initiated the message requesting pairing
processing

6. To record the occurrence of the time out in the Test

Bed error file. The record identifies:

e The Requesting Application Process

o The message type and/or serial number requesting
pairing processing

e The time of day

* The destination Application Process

3.1.1.4.13 Error Logging

Mission: (1) to log the occurrence of an error with sufficient
information to identify:

" The nature of the error

* The offending process

" The end user of the process

* The time of day of the error

and (2) to gain access to the log from a central
location (IISS operator) with an authorized procedure

Functional Specifications:

1. To maintain an error logging file on each Test Bed host

3-45

\~Th~. V:\'

SDS620140000
1 November 1985

2. To allow access to this file by an authorized user

3. To support the chronological ordering of the error file
obtained by concatenating the local error files
maintained on each host (Future)

4. To alloy the clearing of the error file under control

of an authorized user vith an authorized procedure

5. To log the following information for each error:

* Nature of the error in Test Bed error codes

* Unique identification of the offending process

* End user of the offending process

* Time of day of the error

3.1.1.4.14 Message Integrity Checking

Mission: (1) to detect messages which have: (a) Improperly
formulated headers, (b) improperly formulated data
sections (Future); and (2) to report and log such
conditions.

Functional Specifications:

1. To allow header integrity checking control via NTM
operating options defined in the CDM. (Future: Rel 2.0
- options defined in NTH)

2. To allow data integrity checking control via NTH
operating options defined in the CDM (Future). In the
early implementation, Application Processes are
responsible for message data integrity checking.

3. To support header and data integrity checking control
at the NTH and system level.

4. To support data integrity checking control on a message
basis. (Future) In the follow-on implementation, this
service is provided if either:

a. Data integrity checking is requested in the message
header

3-46

SD8620140000
1 Wovember 1985

b. Or if data integrity checking is requested at the
system level via information provided by the NTH.

Data integrity checking may, in addition, be specified
to be performed by the NTH or by the Application
Process.

5. To perform, when requested, the following message
header Integrity checks:

* Editing of each field

* Self consistency of the following user defined
fields:

- Message type

- Destination

- Delivery trigger

- Data type

6. To perform, when requested via CDK flag, the following
message data section integrity checks: (Future)

" Number of data fields

" Editing of each field

" Range checking of each data element

The data used to support the above checks is defined in
the CDM and downloaded to the NTM tables on start up.

The CDM definitions recognize:

* Integer notation

9 Floating point notation

9 String notation (n characters)

* Undefined range

U Upper, lower range limits

3-47

SDS620140000
1 November 1985

* Domains

7. To report the occurrence of errors to the message
initiator via predefined Test Bed error codes

8. To log the occurrence of the error in the Test Bed

error file. The record includes:

* Message type

" Message serial number

" Message initiator

* Error code

* Time of day

9. To prevent the propagation of an erroneous message
through the Test Bed

3.1.1.4.15 Resource Usage Statistics

Mission: To gather the following Resource Usage Statistics:

" Usage frequency

" Processing time

" Message frequency

* Process response time

Functional Specification:

1. For each message, to gather the following information
at the sender and receiver AP Cluster:

" Message type

" Message serial number

" Message time stamp

2. For each Application Process, to gather the following
information on the Application Process AP Cluster:
(Future - Application Process logging files are not in

3-48

SD 620140000

1 November 1985

the Release 2.0 implementation)

* Application Process name

* Start time

* Completiosk time

e Above information Is gathered if it is available

3. To log the above Information in files maintained
locally (message logging file and Application Process
logging file (Future))

4. To support the querying and concatenation of the
message logging files and Application Process logging
files from a central location (Future).

5. To clear the message logging and the Application
Process logging files by an authorised user

6. To compute the following statistics from the
concatenated message and Application Process logging
files: (Future - The raw data is collected but not
processed to obtain this information in Release 2.0)

* Message frequency by message type

* Application process usage frequency by application
process type

* Application process processing time (mean, std dev)
by application process name and for all application
processes

* Application process response time (mean, std dev)
by application process name and for all application
processes

3.1.1.4.16 Guaranteed Delivery

Mission: To guarantee selectively the delivery of messages to
Application Processes.

Functional Specification:

1. To provide the following guaranteed delivery services

3-49

L!

SDS820140000
1 November 1985

to messages requesting this service

2. To acknowledge the receipt of a guaranteed delivery
message to the initiating Application Process or to the
NTH forwarding such a message.

3. To initiate the delivery of such a message to its next
delivery point until an acknowlodgement is received
from the delivery point (NTH or ApplicationProoess)

Attempts to deliver the message are initiated when
either one of the following occurs:

* Message is first received

* Target AP Cluster is restarted

e Target Application Process is initiated

4. To notify the IISS operator in the event of failure to
deliver the guaranteed delivery message. Failure to
deliver such a message Is recognized when the age of
the message exceeds the age limit set for the AP
Cluster. In the event of delivery failure, the
following information is provided to the I88 operator:
(Future - Release 2.0 is a manual process to review
message files)

" Time stamp of messages (date. time of day)

" Source, destination

" Contents of message (header, data section)

5. To record guaranteed delivery failures in a special log
on the host where the failure was detected

3.1.1.4.17 System Status Broadcast

Mission: To broadcast system status information to all IISS
users. The IISS operator initiates the broadcast and
supplies the text of the message to be broadcasted.

Functional Specification:

1. System service which allows the broadcast to all
terminals

3-50

OD8620 140000

i November 1985

2. Service can be invoked by:

a. 11S operator

b. Privileged programs

3. Operator or privileged program supplies text of
broadcast

3.1.1.4.18 1188 Start UP

Mission: To start up 1188 Software Services on a Test Bed host.
Start up operations are initiated by the IB8
operator.

Functional specifioations:

1. To accept 11I operator start commands and data inputs
from the 1188 operator console, or from a command file

2. To start up the ZZS Software Services required to
support the functionality of the Test Bed:

a. To initiate, in the proper sequence. the I18
software modules required to support the
Application Cluster Configuration assigned to the
host.

b. To carry out the start up scenario for the specific
host application cluster configuration (loading of
operational option data, dialogs with other hosts,
etc.).

3. To report the completion (or any error message) of the
II88 Software Services start up to the II85 operator.

3.1.1.4.19 1185 Shutdown

Mission: To shutdown the IIIS Software Services running or
dormant on a Test Bed host. Shutdown operation is
initiated by the is8 operator.

3-51

SDW620140000
1 November 1985

Functional Specifications:

1. To accept IISS operator shutdown commands either from:

a. The host IISS Operator Console, or

b. A shutdown message transmitted by the NTH

2. To broadcast shutdown messages to all IISS terminals
at a frequency prescribed by the IISS operator

3. To monitor processes still active at the end of the
shutdown countdown period and to report the identities
of these processes to the IISS operator

4. To terminate, under the direct control of the ZISS
operator, those processes found active at the end of
the shutdown period

5. To save all pertinent information required for the
restart of the Test Bed without omission or
duplication of application processes and without the
loss of concurrency between the databases, Journals,
and application process request queues. (Future)

6. To terminate all IISS Software Services in the proper
sequence

7. To report the completion of the shutdown operations to
the IISS operator

3.1.1.4.20 IISS Restart

Mission: 1) To restart the IISS Software Services on a given
Test Bed host; 2) To achieve synchronization with
other Test Bed Application Processes and to maintain
database concurrency. Restart is initiated by the
IISS Operator.

Functional Specifications:

1. To accept IISS operator restart commands and data
inputs from the IISS Operator Console or from a
Command file

2. To startup the IISS Software Services required to

3-52

SD8620140000
1 November 1985

support the functionality of the Test Bed

a. To initiate, in the proper sequence, the IISS
Software modules required to support the host
Application Cluster Configuration.

b. To carry out the startup scenario for the specific
host Application Cluster configuration

c. To achieve synchronization of all Application
Process request queues in the 1SS system, without
omission or duplication of application processes
(Future - request queues are not saved during
shutdown)

d. To maintain concurrency of the on host databases
with the other databases integrated in the Test
Bed

3. To report the completion (or any error message) of the
restart of the IISS Software Services to the IISS
operator

3.1.1.4.21 IISSRecovery (Future)

Mission: To perform the recovery of the IISS databases,
journals, and application process request queues,
without omission or duplication. The IISS recovery is
initiated by the II88 operator.

Functional Requirements:

1. To ensure that Recovery processing is equivalent to
normal processing

2. To accept Recovery initiation commands and other
recovery input data from the IISS operator

3. To be able to roll back, roll forward to and from an
IISS operator designated checkpoint

4. To re-apply the stream of application processes
submitted during normal processing without omission or
duplication

5. To allow the exclusion, under IISS operator control,
of one or several application process types from the

3-53

8DS620140000

1 November 1985

stream of application processes submitted to recover
the databases

6. To maintain concurrency between application process
queues, database Journals, and the databases
integrated in the Test Bed

7. To suspend normal prooessing while performing the
recovery operations

8. To notify the IISS operator of the completion (or any
error messages) of the recovery operation

3.1.2 Common Data Model Configuration Item

3.1.2.1 CDK Mission Statement

The Common Data Model serves two purposes in the
implementation of the Test Bed.

First, The CDX is a repository of system information. This
information is used at compile time or at run time. The
information contained in the CDM is used to support all
operational phases of the Test Bed life cycle: maintenance,
application development and operation.

Second, the CDM allows application processes to query
Common Data distributed among the Test Bed databases without
regard to its location and format.

3.1.2.2 CDX Functional Areas

The configuration tree of the CDM is shown on Figure 3-21,
which shows three major functional areas:

* CDX Naintenance

* Application Development

" CDX Request Processor

3.1.2.2.1 CDM Maintenance Functions

The CDM Operational Scenarios presented here are introduced
for the sole purpose of supporting the identification of the
functional specifications to be met by the CDX processor. These
scenarios are not meant to imply a specific implementation of

3-54

,,

8DS820140000
I November 1985

these functional specifications. Consequently, the final design
of the CI prooessor may implement scenarios which differ from
the scenarios presented here.

3.1.2.2.1.1 Operational Scenarios

The description of the Common Data, that is the Common Data
Model and the system data, must be entered, edited and
retrieved.

The COIN Maintenance Operations referenoed above are
performed by the CONI Administrator. These operations are
represented on the attached XWDZO diagram entitled "Operate
Common Data Nodelo, node Al (Figures 3-22, 3-23, 3-24, and 3-25
for the IXDO diagrams).

The following narrative supports the discussion of the
"Maintain CI Data" node. Vith respect to this node, one can
draw the following remarks:

1. A schema of the CON meut first be built in order to
retrieve, store and edit any C NI Information.

2. To ensure a self consistent CI, the relationship of
any update to the CDO entity or attribute definition
must be cheocked. A minimum level of ohecking includes
uniqueness checking. The sheer amount and the
diversity of the data items to be stored in the CDK
militate for computer assisted checking.

3. Any update to the CI takes place once the checks
listed above have been performed and did not reveal
any errors.

4. The data dictionary relationships supported by the CI
are automatically updated as part of the update
function.

5. The version number of the CI is likewise
automatically maintained. To be useful, the CI
version numbering system must be of sufficient
granularity to avoid reoonpilation of application
processes unaffected by a change in the CI data.
(Future)

3-55

SDS620140000
1 November 1985

3.1.2.2.1.2 CD Maintenance Functional Specifications

The CDI Maintenance functions are performed by the CD
Maintenance utilities to create, revise and expand the CD data.

The CDR Maintenance utilities perform the following
functions:

1. Access Control: Access control to all CDI Maintenance
functions are performed under strict access control.
Access control is enforced via password and user name.

2. CDI Data Access: The following data manipulation

functions are provided:

" CDI Data Entry Functions

* CDII Data Update Functions

* CDM Data Edit Functions

Figur 3-21.M CDI ofiuato Te

WDMMOG " "ROM,3-!I

FORTRAN CODE[.........

Fig~ure 3-21. CDIM - Configuration Tree

3-56

SD820140000
1 November 1985

* CDII Data Selective Retrieval Functions

* CDIE Data Reporting Function

e CDII Data Delete Function

The above functions are applicable on all CDI data.
3. CDIM Data Definition: The above data entry functions

are used to define all data known to the CDI. The data
known to the 0DM Includes:

* CDII Schema

" Appl icat ion External Schema.

" Test Bled Conceptual Schema

*Integrated databases Internal Schemasx

* Mappings Existing Between the Above Schemas

" Domain Information

* Range Information

" Network Resources (location of AP Clusters,
databases, configuration) (Future)

" Test Bled Security Information (Future)

" User Interface Support Information (Future)

*Virtual Terminal/Real Terminal Mappings (Future)

* Error Messages (Future)

e Message Format Definition (Future)

** Application Process description (single instance,
queue driven....) (Future)

4. CDII Data Checking: The following CDII data checking
functions are provided:

e Uniqueness of relation names at the conceptual level

3-57

SDS620 140000

1 November 1985

I I0 10

10

0

.4

3-58

SDS620140000
I November 1985

a'lKb

ii

d

~ iI LI iIi 'I

ii, Ii
. ii-

• - P S

SDS620 140000
1 November 1985

00

3-60

SD8620 1400001 NOVember 1985

I
III I~

IIj

'Ii I Iiia
U
0
'S

I
4

S
Ce
S

Sk

h.

3-81

A,

SDS620140000
1 November 1985

" Uniqueness of entity names at the conceptual level

" Uniqueness of attribute use class names at the
conceptual level

" Uniqueness of key class names at the conceptual
level

5. CDI Data Dictionary: The following data dictionary

functions are provided:

9 Index of Conceptual Entities

* Index of External Entities

" Index of Internal Entities

* Cross Reference of External Entities and Application
Processes

* Glossary defining the various entities, attributes,
relationship

6. CDM Version Number: A CDI data version numbering
scheme is provided. This scheme maintains
automatically the version number of the information
used by an Application Process and the version number
of the CDM data used to compile the Application
Procees. Version number identifies CDM data changes
that require recompilation of Test Bed Application
Processes and downloading of CDM data. (Future)

7. CDM Integration Methodology Utilities- The declaratioon
and checking of Extended IDEFl constraints are
supported.

8. CDM database Recovery and Concurrency Control
The recovery of the CD database is supported via th
recovery mechanisms provided by the CIM datab&se
manager (ORACLE).

3.1.2.2.1.3 Implementation Steps

To reduce development cost and to meet the deve'pmeor.
schedule, the CDI Maintenance functions are mple"Ptet.
stepwise fashion.

3-6

46 D-A101 235 INTEGRATED INFORMATION SUPPORT SYSTEM (1155) VOLUME 4 2/3.
JISS SYSTEM PART 2.. (U) GENERAL ELECTRIC CO SCHENECTADY
NY PRODUCTION RESOURCES CONSU.. M R HURLBUT ET AL.

UNCLSSIFIED 91 NOY 05 SD5629140S00 F/O 12/5 ML

mhohEohhhhmhhE
EhmhEEmhhEohEI
momhhmmhmml
EEmhEEEEEEEEEI

bi1lg1.0 Li
N m

j(3.25 .4 .

MICR~OCOPY RESOLUTIO ,N TEST CHART

NATIONAL BUJREAUJ OF STANDARDS 196-A

F9 1

SD8620140000
1 November 1985

Step 1 Is implemented by making use of the maintenance
utilities provided by the database Manager supporting the CDN.
The ORACLE Relational database Manager has been selected for the
CDM. As part of its standard utilities, ORACLE provides:

" Access Control

* Access from a VAX Native Terminal

" Data Entry

Step 2 would include all other functions not included in
Step 1. The following list applies to the ORACLE
implementation:

" Access to Maintenance Utilities from an IISS Terminal

" Access through the NDKL to the CDI data

" Forms assisted maintenance of the CDI

3.1.2.2.2 Application Process Development

3.1.2.2.2.1 Operational Scenario

The development steps of an integrated Application Process
are portrayed in the IDEFO diagram shown on Figures 3-26 and
3-27.

With reference to this diagram, the major steps of the
development of an integrated Application Processes are:

1. Establish Data Requirements of Application Process

Based on the data requirements of the user, the CDM
establishes an External Schema suitable to support the
application process contemplated. If all entities and
attributes required by the application process already
exist in the Conceptual Schema, this operation reduces
to formulating an External Schema which is a subset of
the Conceptual Schema. Otherwise, the new entities
required by the new Application Process under
development must first be added and integrated in the
Conceptual Schema. and reflected in appropriate
Internal Schemas.

3-63

SDS620140000
1 November 1985

From an operational viewpoint, the definition of the
External Schema and any addition to the existing
Conceptual Schema are performed by the CDI
Administrator (for data security reasons). The CD
Administrator uses the Test Bed Neutral Data Definition
Language to define the required schemas.

Once the External Schema has been developed by the CDM
Administrator, a report of the External Schema is then
obtained and communicated to the Application Developer
(application programmer).

For data security reasons, however, the External Schema
is referenced by name in the Application Process and is
directly obtained by the Precompiler from the CD.
This approach guarantees tight data security, since the
Application programmer cannot modify the schema and
hence his data access privileges, without explicit
action from the CDI Administrator. The printout of the
External Schema conveys the information required by the
Application Developer to write the integrated
Application Process.

2. Generate Code of Application Process

2a. Integrated Applications (Class II Environment)

Based on the user requirements and on the External
Schema developed; the Integrated Application Developer
designs and codes the required Application Process. In
the Test Bed, the Application Process is either a COBOL
or Fortran program which queries data distributed
across the Test Bed databases as if the data was
contained in a single database bound to the
Application. All data queries are formulated via the
Test Bed Neutral Data Manipulation Language. The I/0
operations are performed via Test Bed supported I/0
services. User interaction is facilitated by the Test
Bed provided User Interface. This interface supports
forms management, data checking and menu handling
capabilities. The Application programmer references
the user interface services via procedure calls.

2b. Existing Applications

Existing Applications need to be brought under the
control of the NTM to be under the control of the IISS

3-64

SD8620140000
1 November 1985

user. This is done by making existing applications
come under the control of the Test Bed known to the-
CDI. This definition Information is used to update the
relevant IT tables, and permits the II8 user to cause
the execution or the cmcllation of existing
applications from the 1188 user terminal. Existing
Applications, in general, perform Input/Output
operations to the user terminal and to the database and
files supporting them. atabase and file 1/O
operations of existing applications are, in general,
satisfactory to the 118S user and do not need to be
disturbed when the application is brought under the
control of the the Test Bed.

On the other hand, the terminal I/0 operations need to
be redirected via the 1TH to take place the IISS user
terminal. The redirection of terminal I/O's can be
accomplished either by:

1. Modifying the 1/0 statements contained in the existing
Application Process Code so as to perform the
nondatabase I/0 via the NTH and UI services provided
by the Test Bed (Send Message, Receive Message, Output
Screens, etc.), or

2. Modifying some to the system I/0 routines that are
linked with existing applications so as to effectively
redirect the I/0 operations to the N1TH. This
approach, which works well on some machines (e.g., IBM
CICS) and does not require customized modifications of
each application, is not, however, possible on all
Machines.

3. Precompile Code of Application Process

3a. Isolate and Replace NDXL Statements
The above development steps result in a COBOL or
Fortran program which implements the logic of the
intended Application Process. The program thus
written is not however compilable by the host provided
COBOL or Fortran compiler. The reasons for this are
that the program contains:

" A reference to an external schema specified in the
Test Bed NDDL not recognized by the host.

" NDML statements which are not recognized either by

3-65

ji*

SDS620140000
1 November 1985

INii
r6

to

3-M

BDS620140000
1 November 1985

the COBOL or Fortran compiler or by any of the
host supported database managers.

Thus, the integrated application programs must be
preoompiled to remedy the above problems. The preoompiler will,
in addition, transform the 3DmL statements into procedures which
can be executed by the database managers integrated by the Test
Bed. The problems associated with the aggregation and data
transforms pertaining to the distributed environment are also
resolved by the precompiler.

In the 6201H implementation of the Test Bed, the
precompiler is resident on the VAX and is bound to the CDH
database manager. In the same environment, all queries are
precompiled by the VAX precompiler and distributed to the host
for final compilation. The IISS system concepts and design
allow these functions to be performed on the Honeywell or on the
IBM computers.

Per the above scenario, the Test Bed precompiler generates
the following classes of output:

1. Precompiled application process code

2. Single node query processors (COBOL code)

3. Data aggregators (tables)

4. Query stager/scheduler (tables)

5. Conceptual to external transformers (COBOL code)

6. Error message

The precompilation process is shown in Figure 3-27, and the
interaction of the precompiler with its environment is
shown in Figure 3-28. The precompiled application process
code is now a COBOL or Fortran Program in compilable
format, where the NDXL statements have been suppressed and
replaced by procedures which initiate messages to the
corresponding single node query processors and data
aggregators.

Once successfully precompiled, the precompiled application
process source code files are sent to their respective
hosts for compilation. These transmissions take place via
the Network Transaction Manager.

3-67

SDS620140000
1 November 1985

3b. Formulate Single Node NDML Query

The single node query processors are COBOL procedures
which query data from a single database. As such,
these procedures contain data manipulation statements
which are specific to the target database managers.
Also, the query processors are tailored to the target
data structure.

The steps required to generate the single node query
processors are these:

* The multi node conceptual NDKL query is decomposed
into a set of single database HUM query processors.

* The resulting multi node conceptual NDJL query is
analysed and an optimizing decomposition/aggregation
strategy is formulated. The strategy reflects the
storage characteristics of the distributed databases
as expressed by the Internal Sohemas or rather their
conceptual equivalent.

* The multi node conceptual NDXL query is decomposed
into a set of single database NDXL query processors.

3c. Generate Query Processor

* For each single database NMDL query processor, an
internal schema access path is determined. The
access path reflects the data structuring
characteristics of the database holding the data.
This information is derived from the internal schema
of the database.

" A COBOL procedure based on the access path
determined above is then automatically generated.
This procedure is non-database manager
specific(although it reflects the data structure of
a specific database) and as such contains generic
ODASYL data manipulation statements.

* In addition to the logic required to carry out the
data retrieval operations. the query processors
contain the logic required to transform the data
retrieved from the internal format and units to the
format and units prescribed by the Conceptual

3-68

SD8620 140000
1 November 1985

00IP-ILiI
~ I I3 I 9

II114111611

SDS620 140000
1 November 1985

03

OCUS

0

CC

Co C.3

z0

t54

be

U)

0-7

SD8620140000
1 November 1985

Schema. The transformation to the conceptual format
and units allow performance of data integrity checks
prior to aggregation as well as simplifying the
declaration of the data integrity checking support
Information.

* Once the generic query processor has been generated,
the generic CODASYL data manipulation languages are
replaced by the specific data manipulation
statements recognized by the target database
manager.

3d. Specify Data Aggregation Step

The query aggregators perform the Join and Project
Operations required to assemble the data specified by
the distributed query. These join and project
operations are specified at precompile time by the
precompiler. The join operation allows assembly of
data contained in two relations sharing a common
attribute on a tuple by tuple basis, whereas the
projection operator allows discarding of attributes not
relevant to the query at hand.

The query graph which reflects the strategy required to
fulfill the distributed query assigns the nature.
sequence and location of the operations performed by
the various aggregators.

The data aggregators aggregate data presented to them
in conceptual format and units. Likewise, aggregators
present data to other aggregators in the same format.
However, the last aggregator routes the aggregated data
to the conceptual to external transformer. This module
performs the format and unit transformations required
to return data in external conceptual formats and units
to the querying Application Process.
The data aggregators aggregate data supplied by two
different data sources. These sources may either be
another data aggregator or a query processor.

3e. Specify Query Scheduling

The query scheduler controls the processing of a
distributed query through scheduling and staging
instructions specified by the precompiler. The control

3-71

SDS620140000
1 November 1985

functions performed by the query scheduler include:

0 Monitoring the status of the various query
processors, data aggregators, and conceptual to
external transformer involved in the distributed
query processing.

* Scheduling of the data aggregation operations to
minimize the transmission time (main controllable
component of cost of a distributed query).

The scheduling of the data aggregators is performed
dynamically, at run time, by the query scheduler.

The query scheduler uses actual data byte counts
supplied by the query processors and data aggregators
to decide on the location of the next level of the data
aggregation operations. Figure 3-29 illustrates the
control and data flow originated and received by the
query scheduler.

The query scheduler has the following responsibilities:

* Request initiation of the query processors

* Request initiation of the data aggregators

* Request initiation of the conceptual/external
transformer

* Dynamic selection of the data aggregation sequence

9 Monitoring of status messages sent by the data
aggregators and query processors

* Signalling to the application process (status, data)

The implementation of the query processors assumes that
the query processors do not receive any intermediate
results from data aggregators or other query
processors. This simplification allows the parallel
initiation of all query processors.

4. Distribute and Install Modules

Once the query processors have been generated, they
must be distributed to their respective hosts,

3-72

SDS620140000
1 November 1985

compiled, assembled and linked.

The compilation, assembly and linking steps are
performed by the compiler, assembler and linker of the
respective host where the module (query processor or
data aggregator) is to run.

The source code for the modules are transmitted from
the VAX to the target host via the Network Transaction
Manager. The operational data controlling the data
aggregators is distributed, at run time, via the NTH.

3.1.2.2.2.2 Functional Specification

The development of integrated Application Processes via the
above scenario implies:

1. A schema integration methodology to setup the Common
Data Model

2. A Neutral Data Definition Language to declare Common
Data Resources in an Integrated Application Process

3. A Neutral Data Manipulation Language to retrieve data
contained in heterogeneous databases

4. A precompiler to substitute the Neutral Data
Manipulation Language statements with a set of
cooperating procedures performing the data retrieval
operations specified

The runctional specifications of each of the above building
blocks required to develop integrated Application Processes are
as follows:

1. Schema Integration Methodology

A methodology is required to define external and
conceptual schemas in a flexible and unambiguous
fashion.

The methodology to be developed focuses on:

* Degree of normalization required to build a
conceptual schema that can be expanded/contracted
with minimum impact on existing schemas (external.
conceptual. and internal).

3-73

SDS620140000
1 November 1985

" Guidelines for the efficient integration of existing
databases.

" Mappings between external, conceptual, and internal

schemas.

2. Neutral Data Definition Language

A Neutral Data Definition Language (NDDL) is provided
by the Test Bed. Neutral refers to the non-database
specific aspect of the data definition language
provided by the Test Bed. The Test Bed NDDL is used to
describe the various schemas of the integrated Test Bed
databases.

The Test Bed NDDL thus must support the definition of:

* External schemas

* Conceptual schemas

* Internal schemas

* The mappings existing between the schemas listed
above

* Relational schemas

e Network schemas

* Entities or relations

* Attributes in a relation or in a record

* Domain definitions compatible with COBOL

* Attribute ranges (numeric. Boolean)

* External schema name

* Hierarchical schema (or future enhancements)

* Attribute unit and format representation

* Derived attributes

3-74

SD820 140000
I November 1985

0

3-75

I- -~ -0C ---.
iL 61

SDS6 O140000
1 November 1985

External schemas are referenced by application
processes. The external schema is not physically
distributed, it is kept in the CDI) and is referenced by
the application process. This reference is used by the
Test Bed precompiler at compile time.

3. Neutral Data Manipulation Language

A Neutral Data Manipulation Language (NDML) Is provided
by the Test Bed. The IDKL is used to query the data
contained in the databases integrated by the Test Bed.

The Test Bed NDKL functional specifications are:

" To be a relational oriented language

* To be compatible with COBOL

* To be non procedural

* Each statement is delimited by easily recognizable
characters

" To support the retrieval of a set of tuples

" To use variables definition compatible with COBOL

* To return a status code (completion, error) upon
execution

* To support queries embedded in a COBOL program

* To support retrieval queries qualified by the
following predicates:

- Equal

- Not equal

- Greater than

- Greater or equal

- Less than or equal

- Less than

3-76

SD8620140000
1 November 1985

- Boolean operator
AND

- Boolean operation NOT (FUTURE)

" To support retrieval from one or more relations

" To support at least retrieval queries constrained by
at least 4 level of qualifiers

* To support restriction (selection) operations

" To support natural and equal join operations

* To support projection operations

" Not to cause a looking of the database when querying
data

* To use variable definitions compatible with FORTRAN

" To support requests embedded in a FORTRAN program

" To support update requests embedded in a COBOL
program

• To support insertion of a single tuple

" To support modification of a set of tuples

" To support the deletion of a set of tuples

The initial implementation of the 6201 NDKL is not
intended to support distributed data updates. However,
the NDHL syntax and implementation shall include update
commands.

4. Application Process Precompiler

The Test Bed Precompiler performs the following
functions:

4a. Prepass of COBOL Application Process Code

" Prepass COBOL 74 Source Code

• Recognize invoked external schema by names.

3-77

SDS620140000
1 November 1985

" Recognize all NDKL statements and replace these

statements by equivalent comment statements

" For each NDL statement:

- Assign a unique number to the query scheduler

- Insert a procedure call to the uniquely
identified query stager/scheduler controlling the
execution

- Establish work area to receive the data in a
COBOL compatible fashion

4b. Formulate Single Database Query

" Obtain external schema from CDM

" Transform external NDNL query into conceptual NDNL
query

* Formulate query decomposition based on data location

" Decompose NDNL conceptual query into NDML conceptual
single database query

* For each subquery:

- Assign unique number to the subquery

- Generate query processor

4c. Generate Query Processor

To generate the single database query processors
implied by one NDML query, the precompiler needs to
perform the following functions:

* Formulate access path

* Generate code for query processor or generate
equivalent tables to perform required data
retrievals

* Insert internal schema - if required

* Insert data format operations

3-78

SD8620140000
1 November 1985

* Insert data to perform data integrity checks

* Insert code to generate byte counts for retrieved
information

* Insert code to transmit retrieved information byte
count and retrieval status to the query scheduler

* Insert code to store retrieved data into a
designated file

* Specify the format of the data handed to the query

processor

" Use standard error messages and status information

" Generate status code (error. completion) upon
execution

In the 6201H implementation, the query processors are
restricted to target the following database managers:

9 IDS II on Honeywell Level 6. operating under OCOS

MOD400 V03 (Limited Tests)

* IDMS on IBM 3081 under NVS

* IDBS on VAX for IDSS AP Cluster (IDSS 2.0) (Not
Tested)

* VAX-il DBMS

" ORACLE on VAX for the CDM AP Cluster

" TOTAL on IBM

* INS on IBM (Limited Tests)

o ISA or VSAM (Future)

9 Other database management systems (Example DB2)

4d. Specify Data Aggregation Step

To specify the data aggregation step, the precompiler
performs the following functions:

3-79

SDS620140000
1 November 1985

• Formulate aggregation operations to be performed
(equal join, not equal join, semi-join (future), and
union)

* Provide data aggregator operational Information to
the data aggregator

* Specify the format of the data supplied by the query
processors

The data aggregators use the data supplied by the
precompiler to perform the following functions:

* Formulate aggregation operations to be performed
(equal join, not equal join, semi-join (future). and
union)

" Obtain required internal schemas to create work area
to receive and process data

* Provide error signaling logic (using standard error
messages)

" Obtain, aggregate and output data supplied by query
processors

" Generate the byte count of the aggregated data and
report the byte count and status information to the
query scheduler.

* Accept format of data supplied by the query
processors

" Generate status code (error, completion) upon

execution

4e. Specify Query Scheduling

To specify the query scheduling step, the precompiler
performs the following functions:

9 Determine the possible data aggregation sequence and

* Semi-join is a future performance enhancement

3-80

- -I011

SDS620140000
1 November 1985

location

* Invoke the query scheduler from the Application
Process

The query scheduler uses the data supplied by the
precompiler to perform the following functions:

" Request Initiation of query processors

* Request initiation of data aggreg&tors

" Request initiation of conoeptual/external
transformer

* Select dynamically and control the data aggregation

sequence

9 Request time out service from the NTH

* Request the cancellation of all query prooessors.
data aggregators, conceptual/extern&l transformer,
related to a given distributed query, in the event
of errors

e Receive. interpret and report error messages
received from the query processors, data aggregators
and oonoeptual/external transformer

4f. Generate Conceptual External Transformer

To generate the Conceptual-to-External Transformer. the
precompiler performs the following functions:

" Obtain the conceptual-to-external unit
transformation from the CDH

" Obtain the conoeptual-to-external format conversions
from the CDH

e Invoke the conceptual-to-external transformer from
the Query Scheduler

The Conceptual-to-External Transformer uses the data
supplied by the precompiler to perform the following

3-81

SDS620140000
1 November 1985

functions:

" Carry out the conceptual-to-external unit
transformations

" Carry out the conceptual-to-external format

conversion

" Report errors to the query scheduler

4g. Precompiler Characteristics and Constraints

* Precompiler is portable

* Precompiler is written in COBOL 74

e Precompiler is designed to allow extension to other
non-COBOL high order languages

* Precompiler Initial implementation is the VAX, uses
DL of CDI) database manager and is controlled from
native terminal

e Precompiler issues error messages when required

9 Precompiler can be invoked by the NTH and make use
of the NIDL

e Precompiler is structured to support ad-hoc query
processing

3.1.3 The User Interface Configuration Item

3.1.3.1 User Interface Mission Statement

The IISS system requirement document identifies a need to
provide users with an overall view of the system as an
integrated application rather than as a collection of disjointed
programs. Users need to be able to invoke the various Test Bed
subsystems such as MCMII, MRP and IDSS from a single terminal in
a consistent manner even though the applications may reside on a
number of different computer systems.

Additionally, the User Interface should support the
development of "User Friendly" application programs that are
flexible and maintainable.

3-82

SDS620140000
I November 1985

3.1.3.2 User Interface Functional Areas

The function of the Test Bed User Interface is two fold.
First, the UI provides an environment that not only allows but
encourages good user interface design. Secondly, the UI
provides a run time environment that supports interactive
dialogue. These two subsystems are called the User Interface
Development System and the User Interface Management System. The
various functional areas making up the UIDS and UINS are shown
on the User Interface Configuration Tree given in
Figure 3-30.

Figure 3-30 shows two major functional areas:

" User Interface Development System (UIDS)

" User Interface Management System (UIMS)

The UIDS is a set of tools that assist application
developers with forms maintenance, report writing and rapid
application generation. These tools are available to the user
as part of the UIMS.

The User Interface is a forms based system. This means
that all communication between an application program and the
user is done through electronic forms on a video terminal
screen. Electronic forms are full screen template displays that
act as prompts or memory joggers to users as they fill in input
data items.

The UIDS provides two facilities for editing forms:

* The forms can be edited using a language called the
Forms Definition Language which is compiled with the
Forms Language Compiler.

* The forms can be edited through the use of an
interactive application that prompts the user for form
characteristics and allows for freestyle form layout.

The UIDS Report Writer and Application Generator are based
on extensions to the Forms Definition Language for program
generation.

The UIMS is the run time U1. It performs the functions
which are interactive. As such, the UIMS interfaces with the
user through an interface to the Virtual Terminal or neutral

3-83

SDS620140000
1 November 1985

User Interface

+- User Interface Management System
I I
I I

+---+-- User Interface Services
I I

-- Form Processor
I I

+-- Virtual Terminal
I I

+-- Application Interface

- User Interface Development System

-- Forms Language
I Compiler

+---+-- Form Editor-------------
I I

+-- Forms Driven
Form Editor

+-- Report Writer
I I

+-- Application Generator --+
I I

I +-- Rapid Application
I Generator

+-- Text Editor

Figure 3-30. User Interface Configuration Tree

Test Bed terminal. The UIMS interfaces with application
programs through the Application Interface to the Form Processor
which handles screen processing commands. The Application
Interface is bound to the Application Process and contains the
necessary functions to extract data from a form sent to it, to
fill out a form, and to initiate messages to the Form Processor
as well as receive messages from the Form Processor.

Figure 3-31 illustrates the above concepts. This figure
shows that the transactions exchanged between the Form Processor
and the Application Interface are handled by the NTM. A

3-84

I-&* .

SD8620140000
1 November 1985

description of the NTH itself can be found in section 3.1.1 of

this System Design Specification.

3.1.3.3 User Interface Operational Scenerios

The User Interface Operational Scenarios presented here are
introduced for the sole purpose of supporting the identification
of the functional specifications to be met by the User
Interface. These scenarios are not meant to imply a specific
implementation of the functional specifications. Consequently.
the final design may implement scenarios which differ from the
scenarios in this section.

Applicatim

Application
Interface

"Olfees

i N"esees] Virtual
'T Terminll

Device
Iqesiges Driver

Form
Processor

Virtual
Terminal

Figure 3-31. User Interface Management System

3-85

-- ~~~ ~ ~ ~ ~ 4 " n n '.

SDS620140000
1 November 1985

The Test Bed User Interface supports the following modes of

operation:

e Forms Node

* Form Editing Node

* Application Generation Node

In the following sections is a description of these three
(3) modes of operation.

3.1.3.3.1 Forms Mode Operational Scenario

The forms mode allows the displaying of predefined forms
for the purpose of requesting data from the user or for the
purpose of presenting data to the user.

Thus, forms can be used to display data, to input data or
to control the execution of Application Processes on the Test
Bed.

The forms which are displayed have been predefined and
catalogued on the CDM. Each form can be uniquely retrieved by
its name or ID.

The following definitions are convenient when discussing
the Test Bed forms mode of operations.

" A Form is viewed as a template defining fields and their
attributes. The strength of the Test Bed forms
processor is derived from the single and shared
definition of all fields and variables referenced by
forms. The forms are defined in the Common Data Model.
(Future)

" Form data are the actual values contained in the fields
of the form. These values may either be input
interactively by the user or may be supplied by the
Application Process as output data. The Test Bed forms
processing uses the attribute definitions available from
the Common Data Model to perform data integrity checking
at the level of the User Interface. This approach
offers the following advantages:

1. Errors are detected at the data entry point, where

3-86

SDS620140000
1 November 1985

they may be corrected

2. Errors are not propagated through the system

3. Data integrity checking is consistent and
transparent to the application

e A form instance is a filled out form, that is the
collection of a form and a single set of form data.
This definition can take two different representations;
when viewed by the user a form instance is defined as
above, when viewed by an Application Process a form
instance reduces to form control data, form data, and
form name. The format of the data is available to the
Form Processor.

Displaying a Form To Be Filled Out

Consider Figure 3-32. A form to be used for user in put is
placed on the list of forms to be displayed (Display List). The
form to be displayed is referenced by its form name. Frequently
used forms may be downloaded from the CDI at start up time and
placed on the list of open forms (Open List). Less frequently
used forms are requested on an ad-hoc basis from the CD. An
error code is generated and routed to the Application Process
when a requested form cannot be found.

Filling Out a Form

Consider Figure 3-33. The form to be filled out is
presented on the IISS terminal. The user fills out the form, to
the best of his abilities. In doing so. the user may perform
some local editing procedures to correct typos or other errors.
Typos are corrected by invoking the special function keys
(backspace. etc.) defined and supported by the host terminal
driver. When the form is filled out to the satisfaction of the
user, the ENTER key is depressed on the terminal. This causes
the data integrity checks to be performed.

Invokinf the Help Facility

When filling out a form, the user may invoke the Help
Facility. Help may be a message or an entire form. After
invoking the Help Facility, the user may return to the original
form.

3-87

U S U U pY

SDS620140000
1 November 1985

Fompation

on Prloss

fielsiso teie itoc se f

Retriev R-e2. ipaev re Fr

VeofForms FoUrRE

Frose ---------- m otoeo nte om(h ~eForm).I
pe ist Fhngdound Fh Ine Dti looad otbs or

and vice versa. However, the attributes of the view override
those of the base form. This allows the view to ihave different
initial values.

3-88

= ~ #, ~ -,

SD8620140000
1 November 1985

Application Dsple
FF

d to

Mal

Accept ltestoUser User Check

Figure 3-33. Filling out & Form -User Viewpoint

Transmitting a Form

Upon completing the filling out of & form, the user
indicates his willingness to transmit & form by depressing a
function key. This action causes the data Integrity checks to
be performed unless the function key depressed Indicates that

the user would prefer to quit processing the form. The data
integrity checks are supported by the data contained in the form
itself. This approach eliminates the need for additional CDM
access. Error messages are issued to the user when appropriate.
Only error free forms are transmitted, thus keeping network
traffic to a minimum. The Test Bed is a message driven system.
Data is transmitted from the User Interface to the Application
by means of a message.

Outputting a Form Instance

Data generated by an Application Process may be output as
form data associated with a form. This form instance is
displayed at the request of the Application Process. When the
user has viewed the data, he may signal his willingness to view
more data by entering a (next form) control character. This
action allows more data to be displayed on the terminal.

3-89

SD620140000
1 November 1985

Outputting a Form To Be Filled Out from an Application

The Application Process which has needs for Input data may
make Its needs visible to the user by requesting that a form be
displayed and filled out by the user. The specific Application
Process Issues & 0display forma command for that purpose. The
adisplay fora command contains the name of the form to be
displayed.

Controlling the User Interface

The User Interace assumes one of three major states:

" ACCEPT USER DATA

" ACCEPT APPLICATION DATA

* PROCESS FORMS

The PROCESS FORM state Itself Is made up of the
following states:

- DI SPLAY FORM

- ACCEPT USER DATA

- INTEGRITY CHECKING

- INITIATE MESSAGE

These states are shown on Figure 3-34.

FiURe U-s.Cn eoDram Fr Processo

r M Dta 4Wdj3-90=r~m

bra~ 40an

SDS620140000
1 November 1985

Upon cold start or restart, after completing the startup
procedure, the User Interface enters the ACCEPT USER DATA state
and awaits user input. The PROCESS FORM state is entered
whenever a command requesting form processing is received from
the user or from the Application Process. Such command
indicates the number of the form to be displayed or otherwise
processed. Normal exit from the PROCESS FORM state can take
three forms:

" Return to the ACCEPT USER DATA state

" Return to the ACCEPT APPLICATION DATA state

" Re-entry of the PROCESS FORM state

This last eventually allows the chaining of forms, as is
encountered in menu processing. The information controlling
normal exit from the PROCESS FORM state is either contained in
the form being processed or is contained in the commands sent to
the form processor by the user or by the Application Process.
This approach is flexible and simple. Abnormal exit from the
PROCESS FORMS and ACCEPT APPLICATION DATA must be accommodated.
This is necessary in the event of a malfunction of an
Application Process or in the event of a change of mind from the
user. Abnormal exit from either state leads to the ACCEPT USER
COMMAND state, leading the User Interface ready to accept user
inputs and commands. The exit command is supplied by the user
and acts as an interrupt.

The Run Time User Interface

Figure 3-31 depicted the interaction of the User Interface
with an Application Process. As seen in that figure, an
Application Process places calls to the User Interface
Application Interface to which it is linked. In return it
receives data. Requests made by the Application Process are
transformed into messages by the Application Interface routines.
These messages are transmitted by the NTM to the Form Processor.
which services the requests as explained in the previous
paragraphs. Forms instances or user data are, in return,
transmitted as messages by the Form Processor over the NTM.
These messages are then interpreted by the Application Interface
and the data is extracted in a form suitable to the Application
Process. To reduce network traffic to a minimum, a complete
forms instance is transmitted, and the data is kept by the Form
Processor. Thus. subsequent calls by the Application Process on
data available to the Form Processor can be answered locally

3-91

SDS620140000
1 November 1985

without retransmission over
the network.

This run time portion of the User Interface is called the

User Interface Management System.

3.1.3.3.1.1 Form Processor Operational Scenario

Several operational scenarios are contemplated for the Test
Bed Form Processor.

Cold Start/Restart Scenario

The Form Processor is cold started or restarted by a device
driver following a User Logon request. The Form Processor then
is ready for operation and displays the first logon form and
enters the "ACCEPT USER COMMAND/DATA" state. The above concepts
are illustrated on Figure 3-35 entitled OForm Processor Start
Up'.UP"-I-!

LOSER startp clretio Device set Form
01" frtie* Driver i, l .Processor

Figure 3-35. Form Processor Start Up

User Log On Scenario

Test Bed User Log On/Log Off scenario is viewed as a
particular case of conducting data integrity checking on a form
instance. In this case, the form used is a log on/log off form,
and the form data is related to the log on/log off operations.
When processing the logon form, the Form Processor requests CDM
data from the CDM by sending a message requesting the start up
data to the CDM request processor. The CDM contains the profile
data for each user. This table defines the password and roles
that are valid for a user-i.d. The table is created and
maintained by the CDM Administrator and is stored in the CDM.
Failure to log on prevents the user from gaining access to the
forms used to control the Application Processes and Test Bed
services. These concepts are shown on Figure 3-36.

3.1.3.3.2 Form Edit Operational Scenario

The forms used by the User Interface are predefined and
stored in the CDM. These forms are retrieved and transmitted to
the Form Processor when a request is made for them by the
application. The Form Editor is used to define forms and to

3-92K , ~ . ~ ,* ,

SDS620140000
1 November 1985

control the storage, editing and deletion of forms which have
been already defined. The Forms Driven Form Editor makes use of
forms to facilitate the definition of new forms and to control
maintenance operations on the form database segment of the CDX.
Access to the Form Editor is controlled, as is the case of any
program having CDM update privileges. The Form Editor Is
operated by any application developer with sufficient authority.

The following information is required to define a new form:

a. The name to be given to the form

b. The format of the form

c. The names of forms used within the now form (if any)

d. The fields contained in the form which are common data

With the above information, the application developer first
identifies an existing schema or creates an external schema,
using the Test Bed Neutral Data Definition Language (NDDL), to
reference the fields to be defined to their respective CDM
definitions. This linkage ensures an error free and effective
transfer of the data constraints associated with each element.
Second, the application developer creates a new form description
which is uniquely named, within the application. The new form
description contains:

a. The name of the external schemas to be referenced

Dlsplmu
Formj

logo '0

form

dat wie i h, ra

form

Accept CheckIUSER (Log On) IntegritV
bel ae Dat error

1 .ill. ,wil role

Figure 3-36. User Log on Scenario

3-93

SDS620140000
1 November 1985

b. The dimensions of the
form

c. For each subform invoked:

" The name of the subform

* The position (x,y) of the top, left corner of the
subform

d. For each new field invoked:

* The name of the variable

* The position (x,yj of the left most characters of
the variable

" The graphic attributes associated with the field

" The name of the indirect form associated with the
field (help, etc.)

e. For each textual element included:

• The character string to be shown

" The position (x,y) of the left most character

* THE GRAPHIC ATTRIBUTES ASSOCIATED WITH THE TEXTUAL
field

f. The name of the next form to be displayed or whether
control is returned to the ACCEPT USER COMMANDS state
or to the ACCEPT APPLICATION COMMANDS state (Future)

g. Security information associated with the form, that is,
the role of the user having access to the form

The position (x.y) of each field can either be defined by
its relative position or graphically (graphic definition:
future). The Form Editor can be invoked from an IISS terminal.
The Form Editor communicates with the CDM processor via the NTM.
The CDM processor performs the CDM updates, edits.

3.1.3.3.3 Application Generation Operational Scenario

Application programs can be described using an Application

3-94

SDS620140000

I November 1985

Definition Language (ADL). The ADL is similar in syntax to the
Forms Definition Language (FDL) and contains both FDL and
Neutral Data Manipulation (NDKL). The ADL can be compiled to
produce an application program that accesses the CDf via forms.
Figure 3-37 describes the application generation.

A report program is a special kind of program generated by
the Application Generator. Paging and other formatting
characteristics of the report depend on the data to be displayed
within it. The language used to describe reports is called the
Report Definition Language (RDL) and the portion of the
Application Generator used to compile the RDL is called the
Report Writer.

3.1.3.4 Functional Specifications

The functional specifications implied in the scenarios
presented in Section 3.1.3.3 are identified and presented in
this section.

Aplittn /pIt

Fie33.Application Generato

Definition Application Form
Language Dfnto

Figure 3-37. Application Generation

3-95

SDS620140000
1 November 1985

3.1.3.4.1 User Interface Management System

Form Processor Start Up

Mission: To ready the Form Processor for user interaction upon
user logon to the VAX host under an IISS account.

Functional Specifications:

1. To initialize the Form Processor, and all modules
associated with it.

2. To initiate a message to the NTH. This message
identifies the Form Processor.

3. To display the first form to be displayed on the
Terminal.

4. To place the Form Processor in the "Accept User
Command" State

User Logon

Mission: To ensure that only authorized users may gain access to
the Test Bed Command forms.

Functional Specifications:

1. To display the Test Bed logon form. The Test Bed logon
form requests that the following data be supplied:

" User-i.d.

" User role

" User password - not echoed

2. To validate the above information against access data
supplied by the CDH

3. To reject unqualified answers by repeating step one

4. To record user statistics i'or qualified users

5. To display the first page of the Command selection menu

3-96

W W

~

SD 620140000
1 November 1985

6. To place the Form Processor controller in the ACCEPT

USER COMMAND state

Form Processing

mission: To perform the operations required to process forms:

* Retrieval of a predefined form

" Display of the form

* Filling out of the form (from the user point of view)

* Data integrity checking

* Help facility

* Window management

* Text editing

Functional Specifications:

1. Retrieval of a Predefined Form

a. Accept the name of the form to be retrieved. The
name of the form to be retrieved is supplied by an
Application Process.

b. Determine whether or not a given form name is
stored in the Form Processor forms table.

c. Retrieve a given form name from the Form Processor
forms table.

d. Query the CDM to request the downloading of a form.
This capability is required whenever the form is
not available locally. The form to be downloaded
is specified by its name.

e. Formulate and display appropriate error messages,
if necessary, on the terminal.

f. Clear form

3-97

SDS620140000
1 November 1985

2. Display of a Predefined Form

a. Display a Blank Form - A form which is intended to
be filled out by the user is first retrieved as
explained in the operational scenario.

b. Display of a Form Instance - A form instance is
created by first retrieving the blank form as
explained above, and by adding to it the data
defined by the user or by the Application Process.

3. Filling Out a Form by the User

The form to be filled out is first displayed (see Display
of a Blank Form - item 2a above). The user designates the field
he wishes to fill by positioning the terminal cursor in the left
most character position of the field to be filled. Characters
entered by the user are added sequentially in the field.

a. Cursor Position Control - The user may fill the
field in the sequence he desires. To start
entering data, the user positions the cursor in the
first character position of the field to be filled
out. The following cursor notions are supported:

" One space motions (right, left, top, bottom)

" Tab control

" Next line

" Beginning of line

b. Data Entry - The user then types in the data, on a
character basis.

The Form Processor detects the following
conditions:

* Field overflow

* Data entry outside a field

The Form Processor recognizes a special character
which indicates that the user has completed the
data entry operations.

3-98

SD8620140000
1 November 1985

4. Data Integrity Checking

Once a form has been filled out by the user, it is
checked for integrity. The following capabilities are
provided:

a. Edit Check Each Field - Each field entered on the
form is checked against the edit constraints
defined for it in the External Schema attached with
the form. The edit checks which are performed
include:

" Numeric fields

* Alpha fields

" Predefined number of characters

b. Range Check Each Field - Each field which has
passed the edit check is then checked for range.
Upper and lower limits of each data item is defined
in the External Schema attached with the form. The
range checks which are performed include:

" Upper limit check

" Lower limit check

Ranges are not restricted to be nontinuous. Range
information may include combinations of continuous
and discrete values. Ranges may be defined as
tables of authorized numeric or non-numeric values.

c. Flag Errors - The errors detected by the edit check
and range checks are reported to the user. This is
done by signalling out the field(s) in error. The
edit checks and range checks are conducted on the
entire form before control is passed to the
Application Process.

d. Form Processor Control - The Form Processor is
controlled as follows:

* No errors detected - control is given to the
MESSAGE INITIATOR state, and the process of
initiating a message begins

3-99

SDS620140000
1 November 1985

* Errors have been detected - control is given to
the ACCEPT USER DATA state and the user is given
the opportunity to correct his errors.

5. Help Facility

A help form is a form associated with another form or field
which provides additional information or explanation of the data
to be entered.

a. Invoking the Help Form - A means by which the user
can invoke the help forms associated with the form
or with the given field within the form is
provided. The operational procedure shall, in
either case, be similar.

b. Nesting Levels - A help form may be associated with
any form, even if it is a help form. However, for
practical considerations, five level nesting is
considered.

c. Returning to the Original Form - A facility shall
be provided to enable the user to return directly
to the original form from any level of help,
without backtracking through the help forms
invoked.

d. Defining Data on a Help Form - Data may be directly
entered on the help form, and automatically be
inserted on the original form. (FUTURE)

6. Window Management

Windows are spaces that are rectangular in shape that are
reserved for form placement. Windows are contained in forms.
Application Processes and users manipulate windows.

Application Processes must be able to perform the following

activities at run time:

a. Add a form to a window

b. Replace a form in a window

c. Remove a form from a window

3-100

SDS620 140000
1 November 1985

Users must be able to perform these activities at run

time:

a. Scroll a form within a window

b. Move a window

c. Shrink a window

7. Text Editing

Users must be able to perform these text editing functions
on data items:

a. Cut and paste

b. Global search and replace

c. Repeat

d. Set margin

Message Initiation

Mission: To initiate the messages required to:

a. Request data from the CDX

b. Send data to an Application Process

c. Send data to the Virtual Terminal

Functional Specifications:

1. Formulate the following CDM requests:

" Request for user profile data (password, role)

" Request for specific form data

2. Formulate the following Application Process requests:

" Upload of the form data. form name to the
Application Process

* Upload of the Form Processor status and error
conditions

3-101

I

SDS620140000
I November 1985

3. Formulate the following Virtual Terminal requests:

" Request for user entered data

" Request for cursor position

* Request for function key pressed by user

4. The messages formulated by the Message Initiator shall
be in a well defined and structured format. The format
exhibits:

* A header

* A data body

5. Message header contains the information required to
control the User Interface Management System. The data
body contains the information which may be required to
support processing.

Form Processor Monitor

Mission: To control the operations of the Form Processor and to
coordinate the actions of the Form Processor in response to:

a. User commands

b. Application Process Commands

Functional Specifications:

1. The Form Processor Monitor allocates control of the
Process Forms functions to the Virtual Terminal, or to
the Application Process.

2. The Form Processor Monitor allows the Virtual Terminal
to regain control of the Form Processor at anytime.
This is done on an interrupt like basis. In this
event, the Application Process, if any, is terminated.

3. The Form Processor Monitor waits on an acknowledgment
from the Virtual Terminal to go to the next form or
next state. Standard function keys are defined for
that purpose.

3-102

SDS620140000
1 November 1985

4. The Form Processor Monitor recognizes a set of function
keys (or combination of keys). These keys are
consistent, and always produce the same effect. The
following keys are recognized:

* Quit

* Enter

* Help

Application Interface

Mission: To facilitate the control and the manipulation of
forms and forms data by an Application Process.

Functional Specifications:

1. Control of the Form Processor

The Application Interface facilitates the control of
the Form Processor by the Application Process. To that
effect, the Application Interface offers a set of
commands which can be invoked by the Application
Process. The set of commands supported by the
Application Interface is given below:

* Remove form

* Display form

* Display form instance

* Read form

* Read form instance

* Display error message

2. Data Manipulation Primitives

In addition, the Application Interface allows the
manipulation of data forms by the Application Process.
To that effect, the Application Interface supports the

3-103

SDS620 140000
1 November 1985

following data manipulation primitives:

* Read field value by name

* Read previous value by name

W Vrite field value by name

* Query field attribute by name

* Set field attribute by name

The above operations are performed locally by the Form
Processor which maintains a local copy of the form
instance displayed by the Virtual Terminal.

3. Stored Forms Instance Primitives

Form instances can be saved locally. This capability
provides memory to the Form Processor. Previously
defined data can be selectively retained for further
processing. To that effect, the Application Interface
supports the following stored forms instance
operations:

" Save form instance (future)

" Get form instance

" Delete form instance (future)

3.1.3.4.2 User Interface Development System

Forms Definition

The definition of the forms include the following sections:

1. Forms Identification

" Application name

" Form name

The system wide form name is made up by the
concatenation of the application name and of the form
name.

3-104

SD6620140000
1 November 1985

2. Form Control Definition

9 Name of the help form associated with this form

o Relative position of the form on the screen, with
respect to the origin: Origin is taken to be the
top, left corner of the screen, for the top level
form. The location of the origin of any other form
is controlled by the containing form.

3. Textual Element Definition

* Relative position of the top left character of the
Textual element being defined.

* Length and width of the text being defined (length
and width are computed automatically).

* Display attributes of the Textual element.

4. Field Definition

" Length and width of the field

" Relative position of the field top left most
character with respect to the origin of the form in
which the field is defined.

* Name of the variable to be stored in the field.
Variable is referenced by its name as shown in the
External Schema.

o Display attributes granted to the field.

* Field name (optional).

5. Field Information for an Existing Field

* Set a field equal to another (defined) field.

6. Prompt Field

" Name of textual field to be prompted, or

" Name of the field to be displayed

3-105

SDS620140000
1 November 1985

Form Editor

The following functions are provided by the Form Editor:

1. Define Forms

Forms definition is forms oriented. A form is
predefined for each of the sections of a form:

9 Form identification

* Form control information

* Textual element definition

* Field definition

e Prompt field definition

2. Add Field

Fields can be added to an existing form by using the
add field capability. The add field utility allows the
definition of a field as defined previously.

3. Delete Field

A field defined in an existing form can be deleted via

this utility.

4. Set Field Attribute

An attribute of a field can be set (or reset) by this
utility. The user needs to define the name of the
attribute and its value (Boolean, integer).

5. Save Form

This utility is used to save on secondary storage (in
the CDM) a form which has been defined by the user.

6. Get Form

This utility is used to retrieve a form. The form may
either be retrieved from the CDM or from the Form
Processor table (if available).

3-106

SD8620140000
1 November 1985

7. Delete Form

This utility is used to delete a form stored in the

CDK.

8. Error Processing

The Form Editor provides the following type of error
processing:

" Check for uniqueness of names of forms

" Check for dimension constraint

" Check for undefined attribute constraints

The Form Editor is viewed as any other process using
the forms capability of the User Interface. Hence, it
can also invoke all of the following Active Instance
operations:

" Show form

" Clear form

" Query field attribute

* Save instance

* Get instance

* Delete instance

Report Writer

Mission: To provide a means to translate textual definitions of
reports into programs that generate the reports.

Functional Specifications:

1. Textual Output

The background template for the report is a form. It
is specified using the Form Definition Language.

3-107

SDS620140000
1 November 1985

2. Database Operations

All database operations are described using the Neutral
Data Kanipulation Language (NDXL) and are performed by
the CDKP.

3. Statistical Summarization

Simple statistical computations may be performed upon
item values and included in the output. The
computations include:

" Count

" Sum

" Average

* Minimum

4. Picture Specifications

Each item field that is napped to CDM data may have a
picture specified to define the output format. The
editing provided includes numeric and alphanumeric
specification, leading zero suppression, decimal
placement, leading sign indicators, currency symbols.
and placement of embedded commas.

5. Exceptional Conditions

Tests can be established for certain exceptional
conditions. An action or group of actions can be
specified to occur when the condition arises.
Practical applications of this facility include output
of headers, footers, statistical summaries and paging.

The following exceptional conditions are recognized:

9 Change in the value of an item

* Page overflow

* Startup of report

3-108

SDS620140000
1 November 1985

6. Exception Actions

The following actions can be taken when an exceptional

condition occurs:

* Page ejection

* Change of form

* Setting of a data item

* Database query

Rapid Application Generator

Mission: To provide a means to translate textual definitions of
interactive database applications into programs that access
databases via the CDM.

Functional Specifications:

1. Application Definition

The application is defined by using an Application
Definition Language that subsumes the Forms Definition
Language.

2. User Interaction

The user of the generated application may perform the
following activities:

* Filling out form templates

* Menu picking

* Item selection by cursor position

* Function key Selection

As a result of the user interaction the following
activities are performed by the generated application:

" Switching between functions

" Database modification

3-109

SDS620140000
1 November 1985

3. Database Operations

All database operations are described using the Neutral
Data Manipulation Language (NDNL) and are performed by
the CDKP.

4. Security and Access Control

Security and access control is provided through the
mechanism of conditional forms and triggers sensitive
to particular item field values. Thus, the
functionality offered to a particular user can be
restricted by not displaying a form containing options
for certain database operations or by not enabling
certain function keys. Further, other forms informing
the user of restrictions on access can be displayed
instead.

5. Conditional Actions

Conditional actions are those triggered by the
occurrence of an event defined in an ON statement. Any
number of actions can be triggered by a single event.
They involve both form processor actions and database
transactions. It is primarily the conditional actions
which determine the course of the execution of the
application.

3.1.4 The Virtual Terminal Interface Configuration Item

3.1.4.1 Virtual Terminal Mission Statement

The mission of the Virtual Terminal Interface is to afford
terminal independence to the Application Process and Test Bed
System Services. More specifically, the Virtual Terminal
Interface provides:

* Terminal protocol independence

" Terminal character independence

" Terminal feature independence to the Test Bed
Applications and Services.

3-110

SDS820140000
1 November 1985

3.1.4.2 Virtual Terminal Functional Areas

The various functional areas making up the Test Bed Virtual
Terminal Interface are shown on the Virtual Terminal Interface
configuration tree given on Figure 3-38.

Figure 3-38 shows two major functional areas:

" Virtual Terminal Definition

* Virtual Terminal Implementation

Virtual Terminal Definition

The Virtual Terminal defines a set of characters, terminal
features and data exchange protocols which are considered
standards in the Test Bed System. Any Application Subsystem or
Test Bed Service written specifically for the Test Bed assumes
that it is interfaced to a terminal offering the character set,
terminal features and data exchange protocols defined for the
Virtual Terminal Interface.

Virtual Terminal Implementation

The Test Bed Applications must however ultimately
communicate with a hardware terminal. It is the function of the
Virtual Terminal Interface (VTI) to provide the necessary
character and protocol conversion procedures. Likewise, the VTI
provides the mappings that may be required to implement any
Virtual Terminal Features on a specific hardware terminal.

3.1.4.3 Virtual Terminal Operational Scenarios

The Virtual Terminal Interface operational scenarios
presented here are introduced for the sole purpose of supporting
the identification of the functional specifications to be met by
the Virtual Terminal Interface. These scenarios are not meant
to imply a specific implementation of the functional
specifications. Consequently, the final design may implement
scenarios which differ from the scenarios shown in this Section.

3.1.4.3.1 Interface to a Real Terminal

The most natural role for the Virtual Terminal is to
interface with a Real Terminal. This scenario is illustrated on
Figure 3-39. This figure shows the VTI interfacing with the

3-111

SDS620 140000
1 November 1985

VTI STD Features

VT Definition / VTI Enhanced Features
-------------------------- ---------------------------*

I VTI Protocol
I *-------------------------------------

VirtualI
Terminal Interface I

Protocol Conversion
I -------------------------------------

/STD Feature Conversion
- -

VT Implementation\

Enhanced Feature
Simulation

Figure 3-38. VTI Configuration Tree

hardware terminal through the terminal driver provided by the
host operating system. The VTI is also interfaced with the User
Interface Form Processor.

In this role, the Virtual Terminal performs the following
functions:

1. Data Acquisition from the Real Terminal

The VTI receives data from the real terminal according
to a protocol. This protocol can either be character,
line, or block oriented.

3-112

SDS620140000
1 November 1985

TEEML

Tt MVT M NWrl

I

ITYPE X

Figure 3-39. Interface to a Real Terminal

2. Data Conversion from Real Terminal to VTI

Once the VTI has acquired data from the Terminal
Handler, it may proceed to convert the characters
received into the VTI character set. At this point, it
must be noted that character conversion cannot be
assumed to be context free. Some terminals (like the
VIP 7200) use escape sequences which are several
characters long. The sequence of characters indicates
the type of the user interrupt, and the characters
included in the sequence are context dependent.

3. Data Transmission to the User Interface Form Processor

The VTI data, which has now been converted to the VTI
character set, with all terminal dependent character
sequences eliminated is then transferred to the User
Interface. This data transfer is done on a
pre-negotiated protocol (character, line, block). The
data is now punctuated by control characters taken from
the set of VTI control characters. These control
characters are used to indicate the occurence of things
such as: line feed, carriage return, cursor control,
etc.

3-113

SDS620140000
I November 1985

4. Receiving Data from the Form Processor

The Virtual Terminal receives data from the User
Interface Form Processor whenever the User Interface
Form Processor wishes to communicate with the hardware
terminal. The Virtual Terminal Interface is invoked to
that effect by the Form Processor. The data supplied
by the Form Processor is, by definition, in the
standard Virtual Terminal format.

5. Data Conversion from VTI to Real Terminal

The data presented to the Virtual Terminal Interface is
converted so the character set of target hardware
terminal and the VTI control characters are replaced by
the control characters of the target terminal. Once
this conversion has been completed, the VTI invokes the
Terminal Handler of the host operating system. Figure
3-40 shows the mechanics involved in acquiring,
converting and transmitting data to the User Interface
Form Processor. This figure assumes that the VTI is
not directly controlling the I/0 Terminal Handler. The

VINTrALER
HANDLR$ IfrERFAE HANER

I It L 1 * VVT

(top 8)

Figure 3-40. Data Acquisition, Conversion, Transmission

3-114

SDS620140000
1 November 1985

I/0 handler is shown to be under the control of the

host operating system.

6. Feature Napping

Some hardware terminals may not offer any hardware
implementation support for all of the standard terminal
features assumed for the Virtual Terminal Interface.
For such terminals, it may then be necessary to
simulate some of the desired Virtual Terminal feature
by a well thought out sequence of operations which are
implementable on the hardware terminal. This process
is referred to as feature mapping.

3.1.4.3.2 Interface to an Existing Application Program

Terminals are not the only entities in the Test Bed which
offer or assume specific terminal features. Programs written
around a specific terminal hardware exhibit characteristics of
that terminal. Such programs are said to be terminal dependent,
and in fact are the general case, rather than the exception.
The Virtual Terminal is also used to grant to those existing
programs the terminal independence required for integration in
the Test Bed. In this role, the Virtual Terminal performs all
of the functions and services described in the previous section
(Section 3.1.4.3.1). Refer to Figure 3-41. This figure shows
that an existing Application Process invokes the Virtual
Terminal Interface via a procedure call. Data is also passed to
the Virtual Terminal Interface. This data is stored in a table,
or perhaps in a file. The Virtual Terminal Interface performs
the necessary conversion, and generates the equivalent VTI data.
Once the conversion process Is completed, the VTI transfers the
data to the Network Transaction Manager. Invoking the Virtual
Terminal Interface from one existing Application Process
requires that either one of the following methods be used:

1. Modify the existing Application Process and replace the
I/0 statements with calls to the Virtual Terminal
Interface subroutines. This can be done manually or
automatically with a suitable precompiler.

2. At link time, replace the host standard I/0 library
with a library of functions including the Virtual
Terminal Interface subroutines. These subroutines have
the same names than the host I/0 subroutines. Figure
3-41 also describes the process by which data is
transmitted from the Network Transaction Manager to the

3-115

SDS620140000
1 November 1985

existing Application Process. This process parallels
the process used to transfer data from the existing
Application Process to the NTH.

3.1.4.3.3 Interface to a New Application Program

In this context, new Application Program means an
Application Program specifically written for the Test Bed. New
Application Programs are using, by definition, the terminal
features offered by the Virtual Terminal Interface. Thus, new
Application Programs do not require any of the conversion
otherwise performed by the Virtual Terminal Interface.

3.1.4.4 Virtual Terminal Functional Specifications

The functional specifications implied in the scenario
presented in Section 3.1.4.3 are identified and presented in
this section.

3.1.4.4.1 Virtual Terminal Feature Definition

Mission: To provide the definition of a set of common terminal
features and protocols used throughout the Test Bed.

SYSTEM
X.ETC.

ED AL OS CAL OSCALL

EXSTN VITA NETORAPPLIATIO TERINALTRANSACTION

TERMINAL Y
DTA DT

Figure 3-41. Interface to an Existing Application Program

3-116

SDS620140000

1 November 1985

Functional Specifications:

The Virtual Terminal Interface definition includes:

1. ASCII character set (lower case and upper case) as
standard VTI characters

2. The following minimum set of VTI Control characters or
sequences:

" To indicate the end of line

" To indicate the feeding of a new line

* To position the cursor

" To clear the screen

" To indicate the end of a data block

" To indicate a user interrupt

" To indicate any of the VTI features listed below in
paragraph 4

3. The following minimum set of VTI features:

" Block mode display/input

" Reverse video

* Blinking

e Bold (bright)

* Dim (half-bright)

o Underscore

* Bell

* No echo

* Upper case

* Lower case

3-117

SD8620140000
1 November 1985

9 Size of screen

4. The following minimum set of VTI protocols:

" Block VTI/Real Terminal

" Block VTI/VTI

3.1.4.4.2 Virtual Terminal Implementation

Mission: To implement the Real Terminal/Virtual Terminal
protocol, character set and feature transformation
required to achieve terminal independence.

Functional Specifications:

1. The implementation of the Virtual Terminal supports the
following functions:

* Character set conversion

" Feature mapping

* Protocol conversion

2. The following real terminals are used for demonstration
of the VTI concept:

* DEC VT-100

* Honeywell VIP 7200

e Lear Siegler ADM-3

3. An instance of the Virtual Terminal Interface supports
one instance of the real terminal type.

4. The Virtual Terminal Interface can be expanded to
include new features, and to support via software
simulation functionality limited terminal hardware.

3.1.5 The Communication Subsystem Configuration Item

3.1.5.1 Communication Subsystem Mission Statement

The Communication Subsystem provides Communication Services
to the Test Bed Subsystems. The Communication Services allow on

3-118

SDS620140000
1 November 1985

host interprocess communication and inter host communication

between the various Test Bed Subsystems.

3.1.5.2 Communication Subsystem Functional Areas

The configuration tree shown on Figure 3-42 identifies the
following functional areas:

Communication Hardware

* Local Area Network

* Wide Area Network

Communication Software

* Inter Process Communication

* Inter Host Communication

* Configuration U Maintenance

3.1.5.3 Communication Subsystem Operational Scenarios

Figure 3-43 shows the demonstration hardware environment of
the Test Bed. This figure shows the Local Area Network and the
Wide Area Network services used to interconnect the IBM 3033
computer to the Local Area Network. The same figure also shows
the wide area services used to support remote software
development on each of the Test Bed hosts, as well as on the
CIDS development system (CIDS during initial phase only).

3.1.5.3.1 Local Area Network

Refer to Figure 3-43. The Local Area Network is composed
of the BUS Interface Units of the GENET Local Area Network.
These units are shown interconnected by a coaxial cable, with
each bus interface unit properly tapped into the cable.

The Honeywell Level 6 and the VAX are shown to communicate
with their respective bus interface units via two RS-232-C
communication lines.

The IBM 3081 is shown to be connected via synchronous
modems and a leased telephone line to a cluster controller
located in the room containing the Honeywell Level 6 and the
VAX. The cluster controller communicates to a bus interface

3-119

SDS6201 40000
I November 1985

Iop
0

g VAIi 0

3-120

SDS620140000
1 November 1985

unit via 2 RS-232-C lines. A third RS-232-C is used to connect
an asynchronous development terminal to the IBN 3081.

The cluster controller performs the multiplexing and
demultiplexing of the traffic carried by the synchronous line
into the two asynchronous lines shown. In addition, the cluster
controller also performs the synchronous/asynchronous protocol
conversion as well as the ASCII/EBCDIC character conversions.

The GENET Lonal Area Network is used in the Permanent
Virtual Circuit Node (PVC). The Local Area Network supports the
3 Virtual Circuits shown on Figure 3-44.

The Virtual Circuits shown on Figure 3-44 are permanent,
that is these circuits are set up when the Local Area Network is
powered up, and are maintained until the system is shut down.
The configuration data required to set up these virtual circuits
and to configure the six RS-232-C ports is stored in the GENET
Configuration RON Memory.

Figure 3-44 shows clearly that with the permanent Virtual
Circuit approach outlined above, one RS-232-C port on each
machine is dedicated to the bidirectional communication
operations with a given computer. This port/host assignment is
known to the communication softvare.

The Local Area Network described above clearly allows for
the distributed processing required to support the operation of
the Test Bed. Each host is capable of transferring information
bidirectionally with every other host. The approach described
here is used since no overhead is incurred to set up and tear
down Virtual Circuits.

3.1.5.3.2 Wide Area Network

Consider Figure 3-43. The IBM 3081. which is located some
three miles away from the other computers, is interfaced to the
cluster controller via synchronous modems and a leased telephone
line.

A line multiplexer allows the multiplexing of local and
remote terminals to any of the Test Bed hosts. This convenience
is of major significance when considering that software
development can be carried out remotely by the various ICAM
subcontractors having need to access the Test Bed. This
configuration allows SofTech, CDC, P&A and other ICAM
subcontractors to gain access to any host of the Test Bed, in

3-121

R ., -.oq

SDS620140000
1 November 19B5

00 0

04
a43

4

0 0

404

4L4

seaR

3-122

SDS620140000
PYC: FERRUA IRCUIT 1 November 1985

PMFMANre 3-44.L CntPrann MtW ci

* HONEYWELL 6VAX

CLUlTER

g rv~.~us CVC3

Figure 3-44. Genet Permanent Virtual Circuit

native mode. Likewise, this configuration allows any remote
terminal to become an IISS terminal.

The line multiplexer is also used to multiplex terminals
located at SofTech or at General Electric to the Central ICAM
Development System (CIDS). This allows SofTech and General
Electric developer to share a leased telephone line to CIDS,
located in Cushing, Oklahoma (Initial phase).

The line multiplexer arrangement described above thus
supports development activities and forseeable Test Bed
experimentation scenarios.

3.1.5.3.3 Inter Process Communication Scenario

The Test Bed software is composed of many processes. These
processes are either System Services or Application Processes,
and are in general highly independent. Processes which are
coresident on one host communicate with one another via the
Interprocess Communication (IPC) Primitives provided by the Test
Bed system software. Processes which reside on different Test
Bed hosts communicate with one another via the Interhost
Communication (IHC) services provided by the Test Bed system
software.

3-123

SDS620140000
1 November 1985

The following scenario describes the sequence of operations
typical of a communication between two processes coresident on
the same processor. This scenario describes the communication
activities which take place between the Network Transaction
Manager (NTM) and a typical process called Process X. This
scenario is presented here for the following reasons:

a. In the Test Bed, all communications are routed via the
Message Manager portion of the NTH. This rule is
convenient since it allows the grouping of the manage
message functions in one module, and since it also
allows for a highly structured design. The problem of
supporting communication between n times n applications
is thus reduced to a much simpler problem, namely that
of communicating between any process and the NTM.

b. Communications between the NTM and the COMM process
used for interhost communication is a particular case
of the above case. The simplification encountered in
this very important case of interprocess communication
are pointed out in the discussion of interhost
communication.

The following scenario is implemented when the NTM on the
AP Cluster where Process X resides receives a message requesting
that Process X be initiated. The discussion presented here
applies to the initiation of the first or any additional
instance of Process X on the AP Cluster.

3.1.5.3.3.1 Establishing Mail Boxes between Process X and the
NTM

a. On AP Cluster NTM operations:

1. The NTM receives a message requesting that an
additional instance of Process X be initiated.

2. The NTM creates a unique name for the instance of
Process X.

3. The NTM calls upon the local host operating system
to create a new instance of Process X.

b. New Process X operations

The following actions are taken by the newly created

3-124

SDS8620140000
1 November 1985

instance of Process X. The new instance of Process X is created
by the local host operating system in response to the initiate
Process X request placed by the NTH in Step a.3 above.

1. The newly created instance of Process X obtains the
name of the mail boxes it must use to communicate with
the NTH on AP Cluster. The names of the mailboxes are
predefined to the NTH Run Time Routines bound to the
Process X.

2. The newly created instance of Process X creates the
input mail box it uses to obtain data from the NTM.
This input mail box is named according to the name
given to the AP which is obtained from the local
operating system.

3. The newly created instance of Process X signals to the
NTM that it is running normally and is ready to accept
data from the NTM by writing into the NTM input mail
box.

3.1.5.3.3.2 Writinf and Reading into the Nail Box

a. Writing into the NTM input mail box

Consider Figure 3-45. Once the input and output mail
boxes have been identified and created per the above
procedure, Process X writes into the input mail box of
the NTM by invoking the communication service used to
write into a mail box. The call is placed by Process
X, and the call conveys to that communication service
the following data:

* Name of the buffer (in Process X) which contains the
data to be transmitted

* Name of the NTM input mail box to be written into
Messages written into a mail box are queued on a
FIFO basis.

The logic of the host operating system or
interprocess primitives prevents overwriting a mail
box which has not been read by the NTM.

If the attempt to write in the input mail box was
successful, Process X continues processing.

3-125

SDS620140000
1 November 1985

b. Reading the NTM input mail box

Consider Figure 3-45. The host operating system (or
IPC primitive) detects the fact that Process X wrote
into the input mail box of the NTH.

This allows the Communication Service for Reading Data
from input mail box to proceed with the reading of the
data contained in the mail box. This communication
service also copies the input mail box data into the
NTM buffer.

This Communication Service also returns status
information to the NTM. In the event of a successful
transmission, normal 1TH processing continues. In the
event of errors in the transmission, the T logs the
error code in the error log and takes appropriate
action.

3.1.5.3.3.3 Clearing Mail Boxes

The mail boxes created by Process X to communicate with the
NTM must be cleared when Process X terminates. Clearing the
mail boxes returns memory storage to the buffer pool.

Two eventualities must be considered when clearing the mail
boxes used by Process X to communicate with the NTM. The first
eventuality is the normal termination of Process X, and the
second is the abnormal termination of Process X.

3.1.5.3.4 Process Synchronization

Process synchronization capabilities are required in any
system made up of cooperating processes. In the Test Bed,
process synchronization is achieved via the WAIT primitive.

A process which needs to be synchronized with another
process utilize a combination of the Receive, Set-Timer, and
Wait primitives. The Receive primitive accepts data from the
mail box of the process with which synchronization is desired.
The Set-Time primitive is used to detect a synchronization
failure and the Wait primitive returns to the calling programs
when either the timer elapses or the expected data is received.

The above scenario may lead to anyone of the following

3-126

SDS620140000
1 Nlovember 1985

I 111-. 4 0il I I .

,4"#,,l~ti4

i / ",'., #ti ""4'

3-127

SDS620140000
1 November 1985

outcomes:

1. The program target of the synchronization request
supplies a synchronization message and the WAIT
primitive returns to its calling program thereby
achieving synchronization.

2. The target program fails to supply a message and a
count down timer terminates the WAIT primitive which
returns an error message to its calling program.

3.1.5.3.5 Inter Host Communication

Figure 3-46 shows an overview of the Inter Host
Communication Subsystem. This figure illustrates the following
concepts:

1. The NTM on the COMM AP Cluster routes all inter host
traffic

2. A COMM Subsystem is dedicated to communication with a
particular host, and as such transmits and receives on
an RS-232 port dedicated to a specific host.

3. Each COMM Subsystem uses two queues to communicate with
the NTM on the COMM AP Cluster. One queue is dedicated
to inbound messages, whereas the other queue Is
dedicated to outbound messages.

4. The COMM Subsystems invoke a count down timer to detect
line failures.

5. The COMM Subsystems use the local host operating system
I/O handler to control their respective ports.

6. The inbound and outbound queues can contain more than
one message at a time. From COMM point-of-view, the
queues are handled on a FIFO basis. Any scheduling of
the messages (both in and outbound) is performed by the
NTM on the COMM AP Cluster. COMM is responsible for
segmenting messages which exceed the size of the
communications data blocks. The COMM is also
responsible for assembling the various data message
segments into a message prior to routing to the NTM.

3-128

SDS620140000

1 November 1985

3.1.5.3.5.1 Message Scheduling (Future)
(Initial message scheduling is on a FIFO basis.)

The NTH is responsible for scheduling the messages to be
transmitted by COMM. The scheduling is based on the following
rules:

1. The messages from all Application Processes on an AP
Cluster are examined for the highest priority on a
round robin basis.

2. Consecutive messages to be transmitted to COMM do not
belong to the same Application Process queue unless all
other queues are empty.

3. Messages which are not selected (passed over) for
transmission because of insufficient priority are aged
to ensure that they are not indefinitely delayed in a
busy, higher priority environment.

4. Back pressure is applied, if necessary, through the
round robin scheduling by skipping those queues which
cannot be transmitted because of insufficient space on
the corresponding queues. This implies status feedback
from the receiving AP Cluster.

Figure 3-47 supports an illustration of the message
priority scheme implementing the above rules. A discussion of
the message scheduling scenario follows:

Messages issued by Application Processes AP1, AP2, and AP3,
are transmitted via mail boxes to the NTM. These messages are
queued by the NTM. The queue is processed according to the
above rules, and messages selected are either send to COMM or to
another NTM on the same host.

The messages are transmitted to the COMM AP Cluster NTM via
mory. The messages are segmented Into message segments when
required and queued for transmission by COMM.

Upon reception by COMM (on the other host), the message
segments are reassembled and then transmitted to the COMM AP
Cluster NTM. The messages are then placed in the mail boxes of
the Application Processes. When a mail box is filled to the
point that additional messages cannot be delivered, back
pressure is applied to the sending NTM via message indicating
the mail boxes to be skipped by the round robbin scheduler.

3-129

8DS620140000
1 November 1985

KTO

Figure 3-46. Interhost Communication if Overview

~This message is sent by the receiving AP Cluster to the
transmitting AP Clusters.

3.1.5.3.5.2 Transmission Error Detection

To improve the reliability of the messages received by the
receiving COMH program and forward to the NTN, the CONN program

performs error detection and provides acknowledgement (positive
and negative) to the sending COHN program.

3.1.5.3.5.3 Line Protocol HandlinT

The line protocol implemented in the Test Bed establishes a
master slave relationship between the sender and the receiver.
The master is keeping track of the time out events and is
responsible for terminating the transmission.

It must be noted that the Honeywell Level 6 and IB 3081
computers do not support full duplex communication through their
line I/0 handlers.

Figure 3-48 shows the line protocol contemplated for the
Test Bed, and supports the following discussion.

3-130

SD8620140000
1 November 1985

to

W3

cp4

3-131

SD6620140000
1 November 1985

1. Idle state

The COMM program enters the Idle state when:

a. First started

b. When no message segment vas received, no message
segment remains to be transmitted and no message is
queued for transmission

2. Make line bid

The COMM program indicates its willingness to act as a
master by sending a message to the other host. If the
other host is able to act as a slave, it will
acknowledge the request by sending a line granted
message.

3. Compute V vait backoff time

If the other host was in the process of bidding for the
line, a backoff time is computed to delay by a fixed
amount of time the retransmission of the next line bid
message. In the Test Bed. only two COMM programs may
collide. These programs are configured with two
markedly different beckoff time constants. This simple
scheme ensures that the second line bid attempt will
not collide. It also implies a primary or favored role
for one of the two COHM programs on one transmission
line.

4. Time Out

A fixed time out timer Is initiated by the Master after
every transmission Failure for the slave to respond
within the time interval causes the master to
retransmit. After a fixed number of retries, the line
is assumed to be down and the fault is reported to the
TH. This time out technique applies to the line

bidding as well.

5. Got first message segment n

The COMM program enters this state when a line-gr&nted
message is received from the other COKM program The
COMM program under discussion has thus gained control
of the line and Is ready for transmission The message

3-132

81)6620 140000
1 November 1985

fi

3-133

1111, 11Aw
1%0

SDS620140000
1 November 1985

to be transmitted is assumed to be N message segment
long, with the first segment to be transmitted being
number one.

6. Transmit message segment n

The COMM program proceeds with the transmission of
message segment n. The COMM program appends a
transmission header and trailer to the data block. This
header contains the following information:

* Cyclic transmit sequence number (1, 2, 3) which
allows the detection of duplicate and missed blocks.

" Cyclic receive sequence number

* Control byte containing:

- Line bid indicator

- EOT marker

- Continued message flag

- ACK or NAK mark and cyclic transmission indicator
of faulty segment

- Binary/native flag

The trailer contains the message segment check sum.

Once the transmission of the message segment has
been completed, the COMM program waits for an
acknowledgment from the receiver.

7. Get next message segment (n - 2,N)

A positive acknowledge from the receiver indicates that
no errors were detected and that the transmission may
proceed with the next message segment.

6. Repeat m times

A negative acknowledge from the receiver indicates that
an error was detected. The receiver indicates in its
negative acknowledge the number of the message segment
to be retransmitted. The retransmission sequence is

3-134

SD8620140000
1 November 1985

attempted a times before the (OfK program assumes that

a hard failure is present in the system.

9. Send ZOT

The master sends a message containing the DOT control
flag when transmission is complete. This message does
not contain data, and is used by the receiver to detect
the end of the transmission.

10. Grant line

When the COMM program is in the Idle state, it responds
to a line bid from its partner by a line granted
message to indicate that it can assume the role of the
slave.

11. Receive V acknowledge message segments

When in the slave mode, (ONK proceeds with receiving
and checking the message segments sent to it. CON
provides a negative acknowledge when:

" The NTH input mail box is full

" The message segment is out of sequence

l The message checksum is in error

The acknowledge messages may be accompanied by message
segments when there are messages to be transmitted by
the slave to the master. The slave to master
transmission proceeds as described above. A slave time
out is required to detect failures in the master or in
the Local Area Network. In this event, the slave
returns a fatal error message to the NTH.

Confifuration V Maintenance

The Configuration of the Communication Subsystem includes:

l Port/Host Assignment

l Port Configuration

* Line Back Off Time Constraint (primary, secondary)

3-135

SDS620140000
1 November 1985

The above assignments are data driven. Thus
reconfiguration does not imply recompilation. Whenever
feasible, the configuration data is kept in the CDK and is
downloaded at startup time. This approach does not apply
to the minimum communication capabilities required to boot
the IISS System. The configuration data for the minimum
boot system is however data driven, and is contained in
tables supported by the local hosts.

3.1.5.4 Communication Subsystem Functional Specifications

The functional specifications implied in the scenarios
presented in Section 3.1.5.3 are identified and presented in
this Section.

Local Area Network

Mission: To interconnect the VAX, Honeywell and cluster
controller via Permanent Virtual Circuits.

Functional Specifications:

" A minimum of 3 permanent Virtual Circuits

" A minimum of 6 RS-232-C configurable ports

" Error detection

* Hardware diagnostics

* Configuration data is stored in RON memory

Wide Area Network

Mission: (1) to interconnect the IBM 3081 with the cluster
controller, and (2) to multiplex 4 lines to the VAX.
Honeywell Level 6 and to the cluster controller.

Functional Specifications

1. Cluster Controller

" EDCDIC to ASCII conversion

" Synchronous to Asynchronous protocol conversion

" Single Line 4800 bauds modem to support leased

3-136

SD8620 140000
1 November 1985

telephone line

e Protocol compatibility with GE and Boeing IBM 30xoc
computers

vi A minimum of 7 RS-232-C ports to be
multiplexed/demultiplexed Into the synchronous line

2. Line Multiplexer

*Multiplex switched network telephone lines into the
following equipment:

- VAX RS-232-C port

- Honeywell R8-232-C port

- Cluster Controller R8-232-C port

- CIDS leaned telephone Iline (Initial)

- Provide MODEM capabilities for dialup lines (Bell
103)

- Multiplex local terminals into the above listed
equipment

Inter Process Communication

Mission: To provide Communication Services supporting on host,
process to process comuniations operations. The
primitives support setting up, operating, tearing down
the communication resources under normal and abnormal
termination modes and error processing.

Functional Specifications

*Generate unique mail box identifiers for communication
between a given instance of a process and the NTH.

o Create the Input ad output mail boxes bearing
Identifiers developed above

e Comunicate identification of mail boxes to the TH

o Write into mail boxes

3-137

SDS620140000
1 November 1985

* Read from mail box when mail box has been written into

0 Notify NTM of the nature of the errors detected by the
IPC services

* Obtain name and size of buffer where data is to be

stored

" Detect buffer overrun

" Detect reading from an empty buffer

" Clear mail boxes when terminating

Interprocess Communication

Mission: To provide Communication Services supporting inter-
host, NTM to 3TM communication. The primitives
support setting up, operating, tearing down the
communication resources under normal and abnormal
termination modes and error processing.

Functional Specifications

" Maintain inbound and outbound message queues

* Provide FIFO message processing with same priority level

" Detect failures in Local Area Network

* Provide bidirectional communications between any two
hosts

e Detect transmission errors (incomplete messages, bit
drop out)

* Detect message duplication

e Support master/slave line protocol described in
3.1.5.4.3

* Provide message segement check sun

* Append transmission header

" Append message end flag

3-138

I' :: I " " , b .,,',,".,,'p : "" ,- '," '* ...'"; "" ."-' **"-",'p*" "'"*-'*"*'** -" ' " :

SDS620140000
1 November 1985

* Provide ACK/NACK on block receive

* Retransmit n times before declaring a hard failure.
Number of retries is defined with configuration data

Configuration U Maintenance

Mission: (1) to configure the Communication Subsystem to allow
booting the IISS software, (2) to download the
configuration data not required for booting, and (3)
to maintain the configuration data.

Functional Specifications

* Create and maintain local tables containing minimum
configuration data for booting

* Download CDM supported configuration data upon request
from the hosts

* Create and maintain the CD supported configuration
data tables

3.2 Interfaces

This section describes the system-level interfaces between
the principal IISS Test Bed software subsystems. An overview of
the Test Bed is shown in Figure 3-49. The major software
components identified in this figure are:

" Integrated Application Programs (AP's)

" Non-Integrated Application Programs (MCMI. MRP)

" Common Data Model (CDM)

" Distributed Database System (DDBS) Processes

" Local Database Management Systems (DBMS)

* Network Transaction manager (NTM)

* User Interface (UI)

* Communication Subsystem (COMM)

* Test Bed Monitor

3-139

SDS620140000
1 November 1985

The obvious interfaces are the lines drawn between
components in Figure 3-49. However, there are several levels,
or "layers", of interfaces and there are also "protocols"
between components that are not shown in this figure. For
example, three important components not shown in the figure are:

" Interprocess Communications Subsystem (IPC)

* Virtual Terminal Interface (VTI)

* Host Operating Systems

The following subsections describe the system-level
information interfaces, the services to be provided, and the
protocols to be established between software subsystems in the
IISS Test Bed. Additional detail on interfaces can be found in
the individual Configuration Item Development Specifications
(DS's) and Product Specifications (PS's) to be developed for
each software subsystem.

3.2.1 Information Interfaces

This section describes more detail about the kinds of
information exchanged between software subsystems. Since
information could potentially be exchanged between any pair of
software components, a matrix is used to show all of the
possible connections. A matrix showing the 12 categories of
software components identified above is presented in Figure
3-50. The software components are listed along the diagonal.
Each row indicates that output and the corresponding column
indicates the input it may receive. Hence, information flows
clockwise. For example, an Integrated Application Process (row
1) may send query requests to Distributed Database Processes
(column 4) and will receive files of requested data in return
(row 4. column 1). Where no interface exists between a pair of
software components, large X's are placed in the corresponding
boxes.

Figure 3-50 shows how each of the software components fit
into a system framework. Components with many interconnections
such as the NTM are clearly shown to be critical elements in the
system. Other components such as the User Interface, Local
DBMS's, and Telecommunications are shown to be relatively
independent subsystems.

3-140

SDS620140000
1 November 1985

3.2.2 Services Provided (Internal Interfaces)

This section presents the IISS system interface
requirements by describing the services to be provided by each
of the major software components. The services provided by a
software component are typically a subset of the functions it
must perform. These are the functions it will be called upon
directly by other software components to perform. For example,
the NTh will be called upon to send messages between applicatin
processes. This is a service. The NTM must also validate
message header information and route messages to their
destinations, but these are not considered services in this
context.

3.2.2.1 Integrated Application Programs

Integrated application programs provide "externalo services
to IISS users and may cooperate with other Test Bed programs.
However, application programs are not considered to serve in any
subordinate role with respect to other Test Bed software.
Hence, no "internal* services are associated with application
programs.

The service interfaces supported by other Test Bed software
components and used directly by application programs are
summarized in Figure 3-51. This figure shows the structure of a
typical application program as consisting of COBOL source code
and several layers of service routines which will be provided
from Test Bed software libraries. The first-level interfaces
connect the application program with the User Interface,
Distributed Database Processes (through precompiled Neutral Data
Manipulation Language (NDML) statements), and the Network
Transaction Manager. The lower-level interfaces show the
connections with Interprocess Communications and the host
operating system. Hence, Figure 3-51 reiterates the interfaces
described by the top row and first column of the N-squared
matrix shown in Figure 3-50.

3.2.2.2 Non-Integrated Application Processes

Non-Integrated application programs neither provide nor use
Test Bed related services.

3.2.2.3 Common Data Model

The CDM has two principal roles in the Test Bed
environment. One is maintaining an accurate picture of the data

3-141

SDS620140000
1November 1985

oil I

ww
0

DBMS

3-142

SD820140000
1 November 1985

stored throughout the Test Bed computer network. The other is
making this information available to Test Bed system and user
processes. Maintenance of the CDK database is the
responsibility of the CDI database administrator and is not
considered a service. Providing data to Test Bed processes.
however, is a service. The mechanism for calling upon CDR
services is through NI)IL statements. Translation of NDKL
statements is a CDR function, but It is not considered a
service. The requirements for the NDKL syntax are shown in the
CDII Processor Development Specifications. The syntax of XDKL
statements and the techniques for embedding queries in ODOL and
Fortran programs form the CDII interface, and are fully described
in the NDL Precompiler Development Specifications.

3.2.2.4 Distributed Database Processes

Figure 3-52 depicts the configuration of processes required
to perform a query for distributed data. All of these processes
(except the application process initiating the request) are
"owned" by the CDI and only provide services for query
processing. However, distributed queries are the most complex
scenarios of comunicating processes considered for the Test Bed
environment, and they have "driven" the requirements for the
1NT. Hence, the top layer of CDR internals has been exposed at
the system level. The services provided by each of the
components shown in Figure 3-52 are outlined below:

" Distributed Request Supervisor (Stager Scheduler)

" Local Request Processors

" Data Aggregators

" Conceptual to External Schema Transformer

3.2.2.5 Local Database Management Systems

Each local DBMS represents a unique interface for the local
database request processes discussed above. These interfaces
and the services a DBMS must provide for query execution shall
be addressed in the NDKL Precompiler and Local Request Process
Generator design documentation.

3.2.2.6 Network Transaction Manager

Application Processes, Distributed Database Processes

(DDP's), the User Interface, and other Test Bed programs will

3-143

SDS620 140000
1 November 1985

i

Ii x

u~~x , L-144II'

SDOM 140000
I November 1965

-00
Y-4

1600

u c
L

.j0

o in

0- 00

U k 00 01

cI0C 0

3-145

II.

miecoco
1 Uevinbr @68

r - - --- -

g I

I41
I
I

IL
ii

I II

£5 It,

I I *~
e - -- -------

0~~ -e - S - - - - - ~9~I

~b.

I
I I IiI~

---- - - me - - - - ~uI

3-146

S7 p - *~.*~P 'pP P U r,.U 9 U P P

IDIWWO140000
I November 1965

call upn the IN for 4 major oategories of servioes:

9 Prooess Logos and Logoff

* Initiating ad Terminating Processes

* Seediug m ad " oeeIving Ossages

* Obtaining Status of essages and Processes

ach of those categories is expanded in following
paragraphs

The mechanism for invoking these services is through &
library of servioe routines which is to be linked into each
oall&ig program (see Figure 3-51). This toohnique allows the NTH
to view APs. database processes. ad the 91 as simply
'processes " It also allows the N to effootively hide the
details of N -essage headers, pocket sise. ad the IPC
interface from MYE users The N mast therefore provide the
fol lowing servioes.

3.2.6.1 Protlgs Lom and 14ooff

1 Enable programs initiated under local operating systems
to establish connections to the 1155 Test Ued.

3 2 2 6 2 Process Initiation and Termination

I Enable &uthorised processes to initiate other
processes Initiated processes may reside in the same
application cluster, in different application clusters
on the same host, or in application clusters on other
hosts.

2 Enable delayed process Initiation. The delay may be
until & specified time In the future or for a specified
elapsed time from the time of the request.

3 Enable Initiation of multiple instances of a process --
without having to vait for one instance to complete
before initiating the next.

4. Enable an authorized process to abort another process.

S Enable a process to wait until another process or
application cluster becomes available.

3-147

SDS620140000
I November 1985

3.2.2.6.3 Send and Receive Hessages

1. Enable a process to send a message over a logical
channel to another process. Messages may require a
response (i.e.. paired messages and guaranteed-delivery
messiages). Messages may also be either binary data
which is to be received exactly as sent, or text which
may require character code conversion when transmitted
between hosts.

2. Enable a process to receive a message from a specified
logical channel.

3. Enable a process to receive the next message arriving
on any channel.

4. Enable a process to wait until a message arrives
(Receive with a wait).

5. Enable a process-to check for the presence of an
incoming message (with or without actually obtaining
the message) either from a specific channel or from any
channel.

6. Enable a process to acknowledge the successful
completion of processing in response to a
guaranteed-delivery message.

7. Enable a process to indicate that it is under test and
that its messages should not be allowed to corrupt
normal system operation. (Future - Test mode indicator
can be set/reset, but interpretation is AP specific).

3.2.2.6.4 Obtain Status of Messages and Processes

1. Enable an authorized process to obtain the logical
names of the host and application cluster in which
other processes reside, as well ac the names of its own
host and application cluster.

2. Enable an authorized process to obtain the status of
hosts, application clusters, and processes.

3. Enable a process to obtain all necessary information
(e.g.. user's identification, the User Interface
process name, and a suitable logical channel) to send
informative messages to the user whose initial request

3-148

8D6620140000
I November 1985

Caused its execution.

4. Enable a process to check the status of any
guaranteed-delivery messages it has issued. (Future)

5. Enable a process to check the status of any messages
for which replies are expected. (Future)

3.2.2.7 User Interface

The User Interface provides a number of services to IIS
users such as simple menu-driven control of programs and a
convenient Ohelpe function. However, the Interface described in
this section focuses on the services provided by the UI to other
Test Bed software components -- principally Application
Programs. The UI must provide the following services to control
the display of forms and data, and retrieve user input:

1. Select forms to the displayed from a collection of
previously defined, stored forms

2. Insert data into fields before they are displayed

3. Display part or all of a form on the user's screen

4. Allow field values to be updated on the screen

5. Erase part or all of a display

6. Accept data from the user's keyboard

3.2.2.8 Communications

The principal role of the Communications Subsystem is to
provide host-to-host message (packet transfer). The Test Bed
software architecture has allocated two CORN processes (one at
either end) for each pair of communicating machines. as shown in
Figure 3-49. Hence. messages sent via a given COMM process go to
only a single destination. The only routing and distribution
function performed by COHN processes Is in handling high- and
low-priority messages which are sent and received on different
IPC channels but are transritted between machines over a common
communications channel (Message priority - Future). The
services provided by COHN, therefore, are:

1. Transmission of messages received from its associated
NTh process to its COHM counterpart on another host

3-149

SDO0140000
I November 1965

2. Forwarding of messages received from its corresponding

GOMM process to its asociated MYU process

3.2.2.9 Test 0ed Monitor

" Pertormace monitouiag

" Noarecoverable tailare bamidl ia

5.2.2.10 laterproogs Coinaiatlo8

The objectives of the Interprooess ommnioatious
Primitives (XPCs) are to provide a machine-indepmdet. 0060
interface for oommunlotios between oooperatlng oomzrent
processes. In the XISi Test Ded emviromumt. applicatiom
programs vii be provided higber-level message-passimg services
by the NTrS. IPC services &re expected to be UNd, directly.
only by Test Bed Osystem" sottware such a the MYU sad COSS.
The services the IPC Primitives mst provide for these
subsystems are the following:

1. Establish communication chaanels between processes.

2. Send messages over established communioatiom chanels

3. Receive messages over established communioation
channels.

4. Suspend a calling process for a specified period of
time or until an incoming message arrives.

[Note: "Communioation channels" are implemented by &

Hai lbox" concept.]

3.2.2.11 Virtual Terminal Interface

The function of the Virtual Terminal Interface (VTI) is to
insulate application programs and other Test Ded softvare from
the special characteristics of individual display terminals.
Each brand of computer terminal uses a different set of control
characters and different control sequences to clear the screen.
position the cursor, highlight text, scroll displayed
information. etc. The service provided by the VTI is the
conversion of standard control characters and control sequences
as needed to support the terminals connected to Test Bed
computers. The standard internal character set and control

3-150

8800140000
1 November 1WS

equemoos will be described In the WTI Development
8peti f oat osm

3 2.2.12 Uset Ogratl M Byte

Nost operating system provide the "-time evirt for
all of the seft tre oempements deoor bd b"*v- SmN of tb
specific rum-time serviOs they provide lalude.

I. system cal8s for llteWluoOeS oeimnmiotlem

a system oalls for pr cess Iiiation MA ter-namtlge

a 1 i iv'lll for I t and output to user termimals.
UM Terl Weeher pesipberals

3.2.a Fr~tgeeas mW Ons~

"e services desorlSed above are I lplemumltl Is &
distributed processing nvirmenut like%: It" by emokmsing
"messages" betwese m em. UbW "M program of processes
cooperate to deliver services. tY met eeablish a set of
rules a egreed-up.. messages hloh. together. sre oalled a
9 otoool' te message dlstribatioom servloes supported by the

U.HIPC. and DN subsystems provide a basis for Implementi g
these protocols

The complexity of Test Sed process interconections causes
coafusion about the distinction between interfaces sad
protocols Figure 3-53 shows two views of process interaction
On the left Is shown a *macro-level" view of a protocol between
two application processes This protocol is Implemented by
interfaces with the M A similar protocol exists between the
M processes aad. at the bottom level. & teleoommunicatioms
protocol implements the actual transfer of the data. On the
right-hand side of Figure 3-53 is shown a 'microscopic* view of
the interface between the application and MlT processes at the
left This view depicts a protocol between that application
process and the M that is Implemented by Interfaces with the
IPC The 118 Test Sod nacro-level protocols are described In
the following paragraphs

3.2.3.1 AP to AP

Protocols and messages exchanged between cooperating
Application Programs (e.g.. in a distributed AP) must be defined
by the application designers. This Information could ultimately

3-151

I November 1965

reside io the GIM to allow the NTN to validate the exchange of
messages at rem-time.

3..2 AP to GVN

The protocol between am Application Program ad the GDNs
distributed database processes in embedded and effectively
hidden within the NM -. This allows an, Application Program to
oempletely avoid direct dealinags with the messages Szohamged
between I t and the CM processes.- The onstent and format of
these messages are definmed by the aN Precompil1er.

3.23.3 A? to MY

The protocol between Application Program and the NY Is
embddd within the librar of MY service routines which must

be linked Into every Testr Ue program. This minimizes the
depem eae on YN message oharacteristics such as header

Information and message (packet) length within programs. The
oaltsmt sad format of the NY mxessage sevelopp. are defined by
the NMU.

3.2.3.4 At to 01

The protocol between Application Programs a&d the User
Interface are embedded within the library of Ul service routines
to minimise dependencies on the types of messages exchanged with
the U1. The form ad content of these messages are defined by
the U1.

3.23.5 CVH to CDH

Messages exchanged between distributed database processes.
including local database request processes. are defined by the
CDH Further detail on these messages will be presented in the
CDK Development specification,

3.3.3.6 MT to MT

Messages exchanged between MT processes. either to forward
messages between Application Process Clusters or for MT process
anagement are defined by the NTH Further detail1 oni these
messages will be presented in the MT Development Specification

3-152

BD6620140000
I movembew 1965

3-5

La.

SD6620140000
1 November 1985

SECTION 4

QUALITY ASSURANCE PROVISIONS

Requirements for formal tests/verifioations of the IISS
system design characteristics and operability will be specified
based on the hardware used. combinations of developed softvre.
as well as the developed Implementation schedule. While &
detailed Quality Assurance Plan cannot be developed at this
time. critical minimum requirements have been identified.

4.1 General

A simplified breakdown of a system build and validation
against functionality requirements would include the following
major activities:

" Develop and Verify Program Nodules

" Develop and Verify Programs

" Develop and Verify Subsystem Nodules

" Develop and Verify Subsystems

" Develop and Verify System

e Volume Test System

Testing/validating viii be performed as required as part of each
of these activities. The testing procedures will be designed to
validate that the functionality developed in the design has been
fulfilled.

4.1.1 Responsibility for Test

Test/validation responsibility will be divided based on the
contractor or subcontractor involved in the program module.
program, and subsystem module.

Responsibility for testing/validating subsystems and
systems will fall to the involved contractor and the user.

4.2 Secial Tests and Examinations

Whenever software has been purchased, the vendor shall be

4-1

SD8620140000
1 November 1985

responsible for insuring that the package will match the
functional specifications previously developed and provided to
the vendor. (It is expected that vendors will be responsible
for insuring the packages perform whatever functions are
necessary to support the functionality requested.)

4-2

SDS620140000
1 November 1985

SECTION 5

PREPARATION FOR DELIVERY

5.1 Hardware

The Test Bed hardware owned by the Air Force is scheduled
to be delivered to the Air Foproe when it is no longer required
to support the TestBed programmatic activities. The hardware
shall be delivered in accordance with Air Force instructions,
schedule, and at Air Force expense.

5.2 Software

The software developed under Project 6201H shall be
delivered to the ICAM program office in accordance with the Test
Bed Configuration Management Plan. The Software Configuration
Management Plan for is published in the Final Tohnioal Report
Volume I (FTRB20100001) and in the doouments for the Software
Configuration Management (SCM) system listed in the Appendix of
the final report.

5.3 Documentation

The following Users Manuals have been prepared under
Project 6201M and will be delivered to the ICAM program office
in accordance with the Test Bed Configuration Management Plan.
See the Final Technical Report Volume I (FTR820100001) for a
complete list of all documents delivered under this contract.

5.3.1 NTH Programmer's Manual (Services)

This manual describes the services provided to IISS
programmers by the Network Transaction Manager. These services
are used by IISS Application Programs to send messages to and
receive messages from other programs in IISS. This document is
useful to programmers who are building IISS component programs
and need to embed currently available NTH service calls in their
programs. The document includes notes on restrictions, helpful
hints, and reports on experience gained on the NTH.

5.3.2 NTH Operator's Manual

The NTH Operator's Manual describes the procedures and
message exchanges taking place during the various phases of the
NTH operational life cycle. Operator commands, IISS error

5-1

EDOOZ0140000
I November 1965

codes. MN table maintenance procedures. and MN troubleshooting

procedures are also liven.

5.3.3. Common Data Model (CDN) Administrator's Mammal

The primary focus of the CDM Administrator's Maal is
placed upon the Scheme Intergration Methodology which is
Intended to guide & CON administrator in building sa"
maintainn the CON database. Four models are provided a
components of the methodology. Two of the models are IMCFO
models. These models address building the initial omoeptual
schema and its Incremental expansion. The CNAdministrator 5
Manual reflects the experience gained in integrating the RP and
MG-NH subsystems.

5.3.4 Preconviler User's Guide

The Precappi 1cr User's Guide describes the procedures to be
followed to precoupile the UVULa statements embedded In a OBOL
source program. This mamal describes the functilons to be
invoked, the naming conventions of the intermediate files. and
the commands to be executed to review the source listing ad the
listing of the code generated by the Precompiler

5.3.5 XDKL User's Manual

This manual describes the requirements. theoretical
foundation, commands and syntax of the IISS Neutral Data
Manupulation Language. The Commawds section of the manual
consists of syntax and examples of the stand-alone NDKL
statements. Each EDIIL clause is described. The Embedded IDIIL
section describes the use of 100pin. constructs containing NDML
statements, and states restrictions on the use of looping.
constructs containing DKDL statements within a COBOL program
The BNF (Backus-Naur Form) includes a formal 3NT description of
the stand-alone form of the EDMt.

5.3.6 UINS User's Manual

The User Interface Management System Servicey (UINS) Manual
describes the forms and services avallabe to the IISS user -In
particular. the manual describes how to choose a function. to
change password, to define an application, to define a command.
to update a command. to define command parameters. and to
execute an application. The manual contains examples and error
messages.

5-2

SDS620140000
1 November 1985

5.3.7 VTI Programmer's Manual

The Virtual Terminal Interface (BTI) Programmer's Manual
describes how to add a new terminal type to the Virtual Terminal
Interfaces. The manual describes, in detail, the four files
making up the VTI terminal type definition. These files are:
the Definition File, the Lexical Analyzer Table, the Parser
Table, and a Command Generation Table. The naming convention
for each file is also given.

5.3.8 Forms Processor Application Programmer Manual

This document describes the callable interface to the Form
Processor and is intended for the IISS application Programmers.
The Form Processor routines use predefined forms to give
programs the ability to read input and write data to terminals.
The m&nual describes in detail each of the services provided and
callable routines.

5.3.9 Interim Forms Editor Manual

The Interim Forms Editor is based on a Digital Equipment
Corporation INS Forms Editor. The Interim Forms Editor Manual
describes the data required to define a form and the
restrictions bearing on the form definition process.

5.3. 10 NDDL User's Guide

The WDDL User's Guide describes the syntax and semantics of
each IDDL command. It describes how to use the language. It
does not describe the role of maintaining the CDM which is found
in the CDM Administrator's Manual.

5-3

