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INTRODUCTION

The exact solution for the dynamic stress and strain waves generated by a
point explosive source in a whole space is a simple linear combination of the
reduced displacement potential, the displacement pulse and the velocity
pulse. The first decays as R"}, the second as R"?, and the third as R!
(Haskell 1964). The far-field strain wave pulse can be generated from the
velocity pulse by simply multiplying the latter by the slowness of the medium.

This suggests that a similar close relationship between the dynamic strain and

stress fields and the dynamic velocity field might exist in more general
media. Large data bases of near-field velocity recordings have been collected
and analyzed in the past whereas high frequency dynamic strain measurements
have seldom if ever been made. The purpose of this study has been to attempt
to use the data base of velocity records to infer the levels of dynamic strain

and stress that typically occur near to explosions and earthquakes.

The reason that near-field dynamic strains are of current interest is
that a variety of laboratory studies have shown that some typical geological
materials begin to behave in a nonlinear fashion at shear strain levels
between 1073 and 10°® (Mavko, 1979). This nonlinearity manifests itself as a
lowering of effective Q. The phenomenon is frequency, amplitude and
overburden pressure dependent. Day and Minster (1986) have discussed the
potential significance of nonlinear behavior on i{nterpretation of ground
motion data from a series of small explosions in salt, but the events were so
small that it is not straightforward to relate their results to nuclear
explosions or earthquakes. Also, the recording geometry of their experiment
was so simple that they could use whole space wave propagation results.
Near-field wave propagation {s usually much more complex near to general
seismic sources (Burdick et. al., 1986, Heaton and Helmberger, 1978). 1t is

important to establish the levels of dynamic strain that occur for these more

tvpical sources in media where wave propagation is more complex.




- -

We present here the results of an investigation of the relationship
between the velocity and strain fields near to seismic sources in realistic
crustal structures. First we develop the theory necessary for computing
stresses and strains (rather than seismic motions) using the generalized ray
methodology. Then we demonstrate that in a layered half space the far field
strain wave is indeed very similar to the far field velocity wave. We develop
a transfer operator which, when convolved with an observed velocity record,
produces an estimate of a strain record. As noted above, in a whole space,
this operator would be a delta function with the amplitude of the slowness of
the medium. We show that in a layered half space it is a delta-like function
with approximately the amplitude of the slowness at the receiver. (For some
strain components, it is the amplitude of the vertical slowness and for others
the horizontal slowness.) Next we apply these transfer functions to a suite
of velocity records from nuclear explosions and from a small earthquake to
establish the levels of dynamic stress and strain which they generated. The
strain levels for the earthquake were found to be comparable to those for a
modest nuclear explosion once the difference in source depths is accounted
for. Presuming that the laboratory measurements of nonlinearity are relevant
to the earth, the results of this study indicate that there is a thin region

at the surface of the earth where effective Q can be expected to be very low.

STRESSES AND STRAINS IN A WHOLE SPACE

The strain tenscr in a whole space for a point explosive source has only
one nonzero, far field component in spherical coordinates. This, the radial

component, is given by

Epp=3U,/8R=-2p/R’-2p°'/aR?’-yp " /a’R ()

The radial stress is given by

Pan=-4pB*[W/R*~yp /aR? -py /R ()




¥ is the reduced displacement potential, a, 8 and p are the compressional
velocity, shear velocity and density of the medium and the primes denote
differentiation. The last term on the right in Equation 1 is just the far
field velocity pulse divided by the compressional velocity. Thus, the strain
and stress fields are given exactly in terms of linear combinations of the RDP
and its derivatives. Seismic motion parameters generally have a near-field
term which decays as R"2 and a far-field term decaying as R*!: Strains and

stresses have additional near field terms that decay as R™3.

Of course, these expressions become much more complicated for a general
point source in a layered half space where, among other complications,
cylindrical coordinates must be used. However, these half space expressions
become much more tractable if near-field terms can be neglected. The simple
whole space expressions can be used to estimate over what ranges the
near-field terms are significant. Figure 1 shows the radial strains for two
point explosions with yields of 100 and 1000 kt. The RDP's were computed
using the formalism of Helmberger and Hadley (1981) with the yield scaling
relations published by Burger et al. (1987). The medium parameters are given
in Table 1. The far-field term is shown in the top row, the near-field terms
in the second row and the sum at the bottom. At a range of 1 km, the
near-field terms are important. By 3 km however, they have become relatively
insignificant. This result appears to have little dependence on yield. In
the next section, we will present a theory for computing body wave stresses
and strains using only the far-field terms. Based on this calculation, it

should be valid for ranges larger than 3 km.

The amplitudes of the strain pulses shown in Figure 1 should give a
preliminary indication of how significant the nonlinear material behavior

observed by Mavko (1979) is likely to be. Figure 2 has been redrafted from

his paper and illustrates his basic result. The value of Q i{s observed to
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RADIAL STRAINS
IN A WHOLESPACE
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Figure 1. The analytic solution for the radial strain generated by a point
explosion in a whole space. The left column is for a range of 1 km. and the
right for a range of 3 km. An RDP for a 100 kt. explosion is shown at the top
and for a 1000 kt. shot at the bottom. In each instance the near field terms
are shown first by themselves, then the far field term and then the sum or
complete solution. The near field terms become insignificant by 3 km.
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Iable 1: CRUSTAL MODELS
Whole Space and Half Space Calculdtions

P-Velocit S-Velocit Density Thickness
(km./sec.{ (km./sec.¥ (gm./cc.) (km.)
5.00 3.00 2.00

Pahute Mesa Calculations

2.30 1.35 1.90 0.360
2.80 1.50 2.00 0.800
3.30 1.52 2.25 0.300
4.00 1.90 2.30 0.700
4.60 2.00 2.40 0.750
5.30 2.50 2.50 0.800
5.50 2.95 2.70 2.250
6.10 3.50 3.00 10.00
7.00 4.00 3.01 10.00
Imperial Valley Calculations
1.69 0.35 1.52 0.210
1.72 0.50 1.56 0.210
1.93 0.70 1.74 0.210
2.10 0.90 1.89 0.210
2.25 1.15 2.03 0.339
2.50 1.50 2.26 0.480
2.67 1.64 2.36 0.320
2.85 1.74 2.39 0.320
' 3.45 2.08 2.48 0.800
3.69 2.21 2.51 0.160
4.20 2.50 2.60 0.160
4.55 2.71 2.63 0.395
¢ 4.75 2.75 2.65 0.395
4.92 2.84 2.65 0.501
5.09 2.9 2.65 0.501
5.37 3.10 2.65 1.130
5.65 3.26 2.65 1.137
5.68 3.28 2.66 1.144
: 5.72 3.30 2.68 0.588
; 5.75 3.32 2.70 0.563
; 5.79 3.3 2.72 1.158
5.83 3.36 2.74 0.750
5.85 3.38 2.76 0.970
7.20 4.17 3.07 1.440
, 7.27 4.20 3.10 1.454
) 7.3 4.24 3.12 1.469
: 7.42 4.28 3.14 0.746
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begin to increase at about 10°® strain. By 1073 strain the effect is very
| significant in most cases. The magnitude of the effect appears to also depend
strongly on the geologic material involved. It is generally believed that the
decrease in Q is caused by frictional sliding on cracks (Stewart et al.,

1983). The observed effect should therefore also depend on the density of

Ny W

cracks in the material. As overburden pressure closes these cracks, it
becomes increasingly difficult for sliding to ocecur. Thus the nonlinear zone

probably does not extend to any great depth in the earth. Extending the 1 km

I T )

result in Figure 1 out in range by dividing by R, we find that for a 1000 kt
explosion, far-field strain drops to 1073 at about 60 km and does not fall to

10°® until almost 600 km The nonlinear zone would appear to occur over a very

significant region.

):.--’—0'

STRESSES AND STRAINS IN A LAYERED HALF SPACE

Once a far-field approximation has been made in generalized ray theory,
: the differences in the expressions for seismic motions and seismic strains are

actually quite small. Stress tensors can be generated from strain tensors

4 through the usual definitions. The necessary modifications can be most easily
0

' demonstrated by beginning with the expressions presented by Langston and

! Helmberger (1975). Figure 3 shows the coordinate system in which their

formalism is based. The small rectangle at the origin represents a fault with

given dip (8) and rake (). Here we will consider the possibility of explosive
; sources as well. The vertical, radial and tangential motions are given by W,
Q and V respectively. The displacements are given in terms of the Laplace

transformed seismic potentials ¢, Q and X by the Langston and Helmberger

» (1975) equation 5
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Figure 3. Coordinate system for the seismic wave equation solution.
) that z is positive downward.
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where the near-field terms they give have been dropped. The Laplace

transformed potentials for a generalized ray are given in their equation 6 by

p / n )
— (2spr)xe>\p(l’)dp

(2s )Xexp(f’)dP (4)

- Mo Fi4
= Aeay(8.A,6)=1 jﬂ SH, ( )x P)d
X" ap 2 A y21m [ T] = 3pr Jxexp(Prap

M, is the seismic moment, p is the density at the source and p and n are the

horizontal and vertical slownesses respectively. The phase of the ray, P, is

P--s(pr+Zth.n,) (5)

where the th,'s are the thicknesses of the layers encountered by a given ray.
The A;'s are horizontal radiation pattern terms and the Cy's, SV,’s and SH;'s
are vertical radiation pattern terms. The j indices, O through 3, denote an
explosion, a vertical strike slip, a vertical dip-slip and a 45 ° dipping
normal fault viewed at an azimuth of 45° respectively. Any other point source
can be built from these fundamental sources through linear combination. These
radiation terms are not of importance to this discussion, so they will not be
explicitly written out here. They are given in Langston and Helmberger
(1975), though we have added the index 0 for an explosion source which they

did not. For an explosion, A, is 1 and C; is 1/a2. The factor [] represents

» p p{\ - '\‘. . '\"ﬁ W ) ‘- 'h)\ “w \ ..'\ "\p.‘, ~ \.‘ \"\.\"\"'. SRR \v.‘--\-‘..-.\--. G
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the product of transmission and reflection coefficients along the raypath.

The inverse transform is evaluated using the usual Cagniard de-Hoop method
(Wiggins and Helmberger, 1974, Helmberger, 1974). It is important to follow
in some detail how the displacements in Equation 3 are related to the
potentials given in Equation 4. The spatial derivatives in Equation 3 can be
evaluated prior to the inverse transforms. If near field terms are neglected,
they simply produce some additional multiplicative factors in Equation 4.
Helmberger (1974) discussed these factors in some detail, and we shall follow
his notation and utilize many of his results here. We need to derive these
factors for both the case in which the receiver is embedded in the half space
and when it is on the free surface. We shall show that the only difference
between seismic motion generalized rays and strain generalized rays is that

they have slightly different multiplicative factors, hereafter called receiver

; functions.

To illustrate how these receiver functions are derived, let us consider
the case shown in Figure 4. We have an incident P generalized ray and
receiver points buried at depth h in the top layer of the stratified half
space. The arriving P ray carries with it a ¢ potential with initial
! amplitude A, If we wish to compute the vertical component of motion, we

substitute the expression for the ¢ from Equation 4 into the expressio: for W

: in Equation 3. For a single ray in the ray sum, the result is of the fo:

V-st,ondp (6)
[/]
""Z--E’nn

e e

The factor of s generates a time deriv..nmive, and Ry, is the receiver function.
The first of the subscripts indicates tha: the initial potential was for a P
wave. The second indicates that the vertica. component of motion was
computed. The converted wave shown at the top ¢ Figure 4 would have produced

' a similar result except that the receiver function -nuld be R;,. Also, the
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RECEIVER FUNCTIONS

Seismic Motions

Inc. P <

A=A Rp
0Pz Conv. PS
A=Ag RpsRsz

Seismic Strains

‘Refl. P

Inc. P \
A=Ag Rpz2 \ | A=Ag RppRpz2
Conv. PS

A=Aqg RpgRgz2

Figure 4. Schematic of the waves that must be considered in the computation
of motion at depth h in the earth. Seismic motions and seismic strains vary
only in their receiver coefficients. Motions and strains at the free surface
are computed by taking the limit as h goes to zero.
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product [} would include the free surface conversion coefficient Rys. For the
reflected P, the receiver function would again be R,; but the value of the
function would change sign due to the factor ¢ . It is defined to be -1 if
the last leg of the ray is upgoing (incident P) and +1 {if the last leg of the
ray is downgoing (reflected P). It arises because the phase of the ray is
increasing with z in one case and decreasing in the other. It {s primed to

‘ distinguish it from the similar term, ¢ defined by Langston and Helmberger

(1975) which has similar properties depending on whether or not the ray is up

. or downgoing at the gource rather than the rgceiver., As indicated at the top
of Figure 4, the free surface reflection coefficient, Ry, would again be

' included. The complete set of receiver functions for receivers buried in a
layer are given at the top left of Table 2. It shows that converting
potentiais to displacements involves no more than multiplying by plus or minus

‘ the vertical or horizontal slowness of a ray.

y We next consider the computation of strains within the medium using
generalized ray theory. To transform the three component displacement, D,

into a strain we need to take spatial derivatives according to the form

T W ¥ g

Eﬂl-%\dD,/dx"dD,/dx,’ (7)
We can again take these derivatives of Equation 3 prior to the inverse Laplace
transform. Again, they will result {n additional multiplying factors of -sp
or -se¢'n. Just as in the whole space case, transforming from seismic mot:cn
to strain requires only multiplication by slowness The additiona. factu: (t
s causes a time derivative which transforms the displacement components to
velocity The strain and velocity time histories appear to be closely rela:e
just as in the whole space case The additional slowness mulzipliers will
cause phase shifts in the inverse Laplace transforms so the twu pulses are no
longer exactly proportional We shall show, however, that in most cases the

effect of the phase shifting is not large The strain

) 12
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TABLE 2

Receiver Functions

Seisaic Motions
In the Medjua At the Free Surface
' Rpz=-€'n, Ry, =2n,(ni-p?)/B*R(p)
with Rip)=(n,,-p?) +4p™nn,
Rpn=-p Rpp=-4n,n,/B*R(p)
Rsz=p Rsz=4pn.,n,/B*R(p)
Rsp=-€'n, Rsp=2n,(ny-p*;/B*R(p)
' Rse=p Ree=2p
Strains
v Resz=-€n,R,, Ryzz=-cpRy,
‘ with c={a?-28%"/a?
Rezn=-PR,,; Reza=-PR,,;
: Ropz=-€n.Rp,s Rrpz=PRys
Ryaa=-PR,, Riopn=-PR,,
Rszz=-€'n,Ry, Rszr=cpRs,
Rszn=-PRy, Rs;a=-PRg,
Rspz=-€ NyRs, Rsaz= PRy,
Rsaa= " PR;, Rspa= - PR,
Rses=-€¢n,Ry, Rse,=0
Rsen= PR, Rien= PRy,
13
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receiver functions for receiver points within the medium are given at the

bottom left of Table 2. A natural extension of the notation of Helmberger
(1974) has been used. The contribution to the zz component of the strain
tensor due to an incident P wave is computed using the coefficient R,,, For
an incident S wave, it would be Ry,, and so on. There are 10 strain receiver
coefficients and only 5 motion coefficients, but as shown in Table 2 they are

very closely related and they appear in Equation 6 in an identical fashion

Most velocity records from explosions and earthquakes come from
instruments located on the surface of the earth. It would thus be best if we
could establish something about the levels of stress and strain in the
near-field utilizing this information. Furthermore, if we can develop models
that successfuly predict levels of strain and strain decay rates at the
surface of the earth, we can then use these models with some confidence to
predict strain levels and decay rates within the earth. To derive the seismic
motion receiver functions, we determine the composite response of the three
phases illustrated at the top of Figure 4 in the limit that h becomes small
compared to the shortest wavelength of interest. These are essentially factors
which are the sums of the amplitudes of the direct and reflected waves near
the free surface. The geometry for the incident P wave case is illustrated in
Figure 4. When the P, pP and pS arrive coincident in time the composite
amplitude of the response is just A (Rp;#+RypRp +RpsRs;) . The reflected waves for
incident SV would be S5+SP and for SH just SS. This means there is some finite
depth under a surface velocity receiver (defined by the shortest wavelength ot
interest criterion) where the strains estimated from that receiver can be
thought of as existing The highest frequency of interest here is about S t:
and the slowest wave speed about 1 km/sec. Thus, the strains that we estigate

probably exist in the earth down to depths of 200 m or more

The final step needed is to derive the receiver coefficients for strain

at the free surface It may appear that a reasonable wav to accomplish this




would be to differentiate Equation 6 while inserting the appropriate

displacement receiver coefficient and to make the usual far field
approximation. However, this approach leads to nonzero vertical stresses on
the free surface. To obtain the correct result, it {s important to first take
the required spatial derivatives of the displacements generated by the three
phases shown at the bottom of Figure 4 and then to take the limit as h becomes
small. The changes in sign caused by the factor ¢’ and the factors of n,
generated by vertical derivatives of the S wave potential instead of n,
generated by the P wave potential cause a very significant difference. The
correct receiver functions for computation of free surface strains are shown
at the bottom right of Table 2. They are factors of « slowness and « a
dimensionless constant times different seismic motion receiver coefficients.
Note, however, that for motions in the medium R,,; is generated from Ry,
whereas at the free surface it is generated from Ry; Several other similar
changes exist. The cancellation of the terms R, and Ry, along with Ry and
Rgp; guarentees that Ep will be zero. The (3W/30) has no far field
contribution, and Rge, is identically zero, so E,y will be zero. The diagonal
term E;; is a linear combination of the terms Rp;,, Rpy. Rgz; and Rgy which
always remains zero though the algebraic details are somewhat more
complicated. The free surface condition {s satisfied by the strain receiver

coefficients at the bottom right of Table 2.

The preceding has shown that the relationship between velocity and strain
in a half space is very similar to their relationship in a whole space.
Instead of multiplying velocity by the composite slowness of the medium to
obtain strafn, however, it {s necessary to multiply by either the vertical or
horizontal slowness. Figure 5 f{llustrates the degree to which this is true
for a homogeneous half space. The source is the same 1000 kt explosion used
in Figure 1, and the medium parameters are again given in Table 1. On the
left are the velocity traces. Each generalized ray {n the sum has been

multiplied by a constant value of slowness equal to the value of p or n at
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Velocity VS Strain
| In A Halfspace Stral
Velocity x (1000 Kt explosion) ron
Siowness
Surfoce Reciever
E r =I5 km
22
376 u strain 570
Err
21.2 20.2
Erz
) 2.1 0.00
]
Buried Receiver
r =I5 km
h= IS5Skm
Jﬁu U 6.93
1
| sec
2.07 J\'\/-\ 2 3

2. A comparison of velocity traces multiplied by constant values of
slowness (left) with actual strain traces (right) The traces compare well
when the receiver is buried. Differences occur when the receiver is on the
free surface due to the free surface condition
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which the Caguniard contour for that ray leaves the real axis. On the right
are the exact strains. The case of a surface receiver is shown on the top and
of a receiver buried at 15 km on the bottom. In each case, the range is 15
km. At the surface, the shape of the velocity times slowness pulse shape is
virtually the same as the E,;, shape. The difference in amplitude is due to
the fact that Ry, is not just n, Ry, but the more complicated form given in
Table 2. If the velocity pulse is multiplied by the correct factor, again
evaluated at the constant value of p, then the amplitudes of the pulses agree.
The Egy pulses agree in shape and amplitude. The true Eg, strain is
identically zero which is not predicted by the approximation. Within the
medium, the approximation works very well. The reason it does not work

exactly is because of the phase shifting that occurs as p evolves along the

complex Cagniard contour.

Though the effect of the phase shifting i{n Figure 5 is small, a
homogeneous ’.alf space is a very simplified medium. In more realistic crustal
structures where unusual raypaths may be important, the phase shifts can have
a large effect. It {s necessary to find a way to account for this phase
shifting no matter whether it is strong or weak. The most straightforward
approach to devising such a velocity to strain transfer method is to utilize
theoretical frequency dependent transfer operators. These operators are
generated by computing a theoretical velocity and a theoretical strain
response for a site and deconvolving the former from the latter. Estimates of
strain records are generated from velocity records by convolving the velocity
records with the transfer operators. We shall illustrate in the following
that in most cases these transfer operators are very delta-like functions with
amplitudes controlled by the velocity at the receiver site. The latter is a
relatively well known quantity and we believe that as long as the frequency
shift between the velocity and the strain records is small the transformed

records should be gond estimates of actual strain-time histories

17

. .,.'.'.'.'..’.{.-- .'.’.'-f.f. .'.....".(.',\‘\\ \'. ‘.-."'-',.',‘.*."'. ‘., et e e ..,",y."'.."




et e .-

ol s P i s

[ =

STRESSES AND STRAINS NEAR IO NUCLEAR EXPLOSIONS

The first data base to be processed using the transfer operators is a
suite of near field velocity recordings from five NTS nuclear explosions. The
events, which were detonated at Pahute Mesa, are SCOTCH (155 kt), INLET (324
kt), MAST (406 kt), ALMENDRO (670 kt) and BOXCAR (1300 kt). (The yields are
taken from Burger et. al. (1987).) The recording sites were at horizontal
ranges between 3.3 and 22.5 km. The recording instruments were L7 velocity
meters which have a response flat to velocity throughout the seismic band, so
the signals recorded on them are essentially velocity versus time. The event
locations, recording lines and receiver locations are shown on a map of Pahute
Mesa in Figure 6. Not all of the available records were suitable for use here

since some were too close and since some recording channels failed.

Each recording site used needed to have produced a three component data
set. In order to compute the transfer functions, it is also necessary to have
theoretical estimates of the velocity and strain pulses for each
source-station pair. The methodology for computing such synthetics is
discussed in Helmberger and Hadley (1981) and in Burdick et al. (1984).
Computation of body waves which are the phases of interest here is
accomplished through summation of generalized rays. Several possible plane
layered models for the crustal structure at Pahute Mesa are available in the
literature, but not all of them produce synthetic near field seismograms which
closely match the observations. The one used in this study was provided by S.
H. Hartzell (personal communication) and was specifically developed to produce
accurate near field synthetics. It is shown in Figure 7 along with the
alternate models of Helmberger and Hadley (1981), Hamilton and Healy (1969)
and Carroll (1966). The three models are in basic agreement, differing only

in the fine detail of the gradients. The parameters of the model are given in
Table 1.
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An example of the computation of a transfer function for the Pahute Mesa
* crustal structure is given in Figure 8. The calculation is for the same
theoretical 1000 kt event considered in Figure 1 and Figure 5. It was placed
at a depth of 1 km in the crust. The synthetic vertical and radial velocity

pulses are shown on the left, the four nonzero partial derivatives of velocity

S
.

with respect to spatial coordinates in the center and the transfer functions

are on the right. The generalized ray sum used in computing the medium

T - -

response contained the primary rays of the P and pP type and near receiver
conversions of the PS type. The amplitude of the P wave velocity pulse is
about 10 cm/s, the strain amplitudes are a few tens of ustrain and the

transfer functions a few hundreds of pstrain/cm. The top strain is E,;; and

the bottom is Epz The center two must be summed to form Ep Note that they

- -

sum exactly to zero which guarantees the conservation of the free surface

A condition. The transfer functions are computed by transforming the velocity
pulse and corresponding partial derivative pulse into the frequency domain

\ using a fast fourier transform algorithm. The latter is divided by the former
and the inverse transform taken. The resulting transfer operator strongly
resembles a delta function with a signal to noise ratio of better than 5 to 1.

To suppress the noise further a gaussian filter with a cutoff of 5 hz is

e W QL

applied before convolving the transfer function with actual data.

A typical example of what happens when the transfer operators are applied

to observations is shown in Figure 9. The records are from the BOXCAR event

at a range of 7.3 km. The vertical and radial velocity traces are shown on

45" ol e

the left. They display a relatively impulsive and simple P wave arrival. The

amplitude of the first peak is about 30 cm./sec. on either component.

Transfer operators like those shown in Figure 8 were computed and convolved
N . through to produce the four derivative traces on the right. In this example
partial derivatives of the vertical velocity trace are generated from the
vertical trace and derivatives of the radial from the radial. In principle,

this need not be the case as we discuss in the following. The first peak of
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VELOCITY TO STRAIN TRANSFER

(1000 Kt, Pahute Mesa Structure, Range = I0 km

Tronsfer Function

i

458 ustrain/cm

l 204.

210

Figure 8. An example of the computation of the velocity to

strain transfer functions for the Pahute Mesa structure.

The

velocity traces on the left are deconvolved from the strain
traces in the center to produce the transfer operators on the

right.

AR e PP
y DA M

- . 1'-* a A, ‘f".‘h’:i"‘!"f‘f",“".‘ .'_\- .\{u.:'_ -‘. » .
. . it N i . N - B

22

W aarar s = .a oS0



I L m'a 4V OO I I T R R I N T T IR P I P I P O O SN T RN e

BOXCAR S24
Range = 7.3 km

Velocity Strain

Vertical 2.0 ustrain 3 5
\
/

30.9 cm/sec S
Radial

0
0Q
27.0 3z
33.3

| sec

Q)Q
~N

57.9

Figure 3, An example of the velocity to strain transfer for one of the
stations from the event BOXCAR. The velocity pulses are shown on the l..t and
the estimated strain pulses on the right. T‘Ke amplitude values refer tc¢ the

X first positive peak.
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dW/3z is strongly reduced with respect to the later peaks. This is the
component in which the phase shifting by the strain receiver function is
generally the strongest. Its amplitude is also usually the lowest as it is in
this example. The top trace is E;; the center two are combined to produce Ej -
and the bottom is Ep; If the free surface condition is to be satisfied
exactly, the center two traces should cancel. This clearly will not occur in
the example shown. 1In order for this delicate cancellation to take place, the
vertical and radial traces both need to be transfered into time series which
are exactly proportional. The synthetics are never really exact, and
generally the vertical component of motion is predicted better than the
radial. The radial is presumably much more sensitive to lateral velocity
variations directly under the instrument. In the following, we will force the
free surface condition to be satisfied by using only the more reliable

vertical records. In order for the stress P,, to remain zero

E.=-(1-28%a*)E, (8)

Thus, we can generate one nonzero strain from the other in such a way that the

free surface condition is satisfied.

Figure 10 shows the strains along with the trace of the strain tensor

4 next to the bottom and the maximum shear strain as a function of time at the
bottom. The maximum shear strain is defined as the absolute value of the
difference between the largest and smallest diagonal elements in the
diagonalized strain tensor. The event BOXCAR appears to have generated a peak
l shear of 74 pstrain at 7.3 km and presumably higher at closer ranges. The
laboratory data in Figure 2 extends up to only 70 ustrain. This figure shows

that if the waves from BOXCAR propagated through a material like sandstone, :

they would be strongly attenuated indeed. Figure 11 shows the corresponding

stresses. The pressure in the next to bottom row is the negative of 1/3 the s
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trace of the stress tensor and the bottom trace is .nhe maximum shear stress.
The sixteen processed records are presented in Appendix 1 in the same format

as Figures 10 and 11.

The decay rate of the peak shear strain with range is shown in Figure 12.
Theoretical curves are shown for event BOXCAR which is the largest in the data
set and for SCOTCH which is the smallest. The curves are computed assuming
elastic theory is appropriate and using the same velocity structure as in the
calculation of transfer functions. Note in Figure 7 that this structure is
consistant with models derived using a variety of different approaches. The
observed values from the processed records are shown as data points. The 70
pstrain level is only half way up the vertical scale. The theoretical curve
for the smallest event does not drop below 1 ustrain by 25 km. Thus the
entire data set is within the strain regime in which the nonlinear process
observed in the laboratory is believed to be significant. 1t is interesting
that the observations show the same rate of decay as the theoretical curve.
The curve was computed using a theory which assumes linear elasticity holds.
The nonlinear effects, if they are indeed significant, should have dropped the
observed values below the elastic curves with range. However, it is important
to remember that the nonlinearity associated with sliding on cracks (see
Figure 2) probably only occurs very near to the surface. All of the
generalized rays important to the P pulse dive downward into the crust and
only enter the region where they might be attenuated as they emerge under the
receiver. In other words, all of the signals in the data from a given event
might be attenuated by more or less the same amount. The reduction in
amplitude by the nonlinearity would then be reflected in an underestimate of

the absolute size of the event.
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Eigure 10, Strains from a typical BOXCAR station. The top two
traces are the nonzero strains in a cylindrical coordinate syster
assuming that the free surface condition holds. The third trace

is the trace of the strain tensor, and the bottom trace 1is the
peak shear strain.
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Figure ll, Stresses from a typical BOXCAR station. The top twc
traces are the nonzero stresses in a cylindrical coordinate
system. The third trace is pressure and the fourth 1s peak shear
stress.
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tigure 12. The decay of peak shear strain near to nuclear explosions
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SIRAINS AND STRESSES NEAR IO EARTHOUAKES

The next records to which we will apply our velocity to strain
transformation procedure are from a small aftershock of the 15 October 1979
Imperial Valley earthquake The aftershock was studied in some detail by Liu
and Helmberger (1985) who provided a mechanisa, moment and time function for
it They reported the event depth as 9 5 km. Figure 13 shows the strong
motion recordings from it A map of the stations, the aftershock locatior and
the mainshock location is shown in an inset The strong. clear pulse is the
direct S wave The P wave was only recorded in {ts entirety at a few stations
and was too complex to model Several polarity changes are apparent in the
data Lliu and Helmberger (1985) used this inforwmation to infer that the even:
had a vertical strike slip mechanism. They reported a moment of 1 0 x 10?%*
dyne-cn and a triangular time function with a rise of 0 1 sec and a fall of
01 sec From our modeling studies, however, we conclude that a moment value
of 0 6 x 104 dyne-cm. and a source with a rise of 0.3 sec and a fall of O |

sec |{s more accurate

Certain unusual characteristics of the strong motion records will guide
how we will proceed to estimate strain from velocity in this instance Figure
14 shows the three components of motion observed at four of the stations at a
representative set of ranges HOLT is the closest station and BRAW the
farthest HOLT, ELCE and BNCR were three of the six stations that recorded
the complete P as well as the S waves Note in these records that the P wave
is smaller and much less coherent than the S wave The peak strains are
carried by the S wave pulse, so we will transform the S waves alone and not
attempt to process the P waves Also note that there {s no clear SV arrival
on the vertical records In some cases there is a burst of incoherent energv.
but there is no clear long period pulse as on the radial component The fac:
that the SV pulse is so small on the vertical component can be explained bv

the fact that the shear velocity near the surface in Imperial valleyv is verw
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IMPERIAL VALLEY AFTERSHOCK
VELOCITY RECORDS
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ure 14, Four typical three component record sets from the Imperial Valley
aftershock. The P wave is more complex and much higher frequency than the S
wave. The vertical S wave component is small.
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low. Thus the SV ray emerges almost vertically and the wave produces little
vertical motion. We wish to avoid using the noisy vertical signals in our
processing since they will probably only degrade the accuracy of our strain

estimate.

The nonzero strains generated by an incident SV wave are E,, E, and E,
As before, we could use the vertical velocity record to generate the first of
these and the radial to generate the other two. Instead, we again will use
relation 8 to generate the information we need regarding E,, from E,, and do
it in such a way that the free surface condition is automatically satisfied.
In essence, we generate an estimate of the vertical signal from the radial
signal instead of using the noisy vertical channel itself. One other point
worth noting about Figure 14 is the clesr shift in frequency content between P
and S waves. Liu and Helmberger (1985) attribute this shift to a low
effective shear Q in the Imperial Valley. The value they used for shear Q in
the top layer of their crustal model was only 6.2. This results in a
relatively distance independent t* of .132 sec. In the calculations shown in
the following, we use this value along with the crustal model they presented
(see Table 1). A value for shear Q as low as 6.2 is surely atypical and could
easily be interpreted as an indication that nonlinear processes like those

suggested by the laboratory data shown in Figure 2 might be taking place.

An example of the velocity to strain transfer operators for the
earthquake case is given in Figure 15. As in Figure 8, the relevant
theoretical velocity traces are shown on the left, the spatial derivatives of
them in the center and the transfer operators on the right. In this instance,
the velocity traces are Q (radial) and V (tangential). The transfer operators
are shown with the gaussian filter (cutoff 5 hz) convolved through. Of the
four partial derivatives shown, only two are actually used in the calculations
that follow. The top one would be used to generate E,, but the other term in

E., would always cancel it to satisfy the free surface condition. The third
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VELOCITY TO STRAIN TRANSFER

Imperial Valley Aftershock, Range = 10 km

Velocity Strain Transfer Function
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Figure 15. An example of the computation of the velocity to strain transfer
functions for the Imperial Valley structure. The velocity traces on the left

are deconvolved from the strain traces in the center to produce the transfer E
operators on the right.
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transfer function is always zero because the corresponding receiver
coefficient is zero in Table 2. The second and fourth transfer functions
generate nonzero strain components E, and E . The range for the calculations
shown in Figure 15 is 10 km just as in Figure 8. The strains for the
earthquake are slightly larger than for the megaton explosion. This is not
true at all ranges because, as we shall show in the following, the earthquake
strains decay at a much slower rate. Also, because different components of
the strain tensor are nonzero, the peak shear strains are somewhat larger in
the explosion case. The transfer operators for the earthquake source are
generally simpler than for the explosion case meaning that we are probably

obtaining a more reliable estimate of dynamic strain for the earthquake.

Figure 16 shows the transfer of the HOLT velocity record into strain.
The strain traces on the right are not strongly altered from the velocity
traces on the left. The changes in polarity that do or do not occur are just
as predicted in Table 2. The smoothing out of the detail is primarily caused
by the gaussian filter used in the deconvolution. The two nonzero strains are
shown at the top of Figure 17 along with the trace of the strain tensor and
the maximum shear. It is of interest to compare the peak strains for the HOLT
record to those of the SCOTCH record from 6.1 km. The peak shear for SCOTCH
is about twice as large and the peak compressive strain about three times as
large. It is important to note, however, that the SCOTCH source is actually
much closer to the station than the earthquake source. The depth of the
earthquake is 9.5 km while that of SCOTCH is 0.97 km. A theoretical
calculation of the strain for an earthquake source at the same depth and range
as the SCOTCH record predicts that the strains from the earthquake would be
slightly higher. Figure 18 shows the stresses associated with the HOLT
strains. Stresses and strains from all 16 stations are given in Appendix 2.
Figure 19 shows the decay of peak shear strain with range. The observations
are shown as data points and the theoretical prediction of the model as a

smooth curve. The theoretical curve was computed for the particular
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HOLT .
IMPERIAL VALLEY AFTERSHOCK
Range = 7.5 km
Velocity Strain
Radial v\/\/\/\/}_g
.349 pstrain 20
6.79 cm/sec 3
1.2 '____Jﬂ\J\/\/nb\
6.4 Tangential v
dz
0.00
e
ar
| sec
34.0

Figure 16, An example of the velocity to strain transfer for station HOLT
from the Imperial Valley aftershock. The velocity pulses are shown on the
left and the estimated strain pulses on the right’
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Figure 17, Strains from station HOLT from the Imperial valley afgershock.
The top two traces are the nonzero strains in a cylindrical coordinate system.

The third trace is the trace of the strain tensor.
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Figure 18, Stresses from station HOLT from the Imperial Valley aftershock.
The top three traces are the nonzero stresses in a cylindrical coordinate
system. The fourth trace is pressure and the fifth 1s peak shear stress.
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Figure 19, The decay of peak shear strain near to the Imperial Valley

aftershock.
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$ azimuth of 45° Here the SH and SV waves are equal amplitude and the pear
shear strain is relatively high The data come from a variety of acimuths
. which is why many of the data points fall under the curve Also, the sour.e
: model of Liu and Helmberger (1985) fails to correctly predict the ratio of .
\
N to SH. The SH data alone suggest a moment of 42 x 10%* dyne-cm and the S
¢
' .73 x 10%* dyne-cm. The SH wave apparently has a more important effect in
determining the peak shear strain in many cases. The peak shear for the
earthquake at the surface of the earth is lower than for the explosions bu:
decays much less rapidly with range. This is because of the vertical
radiation pattern of the source and because the earthquake source is deeper
ﬁ The strains generated by the earthquake are large enough so that the nonlinear
o
i effects illustrated in Figure 2 are potentially significant.
v
w
_ DISCUSSION
W,
[
: The bulk of all seismic observations have been very successfuly expla:red
y
& using linear elastic theory. It seems doubtful that nonlinear processes cou.c
,
be of great importance without having been noted previously. On the other
:: hand, the science is still evolving and new types of data are being studied
-
e Very high frequencies (5 to 20 hz) are being studied for potential use in
" discrimination between earthquakes and explosions. A thin, shallow layer with
| nonlinear response might have an effect on the generation of such energy bu:
3 would be of no significance to 1 hz or lower frequency energy.  1f the
s
< nonlinear zone has different ch.racteristics for explosions and earthquakes.
’ it might alter how regional phases are initiated in the two cases Such a
N layer would obviously also be important to the generation of free surface
o)
e phases such as pP. At low frequency such phases would appear as elastic
JT reflections, whereas at very high frequency they would appear to be strongly
attenuated. Some observations of nuclear explosions suggest that this is the
3
o
<,
‘s,
, 40
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case Another piece of evidence that some nonlinear losses are occurring is
the strong motion data of Liu and Helmberger (1985) which does suggest that

effective Q in the near field of the lmperial Valley earthquake was very low

1t {s {mportant to note that even {f the nonlinear process indicated by
the laboratory data does occur in the earth and is significant, it is not
clear exactly how it would manifest {tself. At one level of approximation
effective Q could be considered to be a function of time with a value dictated
by the strain wave field 1t is difficult to imagine exactly what effect this
would have Stewart et al. (1983) have suggested a model for how the
nonlinearity would depend on the density of cracks in the medium and the

overburden pressure presuming that it is indeed related to frictional sliding

on cracks They proposed that

Q=P /krE (9)

where P is the overburden pressure, k i{s a constant function of the
material’'s elastic parameters, A is the crack density and E is the strain
amplitude. Day and Minster (1986) suggest an equivalent linear method for
solving wave propagation problems in materials behaving in a weakly nonlinear
fashion, but their method does not adapt easily to realistic media. Much
additional progress will be needed before the role played by high strain

nonlinearity in seismic wave propagation is understood.

CONCLUSJONS

The close relationship between velocity and strain wave pulses in a whole
space appears to be maintained for the most part in a layered half space. The
large data bases of near field velocity records which have been collected over
the years can thus be transformed into a data base of near field dynamic
stress and strain records. Near field strains for a large explosion appear to

be as high as 10°3 at the surface of the earth. Those near to a small
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earthquake appcar to be about 10°3 at the surface, though the source is much
deeper . These strains are large enough so that they may induce a nonlinear

response from near surface materials.
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APPENDIX 1,

_PROCESSED NUCLEAR EXPLOSION RECORDS
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APPERDIX 2,

_PROCESSED EARTHQUAKE RECORDS
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