
IA-AS 18 THE APPLICATION OF SINGLE-SOURCE SHORTEST PATH
ALGORITHMS TO AN OJCS (ORG (U) NAVAL POSTGRADUATE
SCHOOL MONTEREY CA J N BRON MAR 87

UNCLASSIFIED F/G Vi MLEEEEEEEEEEEEE
lllllfl lllflflfl
EEEEEEEEEEEEEE
EEEEEEEEEEEEE

gm. 1j. 1

Iu A-1-

MICROCOPY RESOLUTION TEST CHART

MATIUW I UREAU OF STANDARDS- 1963-A

mom.-

111C FIE CORN

NAVAL POSTGRADUATE SCHOOL
Monterey, California

aA
00

0

i N ,,

THSI

THE APPLICATION OF SINGLE-SOURCE SHORTEST A
PATH ALGORITHMS TO AN OJCS CONTINGENCY

PLANNING MODEL AND A VEHICLE ROUTING MODEL

by

Jerome W. Brown, Jr.

March 1987

Thesis Advisor: R. E. Rosenthal

Approved for public release; distribution is unlimited

817 5 12 156
YIN V ~ - ~-

SECURItV CL.ASSIFICATION OF TISi PAGE ,Xb -A / '3
REPORT DOCUMENTATION PAGE

la REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

UNCLASS IF lED
2a SECUR TY CLASSIFICATION AUTHORITY 3 OISTRIBUTION'IAVAILABILITY OF REPORT

Approved for public release;
2b DEC .SS1FCATON DOWNGRADING SCHEDULE Distribution is unlimited

4 PERFORMNG ORGANIZATION REPORT NUMBER(S) S MONITORING ORGANIZATION REPORT NUMBER(S)

6a NAVE Of PERFORMING ORGANIZATION 6b OFFICE SYMBOL ?a NAME OF; MONITORING ORGANIZATION

Naval Postgraduate School (,f ,%Icabe) Naval Postgraduate School

6c ADDRESS Ity. State. and ZIPCode) 7b ADDRESS(City. State. nd ZIP Code)

Monterey, California 93943-5000 Monterey, California 93943-5000

8a NAME OF FUNDINGSPONSORING I8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (It apphcable)

8c AODESS (City. State. aid ZIP Code) 10 SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK JNIT
ELEMENT NO NO NO ACCESS:ON NO

,' r'E Include Security Classfcation) THE APPLICATION OF SINGLE-SOURCE SHORTEST PATH
ALGORITHMS TO AN OJCS CONTINGENCY PLANNING MODEL AND A VEHICLE ROUTING
MODEL.

*PERSONJAL AUTHOR(S)

BROWN. Jerome W.. Jr.
0,F "Z REP RT . '3b TME COVERED 14 rIATQ9F 8PORT,(Year.Month Day) S PAGE (O, NT

aj s ter s Inesis I FROM --- - TO ---- :9arch 52

'6 SL ,V_',ENTARY NOTATION

.OSAT COOES 18 SUB ECT TERMS (Continue on reverse if necessary and Identify, by block number)
GROUP SUB-GROUP Shortest Path, Algorithms, reference node

I aggregation, SOTACA model, Vehicle Routing Model

"9 ABSTRAC' (Continue on reverse if neceUary and identify by block number)
This thesis investigates the use of single-source shortest Dath

algorithms in two unrelated contexts. In the first apDlication, the label
setting and label correcting algorithms are examined for apDlicabilitv to...
and implementation within a J-8, Organization of the Joint Chiefs of Staff
contingency planning model. This model has encountered problems of slow
execution directly related to shortest path computations, which can be
resolved by the methods proposed. Additionally, these two shortest path
algorithms are examined for use within the model for identification and
presentation of alternate optima when they exist.

The second application involves the development of a new algorithm,
called reference node aggregation, which is designed to efficiently
produce a subset of the all-pairs shortest path solution for large scale
networks. The anticipated use of this algorithm is in connection with

.03 D 3'a3,j' ON , AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
t .1¢%CASSIF'EIDNLMITED 0 SAME AS RPT 0OTC USERS Unclassified

2a I.AVE OF RESPONSIBLE %,0iVtDUAL 22b TELEPNONE(IrcIude AreaCode) 22c OFFI(E SYMBOL
R. E. Rosenthal 408-646-2795 55R1

DO FORM 1473, 84 MAR 83 APR edton 'ay be used until euhausted SECURITY CLASSIFICATION OF T,! S PAGE
All other edtoms are obsolete

1

SECURITY CLASSIFICATION Of THIS PAGE (Whm 0a aorm

19. Abstract (cont).

Vehicle Routing Model. The motivation for producing a subset
of the full solution is that only a very small subset of all
possible pairs of nodes will ever be considered for consecutive
visitation bv a vehicle; hence, most of the information in an
all-pairs solution is irrelevant. For those Dairs whose exact
shortest paths are not computed, a single-step aporoximation
is devised which does not require access to neripheral storage.
The new algorithm has three user-specified engineering Darameters
whch effectively contol the tradeoff between the accuracv of the
subset solution and the effort required to comnute it.

SN 0102- LF-014-6601

2
SECURITY CLASSIFICATION OP THIS PAGSEOhmm Date Ente,.O

Approved for public release; distribution is unlimited.

The Application of' Single-Source Shortest Pathi Algorithms
to an OJ1CS Contingency Planning Model and a VeChicle Routing~ Model

by

Jerome WV. Brown Jr.
Captain, U nited States Marine Corps

B.S., Mliami Universitv, 1 980
M.S., lUhiversit% of Southern California, 1983

Submitted in partial fulfillment of' the

reqluiremients flor the degree of'

MAST17R OF SCIENCE IN OPERATIONS RESEARCII

from the

NAVAL POSTrGRADUATE SCHOOL
March 1987

Author:

Approved by: e i 4-f
R. L. Rosenithal, T hesis Advisor

G ,Brown, Second Reader

* Peter Puirdue Chairman,
D~epartment of'Operations Analysis

D~ean of hiuoxtmtion and Policy Scienlces-3.

3

ABSTRPACT

This thesis investigates the use of single-source shortest path algorithms in two

unrelated contexts. In the first application, the label setting and label correcting

algorithms are examined for applicability to and implementation within a J-S.

Organization of the Joint Chiefs of Staff contingency planning model. This model has

encountered problems of slow execution directly related to shortest path computations.

which can be resolved by the methods proposed. Additionally. these two shortest path

algorithms are examined for use within the model for identification and presentation of

alternate optima when they exist.

The second application involves the development of a new algorithm, called

reference node aggregation. which is designed to efliciently produce a subset of the all-

pairs shortest path solution for large scale networks. The anticipated use of this

algorithm is in connection with vehicle routing models. The motivation for producing

a subset of the full solution is that only a very small subset of all possible pairs of

nodes will ever be considered for consecutive visitation by a vehicle; hence, most of the

information in an all-pairs solution is irrelevant. For those pairs whose exact shortest

paths are not computed, a single-step approxim 'on is devised which does not require

access to peripheral storage. The new algorithm has three user-specified engineering

parameters which effectively control the tradeoff between the accuracy of the subset

solution and the effort required to compute it.

4.

FABLE OF CONFEN'IS

IN TRO I)LCT IO N .. 9

A. 'IIIESIS CONTENT AND ORGANIZATION 9

B. NITWORK FLOW MODEL STRUCTURE AND
N O IA IIO N .. 9

II. GLOBAL CON1INGENCY PLANNING AND NETWORKS I

A. CONTINGENCY PLANNING WITHI NETWORKS II

B. PROBLEM DFE INITION 11

1. Background .. 11

2. l he lssucs .. 12

C. SOIA(CA IMPLEMENTATION OF FLOYD'S
A LU O R I I I M, ... 12

1. Floyd s A lgorithm 12

2. Input Arrays (Network Representation) 14

3. Output Arrays (Shortest Path Representation) 14

D. SINGLE-SOLRCE SIIORTFST PATI ALGORITHMS 15

1. .Modilving SOIACA'S Network Data Structure

2. Label Setting Algorithms 17

3. Improving the Label Setting Algorithm IS

4. Label Correcting Algorithms 20

5. Improving the Basic Label Correcting Algorithm 21

E. MUI.TIPLE SIIORTEST PATHS 21

1. Dcterfining the Existence of Multiple Shortest Paths 24

2. niumerating the ,Multiple Shortest Paths 25

F. TESTING AND EVALUATION'

1. Label Setting and Label Correcting 27

2. Depth-First Search For Multiple Paths 28

II!. REFERENCE NODE AGGREGATION 30

A. INI RODUCI ION

5

B. PROBLEM DEFINITION............................... 3
1. Assumptions and Given Data 10

2. SPij Approximations 32
3. The Problem 32

C. THE PROPOSED ALGORITHM......................... 3 3
1. Base Algorithm Selection..............................3 3
2. Termination Measures 33
3. Avoiding Recomputation of Shortest Paths 3.. 4

4. Sumnmary... 34

D. THE DESIGNED ALGORITHM......................... 35
1. Data Structure..................................... 35

2.The Implemented Versions of the Proposed Algorithm 3..6

E. EXPERIMENTAL DESIGN AND TEST RESULTS 39
1. Purpose...3 9
2. Design ... 39
3. Data Structure Size 42
4. Algorithm Execution Time Comparison.................. 43

5. Conclusions....................................... 44

IV. CONCLUSIONS .. 48

A. SOTACA .. 48

B. REFERENCE NODE AGGREGATION 49

LIST OF REFERENCES .. 50

INITIAL DISTRIBUTION LIST...................................... 51

6

LIST OF TABLES

1. EXECUTION TIMES FOR LABEL SETTING AND
CORRECTING (IN CPU SECONDS)28

2. ALGORITHM DATA STRUCTURE SIZE 29

3. TEST FO R M A T ... 42

4. DATA STRUCTURE REQUIREMENTS 43

5. SUMMARY OF ALGORITHM PERFORMANCE (CPU
SECS REFERENCE SET) ... 47

7

LIST OF FIGURES

2.1 SOTACA's Implementation of Floyd's Algorithm 13

2.2 SOTACA PATH Function ... 14

2.3 Transformation of Network Data to Forward Star Format 16

2.4 The Predecessor Function .. 17

2.5 The Label Setting Algorithm 19

2.6 Label Setting Improved by Use of Temporary Labels 20

2.7 The Label Correcting Algorithm 22

2.S Improved Label Correcting Using Scan-Eligible Lists 23

2.9 Setting the Multiple Optimal Solution Flag 24

2.10 Depth-first Search Algorithm 26

3.1 Reference Node Aggregation Algorithm Using Improved Label
S ettin g 37

3.2 Reference Node Aggregation Algorithm Using Basic Label Setting 40

3.3 Randomized Complete Block Design for the Friedman Test 45

......

1. INTRODUCTION

A. THESIS CONTENT AND ORGANIZATION
This thesis investigates the use of single-source shortest path algorithms in two

separate contexts. The first application, found in Chapter 11, is embedded within a i-S.
Organization of the Joint Chiefs of Stafl'(OJCS) planning program called State of' the

Art Contingency Analysis (SOTACA). SOTACA is an interactive, automated tool that

assists staff planners and operations officers in quickly analyzing alternate plans for a

contingency operation [Ref' 1: page 1-2]. SOTACA frequently computes shortest paths

which are used in the routing of friendly forces over a network that represents the area

of operation. The shortest path software currently contained in SOTACA is deficient

in two respects:

(1) it is too slow. and

(2) it ignores alternate shortest paths when they exist.

Chapter II describes an implementation of single-source shortest path algorithms which

resolves these two problems.

The second half of this thesis considers shortest path calculations embedded

within vehicle routing problems over large networks. Whenever two nodes are visited

consecutively by the same vehicle, the shortest path connecting those nodes must be
used. However. only a minute fraction of all possible pairs of nodes will ever be

considered for consecutive visitation. Therefore. it is desirable to avoid computing all

possible shortest paths. For this reason. Chapter III develops an effective way of

providing the shortest path information needed for vehicle routing without solving a

large number of shortest path problems.

B. NETWORK FLOW MODEL STRUCTURE AND NOTATION

For the purpose of the discussions to follow, the network will be considered to be

a directed graph G = (N.A) consisting of a set of nodes. N,

N = I 1,2,3, ... n}

and a set of arcs (ordered pairs of nodes),

A c NxN.

9

where x denotes the Cartesian product. Nodes represent places (or items) of interest to

the modeler while an arc defines the existence of a valid route (or relationship) between

nodes. Associated with each arc is a nonnegative flow parameter, C(i.j). which is the

cost assessed per unit of flow across the arc (ij).

,110

.. ,,, , -

1I. GLOBAL CONTINGENCY PLANNING AND NETWORKS

A. CONTINGENCY PLANNING WITH NETWORKS
The Organization of the Joint Chief; of Staff (OJCS) uses network flow models

in the conduct of global contingency planning. This is accomplished with the

assistance of a modern-aid-to-planning-program (.IAPP) called the State of the Art

Contingency Analysis (SOTACA) model. One of SOTACA's principal ftnctions

provides for the representation of the area of operation in its various dimensions (i.e..

land. sea, economic, political. .. enabling the conunander and his staff to

systematically analyze the mission and situation of the assigned task [Ref. I: page 2-7].

This representation of the operational area takes the form of a network flow model

where nodes represent places of significance and arcs between nodes represent

movement paths for forces.

The primary function of SOTACA's network flow model is to enable the study

and analysis of candidate routes (i.e.. shortest paths) for movement of' enemy and

friendly forces on an administrative or tactical march. Associated with each arc in the

network are two separate flow costs:

* the ph xsical length in kilometers of the arc

* the time in minutes to traverse the arc

These two flow costs enable stall' planners to study both time and distance in

contingency planning.

B. PROBLEM DEFINITION

I. Background

In 1985. SOTACA was delivered to the J-8 OJCS by Science Applications

International Corporation and shortly thereafter, follow-on documentation was

initiated. This included an analyst's guide to using SOTACA with emphasis on the the

network flow model and shortest path computations. Concurrent to the f'ollow-on

documentation. J-8 planners were trained to use SOTACA and started to analyze

contingency plans. The subsequent use of SOTACA resulted in problems where model

execution time increased alarmingly when the network approached the maximum

allowable size of 300 nodes and 1251) arcs [Ref. l. (This is considered small by

contemporary standards [Ref. 2.3j.)

N
t
! l,

'S.

--- .--..

5' P .

During May-June 19S6. the author was assigned to the J-80 JCS as part of'

his Naval Postgraduate School Operations Analysis experience tour. He was tasked by

J-8 with determining:

(1) the shortest path methodology implemented in SOTACA. and

(2) if'this methodology was responsible flor the increased execution times.

The author's analysis determined that SOTACA uses an implementation of

Floyd's all-pairs shortest path algorithm [Retf 4: page 21)]. Subsequent discussion

between J-8 analysts and the author brought to light that only a small portion of the

all-pairs solution is ever used by SOTACA. The results of further analysis concluded

that the slow execution of the SOTACA model is rooted in both the network data

structure supporting the implementation of Floyd's algorithm and in the

overabundance of information it produces.

A secondary issue which surfaced during this analysis was a perceived

shortconing of SOTACA's shortest path implementation, namely, the nonrecognition

of alternate shortest paths when they exist. J-8 analysts felt that the identification and

use of alternate paths could enhance the analysis of a contingency plan via SOTACA.

2. The Issues

The remainder of this chapter addresses two specific issues which were still

unresolved at the conclusion of the author's experience tour. The first is to determine

what can be done to reduce or eliminate SOTACA's slow execution time. The second

is to identify a methodology for generating alternate shortest paths for use by

SOTACA.

C. SOTACA IMPLEMENTATION OF FLOYD'S ALGORITHM

This section provides a brief description of the shortest path methodology and

the associated data structure currently used by SOTACA.

1. Floyd's Algorithm

Floyd's algorithm produces an all-pairs shortest path solution by examining

every path between two nodes and recording that path which has smallest total flow

cost. This process is repeated for every pair of nodes in the network. Figure 2.1

outlines the SOTACA implementation of' Floyd's algorithm.

Underlying SOTACA's use of' Floyd's algorithm is a data structure which

contains a description of the network and provides flor recording of the computed

shortest paths.

12

7

In) variable. NODES, which specifies the total number of nodes in the
network.

{'Y) The network descrpion in the form of'related vectors FROM-NODE,
0O-NODE. and FL6OW-COST.

Output:
(I1) T he PATH flunction.

(2) The PATHI-COST function.

1. Initialization

a. PATH(ij) = 4I , flor all i and j N
b. PATH-COST(ij) =.flor all i and j e N

c. For I = 1. IAIDo:

(1) PATH(FROM,-N\ODE(l).T-O-\ODE(l)) = 0
(2) PATHi-COST(FROMI-NODE(l).TO-N\ODE(I)) =FLOW-COST(l)

End do

d. UPDATE-FLAG = ON

2. Enumeration

while UPDATE-FLAG = ON, do

UPDATE-FLAG = OFF

For i = I to NODES, do

For j = I to 'NODES. do

For k = 1 to NODES, do

If PATH-COST(i.k) + PATH-COST(k.j) < PATH-COST(ij) then

PATH-COST(ij) =PATH-COST(i,k) + PATH-COST(k.j)
PATI(ij) = k

UPDATE-FLAG =ON

Endif

End do

End do

End do

End while

Fi2ure 2.1 SOTACA's Implementation of Floyd's Algorithm

13

2. Input Arrays (Netliork Representation)

The network description is contained in four arc-length (denoted JAl1 arrays.

The entries in these arrays are related by position and define an arc in the network.

These arrays identitv the origin of an arc (FROM-NODE). the destination of an arc

(TO-NODE). the distance flow cost (DISTANCE), and the traversal time flow cost

(TIME). Outside of these positional relations, the arc information is in random order

in the arrays. That is. tie first arc input by the user is placed in the first position of

the arrays. the second arc in the second position and so on.

3. Output Arrays (Shortest Path Representation)

The shortest path solutions are contained in two pairs (i.e.. four total) of n by

n matrices (where n = INI). Each solution pair, while utilizing the same network, is

for a separate flow problem. Tile first is concerned with the physical distance between

nodes, while the second involves traversal-time between nodes.

Each solution pair utilizes the same method for storing shortest path

solutions. Thus. a solution consists of a PATH-COST function which identifies the

shortest path distance (i.e.. the total flow cost) between any two nodes in the network.

and a PATH function [Ref: 4: page 211] which specifies the sequence of nodes on each

shortest path.

The PATH-COST function is an all-pairs version of the well-known label

function [Ret: 2.5: page 151. The PATH lunction is also well-known and Figure 2.2

depicts the iterative process for recovering shortest paths from it.

PATH(i.j) = -1 No path exists from node i to node j

0 Node j is connected to node i by arc (i.j).

k To reach nodei from node i, first goto node k and
then examine PATH(k.j) to detern-ne which node is next
on the path.

Figure 2.2 SOTACA PATH Function.

Armed with an understanding of how SOTACA currently produces and

records shortest path information, attention is now turned to methods by which the

network module deficiencies can be eliminated.

14

D. SINGLE-SOURCE SHORTEST PATH ALGORITHMS

SOTACA computes all-pairs shortest paths in a preprocessing method which

typically requires a twenty minute waiting time (on a MICRO VAX) for networks at or

near the maximum allowable size. As has been stated previously. SOTACA is able to

perform its force routing rhnction if it has at a minimum, the shortest path solution

from a specified node to all other nodes in the network. In the literature available

today. this type of problem is often referred to as a single-source shortest path problem

[Ret. 4: page 203]. It is proposed that SOTACA use a single-source shortest path

algorithm to compute shortest paths on-demand (i.e., as needed by the user). To this

end, this section presents an examination of two well known single-source shortest path

algorithms. These two algorithms are label setting and label correcting. and there are

numerous variations of each.

Prior to presenting the algorithms, two changes to the SOTACA data structure

are introduced. These modifications support the functioning of the single-source

shortest path algorithms as well as provide a means to more efficiently represent

network data and shortest path solutions in SOTACA.

1. Modifying SOTACA'S Network Data Structure

Two changes to SOTACA's data structure are proposed. The first concerns

the manner in which the network description is represented internally, while the second

involves the method for storing the shortest path solutions.

a. Reorganizing the Network Data

The network representation SOTACA uses is rather cumbersome when it
comes to locating specific arc information. In locating the set of all arcs which

originate from node i (this set is called the forward star of i [Ref. 3: page 21S]).

SOTACA conducts an arc-length search of the FROM-NODE array. This inefficiency

is part of the larger problem that has surfaced with symptoms of slow execution.

This inefficiency can be overcome in two steps. First of all, the network

data in the original arrays are put through a one-time sort which places the data in

ascending order based upon the FROM-NODE field. As a result, the forward star of

an%- node is in contiguous space within the arrays. Sequencing the arcs of the network

by forward star yields efficiencies in solving for shortest paths.

At the completion of the one-time sort, the FROM-NODE array is used to

construct an array known as the TAIL array [Ref 2,5: page 13] which then replaces

the FROM-NODE array. The TAIL array is of length INI + 1. TAIL(i) specifies the

15

initial position of thle contiguous space containing all arc inflormation Ior arcs

originating at node i, while TAIL(i-iH1 specifics the last position. Fig-ure 2.3 %shows

an example of' network data being transflormed firom the original network

representation to thle forward star flormat.

5 2 3

7 3

4 /5
1 4

2

IiROM-NOl)E 1 2 3 1 4 5 2
1ONO) 2 5 4 4 2 1 3
[LOW-COST 7 1 5 2 3 4 1

(a) SOTACA Network Representation

rRONI-\OlE 1 2 2 3 4 5
-1O-NOI)L 2 4 5 3 4 2 1
I- LOW-COST 7 2 1 1 5 3 4

(b) After the one-tinmc sort

TA 11, 1 3 5 6 7 8

TO-NOD[2 4 5 3 4 2 1
FLOW-cOSTi 7 21 1 1 5 3 4

(c) Forward Star Network Representation

Figure 2.3 Transflormation of Netw~ork Data to Forward Star Format.

There are two advantages in using this modified data structure. Tlhe first is

the memiorv savings that occurs when thc arc-length vector FROMV-NODE is replaced

bv the node-length vector TAIL (as most) networks are such that INI < < JI).

However, the second advantagc Car outweighs anly other, as the accessing of specific

arc informiation has been transformned from an arc-Icngth search to anl examination of

only those arcs of present interest.

16

b. The Predecessor and Label Functions

The reader will recall that SOTACA stores an all-pairs shortest path

solution in the two n by n matrices. PATi and PATH-COST. Solutions to the single-

source shortest path problems can be compactly recorded in two I by ii arrays called

the predecessor function [Ref. 2: page 10] and the label function. The predecessor
function, P(. is associated with a single source node (i.e.. the root node) and contains a

tree of shortest paths. The predecessor function differs from PATH in that it specifies

the backpath from a node to the root node with each entry indicating which node was
visited (corning from the root node) immediately prior to the current node. PATH. on

the other hand. specifies a forward sequence of nodes for traversing the shortest path

from one node to another. Figure 2.4 depicts the predecessor function.

The label function. U0. contains the total flow cost to reach a node from
the specified root. Thus. it is the one row of the original all-pairs PATH-COST

v function associated with the root node r.

P(i) = j Node j immediately precedes node i on the backapth
to the root node.

0 Indicates that i is the root node if U(i) = 0. Otherwise
indicates that i cannot be reached from the root node.

Figure 2.4 The Predecessor Function.

2. Label Setting Algorithms
One method of solving the single-source shortest path problem is to use a

label setting algorithm [Ref. 2.3.4.5]. In this method, also known as Dijkstra's
algorithm [Ref. 4: page 204], the nodes are partitioned into two sets, labeled and

unlabeled. Labeled nodes are those for which the shortest path from the source is

known, and unlabeled nodes are those for which it is not known. At each iteration, the

method identifies the cheapest unlabeled node which can be reached from a labeled

node. and adds this node to the labeled set. It should be noted that label setting (in

contrast to label correcting) requires:

C(i.j) 0 fbr all (i.j) e A
which was stated as an assumption in Chapter I.

-A

The label setting algorithm, as with other single-source shortest path

algorithms, generates a tree T consisting of a single root node r with other nodes

connected to that root by some shortest path. Associated with each node i in the tree

is a label that specifies the cost of the shortest path originating at the root node and

ending at node i.

In the first iteration, the root node r is the only labeled node and it has a label

of zero. At each iteration. the algorithm examines all the arcs originating at labeled

nodes and identifies the unlabeled node (and the associated arc) which is cheapest to

reach next. That unlabeled node is labeled and the associated arc added to the set of,

shortest paths, AT. The algorithm repeats this process INI-I times since at each

iteration one node is labeled. Figure 2.5 provides a step by step description of the label

setting algorithm.

3. Improving the Label Setting Algorithm

It does not take much tanfiliarization with the label setting algorithm to see

that there is at least one major inefficiency with it. At each iteration but the first, the

algorithm exanines many arcs which it has examined previously, and some which have

no bearing on producing new shortest paths (e.g.. those arcs between labeled nodes).

Thus, in a network of JAI arcs. the algorithm ends up examining more than JAI arc,.

To avoid this extra work. the algorithm can be modified so that each arc is examined

only once. [Ref. 51

This is accomplished by setting temporary labels, which are intermediate

guesses at the final (permanent) values of the labels. The algorithm proceeds similar to

the basic algorithm. It starts with a specified root node and examines its forward star.

setting all labels which can be improved upon and designating these labels as

temporary. There are numerous ways to store temporary labels. The method chosen

in this thesis was to use the sign bit of the predecessor function [Ref. 51. Thus during

any iteration, the sign of the predecessor function indicates the following:

P(i) = 0 indicates the label for node i has not been set

P(i) < 0 indicates the label for node i is temporary

Pti) > 0 indicates the label for node i is permanent

After the forward star has been examined and all temporary labels set, that

node with the minimum temporary label is identified. This node's label is set

permanent, and its forward star is examined thus repeating the process. The algorithm

stops when all temporary labels have been set permanent.

IS

Input:

(1} A directed graph G = (N.A) where C(i.j) > 0 for all i and j e N.

(2) A specified root node r.
Output:

(I) The shortest path costs ;n the label function U().
(2) The shortest path tree in the predecessor function P0.

1. Initialize a tree TiNT.AT) such that:

a. NT = {r}

b. AT = 1

c. Uit) X for all t e N-NT

d. U(r) = 0

e. P(t) = 0 for all t E N

2. Examine the forward star of all permanently labelled nodes and define:

S = '(i.j): i E NT: j E N-NT. (i.j) E A,
IF S = } THEN proceed directly to step 4.

3. To determine the "best' next label and its associated node. examine each
element of S and:

a. Find (k.) = argrmin U(ii + C(i.j) : (i.j) e S }

b. Redefine:
N N U I

AT = AT U (k.l))

c. Set:

POI) = k

U(l) = U(k) + C(k.l)

d. Repeat step 2.

4. Stop.

[Ref 3.5]

Figure 2.5 The Label Setting Algorithm.

19

The basic label setting algorithm, presented in Figure 2.5, is easily modified to

utilize this improvement. To do this. steps 2 and 3 of the algorithm are replaced by

those shown in Figure 2.6.

To alter the basic algorithm, replace steps 2 and 3 in entirety by the
following steps:

2. Examine the forward star of node r:

IF U(j) > U(r) + C(r.j)

THEN set:

U(j) = U(r) + C(r.j)

P(j) = -r

ENDIF

3. IFP(i) > 0forallieN

THEN proceed to step 4

ELSE set:

r = argmin 1 U(i) : P(i) < 0. for i e N

P(r) = -P(r)

Repeat step 2

ENDIF

Figure 2.6 Label Setting Improved by Use of Temporary Labels.

Label setting is just one single-source shortest path methodology. Attention is

now turned to a related yet different single-source shortest path algorithm.

4. Label Correcting Algorithms

Another method of solving single-source shortest path problems is to use a

label correcting algorithm [Ref. 3,4,5.6]. As with the label setting algorithm. label

correcting generates a tree of nodes connected by shortest paths, and associates a label

with each node in the tree. This node label is identical to that used in label setting.

Although not relevant in the present applications, it is worth noting that the

label correcting algorithm can handle negative arc flow costs. There is one restriction,

however: no cycle in the network can have negative total cost.

20

Label correcting sets temporary labels as it proceeds and upon reaching a

specific ending condition declares all labels as permanent. To accomplish this. label

correcting uses a list which contains nodes whose labels have been modified (i.e.,

corrected). Initially, this list contains only the root node r.

The list is processed in a last-in first-out (LIFO) fashion. When node i is

stripped off of the list. its forward star is examined. If there exists a node j such that:

U(j) > U(i) + C(ij),

then the label of node j is corrected by,

U(j) = U(i) + C(i.j),

and its predecessor function is updated,

P(j)-- i.

In addition, a node whose label has been corrected is added to the list if not already

appearing on it. The list is processed until there are no nodes left on it. At that time

the algorithm stops and all labels are declared permanent. Figure 2.7 depicts the label

correcting algorithm. [Ref. 3.5]

5. Improving the Basic Label Correcting Algorithm

There are numerous ways to improve on the basic label correcting algorithm.

Most improvements specify a different manner in which to process the list of corrected

nodes. One such method, termed scan-eligible [Ref. 6: page 67], uses a partitioning of

the corrected nodes into two lists. NOW and NEXT. The nodes on NOW are

processed in a LIFO fashion exactly as had been the basic algorithm's list. However,

corrected nodes are placed onto the NEXT list. Then when all the nodes on NOW

have been processed. NOW is set equal to NEXT, and NEXT is set to an empty set.

This process is repeated until both NOW and NEXT are empty sets. The resulting

labels are permanent at that time and the predecessor function contains the shortest

path tree. Figure 2.8 depicts the label correcting algorithm improved through the use

of scan-eligible lists.

E. MULTIPLE SHORTEST PATHS

The final SOTACA-related problem to be addressed concerns the existence of

multiple shortest paths in a network. When multiple shortest paths exist, it is desired

that the following occur:

0 that a shortest path solution be produced, and

0 that the multiple paths between a user-specified sink node and the root node be
enumerated a the user s request. Note that in some networks the number of'
alternate shortest paths between a root and sink node may be very large. In

21

_

Input:

(1 A directed graph G = (N.A) with unbounded arc flow costs C(i.j).

(2) A specified root node r.

Output:

(1) The shortest path costs in the label function U(.

(2) The shortest path tree in the predecessor function P0.

I. Initialize a tree T(NTAT) such that:

a. NT = r}

b. AT= H
c. U(t) = for all t e N-NT

d. U(r) = 0

e. P(t) = 0 for all t r N

f. LIST I r }
2. IF LIST t } THEN proceed directly to step 4

ELSE define:

i = node at the top of LIST

LIST = LIST- i)

ENDIF

3. Examine the forward star of node i and for each node j e N where:
U(i) + C(i.j) < L(j)

Redefine:
NT = NT U }

AT =AT-{(s.JGAT}} U { (ij)}
P(j) =i

U(j) = U(i) + C(i.j)

LIST = LIST U j}
Repeat step 2.

4. Stop.

[Ref. 3.5]

Figure 2.7 The Label Correcting Algorithm.

Input:
1I) A directed graph G (N.A)with unbounded arc flow costs C(i.j).

(2) A specified root node r.
Outpuit:1 d)The shortest path costs in the label function.

(2) The shortest paths in the predecessor function.

1. Initialize a tree T(NT.AT) such that:

a. NT = r

b. AT
c. U(t) = C'for all t e N-NT

d. U(r) 0

e. P(t) = 0 for all t e N

f. NOW= r} NEXT= ,

2. Define:

i = node at top of NOW

NOW = NOW- i }
3. Examine the forward star of i and for each j e N where:

U(i) + C(i.j) < U(j)
Redefine:

NT = NT U {j}

AT =AT- (s.j)rAT} } U ((i.j)}
P(j) =i

U(j) - U(i) + C(i.j)

NEXT = NEXT U Ij)

4. IF NOW = {} THEN repeat step 2.
IF NOW = {} and NEXT =}THEN goto step 5.

Otherwise set:

NOW= NEXT

NEXT = H
Repeat step 2

5. Stop. [Ref. 3.5.61

Figure 2.8 Improved Label Correcting Using Scan-Eligible Lists.

23

this case. it may be desirable to enumerate only a subset (size specified by the

user) of all these alternate paths.

None of the algorithms discussed thus far are designed to produce a solution of

this type. As designed, each algorithm merely provides the first shortest path solution

encountered, ignoring any alternate shortest paths. This section describes some

methods for attaining recognition of multiple paths and enumerating the alternate

paths upon user request.

1. Determining the Existence of Multiple Shortest Paths

The first thing to be done is to find a means by which it can be deternined

that multiple shortest paths exist in a network. This is readily accomplished in the

basic label setting algorithm through the setting of a flag to indicate that multiple

shortest paths exist. This flag is set during the examination of arcs in the forward star

of a labeled node. There are three conditions which indicate that multiple shortest

paths exist and these are shown in Figure 2.9 . Note that these conditions can be

looked for as the algorithm builds the shortest path tree.

When examining the forward star of node i:

IF:

P(j) 0.

P(j) e i. and

Ltj) = U(i + C(i.j

THEN

Set the Multiple Solution Flag

ENDIF

Figure 2.9 Setting the Multiple Optimal Solution Flag.

The setting of a flag can also be done in the other three algorithms. However.

the nature of improved label setting and both label correcting algorithms require an

entire re-exanfination of all the arcs in the network after the shortest path tree has

been built. If the conditions described in Figure 2.9 exist, then the multiple solution

flag is set.

24

2. Enumerating the Multiple Shortest Paths

There are (at least) two methods by which multiple shortest paths from the

root to a specified sink node can be identified and presented to the user: depth-first

search [Ref' 7: page 91]. and breadth-first search [Ref. 7: page 95]. For this thesis, the

depth-first search technique is used.
The depth-first search is an optimistic approach which considers one path as

good as any other during the search. After the designation of the root and sink node.

a depth-first search starts at the root node and builds a tree as it searches to reach the
sink node. Essentiallv. it adds nodes in a sequential fashion building a tree consistin

of a main trunk with no branches. Thus. the search proceeds deeper and deeper (i.e..

further away from the root node) until no more nodes can be added or when there is

no hope of reaching the sink. At that point, the search backs up the tree one level and

exanines other alternatives that have not been searched at that level. If alternatives

exist, the search goes back to its headlong dash down the new trunk. If no alternatives

exist, the search will backup another level and check for alternatives there. The search

stops when tile sink node is found or when the backing up reaches the root node with

no alternatives left unsearched.

Note that having a shortest path solution before enumerating the alternate

shortest paths provides the known optimal distance to reach the sink. s. Thus. the

depth-lirst search can be interrupted and directed to other paths once the current trunk

length exceeds U(s) as there is no hope of reaching s optimally at that point. Figure

2.10 provides a description of the depth-first search algorithm.

F. TESTING AND EVALUATION
All six algorithms described in Section E (i.e., label setting. improved label

settin, label correcting, improved label correcting, modified for multiple solutions label

setting. and depth-first search) were successfully implemented in FORTRAN for

execution on the Naval Postgraduate School's IB1-3033.

. Testing and evaluation consisted of three specific stages. The first test was a
r:minor one which simply verified the functioning and output of the single-source
horte't path algorithms. Tile second test provided for a comparison of execution

times for each of these algorithms against sample networks. The third test involved

verifyin2 the function and output of the modified for multiple solutions label setting

and the depth-first search algorithms.
4.2

4 .

Input:

(I The root node r.
The sink node s.
M3) MAXDEPTI = U(s).

Output:
(1) The shortest paths from r to s. or an indication that r and s are not

connected via alternate paths.
1. LIST = 'r}

2. IF LIST = } THEN go directly to step 5.
3. Processing LIST in a LIFO fashion, define:

a. i = node at the top of LIST

b. IF U(i) > MAXDEPTH THEN:

Remove i from LIST
Repeat step 2

c. IF i = s THEN

Announce success
Proceed directly to step 4

d. Scan the forward star of node i for a successor node v:

IF there are no eligible successors THEN

Remove i from LIST
Repeat step 2

ELSE
Add v to LIST
Designate the associated arc as examined
Set i = v
Repeat step 2

ENDIF

4. IF success has been announced THEN

Record the path from r to s
Remove s from the top of LIST
Repeat step 2

ELSE

Proceed to step 5
ENDIF

5. Stop.

[Ref. 71

Figure 2.10 Depth-first Search Algorithm.

26

The sample networks used to test the algorithms were generated by the random

network generator NETGEN [Reft SI on the 1BM-3033. Each network consisted of a
set of nodes and a set of directed arcs with their associated arc flow costs.

1. Label Setting and Label Correcting

a. Test for Alg'orithm Functioning'

This test was designed to determine if the algorithms were properly

implemented by verifying the contents of the predecessor and label functions. To

accomplish this. NETGEN was used to generate small networks of' 10 nodes and 30

arcs. Each algorithm was run using these networks and the resulting predecessor and

label functions output for root nodes 1 through 10. The results were compared to the

known results to verify the output accuracy. This test demonstrated that the

algorithms functioned properly, and produced accurate predecessor and label functions.

b. Test for .41gorithm Comparison

This test was designed to provide data in the form of algorithm execution

times for a set of sample network problems. The times were compared to give an

indication of the relative speed of each algorithm.

The test was designed as Follows:

* The al2orithms were standardized so that execution times measured the same
set of t sks in each algorithm.

* NETGEN was used to generate 3 networks of the Following sizes:

Network 1: 300 nodes and 1250 arcs
Network 2: 20)O nodes and 1125 arcs
Network 3: 11.0 nodes and 1o0)) arcs

* Each algorithm was run using the same set of 10 root nodes (one run per root
per a126rithmj with the execution times recorded internallh (using FORTRAN
GETI.ME and SETINIE functions). The root nodes were' generdted using the
FORTRAN pseudo-random number generator LRND.

The results of the test were summarized by noting the minimum, maximum, and mean

execution times. These results are presented in Table 1 and provide a general

indication of the speed of each algorithm.

The algorithms use a variety of variables and arrays to support the

production of shortest paths. However, the bulk of the data structure in each

algorithm is dedicated two functions:

* storing network data

0 storing shortest path solutions

Disregarding the non-array variables, the approximate size of the data structure size for
each algorithm, as well as that fbr Flovd'- algorithlm. ib presented in Tabie 2

27

TABLE I
EXECUTION TIMES FOR LABEL SETTING AND CORRECTING

(IN CPU SECONDS)

Problem Size

100 nodes 200 nodes 300 nodes
Algorithm 100W arcs 1125 arcs 1250 arcs

Label Setting

Average 0.153 0.403 0.671
M ininTum 0. 133 0. 372 0.139
Maximum 0.169 0.429 0.758

Improved Label
Setting

Average 0.010 0.066 0.150
Mininmum 0.003 0.059 0.143
Maximum 0.026 0.083 0.183

Label Correcting

Average 0.023 0.093 0.169
.Mininrum 0.009 0.059 0.139
Maximum 0.046 0.113 0.226

Improved Label
Correcting

Average 0.004 0.003 0.005.1ininum 0.003 0.003 0.003
Maximum 0.006 0.003 0.009

2. Depth-First Search For Multiple Paths

This test was primarily concerned with insuring that the multiple solution flag

was set properly in the modified label setting algorithm and that the depth-first search

algorithm produced the correct alternate paths for a given root and sink node.

The test was designed as follows:

* 2 networks of 10 nodes and 20 arcs were constructed. Network 1 was prepared
such that only one shortest path existed between each pair of nodes.
Conversely, net'work 2 was designed to have multiple shortest paths between

Soni eodes. The shortest path soiutions for both networks were known.

2S

TABLE 2

ALGORITHM DATA STRUCTURE SIZE

Label Label Floyd
Setting Correcting*

Function

Storing
Netwo6rk 21AI + INI 21AI + INI 31AI
Data

Shortest
Path -- NI
Generation

Shortest
Path 21NI 2IN1 21NIINI
Solutions

Total 21AI + 31NI 2IAI + 41NI 31AI + 21NIINI

* The scan-eligible label correcting algorithm uses an additional (i.e., two
total) INI-lengthlist for shortest path generation.

* The modified label setting algorithm was run with each node in the network
specified as the root node tfor one run. The depth-first search algorithm was
called after a shortest path solution had been produced if the multTiple solution
flag was set.

* The output of the depth-first search algorithm was com ared to the known
alternate shortest paths in the network. -This comparison Tocused on accuracy
of each alternate path produced as well as the completeness of the solutioh
(with regards to the known quantity of alternate paths to be found).

Both the modification for multiple solutions and the depth-first search

algzorithm functioned properly. The multiple solution flag was set appropriately. and
the depth-first search algorithm then produced the correct alternate paths.

29

Jil

II!. REFERENCE NODE AGGREGATION

A. INTRODUCTION
The second part of this thesis involves questions which arose in connection with

work by Professor Rosenthal on a vehicle routing algorithm. While not directly related

to the SOTACA problem. the foundations are much the same. One main diffkrence is

that the networks of interest are large scale.

Despite this vast increase in problem size over SOTACA networks, the item(s) of

interest is the same, namely the shortest paths between nodes.

B. PROBLEM DEFINITION

For consistency purposes, the same basic network terminology used in the

SOTACA chapter will be used to formally describe the problem at hand.

1. Assumptions and Given Data

Let G=(N,A.R) be a large-scale directed graph of INI nodes and JAI arcs.

The size of G is not fixed, but in practice it is expected that JNI is large (e.g., 50.000 or

more nodes). while JAI is approximately bounded as follows:

1.75(N(< (A(< 3jNj .

Each arc of A has a non-negative flow cost. C(i.j).

The graph G forms the basis upon which the vehicle routing model performs

its function of routing vehicles from one location (node i) to another (node j) at

minimum cost. With no restrictions placed upon i or j, all nodes in N are potential

origins and destinations for the model. However, it is recognized that only a very small

fraction of all the shortest paths in G will ever be used. So, rather than wasting

considerable time to produce an all-pairs shortest path solution which cannot be stored

with available computing machinery anyway, it is desired that the shortest path

algorithm produce a part of the all-pairs solution (i.e., one small enough to be stored

internally) in which some shortest paths are known and from which all others can be

quickly approximated. With current technology, it is assumed that several INI-length

arrays can be stored internally but not INI of them.
To this end, a set of nodes is designated as a reference set. This set. R

(r= jRI), is a subset of N and in practice it is expected that:

30

,u .

r < < INI (e.g., r = .O0011NI).

This designation is a result of' a partitioning of' all the nodes of' N into r clusters where

each cluster contains one reference node. All of' the remaining nodes in a cluster are

considered ordinary nodes.

This designation of' R is to be used by the shortest path algorithm to produce

a subset of the all-pairs solution, namely the all-pairs of' R solution. From this all-

pairs of R solution. the vehicle routing model must be able to determine the shortest

path between any nodes in the network. Thus, the all-pairs of' R solution must be

structured such that all nodes in the network are a known distance from at least one of

the reference nodes. To facilitate this, the shortest path algorithm shall utilize an

engineering parameter approach which provides the user a degree of control over the

amount of approximation used.

The engineering parameter approach is defined as follows. Letting SPij

represent the optimal shortest path cost from reference root node i to node j. and EPI.

EP2. and EP3 the engineering parameters. with EPI < EP2 < EP3. the proposed rules

are as follows:

" if SPij -< EPI, then the algorithm is required to produce the shortest path

accurately

" if SPij is known and satisfies EPI < SPij < EP2, then the algorithm is allowed

to approximate SP by SPi

" if SPij > EP2. then the algorithm may neglect computing the shortest path.

approximate SPij by EP3. and force the algorithm to a halt (i.e.. stop

computing shortest paths)

The first rule requires that all shortest paths of length EPI or less be

computed accurately. That is, the optimal shortest path must be located and the node

labeled appropriately if the node is to be labeled at all. In essence. this provides the

means by which the user can ensure that the shortest path from a ref'erence node to

each of the ordinary nodes in the same cluster is accurately computed. Applied to each

cluster, this ensures that all nodes in N are a known distance from at least one of the

ref'erence nodes.

The second rule, essentially provides for assumed symmetry between reference

root node i and node j. With respect to the vehicle routing problem. this rule is

designed to allow the algorithm to ignore the asvmmetry of a particular route on trips

31

of' specified length. For example. on trips between location i in city 1 and location j in

city 2. the one-way on-ramp to an interstate can be ignored as its distance is

insignificant to the total shortest path distance between i and j. Thus to save work and

execution time. SP i is approximated by SPij . In contrast, this rule insures that

synmetry is not assumed when the path is less than [PI. Consider the case where

node i and node j are different locations in the same business district in a city. To

ignore one-way streets in this setting may produce a gross inaccuracy in the computed

SPiR Thus. the selection of EPI and EP2 enable the user to determnine under what

conditions svnimetr" may be assumed.

The third rule, defines the maximum distance from the reference root node(s)

that the user wants examined. When the algorithm encounters the first shortest path

length greater than P2., the associated node is labeled with a dummy distance (EP3)

and the algorithm stops. All nodes, to include the non-root reflerence nodes, that are

outside this maximum range are not labelled. Leaving these nodes unlabeled is

acceptable since in vehicle routing these nodes will never be visited consecutively and

% thus it is not required to know SPij for them.

These rules essentially allow the user to adjust the scope of the shortest path

problem according to individual desires or needs, as well as providing for flexibility to

take advantage of advances in computer hardware as improvements are introduced.

2. SPij Approximations

The shortest path solutions produced are for all-pairs of R. That is. each

node in R is designated as the root node once, and this results in r single-source

shortest path solutions. From these r solutions, any" SPi- for G can be computed in
Ii

one step. The user designates the i and j of interest, and the model knows the reference

node that each is associated with. Letting I represent the reference node associated

with node i, and J represent the reference node associated with node j, then the

computation of any SPij is as follows:

SPi = pUI(i) + qU(j) + UI(J}

where p and q are weights designated by the user for adjusting this approximation.

3. The Problem

The problem to be addressed is two-fold. The first task is to determine what

type of shortest path algorithm is most appropriate to this situation and will function

as the base for construction of the reference node aggregation algorithm. And second

32

is to design and implement an algorithm which reflects the engineering parameter

approach and produces an all-pairs of R shortest path solution from which all SPij can

be approximated efficiently. The goal is to produce the all-pairs of' R solution quickly.

from which the vehicle routing model can compute in one step any SPij.

C. THE PROPOSED ALGORITHM

1. Base Algorithm Selection

A straigzhtforward approach to solving this problem efliciently is to choose an

algorithm which can produce shortest paths without necessarily examining every arc in

A and each node in N. The ultimate algorithm would examine only those nodes and

arcs involved in the shortest paths For R.

In this pursuit, it was decided to use a label setting algorithm as the base upon

which to build. The most attractive aspect of a label setting method is that at each

iteration, the permanent labels are optimal. That is, the shortest paths computed from

the specified root are part of the final shortest path tree T= (NT.AT. even though T is

not complete until the INt-I iteration. Label correcting, on the other hand. is not

necessarily optimal until its last iteration. As well. an all-pairs algorithm (like Floyd's)

is not optimal until all paths in the network have been examined. By exploiting this

optimality feature of label setting. it is hoped that an efficient, yet effective, algorithm

can be developed.

The reader will recall that in Chapter II, two label setting algorithms were

discussed. The first was the basic label setting algorithm, while the second, improved

label setting. used temporary labels which enabled a one-time examination of each arc

vice repetitive examinations. Both of these label setting techniques will be used as a

base for the reference node aggregation algorithm design, and testing will provide For a

comparison between them.

2. Termination Measures

A means of exploiting the label setting algorithm for the problem at hand

involves constructing the capability to force the termination of the algorithm before

normal completion at the INI-'st iteration. The shortest path solution for a given

reference root node is complete no later than the point where all non-root reference

nodes are labeled, and thus when this occurs the algorithm can be stopped. This

premature termination is acceptable due to the fact that the shortest paths are optimal

at each iteration and that those shortest paths not identified by the time all reflerence

33

nodes are labeled have no direct impact on the all-pairs of R shortest path solutions.

At worst, an alternate shortest path may be ignored.

In essence, this involves adding one step to the base label setting algorithm

which checks to see if the label of each reference node is permanently set. If they are.

the algorithm is stopped. On the other hand. if there is even one reference node not

labeled, the algorithm proceeds as normal.

The termination measure is designed to stop the algorithm from doing work
that does not directly contribute to producing the desired shortest paths for the nodes

in R. To assist in this eflort. attention is now turned to another efliciencv measure.

3. Avoiding Recomputation of Shortest Paths

Another measure to be added to the base algorithm also takes advantage of

the nature of the label setting technique. As was mentioned earlier. solving a network

for an all-pairs of R shortest path solution requires that the algorithm be run once for
each reference node and that each reference node be designated as the root node for a

specific run.

With the exception of the first reference root node, this algorithm repetition

can be exploited in that some shortest paths do not have to be computed again. Each
repetition of the algorithm locates and labels the non-root reference nodes along some

shortest path. Should a non-root reference node have any successors in a particular

solution, these successors can be immediately labeled at the beginning of the iteration

%where the node is designated as the reference root node. This occurs, once again due

to the fact that the label setting technique produces shortest paths at each iteration.

Thus, any successor (node) to node i on a shortest path where i is not the root node, is

also a successor on that same path when node i is the root node.

So at each repetition of the algorithm, the previous shortest path solutions
can be examined to determine if the new reference root node had successors in those

solutions. When this occurs, the successors can be immediately labeled. thereby

eliminating the computation of those shortest paths for the current iteration.

4. Summary

Two versions of the reference node aggregation algorithm are proposed. The

first version utilizes the basic label setting algorithm (previously depicted in Figure 2.5

of Chapter II) as an underlying structure and blends in the engineering parameter

approach, as well as the termination measures and the measures for avoiding the

recomputation of shortest paths.

34

Likewise, the second version blends in the parameter approach and these same
measures, but differs in that it utilizes the improved label setting algorithm (previously

depicted in Fi2ure 2.6 of Chapter 1I) as the underlying structure.

D. THE DESIGNED ALGORITHM

1. Data Structure

Supporting both versions of the proposed reference node aggregation
algorithm is a data structure which is similar to that discussed in Chapter II. The

network is represented internally by the TAIL array, the flowcost array C(). and the

head array H() (i.e., TO-NODE). As for the shortest path solutions, they are stored in

the label and predecessor functions discussed previously. However, both functions are

now defined as matrices of dimension JR by INI with each row containing the shortest
path solution associated with the reference node used as the root node to generate that

solution.

To round out this data structure, three additional arrays are introduced.

a. Reference Node Array

To identify which nodes in the network are designated as reference nodes.

an array of length I R is defined. This array, RF(), simply contains as its elements the
node number of each node belonging to R. that is, those nodes who have been

designated reference nodes.

b. Traversal and Depth Functions

The final two arrays added to the data structure are of length [NI + I and
enable the identification of successors to non-root reference nodes in previous

solutions. These well-known arrays are the traversal and depth functions [Rer. 2: page

151.
The traversal function IT() provides a means to keep track of the dynastic

ordering of nodes in the shortest path tree T. This dynastic ordering produces a ring of

nodes starting at the root with each entry in IT() pointing to the next node in

succession until the final value points back to the root.

The depth function DP() keeps track of how many levels below the root

node a non-root node is found in T. The root node is assigned a depth of zero. Those

nodes directly attached to the root are assigned a depth of one and this level increases

the further a node gets from the root. In essence, the depth of a node indicates the

number of nodes (including the root) visited prior to reaching that non-root node along

the shortest path.

WI.5

,. , .- - UW

For the reference node aggregation algorithm, depth and traversal are used

in conjunction with each other to identify all the successors of a node. IT(i), the

traversal value for node i, points to the next node in the d,. nastic ordering and the

depth of that next node specifies whether the node is a successor to node i or merely of

lower order as compared to node i. Iterating this, all the successors of node i can be

identified as well as the shortest paths the successors are found on. These paths. thus

identified, can be used in the current solution without the necessity of computing from

scratch.

2. The Implemented Versions of the Proposed Algorithm

Computer implementation of the proposed algorithm was accomplished in

FORTRAN. As was indicated earlier, both the basic and improved label setting

techniques were used as base algorithms.

Figure 3.1 depicts the reference node aggregation algorithm utilizing the

improved label setting as its base. In this algorithm, a shortest path solution for each

reference node is generated. Thus, step 1 initializes the solution index and the

associated reference root node is chosen in step 2. The predecessor. label, depth, and

traversal functions are initialized for the current solution in step 3. Step 4 has two

parts, and in part 4a, any" SPjr found in previous solutions (i.e., associated with another

reference node) that has a length between EPI and EP2, is used to approximate Srj

where r is the current reference root node. Step 4b sets the label and predecessor of all

nodes which were successors of the current reference root node in the previous

solutions. In step 5, the reference nodes are examined at each opportunity where it is

possible that each has been permanently labeled, and upon finding this to be true.

forces the current iteration to halt and a new iteration (with a new reference root node)

to start. The forward star of the last labeled node is examined in step 6 and all

temporary labels which can be improved upon are updated. The best temporary label

is located in step 7. while step 8 deternines if the shortest path solution has reached

the furthest distance (EP2) from the root node that the user wants examined. If this

distance is met or exceeded, the current iteration is halted, and a new reference root

node is designated. In step 9, the best temporary label is set permanent. Step 10

increments the iteration index in preparation for selecting the new reference root node.

And finally, in step II the all-pairs of R solution is complete and the algorithm stops.

Figure 3.2 depits the reference node aggregation algorithm using basic label

setting as its base. In this version. a shortest path solution for each reference node is

,, - -... - .4.

Input:

(1) RF(). the array of reference nodes.

(21) Network data in the form of the arrays C() H(and T().

(3) EPI, EP2, EP3

Output:

(1) PI() for I = 1. RI

(2) LI() for I = 1. RI

I. Initialize the repetition index: I = 1

2. Initialize the tree T with the reference root node: r = RF(I)

3. Iteration initialization:

Pi(j) (0. for all j e N

UI(j) = 00. for all je N
UI(r) = 0

DPI(j) = 0. for all j e N

ITI(j) = 0, for all j e N

DPI(INI+ I) = -I

ITI(INI+ 1) = r

ITl(r) = INI +I

RFCNT-- RI

4. FOR K = 1,1-1 DO

a. Examine the backpath of r. Let j = PK(r)

WHILE j = 0 DO

IF EPI < UK(r)- UK(j) < EP2 THEN

UI(j) = UK(r) - UK(j)

Pl(j) = K + INI (.denotes that the path from r to j is found
in the shortest path solution for RF(K))

= pK(j)

ENDIF

END WHILE

Figure 3.1 Reference Node Aggregation Algorithm

Using Improved Lalel getting.

37

b. Examine the successors of'r. Let s = ITK(r).

WHILE DpK(r) < DpK(s). DO:

UI(j) = UK(r) - UK(j)
plj = K(j)

s = ITK(s).

END WIIILE

END DO

5. IF P (j) > 0 for all j e R. j ;e RF(I) THEN go directly to step 10

ELSE set RFCNT = number of unlabeled reference nodes

6. Examine the forward star of node r. For each arc from r to a node

where. Ul(r) + C(r.j) < U1(j). set:
UI(j) Ul(r) + C(r.j)
pl(j) =-r

7. DSMALL =

DO j = l.INI

IF Pl(j) < 0 and 1I(j) < DSMALL THEN

DSMALL = U1()

k= j

ENDIF

END DO

8. IF UI(k) > EP2 THEN for each j e N where P(j) < 0 set:

P, (j) -PI(j)

9 (j) EP3

go directly to step 10

ENDIF

9. Set Pl(k) = -Pl(k)

RFCNT RFCNT - I

IF RFCNT = 0 THEN goto step 5
ELSE goto step 6

Figure 3.1 Reference Node Aggregation Algorithm
Using Improved Label S -tinjk (cont'd.).

38

I 10.I=1+ 1

IF I < JR1 THEN repeat step 2

11. Quit.

Figure 3.1 Reference Node Asnre~ation Alorithm
Using Improved Label Stiij (cont'd.).

also generated. Steps I through 5 are identical to those for the reference aggregation

algorithm using improved label setting. In step 6. the forward star of all labeled nodes

is examined identifying those unlabeled nodes that are candidates to be labeled, while

step 7 locates and labels the best candidate. Step 8 determines if the shortest path

solution has reached the furthest distance (EP2) from the root node that the user wants

examined. If this distance is met or exceeded, the current iteration is halted, and a new

reference root node is designated. Step 9 determines if it is time to check to see if all

the reference nodes have been labeled. The iteration index is incremented in step 10 in

preparation for selecting the new reference root node. And finally, in step II the all-

pairs of R solution is complete and the algorithm stops.

E. EXPERIMENTAL DESIGN AND TEST RESULTS

1. Purpose

Testing was designed to determine if the implemented algorithm worked

properly and to enable comparison of the reference aggregation algorithm and the base

label setting algorithms. Additionally, a brief examination of the data structure was

conducted to determine if the data structure size met the stated problem restrictions.
2. Design

The algorithms were run on a set of sample problems generating execution

times. A network of 1000 nodes was selected as the test case size with the number of

arcs bound as stated in the assumptions. The test was designed as follows:

* NETGEN was used to generate four separate networks of the following
dimensions:

Network A: 1000 nodes and 1750 arcs
Network B: 1I() nodes and 1750 arcs
Network C: 1O(W) nodes and 3000 arcs

* Te Network D: 1000) nodes and 3000 arcs

The LRND function of FORTR-VN was used to generate four sets of four
reference nodes.

39

Input:

(1) RF(). the array of reflerence nodes.

(2) Network data in the form of the arrays Q() H().and T()

(3) EPI, EP2. EP3

Output:

(1) P'() for I1 1, JRI

(2) U'() for I1 1. 1RI

1. Initialize the repetition index: I =1
2. Initialize the tree T with the reference root node: r =RF(I)

3. Iteration initialization:
P'(j) =0, for all j e N

U'(j) - 0, for all j e N

U'(r) -0

DP'(j) -0, for all j e N

ITI(j) -0. for all j e N

DPI (IN! + 1) =-l

1T1(JNJ + 1) =r

4, IT'(r) = INI +I

RFCNT = R1

4. FOR K = .I-1 DO

a. Examine the backpath of r. Let j =PK(r)

WVHILE j e0 DO

IF EPI < UK(r) - UK(j) < EP2 THEN
U' (j) U UK(r) - UK (j)

P'(j) -K + INi (denotes that the path fromi r to j is found
- pK(1) in the shortest path solution for RF(K))

EN D IF
END WHILE

Figure 3.2 Reference Node Aggregat ion Algorithm

Using Basic Label-S etting.

40

b. Exanine the successors of r. Let s - ITK(r).

WHILE DPK(r) < DpK(j). DO:
Ul(j) U K(r) _ U K(j)
Pl(j) - pK(J)

s = ITK(s)

END WHILE

END DO

5. IF Pl(j) > 0 for all j e R. j e RF(I)

THEN go directly to step 10

ELSE set RFCNT = number of unlabeled reference nodes

6. Examine the forward star of all the labeled nodes and define:

S = 1(i.j): i T NT e N-NT. (i.j) e A}

IF S = } THEN proceed directly to step 9.

7. Examine each element of S and:

a. Find (k.l) = argrnin {UI(i) + C(i.j): (i.j) e S }

b. Set:

PI(I) = k

1UI() =Ul(k) + C(k,l)

S. IF UI(1) > EP2 THEN

UI(I) = EP3

go directly to step 10

ENDIF

9. RFCNT = RFCNT - 1
IF RFCNT = 0 THEN goto step 5
ELSE goto step 6

ENDIF

10. I = I + I

IF I < JRI THEN repeat step 2

11. Quit.

Figure 3.2 Reference Node Aggregation Algorithm
Using Basic Label Setting fcont'd.).

41

F-- M "T'I I : "1 " i :rIt I " im i

" Each algorithm was run against the four networks for each of the four sets of
ref'erence nodes. Table 3 iJentilies the test format.

* The time each aleorithm took to compute the shortest path solutions for each
set of reference r6ot nodes was recorded.

* The execution results provide a complete block design which was be used in the
non-parametric Friedman Test [ReL9: page 299 which examines the hypothesis
that mean execution times for the various-algorithms are identical.

TABLE 3

TEST FORMAT

Sample Network Eng. Parameters

A B C D EPI EP2 EP3

Test 1 1.2 1.2 1.2 1.2 N,1A N,'A N,'A

Test 2 3,4 3.4 3,4 3,4 9991 9992 9999 ExactS~olution
Required)

Test 3 3,4 3,4 3,4 3,4 50 60 100

Test 4 3,4 3,4 3,4 3,4 25 30 50

Algorithm used:

1 Basic Label Setting Algorithm

2 Improved Label Setting Algorithm

3 Reference Aggregation Algorithm using Basic Label Setting

4 Reference Aggregation Algorithm using Improved Label Setting

3. Data Structure Size

The implemented design for the sample problems meets the memory

assumptions of the problem statement. Table 4 provides a summary of the data

structure size for the reference node aggregation algorithm. It should be noted that the

implemented reference node algorithm retains previous shortest path solutions in main

memory (for speed).

42

-A P t-A

TABLE 4

DATA STRUCTURE REQUIREMENTS

Label Setting Base Reference Aggregation

Function

Storine
Netwo 'rk 21AI + INI 21AI + NI
Data

Shortest
Path --- IRI + 21NGeneration

Storing
Shortest 21NJ 21RIINI
Path
Solutions

Total 21A + 31NI 21A + 31NI + 21RIINI + JRI

4. Algorithm Execution Time Comparison

Four tests were conducted to enable a comparison of algorithm execution

times for the sample networks. Test 1 was designed to provide sample execution times

for the base algorithms, namely basic and improved label setting. Tests 2, 3, and 4

were designed to provide sample execution times for both versions of the reference

node algorithm using differing values of the engineering parameters. Test 2 uses

engineering parameters that for the particular networks involved can be considered as

infinite values since no path approached the specified length. Thus. test 2 essentially

examines the reference node aggregation algorithm where the engineering parameters

have no impact on the shortest path solutions. Tests 3 and 4 use engineering

parameter values that restrict shortest path solutions subject to the designed rules.

The data produced by Tests 1 through 4 consisted of the accumulated time it

took each algorithm to solve the shortest path for a given set of four reference nodes.

Thus, each test produced 32 data points.

43

The Friedman Test [Ref, 9: page 299] is a non-parametric test which makes no

distributional assumptions. It utilizes a randomized complete block design to test the

null hypothesis that treatment effects are equal, with the alternate hypothesis that at

least two effects are not equal. To this end, the algorithms were considered treatments,

while the reference set sample network pairs were blocks. Thus. the randomized

complete block design consists of eight treatments and sixteen blocks. Figure 3.3

presents the data in the randomized complete block format utilized for the Friedman

Test. In this case, the null hypothesis translates to that the mean time of execution to

produce a shortest path solution for a given network and reference node set is the same

regardless of the algorithm used. The alternate then becomes that at least two of the

algorithm implementations have diffirent mean execution times.

Utilizing an a-level of 0.05, the Friedman test statistic was computed giving

T2 = 113.6. An F-statistic with (7,105) degrees of freedom approximates T2. With

F(7,105) for u=0.05 equal to 2.109. the null hypothesis was rejected enabling use of

the multiple comparison extension of the Friedman Test [Ref. 9: page 297]. This

multiple comparison showed, for the sample networks, that none of the treatment

effects were equal statistically. Thus. the implemented algorithm is a robust one.

Further, this comparison indicated that for the sample problems. the reference

node aggregation algorithm utilizing the improved label setting base outperformed (i.e..

was faster) that version which used the basic label setting as a base. Table 5 provides a

sunmmary of the algorithm performance for the sample networks.

5. Conclusions

The design and implementation of the reference node aggregation algorithm

has been successfully accomplished. In addition, the testing showed that:

• Both label setting and improved label setting served as an adequate base for the
algorithm implementation. and the resulting reference node aggregation
algorithm functioned as planned.

" The performance of the improved label setting base was superior to that of the
basic label setting as implemented in the refer'nce node aggregation algorithm.

• The engineering parameter approach is a robust one and demonstrated its
abilitv to enabie the user to adiust the reference node aggregation algorithm
with iespect to the scope of the shortest path solutions prol[ced.

44

R4

Hypothesis:

H0 : The treatments have identical effects within a block.

H, : At least one treatment tends to yield larger observed
values than another treatment.

Note: Each data entry is the execution time in CPU seconds for an algorithm
(i.e., treatment) to solve the all-pairs of R shortest path problem with IRI = 4
reference nodes, given networks of dimensions specified in the block definition
below.

0 PTreatment

1 2 3 4 5 6 7 8

Block

1 27.17 11.13 15.31 10.87 9.12 5.12 8.S1 0.44
2 27.43 10.97 13.15 10.67 12.24 5.93 5.93 0.39
3 27.74 11.02 20.20 10.70 15.43 3.55 15.10 0.21
4 27.70 11.01 13.76 10.84 17.61 3.28 17.79 0.25

5 27.91 11.14 18.49 11.20 17.96 5.57 20.00 0.56
6 26.70 10.98 22.12 11.35 11.51 3.91 17.99 0.26
7 26.52 11.09 22.23 10.98 14.95 5.28 17.00 0.51
8 26.73 10.83 11.31 11.08 11.36 6.07 5.41 0.38

9 38.59 12.12 28.58 11.65 28.83 11.75 21.47 6.36
10 38.47 11.96 30.92 11.64 31.11 11.70 23.42 8.89
11 38.86 11.86 27.18 11.62 27.70 11.87 18.78 9.42
12 37.89 11.81 23.21 11.54 23.16 11.67 19.69 7.71

13 37.81 11.97 19.29 11.90 18.67 11.85 20.95 6.47
14 38.10 11.91 15.12 11.85 14.58 11.76 14.46 8.81
15 38.29 11.98 15.07 11.78 14.28 11.55 14.69 9.14
16 38.62 11.83 28.03 11.79 27.04 11.46 18.70 5.32

Treatment Definitions:

1 Basic Label Setting Algorithm

2 Improved Label Setting Algorithm

3 Reference Node Aggregation Algorithm using Basic
Label Setting with EP1=9991, EP2=9992, and EP3=9999.

4 Reference Node Aggregation Algorithm using Improved
Label Setting with EP1=9991, EP2=9992, and EP3=9999.

5 Reference Node Aggregation Algorithm using Basic
Label Setting with EP1:50, EP2=60, and EP3*100.

6 Reference Node Aggregation Algorithm using Improved
Label Setting with EPI=50, EP2=60, EP3=100.

Figure 3.3 Randomized Complete Block Design for the Friedman Test.

45

Treatment Definition Econ't):

7 Reference Node Aggregation Algorithm using Basic
Label Setting with EPl:2S, EPZ=30, and EP3=50.

8 Reference Node Aggregation Algorithm using Improved
Label Setting with EP1=25, EP2=30, and EP3z5O.

Block Definitions:

1 Network A: 1000 nodes, 1750 arcs, Reference Set 1
2 Network A: 1000 nodes, 1750 arcs, Reference Set 2
3 Network A: 1000 nodes, 1750 arcs, Reference Set 3
4 Network A: 1000 nodes, 1750 arcs, Reference Set 4

5 Network B: 1000 nodes, 1750 arcs, Reference Set 1
6 Network B: 1000 nodes, 1750 arcs, Reference Set 2
7 Network B: 1000 nodes, 1750 arcs, Reference Set 3
8 Network 8: 1000 nodes, 1750 arcs, Reference Set 4

9 Network C: 1000 nodes, 3000 arcs, Reference Set 1
10 Network C: 1000 nodes, 3000 arcs, Reference Set 2
11 Network C: 1000 nodes, 3000 arcs, Reference Set 3
12 Network C: 1000 nodes, 3000 arcs, Reference Set 4

13 Network D: 1000 nodes, 3000 arcs, Reference Set 1
14 Network 0: 1000 nodes, 3000 arcs, Reference Set 2
15 Network 0: 1000 nodes, 3000 arcs, Reference Set 3
16 Network D: 1000 nodes, 3000 arcs, Reference Set 4

Figure 3.3 Randomized Complete Block Design for the Friedman Test. (cont'd.)

46

TABLE 5
SUMMARY OF ALGORITHM PERFORMIANCE.

(CPU SECS REFERENCE SET)

Network A & 5 Network C a o

Sample Sample sample Sample
Mean Standard Mean Standard

Deviation Deviation

Treatment

1 27.24 0.54 38.33 0.37

2 11.02 0.24 11.93 0.25

A3 17.07 4.31 23.43 6.25

4 10.96 0.24 11.72 0.13

5 14.15 3.22 23.17 6.59

6 4.84 1.95 11.70 0.14

7 9.72 7.12 19.02 3.14

8 0.38 0.13 7.69 1.54

Treatment:

1 Basic Label Setting Algorithm

2 Improved Label Setting Algorithm

3 Reference Node Aggregation Algorithm using Basic
Label Setting with EP1=9991, EP2=9992o and EP3=9999.

4 Reference Node Aggregation Algorithm using Improved
Label Setting with EP1=9991P EP2=9992, and EP3z9999.

5 Reference Node Aggregation Algorithm using Basic
Label Setting with EP14S0, EP2=60, and EP3100O.

6 Reference Node Aggregation Algorithm using Improved
Label Setting with EP1=50, EP2=60, EP3=100.

7 Reference Node Aggregation Algorithm using Basic
Label Setting with EPI=ZS, EP2=30, and EP350O.

8 Reference Node Aggregation Algorithm using Improved
Label Setting with EP1:25, EP2=30, and EP350O.

47

IV. CONCLUSIONS

A. SOTACA

Chapter II presented two problems that have arisen in the use of the OJCS

contingency planning model SOTACA and proposed some means of resolving them.

SOTACA uses an implementation of Floyd's algorithm to compute an all-pairs

shortest path solution and experiences slow execution (i.e., upwards of twenty minutes

on a MICRO VAX) when dealing with networks at or near the maximum allowable

size which is very small by contemporary standards. The author has proposed that this

first problem be resolved by modifying SOTACA so that a single-source shortest path

algorithm, label setting or label correcting, is used to produce shortest path solutions

on demand vice the current method preprocessing all pairs. Accompanying this

algorithm change, it has been proposed that the SOTACA network representation be

changed to a forward star format because of the gained efficiencies. Testing showed

that these algorithms and the forward star network representation produced shortest

path solutions very quickly even for networks at the maximum allowable size. With

these changes, it is anticipated that SOTACA's slow execution problem will be

resolved. However, the reader should be aware that other implementations of the

sin2le-source shortest path algorithms exist in the literature available, and could also be

applied to this time problem.

As for SOTACA's second problem, that of nonrecognition of alternate shortest

paths, the use of a depth-first search (and the modified label setting algorithm) has

been shown to correctly locate and enumerate alternate shortest paths. However, there

are several research and implementation issues which this thesis has only touched

upon. Some of these issues that the author feels should be examined are:

(1) the impact on SOTACA of the additional code and data structure required to
implement a means for enumerating alternate shortest paths,

(2) the effects of this added capability with respect to model execution (i.e., time).
and

(3) a comparison (speed data structure size. source code size. . ..) of the depth-
first search versus the breadth-first search, or any other methodologies for
enumerating alternate shortest paths.

Nonetheless, what has been shown is that the alternate shortest path problem can be

resolved and that methods to address it are readily available.

48

B. REFERENCE NODE AGGREGATION

In Chapter III, a new algorithm, reference node aggregation, was proposed. This

algorithm is designed to produce a subset of the all-pairs shortest path solution for

large scale networks. This subset solution, an all-pairs of R solution, is specifically

structured and is intended to support a vehicle routing model by providing the means

by which it can quickly compute (i.e., in one step) the approximate cost of the shortest

path between any two nodes in the network. Additionally, the algorithm provides for

user-specification of three engineering parameters. These parameters can be used to

make tradeoffs between the accuracy of the all-pairs of R solution and the total time it

takes to produce it.

The algorithm was implemented in two forms, one using a basic label setting

methodology, and the other using an improved (one look per arc) label setting

methodology. Testing demonstrated that both implementations were successful and

that the improved label setting methodology was superior as its production of the

subset solution was significantly faster. Also, the engineering parameter approach

proves to be flexible and enables the user to adjust the the algorithm to fit the

individual problem as well as providing a means to take advantage of computer

hardware improvements without modifying the algorithm.

However, the author feels that the reference node aggregation algorithm, as

presented in this thesis, can be improved upon. Specifically, the following are potential

areas of improvement:

(I) Determinin, which and how many of the previous solutions to examine when
looking for-successors to a reference root node. The current implementation
examines them sequentially.

(2) Determining which and how many of the previous solutions to examine when
approximating a SPi by SP P

(3) Reorganizing the sequence of the steps so that the algorithm is provided some
"rooff to rUn" before it starts expending efort t6 check on whether all
reference nodes are labeled, or whether the-labeling has reached the maximum
distance from the root to be examined.

The main point is that this thesis has concentrated on showing that the reference node

aggregation concept (with its engineering parameter approach) works, and that

additional analysis could make improvements to the functioning of the algorithm.

Beyond improvements, the next step (though not part of this thesis) is the major

one which involves embedding the reference node aggregation algorithm in a vehicle

routing model and then assessing its performance. In this way, the validity of' the

reference node aggregation algorithm with its engineering parameter approach can be

shown.

49

LIST OF REFERENCES

1. State 01' The Art Contingency- Analy-sis (SO TA CA) A naltst's Guide it) Theory~
(Prelimzinarv Draji). Joint .ndilysis Directorate. Organization of the Joint Chier
of Stall. Washington D.C., Mvarch 1986.

2. Bradlev. Gordon H.. Brown G.'G and Graves GAN-. "Desien and
Inipleffientation of' Large Scale Primal Transshipment Algorithms," .lat~qgemnent
ScienceC. Volume 25, Nuhmber 1. September 1977.

3. Dial. R.. Glover. F.. Karney, D. and Klingman, D.. "A Computational Analysis
of' Alternative Aleorithrns and Labeling Techniques for Finding Shortest Pat~h
Trees." Netwvorks, Volume 9. 1979.

4. Aho. Alfred V.. Hopcroft J.E., and L.Uliman J.D., Data Structures and Algorithms,
Addison-WNesley Publishing Company, 1985.

5. A uthor's Personal Class Notes from Lectures by Gerald G. Brown. 0A42Q2.
Network Flows and Graphs, Naval Postgraduate' School, 'Monterey. Califlornia.
September-December 19816.

6. Glover. F.. Klinizman. D.. and Phillips. N "A New Polvnomiallv Bounded
Shortest Path Algorithm." Operations Research, VTolume 33, 'Number 1, January-
February 1985.

7. Winston. Patrick Henry Artificial Intelligence, Second Edition, Addison-Wesley
Publishing Company, 1994.

8. Klingman. D.Napier. A. and Stutz. J., "NETGEN: A Progranm for Generating
Larde Scale Capacitated Assignment, Transportation. and VIinimum Cost Flow
Netvork Problems," Managemlent Science, Volume 20, N\umber 5, January 1974.

9. Conover. WV. J., Practical Nonparametric Statistics, Second Edition, John Wiley
and Sons, 1980.

50

01, 10 f'

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria,. Virginia 22304-6145

2. Librarv. Code 0142 2
Naval"Postgraduate School
Monterey, California 93943-5002

3. J-S. Organization of the Joint Chiefs of Staff I
Room R 1 D940
The Pentagon
Arlinaton.Virginia 20301-5000

4. Professor Richard E. Rosenthal
Code 55R1
Naval Postgraduate School
Monterey. California 93943-5004

5. Captain Jerome W. Brown. Jr. I
13914 Leighfield Street
Chantilly,Wirginia 22021

51

i~~~~~~'d Iu WV WrI W1 ' " ' ' "

4

