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ABSTRACT

A method for accelerating thin metallic plates to hypervelocities has
been proposed by G. McCall. '®" In this method a shock in a propellant
generates a strong expansion wave that smoothly accelerates the plate.

We have studied the hydrodynamics of this process in one dimension, both
analytically and computationally. The metal was modeled as a stiffened gas,
and the corresponding Riemann problem was solved. The asymptotic behavior of
the solution was determined analytically. The one-dimensional random choice
method, modified so that material boundaries are tracked and the spatial mesh
is refined locally, was used to compute the flow; comparison with the
asymptotic solution demonstrated its accuracy. With this method, shocks that
form within the accelerating plate were accurately resolved, so that possible
structural damage to the plate could be evaluated. ) /
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- MODELING OF SHOCKLESS ACCELERATION OF THIN PLATES USING A
e TRACKED RANDOM CHOICE METHOD

*
.‘,l.! Bradley J. Plohr

(5“)’
:‘:'1' Introduction

G. McCall has proposed a method for accelerating a thin metal plate to exceedingly
N high velocities within a short distance.!® These hypervelocities, on the order of 1 cm/us,
are difficult to achieve without destroying the plate since the kinetic energy of the plate

g exceeds its vaporization energy. The acceleration must be rapid enough to attain high
A }; velocities within a short distance, on the order of 10 cm, but it must be sufficiently smooth
‘- ;;ﬂ" that strong shock waves do not form inside the metal. Furthermore, the compression of
b 57 the plate resulting from the acceleration must be relieved gradually so that the plate does
o not spall.

Ao A schematic diagram of the experimental configuration proposed by McCall is shown
':?‘t in Fig. 1. A tube containing a tungsten plate is partially filled with a plastic foam (CH)
i:i' .’ that serves as a propellant; a low pressure cavity separates the foam from the plate. The
'f‘,:!., energy needed to accelerate the plate is supplied by a planar shock passing through the
{» foam and compressing it. When the shock reaches the end of the foam, the foam expands

;.j-‘,. isentropically into the cavity. At the leading edge of this rarefaction wav:- is low density,

30 high velocity material, which is followed by material with gradually increasing density

":‘\'; and decreasing velocity. As succeedingly denser portions of the foam reach the plate, the
o pressure behind the plate rises, thereby gradually accelerating the plate. Thus the low
pressure cavity intervening between the foam driver and the plate converts the shock wave

“‘-_..'; in the foam into a strong rarefaction wave that smooths the acceleration. Of course, the
\-‘_‘g‘ rising pressure behind the plate produces compression waves in the plate that in general
oo steepen into shock waves. McCall has estimated the formation time for such shock waves
:‘. :‘ and has concluded that shockless acceleration of sufficiently thin plates can be achieved
) using his method.

A more complete modeling of this hydrodynamic process entails computer simulation.

*:" . . . H : H H
';;7-};. Numerical methods for solving the Euler equations encounter three major difficulties in
‘::f‘f: modeling this flow. First, the mass density varies over a vast range, from the high density
¥, : - ..
i in the tungsten plate and the compressed foam to the near-vacuum conditions inside the
cavity. Therefore Lagrangian coordinates, which place few mesh blocks in regions of low
]
)
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Figure 1. Schematic diagram of the shockless acceleration of a tungsten plate using a

plastic foam (CH) propellant. A planar shock in the foam is incident from the left.

When it reaches the end of the foam, the foam expands into the cavity. The rarefied

foam serves to smoothly accelerate the tungsten.




density, are inappropriate for the leading edge of the rarefaction wave. On the other
hand, the material boundary between the metal and the fluid accelerating it is the focus
of interest. Whereas the position of this boundary is naturally tracked in Lagrangian
coordinates, it is uncertain to within a mesh length on an Eulerian grid; furthermore,
most Eulerian methods exhibit substantial numerical diffusion that spreads the interface
over many mesh lengths. Finally, the formation of shock waves within the plate must
be accurately detected, even though the metal plate is very thin, spanning only a few
computational mesh zones.

In this paper we have modeled the hydrodynamics of McCall’s problem using a com-
bination of methods that address these difficuities. The computation is performed in
Eulerian coordinates to allow for arbitrarily low densities in the cavity. To correctly model
the material interfaces, their positions are tracked across the Eulerian grid. Also, the
computational mesh is refined in the vicinity of the plate to better resolve the flow in this
region. Finally, the underlying numerical scheme for solving the flow equations, the ran-
dom choice method, models shock waves as sharp discontinuities resolved within a mesh

block, so that shock formation can be detected within the thin plate. This numerical
approach gives solutions of a much higher quality than were previously available.

The plan of the paper is as follows. In the next section the thermodynamic model we
use for the tungsten plate is described. Then the solution of the Riemann problem, which is
the key input into the random choice method, is described for this thermodynamic model.
Next the random choice method, as extended by front tracking and mesh refinement, is
explained. Aualytical results on the short-time behavior of flows in which rarefaction waves
impinge on a plate are derived in the following section. Finally, the results of numerical
experiments for McCall’s problem are presented.

.~ \ ~s“ .1 M AT AT A T T Y MEER IR T Tt At e LT e e e e
5 ‘,\. \ Q. ~ \'. \ﬁ\i i\i- \ - ~- T\-:__~'. ..“\-“ J',.v'.‘.'*..-\a\.-\. " _____ . e :\"\ A
. " e .'\'.' > -J‘\ '.. AN S ..' -‘. N . \\ IO '.‘.. W e R T A " L . ; -. B
\ 'l. '- N A A CRO A W AR o7 IR - L. A .. I e
8 LY - o A V. LI S I P N P RN
Lt ‘N"-' .° AL AT N W NI on olas IO NS ""‘"-f"m-..x.;.;..;.-_;..-..r_.r.._‘:_‘_ e

T— il i it e S A ol T T | W TSI ST TN T




P LI RIS,

an v LR

Thermodynamics

The shockless acceleration of metal plates will be modeled as a hydrodynamic process.
This requires the specification of a suitable equation of state for each component substance.
Since use of the random choice method requires that Riemann problems be solved, it is
advantageous to use an equation of state that is amenable to analytic solution. The
propellant may be modeled as a polytropic gas, for which the solution of the Riemann
problem is simple, but the metal plate cannot be adequately modeled as such. In lieu
of designing a Riemann solver for a general equation of state, such as one based on the
SESAME tables,? we have modeled the metal plate as a “stiffened gas.” This equation of
state gives the correct semi-quantitative behavior of the plate. In conjunction with a spall
model to give yield strains and an estimate of melting and boiling points, it can be used
to asses the feasibility of shockless acceleration.

The equation of state for a stiffened gas® is given by the relation

1 p+ 9P

E =
Yy—-1 »p

between the specific (internal) energy E, the pressure p, and the mass density p. Here v
and po, are prescribed constants that characterize the gas, ¥ being dimensionless and po,
being a pressure. In terms of the Grineisen coefficient

0
r=1(2
p \OE ,
we have v = I' + 1. (Note, however, that v is not the adiabatic exponent «s, which is

defined by c? = y5p/p; see (2.2) below.)
The isentropes for a stiffened gas may be determined by noting that

1 P+pPo 1 (P+Poo)
dE +pd| ~ ) = . dlo . 2.1
P (p) -1 7%\ 1)

P

Thus the entropy S is most generally given by

1 P+ Poo
- s (m (422))

for some function I, with the corresponding temperature T being

T~ p+pm/2,(log(p+pm)> .
P 7

The speed of sound ¢, defined by

P
A o

. ¥ . Vd °
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may be calculated to be

c= ('7 p+p°°)l/2 . (2.2)

P
Fast and slow rarefaction waves, which correspond to the fast and slow characteristic

\ speeds v * ¢, satisfy the equations
4
f . dv F d_p =
y pe
L
and
¢ 1
v dE+pd(—)=0.
; p
:__ By (2.1) and (2.2) we determine that
d 2 -
;4 -! = ——de
3 pc -1
¢
! Therefore 2
K vF ¢ = const. (2.3)
- -1
A and
; (p+ Pec) /o™ = const. (2.4)
Ry across rarefactions corresponding to the characteristic speeds
,,:' vte. (2:5)
o
:, The Hugoniot locus is given by solving the equation
.
1
‘ £ mns Joem (1~ 1) o
Po

5
" for p in terms of po, po, and p. Simple algebra yields the result
:’ P _ (Y +1)(P+ Poo) + (7 = 1)(Po + Pox) ‘ (2.6)
T po (v +1)(Po + Poo) + (7 = 1)(p + Poo)
. :
:; As for any equation of state, the speed o of the corresponding fast and slow shocks may
o be determined from the relations
: p(v - 0) = Fm = po(vo — o) , (2.7)
3
" where 'j
‘:l P— Po ) 172 (2 8) )
.l m = _— — . y
‘ ( 1/p - 1/po
‘
K -5-
a‘
VAL GAS X .. LR A S AR A JAY 'c ¥ - -_ A
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is the mass flux across the wave.

To demonstrate the adequacy of using a stiffened gas equation of state to model a
metal plate made from tungsten we compare to experimental data.! These data show that
a plot of shock speed U, = |0 — vp| vs. particle speed U, = |v ~ vo| along the principal
Hugoniot of tungsten is well approximated by a straight line

for pressures up to 3 Mbar. Here ¢y = 0.404 cm/us is (approximately) the sound speed in

tungsten at standard conditions and a = 1.23 is an empirical dimensionless constant. For
a general equation of state one finds from (2.7) and (2.8) that

Up_r—po
U, P

and Po
p—

U, = .
e Po

Using the Hugoniot relation (2.6) for a stiffened gas, one can eliminate p and o to find

vi=12 200, + 6
SO
1\ 441
U,=[cg+(": U,)] +”4 U, . (2.10)

For our calculations modeling tungsten we have used v = 3.14 and po, = 1.0 Mbar. A
plot comparing the empirical linear fit to the stiffened gas relation (2.10) for pressures up
to 3 Mbar is shown in Fig. 2. The stiffened gas relation coincides with the linear fit to
within 3%.
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Figure 2. Comparison of the stiffened gas equation of state to experimental data for
tungsten. The shock speed Us along the principle Hugoniot is plotted with respect to the
particle speed Up behind the shock. Speeds are measured in cm/ps, and the range of
shock strengths corresponds to overpressures up to 3 Mbar. The stiffened gas is defined
by the parameter choices y=3.14 and p. = 1.0 Mbar. The comparison shows a max-
imum difference of 3%.

e
o
2
e
A
“»

R
L E2

"
HLLEEO

WOANS
P

oY N "Bag -9,
R 2
AT N Gy () )

' l,‘.“‘ UNLDS

o ‘@"'a"'o“% rAT T e it
DRI M OL M AR O K K KN M)

h

v -
4

n.“:!!.. Stfan! 2




v R TR R T T AT AR o e

Riemann Problems

A Riemann problem for a system of conservation laws in one space dimension is an
initial-value problem with scale invariant initial data, i.e., data at t = to that is constant
to either side of a jump discontinuity at z = zo. We use the subscript [ to label the initial
state on the left of zo, and r for the initial state on the right of zo. The solution of a
Riemann problem is constant along each ray { = (z—zo)/(t —to) = const. through (z, to);
thus we may specify the solution as a function of the speed ¢£.

The solution of a Riemann problem for a stiffened gas requires only a simple modi-
fication of the well-known solution for a polytropic gas. It consists of a slow (i.e., v — ¢)
rarefaction or shock wave on the left, a fast (i.e., v + ¢) rarefaction or shock wave on
the right, and a contact discontinuity (moving with velocity v) in between, as indicated
schematically in Fig. 3. It is convenient to speak of the left side of a slow wave and the
right side of a fast wave as being “ahead” of the wave, the opposite sides being “behind”
the wave; the corresponding states are labeled by the subscripts a and b. A slow or fast
wave is determined by the state ahead of it together with one other parameter, such as the
pressure behind it. For the left (resp., right) wave in the solution of a Riemann problem,
the state ahead of the wave is the left (resp., right) initial state. Since the particle velocity
and the pressure is continuous across a contact discontinuity, the velocities and pressures
behind the left and right waves must coincide. Thus solving a Riemann problem amounts
to finding the pressure in the middle between the left and right waves such that the particle
velocities behind the waves are equal.

For a shock wave, conservation of momentum may be written

:Fm(va - vb) +ps—ppb=0. (3.1)

Here m is defined as a function of the pressure p; behind the shock and the state ahead of
the shock through equations (2.6) and (2.8), so long as py > p,. For a rarefaction wave,
we may define m through the equation

2
—(ca—e)+Pa—p =0,

so that by (2.3) we find that (3.1) again holds. With this definition and equations (2.4)
and (2.2), m may be expressed as a function of py and the state ahead of the wave, so long
as pp < pa. More explicitly we have

1/2 Py + Poo,b
= ('Yapa(pa + poo,a)) /2. P <_;"i"» '7a) (3'2)
Pa + Poo,a

where
-1 1—-r

2y 1 - r(r-1)/27

o(ry) = 1\ 1/2
’7+1r+’7 1) ifr>1
2y 2y

ifr<l1
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e n+l

¢

0]

i-1 i i+1

v

e
: "i Figure 3. The computational grid for the random choice method. The reconstructed

" solution is constant in the cells centered on the circles and bounded by the vertical hash
a2 marks. The solution of the initial value problem with piecewise constant initial data
Yy involves solving a sequence of Riemann problems originating at the boundaries between
oo cells. The solution of a Riemann problem is constant along rays through its origin and,
R 2] for gas dynamics, consists of a shock or rarefaction wave (indicated by an individual ray
N or a fan of rays, respectively) on each side of a contact discontinuity (indicated by a
. dashed ray). The numerical solution after one time step is obtained by sampling the
oy Riemann solutions at the points indicated by the stars, whose shift relative to the cell
: T4 centers 1s random in time.
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Let v, and p, denote the common values of the particle velocity and pressure on the
two sides of the contact discontinuity. Then by (3.1) we have

-m,(v, —v.)+p, —p. =0
and
+my(vi—v,) +p—p. =0

for the right and left waves, where m, is expressed through (3.2) in terms of p, = p,
and the density and pressure p, and pr ahead of the wave, and similarly for m;. These
equations may be written

- U — Uy mp, + m.p;
1/my+1/m, m;+m,

Pe (3.3)

_ PlL—pr +yv + myv,
m; + m, )

v, (3.4)

Therefore to solve a Riemann problem we first use the Godunov-Chorin® 3 fixed-point
iteration to solve (3.3) for the pressure p, between the left and right waves. Then (3.4)
gives the velocity v, in the middle, and for both the fast and the slow wave the state along
a ray moving at a specified speed ¢ may be determined using either equations (2.2-5)
or equations (2.6-7), according as the wave is a rarefaction or a shock. Except for the
modifications to the formulae (2.2), (2.4), (2.6), and (3.2), the construction of the solution
of the Riemann problem is identical to that for a polytropic gas (for which po, = 0).
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Tracked Random Choice Method

The random choice method is a numerical method for solving the general initial-value
problem for a system of conservation laws. It is based on the constructive existence proof
for solutions of conservation laws of Glimm,* and was adapted for numerical computation
by Chorin 3

In the random choice method for the hyperbolic system of conservation laws

ue+ f(u): =0 (4.1)

the solution is determined at the lattice of space-time points (z;,tn);

zy = (21‘_1/2 + Zj+1/2)/2

is the center of the mesh cell from z;_,/3 to Z;41/3. Given the solution values u} =
u(z;,tn) at time level n, the solution values u,"“ at level n + 1 are determined in three
stages.

First, an approximation u™(z) for the solution at time t,, and an arbitrary position z
is reconstructed by defining u™ to be piecewise constant on mesh cells:

u"(z) = u;-‘ if Z;-1/2 <z <L Tiv1/2 - (4.2)

Next, consider solving the initial-value problem for (4.1) with initial data (4.2) at
time t,. For t — t, sufficiently small, the solution is given in terms of the solutions of a
sequence of Riemann problems between the states u} and u7,, and centered at the points
(Zj+1/2,tn). The situation is depicted in Fig. 3. In fact, the waves in the solutions of the
Riemann problems centered at neighboring points (z;_1/2,¢ts) and (z;4/2,¢ts) will not
interact so long as the Courant-Friedrichs-Levy condition

|
t—t, <tcrL = g min (z541/2 — zi_1/2) /A (4.3)

holds, where A; is the maximum wave speed, in absolute value, in the solution of the
Riemann problem centered at (z;41/2,¢n). We have taken ¢4y —t, = C - tcFL with the
Courant number C kept between 0.7 and 0.9.

Finally, an equidistributed random number 7,41 is chosen from the interval

_1/2S']n+l <1/2)

and the solution value u;-‘“ is taken to be the value u. of the solution of the above
initial-value problem sampled at the position

Z.=Zj +Nnyr (Ij+l/2 - ”J'—I/?)
at time t,. In our computations we have used the Van der Corput sequence® to obtain 7.

The solution given by the random choice method has the advantage, when compared
to standard finite difference methods, of preserving the structure of discontinuous waves in

-11-
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he colution: shock waves and co. tact discontinuities remain perfectly sharp. The method

hercore able to detect formativia of shock waves within regions extending only a few
mesh cells. This property is crucizi for our application to shockless acceleration of thin
plates.

The price paid for perfect resolution of discontinuous waves is that their positions are
not exactly correct. On the average the position of a discontinuous wave in the numerical
solution is correct, but the wave performs a random walk about this correct position. To
remedy this in situations where maintaining the position of certain prominent waves is
critical, Glimm, Marchesin, and McBryan introduced the tracked random choice method.®

In a front tracking method, certain waves in the flow, typically strong discontinuous
waves, are resolved on a subgrid level. With each tracked front is associated a position
and a wave type. The wave type determines how the tracked front moves and interacts
with the fluid. For example, in gas dynamics the possible wave types include slow and fast
pressure waves and contact discontinuities.

Let zf denote the position of a particular tracked front at time ¢,. If the tracked
front lies in the 7*® mesh cell at time t,, i.e., zj_1/2 < z¢ < Zj41/2, then the solution

ntl oyttt "+l are obtained in a fashion different from that just described.

values u S uj , and N

The plecewxse constant data u” is defined by

n
u (I) = n . n
uiiy if z8 <1< z213/2

{u;—'_l if Tyj_3/2 <z< I?

for z in the interval z;_3/, < £ < z;43/2, and by (4.2) for z outside this interval. As
before, the initial-value problem with initial data u" at time t,, is solved up to time t,4;.
The position of the tracked front at time t,,; is

I?+l - I? +8- (tn+1 - tn) )

where the velocity s is determined according to its wave type. Finally, the solution value

u?fll is taken to be the value u. of the solution of this initial-value problem at time ¢, 4

sampled at the position

T.=12j 32+ (Mny1 +1/2) (277! = z;_3/2) -

+

Similarly u" 1 is obtained by sampling at

Ts = I?+1 (nn+l+1/2) (IJr3/2 - I?+l) .

+1

The choice for the value of u? seems somewhat arbitrary. For instance, one could

1 +1
take u]"+l to be u]"+ll or u;‘:ll according as z; < 1:"+ or z;”" < z;. We have found

that with this choice, however, a strong wave crossing the tracked wave does not separate
correctly from the tracked wave after the interaction. This effect is rather dramatic in
calculations where a tracked shock wave is followed closely by a strong rarefaction wave.

n+1 n+1 . n+1
To remedy this we instead define u.]"+l to be u"" or uf" according as r; < 1y or

rf e r;, where u; ntland up! *1 are the states on either side of the tracked front.
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In gas dynamics the possible wave types are: contact discontinuities, moving with the
particle velocity v; slow and fast pressure waves, which either follow sound waves moving
with velocity v+ c in case the solution is continuous across the wave (the rarefaction case),
or move with the shock velocity o if the wave is discontinuous (the shock case); Neumann
and Dirichlet boundaries, which supply boundary conditions; and movable walls, which
are ascribed a mass density and move according to Newton’s law. The velocity of a
slow or fast pressure wave or contact discontinuity, is calculated by solving the Riemann
problem between ul , and ul,q, centered at (z{',t,), and determining the velocity of
the corresponding wave in this solution. (We track the leading edge of a rarefaction
wave.) Neumann and Dirichlet boundaries are stationary, and their interaction with the
flow is determined by solving a Riemann problem between the fluid state neighboring
the boundary and, respectively, the same state with a reflected velocity or the imposed
boundary state. The evolution of a movable wall is determined as follows.

Let the wall have mass per unit area M and velocity v?_,, at time t,. Suppose for
concreteness that the fluid lies on the right side of the wall, so that the solution value
inside the fluid is u, = ulg- Define the virtual state u; to have the same pressure and
density as u, and to have the velocity

PR
v = szall — Uy

obtained by reflection through the moving wall. Then solve the Riemann problem between
u; and u, centered at (z,t,) and sample it at the position

T. = zf + vgan - (tnt1 — tn)

to obtain the state u, on the fluid side of the wall at time t,,,. Because v; is obtained
by reflection, the velocity v, of the fluid at the wall coincides with v} ,,, so that the
correct boundary conditions have been maintained. The pressure in the fluid accelerates
the movable wall according to Newton’s law. If At = t,,; — t,, is small enough (more
precisely, as may be deduced from the analytic solution,® if p, At/Mc, is small) we may

approximate this acceleration by

n+l=v"‘ +Pr+p¢§
wall wall 2 M .

The speed s of the moving wall during this time interval is then taken to be

v

s = 2 (ofdd + o) -

To obtain acceptable resolution of the waves in the thin plate the computational grid
must be refined in the vicinity of the plate. The positions of the the edges of the mesh
cells £;41/2,7 = 0,...,N are defined as follows. The grid spans the interval [Zmin s Zmax)
and has a subinterval [a, b] over which the mesh is refined by the refinement ratio R. To
smooth the transition between the coarse and fine meshes, a molification parameter € is
also specified, with € = 0 corresponding to a sharp transition. We define

po(f):{l/R ifo< ¢<1 (4.4)

1 otherwise




and let p, be the convolution p, = &, * po of po with an approximate é-function. We have

used .
so=1a(%)

where {
"o

With these definitions, the zone edges are given by

& Ex
Zj4+1/2 = Zmin t+ (Zmax — Zmin) /‘ d§ Pc(f)//‘ d€ pe(€) (4.5)

where .
€j=€o+%'(€n—€o) .

It remains to define £; and ¢{x. The transitions occurring between the coarse and fine
meshes at £ = 0 and £ = 1 in (4.4) are to correspond to z = a and z = b through (4.5).
For € # O this gives a pair of nonlinear equations to be solved for £, and {n in terms of a
and b. When € = 0, however, these equations reduce to linear equations, with the solution

l a— Znpia

©="R -

and 1 b
Tmax — 0
EN_I+E b—a '

for simplicity we use these equations to define §, and §n.
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3 Analytical Results
& As a preliminary to solving the shockless acceleration problem, we study a similar
.:J problem for which analytical information is available. This is the problem of the reflection
~ from a rigid wall of a rarefaction wave expanding into a vacuum. The short-time asymptotic
) solution of this problem has been described by Greenspan and Butler;” they reduce the
P problem to the solution of a boundary-value problem for a system of ordinary differential
N equations, which they solve numerically. These equations may, in fact, be integrated
" analytically, and we describe this solution here.
: The flow pattern is shown in Fig. 4. A rarefaction wave in a polytropic gas with
adiabatic exponent v connects the state p = po, p = po, v = v to the vacuum p = 0,
X p = 0; it originates at r = O at time ¢ = 0. The rarefaction wave corresponds to the slow
's:: (i.e., v — ¢) family of characteristics, so within the wave the fluid state is
; p= po(c/co)z/(""l) .
p = po(e/eo)/ 1) | (5.1)
-,
7 v=uvot (o —¢),
R -1
e where
L c:‘y—_l(v0+ 2 co—f),
s y+1 -1 t
R by virtue of kgs. 2.2-5. Since the tail of the wave corresponds to ¢ = 0, the rarefaction
..': arrives at the wall located at z = z at time
i." 9 1
to = xo <vo + Co) .
AN o B |
“w
_.:: At this time a reflected shock wave forms to decelerate the expanding fluid.
N Following Greenspan and Butler we seek a scaling solution for the flow between the
, reflected shock and the wall in terms of the variables r =t — t5 and € = (z — z0)/(t - to).
. Ahead of the reflected wave the state is given by Egs. 5.1, where ¢ may be written
-‘ I | T
o
N €—7+l(fo f)t0+r
"~
' with £ = r,’t.. Thus the state just ahead of the reflected shock wave satisfies p,
S O({r/te)* 7 D) ps O((r. ta)*/17"D) and vy = O(1) as v+ 0. The state p = ps.
W P - ps, v = v, just behind the reflected shock wave must satisfy the Hugoniot relation
. - kq. 2.6 together with
: (ve va)2 = (ps Pa)(1/Pa  1/ps) , (52
: which is a consequence of momentum conservation. Assuming a non-negligible part of the
\‘,j deceleration of the fluid occurs across the shock wave, so that its strength does not vani-
2 as r 0, the left-hand side of this last equation i8 O(1). It follows that
- |
. pr O ((r/t)? ”)
:}:
’-
"'
o,
&,
L),
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and hence that
7+1

4-1
as 7 — 0. Thus the reflected shock is infinite in strength at the time of its formation.

In this way, Greenspan and Butler are led to expect that the solution between the
reflected shock wave and the wall is, asymptotically as r —+ 0, of the form

Py = pa - (1+O(r/t0)?)

p = (r/to) 7 V5(8) ,

p=(r/ta) " Vp(e) , (5.3)
v=129(§:

here £ lies in the range oo < £ < 0, 0o being the limiting velocity of the reflected shock
wave a8 7 — 0. By assuming that the solution is of this form, they find a system of
nonlinear ordinary differential equations to be satisfied by g, p, and ¢, and they solve the
equations numerically. However, one can find an analytic solution of these equations in
terms of incomplete beta functions, as we now show.

The flow is governed by the characteristic equations

1 1
vet —pe+(vte)lvst—p.) =0,
pe pe

pe—~ o+ v(ps —¢’ps) - 0.
It is subject to no-flow boundary conditions v = 0 at { = 0, and to the boundary conditions

¥4-1
y+1

VA T)

c=¢cp= ———— (&0 - 00)

(o - 00) ,

v =uvy =09+

v+ 1
and
2,7 ,7 ~1 2/(7"‘) 60 _ 00 2’7/(‘7 l)
pipbﬁpﬂ"1+l(v+l) ( co ) '

at £ . these conditions follow from mass conservation, kq 27, and momentun. con
servation, F.q. 5.2, in the strong-shock limit.

Upon substituting the polytropic gas relation ¢?  4p p. the charactenstic equations
may be written

9 cofv s 2 ) r( : ! )
= — « (vt —c , p :
(' " 1t>. oy v 1 ~ o pc"

and

o
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When the solution is assumed to be of the form of Eq. 5.3, v = ¢ and ¢ = & = (v$/5)"/?
are independent of 7, so the last equation becomes

2 ., 1, 2 é
cC — P = - 3 (54)
1o 5 Al -ne-¢

therefore the previous pair of equations reads

2 é?

.z gy 2 )
(vic»f)(vtv—fic)-v(w_l)a_c. (5.5)

where the prime denotes differentiation with respect to §.
In terms of ¢ = ¢ and the Mach number M = (v — £)/¢, Eqs. 5.5 are

2 2
M(M<t1 l+cM'+(Mi—>C'] = ——,
( ) 7-1 v -1)
1e.,
1 _
M = —(1-2veM?) (1- M?) 7! (5.6)
2e
and .
M= 1a-my, (5.7)
v
while Eq. 5.4, when combined with Eq. 5.7, becomes
ci = —LM(l -h12)7l .
p -1
We have introduced the parameter ¢ = 3(v - 1)/(7? + 1) for later convenience.
The ratio of Eqs. 5.6 and 5.7 dictates that
2
dM _ 1(1 2‘7(M2)'M2.
dlog ¢ ¢
which integrates to yield
M2l 29eM?NS
¢ c.(—i——f’g—;) : (5.8)
M2 - 27eM|

Here M, (v on)/cs v (7 1)/27 is the Mach number just behind the reflected

~hock wave. Similarly,

2
M ! —l(l 2v¢eM?)

;ﬂng p '27’;6

o (1 2~,¢M")
p ,)"

1 (1 1)
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‘ By using Eq. 5.8, Eq. 5.6 may be written

:: il ¢
198 2 2y~ (1-€)ry 2y —(h+e) 02 1 (1 = 2veM}\ “d¢
) 1-M?%)(1-29eM M dM* = —— | ————>2 ) — .
b ( ) (1 - 27eM?) (M?) ol v s
G b

s Consequently, if we define

o2 v

s Yy (y) = / (1-2)(1 — 2ye-2)~ (1=~ (4+9g,

o °

' (where, again, ¢ = 3(v — 1)/(7* + 1)), then
g
L= €
Ny M) - M*%) = — . 5.10
!)E:" ¢'7( b ) ¢'7( ) ~e M? 'R ( )
ol Since ., is a monotone function, Eq. 5.10 may be solved for M? in terms of ¢, which
:::- gives ¢ and p as functions of £ through Eqs. 5.8 and 5.9. Furthermore, by imposing the
. boundary condition that M = 0 at { = 0, we obtain an equation for 0o/§o as a function

.

N of ~v:

‘.' hd

« ° 2 ¢ -1

Y. U, _ o _ |1 1+l 1 (1-—2‘7¢M6) 1 (5.11)
E" vo + 2¢0/(7 — 1) € |7e VA - 1) ¥4 (M}) My S

iy
A Notice that the function ¢, may be expressed in terms of incomplete beta functions,

~hich are defined by

, v
;"_' B(p,q; y) = / 2P (1 - 2)9 ldz
o 0

I._'

:.; when p and ¢ have positive real parts. In fact,

d‘ .

’ ¥a(v) = (27 H79B (4 - 6 2vey) - (2v6) " TIB (4 - 65 29ew)

L] "I

5.‘. -

:: For1 < 4 < o0, € is bounded by 0 < ¢ < [4(1 + \/5)] '~ 0.10355.. ., 80 Y is well-defined.
iy To confirm these analytical results, and to demonstrate of the accuracy of the random
g choice method, Fig. 5 shows a comparison of the analytical results with the results of solving
s the partial differential equations governing the rarefaction reflection flow. In this problem,
2 a rarefaction wave connecting a pressure po = 1 and density po = 1 to a vacuum expands
_;:: from r - O and strikes a rigid wall at £ = z, = 1 at time r = O; the fluid is a polytropic
;-;:- gas with v = 1.4. Two calculations were performed, one a free expansion for which vo = 0,
Ty and one in which the expanding material has been shocked to vo = /2/~(7 - 1)¢o, which

- corresponds to an infinite-strength shock. The short-time asymptotic solution predicts that
e the pressure at the wall should rise as (1/10)2/(7’ ') and that the speed of the reflected
e shock should tend to U, - 0.036494 - (vo + 2¢o/(7y — 1)). In this computation, the flow in
_\‘.::: the region 0.9 < r << 1 and 0 < 7 < 0.3 was simulated using 100 mesh cells. Fig. 5 showx
N the agreement with the asymptotic pressure rise, and a contour plot of pressure in the
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Figure 5. Pressure at the wall for the reflection of a rarefaction wave expanding into a
vacuum. The pressure at the rigid wall, plotted as a function of time, is shown for two
sets of initial conditions. In both cases the initial density and pressure in the expanding
material are po=1 and po=1. For the free expansion, the initial velocity is vo=0,
whereas for the shocked expansion v corresponds to driving the expanding material with
an infinite-strength shock. In these computations, the rarefaction wave originates at x =0,
and the flow in the region 0.9<x <1 and 0<r <0.3 was simulated using 100 mesh
cells. Supenmposed are the short-time asymptotic solutions, which appear as straight
lines. Both solutions confirm the predicted short-time asymptotic behavior of the pres-
sure, viz., that it should rise as #5 when y= 1.4, Also, the solutions are accurate over 8
decades in pressure, in contrast to other numerical methods.
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space-time plane shows that the reflected shock speed agrees as well. One may ascertain
that the short-time asymptotic solution is valid for r/to < 0.1, roughly speaking.

We point out that the random choice solution is accurate over more than 8 decades in
pressure; this contrasts with serious discrepancies, over only 3 decades in pressure, among
several numerical methods applied to this problem, as reported by McCall.!°

Suppose now that the wall is replaced with a thin metallic plate that is allowed to
accelerate. The behavior of the pressure at the plate is the same as for a rigid wall until
the plate has accelerated significantly. The rising pressure generates a compressive wave
inside the plate, and we wish to determine whether this wave collapses into a shock wave
within the plate.

Simple geometry shows that the sound characteristics inside the plate will cross within
the plate if \

FET

is less than the thickness of the plate. If the plate is modeled as a stiffened gas with
adiabatic exponent 7, then

ér =

2%, PtPx
Y —1  dp/dt

because the flow is isentropic. According to Eq. 5.3,

6z =

(5.12)

so in the limit p < poo,

-1)/2
2% <P+pm>("° Y20y 1D+ Poo

b = - —_ T
Y% -1\ Poo 2 P
—(3— -1
. to.qoq—lp” (L) (3-7)/(v-1)
*® v — 1 5(0) \ to

where co, denotes the sound speed in the plate at zero pressure.

When v = 5/3 and the propellant material has been shocked with an infinite-strength
shock, p(0) = 51.678 po by the results above. Therefore if we consider tungsten (coo =
0.404 cm/pus, ¥o = 3.14, poo = 1 Mbar) accelerated by piastic foam that has been shocked
to po = 0.24 Mbar and po = 0.12 g/cm® and that is separated from the plate by a
5 ¢cm gap, one calculates that 6z > 0.5 cm during the initial stages of the acceleration,
T < 0.1 to =~ 0.06 us. This agrees with the estimate given by McCall.!°
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Computational Results

In Figs. 6-9 are shown the results of a shockless acceleration experiment in which
the cavity has be evacuated to 10~4 bar (the remaining fluid being a gas with v = 5/3).
The foam, which is modeled as a polytropic gas with v = 5/3, is initially at atmospheric
pressure and density 0.03 g/cm3. The foam is then shocked to 0.24 Mbar and 0.12 g/cm?;
the particle velocity in the shocked foam is 2.45 cm/pus.

In this computation the tungsten plate is tracked, with the plate modeled as a movable
wall with an areal mass density of 0.5 g/cm?, corresponding to a thickness of 0.025 cm. A
3:1 mesh refinement is used for 4 < z < 6 cm, with a total of 300 mesh cells: the mesh
spacing near z = 5 cm is Az 2 0.013 cm, while near £ = 10 cm it is Az s 0.035 cm.

Figs. 6 and 7 show the space-time development of the flow in terms of the contours of
density and pressure, respectively. At time t = O the shock reaches the end of the foam at
z = 0, whereupon the foam expands into the cavity. A very weak shock, which is not visible
in these plots, is transmitted into the gas in the cavity and leads the expanding foam; its
arrival at the tungsten plate is indicated in the figures. The foam decelerates when it
strikes the plate, so a reflected shock forms and strengthens. The increasing pressure in
the foam that builds up behind the plate serves to accelerate the plate.

The pressure behind the tungsten plate is plotted as a function of time in Fig. 8.
Because the cavity has been evacuated, the pressure rise is much smoother than if no
cavity had been there. The velocity of the tungsten plate is plotted as a function of time
in Fig. 9. The velocity of the plate at ¢t = 3.85 us is 2.69 cm/us.

Fig. 8 may be used to obtain another estimate for the crossing distance for char-
acteristics in the plate. The rate of pressure rise is estimated from the graph to be
dp/dt ~ 1.1 Mbar/us, so Eq. 5.12 gives

2

c— 1
Yo—1 Coo dp/dt ems

which is 40 times the thickness of the plate.

In Figs. 10-13 are shown the results of a shockless acceleration experiment in which
the cavity is filled with air (with 4 = 5/3) at standard conditions. The foam is shocked
as in the previous computation. In this computation, both the foam-air contact and the
tungsten plate are tracked. The tungsten plate is modeled as a movable wall with an areal
mass density of 0.5 g/cm?. A 3:1 mesh refinement is used for 4 < z < 6 cm, as before.

Figs. 10 and 11 show the space-time contours of density and pressure, respectively.
At time t = O the shock reaches the end of the foam at z = 0, whereupon the foam
expands into the cavity and compresses the air, thereby accelerating the tungsten plate.
Because the cavity is not evacuated, the weak shock that is transmitted to the air has more
noticeable effects; its arrival at the plate is marked by a shock reflected from the plate.
The contact discontinuity between the foam and the air interacts with waves reflected from
the plate, which strengthen into a reflected shock that overtakes the expansion wave in the
foam. A layer of compressed air moving with the plate separates the foam from the plate.

There is much more structure in the flow near the plate in this computation as com-
pared to the previous one. The succession of shock waves reflecting between the foam-air
contact discontinuity and the tungsten plate can clearly be seen by comparing Figs. 10
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':C"* Figure 6. Density contours for shockless acceleration using an evacuated cavity. The
. foam, initially at atmospheric pressure and density 0.03 g/cm3, is shocked to 0.24 Mbar
and 0.12 g/cm3; the particle velocity in the shocked foam is 2.45 cm/pus. At time t =0
the shock reaches the end of the foam at x =0, whereupon the foam expands into the
cavity, which is evacuated to 104 bar; the expanding foam accelerates a tungsten plate.
A reflected shock forms in the rarefied foam upon its arrival at the plate. The velocity of
the plate at the ¢ =3.85 ps is 2.69 cm/pus. In this computation the tungsten plate is
tracked, with the plate modeled as a movable wall with an areal mass density of 0.5
g/cm2. A 3:1 mesh refinement is used for 4 <x < 6 cm, with a total of 300 mesh cells:
the mesh spacing near x =5 cm is Ax =0.013 cm, while near x = 10 cm it is Ax = 0.035
cm.
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Figure 7. Pressure contours for shockless acceleration using an evacuated cavity. The
space-time contours of pressure are shown for the comput-tion described in the caption
for Fig. 6.
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Figure 8. Pressure behind the plate. The pressure behind the tungsten plate is plotted as
a function of time for the computation described in the caption for Fig. 6.
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A tion of time for the computation described in the caption for Fig. 6.
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Figure 10. Density contours for shockless acceleration using an air-filled cavity. The
foam is shocked as in the computation described in Fig. 6. At time r =0 the shock
reaches the end of the foam at x =0, whereupon the foam expands into the cavity and
compresses the air, thereby accelerating the tungsten plate. The air is initially at standard
conditions, and the tungsten plate has an areal mass density of 0.5 g/cm2. A weak shock
is transmitted to the air; its arrival at the plate is marked by a shock reflected from the
plate. The contact discontinuity between the foam and the air interacts with waves
reflected from the plate, which strengthen into a reflected shock that overtakes the expan-
sion wave in the foam. A layer of compressed air moving with the plate separates the
foam from the plate. The velocity of the plate at the ¢ =3.85 ps 15 2.69 cm/us. In this
computation the foam—air contact and the tungsten plate are tracked, with the plate
modeled as 2 movable wall. A 3:1 mesh refinement is used for 4 <x < 6 cm, as in Fig. 6.
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Figure 11. Pressure contours for shockless acceleration using an air-filled cavity. The

'. space-time contours of pressure are shown for the computation described in the caption
for Fig. 10. The succession of shock waves reflecting between the foam—air contact
discontinuity and the tungsten plate can clearly be seen by comparing this figure with
Fig. 10. Some waves, such as the first air shock that reflects from the foam—air contact,
are visible in this figure but not in Fig. 10, whereas the secondary contact discontinuity in
the foam is visible only in the density contour plot.
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ar.d 11 Some waves, such as the first air shock that reflects from the foam air contact

:'_ are visible 1n pressure (ontours plot but not in the density contours plot, whereas the

:.. secondary contact discontinuity in the foam is visible only in the density contour pilot

I'he pressure behind the tungsten plate is plotted as a function of time in Fig 12
| e smooth rise 11 pressure seen 1n Fig. 8 has now become jagged during the early stages
© 1 How development, and the peak pressure is higher The pressure jump at t O &7
- . aised by the air shock hitting the plate, and the jumps that follow correspond to
e succession of shock waves that reflect from the plate, as seen 1n Fig 11 The hump
at t = 17 corresponds to the arrival at the plate of signals from the right edge of the
expansion wave in the foamn: this is also seen in Fig. 11. Fig. 13 shows the velocity of the
tingsten plate, plotted as a function of time The kinks in this plot correspond to the

. d.scontinuities in Fig 12 The velocity of the plate at t 3 85 us 15 again 2.69 cm us.

. Although the short-time development of the flow changes markedly when the cavity ‘
nressitre 1s raised to as small a pressure as 10 ® Mbar, the long-time behavior of the flow
atd the accelerating plate is little affected. This is evident in the contour plots and the ‘
v.ots of the velocity of and pressure behind the plate. In fact, at late times the velocity
and pressure for the air-filled cavity agree quantitatively with these quantities when the

. cas 'y s evacuated

*e reverherating shock waves that are present in the flow when the cavity has not
o1 evacuated may cause damage to the accelerating plate, for instance through shock
rearng To acertain the effect that these air shocks have on the plate, the experiment
w.' tre air tilied cavity was sirnulated, during the early stages of the interaction, with
1 ngsten plate modeled as a thin (0.025 c¢m) layer of fluid. In this computation the
i cation of state of the tungsten 1s a stiffened gas, with v = 3.14 and p,. = 1.0 Mbar. The
"wo sides of the plate are tracked, as is the foam-air contact discontinuity. A 10:1 mesh
-t nement 18 used for 4 95 « r < 5.25 cm, with a total of 300 mesh cells. With this mesh
retrement there are approximately 10 mesh cells inside of the plate.

- [ e results are shown in Figs 14-18. Fig. 14 shows the space-time contours of pressure,

wi.ich the shocks that form inside the plate are evident. An expanded view of the

sressire contours in the vicinity of the accelerating plate is shown in Fig. 15. The detailed

erna; structure of the flow inside the plate is evident in this plot. The corresponding

.ot of the pressure behind the plate, plotted as a function of time, is shown in Fig. 16.

- e pressure jump at t 0 %7 18 caused by the air shock hitting the plate, and the jumps

“rat fogow correspond to the succession of shock waves that reflect from the plate, as seen

g~ 14 and 15

N | e reiative veioity of the two sides of the plate is plotted as a function of time in

.- Fx iT A positive relative velocity indicates expansion of the plate. The jumps in the

eviiansion wvelocity correspond to waves in the air arriving at the plate and to waves in

¢ mate reflecting from the ends of the plate, as seen in Fig. 15. Shock waves in the air

‘14" <rrike the back end of the plate transmit a shock wave into the plate and cause the

. fvoative veiocity ta drop The transmitted shock reflects from the front end of the plate as

- 4 ran ation wave and causes the relative velocity to rise. This simple ringing of the plate

:'.; St es antdinferactions between waves creates broad rarefaction waves that complicate
e b
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Figure 14. Pressure contours for shockless acceleration using an air-filled cavity. The
space-time contours of pressure are shown for the early-time development in the compu-
tation described in the caption for Fig. 10. In this computation the tungsten plate is
modeled as a stiffened gas. The two sides of the plate are tracked, as is the foam—air

Q contact discontinuity. A 10:1 mesh refinement is used for 4.95 < x < 5.45 cm, with a
; '{: total of 300 mesh cells. With this mesh refinement there are approximately 10 mesh cells
) inside of the plate. The combination of mesh refinement, front tracking, and the random
", choice method 1s crucial to resolving the shock waves that can be seen propagating inside
e the plate.
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Figure 15. Expanded view of the plate. The pressure contours for the computatiorn
descnibed in the caption for Fig. 14 are shown in the vicinity of the accelerating plate
The detailed internal structure of the flow inside the plate is evident in this plot.

h
L]

e - . _— 4 T P e 4 7'1
1.45 - -—- — -
1.4 + g . — -

-3~

A R ST O G Sl R e P TS A I S S T I T 2 Rl W T e Sl A Pp— y
.r:.-:'..-:.-}.-;.-:4-'5.-",,:..:,_-.-"_ . 7-_,.':-_.:_.:._._. R {:‘_‘:‘_: SRS AARANAAARARAA N
AN ASAE ) Yo LA .'-,\"'.14"' CAACRAGAL A, e e e P
AL AL . SN -~ A Re

) e e

LT LA T 2 g

M VL IF G LD




lai Ans ana aoo a4 A ana Aum B '--—t"v—vv-w‘r'v_-"vv-m“m““""ﬂ

L8

pressure behind
g 0.8

T

the plate .

- 06 } ]

f->  pressure -
(Mbar)
04 .

085 1.05 1.25 145 155
time (US)

. Figure 16. Pressure behind the plate. The pressure behind the tungsten plate is plotted
as a function of time for the computation described in the caption for Fig. 14. The pres-
N sure jump at 1 = O 87 1s caused by the air shock hitting the plate, and the jumps that fol-
A low correspond to the succession of shock waves that reflect from the plate, as seen in
Frigs 14 and 15
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Figure 17. Expansion of the plate. The relative velocity of the two sides of the plate is
plotted as a function of time for the computation described in the caption for Fig. 14. A
positive relative velocity indicates expansion of the plate. The jumps in the expansion
velocity correspond to waves in the air arriving at the plate and to waves in the plate
reflecting from the ends of the plate, as seen in Fig. 15.
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Figure 18. Shock heating inside the tungsten plate. An approximation AQ to the heat
) deposition inside the plate is shown. The maximum and the spatial average of AQ across
o the plate is plotted as a function of time. For comparison, the latent heat of fusion of
i tungsten at standard conditions is 0.0019 cm2/ps2. ‘
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": Although the ringing of the plate is rather violent, the rarefaction waves never combine
: to put the material in tension, as they do in a spall experiment. (This is confirmed by
X plotting the minimum pressure in the plate as a function of time.) Within the confines of
N this simplistic model for the equation of state, therefore, it is expected that the plate will
i not spall when it is accelerated in the manner being investigated.
o As another diagnostic measure for possible structural damage to the plate, the heat
X J, : deposition in the plate due to shock waves should be determined. This heat deposition is to
\(1 be compared to the heat of melting of tungsten to determine whether the plate melts. Since
e the plate is being accelerated by a light fluid, it is subject to Rayleigh-Taylor instability.

Were the plate to melt, its material strength might not sufficiently dampen the growth of
these instabilities, and it could be destroyed.

The stiffened gas equation of state is not complete, in that the temperature and
o entropy is not determined. In place of using a complete equation of state, an approximation
i to the heat deposition in the plate is determined by comparing the computed specific
energy in the plate with the specific energy that would be in the plate if the plate had

N been isentropically compressed. Let

2
b Eo_l PtPot (1~ 1)pe

'\.\ 7-1 p

L3 . ) -

D be the specific energy in a given computational mesh cell inside the plate, and let

o
o _ 1 (p/Po)"(Po + Poo) + (7 — 1)Peo

0 Es, =

o 7-1 p

X be the corresponding specific energy of the cell were it to have been compressed isen-
J'h * . . e e, . .

v tropically from its initial state with density po and pressure po. (See Eq. 2.1.) We then

o define

AQ=E - Es, ~ TAS

to be an effective heat deposition in the cell. The maximum of this quantity over the plate
and its spatial average is plotted as functions of time in Fig. 18. Since the latent heat of
fusion of tungsten at standard conditions is 0.0019 cm?/us?, which is of the same order of
magnitude as AQ, no definitive conclusion can be drawn from the calculation, although it
suggests that the plate might melt.
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p Conclusions
)
L These computations demonstrate the ability of our numerical method to resolve the
o highly complicated flows that arise in McCall’s method for accelerating thin plates. The
o combination of mesh refinement, front tracking, and the random choice method is crucial
to resolving shock waves propagating inside the plate.
'~ The short-time asymptotic solution and the computational results confirm that shock
b waves do not form inside a sufficiently thin plate, provided that the cavity between the
: :; propellant foam and the plate has been evacuated. The computations do show, however,
- that it is critical to have a good vacuum in the cavity: pressures of only 107 on the scale
. of pressures being considered give rise to significant shock waves in the plate. These shock
3 waves cause violent ringing of the plate, but they never put the plate into tension; thus
o according to the model used, the plate does not spall. The shock waves also heat the plate,
e and a simple estimate of this effect indicates that the plate might melt. This melting would
J make the plate more susceptible to Rayleigh-Taylor instability.
. In combination with a better model of the structural properties of the tungsten plate,
N the results of these hydrodynamic calculations can be used to more conclusively determine
) the feasibility of McCall’s method for shockless acceleration of thin plates.
3
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