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SUMMARY

Critical needs currently exist for a fully retargetable
microcode compiler and for an effective development tool to
support programming for the new non-von Neuman architecture
microprocessors. As more parallel processors, systolic
arrays, and cascadable processors become available, these
needs can only become more acute. Most of the chips resulting
from the VHSIC program and all near-term gallium arsenide
devices will require microcoding. For the benefits of these
advances to be fully realized, microcode development will
have to be automated in the relatively near future.

This report describes the microcode compiler feasibility
study and the compiler development undertaken at PENGUIN
SOFTWARE, Inc. under the first phase of contract

DAAD10-86-C-2008 sponsored by White Sands Missile Range.

The microcode compiler being developed at PENGUIN Software,
Inc. is based on the concept of a retargetable compiler. This
approach does not have a fixed machine-independent language,
but allows the user to develop a language specific to each
particular target machine. This provides a means for the user
to incorporate knowledge of target machine design into the
language definition, and avoids the necessity for resource
allocation or code compaction in the application program.

This microcode compiler is a new type of program. According
to one source, this approach has never been tried before; at

least no other retargetable microcode compiler exists. The
advantages of this approach appear to be:

1. Low Risk : there are no high risk algorithms
remaining to be developed.

2. Robustness : This compiler can support any
processor architecture suported by the current
state-of-the-art meta-assemblers.

3. Speed : This compiler is competitive with
meta~assemblers in terms of speed. This is in sharp
contrast to other microcompiler designs.

4. Timeliness : this approach can be developed
into a working tool quickly.

Currently, PENGUIN Software, Inc. is involved in a continuing
development effort to produce a commercially marketable
microcompiler which is capable of supporting the development
of microcode for cascadable, parallel, and systolic arrays of
microprocessors.
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YN Previous microcode compilers have evolved from traditional
compiler concepts and design methodologies. They have adopted
o an approach involving machine-independent languages and have
fi: attempted to capitalize on the associated advantages. In
08 order for this to be successful, it is necessary to develop
s algorithms capable of producing compact microcode. This
s approach invariably gets bogged down in the problems
associated with microcode compaction and resource allocation.
G Until these problems are solved, this approach has to be
;”§ considered very high risk.
P
é‘ﬁ In contrast, the microcompiler being designed at PENGUIN
- SOFTWARE, Inc. has evolved from the classic microprogramming
tool i.e. the meta-assembler. Our microcompiler starts out
Pt with an underlying meta-assembler and builds up a higher
N level language capability around it. This approach results in
o a microcode development tool which is a very low risk, and is
qﬁ capable of supporting virtually any digital hardware
N architecture.
P
A While there are very few research journal articles related to
.. our work, we have not been forced to work in a vacuum. We
. would like to thank the marketing staff at HILEVEL Technology
in Irvine,and we would especially like to thank Mr. Warren
Long, Product Marketing Manager at HILEVEL, for his many
suggestions in the areas of requirements and engineering
:r‘ design. We would also like to thank the engineers and
ﬁh managers of Rockwell International, Hughes, Northrop, and TRW
qﬁ: that have contributed their time and allowed themselves to be
o interviewed.
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% E 1.9 INTRODUCTION

I;’:’::

by The microcode compiler being developed at PENGUIN SOFTWARE,
! Inc. is a retargetable compiler. This compiler does not have

Al a fixed machine-independent language, but allows the user to

K- T-. develop a language specific to each particular target

YO machine.

} :.' '(.

140 N

e ’

The microcode compiler is a two stage translation scheme. The
first stage provides a fixed high level design language to
permit the easy definition of the machine-dependent high

o) level language. The language definition compiler, called the
;“*2 Syntax Compiler, produces syntax files which define both the
syntax and semantics of the target machine language.

on
EFEREES
PG
B XD

The application program is compiled by the MICROCOMPILER to

K, 4 produce the object file microcode. The application programs
(§5'3 are written in a language specifically designed for the
P, particular target processor. This language is almost

completely free from constraints with just enough underlying
language structure to facilitate the application language

&

)
) 4
i compilation process.
P
Gﬂ: > One of the crucial issues decided by this PHASE I study was
i the speed of the microcompiler. Because of the complexity of
tg}: the algorithms being used, a great deal of effort was focused
ALY on enhancing the speed of the microcompiler. This microcode
E compiler has been designed to run very fast by using our own
1 & in-house developed data structures and algorithms, and using
:ﬁ;%;_ "inverted" syntax files.
Kool
) ) The approach to automated microcode generation being
Af;l developed at PENGUIN SOFTWARE, Inc. is based on the concept of
) [; machine-dependent languages. This provides a means for the
SIS user to incorporate knowledge of target machine design into
*r s the language definition. There are some obvious advantages
Tt~ and disadvantages to this approach.
:‘i "
gﬁ? w Some of the advantages of this approach are expressiveness,
ug*‘w robustness, and low risk.
L/ i ] I
rﬁk Ry a. This approach allows the programmer to design a
\ﬁ machine-dependent language tailored to the needs of a
- “ particular application. This can result in a highly
B i expressive and efficient language.
o b. Because of this microcompiler's relationship to
;ﬁﬂ < meta-assemblers, this microcompiler is extremely
N unlikelv to fail due to a particular target machine
o design.
f‘ f i
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c. Finally, this approach avoids the tough problems of
microcode compaction and resource allocation.

Some of the disadvantages of this approach are lack of a
stable application language, and the difficulties associated
with trying to imbed low level hardware details in a high
level language.

a. A stable application language is desireable because
it makes application programs more transportable and
facilitates the development of microcode simulators.

b. Because of the hardware design, it may be difficult
to design a suitable high-level language for a
particular application.

The basic requirement of our Phase I effort was to
demonstrate the feasibility of PENGUIN SOFTWARE's approach
microcode development. Section 3.0 describes, in some detail,
the research and development efforts expended at PENGUIN
SOFTWARE to meet this requirement. Under the current
contract, the following tasks were completed at PENGUIN
SOFTWARE, Inc.

a. Define the Machine-Dependent Languages.

Specify the general class of statements to be supported
by our microcompiler. This specification is to be based
on a literature search, interviews with managers and
engineers from the microprogramming community, and the
flexibility of the existing LR(n) compiler. (See
Appendix A.)

b. Define Syntax Definition Language.

Specify the general class of statements to be supported
by the syntax compiler. This specification is to be
based on the design of the existing compilers, the
requirements generated for the application languages,
and the flexibility of the existing LR(1l) compiler. (See
Appendix A.)

c. Generate Test Cases.
Generate typical application program statements and test

programs to be used to evaluate the expressiveness of
the proposed languages. (See Appendix B.)

d. Generate Microcompiler and Syntax Compiler Design
Requirements.

(X 44 \adl
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'i:f- Generate design requirements including identifying
%t\ reserved characters, parameter sizing, input/output and

listing formats. (See Appendix C.)

- e

oAy e. Design Syntax Compiler modifications.

LAY

f ~_". y s . . .

Hi: R Generate PDL (Program Design Language) descriptions of
£y e changes to be made to the syntax compiler. (See Appendix

-

D.)

3
=

W&: oy f. Add Diagostic Function.
v"
¥
ktd'* Insert a diagnostic capability into the syntax compiler
“.h hs in order to help debugging the syntax source files.

[\
copees g. Add Syntax File Inversion.

i.o. .‘.-'

ﬁJ % The files which define the application language syntax
A58 will be inverted to facillitate the process of parsing
:23} - the application program statements.
<l

h. Design Microcompiler Modifications.

>
/

Generate PDL (Program Design Language) descriptions of
changes to be made to the microcompiler. (See Appendix
Do)

S

P ., &

i. Perform Timing Studies.

e Perform a timing study of the syntax definiton phase and
SO the microcompiler phase.
SN
. Section 4.0 describes the status of the technical objectives.
*% 52 This includes the extent to which the language structure was
:,;3 -~ finalized. The optimization of the data structures was
.§2 completed with the result that the microcompiler is now much
IR faster than predicted. The construction of the prototype
,:'.«.. o compilers was concluded without surfacing any difficult
paLAY problems. Finally, the completiion of the prototypes allowed
‘ ?.Q us to perform the necessary timing study.
iu; > Section 5.8 gives a summary of conclusions and
f3§ " recommendations. We conclude that a}l.technical objectives
:._' ;‘2 were attained. The results of the timing study show that the

microcompiler is quite fast enough. Although this general
3 approach is new, it appears to be the low risk approach now

\_w% A that all of the difficult algorithms have been demonstrated
j\ % in our prototype. Finally, we conclude that this approach has
k2N the added benefit of being very robust in the sense that it
:“g ~ is very unlikely that any future design will cause the
s microcompiler to fail.
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2.9 MICROCODE COMPILER STUDY

PENGUIN SOFTWARE's retargetable microcode generator syste.an
emulates a wide range of computer architectures. By allowing
the user to define a machine-dependent high-level language,
and then write an application program in this new language,
the microcode generator is able to translate the application
program into efficient horizontal microcode.

Our minimum goal was to produce a working microcode compiler
which would be a useful tool in industry. In order to achieve
this goal, we determined to start with the most powerful
meta-assembler that we could define and then enhance its
capabilities to achieve a higher-level language capability.
In retrospect it makes sense that many of the project tasks
are divided into two parts. The first part, the syntactic
analysis, determines which statements the microcompiler will
accept as valid, and determines the readability of the
language. The second part, the semantic action, determines to
a large extent the level of the language.

2.1 Define Machine-Dependent Languages.

Having proposed using machine-dependent languages, we now had
to decide if we would use a machine-independent language
(such as a subset of "C" or ISP) which could be augmented, or
just provide a minimal language structure.

Based on interviews with various engineers and managers in
the microprogramming community, we naturally found a
conflicting set of requirements. Although there was a lot of
support for using a subset of "C", there was also a lot of
negative feeling associated with the implied techinical
requirements associated with that decision. In the end, we
decided to opt for providing the minimal language structure,
and in light of the greater understanding we now have

concerning the project, we believe that this was definitely
the right choice.

Our literature search provided a list of candidate
meta-assembler capabilities for the micrcode compiler. These
meta-assembler-derived capabilities were reviewed to
determine which were inappropriate, which would be postponed,
and which would be implemented immediately. The results of
the study are summarized below.

2.1.1 Statement Notation.
Two types of statement notation were considered. The first

type, “action verb", is similiar to the standard assembly
language statement. Unfortunately, "action verb" does not

4
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EF.-

~
W
?ﬁ o seem compatible with the requirements of horizontal
fn microprogramming. The second type of statement notation,
}*- "list notation", is ideal for horizontal microcoding. This

. statement has the basic form shown in Fig. 1. We have adopted
- the convention that all labels are immediately followed by a
T colon, the entities are separated by semicolons, and the last
R entity is followed by a period. Everything to the right of
'ﬁﬁ - the period is a comment.
‘_ K 2.1.2 Entity Notation.
o The lowest level of entity notation identified is “positional
’ﬁi - notationf. In positional notation each entity is related to
K o one particular field. This notation does not appear to have
G ~- any role in our high-level language except possibly to force
‘ specific values into a specific microword, and even then
ﬁﬁ ;: there seems to be better ways to accomplish that.
AN
:’% Several nonpositional entity notations were identified. These
Q'-_? include "function reference notation", "“value mnemonic
AN é; notation", and "keyword notation". All of these notations are
LM desireable in different applications. Rather than decide on

o anyone of them, a different notation has been selected which

g includes all of the above: this is the "free notation". In
the free notation there are almost no constraints on the
notation used. The only constraints imposed on the entity
notation are those derived from the design requirements and
from the implementation of the program.

-
™

-:‘.-: o 2 . l . 3 MACRO ' s

‘."- -"‘

*ﬂ - One of the advantages of using a high-level language is the

: ability to generate more than one line of object code for one
L_ line of source code. This capability has been included in the

g microcode compiler.

T 2.1.4 Structured Control Statements

Structured control statements allow the development of block
structured code and an orderly and controlled approach to
program control flow. Structured control is included as an
important part of the microcode compiler.

2.1.5 Phase II Features

™ The main objective of our Phase I study was to prove the

o - feasibility of our approach. Namely, to prove the feasibilty
- of a retargetable microcode compiler that runs on the IBM-AT

in a reasonable amount of time. Several features were

- identified which, although desirable for a production quality

ek _ product, were judged to be non-essential for attaining our
| _f 5
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<label> <entity> <entity> ... <entity> <comment>

Figure 1. List Notation Format.

<label>: <clause>;<clause>; ... ;<clause>.<comment>

Figure 2. Compiler Sentence Format.

CLAUSE {<syntax definition>}[<semantic actions>]

Figure 3. CLAUSE Definition Format.
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Phase I objective. These features were postponed until Phase
II.

a. Compiler evaluation of arithmetic expressions.

The ability to evaluate arithmetic expressions is not
relevant to the Phase I feasibility study.

b. Compile time MACRO definition.

The capability to generate MACRO's in the application program
is usually associated with assemblers rather than compilers.
Still, this capability might be valuable in the event that
the syntax compiler were too slow. (Considering the results
of the timing study, it now seems less likely that this MACRO
capability will be included in Phase II.)

¢. Conditional compilation.

Some form of conditional compilation is part of one possible
approach to handling cascadable microcprocessors in PHASE II.

d. Relocatable Object code.
e. Linking of object modules.

These two capabilities are essential and will be included in
PHASE 1I as a consequence of our approach based on using the
HILEVEL Technology meta-assembly language, HALE, as a
intermediate language.

2.1.6 Beyond Phase I1I

The following features were identified as being too high risk
for inclusion in either Phase I or Phase I1. They did,
however, cause a shift in design philosophy which will be
reflected in the Phase II design.

a. Microcode compaction.

Although the need for microcode compaction has been almost
entirely avoided by the use of machine-dependent languages,
it may be desirable to have a local compaction algorithm as
part of a compiler optimization phase.

b. Compiler-directed resource allocation.

Resource allocation is another capability which we might
eventually want to include in this compiler. Resource
allocation is a difficult task chiefly in a situation
involving global microcode compaction. By avoiding global
compaction, we will eventually be able to include some

7
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resource allocation capability in this compiler.
2.2 Define Syntax Definition Language.

Because of the period and semicolons in the list notation, we
have adopted the terms "sentence" for the entire line from
the label to the end of the comment, and the term “"clause”
for the entity as shown in Fig. 2. Since the structure of the
sentence is hard-wired into the microcode compiler, it
remains to the syntax compiler to define the syntax anu
semantics of the “"clauses”. A syntax compiler source file is
constructed using the language outlined below. This file will
define all of the legal application language clauses and
define what these clauses mean. The basic clause defintion
appears as shown in Fig. 3.

2.2.1 Syntax Defintion

The syntax definition process for each clause is accomplished
by using three related contructs: literal strings, lists, and
literals.

Literal strings are the simplest and in some cases the most
efficient means for defining the syntax of a clause. A
literal string is string of alphabetic or special characters
enclosed in double quotes. Numerical digits can also be
included, but they must be proceeded by an alphabetic
character. Ignoring the semantic definitions for the moment,
the examples as shown in Fig. 4 show clauses defined using
the literal string.

Literal strings are useful for clauses, such as “NOP" ,
which are, in a sense, one-of-a-kind. Literal strings are not
very useful in situations like “REGl = REG12" where there
are several registers that may appear on either side of the
equation such as shown in Pig. 5. This situation is handled
by the two types of lists described below.

First, the LIST is identified by a list name,then the LIST is
defined by a list of tokens and associated semantics actions.
Fig. 6 is a simple example of a LIST structure. A LIST is
used in a CLAUSE definiton simply by using the LIST name.
Using a LIST in a CLAUSE definition can considerably reduce
the amount of effort required as can be seen by the example
in Fig. 7. In this example, we have a very simple situation
where the contents of any source register can be moved into
any destination register. Experience has shown that quite
often these LIST's will be used repeatedly to define other
CLAUSE's. This results in a tremendous saving of programming
effort.
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' CLAUSE { “NOP" }

...

e CLAUSE { "REGl = REGl12" }
o CLAUSE | “REPEAT(FOREVER)" }
i !.

b Figure 4. Example: Literal String Definitions.
P
D
{ A 1

\ -

R, o~
o -

<

o
o \ -

.".4 ‘
Lo CLAUSE { "REGl = REGl" }
Ll CLAUSE { "REG2 = REGl1" ]}

o CLAUSE { "REG3 = REG1" }

;_'.:;'.

ﬂ CLAUSE ( "REGIF = REG1" )}

N CLAUSE { "REGl = REG2" |}

CLAUSE { “"REG2 = REG2" }

N .

L CLAUSE { "REG1F = REG2" |}
o, - CLAUSE { "REGl = REG3" |
e ’
e
-r} .. .
v CLAUSE ( “REGIF = REGIF" ]}
2
o
N
\2 - Figure 5. Example: When Not to Use Literal Straings.
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LIST «<list name> = {
<token-1>[semantic action];
<token-2>[semantic action];

«uir

A4

<token-n>[semantic action];

e

Figure 6. LIST Definition Format.

s

L IV

CLAUSE { REGD "=" REGS }

LIST REGD = {
REGl[semantic action}:;
REG2( semantic action]; '
REG3(gsemantic action];

'\.
. »~
. REGlF[semantic action] ‘
} ,
LIST REGS = | i
. REGl[semantic action):
. REG2[ semantic action]:;
3 REG3(semantic action]: p
. . ~u
. -
. REG1F[semantic action) =
. }
X "
- J"
Py

Figure 7. Example: Using LIST Definition.
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Occasionally, we have a situation, unlike the preceeding
example, where the source and destination registers are not
orthogonal. This means, in this case, that only certain
source registers can be used with certain corresponding
destination registers. The result is that simple LIST's would
no longer work efficiently. Now we could fall back on the
literal strings discussed before and define several CLAUSE's
as shown in Fig. 8. We have adopted an approach using
dimensioned LIST's. Dimensioned LIST's have the particular

v

J3 property that if more than one column of the LIST is used in
y N - a CLAUSE definition, then the tokens must all come from the
:g same row. The definition of a dimensioned LIST is shown in
et L Fig. 9. A dimensioned 1ist is used to solve the CLAUSE
O definition problem discussed above as shown in Fig. 10.

The final construct is the LITERAL. LITERAL's are used to

define the processing of numbers and statement labels. The

LITERAL is defined as shown in Fig. 11 and is used in a

clause as shown in Fig. 12. The LITERAL allows the

application programmer to include values in the program at
V compile time.

L QA

‘
.4{-'

b d

-

2.2.2 Semantics Defintion

Soe s

[d

The semantics of a particular statement is defined in terms
of the semantic actions to be performed when that statement
L o is encountered in an application program. For each

u application program statement, the microcompiler must
e reconstruct the statement defintion to determine the
S particular CLAUSE, LIST row, and LITERAL as appropriate.

" These semantic actions are associated with the CLAUSE's, rows

of the ".IST's, and the LITERAL's.

LR AN

L Some semantic actions only make sense 1n association with

3 certain constructs, while others have only been implemented
o for other constructs. This 1s shown in Fig. 13.
\ N

I The semantic actions implemented during PHASE 1 are described
D) below:

&y

t: a. field value;: a value 18 1i1nserted i1ntoc a field 1n the
. object file.

st

AO b. PPA: an address 1s popped off an 1nternal compliler

s L stack. A label 1s generated and associated with the value
-— just popped off the stack.
[\~ o .

yf c. PHA: the currect microaddress counter 18 pushed onto
ADA an i1nternal ~ompiller stack.

' 5 d. "PL: a label 1s popped off an internal compiler stack
7 1

<
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2
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REG5*
REG7*"
REG1*
REGS5*"

CLAUSE { "REFlF = REGl12" }

8. Example: When Not to Use Simple LIST's.

LIST <list name>(dim-1,dim-2,...,dim-m) = {
<token-l1, token-12,...,token-1m>{semantic action];
<token-21,token-22,...,token-2m>(semantic action];

<token-nl, tcken-n2,...,token-nm>[semantic action]:

Figure 9. Dimensioned LIST Definition Format.

CLAUSE { REGS(1) "=" REGS(2) }

LIST REGS(1,2) = {
REGl, REGS[ semantic action];
REGl,REG7([semantic action];
REG2, REGl[semantic action]:
REG3, REGS5(semantic action];

REF1F,REGl2(semantic action]

Figure 10. Example: Using Dimensioned LIST.
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LITERAL(<literal number>) = [semantic action]

S

-
>

Figure 11. LITERAL Definition Format.

LR

CLAUSE { REGS "=" LITERAL(1l) }

LITERAL(l) = [semantic action]

B o)

LIST REGS = as defined above.

Figure 12. Example: Using LITERAL.
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CLAUSE LIST LITERAL
I\
t. .
n; field value yes yes yes
" PPA yes no no
A PHA yes no no
T PPL yes no no
i PHL Yyes no no
K SWP yes no no
AN LBL yes no no
o LIT no no yes
ROR(n) no no yes

o

-

-~

-~

>

) Figure 13. Mapping Semantic Actions to Constructs.
l"

-.':
ol
v

\'/
'.-.

-F,_

W 14

el
A
A G [5> =5 © [ Y dhadiidl

\
et 2y

’)'- L TR S TS {-'.-{-'-- w, V--._-lr-’-
.~-.v-.¢.-f-\‘4'-' -P.._‘n,, SR i s e A ).

- e SRR R
A S IR N D L M SN LN .('l\(-‘ :

-



l;‘o -

T W . .
ng o and associated with the current value of the microaddress
P counter.
) . . e. PHL: a label is created and pushed onto an internal
AOAIEE compiler stack.

QUL :

AT f. SWP: the top two entries on an internal compiler stack
P T are swapped.
WV

'; & g. LBL: causes the compiler to generate a label and
RO retrieve the value associated with this label. This value is
:$\‘ processed as a literal (see LIT below).
) o
"y :§ h. LIT: a literal value is right justified, and zero

R filled as required. The result is then inserted into a field
s e lP in the object file.

WO : . . o :
fuorlin, i. ROR(n): a literal number is conditioned as with LIT
‘ﬁﬁg above then rotated n bits. The result is then inserted into a
o field in the object file.

3" p i

b 2.3 Generate Test Cases.
S

- ) .

g Test cases were generated to satisfy three requirements: to
S debug the program; to perform the compiler timing studies;
ﬁ& and to demonstrate the capabilities of the microcompiler.
LA -y

E The debugging effort was automated as much as possible to

_ encourage and facilitate frequent testing. Both a test
e file(or files) and an answer file were created. DOS commands
T were then issued from a ".BAT"” file to automatically run a
SCOC test case and verify the results.

J ‘j Test files were constructed for use in the timing studies.
AT The Syntax compiler was timed with one large and one small
o test case, while the microcompiler was timed with a large, a
f{éﬂ e medium, and a small test case for each of the syntax compiler
»2%3 . output files. As it turned out both compilers were much
g faster than predicted, and both compilers could have been
‘-i; - adequately characterized by a single large test case.
A _
»:&: ) The third type of test case was designed to demonstrate the
Y expressive power of the languages that could be supported by
NN the microcompiler. No effort was made to create either a
(il realistic language, or a complete one. But all of the
- different semantic actions supported by the microcompiler are
e exercised, and all of the supported statement types are
D included.
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}} 2.4 Generate Design Requirements.
N e
o In addition to implementing the syntax and semantics of the
. microcompiler, and the syntax compiler languages, several
i:} implementation-specific requirements had to be defined. These
.- were associated with reserved characters, parameter sizing,
e and input/output.
I
"f 2.4.1 Reserving Special Characters
B After identifing certain characters to be used in the
. application language syntax, and others to be used in the
o syntax definition language, the remaining characters were
oo left for inclusion in the application language itself. These
o+ remaining characters could be treated in at least two ways.
, First, each special character could be treated as a separate
S token. Thus, expressions like
a0
v~
[+ REGA = REGB.
-
4(- would be treated identically to
e REGA=REGB.
N
0
.y& where the spaces have been deleted. The second approach would
7. be to treat special characters the same as alphabetic
characters, and thus allow them to be embedded inside a
token. This is commonly the cases with the underscore and is
::g used as an embedded blank as in the following:
' .‘_"'.
T REG_A = REG_B.
)
k We decided to treat all special characters as tokens for
~)‘ Phase I. Phase II will start treating various special
N characters in different ways.
R 3 2.4.2 Sizing Parameters
-"g‘
'..F"‘u
f L Designing software involves a certain amount of defining data
ﬁ’} structures. The microword is an example of a data structure
A that has to be sized. During the microcompiler processing a
To microword is built up by first setting it equal to a default
TS value. Then various fields of the microword are modified as
L

specified by the commanded semantic actions. One obvious
question is "How wide should this microword be?".

‘:ﬁ: There are at least three possible answers to this question.
“{\ First, a dynamic resource allocation scheme could be used.
NN This approach would involve requesting RAM allocation as
~o required from the operating system during run time. With this
i approach there would be no need to know the size of the
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problem in advance, and no limit on problem size would be
imposed by the software. The hardware would limit problem
size. In the event that the software required more RAM than

was available, then the user could simply add more RAM space
to the system.

The second approach simply sets a “"hard-wired" limit into the
software. This approach is especially appropriate when there
is a simple work-around which allows the limits to be
essentially exceeded. For example, the maximum size of a
field might be set at sixteen bits. Thirty two(or more) bits
are easily achieved by breaking a large field up into several
smaller fields.

The third approach is sort of a combination of the preceeding
two. A substantial block of RAM space is reserved in the
software. This RAM is then allocated according to the values
of certain parameters input as part of the application
program. For example, the microword width could be specified
in the application program, and sufficient RAM allocated as
required.

During Phase I, we have used the last two approaches. These
were essentially inherited from the previous design. The
dynamic resource allocation scheme has some tremendous
advantages, but represents a much more difficult programming
task. The dynamic resource allocation scheme has been
postponed and proposed for Phase II.

2.4.3 Input/Output

The input and output interfaces were designed to be
compatible with the existing software, and as simple as
possible. No attempt was made to provide a realistic operator
interface, because the operator interface was considered to
be irrelevant to the Phase I technical objectives.

2.5 Design Syntax Compiler Mods.

An existing LR(1) compiler was modified to provide the syntax
compiler needed for our study.

2.6 Add Diagostic Function.

A diagnostic capability was added in order to help debug the
syntax compiler test cases. Since the syntax compiler was
LR(1), one token look ahead, there was very little difficulty
anticipating the next token and flagging an error if the
token was not supplied. In the event of an error, an attempt
was made to identify the missing token and to indicate on the
listing where it was expected. Occasionally, a neighboring
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location was mistakenly identified, but it was sufficiently
accurate and reliable in order to enable rapid debugging of
the larger test cases.

2.7 Add Syntax File Inversion.

The syntax compiler produced two types of files: syntax and
semantic. The syntax files identify the various acceptable
clauses, while the semantic files describe what semantic
actions to take when each clause is encountered. Thus the
microcompiler engages in a two step process. First a clause
is read and identified, and next the appropriate semantic
actions are taken. When the semantic actions are defined,
they are built up into files which are in the most efficient
form for use by the microcompiler. This is not the same for
the syntax files.

When the syntax files are defined in the syntax compiler,
they are defined in some sense from the top down. The general
forms of the clauses are defined, and then the particulars of
the tokens are supplied later. The microcompiler, on the
other hand, encounters the individual tokens first, and then
must work its way back to identify the basic clause. In this
sense, the syntax files need to be inverted in order for the
microcompiler to run most efficiently.

The inversion process used consisted of first expanding the
packed data structures into arrays. These arrays were
arranged with what was originally the independent variables
in the first columns and the dependent variables in the last
columns. These arrays were then inverted using a “quick
sort", and the old dependent variables became the new
independent variables, etc. The resulting "inverted” arrays
wer2 then packed into the original data strucures to be used
by the microcompiler.

As a final step, the syntax and semantics files were all
packed together, and saved in a disk file. This avoids the
necessity of running the syntax compiler everytime we run the
microcompiler. It did, however, increase the complexity of
the data being passed to the microcompiler (and resulted,
temporarily, in considerable confusion).

Because of the complexity of these inverted data struactures,
it was difficult to verify their accuracy. This was
accomplished by two methods. First, the data structures were
printed out before they were packed into the disk file by the
syntax compiler, and printed out after they were unpacked by
the microcompiler. Second, small cases were inverted and
packed by hand, and verified against the results of a syntax
compiler run.
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2.8 Design Microcompiler Mods.

L) .1.;'34,4‘1 P

] An existing LR(n) compiler was modified to study the

K" microcompiler requirements. We are using the term LR(n) to

S mean a compiler that can perform up to an "n" token

~ look-ahead before parsing a particular sentence. This

e parameter "n" is determined when the “C" source program for
the Syntax Compiler and Microcompiler are themselves

[ 4 compiled.

2.9 Perform Timing Study.

a0

I

7 Our intention for the timing study was to perform a

A parametric analysis which could possibly lead to some speed
enhancing design changes. Our concerns were that the
algorithm's complexity combined with a long test case would
AR result in unacceptable run times. We were also expecting a
non-linear effect in the microcompiler run times to cause
problems for larger test cases and to limit future
applications. Both of these concerns were unfounded.

,"\‘

‘A
fat e
s % G e
]
a -',{,',-,'

soolepy
e

The Syntax Compiler requires only nine seconds for the

) largest test case that we ran. This test case was based on a

R large real world language which includes supporting the AMD

- 29116 chip. Because of the AMD 29116's extreme encoding, it

N represents a "worse case" chip for the purposes of this

z compiler study. Since the Syntax Compiler is so fast, we are
now free to consider various operational concepts for the

~ microcode development system. For example, we could predefine

o the syntax in a separate run from the application program, or

we could recompile the syntax everytime we compile the

application program. Also, defining MACRO's in the

application program is not important when we can define them
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1j-t in the syntax at so little cost in run time.

fﬁj"} The results of the microcode compiler timing study were even
SN, more surprising. For purposes of analysis, the run times were
o displayed at various times during a run. The first time was

associated with the initial processing of the syntax files.
The other two times were associated with the two passes of
the microcompiler. The syntax file "set-up" time was found to
be constant and small. This time was found to be a function
of the maximum parameters of the program, and was insensitive
to syntax program size.

The function of the first phase of the compiler is to define
statement labels and to perform any required semantic
actions. These first-phase actions could be to generate
internal addresses or internal labels, and to perform
processing associated with the block program structures. The
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function of the second phase of the microcompiler is to
7 produce the object code.

We were expecting some non-linearities in run time resulting
from our use of hash tables, and other complex data
. structures. We found no significant non-linear effects. The

times were almost strictly linear functions of the test case
o size.

We were also expecting the microcompiler to run slower than
the state-of-the-art meta-assemblers. This expectation was
based on the complexity of the algorithms and on previous
computer run times for a similiar compiler. Our results show
that the microcompiler is about as fast as the
state-of-the-art meta-assemblers.

te) A_' (S5

A

4

- }l'

Comparing microcompilers in this manner is far from

R scientific. For example, STEP Engineering, Inc. claims "2000
- fields per minute" for their meta-assembler " on small

T machines"” and " over 10,000 fields per minute on larger

- michines(i.e. VAX 11/758)." Without knowning their target
processor, or even what they consider a "small machine® it is
-~ difficult to make a precise comparision. In any case, we

N claim to be compiling over 2308 fields per minute on our

Q IBM/AT.
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$;$ - 3.0 Status of Accomplishments

Lot
Aia During this research period, a full scale prototype was

' specified, designed, and constructed. The purpose of this

~e prototype was to demonstrate the feasibilty of producing a
NN retargetable microcode compiler. At the completion of the
:j: o feasibility study, a complete set of validated algorithms and
A data structures were arrived at for all components of the
% microcode generator.
'ig.ﬁf 3.1 Finalize Language Structure

o,

Al

T A two-stage approach was adopted which used two compilers:
YN the first compiler is used to define the application language

- syntax, and the second compiler is used to compile the

‘ ' application language and produce the micocode object file.
’ﬁi.fj The syntax compiler language was finalized to the extent
:ﬁ . necessary for the feasibilty study, while the application
Ep languages were defined sufficiently to last into Phase III.

The results of this study indicate some possible areas of
improvement in the syntax definition language.

. 3.2 Insert MACRO Capability

l.' ~' .‘. ;
'.‘ ‘.! “' + :
3 hO

T Because of time constraints and in the interest of economy,
- two existing compilers were modified to provide the

: prototypes necessary for this study. One of the major

u requirements, not satified by the existing compilers, was the
Ny requirement to define MACRO's as part of the language
S definition, and to expand these MACRO's during the
S application language compilation. This capability was
successfully included in the feasibilty study microcode
compilers.

ol [
Q;i R 3.3 Optimize Syntax File Data Structures

A

e The syntax compiler data structures were optimized in order
AR to facilitate the operation of the microcompiler. This
pe optimization consisted of the "inversion® of the data
*;3 - structures produced by the syntax compiler. This inversion
Ve was accomplished with the result that the microcode compiler
SR runs much faster than it would otherwise. Without this

S "inversion" the microcode compiler would be considered

*bé .- computationally infeasible.

LAY .Y -

o 3.4 Generate Skeleton Compilers

‘r A -

‘\._"d. .'_‘ . .

:}} - All of the software for the feasibilty study was coded and
i tested. Spe-~ifically, the two existing compilers were

- modified tc process the languages described above, to process
Y a MACRO's defined during the syntax definition, and to use the
K
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optimized syntax file data structures for enhanced speed.

3.5 Perform Timing Study

In addition to the usual testing to eliminate programming
errors, the software was thoroughly characterized by a timin;
study. The focus of this study was to determine those test
case parameters which could be 1ncreased to cause the program
to fail through computational infeasibility.

3.6 Future Enhancements

Considerable progress has been made toward defining the
capabilities necessary for the next phase of this project.
Requirements have been generated for the modification of the
syntax definition language which will allow the use of a
wider range of semantic actions. The microcompiler will be
redesigned to reflect our new understanding of the
microcompliler as an engine for executing semantic actions.
The speed of the microcompiler 1s sufficient that 1t can be
“traded off" for complexity of the internal data structures,
which could result in the program being able to handle much
larger and more complicated problems.

4.0 Conclusions and Recommendations
4.1 Conclusions

A new and powerful approach to microcode development has been
investigated at PENGUIN Software, Inc. under the contract
DAAD19-86-C-0008 sponsored by White Sands Missile Range. This
approach has required the development of two prototype
compilers. The first compiler is used to design a
machine-dependent language for a particular target machine.
The definition of this language 1s contained in a syntax and
semantic definition file. This syntax file 1s 1inverted and
input to the microcompiler. The microcode compiler 1s used to
convert application program source code 1nto object file
microcode.

4.1.1 Tasks Completed and Objectives Attained.

All proposed tasks have been completed and all technical
objectives have been attained resulting a demonstration of
the feasibilty of our proposed approach.

4.1.2 Low Risk Approach

After running several test cases during the software debug,
software validation, and timing study, we have gained
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considerable confidence not only in the correctness of the
software but also in the validity of our approach. This being
a new approach, 1t had several conjectured disadvantages. We
have found that there are indeed no undeveloped algorithms
waliting to trip us up, and there appears to be a
straightforward way to proceed from here to a full up working
production-quality microcode development system.

4.1.3 High Speed

In the real world, program speed is certainly an important
1ssue. We were concerned that the microcode compiler would be
non-competitive with state-of-the-arrt microcode development
systems because of the added algorithm complexity. Our
approach involved using proprietary algorithms and data
structures developed here at PENGUIN SOFTWARE, Inc. over the
past five years. The result 1is that the microcompiler runs in
times mcre than competitive with existing meta-assemblers.

4.1.4 Graceful Degradation

All commercially successfull meta-assemblers have at least
one capability 1n common: This 1s the ability to support any
machine that may be designed. Using the traditional approach,
this 18 not the case with microcode compilers. It is easy to
envision target machine designs that would render a
traditional microcode compller useless. The complexity and
senslitivity of the resource allocation schemes and the
microcode compaction algorithms leave these compilers
extremely vulnerable to total failure. For example, no
resource allocation schemes have been even proposed which can
nandle the extreme erncoding of the AMD-29116.

with our approach, a situation i1nvolving total failure due to
target machine complexity 18 avoided. In the worst cases, the
high-level language supported will fail to meet user
expectations with respect to the level of the language. In
this case the greatest concern has to do with how
successfully low level hardware design features can be
incorporated i1nto a high level language. This 1s a small
1ssue compared to a case were the microcode compiler simply
no longer works.

4.2 Recommendations

The following recommendations have been essentially presented
in the Phase 11 proposal. Below we are attempting to give
perhaps a little more 1nsight 1nto why these actions were

proposed.

4.2.1 Semantic Action Engine
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The original concept for the microcode compiler involved
thinking of the compiler as simply outputting field values to
be inserted into the microprogram object file. This works
well for an application language at the level of an assembly
language, but fails to attain what we usually think of as a
high-level language capability. As more high-level
capabilities are included it becomes necessary for the syntax
compiler to command different types of semantic actions and
equally necessary for the microcompiler to perform them. We
now think of the microcode compiler as an engine for
performing semantic actions rather than just in terms of
generating field values.

This shift in thinking results in some obvious changes in the
semantics data file being produced by the syntax compiler,
but the changes in the microcompiler are perhaps more
profound. With an assembly level language, the first pass of
our compiler just needed to determine statement labels and
addresses. In order to attain a high-level language
capabilty, we needed to completely compile each statement
during both the first and second passes. Since this
capability was not exercised in the original design, our
current prototype has a substantial amount of kludged
software. This software must be redesigned to reflect our new
understanding of the problem.

One of the advantages of this software redesign is that the
compiler will become extremely flexible with regard to which
semantlic actions are possible. As new language structures are
envisioned, they can be easily incorporated into the new
design without a significant loss of reliability and without
sacrificing sound software engineering principles.

4.2.2 Intermediate Language

Once we have conceptually established the microcompiler as an
engine for performing semantic actions, then it becomes a
simple matter for the microcompiler to output strings of text
in response to an application language statement. In this
case, the text strings will be HALE meta-assmbly language
source code which will go into an intermediate language
output file. This simple approach allows full access to the
HILEVEL Technology microcode development system resources at
an extremely low cost.

4.2.3 Speed Becomes a Resource

The results ~»f the timing study were somewhat suprising; the
microcode « apller is much faster than expected. Speed now
becomes a resource which we can use in future design

24

S e L - .
N, ’ e,

et
e e,

R . e N ..
A e e a S a Caatata e e




-

ll'l
-.‘

Y

.r
]

~|’ \f

v, vp e
e
Po gt e “
» )

el L

v —— R Rl W T—— -

“trade-offs”. OUne "trade-off", 1in particular, 1nvoives using
more complicated algorithms (which will reduce speed) 1in
order to 1ncrease the si1ze of the problems that can be
handled by the microcompller. This may allow us to use a more
natural approach to cascadeable microprocessors than might
otherwise be possible. Another "trade-off"” might be made on
the operational level where the operator may choose to always
run the syntax compiler with the microcompiler, perhaps as a
preprocessor. A third possiblity 1s that we may eventually
incorporate a local code compaction algorithm in the
microcompiler. This would be used to improve the efficiency
of the microcode and would allow the use of less skilled
application programmers.
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Al.O SYNTAX CHARTS

Syntax charts are an easy way tC communicate the structure of
a computer language. Aside from being mostly self
explanatory, they are a valuable programming tool. The
software design wi1ll consist to a large extent of attaching
semantlc actions to the various paths in the syntax charts.
The coding phase consists of generating structured code toO
reflect the required semantic actions.

An application program 1s defined by starting with a root

syntax chart and repeatly applying the other syntax charts as
required until all nonterminals are eliminated.

A2.0 SYNTAX CHART SYMBOL DEFINITIONS

1. Circles and ellipses contain terminals. These terminals
are sequences of symbols which appear as tokens in the

programs. Each program is written entirely in terms of these
terminal tokens.

2. Rectangles contain nonterminals. Each nonterminal is
identified by a name(in capital letters). This name
identifies the syntax chart which will define the
nonterminal.

3. Lines and arrows indicate the legitimate paths through the
charts. By following all possible paths along the lines in
the directions of the arrows, all possible legal statements
can be generated.

A3.9 SYNTAX CHART EXPRESSION DEFINITIONS

l. string: A string is a sequence of letters, and digits. A
string can also be a single special character. A string used
as a terminal usually refers to a token which will be defined
by the application programmer.

2. SINGLE QUOTES: Single quotes are used to enclose a

paticular string which must appear in the program at the
specified location.

3. A-string: An A-string is a string composed of letters and
digits which starts with a letter.

4. comment: An arbitruary string of characters which are
treated as white space.

5. white space: White space consists of blanks, tabs, and
comments. These have no semantic meaning other than to mark
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; the end of a token or string. Although New Lines sometimes

have semantic meaning, they can also be used to generate
whlite space.

oJad )

‘ 6. single letter: A special string consisting of one letter.

7. *** name: A name assigned to some data structure.

Ce,

8. 1nteger: A decimal integer unless specified otherwise.

1

[
-l

v 9. HEX 1integer: A hexidecimal integer.

10. NL: A New LIne 1is equivalent to a line feed, carriage
z return inserted at the end of a line of text.

| PV

11. EOF: An End of File mark at the end of a computer file.

- A4.0 APPLICATION PROGRAM SYNTAX CHARTS

1. PROGRAM(Fig. A.l): This is the application program root
syntax chart. It shows the basic structure of the application
. program, and all of the pseudo-operations(pseudo-ops). Every
- program will start with a 'WIDTH' pseudo-op to define the
microprogram word width, and every program will end with the
"END' pseudo-op. The other pseudo-op's and program sentences
- are used as required by the particular application program.

e,

2. SENTENCE(Fig. A-2): The sentence is the application
program statement which defines the microword. Each sentence
requires a period: this is the only required part of the

[ gt et )
oo

v

N
i 3 vy

. sentence. From the period to the end of the line defines the !
N comment. A sentence consisting of just a comment, and no
clauses will not advance the program counter. In other words, 1
it does not generate a microword of output just a comment in fq
. the output listing.
2 In order to generate a micrword, the sentence must include at '3
. least one clause. Each sentence can contain TBD clauses Bl
separated by semicolons and with the last clause followed by
the period. A sentence containing at least one clause can be =

.i 'l N

labeled. This label is assigned the value of the program
counter associated with the sentence.

AN

3. LABEL(Fig. A-3): The label is identified by an A-string
followed by a colon.

4. CLAUSE(F1g. A-4): The clause is an ordered sequence of
strings as defined in the syntax compiler. While the strings
within a clause are ordered, the clauses themselves can be in
any order.

[APRLSE SRR ¢
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5. WIDTH(Fig. A-5): The 'WIDTH' of the microword is the
number of bits in the microword. This pseudo-op is required
and must be the first to appear in any application program.

6. END(Fig. A-6): The 'END' identifies the end of the
application program and is required.

7. ORIGIN(Fig. A-7): The 'ORIGIN' pseudo-op is used to set
the program counter to some desired location. This allows the
programmer to control where the microcode will be located.

8. TITLE(Fig. A-8): The 'TITLE' pseudo-op is used to
determine the title to appear at the top of the output
listings. The title can be changed at any time and will
appear at the top of the suceeding listing pages.

9. SUBTITLE(Fig. A-9): The 'SUBTITLE' pseudo-op is similiar
to the 'TITLE' in that it generates a subtitle which appears
on the second line of each page.

19. RADIX(Fig. A-190): The 'RADIX' defines the operative
radix. Any number not having a specified radix will be
interpreted with regard to the operative radix. The possible
radices are binary('BIN'), octal('OCT'), decimal('DEC'), and
hexidecimal('HEX').

11. DEFAULT(Fig. A~11): Bit locations in a microword which
are not specified by a clause will be assigned a default
value as defined by the ‘'DEFAULT' pseudo-op. This pseudo-op
requires a hexidecimal integer operand.

12. PAGE(Fig. A-12): The 'PAGE' pseudo-op is used to force a
page eject.

AS5.0 SYNTAX DEFINITION PROGRAM SYNTAX CHARTS

1. SYNTAX-DEF(Fig. A-13): This is the root of the syntax
definition program. First, the microword is divided up into
fields which usually correspond to various functions and
resources to be controlled. The CLAUSE's, LIST's, and
LITERAL's are used to define the application language.
Finally, the program is terminated when an End-of-File mark
is encountered.

During the phase I effort, the syntax compiler merely exists
to generate test cases for the microcompiler. As a
consequence, the syntax compiler was constructed with the
minimum of pseudo-op's and features.

2. FIELDS(Fiy. A-14): The bits in the microword are numbered
from right to left and from one to n ( where n is the length

A-3
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:: of tbe microyord). A microword i§ typically divided up into
N contiguous bit fields corresponding to the various resources
P to be controlled. 'FIELDS' starts the field definition and is
followed by left and right curley brackets which enclose the
SO field definitions.
o 3. FIELD-DEF(Fig. A-15): A field is defined by giving it a
2 name and specifying the bits in the field. In the case of a
Wi one bit field, it is only necessary to specify the one bit.
) For fields with more than one bit, then the number of the
ﬁf left bit and the number of the right bit are specified.
AY
‘iQ 4. FIELD~NAME(Fig. A-16): The field name consists of a single
e letter followed by an integer.
oo
5. LIT-STRING(Fig. A-17): The literal string (or series of
) strings) is a string enclosed in double goutes. This is used
- to specify a particular string (or strings) that must always
;§$ appear in a given position of the clause.
1]
‘Y 6. CLAUSE(Fig. A-18): CLAUSE is followed by a definition of
?‘ the tokens in the clause and then possibly by some semantic
e actions to be performed. There are four ways to define the
«j tokens appearing in the clause. They are by specifying:
.:j a) a literal string(LIT-STRING).
b) a literal(LIT-NAME).
Eif c) a list name(list-name).
e d) a dimensioned list column(DLIST COL).
> -
\e 7. LIT-NAME(Fig. A-19): A literal name consists of the word
- LITERAL followed by an integer enclosed in parentheses.
‘ﬁi 8. DLIST-COL(Fig. A-28): A particular column in a dimensioned ]
N list is identified by the list name followed by parentheses
;* containing the integer associated with the required column.
’fi 9. C-FIELD-VAL(Fig. A-21): C-FIELD-VAL is similiar to ‘
ox L-FIELD~-VAL with the addition of the LBL field command and
Lo five commands to the microcompiler. The LBL command tells the
L. microcompiler to get the address associated with the
’- internally generated label for this instruction. This address
o is then truncated or right justified and zero filled on the
oy left as required for the specified field. The literal thus
D obtained is rotated if necessary as specified by the integer
x} enclosed in the parentheses following the LBL command.
N -
A7
" The microcompiler commands used to generate -the internally
o
3
L
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generated labels and addresses are as follows:

l a) 'PPA' causes an address to be popped off the stack, and
causes a label to be generated. This address is then
associated with this new label.

2 b) 'PPL' causes a label to be popped off the stack, and
associated with the current microaddress.

& c) 'PHA' causes the current microaddress to be pushed onto
s the stack.

- d) 'PHL' causes a label to be generated and pushed onto
" the stack.

e) 'SWP' causes the top two entries in the stack to be
swapped.

1¢. LIST(Fig. A-22): The LIST pseudo-op is used to define

=2 simple lists and dimensioned lists. Both lists consist of the
‘ a name of the list and a list definition. The dimensioned list
names are of the form defined in DLIST.

1

v

2r¢

11. DLIST(Fig. A-23): The dimensioned list name is followed
by parentheses. These enclose integers associated with the
multiple columns(possibly one) in the dimensioned list.

L N

12. LIST-DEF(Fig. A-24): A simple list definition is enclosed
in curley brackets. Each token in the list is followed by the
associated field values. The token and field value parts are
separated by semicolons.

- 13. L-FIELD-VAL(Fig. A-25): The field value definitions are
L. enclosed in square brackets. A field name is separated from
the HEX value to be inserted in that field by a back slash.
o If more than one field value is to be inserted, then the
SR field name\value pairs are separated by semicolons.

14. DLIST-DEF(Fig. A-26): The dimensioned list consists of
< columns of tokens (separated by commas) followed by the
L associated field values. Multiple rows are separated by

' semicolons.

‘ 15. LITERAL(Fig. A-27): A literal definition consists of a
literal name and a formula for determining the fields and
values to be inserted.

S 16. LIT-VAL(Fig. A-28): The formula for determining the

fields and values is enclosed in square brackets. A field
' name is followed by a back slash and then by one of three
. possible ways to define the value to be inserted into the
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specified field. These three ways are:

a) As in L-FIELD-VAL, a hex integer to be inserted into
the specified field.

dut

b) A literal number (a constant or a value associated with
a label) is right justified and zero filled or truncated on .
the left as required.

hig

c) First a literal number is conditioned as above in b)
and then it is rotated by n bits to the right where n is the
integer enclosed in parentheses following ROR.

cadd
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SAMPLE TEST CASE

APPENDIX B
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FILENAME AMDSRC.MIN

. THIS IS A TEST PROGRAM FOR THE MICRO COMPILER
. BASED ON THE AMD PROGRAM

> WIDTH 32
TITLE AMD ONE'S COUNTING PROGAM
. STITLE SEE PAGE 4-24 AM29090 FAMILY DATA BOOK
* DEFAULT 02100000
X ORIGIN 2
. ﬁ . INITIALIZE DATA REGISTERS
. . RO = 15.
LR Rl = 9.
- R2 = @.
:kQ . INITIALIZE BIT COUNTER AND TOTAL
4 .

CNTR = 4.
TOTAL = @.

. COUNT ONES

n REPEAT.
n IF(RG(SRA) IS ODD) CALL UPTOTAL.
- IF(R1(SRA) IS ODD) CALL UPTOTAL.
IF(R2(SRA) IS ODD) CALL UPTOTAL.
UNTIL(DEC(CNTR) = ZERO).

. . LOCP WHILE OUTPUTTING TOTAL

) REPEAT.
n OUTPUT TOTAL;
- UNTIL(FOREVER) .

. ROUTINE INCREMENTS ONES COUNTER

UPTOTAL: ROUTINE;
INC(TOTAL) ;

- RETURN.

o END

R
.. ..... -. - __-’
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filename AMDTEST.SRC
This is a test file for the syntacts generator

Set the word width to 32 bits
WIDTH 32

Define the fields of the microword

FIELDS {
X1(32,29) . Branch address
X2(28,25) . Next instruction
X3(24) . Mux 1
X4(23,21) . Destination Control
X5(20) . Mux @ s
X6(19,17) . Source selection ,
X7(16) . Cn
X8(15,13) . ALU X
X9(12,9) . A Source 4
X10(8,5) . B Source >
| X11(4,1) . D Source -
LIST IFCON(1,2) = { '
IFNOT,ZERO[X2\0];
IFNOT,OVER[X2\E];

IF,ZERO[X2\C];
IF,F3[X2\D];
: 1F,C4[X2\F]
LIST MCSl = {
CONT[X2\2];
RETURN[X2\6]; 3
PUSH[X2\9]; '
| poP[Xx2\A]
LITERAL(1l) = [X1\LIT] i
LIST MCcS2 = { )
ZERO[Xx2\8];
C4[X2\B]
}
LIST ABREGS(1l) = {
RO[X18\@;X9\@]:;
R1[X10\1;:;x9\1];
R2[{X10\2:;x9\2];
TOTAL[X18\3;x9\3]; by
CNTR[X18\4;:;x9\4]; :
R5[X10\5;%x9\5]:
R6[X10\6;X9\6];
R7[X18\7:x9\7]:
R8[X10\8:;X9\8]:
RO[X10\9:x9\9];
R1O(X10\A;X9\A];
R11[X18\B;x9\B];
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LIST BREGS(1) = {

}

LIST CREGS = {

}
CLAUSE
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R12[(X1@\C;x9\C];
R13[X19\D;X9\D];
R14[X10\E;X9\E]:
RIS[X10\F;X9\F]

ROLX10\0];
R1[{X10\1];
R2[X18\2]:
TOTAL[X10\3];
CNTR(X10\41];
R5[X10\5];
R6[X10\6];
R7[X10\7];
R8[{X10\8];
RO[X10\9];
R1G[X18\A];
R11[X18\B];
R12(X1@8\C]:
R13[X1@\D];
R14[X1G\E];
R15[X1@\F]

RO[X19\@;X9\@1[X10\@];
RI[X1Q\1;:X9\1][X10\1];
R2[X102\2;x9\2][X12\2];
TOTALLX108\3;X9\3][Xx12\3];
CNTR[X10\4:X9\41[X10\4];
RS[X18\5;X9\5][X10\5];
R6[(X108\6:X9\6]1(X18\6];
R7[X10\7;x9\7]1[X12\7];
R8(X10\8;x9\8][X1@\8];
RO[X106\9:X9\91[X10\29];
R1G[X10\A;X9\AJ[X12\A];
R11[X12\B;X9\B][X12\B];
R12[X1@\C;X9\c][x10\C];
R13[X19\D;X9\DJ[X18\D];
R14[X10\E;X9\E]J[X10\E];
R15[X18\F;X9\F1(X10\F]

{BREGS(1) "=" LITERAL(2)}[X4\3:X6\7;x8\3]

LITERAL(2) = [X11\LIT]
LITERAL(3) = [J[X1\LIT]

CLAUSE
CLAUSE
CLAUSE
CLAUSE
CLAUSE
CLAUSE
CLAUSE

{ABREGS(1) "AND" LITERAL(2)}[X6\5:X8\4]

{BREGS(1) "OR" LITERAL(2)}(X6\3:;x8\3]

{BREGS(1) "=" BREGS(1l) "+" "ONE" }[X4\3;X6\3;X7\1:X8\3]
{"INC(" BREGS(1) ")"}[Xx4\3;X6\3;X7\1:X8\@]

{IFC™N(1) IFCON(2) "GOTO" LITERAL(1)]}

{ MCs. }

{"GOSUB" LITERAL(1)}[X2\5])

jv-3

......................................
.............
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CLAUSE {"CALL" LITERAL(1)}[X2\5]
CLAUSE {"GOTO" LITERAL(1)}[x2\1]
CLAUSE {"GOTO" "SWITCH"}[X2\3]
{
{

' XA

CLAUSE {"GOTO" "FILE"}[X2\7]

CLAUSE {"IFNOT" "“ZERO" "GOSUB" LITERAL(1)}[X2\4]

CLAUSE {"IF" MCS2 "END" "“LOOP" "“AND" "POP"}

CLAUSE {BREGS(1) "=" BREGS(l) "-" “ONE"}[X4\3:X6\3:X7\@:X8\1]
CLAUSE {"DEC(" BREGS(1l) ")"}[X4\3;X6\3:X7\@;x8\1] )
‘ CLAUSE {BREGS(1) "=" "SRA" BREGS(1)}[X4\5;X6\3;X8\3]

: CLAUSE {"SRA(" BREGS(1l) ")"}[X4\5:X6\3:X8\3]

PR,

2
L e e T’

(. CLAUSE {"REPEAT"}[PHA]

N CLAUSE {"UNTIL(FOREVER)"}[PPA;X2\1;X1\LBL]
- CLAUSE {"ROUTINE"}

i CLAUSE {"OUTPUT" BREGS(1)}[X6\3:X8\3;X11\0]
" CLAUSE {"UNTIL(DEC("BREGS(1l)")=ZERO)"}

. [X4\3:X6\3;:X7\0;X8\1][PPA;X2\@;X1\LBL]

Al CLAUSE {"IF(" CREGS "(SRA) IS ODD)GOSUB" LITERAL(3)}

- [x6\5:%X8\4;X11\1]1[X2\4:X4\5;X6\3;X8\3]

. CLAUSE {"IF(" CREGS "(SRA) IS ODD)CALL" LITERAL(3)}

. [x6\5:;X8\4;X11\1][X2\4;:X4\5;X6\3;X8\3] 4
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Cl.9 Design requirements

In addition to the syntax charts, certain other design
requirements were identified. The following requirements were
derived based on the initial interviews and based on the
designs of the compilers that were to be modified.

The reserved characters naturally fell into three categories:
reserved for the microcompiler; reserved for the syntax
compiler; and not reserved. The microcompiler has the
following three reserved characters: the period ".", the
colon “:", and the semicolon "“;". The syntax compiler has the
following five reserved characters: "“[", "], "“\", "{", "}".
The remaining characters are not reserved and are available

to be included in the definition of the application language.

As it turned out, most parameters were used by both
compilers. These parameters were defined to be greater than
twice the size of the largest test case.

Parameter Parameter Parameter

Name Value Definition

____________ r___—__..__..._—____r__—___...____...-_______

MAXCOL 4 max cols in list

MAXLEN 20 max length of input string
MAXCLS 200 max clause definitions
MAXLIT 8 max literal definitions
MAXLST 90 max list definitions
MAXFLD 5¢ max fields

MAXSTR 400 max strings

MAXLNG 9 max token length + 1
MXTPC 10 max tokens per clause
MXCPS 19 max clauses per sentence
MAXLAB 1000 max labels

MAXWID 132 max microword width

AFPL 3 average fields per list
ARPL 8 average rows per list
ACPL 2 average columns per list
AFPT 2 average fields per literal
ATPC 5 average tokens per clause
AFPC 2 average fields per clause
STHSHSIZ 128 string hash table size
HASHSIZE 32 label hash table size

l‘ ..t -. l“ .. M ~“ - -.'-.‘ - B .- - - - . ..' N A. . >~. : - .
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FILENAME: SYNMAN.PDL

This is the main driver for the syntacts generator.

main()

{

initialize for phase 1

N synpar ()
r. initialize for phase 2
b synpar ()

invert syntax tables
output data and listing
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o FILENAME: SYNPAR.PDL

} This the parser for the syntacts generator.
\-.

:f synpar()
b {

~ TOKEN = NEXT_ TOKEN
. - DO {

SWITCH(TOKEN) {

o CASE FIELD: sfield()
N BREAK
-~ CASE CLAUSE: sclaus()

- BREAK
{‘ CASE LIST: slist()
e BREAK

7 CASE LITERAL: slit()
-~ BREAK ’
N CASE EOF: return

o CASE PAGE: eject page
: BREAK ‘
Sy default: report error
‘ON BREAK
K.Y - }
R } WHILE(FOREVER)
o }
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:.-:. FILENAME: SFIELD.PDL
e
. l This function handles all field definitions.
L sfield()
G {
bl token = next token
PR if(token ne T{'){
: report error
.y * return
o Ga
o token = next_token
s if(token is not a letter){
ti - report error
y - return
- }
4;3.? field letter = token
e do {
KON if(phase = 1) {
S if(too many fields) {
5 g report error
(?{ return
\j::'.: } }
A
e T token = next_ token
- if(token is not a number) {
Bt u report error
; return
~ - }
ORI if(phase = 1) {
.ﬁzﬁl} field number = token
e if(field already defined) {
report error
f? [, return
'.:"t T }
w )
Lo token = next token
b if(token ne T(') {
i report error
Soger RN return
el }
;ﬁk a token = next token
NI if(token is not a number) {
NN report error
= return
o }
-
RSN if(phase = 1) field start=token
e token = next token
-~ if(token ne ',') {
N if(token ne ')') {
' a report error
i

J':' =3
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return
}
field stop = field start
}
else |
token = next token
if(token is not a number) {
report error
return

}

if(phase = 1) field stop=token

token = next token
| —
if{token ne ')') {
report error
return
}
if(phase = 1) {
if(field too big) {
report error
return
}
if(field reversed) {
report error
return
}
field let[ fortot]
field num( fortot]

}

token = next token

if(token is a letter) field letter

} while(token is a letter)
if(token ne '}') {
report error
return
}
token = next token
return

field letter
field number
field strt{fortot] = field start
field stp(fortot++] = field stop

.......
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FILENAME: SCLAUS.PDL
This function handles all clause definitions.

clause()
{
errstr=FALSE
IF(phase = 2) {
IF(too many clauses) {
report error
return
}
initialize clspnt(temporary clause definition pointer)
} initialize cfpntr(clause fields definition pointer |
token = next token !
IF(token ne "{') {
report error
return
}
token = next token
IF(token = 'J') {
report error
return
}
DO {
SWITCH(toktype) {
CASE LITERAL: {
token = next token
IF(token ne ‘(') {
report error
return
}
token = next token
IF(token ne number) {
report error
| return
IF(phase = 2) {
IF(literal undefined) {
report error
return

}
clspnt = clspnt + 1
cls def[clspnt]=-(literal number)-1
clspnt = clspnt + 1
cls def[clspnt++]=-1
}
token = next token
IF(token ne 7)') {
report error



!
)
L4
oy
e | return
:“ token = next token y
_ SWITCH( token) {
o CASE LITERAL: BREAK
o CASE STRING: BREAK
- CASE QOUTES: BREAK
- CASE '}': BREAK
R DEFAULT: report error
return
b }
o BREAK
et }
Y CASE STRING: {
- IF(phase = 2) {
] tmpstr = token
N decnum=0
- }
o token = next token
‘il SWITCH(token) {
N CASE '(': { '
[ token = next_token
N IF(token ne number) {
- report error
o } return
~ ELSE {
, IF{phase = 2) {
. decnum = token
o IF(decnum<=0) {
- report error
> return
v }
) }

token = next token
IF(token ne ")') {
report error
return
}
}
token = next token
BREAK B
}
CASE LITERAL: BREAK
CASE STRING: BREAK
CASE QOUTES: BREAK
CASE '}': BREAK

DEFAULT: report error
return
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IF(list undefined) {
report error
return

}
clspnt = clspnt + 1
cls def[clspnt]=list number-MAXLST-MAXLIT-1
clspnt = clspnt + 1
| cls_def([clspnt]=decnum
} BREAK
CASE QOUTES: {
token = next token
IF(token==QOTTK) {
report error
return
}
while(toktype ne '"') {
IF(phase = 2) {
clspnt = clspnt + 1
cls_def[clspnt]=string number
clspnt = clspnt + 1
} cls_def(clspnt]=-1
| token = next token
token = next token
SWITCH(token) {
CASE LITERAL: BREAK
CASE STRING: BREAK
CASE QOUTES: BREAK
CASE '}': BREAK
DEFAULT: report error
return
}
BREAK
}
DEFAULT: {
report error
return
}
}
} WHILE(toktype ne '}')
token = next token
SWITCH(token) {
CASE PAGE: BREAK
CASE EOF: BREAK
CASE FIELDS: BREAK
CASE CLAUSE: BREAK
CASE LIST: BREAK
CASE LITERAL: BREAK
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. CASE '[': { o
. IF(phase = 2) cfield(TRUE) -
ELSE cfield(FALSE)
BREAK ;a
DEFAULT: {
report error
return

}
}
IF(phase = 2) { "

update cdpntr clspnt-1
update clstot = clstot + 1
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return
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FILENAME: SLIST.PDL

This function handles all list definitions.

slist()
{
IF(phaseno==1) {
IF(too many lists) {
report error
return
}
}
token = next token
IF(token is not a string) {
report error
return
}
IF(phase = 1) {
IF(list already defined) {
report error
return
}
define list
initialize lpnt(temporary pointer into lstaray)
initialize lstdp(pointer into list def)
initialize lstfdp(pointer into lstfpp)
initialize itemp(temporary list dimension counter)

}

token = next token
IF(token = '(') {
do {

token = next_token
IF(token is not a number) {
report error
return
}
IF(phase = 1) {
itemp = itemp + 1
lstaray[lpnt] = lstaray[lpnt] + 1
lstaray[lpnt+itemp] = token
}
token = next_ token
while(token = ', ")
IF(toktype ne ')') {
report error
return
}
token = next token
}
IF(phase = 1) {

IF((listdim=lstaray[lpnt]) = @) listdim = listdim + 1

IDERR!
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lstpnt[lstnum]=lpnt+itemp

IF(toktype ne '=') {
report error
return
}
token = next token
IF(token ne "{') {
report error
return
}
do {
colcnt=0@
do {
token = next token
IF(token is not a string) {
report error
return
}
IF(phase = 1) {
IF(colcnt <MAXCOL) {
lstdtmpfcolcnt]

= string number of token
colcnt = colent + 1

}
ELSE {
report error
return
}
}
token = next token
} while(token = 7,"')
IF(toktype ne '[') {
report error
return

IF(phase = 1) {
IF(colcnt ne listdim) |
report error
return

}
lstdp[lstnum]=1stdp[lstnum]+listdim
move data to list def from lstdtmp

initialize lstfpp(pointer into lswfdp)
1field(TRUE) 3

R
.

}
ELSE {
1field(FALSE) )
} ]
} while(toktype = ';') )
IF(toktype ne '}') { .
report error Q




return
}
token = next token
return -
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FILENAME: SLIT.PDL
This function handles the definition of all literals.

slit()
{

token = next token
IF(token ne "(') |
report error
return
}
token = next token
IF(token is not a number) {
report error

return
}
IF(phase = 1) numlit = token
token = next token

IF(token ne ')') {
report error
return
}
IF(phase = 1) {
IF(literal is already defined) {
report error
return
}
IF(too many literals) |
report error
return {
} 9

define literal

}
token = next token 1
IF(token ne '=') {
report error
return 1
} _1
token = next token
IF(token ne '[') {
report error
return

}

initialize ldpntr[littot]

initialize 1ltdftot = ltwpntr[ldpntr{littot]]
do {

ik calmled

do { .
token = next token
IF(token s not a letter) {
IF(token ne ']') {
report error

.
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. return

. g:LSE {

token = next token
IF(token 1s not a number) |
report error

return
}
L. IF(phase = 1) |
: IF(f1eld i1s undefined) |{
report error
. return
A }
) j
token = next token
) IF{token ne ":') |
g report error
return
g }
é token = next token

IF(token 1s a HEX number) {

. IF(phase = 1) {

- ltdftot++

lit def(itdftot++]=f1eld number
lit def[ltdftot])= hex number

}
u token = next token
}
. ELSE {
: IF(token = LTTTK) f{
IF(phase = 1) {
ltdfrot++
lit def[ltdf-ot++]=-numfor-1
lit:def[ltdftot]=0

o

}
o token = next token
I, } -
ELSE |
- IF(token = ROR) |
. token = next token
: IF(toker. ne '(') |
. report error
7 return
> }
token = next token
IF(token ne number) f{
report error
return
. }
". IF(phase = 1) ltlnum=atoi(token)
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toKen = rext Roe
FISE
repors err
ret . rr-.
J
\
!
}
] whilet(toxkern = '
IF(token ne 'J]') |
report error
returrn
}
IF(phase = 1) {
update ldontrllitsot]
update ltwpntr[lidpntrlii1ssot ) = P
}
token = next token
} while(token = "[';
IF(phase = 1) littos = li1ttor + |

return
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FLIOENAME: CFIBRL Lb
This function nandles Ll clalse oot ter oot
ctreldistcrefe)
+

IF{storeff)

tnitlalleze foutsowpntrl crprer . LSt
}
M i

TUKen = rext *ooKe!

SWITUH(token)

CASE PHA: LI LT s - =MAE L
PPN - l‘
toKern = lext towe!
i REAR

ASE PP : LIorT o = e MAKE .
toar =
CUKeI L Lext * wer
B REAK

ASE FHI NEERS g — d=MANEL
NESEDS AT
toaKes TS S AR N
HEEAF

CASE PpRAc: 1form = - g=MAXE!
sroumo= 8
toker. = next tuKke:
HEEAR

CASE Swhe 1frrm 5 R MAXE T
inum o= @
tokern - Lext s «er

BREAF
LET {
flert = < rer.
tokern = rext toser,
IF(token 1s rot a
report error
retur:,

3

}

fnum = tuken

IF(fi1eld :s
*

report error
returt,
}
g token = next toker

. IF(token ne )
e .eport error
= return

A }

e .' token

next toker
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IF(toxken = a HEX rumber) |
inum = toxKen
token = next token
ELSE {

IF(token 1s not a label) |
report error

return
}
ELSE
1form = -1form-1
inum = o
token = next token
IF(token = ') ') {
oken = next token
IF(token ne number) {
report error
return
}
1num = token
token = next tokea
IF(token ne ")') |
report error
return
}
roken = next token
}
}
}
HREAK
CASE ']t { {
storef = FA[SFE
HREAK ‘
} h
LEFAULT: report error
return X
| 4
IF(storef) |
frot = frot + ]

vls fli4 deflfrtot]
frot = frot + |
cls fld def[ftot] = 1num

1form

1

} WHILE(token = '; ')
IF{token ne '1') {
. report error
e return
: }
. fpntr(clstot] = cfpntriclstot} + 1

Wt ~wpntrlcfpntr(clstot]] = ftot ‘
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FILENAME: FIELD.PIL
N This functiorn handles all list field definitions.

- lfield(storef)

N t

~

b(storef) |

N ttemp = lstfpp[lstfdp[lsttot-1]]
initialize lswfdplitemp+l] = lswfdp(litemp]
initialize ftot = lswfdplitemp+l]

Do
token = next token
IF(token 1s not a letter) |
IF(token ne 'J') |
report error
return

}
ELSE
token = next token
IF(token 1s not a number) {
report error
return

R 7 0 el

}
IF(storef) |
IF(field is undefined) |
report error
return <
} N
}

token = next token
[F{token ne '\'){

report error

return
} -
token = next token 3
IF(token 1s not a HEX number) {

report error

return

ALY

.« 8

}
IF(storef) |
ftot = ftot + 1
lst fl1d def[ftot]
= ftot = ftot + 1
- lst fld def[ftot]

n
—

token

} -
- token = next token

by }
] WHILE(token )
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'.::" '.: ' + 3 i
e IF(token ne ']') {
" report error

N . return
. }

N IF(storef) |
N 1 = ++lstfppllstfdpllsttot-1]]
lswfdp{i] = ftot

' }

v token = next token
oy L JWHILE(token = ‘')
K return
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FILENAME: MAIN.PDL N

This 1s the main driver for the microcode compller. -

rain{)
{ i
lodtab() R
initialize for phase 1
parse()
1nitlalize for phase 2 R
parse() S
exiti)
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FILENAME: LODTAB.PDL

This function loads the syntax tables.

lodtab()
cdpntr = clause definition pointer
cdef = clause definition array
lsttot = total number of lists
lstpnt = lstaray pointer
lstaray = (#dims,dim#,dim#, ...,d1m#)
lstdp = ldefp pointer
ldefp = array of strings in lists
cfpntr = cwpntr pointer
cwpntr = cfld pointer
cfld = array of fields for clauses
littot = total number of literal defs

litdp = ltwpntr pointer

ltwpntr = litdef pointer

litdef = array of fields for literals
lstfdp lstffp pointer

lstffp = 1f14d pointer

1fld = array of fields by list row
fortot = total number of formats
format definitions

string symbol tables

l2cp = list to clause pointer
12¢ = 1list to clause array
s2cp = string to clause pointer
$2C = string to clause array
s2lp = string to list pointer
s21 = string to list array
clstot = total number of clauses
return

}
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FILENAME: PARSE.PDL

parse()

parser for the microcode compiler.

token = next_token

DO {
SWITCH(token)
CASE STRING:
CASE NUMBER:

CASE NEWLINE:
CASE EOF:

CASE LABEL:

CASE END:
CASE TITLE:

CASE SUBTITLE:
CASE RADIX:
CASE ORIGIN:
CASE DEFAULT:
CASE WIDTH:
CASE PAGE:
CASE PERIOD:
default:

}

} WHILE(FOREVER)

{

psent()

BREAK

psent()

BREAK

BREAK

report error

return

insert token into label symbol table
BREAK

return

format title

BREAK

format subtitle

BREAK

store default radix

BREAK

set new maddr(micro address)
BREAK

store new dault microword
BREAK

process word width

BREAK

eject page

BREAK

skip rest of line

BREAK

report error

BREAK
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FILENAME: PSENT.PDL

This function processes the sentences

psent ()
{

set microwords to default
set all clause field(clfld) to empty

psorn()

DO {

token = next token

SWITCH(token) {

CASE STRING: psorn()
BREAK

CASE NUMBER: psorn()
BREAK

CASE CLAUSE:

CASE PERIOD:

default:

}

JWHILE( (token ne '.‘)&&(not too many clauses or fields))

IF(clause empty) report error
fldctr = @

clsctr = clsctr + 1

BREAK

IF(clause emp-y) report error
fldectr = 0

clsctr = clsctr + 1
BREAK

report error

BREAK

IF(error in clause) report error

ELSE psnt()

IF(phasel) maddr

return

= maddr + wrdtot
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FILENAME: PSORN.PDL
This function processes strings and numbers

psorn()
{ ;
clstok(clsctr, fldctr] = token
IF{token is a number) {
clfldfclsctr][fldctr]
clvalf{clsctr]{ fldctr]

-1
token

L]

}
ELSE {
IF(string is defined) |
clfldlclsctr][fldctr] = string number
}

ELSE |
IF(phase = 1) {
define label
clfld[clsctr][fldctr]
clvallclsctrl{fldetr]

-1
label number

}
ELSE {
IF(string is a label) {
clfld(eclsctrl{fldctr]
clvallclsctr][fldctr]

-1
label number

It

}

ELSE {
clfldlclsctr][fldctr]
report error

-2

}
}

fldectr = fldctr + 1
return i
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FILENAME: PSNT.PDL
This function generates the object code.
psnt()

FOR(clsno = @;clsno<clsctr;clsno++) |

numcol = 0

FOR(1 = @;i<clstot;i++) poscls[i]=TRUE

FOR(f = @:(f<MXFPC)&&{clfld[clsno][£f]!l==3);:£f++) {
pclsl(f)
FOR(i = @;i<clstot;i++)

poscls[i] = poscls[i]&&clspos[i]

| numcol++

FOR(i = @;i<clstot;i++) {
jstr = -1
if(i»@) jstr = cdpntr[i-1]
if(fl=((cdpntr[i]-jstr)/2)) poscls[i] = FALSE

totok = @
FOR(clsn = @;clsn<clstot;clsn++) {
if(poscls{clsn]) pcls2(clsn,numcol)

FOR(h = @;h<MXWPS;h++) {
FOR(1 = @;i<numints;i++)

[ | B

clsmask[h][clsno][i] 2
} clsword[h]llclsno][i] %]
}
switch(totok) {
case @: report too few possible clauses
break
case 1l: build object code for the clause
break
default: report too many possible clauses
break

}
}

build the object for the word
return
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