<table>
<thead>
<tr>
<th>Ni</th>
<th>Ni</th>
<th>Ni</th>
<th>Ni</th>
<th>Ni</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni</td>
<td>Ni</td>
<td>Ni</td>
<td>Ni</td>
<td>Ni</td>
</tr>
</tbody>
</table>
ANNUAL TECHNICAL REPORT
April 1987
OFFICE OF NAVAL RESEARCH
Contract No. N0014-86-K-0133

HIGH TEMPERATURE OXIDATION AND ELECTROCHEMICAL
STUDIES RELATED TO HOT CORROSION

G. Simkovich

Department of Materials Science and Engineering
The Pennsylvania State University
University Park, Pennsylvania 16802

Reproduction in whole or in part is permitted for any purpose of the
United States Government. Distribution of this document is unlimited.

The Pennsylvania State University
University Park, Pennsylvania
UNDERGRADUATE PROGRAMS OF STUDY

GRADUATE PROGRAMS AND FIELDS OF RESEARCH

UNIVERSITY-WIDE INTERDISCIPLINARY GRADUATE PROGRAMS INVOLVING E&MS FACULTY AND STUDENTS

ASSOCIATE DEGREE PROGRAMS
Metallurgical Engineering Technology and Mining Technology.

INTERDISCIPLINARY RESEARCH GROUPS WITHIN THE COLLEGE

ANALYTICAL AND STRUCTURAL STUDIES
Classical chemical analysis of metals and silicate and carbonate rocks; X-ray crystallography; electron microscopy and diffraction; electron microprobe analysis; atomic absorption analysis; spectrochemical analysis; surface analysis by secondary ion mass spectrometry (SIMS); and scanning electron microscopy (SEM).
This report describes the first years efforts upon a number of processes related to hot corrosion. Total conductivities of pure Na$_2$SO$_4$, Na$_2$SO$_4$ doped with NiO and Na$_2$SO$_4$ doped with CaO were measured at 900°C as a function of the activity of Na$_2$O. Partial electronic conductivities were also measured for the same systems utilizing the Wagner-Hebb type polarization cell. It was found that the total D.C. conductivity of pure Na$_2$SO$_4$ was of the order of 5×10^{-2} (S/cm) and varied only slightly with changes in the activity of Na$_2$O.
The partial conductivity of electrons in Na$_2$SO$_4$ was about two orders of magnitude less than the total conductivity while electron hole conductivities are considerably smaller than the electron conductivities. Thus, t_e is of the order of 10^{-2} in pure Na$_2$SO$_4$ at 900°C.

The introduction of NiO and Fe$_2$O$_3$ into Na$_2$SO$_4$ at 900°C does not change significantly the total conductivities or the partial electronic conductivities except at a concentration of 10^{-2} mole % Fe$_2$O$_3$ where the electron and electron hole conductivities become of the same order of magnitude. At other concentrations of NiO and Fe$_2$O$_3$ the salt solution has electrons as a major minor carrier. This is somewhat surprising as one might generally anticipate an increase in the electron hole conduction with the introduction of multivalent ions of nickel and iron.

Hot corrosion studies on pure nickel under various heights of Na$_2$SO$_4$ were carried out at 900°C at $a_{Na_2O} = 6.3 \times 10^{-16}$. The kinetics of the hot corrosion process increased as the height of the Na$_2$SO$_4$ was increased from 0.5 cm to 2.0 cm. These results are quite informative in that they eliminate a number of possible reaction controlling steps. Further studies in this regime may aid in elucidating the reaction controlling step(s) for this process of hot corrosion.
Introduction

The mechanism of hot corrosion is accepted as that of a dissolution process of protective oxides in a neighboring liquid phase, generally, but not always, considered to be Na$_2$SO$_4$ (other liquid salts create the same type of behavior). The reactions involved, considering only the formation of metal oxides, requires transport of oxygen through the liquid salt phase. Thus, at least in the initial stages of corrosion, one of the interface reactions and/or diffusion in the boundary layers and/or diffusion through the bulk salt must control the process. After a certain thickness of reaction product accumulates at the liquid-alloy interface it is then logical to anticipate control of the corrosion process to be reactions that involve this scale.

To aid in the overall understanding of the hot corrosion process determination of a number of electrical transport processes in the Na$_2$SO$_4$ phase have been undertaken. The experiments conducted are described in the following text and the experimental results obtained during the first year of study are presented.

Experimental

A variety of electrical transport experiments were conducted. These include the measurement of the total electrical conductivity of pure Na$_2$SO$_4$ at 900°C under various SO$_2$ + O$_2$ atmospheres and determination of the partial conductivities of electrons and electron holes utilizing a Wagner-Hebb type polarization cell for pure and "doped" Na$_2$SO$_4$ also at 900°C under SO$_2$ + O$_2$ atmospheres of various concentrations.

The crucible utilized for these experiments was pure gold which is relatively inert to the aggressive salt. Gold electrodes were also employed. Atmospheres of SO$_2$ + O$_2$ employed to vary the activity of the Na$_2$O in the melt.
were obtained from gas mixtures or by flowing an inert gas, He, over ZnSO$_4$/ZnO mixtures held at a constant temperature in a furnace separate from the cell furnace. A platinum wire screen placed above the melt was utilized to catalyze the reaction. Both D.C. and A.C. measurements were made but most of the work reported herein relate to D.C. measurements since these appeared to be most stable and reproducible.

The cell constant was obtained by measuring a standard KCl solution at room temperature under identical conditions to those utilized for the cell at the high temperature operation.

In addition to the above electrochemical measurements high temperature, 900°C, hot corrosion studies were begun on metal samples covered by a certain thickness of liquid Na$_2$SO$_4$. The initial experiments were carried out in silica crucibles with pure nickel as the metal phase. The nickel was oxidized at 1000°C for about 12 hours. One surface of the oxidized sample was polished to obtain a clean metal surface while the other surfaces were permitted to retain their oxide layer. The oxide surfaces were then coated with a thin gold layer in order to protect these surfaces from reaction with the Na$_2$SO$_4$.

Weight changes during the hot corrosive process were followed by an automatic recording balance. The activity of Na$_2$O was maintained at about 6.3×10$^{-16}$ by a flowing gas stream of O$_2$ + SO$_2$.

Results and Discussion

Electrical Conductivities

The total electrical conductivity of pure Na$_2$SO$_4$ as a function of the activity of Na$_2$O in the melt at 1173 K is depicted in Figure 1. The conductivities at 1000 and 10000 Hz differ from the D.C. values obtained indicating that polarization may be present at the electrodes. However, the
A.C. values measured were not nearly as stable or reproducible as the D.C. values. Hence, at this time we relate our subsequent calculations to the total D.C. conductivities. Figure (1a) displays this conductivity on a more sensitive conductivity scale. From this figure one notes a small but definite decrease in the conductivity as the activity of the Na₂O decreases. We are presently giving thought to this decrease in order to attempt an explanation of the observed trend.

From Wagner-Hebb types of polarization measurements on pure Na₂SO₄ at 1173 K the partial conductivities of electrons and electron holes were calculated and are depicted in Figure 2. It can be seen that electron conduction in pure Na₂SO₄ is considerably larger than that of electron holes. Thus, for pure Na₂SO₄ the major minor conductors are electrons. The calculated transport number of the electronic species are depicted in Figure 3 from which it can be seen that electron transport numbers are of the order of 10^{-2} while that of the electron holes are of the order of $1-2 \times 10^{-4}$. Thus, a relatively large amount of the transport of charge is electronic in nature in pure Na₂SO₄, i.e. of the order of 1 part in a hundred parts. The transport numbers of electronic species in molten salts have not been measured to any great extent but the few that have been measured are smaller than that determined in this study, e.g. reference 1 gives a value of about 3×10^{-3} for electrons in the molten eutectic of LiCl-KCl at 450°C.

In view of the fact that nickel based alloys are frequently utilized for applications (2-11) where hot corrosion may occur electrical conductivities and Wagner-Hebb type polarization measurements of Na₂SO₄ with additions of NiO have been made. The total conductivities of these melts are depicted in Figure 4 along with that of pure Na₂SO₄. It should be noted that the 10 mole % NiO solution is in excess of the solubility limits as determined by Gupta and Rapp.
(12) except for the extreme ends of the activities of Na₂SO₄; thus, the central section of this conductivity curve represents the ionic solution conductivity plus the contribution, if any, of the suspended solid phase. The conductivity scale utilized in Figure 4 is rather amplified so that the trends of the conductivities may be observed.

From these results one notes that there is no "massive" change of conductivities of NiO "doped" Na₂SO₄ as compared to pure Na₂SO₄. Of course, the levels of NiO additions are not excessive, except for the 10 mole % NiO case, so that major changes in total conductivities are not expected. However, there is a trend in the conductivities to minimize in the neighborhood of a Na₂O = 10⁻⁸ to 10⁻¹⁰. This is in the neutral region between acid and basic fluxing of the NiO and is similar to the solubility curve of NiO determined by Gupta and Rapp (12).

In general, one may note that the results obtained do indicate that the mobilities of the ions resulting from the dissolution of NiO are not significantly different from the ions present in the Na₂SO₄ melt.

The partial electronic conductivities observed for the NiO doped Na₂SO₄ are depicted in Figures 5 to 7. These have been plotted as separate figures since a single figure plot would show much intermixing of values. Basically, these results show that electron conductivities remain higher than the electron hole conductivities at all concentrations of NiO and throughout the entire range of Na₂O activities. This is somewhat surprising since one would anticipate that the introduction of nickel ions into the melt would tend to increase the electron hole conduction via the exchange of electrons between Ni²⁺ and Ni³⁺ ions. Such apparently does not occur and the postulate that the presence of nickel in Na₂SO₄ solutions would enhance the total electronic conductivity and more specifically the electron hole conduction is certainly not in accord with these results.
Utilizing the total conductivities and the partial conductivities one may calculate the transport numbers of the electronic species in these doped solutions. These values are plotted in Figures 8 to 10. It can be seen that the electron transport numbers remain consistently higher than those of the electron holes in accord with the partial and total conductivities depicted previously. Again, the effect of the dissolution of the NiO is minimal upon the electron hole transport.

The effect of Fe$_2$O$_3$ dissolved in Na$_2$SO$_4$ was also studied. Figure 11 depicts the total conductivities at various concentrations of Fe$_2$O$_3$ while Figures 12 to 14 depict the partial electronic conductivities. Electron conductivities are considerably higher as compared to electron hole conductivities except for the 10$^{-2}$ mol % Fe$_2$O$_3$ concentration. This is seen more clearly in Figures 15 to 17 which show the calculated transport numbers of these solutions. It is noted that at relatively low activities of Na$_2$O (10$^{-14}$ - 10$^{-15}$) that the electron conductivity is considerably enhanced as compared to higher activities indicating that the concentration and/or mobilities of the electrons is increased significantly in this activity region. Indeed, the total conductivities, Figure 11, are also increased considerably in this region indicating that both ionic and electronic transport are enhanced. Such may relate to dissolution products of the Fe$_2$O$_3$ in the Na$_2$SO$_4$ melt.

The above represents at this point in time the electrochemical results obtained. Interpretation(s) of these results are presently under consideration.

Hot Corrosion of Pure Ni as a Function of Na$_2$SO$_4$ Heigth

As noted in the experimental section of this report nickel samples, prepared to expose one metallic surface to an overlying Na$_2$SO$_4$ melt, were tested at 900°C at an activity of Na$_2$O of about 6.3x10$^{-16}$. The results obtained are
shown in Figure 18. It can be seen that the gain in weight per unit area of sample increases as the height of the melt above the metal increases. Thus, diffusion through the entire distance of the overlying Na$_2$SO$_4$ is not rate determining for this corrosion process.

Figure 19 shows a typical SEM micrograph of the layers formed on the nickel under the conditions of the experiment. Both NiO and Ni$_3$S$_2$ are present in a duplex type scale indicating that the sulfur potential is sufficient at the scale - Na$_2$SO$_4$ interface to form the Ni$_3$S$_2$ even though the gaseous atmosphere is such so as to establish an acid fluxing Na$_2$SO$_4$ melt. Figure 20 is an x-ray map of the micrograph shown in Figure 19 and reveals the distribution of the sulfur in the various phases present. Again, it is apparent that the central structure is a high sulfur containing compound.

The differences seen in weight gain as a function of height of Na$_2$SO$_4$ are worthy of further discussion. If one considers the possible rate controlling steps in this process and considers whether the step is altered by the height of the Na$_2$SO$_4$ layer one is led to the following conclusions:

<table>
<thead>
<tr>
<th>Step</th>
<th>Effect of a thicker Na$_2$SO$_4$ layer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Diffusion flux through the Na$_2$SO$_4$ thickness</td>
<td>Decrease</td>
</tr>
<tr>
<td>2. Diffusion flux through boundary layer at gas - Na$_2$SO$_4$ interface</td>
<td>No change, essentially</td>
</tr>
<tr>
<td>3. Diffusion flux through boundary layer at scale - Na$_2$SO$_4$ interface</td>
<td>No change, essentially (see further discussion)</td>
</tr>
<tr>
<td>4. Interface reaction at the gas - Na$_2$SO$_4$ interface</td>
<td>No change, essentially</td>
</tr>
<tr>
<td>5. Interface reaction at the Na$_2$SO$_4$ - scale interface</td>
<td>No change, essentially (see further discussion)</td>
</tr>
<tr>
<td>6. Oxidizing potential gradient from gas - Na$_2$SO$_4$ interface to scale - Na$_2$SO$_4$ interface</td>
<td>Decrease</td>
</tr>
</tbody>
</table>
7. Thickness of reaction product on metal

No change or a decrease

Each of the above steps either decrease or probably do not change appreciably when the height of Na_2SO_4 above a corroding sample is increased. Yet experimentally the results obtained indicate an increase in both the initial and the "long-time" reaction rate although the "long time" rates are less well-defined. Thus, one must search for another parameter that may relate to the control of the corrosion process.

If one accepts that dissolution of the scales occurs during the hot-corrosion process, and such is certainly supported by many studies, then one is led to conclude that the capacity of the Na_2SO_4 melt to accept a soluble product is increased by the increased amount of Na_2SO_4 present to establish a greater thickness of the salt. Thus, a larger amount of nickel compounds may go into the melt without approaching saturation and the necessity of precipitation. Hence, steps 3 and 5 in the above listing may change somewhat and may be related to the changes in the kinetics that were detected in these experiments.

Therefore, it appears that the parameters which determine the dissolution process of the scale may be the most important in this corrosion process. Such parameters are the interface reaction, diffusion of reactants to the reaction front, diffusion of products to the bulk solution, etc. Further efforts will relate to attempting a clarification of these probable rate-controlling mechanisms.
References

List of Figures

Figure 1. Log (conductivity) versus Na$_2$O activity in a pure Na$_2$SO$_4$ melt as a function of frequency at 1173 K.

Figure 1a. D.C. Conductivity versus Na$_2$O activity in a pure Na$_2$SO$_4$ melt at 1173 K.

Figure 2. Electronic conductivities in a pure Na$_2$SO$_4$ melt as a function of Na$_2$O activity at 1173 K.

Figure 3. Transport numbers of electronic species in a pure Na$_2$SO$_4$ melt at 1173 K.

Figure 4. Total conductivities versus Na$_2$O activity in a Na$_2$SO$_4$ melt with different concentrations of NiO at 1173 K.

Figure 5. Partial electronic conductivities in a Na$_2$SO$_4$ melt with the addition of 10$^{-3}$ m/o NiO as a function of Na$_2$O activity at 1173 K.

Figure 6. Partial electronic conductivities in molten Na$_2$SO$_4$ with the addition of 1.8 x 10$^{-1}$ m/o NiO as a function of Na$_2$O activity at 1173 K.

Figure 7. Partial electronic conductivities in molten Na$_2$SO$_4$ with supersaturated NiO (10 m/o) as a function of Na$_2$O activity at 1173 K.

Figure 8. Transport numbers of electronic species in molten Na$_2$SO$_4$ containing 10$^{-3}$ m/o NiO at 1173 K.

Figure 9. Transport numbers of electronic species in molten Na$_2$SO$_4$ with 1.8 x 10$^{-1}$ m/o NiO as a function of Na$_2$O activity at 1173 K.

Figure 10. Transport numbers of electronic species in molten Na$_2$SO$_4$ with supersaturated NiO (10 m/o) as a function of Na$_2$O activity at 1173 K.

Figure 11. Total conductivities of molten Na$_2$SO$_4$ with different concentrations of α-Fe$_2$O$_3$ as a function of sodium oxide activity at 1173 K.

Figure 12. Partial electronic conductivities in a Na$_2$SO$_4$ melt containing 10$^{-3}$ m/o α-Fe$_2$O$_3$ as a function of Na$_2$O activity at 1173 K.

Figure 13. Partial electronic conductivities in Na$_2$SO$_4$ melt containing 10$^{-2}$ m/o α-Fe$_2$O$_3$ as a function of Na$_2$O activity at 1173 K.

Figure 14. Partial electronic conductivities in a Na$_2$SO$_4$ melt containing supersaturated α-Fe$_2$O$_3$ (1 m/o) as a function of Na$_2$O activity at 1173 K.

Figure 15. Transport numbers of electronic species in molten Na$_2$SO$_4$ with 10$^{-3}$ m/o α-Fe$_2$O$_3$ as a function of Na$_2$O activity at 1173 K.
Figure 16. Transport numbers of electronic species in molten Na$_2$SO$_4$ with 10$^{-2}$ m/o α-Fe$_2$O$_3$ as a function of Na$_2$O activity at 1173 K.

Figure 17. Transport numbers of electronic species in molten Na$_2$SO$_4$ with supersaturated α-Fe$_2$O$_3$ (1 m/o) as a function of Na$_2$O activity at 1173 K.

Figure 18. Weight gain vs. time as a function of Na$_2$SO$_4$ level.

Figure 19. Ni$_3$S$_2$ deposit located beneath dense NiO scale.

Figure 20. X-ray mapping of the distribution of sulfur.
Figure 1. Log (conductivity) versus Na$_2$O activity in a pure Na$_2$SO$_4$ melt as a function of frequency at 1173K.
Figure 1.(a). D.C. Conductivity versus Na₂O activity in a pure Na₂SO₄ melt at 1173 K.

(Ohm·Cm)⁻¹ × 10²

-Log $a_{Na₂O}$

900°C

pure Na₂SO₄
Figure 2. Electronic conductivities in a pure Na$_2$SO$_4$ melt as a function of Na$_2$O activity at 1173 K
Figure 3. Transport numbers of electronic species in a pure Na$_2$SO$_4$ melt at 1173 K
Figure 4. Total conductivities versus Na$_2$O activity in a Na$_2$SO$_4$ melt with different concentrations of NiO activity at 1173 K.
Figure 5. Partial electronic conductivities in a Na$_2$SO$_4$ melt with the addition of 10$^{-3}$ m/o NiO as a function of Na$_2$O activity at 1173 K.
Figure 6. Partial electronic conductivities in molten Na$_2$SO$_4$ with the addition of 1.8 x 10$^{-1}$ m/o NiO as a function of Na$_2$O activity at 1173 K.
Figure 7. Partial electronic conductivities in molten Na$_2$SO$_4$ with supersaturated NiO (10 m/o) as a function of Na$_2$O activity at 1173 K
Figure 8. Transport numbers of electronic species in molten Na_2SO_4 containing 10^{-3} m/o NiO at 1173 K
Figure 9. Transport numbers of electronic species in molten Na$_2$SO$_4$ with 1.8 x 10$^{-1}$ m/o NiO as a function of Na$_2$O activity at 1173 K
Figure 10. Transport numbers of electronic species in molten Na$_2$SO$_4$ with supersaturated NiO (10 m/o) as a function of Na$_2$O activity at 1173 K
Figure 11. Total conductivities of molten Na$_2$SO$_4$ with different concentrations of α-Fe$_2$O$_3$ as a function of sodium oxide activity at 1173 K.
Figure 12. Partial electronic conductivities in a Na$_2$SO$_4$ melt containing 10^{-3} m/o α-Fe$_2$O$_3$ as a function of Na$_2$O activity at 1173 K.
Figure 13. Partial electronic conductivities in Na$_2$SO$_4$ melt containing 10^{-2} m/o α-Fe$_2$O$_3$ as a function of Na$_2$O activity at 1173 K.
Figure 14. Partial electronic conductivities in a Na₂SO₄ melt containing supersaturated α-Fe₂O₃ (1 m/o) as a function of Na₂O activity at 1173 K.
Figure 15. Transport numbers of electronic species in molten Na$_2$SO$_4$ with 10$^{-3}$ m/o α-Fe$_2$O$_3$ as a function of Na$_2$O activity at 1173 K.
Figure 16. Transport numbers of electronic species in molten Na$_2$SO$_4$ with 10$^{-2}$ m/o α-Fe$_2$O$_3$ as a function of Na$_2$O activity at 1173 K.
Figure 17. Transport numbers of electronic species in molten Na$_2$SO$_4$ with supersaturated α-Fe$_2$O$_3$ (1 m/o) as a function of Na$_2$O activity at 1173K.
Figure 18. Weight gain vs. time as a function of Na$_3$O$_4$ level
Figure 19. Ni$_3$S$_2$ deposit located beneath dense NiO scale.

Figure 20. X-ray mapping of the distribution of sulfur.
Supplemental Distribution List

Mar 1987

Prof. I.M. Bernstein
Dept. of Metallurgy and Materials Science
Carnegie-Mellon University
Pittsburgh, PA 15213

Prof. H.K. Birnbaum
Dept. of Metallurgy & Mining Eng.
University of Illinois
Urbana, IL 61801

Prof. H.W. Pickering
Dept. of Materials Science and Eng.
The Pennsylvania State University
University Park, PA 16802

Prof. D.J. Duquette
Dept. of Metallurgical Eng.
Rensselaer Polytechnic Inst.
Troy, NY 12181

Prof. J.P. Hirth
Dept. of Metallurgical Eng.
The Ohio State University
Columbus, OH 43210

Prof. H. Leidheiser, Jr.
Center for Coatings and Surface Research
Sinclair Laboratory, Bld. No. 7
Lehigh University
Bethlehem, PA 18015

Dr. M. Kendig
Rockwell International - Science Center
1049 Camino Dos Rios
P.O. Box 1085
Thousand Oaks, CA 91360

Prof. R. A. Rapp
Dept. of Metallurgical Eng.
The Ohio State University
Columbus, OH 43210

Prof. G.H. Meier and F.S. Pettit
Dept. of Metallurgical and Materials Eng.
University of Pittsburgh
Pittsburgh, PA 15261

Dr. W. C. Moshier
Martin Marietta Laboratories
1450 South Rolling Rd.
Baltimore, MD 21227-3898

Prof. P.J. Moran
Dept. of Materials Science & Eng.
The Johns Hopkins University
Baltimore, MD 21218

Prof. R.P. Wei
Dept. of Mechanical Engineering
and Mechanics
Lehigh University
Bethlehem, PA 18015

Prof. W.H. Hartt
Department of Ocean Engineering
Florida Atlantic University
Boca Raton, Florida 33431

Dr. B.G. Pound
SRI International
333 Ravenswood Ave.
Menlo Park, CA 94025

Prof. C.R. Clayton
Department of Materials Science & Engineering
State University of New York
Stony Brook
Long Island, New York 11794
Prof. Boris D. Cahan
Dept. of Chemistry
Case Western Reserve Univ.
Cleveland, Ohio 44106

Prof. G.R. St. Pierre
Dept. of Metallurgical Eng.
The Ohio State University
Columbus, OH 43210

Dr. K. Sadananda
Code 6390
Naval Research Laboratory
Washington, D.C. 20375

Prof. G. Simkovich
Dept. of Materials Science & Eng.
The Pennsylvania State University
University Park, PA 16802

Prof. M.E. Orazem
Dept. of Chemical Engineering
University of Virginia
Charlottesville, VA 22901

Dr. E. McCafferty
Code 6310
Naval Research Laboratory
Washington, D.C. 20375

Mr. T.W. Crooker
Code 6310
Naval Research Laboratory
Washington, D.C. 20375
<table>
<thead>
<tr>
<th>Organization</th>
<th>Copies</th>
<th>Organization</th>
<th>Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Defense Documentation Center</td>
<td>12</td>
<td>Naval Air Propulsion Test Center</td>
<td>1</td>
</tr>
<tr>
<td>Cameron Station</td>
<td></td>
<td>Trenton, NJ 08628</td>
<td></td>
</tr>
<tr>
<td>Alexandria, VA 22314</td>
<td></td>
<td>ATTN: Library</td>
<td></td>
</tr>
<tr>
<td>Office of Naval Research</td>
<td>3</td>
<td>Naval Construction Battalion</td>
<td>1</td>
</tr>
<tr>
<td>Department of the Navy</td>
<td></td>
<td>Civil Engineering Laboratory</td>
<td></td>
</tr>
<tr>
<td>800 N. Quincy Street</td>
<td></td>
<td>Port Hueneme, CA 93043</td>
<td></td>
</tr>
<tr>
<td>Arlington, VA 22217</td>
<td></td>
<td>ATTN: Materials Division</td>
<td></td>
</tr>
<tr>
<td>Attn: Code 431</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naval Research Laboratory</td>
<td>1</td>
<td>Naval Electronics Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>Washington, DC 20375</td>
<td></td>
<td>San Diego, CA 92152</td>
<td></td>
</tr>
<tr>
<td>ATTN: Codes 6000, 6300, 2627</td>
<td></td>
<td>ATTN: Electron Materials Sciences Division</td>
<td></td>
</tr>
<tr>
<td>Naval Air Development Center</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Code 606</td>
<td>1</td>
<td>Naval Missile Center</td>
<td>1</td>
</tr>
<tr>
<td>Warminster, PA 18974</td>
<td></td>
<td>Materials Consultant</td>
<td></td>
</tr>
<tr>
<td>ATTN: Dr. J. DeLuccia</td>
<td></td>
<td>Code 3312-1</td>
<td></td>
</tr>
<tr>
<td>Commanding Officer</td>
<td>1</td>
<td>Point Mugu, CA 92041</td>
<td>1</td>
</tr>
<tr>
<td>Naval Surface Weapons Center</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White Oak Laboratory</td>
<td>1</td>
<td>Commander</td>
<td></td>
</tr>
<tr>
<td>Silver Spring, MD 20910</td>
<td></td>
<td>David W. Taylor Naval Ship</td>
<td></td>
</tr>
<tr>
<td>ATTN: Library</td>
<td></td>
<td>Research and Development Center</td>
<td></td>
</tr>
<tr>
<td>Naval Oceans Systems Center</td>
<td>1</td>
<td>Bethesda, MD 20084</td>
<td>1</td>
</tr>
<tr>
<td>San Diego, CA 92132</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTN: Library</td>
<td></td>
<td>Naval Underwater System Center</td>
<td>1</td>
</tr>
<tr>
<td>Naval Postgraduate School</td>
<td>1</td>
<td>Newport, RI 02840</td>
<td></td>
</tr>
<tr>
<td>Monterrey, CA 93940</td>
<td></td>
<td>ATTN: Library</td>
<td></td>
</tr>
<tr>
<td>ATTN: Mechanical Engineering Department</td>
<td></td>
<td>Naval Weapons Center</td>
<td>1</td>
</tr>
<tr>
<td>Naval Air Systems Command</td>
<td>1</td>
<td>China Lake, CA 93555</td>
<td></td>
</tr>
<tr>
<td>Washington, DC 20360</td>
<td></td>
<td>ATTN: Library</td>
<td></td>
</tr>
<tr>
<td>ATTN: Code 310A, 5304B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naval Sea System Command</td>
<td>1</td>
<td>NASA</td>
<td>1</td>
</tr>
<tr>
<td>Washington, DC 20362</td>
<td></td>
<td>Lewis Research Center</td>
<td></td>
</tr>
<tr>
<td>ATTN: Code 05R</td>
<td></td>
<td>21000 Brookpark Road</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cleveland, OH 44135</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ATTN: Library</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>National Bureau of Standards</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Washington, DC 20234</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ATTN: Metals Science and Standards Division</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ceramics Glass and Solid State Science Division</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fracture and Deformation Div.</td>
<td>1</td>
</tr>
</tbody>
</table>
Naval Facilities Engineering Command
Alexandria, VA 22331
ATTN: Code 03

Scientific Advisor
Commandant of the Marine Corps
Washington, DC 20380
ATTN: Code AX

Army Research Office
P. O. Box 12211
Triangle Park, NC 27709
ATTN: Metallurgy & Ceramics Program

Army Materials and Mechanics Research Center
Watertown, MA 02172
ATTN: Research Programs Office

Air Force Office of Scientific Research/NE
Building 410
Bolling Air Force Base
Washington, DC 20332
ATTN: Electronics & Materials Science Directorate

Defense Metals and Ceramics Information Center
Battelle Memorial Institute
505 King Avenue
Columbus, OH 43201

Metals and Ceramics Division
Oak Ridge National Laboratory
P.O. Box X
Oak Ridge, TN 37380

Los Alamos Scientific Laboratory
P.O. Box 1663
Los Alamos, NM 87544
ATTN: Report Librarian

Army Materiel and Mechanics Research Center
Watertown, MA 02172
ATTN: Research Programs Office

Argonne National Laboratory
Metallurgy Division
P.O. Box 229
Lemont, IL 60439

Brookhaven National Laboratory
Technical Information Division
Upton, Long Island
New York 11973
ATTN: Research Library

NASA Headquarters
Washington, DC 20546
ATTN: Code RRM

Library
Building 50, Room 134
Lawrence Radiation Laboratory
Berkeley, CA

each unless otherwise indicated.
END
6 - 87
D Tic