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ADDRESSING
THE TRAVELING SALESMAN PROBLEM
THROUGH EVOLUTIONARY ADAPTATION

By David Fogel

INTRODUCTION

The optimizaticn of the traveling salesman problem continues to
recefve attention for three reasons: (1) 1ts solution 1s computationally
difficult although the algorithm itself is eastly expressed; (2) it 1s
broadly applicable to a variety of englneerlng problems; and (3) 1t has
become somewhat of a comparison benchmark “problem. The task 1s to
arrange a taur of n cities such that each city is visited only once and the
length of the tour (or some other cost function) 1s minimized. For an exact
solution the only known algorithms require the number of steps to grow at
least exponentially with the number of elements in the problem. Brute
force methods of finding of the shortest path by which a traveling
salesman can complete a tour of n citles requires compiling a list of
(n-1)172 alternative tours, a number that grows faster than any finite
power of n. The task quickly becomes unmanageable. R
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BACKGROUND

Two recent papers (Goldberg, Lingle, Jr., 1985, Grefenstette et al,
1985) addressed the traveling salesman problem through use of the
genetic algorithm as proposed by Holland (1975). This algorithm is an
offshoot of the evolutionary programming concept offered by Fogel (1962,
1964, Fogel et al., 1966).

In Fogel's evolutionary procedures the process of iterative mutation
and selection is simulated to evolve a logic most suitable for resolving
the problem at hand. Intelligent behavior is viewed as requiring prediction
of an environment coupled with the use of such predictions for the sake of
controlling that environment (to the greatest extent possible). The
behavior of each artificial organism is constructed as a finite state
machine, a general mathematical function that does not constrain the

represented transduction to be linear, passive, or without hysteresis.

The evolutionary process is simulated in the following manner: an
original "machine” (an arbitrary logic or a “hint”) is measured in its ability
to predict each next event in its "experience” with respect to whatever
payoff function has been prescribed. Progeny are now created through
random mutation of this "parent” machine. They are scored in a similar
manner to the parent in predictive ability. If the parent is better than its

of fspring, the parent is used to generate other offspring. |f, however, an

offspring is better than its parent, that offspring becomes the new parent.
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This assures non-regressive evolution. An actual prediction is made when
the Lredictive fit score demonstrates that a sufficient level of credibility
has been achieved. The surviving machine generates a prediction, indicates
the logic of this prediction and becomes the progenitor for the next
sequence of progeny, this in preparation for the next prediction. Thus,
randomness is selectively incorporated into the surviving logic. The
sequence of predictor machines demonstrates phyletic learning, an
inductive generation of sequences of hypotheses concerning the relevant
regularities found within the experienced environment, in the context of

the given payoff function.

Holland's approach differs from thit of Fogel's. Rather than describe
each organism only in terms of its behavior, Holland emphasizes the coding
structures which generate such organisms. Holland's genetic algorithms
search a parameter space where “any point in the parameter space can be
represented as an n bit vector.” "There are two primary operations applied
to the population by a genetic algorithm. Reproduction changes the
contents of the population by adding copies of genotypes with above-
average figures of merit.” “Crossover is the primary means of generating
plausible new genotypes for addition to the population™ (Ackley, 1985).

Holland defines crossover as taking two coding structures,

Al’:a‘ |a|2...a|n and A2 E 321322"‘320' and at a random potnt “x~ between
1 and n, exchanyging the set of attributes to the right of this position
yielding offspring of the form: A* = a,,35..34@p(y4 |)--@2n: " ThiS

‘offspring’ is added to the population, displacing some other genotype

5 ¥ ‘.f:hf-.q'\ﬂ.\-..‘!’\’: \..\.'\*-'--.-*"'- y,-*p -’-'.-.’V- ------ -.-.‘- -..-._-._-._- -..-,-._- -..- ~‘.. -
e ) -.\.\'\ N\ LS N a) < By “u ‘-*'v'_ »,




! according to various criteria where it has the opportunity to flourish or

perish depending on its fitness. Mutation provides a chance for any allele
to be changed to another randomly chosen value. |f the mutation rate is too

low, possibly critical alleles missing from the initial population will have

operations of gene “crossover” and “inversion™ among other actual biologic

”
3'3 only a small chance of getting..into the population. However, if the
' E probability of a mutation is not low enough, information..will be steadily
lost to random noise” (Ackley, 1985).
p N
0
| g Holland likens the actual code being mutated to that of the genetic
b a?
| - code that defines a natural organism. While Foge! et al. (1966) only used
5 .. small degrees of "background™ mutation, Holland incorporates the
s

genetic recombinations. Although Holland's work has gone largely

g0

unnoticed for some time, today renewed attention is being given to genetic

algorithms.
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Goldberg and Lingle (1985) offered several rbservations of the

4

genetic algorithm (GA) as it relates to the traveling salesman problem:

- v oY

1) Simple genetic algorithms work well in problems which can be
coded so the underlying building blocks (highly fit, short defining

Sl

length schemata) lead to improved performance.

R

“2) There are problems (more properly codings for problems) that are
GA-hard -- difficult for the normal reproduction + crossover +

mutation processes of the simple genetic algorithm.

v “J) Inversion is the conventional answer when genetic algorithmists
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are asked how they intend to find good string ordering, but inversion
has never done much in empirical studies to date.

"4) Despite numerous rumored attempts, the traveling salesman

problem has not succumbed to genetic algorithm-like solution.”

They suggested a new type of crossover operator, the “partially-mapped
crossover (PMX),” which they believe will lead to a more efficient solution

of the traveling salesman problem.

PMX would proceed as follows: consider two possitle codings of a tour

of eight citles, A} and Ao, areturn to the Initial city betng implicit:

A:3512768 4

Ap:l 8543627
Two positions are determined randomly along the Ay coding. The actual
cities located between these positions along A, are exchanged with the
cities located between the same positions along A,. For example, if the
positions three and five are chosen, the sub-coding along Ay is 1-2-7, and
the sub-coding along A, is 5-4-3. Each of these cities 1s then exchanged,
leading to the new tours, A*, and A*;:

A%:7 1543682

A*558 127643,
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where the PMX operator enabled the search to efficiently discover either
the absolute or near optimum solution.

! Goldberg and Lingle (1985) reported two experiments on ten cities
B

Grefenstette et al. (1985) addressed the traveling salesman problem
using Holland's "simple crossover.” This required the formation of a
special coding structure. Clearly, using this operator on two valid tours I
could result in an "offspring” that was not a valid tour. As Dewdney (1985)
has commented, the authors’ method for devising the appropriate coding

my

a

2 was ingenious.

g “The representation for a five-city tour suchas a ¢ & g & turns out
to be 12321. To obtain such a numerical string reference is made tc

. some standard order for the cities, say, & 4, ¢ d e Given a tour such

. as g ¢ e d o systematically remove cities from the standard list

_:§; in the order of the given tour: remove g then ¢, e and so on. As each

a city is removed from the specfal list, note its position just before

=

removal, ais first, cis second, eis third, ¢ is second and, finally 2

g is first. Hence the chromosome 12321 emerges. Interestingly, when

two such chromosomes are crossed over, the result is always a tour.”
Unfortunately the experiments with this representation were “not very
encouraging” (Dewdney, 1985). Grefenstette et al. conducted larger
experiments than those of Goldberg and Lingle, including SO, 100 and 200
cities. In the three reported experiments, after a large number of trials
(approximately 14000, 20000 and 25000, respectively), the best tours f
were still far away from the expected optimal solutions.

eEn 5 =5

= 'R




g
At this point it is natural to ask "why?". After 2ll, the traveling
5 salesman problem only requires discovery of a logical pattern. This seems
g completely analogous to what occurs in nature. If the crossover of genes
works in natural evolution, why shouldn't it work here?
. % The answer is, in fact, that suggested by Goldberg and Lingle’s second
observation: the traveling salesman problem is difficult to address using
U Holland's crossover mutation. This is because the crossover operation, as
: = defined by Holland, does not mimic the biological crossover of genes.
@ Natural crossover is a phenomenon where “old linkages between genes on
™ hemologous chromosomes are broken and new linkages are established.
i Genes that reside on the same chromosome and move together are said to
' - be ‘linked." A 1inkage group is any group of genes physically linked on one
] chromosome...Changes in linkage groups are not truly mutations, however,
E ‘:" since neither the amount nor the function of genetic material s aitered®
(Levy, 1982).
E vy
-&3 Holland's crossover treats the entire tour as a chromosome and each

city in 2 tour somewhat as a gene. While this does not change the amount
of coding, it greatly alters the function of the coding. Natural crossover
allows for different combinations of alleles. Alleles, by definition, control
the same characteristic and occupy the same place on similar
chromosomes. A more appropriate biologic interpretation of a tour would
be that it is itself a gene. Crossover inside a gene is a nonsequetor. The

.::_:JL‘A —m :.I_GJ

fr tour 1s not analogous to a chromosome and each city in a tour s not
analogous to a gene. These relations are in fact anomolous.
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The result of Holland's crossover is therefore a near random search
throughout the entire space of possible tours. This is, of course, the
essence of the difficulty. Dewdney (1985) has commented that by using
Holland's crossover “there is so much juggling of genes and cracking of
chromosomes that...(a parent)..is hard put to recognize fts own
grandchildren.” As the number of citfes grows larger, Holland's crossover
effectively destroys the link between each parent and its offspring. The
results can even be worse than a complete enumeration of all possible
tours (Appendix). Adaptive plans must retain previous advances and
incorporate them into future solutions.

AN ALTERNATIVE APPROACH

An alternative solution is the adaptive algorithm, so named because it
does not include any of the genetic-mimicking operators that Holland has
suggested, but instead emphasizes the behavioral appropriateness
(fitness) of the evolved trial solutions. The algorithm, which is equivalent
to Fogel's evolutionary programming restricted to single state machines,
only slightly mutates the existing tour by removing just one city from a
given list and replacing it in a different randomly chosen positfon. This
mutation is only mildly more complicated than the simplest possible
mutation, that is, swapping adjacent cities. It is clearly less complex than
either the PMX operator or Holland's crossover; through multiple mutation,
this single alteration can be made equivalent to either of these crossover
operators. Holland (1975) has stated: “if successive populations are
produced by mutation alone (without (genetic) reproduction), the resuit is

- b; P t—,\ t; ﬂ -:-n tg ts tv t\)‘;f&z P)s t-) g ~ t." t.. t" :gi ~ tkﬁ:ﬁ;{, g t; 5. E E t;m Y
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#
N a random sequence of structures drawn from (ail possible structures).”
= This 1s only partially correct. The adaptive algorithm does result ina
E?i readom search, but only in that portion of the space relatively close to the
parent which generates the offspring. This dramatically increases the
f:f effectiveness of the search through the state space of all possible
@ constructions.
&
g._ Not only must advances be retained but “dead-ends” must be
_ circumvented. Because there is a finite number of offspring that can be
;E generated through mutation evolutionary stagnation might well occur on 2
¥ local optimum. To prevent this it is useful to randomlv aiter the adaptive
& topography (payoff function) that is being searched. This can be accomp-
' lished by a variety of means. One of these is to occasionally allow for the
survival of offspring that are slightly worse than their parents. Ineffect,
-."6 the scoring function is inade “noisy.”
2
” What results is analogous to the searching of a maze; when a dead-end
E: is reacl.ed some backtracking is allowed and the overall search is
a reinitiated. Unfortunately, the topography is much like an upside-down be¢
'E of nails, with some nails being longer (better) than others. From any given
nail, it is possible to travel to n(n-1) other :ails in a single mutation by
Eﬂ randomly choosing a city and placing it ina fifrerent position. Unlike a 1
% maze, when the evolving phyletic line reaches a non-optimal nail from ]
L which no single mutation results in a better tour, it is impossible to ;
-i‘ determine the “direction™ in which to backtrack. The complete prevention
i of evolutionary stagnation is impossible ualess all inheritance is given up *
: ;5 and the search made completely random. :
? :
mxﬁbﬂhﬁ;“x,Mgu:m}mhmbmmummj



EXPERIMENTAL FINDINGS
E Experiments were performed to determine the effectiveness of the
adaptive algorithm. Initially, 128 independent trials were performed on a
B 24 city traveling salesman problem where the cities were positioned on

the periphery of a rectangle. Clearly, the minimum length tour is equal to
the perimeter of the rectangle, in this case, 250. The amount of noise that
was used is indicated in Table 1. The same degree of noise was used
throughout all of the experiments described. Of the 128 trials performed,

Table 1:

:

Number of Evaluated Offspring Qffspring Score/Parent Score Accept®

Less than 1,500 < 1.05 1SR
<= 1.1 108
<= |.2 SR
> 1.2 IR
Between 1,500 and 5,000 <=1.05 S%
<= 1.1 2.5%
=12 1%
1.2 05%
Between 5,000 and 10,000 <=1.05 2%
=11 1R
=12 0.5%
| > 1.2 0.2%
g Between 10,000 and 20,000 ¢= 1,05 0.5%
s >1.05 (04
:
Greater than 20,000 Any ratio 0%

Table 1: The amount of noise.
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90.625% found the optimum solution in an average of 5297.48 iterations
(Figure 1) where the maximum number of iterations was arbitrarily set at
14,000. Figure 2 indicates the results of the remaining 9.375% of the

S
&

B

trials in which the evolving tours were, at least temporarily, trapped on a

local optimum. Despite the seemingly non-compiex arrangement of cities,
the numerous local optima inherent to this city-structure make this

[ ]

é;: particular traveling salesman problem somewhat recalcitrant.
! f« To further investigate the efficiency of the algorithm, 20 experi-
1 ments were conducted requiring a tour of S0 cities where the cities were
! v-': redistributed for each experiment. In each, no optimum tours were

. discovered in 20,000 iterations, but it was clear that the evolutionary

: process was “solving the problem.” Figure 3 indicates the results of a

_',3 typical experiment. Figure 4 indicates the mean and estimated two-sigma

limits of the evolutionary process as it discovered more and more suitable

~ tours as offspring were evaluated. Note that “backtracking” played an
integral part of the search.

'E:r
g_{ Experiments were then performed requiring a tour of 100 cities under
e
similar conditions. Again, while none of the eight experiments found a
|.:~‘
}" perfect tour in 20,000 iterations, the evolutionary process performed
% well. Figure S indicates the results of a typical experiment while
“ Figure 6 indicates the mean and two-sigma limit of the reduction in tour
o) length as offspring were evaluated.
,._" Further experiments required a tour of 90 cities. Here, 18 trials |
)
Y Gy A T T e O I O I I
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were performed on ten groups of nine cities that were randomly placed on
the coordinate grid. The-process was allowed to evolve 32,000 of fspring.
While the optimt;m solution remained undiscovered, it is of interest to
note that the problem was evidently addressed at two distinct levels. The
evolutionary process initially solved the problem at a gross level,
discovering the minimum tour between the groups of cities (Figure 7 and
Figure 8). Insufficient time was allowed to sort out the problem at a finer
level of detail. Figure 9 indicates the mean and estimated two-sigma
limits to the reduction of tour length up to the 20,000th iteration.

An extremely large traveling salesman problem was also analyzed.
Here, 256 cities were randomly distributed. Based on the previous results
it was not expected that the adaptive algorithm would discover the
optimum solution in 20,000 iterations; however, after only 10,000
fterations it had reduced the initial tour length by roughly S0 percent.
Figure 10 indicates the "surviving™ tour after evaluating 10,000 offspring
while Figure 11 indicates the success of the evolutionary process in
discovering better and better tours. The available computation time

limited the analysis, however the results were certainly encouraging.

The evolutionary program was also extended to allow for cities

distributed in three dimensions. Here, SO cities were randomly distributed.

As expected, the addition of the third dimension had little effect on the
adaptive algorithm. The initial tour length was reduced by SO percent in
fewer than 6,000 iterations, see Figure 12. Figure|3 indicates two views
of the surviving tour after evaluating 20,000 offspring.
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These experiments indicated the approximately exponentia! learning
ability of the adaptive algorithm. However, the quality of the resulting
tours remained t; be determined. This can be assessed only when the
distribution of the (n-1)//2 tour lengths can be approximated. Two
experiments were performed in this regard.

First, 28 cities were positioned in a square of perimeter 720 units.
This, of course, corresponds to the optimum tour length. A computer
program was written to sample 2500 tours at random and found an
estimated average tour length of ji = 838.8163 (an average error of
118.8163) with an estimated standard deviation of = 59.72235. Because
of its flexibility, 2 gamma function was fitted to describe the error
distribution:

(1) 100 =(2x1077)03)e” ¥/30),  x»o0.
Thirty trials were conducted with the adaptive algorithm which yielded an
average tour length of 798.613 after evaluating 20,000 offspring. The
average tour error was approximately 79 units. Integrating (1) from zero
to 79 yields the estimated percentage of tours that were of higher quality
than this average tour error. Here, this integral, calculated using
Simpson’s rule, was approximately 0.257. Thus, the average tour error of
the adaptive algorithm was superfor to roughly 75 percent of the possible
tours, this after evaluating only 3.7 x 10724 of the state space. It should
be noted that 23 out of the 30 trials found perfect tours, but because the
square was large, locally optimal tours had great length as compared to

the optimum tour length. This dramatically increased the average length of
the 30 trials.

et e




A more complicated experiment was also performed. Here, 36 cities

units. Again, 250'0 tours were sampled at random and yielded an estimated

average tour length of 1 = 617.1259 (an average error of 157.1259) with a

estimated standard deviation of 0 = 29.43465. A gamma function was again
fitted to the error distribution:

E were organized in four groups of nine with a minimum length tour of 460
B

B (2) 1(x) = ((5.5282) (2850 (x27-Sxe™*/33),  x»0.
E-Q Thirty trials were conducted with the adaptive algorithm which yielded an
- average of X = 518.7947 for an average error of approximately S9 units.
& Integrating (2) from zero to S9 yields the estimated percentage of tours
- that were superior to the average results of the adaptive algorithm. This
Eg was computed to be 0.0000006438, that is to say, the adaptive algorithm

; ' produced tours that were generally superior to over 99.9999 percent of all

possible tours, this after examining only 3.87 x 1 0735 of the entire tour
x state space.

~~

An additional set of experiments was conducted to directly compare
the adaptive algorithm to the PMX operation. Here, 100 cities were
distributed at random and 30 trials were performed using both methods.
The cities were redistributed for each trial to minimize the effect of an

unusual set of cities. Each algorithm was allowed to generate 20,000
offspring. The results were:

o)

1

(WL

T

Adaptive Algorithm PHMX
%X = 1454.403 units X = 4319.455 units
» s= 110951 units s= 165.807 units

where X is the average of the thirty trials and s is the standard deviation
ih of the sample.
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As mentfoned previously, the PMX operation does not retain sufficient

M ]2 R

information between parent and offspring to perform effectively.
Essentially, the PMX operation is equivalent to swapping a random number

T

of cities in a single tour. The number of cities to be swapped is equal to

sl

the length of the section of the tour chosen at random. The expected
number and variability of swaps per mutation are indicated in Figures 14

d
EJ and 15. Inrelatively small problems, on the order of ten cities, the PMX
0 operation averages about three swaps with minimal variance. However, in

)

larger problems, such as the 100 city problem performed here, the PMX
g averages more than 33 swaps per mutation with a rather high variance.
This prevents the required link between generations.

Su. essful adaptation does not require sophisticated mutations. In an

..".‘.l'{

evolutic ary scheme only the “behavior® of a coding structure is scored;
the code iiself is never scored. The bottom-up view that emphasizes
mutation operations as the key to adaptive plans is incorrect. Competition

e e a A NS I 3PP A
=

o

occurs not between coding structures but between expressed behaviors.

The particular structure of the code is generally unimportant.

&

A

Further, sophisticated mutation operations can be detrimental. For
adaptation to succeed, a sufficient link between parent and of fspring must

32

be maintained. When this link is destroyed the results can be worse than a
random search of all possible coding structures. Since the traveling
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salesman’s tour is not analogous to an organism’'s chromosome, operations
of the form of Holland's crossover are unsvitaole. in general, little
emphasis should.be placed on specific mutation operations. Modeling a
given mutation operation in order to elicit appropriate behavior is much
like requiring an airplane to possess feathers in order to fly. it is the

mutation and selection of behavior that is imporatant, not the structure of
the code.

Search by adaptive methods must avoid stagnation in local optima.
Stagnation can be prevented through the use of a noisy payoff function.
This concept s similar to that suggested by Kirkpatrick et al. (1983) for
optimizing simulated annealing, but it is not necessary to resort to such
specific analogies. In a dynamic environment, the rewards and penalties
for different behaviors vary. The search for better and better solutions is
everlasting. Evolution fs a continuing process with no truly optimum

solutfon. Incorporating nofse into the adaptive algorithm prevents
stagnation of the evolving phyletic line.

Clearly, evolutionary adaptation can effectively address the traveling
salesman problem. The experiments described here indicate the efficiency I
of this evolutionary search. But, in any given problem, there is no
guarantee that the optimum solution will ever be found. Evolution
discovers only what it is capable of discovering. New solutions that are
superior to old ones tend to survive. Despite this, the adaptive algorithm, a
reification of natural evolution, tends to discover exceedingly appropriate
behavior in the context of a given criteria.
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Appendix
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A completely random search (with replacement) will take roughly

s~

twice as long to find the optimum solution as an enumerative search
(without replacement). To show this, consider the following two theorems:

e |

~\;’ Theorem 1: If there are B possible solutions and only one
PR
optimum solution, the expected number of trials that must be
E: made before the optimum solution is found, using an enumerative

search, assuming one trial is made at a time, Is equal to
(B+1)/2.

X

e=am
3

(i

Proof: In an enumerative search, sampling 1s made without replacement.

-

The probability, therefore, of discovering the optimum solution on any

AN Tl aasaae S0 0w e gl o b ERELE g 2 on AR S e i

given trial 1s equal to the product of the probabtlities of not discovering

. 5 the optimum solution on any prior trial multiplied by the reciprical of the
! number of untrted solutions. The expected number of trials that would have

g : to be examined before finding the optimum solution would therefore be:

; &

b = Z xf(x) = 187" + 2((B-1)/BHB-1)"" + 3((B-1)/BH(B-2)/(B-1)}B-2)""

+ -+ (B-D1B-1)/8]-[2/3}172) « B(B-1)/8)-[2/3}{1/2] 1
=131+ 2B 3BV e e (B-1)B"" + 8B!

) =B (1+¢2+¢3 ¢ s(B-1)+B)

gg = 3-M{B(B+1)/2)

N

- = (B+1)/2. ED.
EN (B+1)/2 QED
b
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Theorem 2: If there are B possible solutions and only one

) optimum solution, the expected number of trials that must be

ﬁ made before tl;e optimum solution is found, in a completely
random search, assuming one trial i{s made at a time, is equal to

N B.

1%

§ Proo/: In a completely random search, sampling is made with

o replacement. The probability, therefore, of discovering the optimum
solution on any given trial is equal to the product of the probabilities of

> = A

not discovering the optimum solution on any previous trial multiplied by
the reciprical of the total number of possible solutions. The expected

number of trials that would have to be examined before finding the optimal
solution woula therefore be:

Z xf(x) = -8~ + 2{(B-1)/8]}87" + 3{(B-1)/BR B+
= 371(1 + 2[(B-1)/B) ¢ 3UB-1)/BR + ) I
= 37 11/701-(B-1)/8)R
=8 Q.ED.
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