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The partial conductivity of electrons in NaZSO was about two orders of
magnitude less than the total conductivity whi?e electron hole conductivities
are conside_:_'ﬁbly smaller than the electron conductivities. Thus, te is of the

order of 10" in pure Na,$0, at 900°cC.

The introduction of NiO and Fe O3 into Na, SO, at 900°C does not change
significantly the total conductivit%es or the pgrtial electronic
conductivities except at a concentration of 10 mole 7 Fe, 0, where the
electron and electron hole conductivities become of the same order of
magnitude. At other concentrations of NiO and Fe_, O, the salt solution has
electrons as a major minor carrier. This is somewhat surprising as one might
generally anticipate an increase in the electron hole conduction with the
introduction of multivalent ions of nickel and iron.

Hot corrosion gtudies on pure nickg}6under various heights of Na_,S0O, were
carried out at 900°C at ayz,0 = 6.3x%x10 . The kinetics of the hot cérrosion
process increased as the height of the Na SOA was increased from 0.5 cm to 2.0
cm. These results are quite informative in that they eliminate a number of
possible reaction controlling steps. Further studies in this regime may aid
in elucidating the reaction controlling step(s) for this process of hot
corrosion.
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Introduction

The mechanism of hot corrosion is accepted as that of a dissolution process
of protective oxides in a neighboring liquid phase, generallv, but not alwavs,
considered to be NaZSO& (other liquid salts create the same tvpe of behavior).
The reactions involved, considering only the formation of metal oxides, requires
transport of oxvgen through the liquid salt phase. Thus, at least in the
initial stages of corrosion, one of the interface reactions and/or diffusion in
the boundary layers and/or diffusion through the bulk salt must contrnl the
process. After a certain thickness of reaction product accumulates at the
liquid-alloy interface it is then logical to anticipate control of the cnrrosion
process to be reactions that involve this scale.

To aid in the overall understanding of the hot corrosion process
determination of a number of electrical transport processes in the Naz'S(),Q phase
have been undertaken. The experiments conducted are described in the following
text and the experimental results obtained during the first year of study are

presented.

Experimental

A variety of electrical transport experiments were conducted. These
include the measurement of the total electrical conductivity of pure .‘\Ia,,S(),4 at
900°C under various 802 + O2 atmospheres and determination of the partial

conductivities of electrons ana electron holes utilizing a Wagner-Hebb tvpe

polarization cell for pure and "doped" NaZSOA also at 900°C under 503 + 0,

atmospheres of various concentrations.
The crucible utilized for these experiments was pure gold which is
relatively inert to the aggressive salt. Gold electrodes were also emploved.

Atmospheres of SO + 02 emploved to varv the activity of the Na_ O in the melt
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were obtained from gas mixtures or by flowing an inert gas, He, over ZnSOA/ZnO
mixtures held at a constant temperature in a furnace separate from the cell
furnace. A platinum wire screen placed above the melt was utilized to catalyze
the reaction. Both D.C. and A.C. measurements were made but most of the work
reported herein relate to D.C. measurements since these appeared to be most
stable and reproducible.

The cell constant was obtained by measuring a standard KCl solution at room
temperature under identical conditions to those utilized for the cell at the
high temperature operation.

In addition to the above electrochemical measurements high temperature,
QHOOC. hot corrosion studies were begun on metal samples covered bv a certain
thickness of liquid NaZSOA' The initial experiments were carried out in silica
crucibles with pure nickel as the metal phase. The nickel was oxidized at
1000°C for about 12 hours. One surface of the oxidized sample was polished to
obtain a rlean metal surface while the other surfaces were permitted to retain
their oxide laver. The oxide surfaces were then coated with a thin gold layer
in nrder to protect these surfaces from reaction with the NaZSOQ.

Weight charnges during the hot corrosive process were followed bv an
automatic recording balance. The activitv of Na,0 was maintained at about

2

-16h
A.3xIn bv a flowing gas stream of 0, + S0,.

Results and Discussion

Electrical Conductivities

The rotal electrical conductivity of pure Na S0 as a function of the
) - “4

activity of Na 9 in the melt at 1173 K is depicted in Figure 1. The

<

conductivities at 100 and 1ann Hz differ from the D.C. values obtained

indicating that polarization mav be present at the electrodes. However, the
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A.C. values measured were not nearly as stable or reproducible as the D.C.

B values. Hence, at this time we relate our subsequent calculations to the total
D.C. conductivities. Figure (la) displays this conductivity on a more sensitive
conductivity scale. From this figure one notes a small but definite decrease in
the conductivity as the activity of the NaZO decreases. We are presently giving
thought to this decrease in order to attempt an explanation of the observed
trend.

From Wagner-Hebb types of polarization measurements on pure NaZSOA at 1173
K the partial conductivities of electrons and electron holes were calculated and
are depicted in Figure 2. 1t can be seen that electron conduction in pure
NaZSOA is considerably larger than that of electron holes. Thus, for pure
NaZSOA the major minor conductors are electrons. The calculated transport
number of the electronic species are depicted in Figure 3 from which it can be
seen that electron transport numbers are of the order of 10_2 while that of the
electron holes are of the order of 1—2x10-4. Thus, a relatively large amount of
the transport of charge is electronic in nature in pure NaZSOA' i.e. of the
order of 1 part in a hundred parts. The transport numbers of electronic species
in molten salts have not been measured to any great extent but the few that have

been measured are smaller than that determined in this study, e.g. reference 1

gives a value of about 3x10—3 for electrons in the molten eutectic nf LiCl-KCl

at 450°c.

- In view of the fact that nickel based alloys are frequently utilized for

applications (2-11) where hot corrosion may occur electrical conductivities and

X Wagner-Hebb type polarization measurements of NaZSO, with additions of NiO have

! a4

, been made. The total conductivities of these melts are depicted in Figure 4

v,
" along with that of pure NaqSOA. It should be noted that the 10 mole % NiO
?{ solution {s in excess of the solubilitv limits as determined bv Gupta and Rapp
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(12) except for the extreme ends of the activities of NaZSOA; thus, the central
section of this conductivity curve represents the ionic solution conductivity
plus the contribution, if any, of the suspended solid phase. The conductivity
scale utilized in Figure 4 is rather amplified so that the trends of the
conductivities may be observed.

From these results one notes that there is no "massive' change of
conductivities of NiQO '"doped" NaZSOA as compared to pure NaZSOA' Of course, the
levels of NiO additions are not excessive, except for the 10 mole % NiO case, so
that major changes in total conductivities are not expected. However, there is

-8

a trend in the conductivities to minimize in the neighborhood of aao " 10 to

2
10 10. This is in the neutral region between acid and basic fluxing of the NiO

and is similar to the solubility curve of NiO determined by Gupta and Rapp (12).

In general, one may note that the results obtained do indicate that the
mobilities of the ions resulting from the dissolution of NiO are not
significantly different from the ions present in the Nazso melt.

4

The partial electronic conductivities observed for the NiO doped NaZSOA are
depicted in Figures 5 to 7. These have been plotted as separate figures since a
single figure plot would show much intermixing of values. Basically, these
results show that electron conductivities remain higher than the electron hole
conductivities at all concentrations of NiO and throughout the entire range of
NaZO activities. This is somewhat surprising since one would anticipate that
the introduction of nickel ions into the melt would tend to increase the
electron hole conduction via the exchange of electrons between Niz+ and Ni3+
ions. Such apparently does not occur and the postulate that the presence of
nickel in NaZSOA solutions would enhance the total electronic conductivity and

more specifically the electron hole conduction is certainly not in accord with

these results.
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Utilizing the total conductivities and the partial conductivities one may
calculate the transport numbers of the electronic species in these doped
solutions. These values are plotted in Figures 8 to 10. It can be seen that
the electron transport numbers remain consistently higher than those of the
electron holes in accord with the partial and total conductivities depicted
previously. Again, the effect of the dissolution of the Ni0O is minimal upon the

electron hole transport.

0

The effect of Fezo3 dissolved in N32804 was also studied. Figure 11
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depicts the total conductivities at various concentrations of FeZO3 while

Figures 12 to 14 depict the partial electronic conductivities. Electron
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conductivities are considerably higher as compared to electron hole

conductivities except for the 10“2 mol 7% Fezo3 concentration. This is seen more

clearly in Figures 15 to 17 which show the calculated transport numbers of these
-14

solutions. It is noted that at relatively low activities of NaZO (10 Lé

10—15) that the electron conductivity is considerably enhanced as compared to
higher activities indicating that the concentration and/or mobilities of the
electrons is increased significantly in this activity region. Indeed, the total
conductivities, Figure 11, are also increased considerably in this region
indicating that both ionic and electronic transport are enhanced. Such may

2O3 in the NaZSOA melt.

The above represents at this point in time the electrochemical results

relate to dissolution products of the Fe
obtained. Interpretation(s) of these results are presently under consideration.

Hot Corrosion of Pure Ni as a Function of NaZSOA Heigth

As noted in the experimental section of this report nickel samples,

prepared to expose one metallic surface to an overlying Na, SO, melt, were tested

2774
at 900°C at an activity of Na20 of about 6.3x10¢16. The results obtained are
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shown in Figure 18. 1t can be seen that the gain in weight per unit area of

sample increases as the height of the melt above the metal increases. Thus. R
diffusion through the entire distance of the overlying Na,,SOA is not rate \.
- -’-.
L : . Yy
determining for this corrosion process.
Figure 19 shows a typical SEM micrograph of the layers formed on the nickel -:“-
o
under the conditions of the experiment. Both NiO and !\Ii3S:2 are present in a ::j-
SN
duplex type scale indicating that the sulfur potential is sufficient at the '-’
scale - NaZSO[‘ interface to form the Ni352 even though the gaseous atmosphere ::-.:
is such so as to establish an acid fluxing Nazsoa melt. Figure 20 is an x-ray j:"-_'
map of the micrograph shown in Figure 19 and reveals the distribution of the -':{
sulfur in the various phases present. Again, it is apparent that the central
structure is a high sulfur containing compound. )
The differences seen in weight gain as a function of height of NaZSOA are
RS
worthy of further discussion. 1If one considers the possible rate controlling e
‘_::: steps in this process and considers whether the step is altered by the height of _
the .‘\JazSOA layer one is led to the following conclusions: c_‘::
] ]
-‘1\
. ok
e Effect@yp of a o
N Step thicker Na,SO, layer AN
—_— 274 =
oW
K 1. Diffusion flux through the NaZSOA thickness Decrease &
- 2. DNDiffusion flux through boundary laver at gas - No change, essentially ::::-:
N e
.- aZSOA interface ol
3. Diffusion flux through boundary layer at No change, essentially Ry
- scale - NaZSOA interface (see further discussion) _~'
4. Interface reaction at the gas - No change, essentially _
N —- :-.
) 32504 interface 0
5. Interface reaction at the Na,S0, - No change, essentially Vo
& ; 2774 ) : .
scale interface (see further discussion)
o 6. Oxidizing potential gradient from gas - NaZSOA Decrease

interface to scale - Nazsob interface
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Thickness of reaction product on metal No change

Each of the above steps either decrease or prabablv 40 not charge
appreciably when the height of Na, S0, above a corronding sample is increases.
2 4
Yet experimentallv the results obtained indicate an increase in hot» the iritii!

and the "long-time" reaction rate although the "long time'" rates are les

5

well-defined. Thus, one must search for another parameter that mav relate t.o the
control of the corrosion process.

If one accepts that dissolution of the scales occurs during the
hot-corrosion process, and such is certainly supported bv manv studies, then unre
is led to conclude that the capacity of the Na, S0, melt to accept a soluble

4

product is increased by the increased amount of Na,SO, present to establish a

4
greater thickness of the salt. Thus, a larger amount of nickel compounds mav zo
into the melt without approaching saturation and the necessitv of precipitation.
Hence, steps 3 and 5 in the above listing may change somewhat and mav he related
to the changes in the kinetics that were detected in these experiments.
Therefore, it appears that the parameters which determine the dissolution
process of the scale may be the most important in this corrosion process. Such
parameters are the interface reaction, diffusion of reactants to the reaction

front, diffusion of products to the bulk solution, etc. Further efforts will

relate to attempting a clarification of these probable rate-controlling

mechanisms.
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