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ABSTRACT
2 |
) This thesis investigates the use of single-source shortest path algorithms in two
B unrelated contexts. In the first application, the label setting and label correcting
algorithms are examined for applicability to and implementation within a J-8,
o Organization of the Joint Chiefs of Staff contingency planning model. This model has
. encountered problems of slow execution directly related to shortest path computations.
g which can be resolved by the methods proposed. Additionally, these two shortest path
algorithms are examined for use within the mode! for identification and presentation of
alternate optima when they exist.
R The second application involves the development of a new algorithm. called
reference node aggregation, which is designed to efliciently produce a subset of the all-
» pairs shortest path solution for large scale networks. The anticipated use of this
! algorithm is in connection with vehicle routing models. The motivation for producing
s a subset of the full solution is that only a very small subset of all possible pairs of
oy nodes will ever be considered for consecutive visitation by a vehicle: hence, most of the
information in an all-pairs solution is irrelevant. For those pairs whose exact shortest
oy paths are not computed, a single-step approximé ton is devised which does not require
KN access to peripheral storage. The new algorithm\has three user-specified engineering
) parameters which effectively control the tradeoff pet\w'een the accuracy of the subset
solution and the effort required to compute it. !
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I. INTRODUCTION

A. THESIS CONTENT AND ORGANIZATION

This thesis investigates the use of single-source shortest path algorithms in two
separate contexts. The first application, found in Chapter 11, is embedded within a J-§.
Organization of the Joint Chiefs of Stafl’ (OJCS) planning program called State of the
Art Contingency Analyvsis (SOTACA). SOTACA is an interactive, automated tool that
assists stafl planners and operations oflicers in quickly analyzing alternate plans for a
contingency operation [Ref. 1: page 1-2]. SOTACA frequently computes shortest paths

which are used in the routing of friendly forces over a network that represents the area

of operation. The shortest path software currently contained in SOTACA is deficient
in two respects:

(1) it is too slow, and

(2) it ignores alternate shortest paths when they exist.
Chapter II describes an implementation of single-source shortest path algorithms which
resolves these two problems.

The second half of this thesis considers shortest path calculations embedded
within vehicle routing p}oblenls over large networks. Whenever two nodes are visited
consecutively by the same vehicle. the shortest path connecting those nodes must be
used. However, only a minute fraction of all possible pairs of nodes will ever be
considered for consecutive visitation. Therefore, it is desirable to avoid computing all
possible shortest paths. For this reason, Chapter IIl develops an effective way of
providing the shortest path information needed for vehicle routing without solving a

large number of shortest path problems.

B. NETWORK FLOW MODEL STRUCTURE AND NOTATION
For the purpose of the discussions to follow, the network will be considered to be

a directed graph G=(N.A) consisting of a set of nodes, \,

and a set of arcs (ordered pairs of nodes),
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: where x denotes the Cartesian product. Nodes represent places (or items) of interest to
e the modeler while an arc defines the existence of a valid route (or relationship) between
' nodes. Associated with each arc is a nonnegative flow parameter, C(i.j). which is the
cost assessed per unit of flow across the arc (1.j).
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e II. GLOBAL CONTINGENCY PLANNING AND NETWORKS

2 A.  CONTINGENCY PLANNING WITH NETWORKS

.;ﬁ The Organization of the Joint Chiefs of Staft (OJCS) uses network flow models
t}“ in the conduct of global contingency planning. This is accomplished with the
‘!‘_; assistance of a modern-aid-to-planning-program (MAPP) called the State of the Art
b Contingency Analysis (SOTACA) model. One of SOTACA's principal functions
R{S provides for the representation of the area of operation in its various dimensions (i.e..
f."‘ land. sea, economic, political. . . .) enabling the comumander and his stafl’ to

svstematically analyze the nussion and situation of the assigned task {Ref. I: page 2-7].

}’ This representation of the operational area takes the form of a network flow model
: where nodes represent places of significance and arcs between nodes represent
:‘ movement paths for forces.

C The primary function of SOTACA’s network flow model is to enable the study
'.:’ and analvsis of candidate routes (i.e., shortest paths) for movement of enemyv and
":: friendlv forces on an administrative or tactical march. Associated with each arc in the
:' network are two separate flow costs:

. ¢ the physical length in Kilometers of the arc

b e the time in minutes to traverse the arc
'4'-2_} These two flow costs enable staff planners to study both time and distance in
i!. contingency planning.

J

) B. PROBLEM DEFINITION

'_’.::f 1. Background
In 1985, SOTACA was delivered to the J-8 OJCS by Science Applications
" International Corporation and shortly thereafter. follow-on documentation was
.___. initiated.  This included an analyst’s guide to using SOTACA with emphasis on the the
‘_j: network flow model and shortest path computations. Concurrent to the follow-on
'_::E documentation. J-8 planncrs were trained to use SOTACA and started to analvze
2% contingency plans. The subsequent use of SOTACA resulted in problems where model
[T execution time increased alarmungly when the network approached the maximum
’: allowable size of 300 nodes and 1230 arcs [Ref. 1. (This is considered smuall by
EE: contemporary standards [Ref. 2,3].)
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9 During May-June 1986, the author was assigned to the J-8 OJCS as part of
2 his Naval Postgraduate School Operations Analysis experience tour. He was tasked by
J-8 with determining:

‘ (1) the shortest path methodology implemented in SOTACA. and .
; (2) if this methodology was responsible for the increased execution times.

; ' The author’s analvsis deternined that SOTACA uses an implementation of
v Flovd's all-pairs shortest path algorithm [Ref. 4: page 210]. Subsequent discussion
9 between J-§ analysts and the author brought to light that only a small portion of the
:‘ all-pairs solution is ever used by SOTACA. The results of further analysis concluded
E':' that the slow execution of the SOTACA model is rooted in both the network data
M structure  supporting the implementation of Flovd’'s algorithm and in the
o overabundance of information it produces.

j:' A secondary issue which surfaced during this analvsis was a perceived
é:: shortcoming of SOTACA’s shortest path implementation, namely, the nonrecognition
- of alternate shortest paths when they exist. J-§ analysts felt that the identification and
' use of alternate paths could enhance the analvsis of a contingency plan via SOTACA.

2. The Issues
The remainder of this chapter addresses two specific issues which were still

unresolved at the conclusion of the author’s experience tour. The first is to determine

& what can be done to reduce or eliminate SOTACA’s slow execution time. The second

‘L . . . ~ . . °
:l is to identify a methodology for generating alternate shortest paths for use by

4

? SOTACA.

0?'

- C. SOTACA IMPLEMENTATION OF FLOYD’S ALGORITHM

K This section provides a brief description of the shortest path methodology and
i

:' the associated data structure currently used by SOTACA.

Ih 1. Floyd’s Algorithm

Flovd's algorithm produces an all-pairs shortest path solution by examining

every path between two nodes and recording that path which has smallest total flow

I

N

\

:} cost. This process is repeated for every pair of nodes in the network. Figure 2.1
] . . . N . .

K] outlines the SOTACA implementation of Flovd's algorithm.

|2

— Underlving SOTACA’s use of Flovd's algorithm is a data structure which
A

' contains a description of the network and provides for recording of the computed
» shortest paths. _
2
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Input:

(1Y A variable, NODES. which specifies the total number of nodes in the
network.

(12) The network descrietion in the form of related vectors FROM-NODE,
O-NODE. and FLOW-COST.

Output: . )
(1) The PATH function.

(2) The PATH-COST function.
1. Initialization
a. PATH(i.j) = -1 . foralliand je N
b. PATH-COST(i.j) = % ,foralliandje N\
¢. Forl = 1, |A]Do:
(1) PATH(FROM-NODE(D.TO-NODE(l)) = 0
(2) PATH-COST(FROM-NODE(1),TO-NODE(l)) = FLOW-COST(l)
End do
d. UPDATE-FLAG = ON

2. Enumeration
while UPDATE-FLAG = OX, do
UPDATE-FLAG = OFF
Fori = 1 to NODES, do
Forj = 1 to NODES, do
For k = 1 to NODES, do
If PATH-COST(i.k) + PATH-COST(k.j) < PATH-COST(i.j) then
PATH-COST(i,j) = PATH-COST(i,k) + PATH-COST(Kk.j)
PATH(i.j) = k
UPDATE-FLAG = ON
Endif
End do
End do
End do
End while

Figure 2.1 SOTACA's Implementation of Floyd's Algorithm.

13

n BN X LI P T D AN DO
RRLARSA v’;':‘éz‘f»' ERIM A AR S R KR A N x‘».‘.?!‘St-"“".‘l"'}!",h'. Hothptenl:o




I\

i

::i:f

:'.?: 2. Input Arrays (Network Representation)

'::: The network description is contained in four arc-length (denoted |A]) arrays.

- The entries in these arrays are related by position and define an arc in the network.

. These arravs identitv the origin of an arc (FROM-NODE). the destination of an arc .
:;‘ (TO-NODE). the distance {low cost (DISTANCE), and the traversal time flow cost

:'; (TIME). Outside of these positional relations, the arc information is in random order .

in the arrays. That is, thie first arc input by the user is placed in the first position of
! the arrays. the second arc in the second position and so on.

)

2 3. Output Arrays (Shortest Path Representation)

;"‘ The shortest path solutions are contained in two pairs (i.e., four total) of n by
* n matrices (where n = |N\]). Each solution pair, while utilizing the same network, is

Sy for a separate flow problem. The first is concerned with the physical distance between

: nodes, while the second involves traversal-time between nodes.

:".‘ Each solution pair utilizes the same method for storing shortest path

:' solutions. Thus, a solution consists of a PATH-COST function which identifies the

shortest path distance (i.e., the total flow cost) between any two nodes in the network,

N and a PATH function [Ref. 4: page 211] which specifies the sequence of nodes on each
b shortest path.
[}

The PATH-COST function is an all-pairs version of the well-known label

o function [Ref. 2.5: page 15]. The PATH function is also well-known and Figure 2.2
= . . . . .
- depicts the iterative process for recovering shortest paths from it.
" PATH(i.}) = -1 No path exists from node i to node j
‘ - . . ..
:::: 0 Node j is connected to node i by arc (i.j).
) k To reach node j from node i, first goto node k and
A then exanune PATH(K.j) to deternine which node is next
’ on the path.
0
o] . .
' Figure 2.2 SOTACA PATH Function.
1)
5 Armed with an understanding of how SOTACA currently produces and .
¢ . . o .
KA records shortest path information, attention is now turned to methods by which the
N . .
0::: network module deficiencies can be eliminated.
) -
l‘:
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D. SINGLE-SOURCE SHORTEST PATH ALGORITHMS
SOTACA computes all-pairs shortest paths in a preprocessing method which
tvpically requires a twenty minute waiting time (on a MICRO VAX) for networks at or

g near the maximum allowable size. As has been stated previously, SOTACA is able to
oy . o C e . .
:I;q:% perform its force routing function if it has at a minimum, the shortest path solution
ey - . . .

ffxﬁ; from a specified node to all other nodes in the network. In the literature available
Yy v

today. this tyvpe of problem is often referred to as a single-source shortest path problem
[Ref. 4: page 203]. It is proposed that SOTACA use a single-source shortest path

algorithm to compute shortest paths on-demand (i.e., as needed by the user). To this

end. this section presents an examination of two well known single-source shortest path

algorithms. These two algorithms are label setting and label correcting, and there are

A numerous variations of each.

“,.::, Prior to presenting the algorithms, two changes to the SOTACA data structure
e:::;' are introduced. These modifications support the functioning of the single-source
.:f:’— shortest path algorithms as well as provide a means to more efficiently represent
;: network data and shortest path solutions in SOTACA.

'E 1. Modifying SOTACA’S Network Data Structure

K 2‘, Two changes to SOTACA’s data structure are proposed. The first concerns
e the manner in which the network description is represented internally, while the second
R involves the method for storing the shortest path solutions.

:: a. Reorganizing the Network Data

E:i‘o The network representation SOTACA uses is rather cumbersome when it
s comes to locating specific arc information. In locating the set of all arcs which
.'-j,- originate from node i (this set is called the forward star of i [Ref. 3: page 218] ),
;::“' SOTACA conducts an arc-length search of the FROM-NODE arrav. This inefficiency
EE:%': is part of the larger problem that has surfaced with symptoms of slow execution.

“’_:‘._ This inefliciency can be overcome in two steps. First of all, the network
Iy data in the original arravs are put through a one-time sort which places the data in
:35: : ascending order based upon the FROM-NODE field. As a result, the forward star of
E'.::" any node is in contiguous space within the arravs. Sequencing the arcs of the network
“f'f:' by forward star vields efliciencies in solving for shortest paths.

T At the completion of the one-time sort, the FROM-NODE array is used to
.:: construct an arrav known as the TAIL array [Ref. 2,5: page 13] which then replaces
,; the FROM-NODE array. The TAIL array is of length |N]+ 1. TAIL(i) specifies the
poys
-
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initial position of the contiguous space containing all arc information for arcs
originating at node i, while TAIL(i+ 1)-1 specifies the last position. Figure 2.3 shows
an example of network data being transformed from the original network
representation to the forward star format.

2
FROM-NODE 1 2 3 1 4 § 2
1O-NODL 2 3 4 4 2 1 3
FLOW-COST 7 1 5 2 3 4 1

(a) SOTACA Network Representation

I R()\l NODE 1 1 2 2 3 4 5 -
TO-NODIE: 2 4 5 3 4 2 1
I L()\\ -COST 7 2 1 1 § 3 4

(b) After the onc-time sort .
TAIL 1 3 § 6 7 8
TO-NODE: 2 4 5 3 4 2 1
FLOW-COST 7 2 1 1 5 3 4

(¢) Forward Star Network Representation

Figure 2.3 Transformation of Network Data to Forward Star Format.

There are two advantages in using this modified data structure. The first is
the memory savings that occurs when the arc-length vector FROM-NODE is replaced
by the node-length vector TAIL (as most) networks are such that |N] < < [|A])
However, the second advantage far outweighs any other. as the accessing of specific
arc information has been transformed from an arc-length scarch to an examination of
only those arcs of present interest.
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b. The Predecessor and Label Functions
The reader will recall that SOTACA stores an all-pairs shortest path
solution in the two n by n matrices, PATH and PATH-COST. Solutions to the single-

RAXX source shortest path problems can be compactly recorded in two 1 by n arravs called
:' & the predecessor function [Ref. 2: page 10] and the label function. The predecessor
. ‘_ﬁs" - . . . . . ) . .
CRTY function, P(), 1s associated with a single source node (i.e., the root node) and contains a
The tree of shortest paths. The predecessor function diflers from PATH in that it specifies
;:a the backpath from a node to the root node with each entry indicating which node was
hh visited (coming from the root node) immediately prior to the current node. PATH. on
s:i'.: the other hand. specifies a forward sequence of nodes for traversing the shortest path
ot . , . .
B from one node to another. Figure 2.4 depicts the predecessor function.
Sedy The label function, U(), contains the total flow cost to reach a node {rom
U
L the specified root. Thus, it is the one row of the original all-pairs PATH-COST
> . . . .
w.' function associated with the root node r.
‘h
a2 f
) ’
'1'.‘ ) . . . .. . .
O P(iy = j Node j immediately precedes node i on the backapth
;u\‘\:.‘ to the'root node.
\
',:.\l:u . 0 Indicates that 1 is the root node if U(i) = 0. Otherwise
Yl indicates that i cannot be reached from the root node.
|
A ;
3
. N Figure 2.4 The Predecessor Function.
5.1..
2. Label Setting Algorithms
oY . . .
{:",: One method of solving the single-source shortest path problem is to use a
i . . P, . . .
" label setting algorithm [Ref. 2,3.4,5]. In this method, also known as Dijkstra’s
[
g . V. .
:.: o algorithm [Ref. 4: page 204], the nodes are partitioned into two sets, labeled and
- unlabeled. Labeled nodes are those for which the shortest path from the source is
LR
59 known. and unlabeled nodes are those for which it is not known. At each iteration, the
Jady . - . .
,:‘;, A method identifies the checapest unlabeled node which can be reached from a labeled
) . « .
‘n%é'\ node. and adds this node to the labeled set. It should be noted that label setting (in
‘gt
contrast to label correcting) requires:
:rﬁ'\,) C@.j) 2 Oforall (i.j) e A
: "I J . . .
"’:.;) which was stated as an assumption in Chapter I.
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The label setting algorithm, as with other single-source shortest path
algorithms, generates a tree T consisting of a single root node r with other nodes
connected to that root by some shortest path. Associated with each node i in the tree
is a label that specifies the cost of the shortest path originating at the root node and
ending at node 1.

In the first iteration, the root node r is the onlyv labeled node and it has a label

of zero. At each itcration. the algorithm examines all the arcs originating at labeled

'..',-‘. nodes and identifies the unlabeled node (and the associated arc) which is cheapest to
gt . . .
::;::: reach next. That unlabeled node is labeled and the associated arc added to the set of
DO . . . . .

3::.:: shortest paths, Ap. The algorithm repeats this process |N|-1 times since at each
'“.:,‘

iteration one node is labeled. Figure 2.5 provides a step by step description of the label
setting algorithm.
3. Improving the Label Setting Algorithm

It does not take much familiarization with the label setting algorithm to see
that there is at least one major inefliciency with it. At each iteration but the first, the
algorithm examines many arcs which it has examined previously, and some which have
no bearing on producing new shortest paths (e.g.. those arcs between labeled nodes).
A

To avoid this extra work. the algorithm can be modified so that each arc is examined

Thus, in a network of

arcs, the algorithm ends up examining more than |A[ arcs.

onlv once. [Ref. 3]

This is accomplished by setting temporary labels, which are intermediate
guesses at the final (permanent) values of the labels. The algorithm proceeds similar to
the basic algorithm. It starts with a specified root node and examines its forward star.
setting all labels which can be improved upon and designating these labels as
temporary. There are numerous ways to store temporary labels. The method chosen
in this thesis was to use the sign bit of the predecessor function [Ref. 5]. Thus during

any iteration, the sign of the predecessor function indicates the following:

P(1)

P(i) < 0 indicates the label for node i is temporary

0 indicates the label for node i has not been set

P(i) > 0 indicates the label for node i is permanent

After the forward star has been examined and all temporary labels set, that
node with the minimum temporarv label is identified. This node’s label is set

permanent, and its forward star is examined thus repeating the process. The algorithm
stops when all temporary labels have been set permanent.

18
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' N
a"czf
\!f“i’t'
i
Input:

',;..:;: _ (1) A directed graph G=(N.A) where C(i,j) 2 Oforalliand je \.
::":?, (2) A specified root node r.
L
'::':?: Output:
' (1) The shortest path costs in the label function U().
ﬁ",‘; (2) The shortest path tree in the predecessor function P().
38> §
L)
::;:' l. Iniualize a tree T(.\'T,AT) such that:
et a.Np = {r}

=
- b. A.T Vo N
L c. l(t) = XL forallte N-N1
0oy d.U(r) = 0
“+t
W e.P() =0forallte N
) g 2. Examine the forward star of all permanently labelled nodes and define:
::; S = {(ij) i€ Npij€N-NT. (i,j) € Aj
¢
:‘:§ IFS = {}) THEN proceed directly to step 4.
R )

, 3. To determine the "best” next label and its associated node, examine each

KX element of S and:
iy 4
L0 a. Find (k1) = argmin { U(i) + C(ij): (ij) € § }
't
.:::a_ b. Redefine:
" N, =N U (1)
! c. Set:
IR
R Py =k
U = Uk) + C(k.D)
,g‘; d. Repeat step 2.
Ad
:E‘ d. Stop.
*:Q‘ )
aﬁ“
—~ [Ref. 3.5]
‘t"';l
e
o
g Figure 2.5 The Label Setting Algorithm.
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%
o
X
) The basic label setting algorithm, presented in Figure 2.5, is easily modified to
st - . . .
» utilize this improvement. To do this, steps 2 and 3 of the algorithm are replaced by
y those shown in Figure 2.6.
~
¥ !
)
I..
?‘, To alter the basic algorithm, replace steps 2 and 3 in entirety by the
M following steps:
K 2. Examine the forward star of node r:
’. ., e - . .
:: IF U(p) > U(r) + C(r.))
", . -
0 THEN set:
¢,
L) = U(r) + C(r.j)
.‘-; Pj) = r
ENDIF
W
» - . . .
s 3. IFP() > Oforallie N
- THEN proceed to step 4
i
;'.: ELSE set:
k) . .y . . .
' r = argmin { U(i}: P(1) < O, forie€ N}
t -
" P(r) = -P(r)
Repeat step 2
;b ENDIF
Y
o Figure 2.6 Label Setting Improved by Use of Temporary Labels.
!
) Label setting is just one single-source shortest path methodology. Attention is
. . . .
:, now turned to a related vet different single-source shortest path algorithm.
i)
4. Label Correcting Algorithms
o Another method of solving single-source shortest path problems is to use a
L) . . - . . .
" label correcting algorithm [Ref. 3,4.5.6]. As with the label setting algorithm, label
A
40 . -~ .
» correcting generates a tree of nodes connected by shortest paths, and associates a label
N
: with each node in the tree. This node label is identical to that used in label setting.
" Although not relevant in the present applications, it is worth noting that the
18 label correcting algorithm can handle negative arc flow costs. There is one restriction,
"y . .
» however: no cvcle in the network can have negative total cost. -
)
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§

.:: Label correcting sets temporary labels as it proceeds and upon reaching a
33‘,’ specific ending condition declares all labels as permanent. To accomplish this. label
) correcting uses a list which contains nodes whose labels have been modified (i.e.,
0 corrected). Initially, this list contains only the root node r.

’.:.: The list is processed in a last-in first-out (LIFO) fashion. When node i is
T stripped ofl of the list, its forward star 1s examined. If there exists a node j such that:
ks Ui > UG + CGd)

LN then the label of node j is corrected by,

g L = L) + Cj),

:‘;.: and its predecessor function is updated,

P(j) = i
In addition. a node whose label has been corrected is added to the list if not already

e
.

e appearing on it. The list is processed until there are no nodes left on it. At that time
b e - . .
A the algorithm stops and all labels are declared permanent. Figure 2.7 depicts the label
Ny
- correcting algorithm. [Ref. 3.3]
- - 3 . . .
. 5. Improving the Basic Label Correcting Algorithm
; )’ There are numerous ways to improve on the basic label correcting algorithm.
)
N Most improvements specify a different manner in which to process the list of corrected
v . M . . .. .
™ nodes. One such method, termed scan-eligible [Ref. 6: page 67], uses a partitioning of
g pag P g

- the corrected nodes into two lists, NOW and NEXT. The nodes on NOW are
:::‘: processed in a LIFO fashion exactly as had been the basic algorithm’s list. However,
:‘. corrected nodes are placed onto the NEXT list. Then when all the nodes on NOW
e . . . . .

“ have been processed, NOW is set equal to NEXT, and NEXT is set to an empty set.
.‘.f: This process is repeated until both NOW and NEXT are empty sets. The resulting
. . . .
:::‘ labels are permanent at that time and the predecessor function contains the shortest
K ath tree. Figure 2.8 depicts the label correcting algorithm improved through the use
R P g P g alg p
RN of scan-eligible lists.
."
i E. MULTIPLE SHORTEST PATHS
:‘v The final SOTACA-related problem to be addressed concerns the existence of
j:. multiple shortest paths in a network. When multiple shortest paths exist, it is desired

[]

that the following occur:

Ui .
,:"h ¢ that a shortest path solution be produced, and
?
':“ ¢ that the multiéale paths between a uger-specified sink node and the root node be,
i) enumerated at the user’'s request. Note that in some networks the number of
oy alternate shortest paths between a root and sink node mayv be verv large. In
g
.l’; ‘)
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ekl Al Ll A

o Input:

(1} A directed graph G =(N\.A) with unbounded arc flow costs C(i.j).
:: {2) A specified root node r.

A Output:

dﬁ (1) The shortest path costs in the label function U().

(2) The shortest path tree in the predecessor function P().

o
~

LSEEE 5

1. Initialize a tree T(.\'T,.-\T) such that:
a.Np={r)}
b. A =1}
c. U(t) = X forallte N-NT
Py d U(r)=0
Y e. P(t)y = Oforallte N
;;3 f.LIST = {r}
.IF LIST = { } THEN proceed directly to step 4
o ELSE define:
;"‘ 1 = node at the top of LIST
LIST = LIST- {1}
ENXDIF
Examine the forward star of node i and for each node j € \ where:
:}gn L) + Cij)y < L(j)
rd Redefine:
B Ny =Np U ij)
o AT = [AT-((sDeAT}) U (G}
L,Q:: P =1
a U = L@ + Cip
LIST = LIST U {j}
..' Repeat step 2.

t9

©I

o’y 4. Stop.

[Ref. 3,

hn

i::.. Figure 2.7 The Label Correcting Algorithm.
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Input:

tl) A directed graph G=(N\.A) with unbounded arc flow costs C(i.}).
2) A specifiedroot node r.

;.‘;:: ) Outrut: i )
,'k. (1) The shortest path costs in the label function.
;.,: \ (2) The shortest paths in the predecessor function.
ol
3::‘::: 1. Initialize a tree T(.\'T.AT) such that:
a. Ny = {r]

',;;:::‘ b. AT =]
ay ¢. U(t) = % forall t€ N-N
"l J -
sf:::. d Uiry =0
i

! e. Pty = Otforallte N
;:'::i" £.NXOW = {r} NEXT = {}

§

1) 3 .
:.ﬁ“ 2. Define:

o) i = node at top of NOW

A
L NOW = NOW - {1}
;i‘;:i 3. Examine the forward star of i and for each j € N where:
: U + Clij) < LG)
i:, : Redefine:
' Nt =M1 U {j}
N‘ A = {AT-l(s))eAt ]} U {G)}

P(j) =i

L) = L@ + Ci)

NEXT = NEXT U {j)}

t' " 4. IF NOW = { } THEN repeat step 2.

iﬁ; IF NOW = {} and NEXT = {} THEN goto step 5.
‘3 Otherwise set:

NOW = NEXT

NEXT = {}

-gj'_ Repeat step 2

< 5. Stop.
Yot P [Ref. 3.5,6]

e
Lrry

‘\
%, ) Figure 2.8 Improved Label Correcting Using Scan-Eligible Lists.
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o8
g
o
:: : this case. it may be desirable to enumerate only a subset (size specified by the
:' user) of all these alternate paths.
"t None of the algorithms discussed thus far are designed to produce a solution of
’.'a this type. As designed, cach algorithm merely provides the first shortest path solution
:::: encountered. ignoring any alternate shortest paths. This section describes some
:"\' methods for attaining recognition of multiple paths and enumerating the alternate
i paths upon user request.

. I. Determining the Existence of Multiple Shortest Paths

:‘_: The first thing to be done is to find a means by which it can be determined
fi that multiple shortest paths exist in a network. This is readily accomplished in the
& basic label setting algorithm through the setting of a flag to indicate that multiple
" shortest paths exist. This flag is set during the examination of arcs in the forward star
::: of a labeled node. There are three conditions which indicate that multiple shortest
;3:: paths exist and these are shown in Figure 2.9 . Note that these conditions can be
'::‘ looked for as the algorithm builds the shortest path tree.

3

';_\ When examining the forward star of node i:

by IF: .

P()) = 0.

Z ! P(j) = i. and

E:'}. Uy = Uy + C(i)

B 5 THEN

_ | Set the Multiple Solution Flag

;?5' i ENDIF

\)

3 |

W

. Figure 2.9 Setting the Multiple Optimal Solution Flag.

s The setting of a flag can also be done in the other three algorithms. However,
': the nature of improved label setting and both label correcting algorithms require an
> entire re-examination of all the arcs in the network after the shortest path tree has
,5 been built. If the conditions described in Figure 2.9 exist, then the multiple solution
flag is set.

b
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2. Enumerating the Multiple Shortest Paths

There are (at least) two methods by which multiple shortest paths from the
root to a specified sink node can be identified and presented to the user: depth-first
search [Ref. 7: page 91}, and breadth-first search [Ref. 7: page 95]. For this thesis. the
depth-first search technigue is used.

The depth-first search is an optimustic approach which considers one path as
good as any other during the search. After the designation of the root and sink node.
a depth-tirst search starts at the root node and builds a tree as it searches to reach the
sink node. LEssentially, it adds nodes in a sequential fashion building a tree consisting
of a main trunk with no branches. Thus, the search proceeds deeper and deeper (i.e..
further away from the root node) until no more nodes can be added or when there is
no hope of reaching the sink. At that point, the search backs up the tree one level and
examines other alternatives that have not been searched at that level. If alternatives
exist, the search goes back to its headlong dash down the new trunk. If no alternatives
exist, the search will backup another level and check for alternatives there. The search
stops when the sink node is found or when the backing up reaches the root node with
no alternatives left unsearched.

Note that having a shortest path solution before enumerating the alternate
shortest paths provides the known optimal distance to reach the sink. s. Thus. the
depth-first search can be interrupted and directed to other paths once the current trunk
length exceeds U(s) as there is no hope of reaching s optimally at that point. Figure

2.10 provides a description of the depth-first search algorithm.

F. TESTING AND EVALUATION

All six algorithms described in Section E (ie., label setting. improved label
setting. label correcting, improved label correcting, modified for multiple solutions label
setting. and depth-first search) were success{ully implemented in FORTRAN for
execution on the Naval Postgraduate School’s [BM-3033.

Testing and evaluation consisted of three specific stages. The first test was a
minor one which simply verified the functioning and output of the single-source
shortest path algorithms. The second test provided for a comparison of execution
times for each of these algorithms against sample networks. The third test involved
verifving the function and output of the modified for multiple solutions label setting

and the depth-first search algorithms.
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;: Input:

' l{ The root node r.

. 2) The sink node s, .
N 3) MAXDEPTH = Ufs).
::E:: Output:
:-:‘ (1) The shortest paths from r to s, or an indication that r and s are not
A connected via alternate paths.
- l. LIST = {r}
B 2. IF LIST = {} THEN go directly to step 5.
W\ 3. Processing LIST in a LIFO fashion, define:
sy a. i = node at the top of LIST

3 b. IF U(i) > MAXDEPTH THEXN:
L) 0
B Remove i from LIST
Tyt Repeat step 2
!':.
::.' ¢. IFi=sTHEN
e

o Announce success
-, Proceed directly to step 4

7
’;' d. Scan the forward star of node i fer a successor node v:
" [F there are no eligible successors THEN
LA
1 Remove i from LIST

Repeat step 2

R ELSE
R Addvto LIST ,
b Designate the associated arc as examined
i Seti'=v
e Repeat step 2
o ENDIF

L)
:::' 4. IF success has been announced THEN
)
L‘S} Record the path fromrto s
S Remove s frgm the top of LIST
o Repeat step 2
% ELSE
{5 Proceed to step S
bl ENDIF
!’Q’ _
" 5. Stop.
N [Ref. 7]
";'
.::”.
1:::
) iy}
Figure 2.10 Depth-first Search Algorithm.
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The sample networks used to test the algorithms were generated by the random
network generator NETGEN [Ref. 8] on the IBM-3033. Each network consisted of a
set of nodes and a set of directed arcs with their associated arc flow costs.

I. Label Setting and Label Correcting

a. Test for Algorithm Functioning
This test was designed to determine if the algorithms were properly
implemented by verifving the contents of the predecessor and label functions. To
accomplish this. NETGEN was used to generate small networks of 10 nodes and 30
arcs. Each algorithm was run using these networks and the resulting predecessor and
label functions output for root nodes 1 through 10. The results were compared to the
known results to verifv the output accuracy. This test demonstrated that the
algorithms functioned properly. and produced accurate predecessor and label functions.
b. Test for Algorithm Comparison
This test was designed to provide data in the form of algorithm execution
times for a set of sample network problems. The times were compared to give an
indication of the relative speed of each algorithm.
The test was designed as follows:

¢ The algorithms were standardized so that execution times measured the same
set of tasks in each algorithm.

¢ NETGEN was used to generate

3 networks of the following sizes:
Network 1: 300 nodes and }
1

230 arcs
125 arcs
000 arcs

Network 2: 200 nodes and
Newwork 3 100 nodes and

e FEach aleonthm was run using the same set of 10 root nodes (one run Ecr root
BLT (X0 nd SENVIE ehfﬁé‘t‘.‘é’é‘s,"“‘T"ﬂe”r%%'td%%&‘éie?é‘rlé‘ genersied Msing the

T RAN pseudo-random number generator LR\

The results of the test were summarized by noting the minimum, maximum. and mean
execution times. These results are presented in Table 1 and provide a general
indication of the speed of each algorithm.

The algorithms use a varietv of variables and arravs to support the
production of shortest paths. However, the bulk of the data structure in each
algorithm is dedicated two functions:

e storing network data
® storing shortest path solutions
Disregarding the non-array variables. the approximate size of the data structure size for

each algorithm, as well as that for Flovd's algorithin, s presented in Tabic 2.

: * rdmac R ot o S L R S L4 Tt 6,
O O A O A B AT AR AL T Y R, u.l SRS A NS ) _




C,k

.’Q

e

,:? TABLE 1

. EXECUTION TIMES FOR LABEL SETTING AND CORRECTING
i (IN CPU SECONDS)
&
:E, Problem Size
]
-‘,: . 100 nodes 200 nodes 300 nodes

Algorithm 1000 arcs 1125 arcs 1250 arcs

o .

& Label Setting

‘ Average 0.153 0.403 0.671

44 Minimium 0.133 0.372 0.139

g Maximum 0.169 0.429 0.758

!"
Wy Improved Label
" Setting

i

Average 0.010 0.066 0.150

e Minimum 0.003 0.039 0.143

" Maximum 0.026 0.083 0.183
i .

e Label Correcting
KX Average 0.023 0.093 0.169 .
L0 Minimum 0.009 0.059 0.139
Maximum 0.046 0.113 0.226
2
Y
R Improved Label
ﬁ Correcting
XN Average 0.004 0.003 0.003
Mininmium 0.003 0.003 0.003

. Maximum 0.006 0.003 0.009
¥
e

s

' 2. Depth-First Search For Multiple Paths
¢ This test was primarily concerned with insuring that the multipie solution flag
i! was set properly in the modified label setting algorithm and that the depth-first search
‘.‘-. .
e algorithm produced the correct alternate paths for a given root and sink node.

' The test was designed as follows:
o e 2 networks of 10 nodes and 20 arcs were constructed. Network 1 was Frepared
W such that only one_shortest path existed between each pair of nodes
d Conversely, nefwork 2 was designed to have multiple shortest aths between
. some nodés. The shortest path soiutions tor both networks were known.
b
-
:? 28
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e TABLE 2
ALGORITHM DATA STRUCTURE SIZE

Label Label Flovd

<

K Setting Correcting®
Function

P Storing
Vi Network 2
R Data

Al+ N 2/A

+[N] 3)A|

Shortest .

RS Path i .- |\l =
‘1},'3 Generation

£

M, Shortest . . L
ol Path 2IN| 2IN] 2INIIN]
R Solutions

b, Total A1+ 3N 2JA|+ 4N 3IAL+ 21NN

* Tlle_scan-eliglible label correcting algorithm uses an additional (i.e., two
total) [ N]-length list for shortest path generation.

W ¢ The modified label setting algorithm was_run with each node in_the network
specified as the root nodeé for one run. The depth-first search algorithm was

2J called after a shortest path solution had been produced if the multiple solution
e flag was set.

e ¢ The output of the depth-first search algorithm was compared to the known
i alternate shortest paths in the network. "This comparison focused on accuracv
da of each alternate path produced as well as the completeness of the solution
) (with regards to the known quantity of alternate paths to be found).

Both the modification for multiple solutions and the depth-first search

A algorithm functioned properly. The muitiple solution flag was set appropriately, and

0] the depth-first search algorithm then produced the correct alternate paths.
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III. REFERENCE NODE AGGREGATION

A. INTRODUCTION

The second part of this thesis involves questions which arose in connection with
work by Professor Rosenthal on a vehicle routing algorithm. While not directly related
to the SOTACA problem, the foundations are much the same. One main difference is
that the networks of interest are large scale.

Despite this vast increase in problem size over SOTACA networks. the item(s) of
interest is the same, namely the shortest paths between nodes.

B. PROBLEM DEFINITION
For consistency purposes, the same basic network terminology used in the
SOTACA chapter will be used to formally describe the problem at hand.
I. Assumptions and Given Data
Let G=(N,A.R) be a large-scale directed graph of |N| nodes and |A} arcs.
The size of G is not fixed, but in practice it is expected that |\] is large (e.g., 50,000 or
more nodes), while |A| is approximately bounded as follows:

1.75IN] < A] < 3IN] .

Each arc of A has a non-negative flow cost. C(i.j).

The graph G forms the basis upon which the vehicle routing model performs
its function of routing vehicles from one location (node i) to another (node j) at
minimum cost. With no restrictions placed upon i or j, all nodes in \ are potential
origins and destinations for the model. However, it is recognized that only a very small
fraction of all the shortest paths in G will ever be used. So, rather than wasting
considerable time to produce an all-pairs shortest path solution which cannot be stored
with available computing machinery anyway, it is desired that the shortest path
algorithm produce a part of the all-pairs solution (i.e., one small enough to be stored
internally) in which some shortest paths are known and from which all others can be
quickly approximated. With current technology, it is assumed that several |\J-length
arrays can be stored internally but not |N| of them.

To this end, a set of nodes is designated as a reference set. This set, R
(r={R}), is a subset of N\ and in practice it is expected that:
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r < < N[ (e.g..r = 0001\

This designation is a result of a partitioning of all the nodes ot N\ into r clusters where
each cluster contains one reference node. All of the remaining nodes in a cluster are
;;\: . considered ordinary nodes.
¥, This designation of R is to be used by the shortest path algorithm to produce
': a subset of the all-pairs solution, namely the all-pairs of R solution. From this all-
. pairs of R solution. the vehicle rcuting model must be able to determine the shortest
E path between any nodes in the network. Thus, the all-pairs of R solution must be
i: structured such that all nodes in the network are a known distance from at least one of
‘:' the reference nodes. To facilitate this, the shortest path algorithm shall utilize an
engineering parameter approach which provides the user a degree of control over the
;’f amount of approximation used.
:q The engineering parameter approach is defined as follows. Letting SPi]-
?, represent the optimal shortest path cost from reference root node i to node j. and EPI,
; EP2, and EP3 the engineering parameters. with EPl < EP2 < EP3. the proposed rules
:: are as follows:
: e if Spij < EPI, then the algorithm is required to produce the shortest path
: A accurately
. o if Spij is known and satisfies EP1 < SPij < EP2, then the algorithm is allowed
;: to approximate SPji by Spij
,:: o if SPi]- 2 EP2, then the algorithm may neglect computing the shortest path,
2: approximate Spij bv EP3, and force the algorithm to a halt (i.e., stop
computing shortest paths)
]
:g The first rule requires that all shortest paths of length EPl or less be
'::: computed accurately. That is, the optimal shortest path must be located and the node
! labeled appropriately if the node is to be labeled at all. In essence. this provides the
means by which the user can ensure that the shortest path from a reference node to
,. each of the ordinary nodes in the same cluster is accurately computed. Applied to each
‘ cluster, this ensures that all nodes in N are a known distance from at least one of the
; reference nodes.
X . The second rule, essentiallv provides for assumed symmetry between reference
: root node i and node j. With respect to the vehicle routing problem. this rule is
»' designed to allow the algorithm to ignore the asvmmetrv of a particular route on trips
.'
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of specified length. For example, on trips between location i in city 1 and location j in
citv 2, the one-wav on-ramp to an interstate can be ignored as its distance is
insignificant to the total shortest path distance between i and ). Thus to save work and
execution time, SPji 1s approximated by SPij . In contrast, this rule insures that
svmmetry is not assumed when the path is less than EPl. Constder the case where
node i and node j are difterent locations in the same business district in a city. To
ignore one-way streets in this setting may produce a gross inaccuracy in the computed
Spij Thus. the selection of EP1 and EP2 enable the user to determine under what
conditions symmetry mayv be assumed.

The third rule, defines the maximum distance from the reference root node(s)
that the user wants examined. When the algorithm encounters the first shortest path
length greater than EP2, the associated node is labeled with a dummy distance (EP3)
and the algorithm stops. All nodes, to include the non-root reference nodes. that are
outside this maximum range are not labelled. Leaving these nodes unlabeled is
acceptable since in vehicle routing these nodes will never be visited consecutively and
thus it is not required to know SPij for them.

These rules essentiallv allow the user to adjust the scope of the shortest path
problem according to individual desires or needs, as well as providing for flexibility to
take advantage of advances in computer hardware as improvements are introduced.

2. SPij Approximations

The shortest path solutions produced are for all-pairs of R. That is, each
node in R is designated as the root node once, and this results in r single-source
shortest path solutions. From these r solutions, any SPij for G can be computed in
one step. The user designates the i and j of interest, and the model knows the reference
node that each is associated with. Letting [ represent the reference node associated
with node i, and J represent the reference node associated with node j. then the
computation of any SPij is as follows:

SP; = pUliy + qUdG) + Ll
where p and q are weights designated by the user for adjusting this approximation.
3. The Problem
The problem to be addressed is two-fold. The first task is to determine what

tvpe of shortest path algorithm is most appropriate to this situation and will function

as the base for construction of the reference node aggregation algorithm. And second
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is to design and implement an algorithm which reflects the engineering parameter
approach and produces an all-pairs of R shortest path solution from which all SPi]- can
be approximated eflficiently. The goal is to produce the all-pairs of R solution quickly,

B from which the vehicle routing model can compute in one step any Spij .
¥
:éss: C. THE PROPOSED ALGORITHM
.fg:: 1. Base Algorithm Selection
’ A straightforward approach to solving this problem efficiently is to choose an
i. 7,.3' algorithm which can produce shortest paths without necessarilv examining every arc in
‘ ~ A and each node in N. The ultimate algorithm would examine only those nodes and
d ‘ arcs involved in the shortest paths for R.

In this pursuit, it was decided to use a label setting algorithm as the base upon
.*\: which to build. The most attractive aspect of a label setting method is that at each
*‘ iteration, the permanent labels are optimal. That is, the shortest paths computed from
:‘_ 2, the specified root are part of the final shortest path tree T=(N1.A1). even though T is
,:. not complete until the |N\J]-1 iteration. Label correcting. on the other hand. is not
. ‘:;f necessarily optimal until its last iteration. As well, an all-pairs algorithm (like Flovd's)
ir is not optimal until all paths in the network have been examined. By exploiting this
el optimality feature of label setting, it is hoped that an efficient, vet effective. algorithm
. { can be developed.
{.:: _ The reader will recall that in Chapter II, two label setting algorithms were
’? discussed. The first was the basic label setting algorithm, while the second. improved
'C; . label setting. used temporary labels which enabled a one-time examination of each arc
\')1 vice repetitive examinations. Both of these label setting techniques will be used as a
;:'"' base for the reference node aggregation algorithm design, and testing will provide for a
,; ;: comparison between them.
'::0.' 2. Termination Measures
- A means of exploiting the label setting algorithm for the problem at hand
i.': involves constructing the capability to force the termination of the algorithm before
;l" normal completion at the |N|-1'st iteration. The shortest path solution for a given
‘%}m reference root node is complete no later than the point where all non-root reference
. nodes are labeled, and thus when this occurs the algorithm can be stopped. This
::::" premature termination is acceptable due to the fact that the shortest paths are optimal
,:: at each iteration and that those shortest paths not identified by the time all reference
e
Tt
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nodes are labeled have no direct impact on the all-pairs of R shortest path solutions.
At worst, an alternate shortest path may be ignored.

In essence, this involves adding one step to the base label setting algorithm
which checks to see if the label of each reference node is permanently set. If theyv are,
the algorithm is stopped. On the other hand. if there is even one reference node not
labeled. the algorithm proceeds as normal.

The termunation measure is designed to stop the algorithm from doing work
that does not directly contribute to producing the desired shortest paths for the nodes
in R. To assist in this effort, attention is now turned to another efliciency measure.

3. Avoiding Recomputation of Shortest Paths

Another measure to be added to the base algorithm also takes advantage of
the nature of the label setting technique. As was mentioned earlier. solving a network
for an all-pairs of R shortest path solution requires that the algorithm be run once for
each reference node and that each reference node be designated as the root node for a
specific run.

With the exception of the first reference root node, this algorithm repetition
can be exploited in that some shortest paths do not have to be computed again. Each
repetition of the algorithm locates and labels the non-root reference nodes along some
shortest path. Should a non-root reference node have any successors in a particular
solution. these successors can be immediately labeled at the beginning of the iteration
where the node is designated as the reference root node. This occurs, once again due
to the fact that the label setting technique produces shortest paths at each iteration.
Thus, any successor (node) to node i on a shortest path where i is not the root node, is
also a successor on that same path when node 1 is the root node.

So at each repetition of the algorithm, the previous shortest path solutions
can be examined to determine if the new reference root node had successors in those
solutions. When this occurs, the successors can be immediately labeled, therebyv
eliminating the computation of those shortest paths for the current iteration.

4. Summary

Two versions of the reference node aggregation algorithm are proposed. The
first version utilizes the basic label setting algorithm {previously depicted in Figure 2.5
of Chapter II) as an underlying structure and blends in the engineering parameter
approach, as well as the termination measures and the measures for avoiding the
recomputation of shortest paths.
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:g » Likewise, the second version blends in the parameter approach and these same

:; W measures, but differs in that it utilizes the improved label setting algorithm (previously

' depicted in Figure 2.6 of Chapter II) as the underlying structure.

s D. THE DESIGNED ALGORITHM

:i::::‘ 1. Data Structure

::;‘.?‘ Supporting both versions of the proposed reference node aggregation
) algorithm is a data structure which is similar to that discussed in Chapter II. The

;' o network is represented internally by the TAIL array, the flowcost arrav C( ), and the

R : head array H( ) (i.e., TO-NODE). As for the shortest path solutions, they are stored in

;:' 5 the label and predecessor functions discussed previously. However, both functions are
A now defined as matrices of dimension |R| by |N| with each row containing the shortest

‘ I path solution associated with the reference node used as the root node to generate that

D ‘;3 solution.

f!. To round out this data structure, three additional arravs are introduced.

o a. Reference Node Array

"é‘ To identifv which nodes in the network are designated as reference nodes,

X .’*‘: an array of length |R] is defined. This array, RF( ), simply contains as its elements the

‘.. node number of each node belonging to R, that is, those nodes who have been

designated reference nodes.
E"‘\. b. Traversal and Depth Functions

The final two arrays added to the data structure are of length |N|+ 1 and

enable the identification of successors to non-root reference nodes in previous

X5

-

solutions. These well-known arrays are the traversal and depth functions [Ref. 2: page
13].

=\

3

o

The traversal function IT( ) provides a means to keep track of the dvnastic
ordering of nodes in the shortest path tree T. This dynastic ordering produces a ring of

.-

1
U . . . e .
nodes starting at the root with each entry in IT( ) pointing to the next node in

SN succession until the final value points back to the root.

n' *
: '; The depth function DP( ) keeps track of how many levels below the root
| J-z node a non-root node is found in T. The root node is assigned a depth of zero. Those
M | . . .
- nodes directly attached to the root are assigned a depth of one and this level increases
‘ : the further a node gets from the root. In essence, the depth of a node indicates the
‘,"‘ number of nodes (including the root) visited prior to reaching that non-root node along
A

! the shortest path.
L A
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For the reference node aggregation algorithm. depth and traversal are used
in conjunction with each other to identifv all the successors of a node. IT(i), the
traversal value for node i, points to the next node in the drnastic ordering and the
depth of that next node specifies whether the node is a successor to node i or merely of
lower order as compared to node i. Iterating this, all the successors of node i1 can be
identified as well as the shortest paths the successors are found on. These paths, thus
identified, can be used in the current solution without the necessity of computing from
scratch.

2. The Implemented Versions of the Proposed Algorithm

Computer implementation of the proposed algorithm was accomplished in
FORTRAN. As was indicated earlier. both the basic and improved labzl setting
techniques were used as base algorithms.

Figure 3.1 depicts the reference node aggregation algorithm utilizing the
improved label setting as its base. In this algorithm, a shortest path solution for each
reference node is generated. Thus, step 1 initializes the solution index and the
associated reference root node is chosen in step 2. The predecessor, label. depth, and
traversal functions are initialized for the current solution in step 3. Step 4 has two
parts, and in part 4a, any SF’]-r found in previous solutions (i.e., associated with another
reference node) that has a length between EPl and EP2, is used to approximate Srj
where r is the current reference root node. Step 4b sets the label and predecessor of all
l_l nodes which were successors of the current reference root node in the previous
solutions. In step 5, the reference nodes are examined at each opportunity where it is
possible that each has been permanently labeled. and upon finding this to be true,
forces the current iteration to halt and a new iteration (with a new reference root node)
to start. The forward star of the last labeled node is examined in step 6 and all
temporary labels which can be improved upon are updated. The best temporary label
is located in step 7. while step 8 determines if the shortest path solution has reached
the furthest distance (EP2) from the root node that the user wants examined. If this
distance is met or exceeded, the current iteration is halted, and a new reference root
node is designated. In step 9, the best temporary label is set permanent. Step 10

increments the iteration index in preparation for selecting the new reference root node.

o}

And finally, in step 11 the all-pairs of R solution is complete and the algorithm stops.

-
-
- "

Tl ot
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Figure 3.2 depicts the reference node aggregation algorithm using basic label

- -’D
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setting as its base. In this version. a shortest path solution for each reference node 1s
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":“.'c _ Input:
;"l > (1) RF( ). the arrav of reference nodes.
‘:':".' (2) Network data in the form of the arravs C( ), H( ). and T( ).
Rt - (3) EP1, EP2, EP3
Nl Output:
i:.. ()Pl for I = 1. R
S
B 2 tlpfort = 1R
"l‘:’
b L. Initialize the repetition index: 1 = 1
AR 2. Initialize the tree T with the reference root node: r = RF(I)
i 3. Tteration initialization:
2:'.:. Pl = 0. forallje N
" A L'I(j) = 20, forallje N
. tln =0
oy pPl(j) = 0. forallje N
e | P - . .
-.;'.‘ . ITYj) = 0, for allj e N\
W, DPINI+1) = -1
05 TN+ D =
] 1Thr) = INj+1
b3 RFCNT = [R]
“') 4. FORK = LI-1 DO
e a. Examine the backpath of r. Letj = Pl\(r)
‘ WHILE j 2 0 DO
frian IF EP1 < UK(r)- UN(j) < EP2 THEN
[Me 2, .1, K, . K,
e tli = R - LK)
¢ P = K+|\] (denotes that the path from r to j is found
ol 0 N (in the shortest pa‘t)h solution for]RF(K))
YN . .
ot i = PX(j)
; ENDIF
- END WHILE
oo
o
4
';':‘v: Figure 3.1 Reference Node Aggregation Algorithm
el Using Improved Label Setting.
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b. Examine the successors of r. Lets = ITK(r).
WHILE DPR(r) < DPK(s) . DO:
vl = CR@ - LK)
plijy = PR(j)

s = 1TR(s).
1 END WHILE
' END DO

5. 1F Pl(j) > 0O forallje R, j= RF(I) THEN go directly to step 10
ELSE set RFCNT = number of unlabeled reference nodes

where, L'l(r) + C(r)) < L'l(j). set;
tly = cloy + cep

Pl(j') = -r
7. DSMALL = %
DOj = 1IN

IF PYj) < 0and Cl(j) < DSMALL THEN
DSMALL = Ul
k=]
ENDIF
END DO
S. IF L'l(k) > EP2 THEN for each j € N\ where P[(j) < 0 set:
plj) = -Plj)

vl = Ep3
go directly to step 10
ENDIF

9. Set Pl(k) = -Pl(k)
RFCNT = RFCNT -1

IF RFCNT = 0 THEN goto step §
ELSE goto step 6

6. Examine the forward star of node r. For each arc from r to a node j

- e RO N A L T A e N AT A At .‘-v .
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i ::"
[\
)
0
b
:E“ 10.1=1+1
" IF I < |R| THEN repeat step 2
o .
K 1I. Quit.
; |
’
e
»
X
Figure 3.1 Reference Node Aggregation Algorithm
U sing Improved Label Sétung (cont’d.).
.-‘ H]
) ;_3. also generated. Steps 1 through 5 are identical to those for the reference aggregation
]
', algorithm using improved label setting. In step 6. the forward star of all labeled nodes
1s examined identifving those unlabeled nodes that are candidates to be labeled, while
. ! . - .
;l‘“ step 7 locates and labels the best candidate. Step 8 determines if the shortest path
‘ ? solution has reached the furthest distance (EP2) from the root node that the user wants
‘:. examined. If this distance is met or exceeded, the current iteration is halted, and a new
e
e reference root node is designated. Step 9 determines if it is time to check to see if all
the reference nodes have been labeled. The iteration index is incremented in step 10 in
‘z preparation for selecting the new reference root node. And finally, in step 11 the all-
¥
’*‘. pairs of R solution is complete and the algorithm stops.
N
N E. EXPERIMENTAL DESIGN AND TEST RESULTS
Ay -
:,‘. 1. Purpose
y Testing was designed to determine if the implemented algorithm worked
& lv and to enabl ison of the ref eation algorithm and the bas
§ properly and to enable comparison of the reference aggregation algorithm and the base
‘ label setting algorithms. Additionally, a brief examination of the data structure was
N conducted to determine if the data structure size met the stated problem restrictions.
) .
-".\ 2. Design
! The algorithms were run on a set of sample problems generating execution
5 times. A network of 1000 nodes was selected as the test case size with the number of i
ﬁ arcs bound as stated in the assumptions. The test was designed as follows:
'%" ¢ XNETGEN was used to generate four separate networks of the following
dimensions:
: Network A: 1000 nodes and 1750 arcs
v Qetwork B: 1000 nodes and 1750 arcs
>, Network €: 1000 nodes and 3000 arcs
168 Network D: 1000 nodes and 3000 arcs
(. ¢ The LRND function of FORTRAN wus used to generate four sets of four
' reference nodes.
1
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3;:'& Input:
ot
:;‘3:‘ (1) RF( ). the array of reference nodes.
3“,0‘:' (2) Network data in the form of the arravs C( ), H( ). and T().
DR
K (3) EP1, EP2, EP3
Lt Output:
!:'t%! » 1 _
B (WPl) for1 = 1, IR
o 2y tl) for1 = 1,|R|
o 1. Initialize the repetition index: I = 1
o 2. Initialize the tree T with the reference root node: r = RF(I)
oy 3. lteration initialization:
:§ : Plj) =0, forallje N
MR tlj) = %, forallje N
ey tln =0
,l.:’| I,. : -
AN DPY(j) = 0, forallje N
‘2 (Thj) = o, forallj & N
R DPI(NI+1) = -1

3 N+ = ¢
1Tl = N +1
.' ;}: RFCNT = |R|
* 4. FORK = LI-1 DO
A, a. Examine the backpath of r. Letj = PK(r)
T WHILE j 2 0 DO
) K K, .
:‘3::’ IF EP1 < U™(r)- U™(j) < EP2 THEN
cli) = the - L)

, I - : i3

o~ P'(j) = K+|N| (denotes that the path from r to j is found
_ W N (inemeeshortest palgh solution forJRF(K))
2 - = pK(;
RO/ ] )]
bR ENDIF

END WHILE

'.‘."0
A
.‘.::
o
:ﬁ': Figure 3.2 Reference Node Algéregation Algorithm
sl Using Basic Label Setting.
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b. Examine the successors of r. Lets = ITK(r).
WHILE DPK(r) < DPK(j). DO:
tliy = tRm - UK
Plij) = PK(j

s = ITR(s)
END WHILE
END DO

5. 1F PI(j) > O forallje R.j = RF(I)
THEN go directly to step 10
ELSE set RFCNT = number of unlabeled reference nodes
6. Examine the forward star of all the labeled nodes and define:
S = {(ij): 1€ N7ij € N-N1. (i,j) € A}
IF S = {} THEN proceed directly to step 9.
7. Examine each element of S and:
a. Find (k) = argmin {Ul(i) + C(ij): (ij) e S}
b. Set:
Pl = k
iy = o +
8. 1F tl(1) > EP2 THEN

Ll = Ep3
go directly to step 10
ENDIF

9. RFCNT = RFCN\T - 1

IF RFCNT = 0 THEN goto step 5
ELSE goto step 6

ENDIF
10.1=1+1
IF1 < |R}] THEN repeat step 2
11. Quit.

Figure 3.2  Reference Node Aggregation Algorithm
Using Basic Label Setting (cont'd.).
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o
2 e Each algorithm was run against the four networks for each of the four sets of
g reference nodes. Table 3 identifies the test format.
P ® The time each algorithm took to compute the shortest path solutions for each

! set of reference réot nodes was recorded.
e e  The execution results provide a com%lete block design which was be used in the
AN non-parametric Friedman Test [Rel. 9: page 299! which examines the hyvpothesis
:«; that mean execution times for the various algorithms are identical.
'J"“
“ '
" TABLE 3
Ry TEST FORMAT
._'q'
B
s Sample Network Eng. Parameters

A B C D EP1 EP2 EP3
»
g
e Test1 12 12 12 1.2 NA NA L NA
i.‘:'
i Test 2 34 34 3,4 3,4 9991 9992 9999 (Exact
) olution
oy Required)
lt Test 3 34 34 34 3,4 50 60 100
K
S Test 4 34 34 34 34 25 30 50 -
:3;: Algorithm used: .
v,
;;;;: 1 Basic Label Setting Algorithm
::{.: 2 Improved Label Setting Algorithm
3 Reference Aggregation Algorithm using Basic Label Setting

E;:; 4 Reference Aggregation Algorithm using Improved Label Setting
l":
%
::f 3. Data Structure Size
e . .
A The implemented design for the sample problems meets the memory
"'3.? assumptions of the problem statement. Table 4 provides a summary of the data
— structure size for the reference node aggregation algorithm. It should be noted that the
q:: implemented reference node algorithm retains previous shortest path solutions in main
LX)
j::f memory (for speed).
g
» 42
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o] TABLE 4
DATA STRUCTURE REQUIREMENTS

‘.,::‘- Label Setting Base Reference Aggregation
oy Function

5 Storing
o Network 2|A+1IN] 2(A[+N]
R Data

e, Shortest

Path IR[+2|N]
Generation

g Storing . .
i Shortest 2IN| 2IR|IN]
At Path

W Solutions

I Total 2)A|+ 3|\ 2JA|+ 3IN|+ 2|R|IN[ + [R]

4. Algorithm Execution Time Comparison

Ly Four tests were conducted to enable a comparison of algorithm execution
i times for the sample networks. Test 1 was designed to provide sample execution times
“:,‘.g for the base algorithms, namely basic and improved label setting. Tests 2, 3, and 4
,;‘ were designed to provide sample execution times for both versions of the reference
e node algorithm using differing values of the engineering parameters. Test 2 uses
e engineering parameters that for the particular networks involved can be considered as
b infinite values since no path approached the specified length. Thus, test 2 essentially
examines the reference node aggregation algorithm where the engineering parameters
l’q‘ have no impact on the shortest path solutions. Tests 3 and 4 use engineering
) parameter values that restrict shortest path solutions subject to the designed rules.

[R5 The data produced by Tests 1 through 4 consisted of the accumulated time it

i took each algorithm to solve the shortest path for a given set of four reference nodes. 1
e ' ‘
.;nﬁ Thus, each test produced 32 data points. ‘

b 43

£ & ¢ b OO A CRRIEROUG y M
RO SR SORICARAHODHOINB XL



The Friedman Test [Ref. 9: page 299] is a non-parametric test which makes no
distributional assumptions. It utilizes a randomized complete block design to test the

null hypothesis that treatment eflects are equal, with the alternate hvpothesis that at

_}ﬁ least two eflfects are not equal. To this end, the algorithms were considered treatments, .
ey . - . :
) while the reference set sample network pairs were blocks. Thus. the randomized
55, complete block design consists of eight treatments and sixteen blocks. Figure 3.3
Stk . . . . : ’
r. presents the data in the randomized complete block format utilized for the Friedman
" Test. In this case, the null hypothesis translates to that the mean time of execution to
iy . : .
::‘..: produce a shortest path solution for a given network and reference node set is the same
D) .
;E}.; regardless of the algorithm used. The alternate then becomes that at least two of the
)
"“t

algorithm implementations have diflferent mean execution times.

o Utilizing an @-level of 0.05, the Friedman test statistic was computed giving
LAt .. . - . .
" T2 = 113.6. An F-statistic with (7,103) degrees of freedom approximates T2. With
b £ PP

§ - - . . .

:r::: F(7.105) for a=0.05 equal to 2.109, the null hypothesis was rejected enabling use of
Wiy . . . . - .
"{' the multiple comparison extension of the Friedman Test [Ref. 9: page 297]. This
t . . . N

L~ multiple comparison showed, for the sample networks, that none of the treatment
4 .{ -~ . . - . .

;ﬁ effects were equal statistically. Thus, the implemented algorithm is a robust one.

; Further, this comparison indicated that for the sample problems, the reference )
Dey node aggregation algorithm utilizing the improved label setting base outperformed (i.e..
A58 was faster) that version which used the basic label setting as a base. Table 5 provides a

. . N .
pat, summary of the algorithm performance for the sample networks.

0 ) g P P

Ky ¥ 5. Conclusions

:’3“ The design and implementation of the reference node aggregation algorithm
M has been successfully accomplished. In addition, the testing showed that:

N . . . .

it : ¢ Both label setting and improved label setting served as an adequate base for the
W algorithm _implémentation, and the resulting reference node aggregation
oy gor! p g gareg

',g: algorithm functioned as planned.

A,

W o [ ]

The performance of the improved label setting base was superior to that of the
basic label setting as implemented in the referénce node aggregation algorithm.

"3: ¢ The engineering ?arameter approach is a robust one and demonstrated its
! e

ability to enable the user to adﬁxst the reference node aggregation algorithm
with respect to the scope of the shortest path solutions produced.
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Hypothesis:
"0 : The treatments have identical effects within a block.

Hl : At least one treatment tends to yield larger observed
values than another treatment.

Note: Each data entry is the execution time in CPU seconds for an algorithm
(i.e., treatment) to solve the all-pairs of R shortest path problem with IR| = &
reference nodes, given networks of dimensions specified in the block definition
below.

Treatment
1 2 3 % 5 6 7 8
Block
1 27.17 11.13 15.31 10.87 9.12 5.12 8.51 0.644
2 27.43 10.97 13.15 10.67 12.24 5.93 5.93 0.39
3 27.74 11.02 20.20 10.70 15.43 3.55 15.10 0.21
G 27.70 11.01 13.76 10.84 17.61 3.28 17.79 0.25
5 27.91 11.14 18.49 11.20 17.96 5.57 20.00 0.56
6 26.70 10.98 22.12 11.35 11.51 3.91 17.99 0.26
7 26.52 11.09 22.23 10.98 14.95 5.28 17.00 0.51
8 26.73 10.83 11.31 11.08 11.36 6.07 5.41 0.38
9 38.59 12.12 28.58 11.65 28.83 11.75 21.47 6.36
10 38.47 11.96 30.92 11.64% 21.11 11.70 23.42 8.89
11 38.86 11.86 27.18 11.62 R7.70 11.87 18.78 9.642
12 37.89 11.81 23.21 11.54 23.16 11.67 19.69 7.71
13 37.81 11.97 19.29 11.90 18.67 11.85 20.95 6.47
14 28.10 11.91 15.12 11.85 14.58 11.76 14.46 8.81
15 18.29 11.98 15.07 11.78 14.28 11.55 16.69 9.14
16 38.62 11.83 28.03 11.79 27.064 11.46 18.70 5.32

Treatment Definitions:

1 Basic Label Setting Algorithm
2 Improved Label Setting Algorithm
3 Reference Node Aggregation Algorithm using Basic

Label Setting with EP1=9991, EP2:9992, and EP3=9999,

4 Reference Node Aggregation Algorithm using Improved
Label Setting with EP1=9991, EP2=9992, and EP3:=9999.

5 Reference Node Aggregation Algorithm using Basic
Label Setting with EP1=50, EP2=60, and EP32100.

6 Reference Node Aggregation Algorithm using Improved
Label Setting with EP1=50, EP2=60, EP3=100.

Figure 3.3 Randomized Complete Block Design for the Friedman Test.
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2
. Treatment Definition (con't):
A 7 Reference Node Aggregation Algorithm using Basic .
.'t Label Setting with EP1=25, EP2=30, and EP3=50.
:\ 8 Reference Node Aggregation Algorithm using Improved
'“ Label Setting with EP1=25, EP2=30, and EP3=50. .
4

Block Definitions:

"

§

X 1 Network A: 1000 nodes, 1750 arcs, Reference Set 1
.:I 2 Network A: 1000 nodes, 1750 arcs, Reference Set 2
4" 3 Network A: 1000 nodes, 1750 arcs, Reference Set 3
i) [ Network A: 1000 nodes, 1750 arcs, Reference Set &
3

' 5 Network B: 1000 nodes, 1750 arcs, Reference Set 1

6 Network B: 1000 nodes, 1750 arcs, Reference Set 2

'.1 7 Network B: 1000 nodes, 1750 arcs, Reference Set 3
2 8 Network B: 1000 nodes, 1750 arcs, Reference Set 4
1: 9 Network C: 1000 nodes, 3000 arcs, Reference Set 1
& 10 Network C: 1000 nodes, 3000 arcs, Reference Set 2
-:i 11 Network C: 1000 nodes, 3000 arcs, Reference Set 3
o 12 Network C: 1000 nodes, 3000 arcs, Reference Set 4
13 Network D: 1000 nodes, 3000 arcs, Reference Set 1
a4 14 Network D: 1000 nodes, 3000 arcs, Reference Set 2
;‘ 15 Network D: 1000 nodes, 3000 arcs, Reference Set 3
3 16 Network D: 1000 nodes, 3000 arcs, Reference Set 4
o .
4 Figure 3.3 Randomized Complete Block Design for the Friedman Test. (cont’'d.) .
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R TABLE 5
."’-1‘
SUMMARY OF ALGORITHM PERFORMANCE
(CPU SECS REFERENCE SET)
N
yv
t':s:l"
KN
ey 8
oy Network A & B Network C & D
LIRS
Sample Sample Sample Sample
XX Mean Standard Mean Standard
; Deviation Deviation
’,'\ Treatment
Wi
n’b,!
1 27.26 0.54 28.33 0.37
W
:a;:':" 2 11.02 0.24 11.93 0.25
%
a0 3 17.07 4.31 23.43 6.25
00
A4 4 10.96 0.26 11.72 0.13
! "‘E
5 14.15 3,22 23.17 6.59
o 6 .84 1.95 11.70 0.14
o~
" 7 9.72 7.12 19.02 3.1¢
Jaed
e 8 0.38 0.13 7.69 1.56
Wy
» :;;;: Treatment:
i
.:::: 1  Basic Label Setting Algorithm
)
H) 2 Improved Label Setting Algorithm
¥
J 3 Reference Node Aggregation Algorithm using Basic
" " Label Setting with EP1=9991, EP2=9992, and EP3=9999.
I"
v:':v: 4 Reference Node Aggregation Algorithm using Improved
N Labael Setting with EP1=9991, EP2=9992, and EP3=9999.
5t
’~::‘! 5 Reference Node Aggregation Algorithm using Basic
1k Label Setting with EP1=50, EP2=60, and EP3=100.
e 6 Reference Node Aggregation Algorithm using Improved
Wy Label Setting with EP1=50, EP2=60, EP3=100.
)
.'
Sl 7  Reference Node Aggregation Algorithm using Basic
(RS
¥ Label Setting with EP1=25, EP2=30, and EP3=50.
v"ll'
) 8 Reference Node Aggregation Algorithm using Improved
Label Setting with EP1=25, EP2=30, and EP3=50.
gt
¥ 10
:;:
k)
»‘,'q
'«‘g L)
LY
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1V. CONCLUSIONS

A.  SOTACA

Chapter Il presented two problems that have arisen in the use of the OJCS
contingency planning model SOTACA and proposed some means of resolving them.
SOTACA uses an implementation of Floyd's algorithm to compute an all-pairs
shortest path solution and experiences slow execution (i.e., upwards of twenty minutes
on a MICRO VAX) when dealing with networks at or near the maximum allowable
size which is very small by contemporary standards. The author has proposed that this
first problem be resolved by modifving SOTACA so that a single-source shortest path
algorithm, label setting or label correcting, is used to produce shortest path solutions
on demand vice the current method preprocessing all pairs. Accompanying this
algorithm change, it has been proposed that the SOTACA network representation be
changed to a forward star format because of the gained efficiencies. Testing showed
that these algorithms and the forward star network representation produced shortest
path solutions very quickly even for networks at the maximum allowable size. With
these changes, it is anticipated that SOTACA’s slow execution problem will be
resolved. However, the reader should be aware that other implementations of the
single-source shortest path algorithms exist in the literature available, and could also be
applied to this time problem.

As for SOTACA’s second problem, that of nonrecognition of alternate shortest
paths, the use of a depth-first search (and the modified label setting algorithm) has
been shown to correctly locate and enumerate alternate shortest paths. However, there
are several research and implementation issues which this thesis has only touched
upon. Some of these issues that the author feels should be examined are:

(1) the impact on SOTACA of the additional code and data structure required to
implement a means for enumerating alternate shortest paths,

th% effects of this added capability with respect to model execution (i.e., time).
an

(3) a comparison (speed, data structure size, source code size, . . .) of the depth-
first search versus the breadth-first search, or any other methodologies for
enumerating alternate shortest paths.

Nonetheless, what has been shown is that the alternate shortest path problem can be

resolved and that methods to address it are readily available.
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B. REFERENCE NODE AGGREGATION

[n Chapter 111, a new algorithm, reference node aggregation, was proposed. This

Y L L L

algorithm is designed to produce a subset of the all-pairs shortest path solution for
large scale networks. This subset solution, an all-pairs of R solution. is specifically

structured and is intended to support a vehicle routing model by providing the means

P B T

by which it can quickly compute (i.e., in one step) the approximate cost of the shortest
path between any two nodes in the network. Additionally, the algorithm provides for
user-specification of three engineering parameters. These parameters can be used to
make tradeoffs between the accuracy of the all-pairs of R solution and the total time it
takes to produce it.

The algorithm was implemented in two forms, one using a basic label setting
) methodology, and the other using an improved (one look per arc) label setting )
methodology. Testing demonstrated that both implementations were successful and
j that the improved label setting methodology was superior as its production of the
subset solution was significantly faster. Also, the engineering parameter approach
proves to be flexible and enables the user to adjust the the algorithm to fit the

.

individual problem as well as providing a means to take advantage of computer
hardware improvements without modifying the algorithm.

-
o =l e N

However, the author feels that the reference node aggregation algorithm, as
presented in this thesis. can be improved upon. Specifically, the following are potential
areas of improvement:

> ur o i o

X (1) Determining which and how many of the previous_solutions to examine when
3 looking for successors to a reference root node. The current implementation
examines them sequentially.

(2) Determining which and how many of the previous solutions to examine when
approximating a Spij by SPji
(3) Reorganizing the sequence of the steps so that the algorithm is provided some
room to rin” before it starts expending eflort to check on whether all |
{ reference nodes are labeled, or whether the labeling has reached the maximum
distance from the root to be examined.

N dod

p The main point is that this thesis has concentrated on showing that the reference node

aggregation concept (with its engineering parameter approach) works, and that

e MY

additional analysis could make improvements to the functioning of the algorithm:.

LS

Bevond improvements, the next step (though not part of this thesis) is the major
K one which involves embedding the reference node aggregation algorithm in a vehicle
routing model and then assessing its performance. In this way, the validity of the

reference node aggregation algorithm with its engineering parameter approach can be
shown.

> -

; 49

3 ] b SODOD
’.‘!‘a’\'aﬁ.‘l';'z IR O ,J R

GOOILLBLINON |‘.\"
G n.“i-h‘tv,"?



9

n

LIST OF REFERENCES

State Of The_Art Contingency Analysis (SOTACA)Y Analyst’s Guide 1o Theory
(Preliminary Draft), Joint Analvsis Directorate, Organization of the Joint Chiefs
of Staft, Washington D.C., March 1986.

Bradlev, Gordon  H.. Brown G.G., and Graves G W.. "Design and

[mplementation of Large Scale Primal Transshipment Algorithms,” Maragement
Science, Volume 25, Number 1, September 1977.

Dial. R., Glover, F.. Karney, D., and Klingman, D.. "A Computational Analvsis
of Alternative Algorithms and_Labeling Techniques for Finding Shortest Path
Trees.” Neoworks, Volume 9, 1979.

., Alfred V., Hopcroft J.E., and Ullman J.D., Data Structures and Algorithms,

Aho q g
Addison-Wesley Publishing Company, 1983.

Author’'s Personal Class Notes from Lectures by _Gerald G. Brown, OA4202,
Network Flows and Gra%hs, Naval Postgraduate” School, Monterey, California,
September-December 1986.

Glover, F., Klingman, D., and Phillié)s. N.,, “A New _Polvnomially Bounded
lS__hgrte:st Plagtg_Algonthm," Operations esearc}z, Volume 33, Number 1, January-
ebruary .

-

Winston, Patrick Henry, Artificial Intelligence, Second Edition, Addison-Weslev
Publishing Company, 1934,

Klingman, D., Napier. A. and Stutz, J., “NETGEN: A Program for Generating
Large Scale Capacitated Assignment, Transportation, and Viinimum Cost Flow
Netiwvork Problems,” Managemient Science, Volume 20, Number 3, January 1974.

Conover, W. 1., Practical Nonparametric Siatistics, Second Edition, John Wiley
and Sons, 1980.

50

UOLOUS DU O i MO PO O im0
REARNNN ','4',’:9»,’u‘,,,’h‘.’4‘.,34.‘,’9‘,.‘.’.“‘!»’“.v"to"!-‘l ¢




e L A ook ol o L g ocane - aa . San Rug bl b d A dh ko ek 4

e INITIAL DISTRIBUTION LIST

No. Copies

o I. Defense Technical Information Center 2
. Cameron Station )
vy Alexandria, Virginia 22304-6145

Librarv, Code 0142 2
Naval Postgraduate School
i Monterev, California 9»943-5002

J-8. Organization of the Joint Chiefs of Staff 1
Fug Room 0

‘., The Pentagon | | 3
Arlington. Virginia 20301-5000

N 4. Professor Richard E. Rosenthal 1
‘W Code S3RI1

e Naval Postgraduate School

oty Monterey, California §3633-5004

[

-
(P9 )

-
I

Captain Jerome W. Brown, Jr. 1
13814 Leighfield Stret.t
,;;’, Chantilly, Virginia 22021

;;iﬁ 5[

DEPOUR M PO 1‘-,b¢l,,*“’;:""“ S i“\i‘-')i‘ SRR ‘35 04 ;i‘x %rl b’ i“.'a.' b - A, d‘!






