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CALCULATION OF THE STABILITY OF HEATED BOUNDARY LAYERS
USING THE COMPOUND MATRIX METHOD

by

D J ATKINS

Summary

ﬁ\\\SA fourth-order Orr-Sommerfeld eigenvalue solver for heated
boundary*layers has been implemented on the
VAX-11/785 computer, The solver is based on
the compound matrix method and the effects of heating are limited
to mean viscosity variation across the boundary layer. Some test
computations have been carried out on flat plates with uniform
wall temperature. For small overheat, the results agree with
those previously published using other methods, but for large
overheat, there are some minor differences. The calculation
procedure requires a large number of integration steps across the
boundary layer to obtain accurate eigenvalues, but is relatively
insensitive to other physical and numerical parameters A few
computations have been carried out using a full sixth~order

model ,—alse—developed-byBMP Etd’; which takes into account
fluctuations in all the fluid properties. It is concluded that
the fourthforder method can be incorporated into an axisymmetric
body calculation procedure. (., co¥ Brfa =) .
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N { LIST OF SYMBOLS

Specific heat capacity (J kg_lx'l)

(9]
o

Dimensionless complex wavespeed (= w/aue)
Dimensionless stream function, defined by equation (Al2)
Thermal conductivity (W m X1

K™

Displacement thickness Reynolds number (= ues*lv.) ‘
Absolute temperature (X)

Velocity component in x-direction (m s 1)
Dimensionless velocity (= u/ue)

Velocity component in y-direction (m s'l)
Streamwise co-ordinate (m)

Normal co-ordinate (m)

Complex wavenumber

Dimensionless complex wavenumber (= us*)

Boundary-layer displacement thickness, defined by
equation (1)

Transformed normal co-ordinate, defined by equation (A9)
Dynamic viscosity (N s n 2

Dimensionless viscosity (= u/n,)

Kinematic viscosity (n?s71)
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Tranaformed boundary-layer streamwise co-ordinate .
Density (kg m~>)

Amplitude of disturbance stream function

Angular frequency

Dimensionless angular frequency (= ws*/ue)

EIE € D M <C ®ITEY 3

Subscripts

Value at outer edge of boundary layer
Inaginary part of complex quantity

Real part of complex quantity K
Value at plate surface

g8 £ » 0

Freestream value
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The drag of an underwater vehicle can be substantially
reduced by delaying transition from laminar to turbulent flow in
the boundary layer. This results in higher speed for a given
power input or a reduced power input to achieve the same speed.
One way of delaying transition is by heating the surface. The
viscosity of water decreases with temperature, and this phenom-
enon combined with surface heating results in a more stable
boundary layer.

The prediction of the transition location on a heated body
can be carried out by adapting the well-established procedures
for an unheated body based on linear stability theory Cl1].
Starting at the nose and working downstream, laminar boundary-
layer mean-flow profiles are calculated at several positions on
the body surface. For each set of profiles, the spatial growth
rates of two-dimensional disturbances are calculated at several
frequencies by obtaining eigenvalues of the fourth-order Orr-
Sommerfeld equation. The growth rates at a specific frequency
are then integrated along the body surface and the location where

the total amplification ratio is e? (with n usually having the
value 9) is calculated. The most forward of these locations is
the predicted transition location. Although the method assumes
parallel mean flow and two-dimensional disturbances, it has been
widely verified experimentally.

The objective of the present investigation is to validate a
fourth-order eigenvalue solver developed by BMT Ltd based on the
compound matrix method. The heated flat plate with uniform wall
temperature was used as a test case, since the partial differen-
tial equations describing the mean flow reduce to ordinary
differential equations which can be solved very accurately and
eigenvalue computations can be compared with previously published
results. A few numerical results have been obtained using a
sixth-order system of equations which includes viscosity,
temperature and density fluctuations and buoyancy effects.

2. THEORY

The equations of the mean flow over a flat plate with
uniform temperature are derived and stated in Appendix A (equa-
tions (A22) and (A23)) along with the boundary conditions ((Al8),
(Al9) and (A21)). The solution of these equations gives profiles
of dimensionless velocity and temperature and their first and
second derivatives. The only physical input required is a
knowledge of the fluid properties (density, viscosity, specific
heat capacity and thermal conductivity), which are assumed to
vary only with temperature. Two sets of expressions for these
quantities have been used, proposed by Lowell & Reshotko [2] and
Kaups & Smith [£3). Full details are included in Appendix B.
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The modified Orr-Sommerfeld equation requires as input the
dimensionless velocity profile u/ue and its second derivative,

expressed as functions of the displacement thickness unit yls*,

where 8* represents the usual boundary-layer displacement
thickness, given by

* * u
§ = 1 -2 Y4 14 (1)
lo { Pe ue} y

It also requires the dimensionless viscosity p/ue and its first
and second derivatives (which depend on temperature) expressed as

functions of y/S*. However, the velocity and temperature
profiles and their derivatives output by the mean flow calcu-
lation are functions of n, the compressible scaling parameter
(equation (A9), Appendix A). To convert the mean flow profiles
to a form suitable for input to the eigenvalue calculation, a
numerical procedure and FORTRAN-77 computer program (known as
NMIALS14) were written and supplied by NMI Ltd (now BMT Ltd) C4].
In a typical boundary-layer calculation, 80 to 100 points are
normally sufficient to determine the mean velocity and tempera-
ture profiles, whereas the number of data points (or integration
steps) required for accurate eigenvalue calculation is much
larger (typically 800). Program NMIALS14 also carries out the
required interpolation to achieve this using a cubic polynomial
method. As originally supplied, the program reads in profiles at
81 input points and interpolates them to 801 output points
(equivalent to B00 integration steps), but it has been modified
30 that both these numbers can be varied.

The eigenvalue calculation method solves the Orr-Sommerfeld
equation

(G-CNe' " -T2 ) -T" o + ._*_{awm 2@l et e
o R
i) ) -2 . T3¢ ) —2

+ 2 u (o -a” ¢') + ¢ (¢ + a” ¢) = 0 (2)
which has been modified to include viscosity variations in the
mean flow. The mean flow is assumed to be parallel and the
stream function representing a single disturbance is assumed to
be of the fora

$(x, ¥, t) = ¢y) exp {im(x-ct)) (3)

The boundary conditions are
$(0) = 9'(0) = ¢g(®) = ¢g'(») = 0 (4)

A numerical procedure and computer program (known as NMIHE40S)
has been supplied by NMI Ltd. [4] based on the compound matrix
method [5). This particular method was used to avoid any
nuserical problems caused by the fact that the Orr-Sommerfeld
equation is stiff. The program was written in an interactive
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form, but it has since been modified to allow for automatic
calculation of eigenvalues. The eigenvalue relation has the form

F (e, W, R) = 0 with E';r+ai and w = w_ + w (S)

r i
There are three modes of operation. Mode 0 gives temporal
instabilities. Er and Ei are specified (with Ei = 0) and the
program calculates w_ and Gi' A positive value of Gi

r
indicates an unstable mode. Mode 1 (spatial instability) is

where w, and w; are specified (m:l = 0) and &, and ®; are

calculated. Mode 2 (also spatial instability) is where Er and
Gi = 0 are specified and Ei and Gr are calculated. A
negative value of Ei in modes 1 and 2 indicates an unstable

mode. The spatial instability modes are of greatest practical
interest and most of the eigenvalue computations described in
Section 3 are using these modes.

BMT Ltd. have also supplied two further computer programs
known as BMTMF2 and BMTST6é [6], which are similar to NMIALS14 and
NMIHE40S but deal with the sixth-order system derived by Lowell &
Reshotko [2], which includes fluctuations in all the flow
variables. They found that buoyancy effects are negligible. The
programs only deal with the temporal instability case and a few
numerical results are presented in Appendix E.

3.  NUMERICAL RESULTS

This section describes test computations on heated and
unheated flat plates with constant wall temperature. The cases
chosen were those used by Lowell & Reshotko [23, corresponding to
an ambient temperature of approximately 15.6°C (60°F) and wall
temperatures of approximately 15.6°C (60°F), 32.2°C (90°F),
65.6°C (150°F) and 93.3°C (200°F). The Reynolds number range was

from 400 to 20,000, based on the displacement thickness 8*.
This is typical of the range required in transition calcul-
lations, since S* is generally much smaller than other charac-
teristic length scales, such as body length or diameter.

Full details of the mean flow computations are presented in
Appendix C. The mean flow profiles were converted to profiles of
dimensionless velocity and its second derivative (expressed as

functions of yla*) using a modified version of program NMI-
AL514. The converted profiles were input to a modified version of
program NMIHE40S to calculate the eigenvalues.

Lowell & Reshotko [2] presented the results of their eigen-
value calculations in terms of neutral stability curves, which
are contour plots of curves of Ei = 0 as a function of Reynolds
number R and E}. To obtain comparisons with their work,
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similar plots were obtained using a procedure described in
Appendix D.

(a) Unheated plates

Some tabular comparisons of unheated flat plate
eigenvalues are described in Appendix D. These show the
compound matrix method to be both well-conditioned numeri-
cally (only single precision using 32-bit arithmetic is
required) and capable of giving eigenvalues to high accu-
racy. Figure ]1 shows the effect of the number of inte-
gration steps on the neutral stability curve. The results
show that 800 integration steps are required to obtain

accurate eigenvalues over the whole range of Er and R.

The results for 800 steps agree with those of Lowell &
Reshotko. The eigenvalue calculation at high values of

Et R appears to be sensitive to the number of steps.
At these values, it is also particularly sensitive to
the initial guesses for Ei and @ (see Appendix D).

An alternative ejigenvalue

solver for the unheated case,

supplied by ARE (Portland), was also tested. This was
originally written by NPL £7], and uses a matrix method with
finite-difference approximations to the derivatives of the
Orr-Sommerfeld equation. The results using this method are
presented as Figure 2. There was less variation in the
solutions obtained using 100, 200 and 400 steps than with
the compound matrix method, but at 100 and 200 steps the
minimum critical Reynolds numbers were calculated to be 557
and 528 as opposed to the accepted value of 519 [81. The
solution for 400 steps using this method and all the
compound matrix solutions for 200 steps and above gave
answers within 1% of the accepted value. However, the

accuracy of the NPL method may

still be satisfactory in

engineering calculations of flow transition. At large

numbers of steps (greater than

about 400), the method

appears to suffer from ill-conditioning. It is implemented
in double precisjon (64-bit arithmetric).

The effect of varying the

freestream boundary is shown

in Figure 3. Using 800 integration steps, values for Ne
of 10.0, 7.5 and 5.0 were tried. The results for 10.0 and

7.5 were almost identical, and
different.

(b) Heated plates

those for 5.0 were slightly

Some numerical results are presented in tabular form
and discussed in Appendix E. The effect of the number of
integration steps on the neutral stability curve was

examined for the cases of wall
93.3°C (200°F) with an ambient
The freestream boundary in the
n =10 and the fluid property
Lowell & Reshotko [(2]. In the

temperature 32,2°C (90°F) and
temperature of 15.6°C (60°F).
mean flow calculation was at
relations were those of
former case (Figure 4),
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800 integration steps are sufficient for practical calcu-
lation purposes, but in the latter case (Figure 5), at least
1600 steps are required. Figures 4 and 5 also show the
numerical results of Lowell & Reshotko. who used an ortho-
normalization method. At the lower temperature difference,
their results agree well with those using the compound
matrix method with 800 integration steps. At the higher
temperature difference, however, their results lie somewhere
between those using 800 and 1600 steps. According to
Reference 2, they used 1000 steps, which the present results
suggest may not be enough. Their values of dimensionless
wall shear-stress and temperature gradient agree with those
in the present investigation (see Appendix C). The effect of
chanqing the freestream boundary is shown in Figure 6
corresponding to the largest overheat:; the results are
similar to those for the unheated case mentioned above.

The effects of using different fluid property relations
are shown in Figures 7 and 8, corresponding to small and
large overheats respectively. Two sets of relations were
tried. those used by Lowell & Reshotko [2] and those of
Kaups & Smith [31 (for details, see Appendix B). The
assumption of constant density was tried in the Lowell &
Reshotko formulae and made very little difference to the
calculated eigenvalues.

Figure 9 shows the effect of different wall tempera-
tures on the neutral stability curve. These results were
obtained using the Kaups & Smith fluid property relations
(for comparison with those in Reference 2), with variable
density. The mean flows were computed using an accurate
fourth-order method (Method 2, Appendix C). Similar plots
were obtained using different fluid property relations
(including one case with constant density) and the results
(when compared graphically) were almost indistinguishable
from those in Figure 9. It should be noted that the
Reynolds number is on a logarithmic scale. Further results
where the mean flows were computed using a second-order
finite-difference method (Method 4, Appendix C) were also
very similar. The results obtained by Lowell & Reshotko are
also shown. A plot of minimum critical Reynolds number
against overheat (Tw - T,) is presented as Figure 10. This

shows the data collected by Lowell & Reshotko, to which the
present numerical results have been added. The optimum
overheat is seen to be about 40°C.

A few numerical results were obtained using the sixth-
order formulation [6]1. These are limited to the temporal
instability case (Mode 0) with a wall temperature of 32,2°C
(90°F) and are described in Appendix E. Comparison with the
fourth-order formulation shows differences in eigenvalues
which are nontrivial but small. The resulting neutral
stability curves (Figure 11) correspond with those of Lowell
& Reshotko £2]. It should be noted that. on the neutral
stability curves only, the spatial and temporal eigenvalues
coincide.

-12-
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4. ONCLUS ONS FOR

The compound matrix method gives eigenvalues which generally
agree with previously published results. Different expressions
for the variation of fluid properties with temperature give
nontrivial but small differences in calculated eigenvalues, as
does the calculation of the mean flow using second- and fourth-
order numerical methods. Calculations for heated flat plates
with constant wall temperature suggest (in accordance with
previous work) that the optimum overheat is about 40°C and that
further heating has a destabilising effect on the boundary layer.

The sixth-order formulation, where fluctuations of all the
flow variables are included, gives eigenvalues which are only
slightly different from those obtained using the fourth-order
formulation based on the modified Orr-Sommerfeld egquation. It is
not practicable to incorporate the method in a transition
calculation procedure based on spatial instability, but further
eigenvalue calculations, based on temporal instability, could be
undertaken if thought desirable.

The compound matrix method requires a large number of
integration steps (typically 800 to 1600) to obtain accurate
eigenvalues. BMT Ltd €81 have proposed an alternative eigenvalue
finder, based on a panel method, which requires relatively few
integration steps. They demonstrated that the method works using
a Blasius (unheated flat-plate) velocity profile in the temporal
instability case. Further research would be necessary for a
spatial stability implementation to be used in a transition
prediction method and this might be useful if a large number of
heated body calculations were required.

The compound matrix method is suitable for inclusion in a
method for predicting boundary-layer transition on axisymmetric
heated bodies. The fluid property relations for fresh water
proposed by Lowell & Reshotko [2] are suitable for use in such a
method. The assumption of constant density does not introduce
any appreciable errors and it can be used to simplify an axi-
symmetric calculation procedure and to reduce the computational
effort. A second-order finite-difference boundary-layer calcu-
lation method could be used to determine the mean-flow profiles.

Although it simplifies the problem, the assumption of
constant surface temperature is physically unrealistic. To
maintain a constant surface temperature on a flat plate requires
a non-uniform distribution of heat flux which makes the mean flow
two-dimensional rather than one-dimensional. It is planned for
future computations to prescribe either the surface temperature
or the surface heat-flux which is allowed to vary with streamwise
position.

-19-
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AP DI A

Derivation of the mean flow equations for a heated body

This Appendix presents the equations of motion of a heated
two-dimensional body and a heated flat plate. Let x represent
the co-ordinate along the body surface and y the co-ordinate
normal to the surface, with u(x,y) and v(x,y) the respective
velocity components and T(x,y) the absolute temperature. The
fluid properties (density p, dynamic viscosity u, specific heat
Cp and thermal conductivity k) are assumed to be functions of

temperature only. The usual boundary-layer assumptions are made,
namely, that streamwise derivatives are much less than cross-
stream ones, The equations of motion are [3]:-

Continuity: %;(pu) + %;(pv) = 0 (Al)

Momentum: p{u %¥ + v %; = Py Ye %ge + %;{u %% (A2)
. aT 8Ty _ 2 [, T

Energy: pCy{uds + v ay} 5 {k - (A3)

In the momentum equation (A2), the buoyancy ternm,
Iy (P - Py

where Iy is the acceleration due to gravity in the freestream

direction, has been neglected. This is equivalent to assuming
that the flow is horizontal. In the energy equation (A3), the
compression work term

-5 @ g

has also been neglected, since (-1/p)(dp/dT) (the coefficient
of thermal expansion of water) is very small and the whole term
is also small. The viscous dissipation term

u (ausay)?

in the energy equation has been neglected, since Schlichting C10)
has shoun that it is negligible unless the Eckert number

2

E = ug/(C, T,)

is of the order of unity. The value of E in the present appli-
cation 1s of the order of 10 %,
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The velocity boundary conditions are:-

u=0, v=0 on y=20
(A4)
u-tu, as y-o®

The temperature boundary condition at the wall is one of two
options, that of prescribed wall temperature

T = Tw(x) on y=0 (AS)
or prescribed wall heat flux
-k aT/a8y = Qw(x) on y =0 (A6)

The freestream temperature boundary condition is
T/ITy 2 1 as y -+ oo (A7)

The above equations (Al) to (A3) with the boundary con-
ditions (A4) to (A7) are transformed to a more convenient
co-ordinate system by stretching the y co-ordinate. A modified
Howarth-Dorotnitsyn transformation C[10] is used, given by

E =x (A8)

_

The stream function ¢ is defined in the usual way, as

1

/2
y
] P ay (A9)
0 Pa

pu = 2avY/ay
(Al10)
pv = -3y/ax
and a dimensionless stream function f(n) is defined by
af/an = u/ue (All)
f is related to ¥ as follows:
172
v = (p, M, u, g) £ (Al12)
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The dimensionless temperature g(n) is defined by

g = T/T, (A13)

The equations of motion are transformed to &, n co-ordinates
using the following relations:

a ., 38 _ 1na_ 8
= 3E Igan + N I/T) (A14)
y
where I1 = l (3p/dx) dy
0
y
and I2 = I pY dy
0
1/2

(Al1S5)

OIO
3

) ue
¥y - {p. e €} P

The continuity equation is automatically satisfied by the
definition of the stream function. After transformation, the
momentur and energy equations become

- £ {f' % - £ %} (A16)

{pra Cp}

In equations (Alé) and (Al7), dashes denote differentiation with
respect to n, and

a . m+l - Po .2
an (C£'’') + - ff + n{a- f }

kg + Bl g{f'g% - g %g-} (A17)

olw
3

= P_M = k
R gl K = oty
du
n - - e
e
He C c
P!'“STE. CP=C;L.
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m is a dimensionless pressure gradient parameter and Pr, a

freestream Prandtl number. The transformed boundary conditions
are:

£(0) = O, £'(0) = 0 (A18)
and either g(0) = 9, (A19)
or g’(0) = g& (A20)
As n -+ m, f'(n) = 1, gin) = 1 (A21)

Equations (Al6) and (Al7) along with the boundary conditions
(A18) to (A21) describe the mean flow over a heated two-dimen-
sional body. In the case of a flat plate, assuming similarity of
the velocity and temperature profiles, m is zero and (Al6) and
(A17) simplify to

1

(Cf'') + 5 £f£'' = 0 (A22)

e

-1

(Kag') + fg'" =0 (A23)

w|w
3
[N

{ Pr, Ep}

For an unheated plate, equation (A22) reduces to the well-
known Blasius equation

=

£/ + £ £ = 0 (A24)

[
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APPENDIX B

Fluid-property relations

The mean flow calculation procedure requires values for
density, viscosity and thermal conductivity and their first
derivatives and values for specific heat capacity, all expressed
as functions of temperature. The numerical procedure used by
Lowell & Reshotko (2} requires, in addition, one further deriva-
tive of each quantity.

Two sets of fluid property relations were used in the
present investigations. Those proposed and used by Lowell &
Reshotko (2] are as follows:

Specific heat capacity

Cp/Cpp = 2°13974 - 9-68137x10° > T + 2-68536x10 > T2
~ 2-42139x10 8 T (T in K) (B1)
Density
2
P . _ (T-a)” (T+b) _
Py 1 c(T+d) + e exp(-f/T) (B2)
1 dp _ _ 1 [ (T-a)(3T-2b-a) e
g dt (T+d)[ c + 1 oy
+ %2- exp(-£/T) (T2 + f(T+d)}] (B3)
‘ 2
Ldgz ) _g_g% . (Tid) [(-6T+4a—2b)
Po aT Po ¢
+ —e% L(£-2d)T+£a} exp(-f/T)] (B4)
T

In equations (B2) to (B4), T is in °C and

a 39863, b = 288-9414, c = 508929:2, d = 68-12963,

e 0-011445 and f = 374-3
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Dynamic viscosity E

b(T-20) + c(T-20)2

I
log pla pg/u) = T (BS) :
-
+ 2¢c(T-20) - log,,(a H,/H)
1 dp _ _ 1048 Ho
Vg adE = (MW {b e (a+T) } (B6)
Lo _pue . Ly, 1@’ gy
Ho aT Ho® Mo H Ho

In equations (BS) to (B7), T is in °C and
a =1-002, b = 1-37023, ¢ = B-BGXI0‘4, d = 109:0, e = 0-43429448

Thermal conductivity

k/ky = -9-90109 + 0-1001982 T - 1-873892x10™% 12

7 @3

+ 1-039570x10 ' T (B8)

Expressions for the derivatives of C_/C 0 and k/ko can easily

be obtained from equations (Bl) and (B8). In the above ex-
pressions,

1.-1 3

C_ . = 4186-8 J kg K =~ , P = 1000 kg mn 7,

pO
(B9)

2

Mg = 0:001 N s m 4, k 1

- 0.1 Wik
0° 01 Wm K

The value of Cpo differs slightly from that used by Lowell &

Reshotko, but this has been shown to have a negligible effect on
the numerical results.
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A different set of expressions were proposed by Kaups &
Smith 3], who fitted least-square polynomials to the normalised

experimental data to give
C_CP_ T TV om
= 14833689 ~ 0-8072501 I + 0-3289602 r— (B10)
p.ref ref { ref}
£ - 0-803928 + 0:4615901 T—-—T - 0-2869774 {T—-T }2 ‘
Pref ref ref 1
— ? (B11
+ 0-0234689 ) :
{ ref} f
-1
2 3 4
YRR RN {,_.T}d{,_'r}{,_T}] (B12)
Href [ ref ref ref ref

where a = 35-15539, b = -106-9718715, c = 107-7720376,

d = -40:5953074, and e = 5.6391948.
T 2 3
ref dp _ u T { T } { T } ]
—_— = - b + 2cr + 3d + 4e (B13)
Href a% {”ref} [ { ref} Tref Tref
k - -1.940589 + 5-2220185 {T—T } - 2-693322 {T——T }2
kref ref ref
T 3
+ 0-4176176 T (Bl4)
{ ref}
The reference values in the above expressions are: ;
T = 273°15 K, C = 4218 J kg'lx'l = 999-84 kg n'3 ?
ref * “p,ref * Pref r i
= 0> -2 = 0 -1,-1 i
Mpefr = 0:0017936 N s m and kref 0:5537 W m K (B15) i

Figures 12 (a) to (d) show comparisons of the two sets of
formulae for C , p, 4 and k compared with known values

€11,12) in the range 0-100°C (273:15-373-15 K). There is little
difference between them for u and k, but Lowell’s expressions
agree more favourably with the known values for Cp and p. The

Kaups & Smith formulae were designed to fit the data over a much
wider temperature range than that of interest in the present
investigation. The formulae of Lowell & Reshotko are recommended
for use in future investigations.
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APPENDIX C

Computation of the wean flow profiles

The mean flow problem, defined by equations (A22) and (A23)
with boundary conditions (Al18), (Al9) and (A21) is a two-point
non-linear boundary-value problem. Two NAG Library [13) routines
exist for this type of problem, one called DO2GAF (Method 1),
based on a finite-difference type method, and the other called
DO2HAF (Method 2), based on a shooting and matching method. To
use these methods, equations (A22) and (A23) have to be recast in
a slightly different form, viz:

Py M
N Y L
k
N 1 ak 2 Po o o o
q {Ei@ + Es,l.}'r_g CoPrasskf @ (€2)

Rather than calculating out to infinity, the freestream boundary
conditions are applied at some value N, which is specified as

a numerical parameter. Most of the present calculations were
carried out using n, = 10. In practice, a smaller value may
be acceptable for engineering calculations. Initial estimates
have to be supplied for all the boundary values, i.e. f, f', £'°',

g and g° at n =0 and n = n,. The boundary values supplied
were:

£''(0) = 1.0 for unheated boundary layers,
f''(0) = 0.5 for heated boundary layers,
q’(0) = -0.05
fing) =n, - 2
f"(ﬂe) = 0.0
g'(ng) = 0.0

For a time, the author did not have access to the NAG Library,
and so a third method was tried. This method is the one used by
Lowell & Reshotko [2] and is based on a special technique used
for handling asymptotic boundary conditions described by Nacht-
stein & Swigert [14]1. Both references give FORTRAN listings.
This method only requires initial estimates for f‘‘(0) and g‘'(0)
annd the values used for these were the same as those used in
Methods 1 and 2.

All three methods were used to obtain mean flow profiles for
the unheated case and for the heated cases examined by Lowell.
The main numerical parsmeters are presented in Table 1. It
proved difficult to obtain solutions using Method 1, with Ne
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having a value of 10 in all the heated cases, but some solutions
were obtained with smaller values of ne 9giving slightly

different answers. The values of f’'°‘(0; and g‘'(0) using Methods
2 and 3 agree with each other to eight decimal places and they
agree with the values of Lowell to at least four decimal places.
Method 2 was found easiest to use as the output profiles could be
expressed on an arbitrary grid of points, and this was the method
used for most of the computations.

The same profiles were computed using a second-order
finite-difference method which is well documented in the litera-
ture [15.16] and referred to as Method 4 here. The wall-shear
parameters were slightly different from those using fourth-order
methods where these have converged. The effect of these differ-
ences is shown in Appendices D and E.

Calculations using the NAG library routines were carried out

in double precision arithmetic (64-bit word length).

Most of the

other calculations were in single precision arithmetic (32-bit

word length).

difference compared with single precision.

Temperature (°C) Freestream Wall shear WHWall heat flux
Ambient Hall Method Boundary £ (0) g0}
15.5556 15.5556 1 10 0.33205734

2 10 0.33205734
3 10 0.33205734
Lowell 10 0.33205733
4 10 0.33203962
15.5556  32.2222 1 10 0.46640722 -0.04118285
2 10 0.46640722 -0.04118285
3 10 0.46640722 -0.04118285
Lowell 10 0.46639971 -0.04117200
4 10 0.46631959 -0.04124339
15.5556 65.5556 1 5 0.74604546 -0.13595092
2 10 0.74322894 -0.13577964
3 10 0.74322893 -0.13577962
Lowell 10 0.74319378 -0.13574200
4 10 0.74280715% -0.13596509
15.5556  93.3333 1 8 0.96324417 -0.22613273
2 10 0.96324381 -0.22613270
3 10 0.96324381 -0.22613270
Lowell 10 0.96317694 -0.22606900
4 10 0.96232432 -0.22641809
Table I Comparjson of mean-flow wall parameters
using different numerical methods
-34-
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The effect of different fluid property relations on the mean

flow parameters and the displacement thickness §* is shown in
Table II. Al]l computations were using Method 2 with an ambient
temperature of 15.5556°C and the freestream boundary at n = 10.
The results show that different property relations give small
differences in the numerical parameters, but the assumption of
constant density has hardly any effect.

Wall Fluid ¥all shear HWall hegat flux Displacesent
Temp (°C) Properties £ (o) g'(0) thickness &*
15.5556 0.332057 1.720788
32.2222 Lowell 0.466407 -0.041183 1.514571

Lowell (const p) 0.466429 -0.041212 1.514638
Kaups & Smith 0.467292 -0.041341 1.514442
65.5556 Lowell 0.743329 -0.135780 1.211281
Lowell (const p) 0.743271 -0.135667 1.211291
Kaups & Smith 0.743302 -0.135909 1.211802
93,3333 Lowell 0.963244 -0.226133 1.037017
Lowell (const p) 0.963143 -0.225632 1.036866
Kaups & Smith 0.959619 -0.225790 1.038404
Table 11 -] - t
erent id proper relations
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APPENDIX D

Detajled numerical results for unheated plates

Bumerical results for the stability of the Blasius boundary
layer corresponding to an unheated plate have been published in
the literature by Jordinson [{17] for the case of spatial insta-
biliy and by Davey (referenced by Gaster (18)) for the case of
temporal instability. For cosparison with these results,
eigenvalues were calculated using 800 integration steps in the
former case and 3200 steps in the latter case, with the free-
stream boundary at n = 10. Table III shows comparisons for the
spatial instability case and Table IV for the temporal insta-
bility case.

Present investjgation Jordinson (17)

Reynoids Frequency Have pumaber « ve n r o

Number w Real Imag Rea) Imag

336 0.1297 0.308349 0.007940 0.3084 0.0073

598 0.1201 0.307848 -0.001897 0.3079 -0.0019

998 0.1122 0.308596 -0.005710 0.3086 -0.0057
Table III Comparjson of ejgenvalues with those of Jordinson [17)

Present jinvestigation Davey []18)
Reynolds Frequency HWave number o Wave number «

Musber w Rea) imag Rea] Imagq
500 0.3 0.11930379 -0.00027998 0.11930376 -0.00027998
1500 0.2 0.06312283 0.00315660 0.06312291 0.00315663
3000 0.15 0.04021918 0.00278070 0.04021919 0.00278079

Table IV Comparison of eigenvalues with those of Davey [18)
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Engineering calculations of transition on axisymmetric
bodies are normally carried out using a second-order accurate
finite-difference method [15.16) as opposed to the fourth-order-
accurate methods used specifically for a flat plate calculation.
To see wvhether this made any significant difference to the
eigenvalues, some further tests were carried out using the
Blasius boundary layer calculated in three different ways. These
were (a) a fourth-order calculation using Method I (see Appendix
C), (b) a second-order finite difference calculation using a
modified version of the program described in Reference 15, with
the second derivative of velocity f’'’'‘(n) calculated using a
second-order finite-difference approximation, and (c) with the
velocity f‘'(n) calculated using a second-order method and
£f'''(n) calculated exactly from the differential equation (A24).
The results using all three methods are tabulated, along with
Jordinson‘s results in Table V. In all cases, the freestream
boundary was at n = 10 and 800 integration steps were used.

Reynolds Ereauency  Method Wave nymber a
Nupber w Rea} Imaq
336 0.1297 (a) 0.30835 0.00793
{b) 0.30828 0.00798
(c) 0.30842 0.00794
Jordinson 0.3084 0.0079
598 0.1201 (a) 0.30785 -0.00190
(b) 0.30779 -0.00184
(c) 0.30792 -0.00190
Jordinson 0.3079 -0.0019
998 0.1122 (a) 0.30860 -0.00571
(b) 0. 30856 -0.00565
(¢) 0.30866 -0.00572
Jordinson 0.3086 -0.0057

Table V Comparison of ejgenvalues using different mean flows
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400

400

1000

2200

10000

10000

Table VI

No of
Steps

3200
1600
800
400
200
100

3200
1600
800
400
200
100

3200
1600
800
400
200
100

3200
1600
800
400
200
100

3200
1600
800
400
200
100

3200
1600
800
400
200
100

0.068109
0.068109
0.068109
0.068111
0.068122
0.068357

0.355209
0.355209
0.355209
0.355222
0.355379
0.356780

0.279828
0.279828
0.279832
0.279884
0.280443
0.282826

0.390733
0.390736
0.390776
0.391265
0.394557
0.382908

0.135634
0.135645
0.135774
0.136942
0.134532
0.101152

0.389878
0.389923
0.390448
0.393632
0.379159
0.310466
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0.
0.
0.
0.
0.
0.

0.
0.
0.
0.
0.
0.

-0.
-0.
-0.
-0.
-0.
-0.

0.
0.
0.
0.
0.
0.

-0.
-0.
-0.
-0.
-0.
-0.

0.
0.
0.
0.
0.
0.

026870
026870
026871
026872
026895
027173

005268
005268
005268
005265
005206
004176

007287
007287
007289
007313
007734
013448

039061
039060
039051
038833
034749
011654

011900
011905
011985
013373
027835
032060

036309
036298
036039
031597
010141
036128

atjon s

NPL_Method
Have number o

Real

Imag

Failed to converge

0.073973
0.069476
0.068446
0.068200
0.068162

0.363537
0.357208
0.355703
0.355331
0.355235%
0.355187

0.290591
0.282377
0.280454
0.279976
0.279832
0.279681

0.402942
0.393718
0.391486
0.390966
0.390944
0.391034

0.156262
0.140224
0.136744
0.135896
0.135639
0.135369

0.400500
0.392460
0.390498
0.389957
0.389628
0.388832

0.028631
0.027321
0.026987
0.026915
0.026943

0.003345
0.004773
0.005160
0.005306
0.005538
0.006365

-0.009000
-0.007763
-0.007387
-0.007224
-0.006920
-9.005818

0.035210
0.038130
0.038786
0.038816
0.038324
0.036591

-0.011298
-0.012065
-0.011925
-0.011769
-0.011321
-0.009668

0.032976
0.035479
0.036111
0.036295
0.036469
0.037578

igenv s




Some comparisons were made of the number of integration
steps on the eigenvalues. The comparisons were made using both
the compound matrix method and a much older finite~difference
type matrix method developed at NPL (17), which was supplied by
ARE (Portland). Eigenvalues were generated starting with a
Blasius profile at 101 points and converting the data to the
required number of integration steps using the modified version
of program NMIALS14. The freestream boundary was at n = 10,

The results are presented in Table VI above. They show that the
compound matrix method produces eigenvalues which converge to a
“true" value as the number of integration steps is increased. At
high Reynolds numbers, 800 steps are required to produce reason-
ably accurate eigenvalues. The NPL method, when used with 100 to
800 steps, gives eigenvalues which do not change very much with
the number of steps. The eigenvalues generally lie within 1% of
the "true” value, except near the region of neutral stability

where Ei is small. Above B00 steps, however, the method appears

to suffer from ill-conditioning. It is implemented in double
precision (64-bit word length).

Some numerical problems were encountered when using the
compound matrix method. At high Reynolds numbers and high wave
numbers, premature convergence occured, owing to a floating-point
underflow condition. The problem could be cured by running in
double precision with a special option known as G_FLOATING, where
the smallest positive floating-point number is approximately

10'308, as opposed to single precision and conventional double

precision where the corresponding number is approximately 1038,
However, this required twelve times the cpu time compared with
the single precision version. The errors arising from this
problem were generally in the sixth place of decimals, and only

occurred in cases when Ei was relatively large and positive,

hence being of no real significance in a practical transition
calculation.

In some cases, the eigenvalue calculation was sensitive to
the initial guess. This problem occurred when using single
precision and double precision arithmetic, both with and without
the G_FLOATING option. Some numerical experiments were conducted
using a Blasius profile calculated at 81 points with the free-
stream boundary at n = 8 and interpolated to 801 points (800
integration steps). Both modes 1 and 2 (spatial instability

modes) were tried with a range of initial guesses for Er and «
{mode 1) and Ei and ;r (mode 2). The results are shown in

Figures 13 (mode 1) and 14 (mode 2). They show that at high
Reynolds numbers, the convergence of the compound matrix method
is sensitive to the initial guess. In particular, when using
mode 1, to have any chance of convergence, the initial gquess for

Er should err on the low side, and with mode 2, the initial guess

for ;r should err on the high side. Over the range of Reynolds

i
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numbers tested (400 to 20000) this was only found to be a problem
with unheated boundary layers at Reynolds numbers above 1000.

Although the eigenvalue calculation method was initially
supplied as an interactive program, many of the computations
involved generating a series of eigenvalues over a range of
Reynolds number and wave number. Initially, the results of one
eigenvalue calculation were used as the initial guess for
another, but this method often failed at high Reynolds numbers.
To overcome this difficulty, the following procedure was adopted.
In mode 2, used for most of the calculations, for the lowest

Reynolds number and the smallest value of Er’ user-specified
values of Ei and Gr were used as initial guesses. The result-
ing value of Ei was used as the initial guess at the next value
of o, and the initial guess for w, was based on linear extrapo-
lation with o,. At the second lowest Reynolds number, for each
L the corresponding values of oy and Er at the first Reynolds
number were used as initial guesses. At higher Reynolds numbers,
for a particular Er' the initial guesses for Ei and Gr were

calculated using linear extrapolation with 1n(R). This pro-
cedure worked well for all the heated cases, but no scheme could
be found which worked successfully for all the unheated cases
tested.
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APPENDTIX E

Detailed numerical results for heated plates

The effect of using different numbers of integration steps
on a few typical eigenvalue calculations using mode 2 is shown in
Table VII below. The results show that a large number of
integration steps are required to predict the eigenvalues
accurately. In particular, to obtain accurate values in unstable
regions, where the imaginary part of the wave number is negative,
at least 1600 steps are required.

The effect of different mean velocity and temperature
profiles on eigenvalue calculation is shown in Table VIII below.
Different profiles were obtained by using different expressions
for the fluid property variation with temperature. Three sets of
expressions were used, being those of Lowell & Reshotko [2] with
both variable and constant density, and those of Kaups & Smith
£3]1. These profiles were obtained for each value of wall
temperature, using a fourth-order "exact" solution (Method 2 in
Appendix C). A fourth set of profiles was obtained using a
second-order "approximate" finite-difference solution (Method 4
in Appendix C), with the Lowell & Reshotko expressions for
fluid-property variation with variable density. The results in
Table VIII indicate that for a particular wall temperature, small
changes in the mean-flow profiles (which are quantified in
Appendix C) lead to relatively small changes in the eigenvalues.
In particular, the assumption of constant density hardly affects
the eigenvalue calculation. An errors obtained using this
assunption are likely to be smaller than errors obtained using
too few integration steps.

A typical plot of contours of &i as a function of R and

ET is presented as Figqure 15. 1In this case, the wall temperature

is 32.2°C (90°F) and the Lowell & Reshotko property variation is
used with 800 integration steps. The results using 1600 steps

show only very slight differences in the unstable region (Er
negative).

Figure 15 was obtained by computing a table of eigenvalues
for a few values of ar and R (normally eight and ten respect-

ively) using mode 2. To produce a smooth contour plot and to
save on computer time, a much larger table of eigenvalues was

generated for S1 uniformly-spaced values of Er and 51 uniformly-

spaced (on a logarithmic scale) values of R, using cubic spline
interpolation (NAG Library routine EO1ACF [13]). Contour plots
were drawn using the larger table using the SIMPLEPLOT Mark I
graphics package. All of the neutral steability curves presented
above were produced in a similar way. 1In general, the contour
plots obtained were smooth, but some of those for the unheated
case did have slight ripples which were smoothed on the final
versions of the figures. The interpolation program was also used
to determine the minimum critical Reynolds number below which all

i+
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disturbances are stable. The values for various cases are in
Table IX below. They are discussed further in Section 3.

HNall Reynolds Number of Wavenumber Frequency

4 Temperature Number Inteqration ) w

(°C) R steps Real Imaq
3

32.2222 400 3200 0.05 0.024346 0.016689
1600 0.024346 0.016689
800 0.024346 0.016689
400 0.024347 0.016689
2000 3200 0.10 0.012078 0.025248
1600 0.012078 0.025248
800 0.012081 0.025246
. 400 0.012109 0.025215
20000 3200 0.15 -0.002720 0.026628
1600 -0.002769 0.026617
800 -0.003512 0.026507
400 -0.011928 0.026425
65.5556 400 3200 0.05 0.032698 0.020750
1600 0.032698 0.020750
800 0.032698 0.020750
400 0.032705 0.020750
2000 3200 0.10 0.020908 0.022470
1600 0.020908 0.022470
800 0.020917 0.022465
400 0.020998 0.022398
j 20000 3200 0.15 -0.002655 0.022820
\ 1600 -0.002744 0.022794
’ 800 -0.004294 0.022565
! 400 -0.020114 0.023288
} 93.3333 400 3200 0.05 0.048665 0.017552
1600 0.048665 0.017552
800 0.048666 0.017552
400 0.048691 0.017553
2000 3200 0.10 0.021585 0.020538
1600 0.021587 0.020538
800 0.021613 0.020525
] 400 0.021804 0.020348
20000 3200 0.15 -0.004155 0.021116
1600 ~-0.004436 0.021047
800 -0.009386 0.020606
400 -0.028066 0.024785

Table VII Effect of number of integration steps on

heated flat-plate eigenvalues
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Hall Fluid Rave Frequency
Temperature Properties/ Number, « w
(°C) ea low Real Imagq

32.2222 Lowell/2nd order 0.05 0.024367 0.016687
Lowell/4th order 0.024346 0.016689

(800 int Lowell (const p) 0.024339 0.0l16688
steps) Kaups & Smith 0.024297 0.016698
32.2222 Lowell/2nd order 0.10 0.012070 0.025247
Lowell/4th order 0.012081 0.025246

Lowell (const p) 0.012086 0.025248

Kaups & Smith 0.012122 0.025255

32.2222 Lowell/2nd order 0.15 -0.003488 0.026511
Lowell/4th order -0,003511 0.026507

Lowell (const p) -0.003504 0.026506

Kaups & Smith -0.003488 0.026500

65.5556 Lowell/2nd order 0.05 0.032621 0.020642
Lowell/4th order 0.032698 0.020750

(1600 int Lowell (const p) 0.032690 0.020766
steps) Kaups & Smith 0.032807 0.020832
65.5556 Lowell/2nd order 0.10 0.020859 0.022467
Lowell/4th order 0.020909 0.022470

Lowell (const p) 0.020923 0.022467

Kaups & Smith 0.020932 0.022464

65.5556 Lowell/2nd order 0.15 -0.002712 0.022797
Lowell/4th order -0.002744 0.022754

Lowell (const p) -0.002750 0.022793

Kaups & Smith -0.002782 0.022797

93.3333 Lowell/2nd order 0.05 0.048365 0.017528
Lowell/4th order 0.048665 0.017552

(1600 int Lowell (const p) 0.048747 0.017540
steps) Kaups & Smith 0.048943 0.017527
93,3333 Lowell/2nd order 0.10 0.021542 0.020533
Lowell/4th order 0.021587 0.020538

Lowell (const p) 0.021574 0.020532

Kaups & Smith 0.021520 0.020537

93,3333 Lowell/2nd order 0.15 -0.002663 0.028493
Lowell/4th order -0.004436 0.021047

Lowell (const p) -0.004461 0.021047

Kaups & Smith -0.004547 0.021072
Table VIII The effect of different fluid property relations and

different mean flows on heated flat-plate eigenvalues
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Hall Number of Fluid
Temperature Inteqration Properties
(°C) Steps
15.5556 800
32,2222 800 Lowell
Lowell
Lowell (const p)
Kaups & Smith
65.5556 1600 Lowell
Lowell
Lowell (const p)
Kaups & Smith
93,3333 1600 Lowell
Lowell
Lowell (const p)
Kaups & Smith
Table IX

Mean-f low
Calculation

2nd
4th

2nd
4th

2nd
4th

2nd
4th

order
order

order
order

order
order

order
order

Minimum critical
Reynolds number

521
519

5142
5136
5147
5199

11345
11297
11289
11227

8340
8281
8240
8101

Effect of different fluid properties and different

mean flows on minimum critical Reynolds number
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A few numerical results were obtained for the temporal
stability case (mode 0) using the sixth-order program BMTST6 and
these are compared with the corresponding fourth-order results in
Table X. The wall temperature was 32.2°C (90°F), the freestream
boundary at n = 10 and the Lowell fluid-property relations were
used with 800 integration steps. In general, the results show a
non-trivial but small difference between the fourth-order and
sixth-order approaches. Neutral stability curves (which are the
same for temporal and spatial instability) are compared in Figure
15, which shows that the differences between the two cases is the
same as that obtained by Lowell,

Reynolds Have Fourth-order Sixth-order
Number Number Frequency, w Frequency, w
R a Real Imag Real Imaq
5000 0.12000 0.026885 -0.000573 0.026820 -0.000705
6000 0.16000 0.037071 0.000190 0.036080 0.000138
7000 0.12233 0.025799 0.000080 0.025788 0.000003
8950 0.10668 0.021016 0.000074 0.021014 0.000002
14250 0.17315 0.033227 0.000081 0.033332 0.000000
400 0.05000 0.015543 -0.007361 0.015300 -0.006302
2000 0.10000 0.025579 -0.003712 0.024762 -0.004312
10000 0.15000 0.030417 0.000640 0.030477 0.000591
20000 0.15000 0.026593 0.000683 0.026732 0.000524

Table X Comparison of eigenvalues using fourth-order and
sixth-order approaches
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