ANALYTICAL NUMERICAL AND EXPERIMENTAL INVESTIGATIONS OF OBLIQUE-SHOCK-WAVES. (U) TORONTO UNIV DOUGSVIEW (ONTARIO) INST FOR AEROSPACE STUDIES I I GLASS FEB 87
UNCLASSIFIED AFOSR-TR-07-0194 AFOSR-02-0096
Title: Analytical, Numerical, and Experimental Investigations of Oblique-Shock-Wave Reflections in Pure and Dusty Gases. Unclassified

Authors: I. I. Glass

Type of Report: Final

Date of Report: Feb. 1987

Page Count: 15

Abstract:
A summary is given of the research which was accomplished during the past five years (Feb. 1, 1982 to Jan. 31, 1987) on USAF Grant AFOSR-82-0096. Numerous journal papers and reports have been published including the Dryden Lecture by Prof. I. I. Glass on "Some Aspects of Shock Wave Research", which appeared in the AIAA Journal, 25, 2, pp. 214-229, 1987. It is shown that many important contributions have been made interferometrically, analytically and numerically to nonstationary oblique shock-wave reflections, which have achieved international recognition.

Although the analytical and numerical foundations have been laid for dusty-gas shock-tube flows, the experimental work has not kept pace, owing to the difficulty of getting homogeneous air-dust mixtures. It is a very difficult problem, which we hope to resolve in 1987.
"Analytical, Numerical, and Experimental Investigations of Oblique-Shock-Wave Reflections in Pure and Dusty Gases"

Approved for public release; distribution unlimited.

AFOSR Final Report on Grant AFOSR-82-0096
1 February, 1982 - 31 January, 1987

by

Dr. I. I. Glass, Principal Investigator
1. Abstract

Over the last five years we have fulfilled our contributions to analytical, numerical and experimental aspects of oblique-shock-wave reflections in pure and dusty gases. One of the major contributions has been the validation of numerical simulations with interferometric data as long as strong viscous interactions were not present. This has lent confidence to the numerical simulations of blast-wave phenomena generated by chemical or nuclear explosives, where experimental data is not available. It has justified the expenditure of large sums of money to do such numerical simulations. Our work has also pointed to using the Navier-Stokes equations, rather than the present Euler equations, for numerical simulations with significant viscous effects and to compare with our existing interferometric data. The best simulations to date have been achieved by Dr. H. Glaz and Dr. P. Colella (see subsequent references).

Another important contribution has been the prediction and verification of the existence of Terminal Double Mach Reflection (TDMR). We will have more to say about this subject after Mr. J. Urbanowicz completes his M.A.Sc. thesis, in the very near future, and at the 7th Mach Reflection Symposium, scheduled for 9-11 June, 1987, at Albuquerque, N.M., under the Chair of Charles Needham of S3.

We have published six papers by Miura and Glass on dusty-gas flows in the Proceedings of the Royal Society (London) and a seventh has been submitted as well, on many aspects of these flows. They have laid the analytical foundations for investigating these types of flows. In addition, we have solved, for the first time, the compressible laminar boundary layer flows for a dusty air mixture for a semi-infinite flat plate and for the dusty gas boundary layer induced by a moving shock wave on the
walls of a shock tube.

Unfortunately, our dusty-gas flow experiments have not kept pace with the analytical work. Although we have a very fine shock-tube facility for this purpose, which has been run as a classical shock tube for pressure-gauge calibrations, we have not succeeded, as yet, in injecting dust to produce a homogeneous air-dust mixture. We have tried several unsuccessful techniques and consulted a number of laboratories on this problem, it looks as we will have to come up with a unique solution for our facility. We are hopeful of doing this in the near future.

Finally, our contributions to oblique-shock-wave reflections will be summarized in an abbreviated version of my AIAA distinguished Dryden Lecture in Research in the AIAA Jl. entitled, "Some Aspects of Shock-Wave Research", which is due to appear soon.

2. Details of Accomplishments and Publications in Journals and UTIAS Reviews, Reports and Technical Notes

a) List of Publications from 1982 to 1987 in Journals, Over the Past Five Years (additional publications are forthcoming in 1987)

UTIAS Reviews

UTIAS Reports

UTIAS Technical Notes

b) The following personnel have participated in our program:

Prof. I. I. Glass - Principal Investigator
Prof. J. J. Gottlieb - Co-Investigator

Consultants
Dr. W. S. Liu
Mr. W. Caerwinski

Research Engineer
Mr. R. L. Deschambault

M.A.Sc. Candidates
S. Ando
R. L. Deschambault
T. C. J. Hu
C. H. Wong
W. C. P. Chan
J. M. Wheeler
S. Urbanowicz
A. Kaca
D. Sin

Ph.D. Graduates
G. Ben Dor
T. Saito
N. N. Wahba
J. Kleiman

Chinese Scholars
Mr. X. X. Du
Mr. J. C. Li
Mrs. B. Y. Wang
Mr. Z. H. Cao
Mr. D. L. Zhang

Conclusions

We have been able to sustain our research programs only with a stable tripod of financial support from AFOSR, DNA and the Natural Sciences and Engineering Research Council of Canada. We are hopeful that this support will continue in the future from the three respective agencies.

We in turn have tried our best to provide good value for the dollar received in the form of recognized research contributions in our UTIAS Reports, Technical Notes and Reviews, as well as in the open literature publications in the Proc. R. Soc. (London), J. Fluid Mech., Phys. Fluids, AIAA), J. Appl. Phys. and the various Mach-Reflection and Shock-Tube Proceedings.
Some Aspects of Shock-Wave Research

I. I. Glass
University of Toronto Institute for Aerospace Studies, Toronto, Ontario, Canada

Nomenclature

\[a = \text{speed of sound} \]
\[C = \text{wedge corner} \]
\[CMR = \text{complex-Mach reflection} \]
\[DMR = \text{double-Mach reflection} \]
\[e = \text{specific internal energy} \]
\[E = \text{total specific energy, } 1/2(u^2 + v^2) + e \]
\[h = \text{flow enthalpy} \]
\[\dot{H} = \text{pseudostationary total enthalpy, } = 1/2(u^2 + v^2) + h \]
\[I = \text{incident shock wave in shock tube} \]
\[K = \text{kink in CMR reflected wave } R \]
\[M, M' = \text{first and second Mach stems in DMR} \]
\[\dot{M} = \text{self-similar Mach number } \frac{M}{(M + 1)^{1/2}} \]
\[MR = \text{Mach reflection (SMR, CMR, DMR, TDMR)} \]
\[M_1 = \text{incident shock wave (1) Mach number} \]
\[p = \text{static pressure} \]
\[\dot{P} = \text{reflection point; point where RR--CMR and CRM--DMR lines meet} \]
\[R = \text{gas constant} \]
\[R, R' = \text{first and second reflected shock waves in DMR} \]
\[RR = \text{regular reflection} \]
\[S, S' = \text{first and second slipstreams in DMR} \]
\[SMR = \text{single-Mach reflection} \]
\[t = \text{time} \]
\[T = \text{temperature} \]
\[TDMR = \text{terminal double-Mach reflection, where } x' = 0 \]
\[T', T'' = \text{first and second triple points in DMR} \]
\[u = (u, v) \text{ velocity field} \]
\[\dot{u} = u - \dot{\xi} \text{ pseudostationary velocity component in the } x \text{ direction} \]
\[\ddot{u} = v + \eta \text{ pseudostationary velocity component in the } y \text{ direction} \]
\[u, v = \text{velocity components in the } x \text{ and } y \text{ directions} \]
\[\alpha = \text{Cartesian coordinates} \]
\[\gamma = \text{velocity-deflection angle in slipstream shear layer} \]
\[\gamma = \text{specific heat ratio} \]
\[\delta = \text{angle between incident } J \text{ and reflected } R \text{ shock waves} \]
\[\delta = \text{boundary-layer displacement thickness} \]
\[\epsilon = \text{Mach-stem curvature angle} \]
\[\eta = \text{pseudo-stationary coordinate, } \frac{(x - x_0)}{t(t - t_0)} \]
\[\theta_d = \text{boundary-layer displacement effect on the difference in the flow angles of the incident and reflected shock waves} \]
\[\theta_{1m} = \text{flow detachment angle} \]
\[\theta_a = \text{wedge angle} \]
\[\theta_{2m} = \text{effective wedge angle, } = \theta_a + \chi \]
\[\xi = \text{pseudo-stationary coordinate, } \frac{(x - x_0)}{t(t - t_0)} \]
\[\rho = \text{flow density} \]
\[\phi = \text{wave angle} \]
\[\chi, \chi' \text{ = first and second triple-point trajectory angles} \]

Introduction

SHOCK-WAVE phenomena on Earth1-4 are common and important occurrences in our lives. For example, we hear them from the cradle to the grave as terrorizingly crashing or rumbling thunder following lightning discharges.4-5 It is estimated that 1000 thunderstorms occur on Earth at any moment. In the primordial state of our Earth, such shock waves are credited as being enormously more efficient in creating buildings and replicating blocks of life, such as ATP, RTP, and DNA,2,3 than the radiation from the sun. Yet, paradoxically enough, all life is threatened today by the radiation and the very shock waves that might be unleashed by a thermonuclear war.1-4

The lethal overpressures and winds induced by shock waves are now well understood,12,13 even though our eyes cannot see the shock waves generated by lightning, firearms, or explosions in air, since air is a transparent gas. Special optical methods (interferometry, schlieren, and shadow photography) must be used to make shock waves visible.14 The more intense the explosion or rapidity and size of energy release, the higher is the velocity of the resulting shock wave, and its attendant increases in pressure, density, and flow velocity, and the greater is the possible devastation. The shock wave becomes less destructive with time or distance as it compresses and heats the enveloped air, thereby dissipating its energy, until it becomes a harmless sound wave.12-14

At sea level, where the mean free path is small (6.6 x 10^{-6} cm), the thickness of the shock front is about tenfold this value. Consequently, it is quite incredible how rapidly the shock wave changes from its quiescent ambient conditions in

Received Jan. 6, 1986, presented as Paper 86-0306 at the AIAA 24th Aerospace Sciences Meeting, Jan. 6-9, 1986; revision received May 27, 1986. Copyright © American Institute of Aeronautics and Astronautics, Inc., 1986. All rights reserved.
front, to one of destruction behind it through molecular collisions. In outer space, where the mean free path is very large, the shock thickness can be thousands of kilometers, and the various changes through it are much more gradual.

Aside from the lightning-thunder process, shock waves on Earth are also generated by intense volcanic eruptions and meteor impact. The recent eruption of Washington’s Mt. St. Helens is estimated to have had an energy release equivalent to 50 Mt of TNT or about 3000 bombs of the type used to destroy Hiroshima. The eruption of the Krakatoa volcano in 1883 in Indonesia is estimated to have had an energy release of 5000 Mt of TNT or 100 times as powerful as Mt. St. Helens. Perhaps the greatest eruption in recorded history occurred in Tambora, Indonesia, in 1815, with an energy release of about tenfold that of Krakatoa. The airborne ash caused “a year without a summer” in 1816 and 12,000 people were killed.15

If a meteor of the size that produced the Arizona Crater ever impacted in a big city, it could be as devastating as a multimegaton bomb.16 An energy release equivalent to 15 Mt of TNT is estimated to have been released on impact over 50,000 years ago. Yet, there is still much evidence of shock waves generated millions of years ago from an energy release of 50 million Mt of TNT, caused by asteroid impact. Such asteroids orbit the sun between Mars and Jupiter. A few orbit the sun to pass inside the orbit of the Earth. However, not all are known. It is estimated that perhaps 800 ± 300 such Apollo asteroids, larger than 1 km, may remain undetected. An impact would release an energy of about 100,000 Mt of TNT and leave a crater 20 km wide. As a matter of fact, a news item [Washington (Reuter) 14.2.81] reports that NASA urged the U.S. government to organize “Project Spacewatch” to keep track of such asteroids and meteors and, if necessary, to send spacecraft armed with hydrogen bombs to deflect those that may menace to impact the Earth.

Yet, we need not associate shock waves only with destruction. Our modern industrial society could not have been built without the use of explosives that produce shock waves. Explosives are used in building highways, canals, tunnels, harbors, railroads, and subways; in mining, agriculture, engineering; and in the space programs for precise timing, activating, and cutting requirements.1 Recently, shock waves produced by a high-voltage discharge or 5-10 mg of lead azide (PbN3) have been applied successfully to medicine in the breaking up of large kidney stones.7,8 They have been used to relieve suffering and possibly death.7,8 More recently, lasers have been used as an energy source for the same purpose with some promising results.9 It is estimated that 50,000 successful operations have been performed using the spark-discharge machine described in Ref. 17, which is quite expensive. The cost factor (several million dollars) is important for use in the Third World, where the occurrence of such stones are more common. It partly motivated the work in Refs. 18 and 19 to reduce costs by a factor of 10, at least. Basically, the three systems are similar in that the energy discharge (spark, explosive, laser) takes place at the focus of an ellipsoidal mirror and is refocused at the second focus located on the kidney stone, as the powerful shock wave, which breaks up the obstructing stone. It may take many shots to break up a stone. In the case of bladder stones, the explosive is used directly against the stone.

In space, the best example of shock-wave phenomena is the magnetosphere flow about planets in our solar system. Our Earth is an excellent example. It becomes a spherical-flow point trajectory angle is, where the ionized gas can no longer penetrate the Earth’s magnetic field. The collisionless bow shock in front of the line of symmetry is about 30 Earth radii from the Earth’s center. The stagnation point on the magnetopause is about 20 Earth radii from the Earth’s center on this line. The standoff distance of the bow shock from the stagnation point is about 10 Earth radii (about 64,000 km). The bow shock itself is many thousands of kilometers thick. The subsonic plasma behind the bow shock probably has a temperature increase in temperature to about 106 K. Near the Earth the magnetopause cavity contains the famous Van Allen radiation belts. The magnetopause cavity resembles a comet, and the tail may extend several million kilometers downwind.

Similar flows can exist around a star. A recent relevant study of this phenomenon is given in Ref. 20. Of the many shock-wave phenomena in space, one of the most interesting is the existence of shock waves in the spiral arms of galaxies such as our own Milky Way. Densities can increase by about an order of magnitude, making possible the birth of young blue stars.

Pseudostationary Oblique Shock-Wave Reflections

This problem was first investigated by E. Mach in 1878,22 and has since occupied many scientists and engineers, and where my students and I have made some worthwhile contributions over the past decade. The problem is known as “pseudostationary oblique shock-wave reflections.” Although much more is known about this problem than when Mach started it all, there is still a great deal to learn. It is of interest for two main reasons: first, the problem involves a great deal of gasdynamics of perfect and imperfect flows (frozen and equilibrium, inviscid and viscous); second, our experimental (interferometric) shock-tube data have provided computational fluid dynamicists, who are working on explosion dynamics, with the means of checking their numerical simulations for accuracy. The latter data provide engineers with pressure, velocity, and other flow properties required to build explosion-resistant structures. To date, such simulations have proved to be extremely good, considering that the numerical solutions solve only the inviscid Euler equations, whereas the experimental data come from flows that are viscous and can have real-gas effects as well.

Analysis

Unlike linear waves encountered in acoustics and light, shock waves are nonlinear. For example, the reflected wave angle is different from the angle of incidence, and the physical quantities across shock waves such as pressure, density, temperature, and flow velocity are highly nonlinear. The simplest method of studying pseudostationary oblique shock-wave reflections is in a shock tube. Here a planar shock wave M, collides with a sharp compressive wedge of fixed angle β+, and gives rise to regular reflection (RR) and three types of Mach reflections (MR) — namely, single (SMR), complex (CMR), and double-Mach reflection (DMR) — as shown in Figs. 1 and 2. (The various symbols are defined on the figures.) It is seen that RR consists of two shock waves meeting at the reflection point P. However, MR consists of three shock waves meeting at the triple point T. It has been shown23 that such flows are self-similar, i.e., they look the same with time except for an increased scale. Consequently, the Mach stem grows with (or distance) along the triple-point trajectory angle χ. It may also be mentioned that this angle represents an effective wall for the incident shock wave I to reflect from and produce a reflected shock wave R. This provides the subsequent use of the effective wedge angle β' = β+ + χ as a useful parameter.

It is seen that regular reflection consists of an incident shock wave I and a reflected shock wave R, which may be attached at the wedge corner C, or detached from it. The standoff distance s, divided by the distance L, which the incident shock wave I has traveled from the corner, remains constant. The
reflected shock wave is curved if the flow behind it is subsonic, and it may have a straight portion near the reflection point if the flow there is supersonic and uniform (see Figs. Ia and Ic).

Mach reflection (Figs. 1b–1d), on the other hand, consists of incident I and reflected R shock waves, a Mach stem M, and a slipstream S. The three shocks meet at the triple point T, and the slipstream S separates states (2) and (3), even though they have the same pressure and flow inclination. SMR has a curved reflected wave. CMR has a kink in the reflected wave, which is caused by an interacting compression wave. In DMR, the kink becomes sharp and a second Mach shock M' is formed that finally extends to the slipstream S. As a result, a second triple point T' and a second slipstream S' are also formed. In this case, the reflected portion R is straight and the flow behind it is supersonic. The reflected shock R in SMR and R' in all other Mach-reflection (MR) cases can also be attached or detached (see Figs. 1b–1d and 2b–2d).

The question arises, given the initial conditions of the gas \(\rho_0, T_0, \gamma \), the shock Mach number \(M_s \), and the wedge angle \(\theta_w \), can one predict the resulting reflection a priori? The answer is "yes." This can be obtained from the following analysis.

It has been noted previously that such two-dimensional wedge flows are self-similar. Consequently, instead of three independent variables \(x, y, t \), the reflection phenomenon can be described in terms of two independent variables \(x/\tau \) and \(y/\tau \). The reflection point \(P \), in regular reflection, and the triple point \(T \), in Mach reflection, are chosen as specific points mov-
ing at constant velocity with respect to the wedge corner C. By attaching frames of reference to these points, the reflections become pseudosteady (Fig. 1). Consequently, the steady-flow equations of motion can be applied to each shock wave in turn, such that

Continuity:

\[\rho u = \rho' u' \sin(\phi, -\theta_j) \]

(1)

Tangential momentum:

\[\rho \tan\phi = \rho' \tan(\phi, -\theta_j) \]

(2)

Normal momentum:

\[p + \rho u^2 \sin^2\phi = p' + \rho'u'^2 \sin^2(\phi, -\theta_j) \]

(3)

Energy:

\[h + \frac{1}{2} u^2 \sin^2\phi = h' + \frac{1}{2} u'^2 \sin^2(\phi, -\theta_j) \]

(4)

where \(\rho \) is the flow density of the initial state in front of the shock wave and \(\rho' \) is the flow density in the final state behind the shock wave, the same for the flow velocity \(u \). pressure \(p \), specific flow enthalpy \(h \), wave angle \(\phi \), and flow-deflection angle \(\theta \). An equation of state

\[p = \rho RT \]

(5)

is also used for a perfect gas or \(p = \rho(p, T) \) for an imperfect gas. In addition, the boundary condition for regular reflection must be used so that the flow is parallel to the wedge surface (Fig. 1)

\[\theta_1 = \theta_2 \]

(6)

For Mach reflection, across the contact surface or slipstream, the pressure must be continuous

\[p_2 = p_3 \]

(7)

and the flow deflections must also be continuous or

\[\theta_2 = \theta_1 - \theta_2 \]

(8)

It has been shown by von Neumann\(^\text{26,27}\) and verified by many experimentalists that in pseudostationary flow a regular reflection will undergo transition to a Mach reflection when \(\theta_2 = \theta_{2m} \), that is, when the wedge angle \(\theta_w \) produces the maximum possible flow deflection \(\theta_{2m} \). This angle is also known as the flow-detachment angle. For further details, see Refs. 14 and 26–28.

As noted previously, Mach reflection (Fig. 1) can, in turn, be divided into SMR, CMR, and DMR; and DMR can be subdivided into four subtypes (Fig. 2), depending on whether or not the second triple-point trajectory angle \(\chi^- \) is above, equal to, or below the first triple-point trajectory angle \(\chi \). Finally, there is the terminal double-Mach reflection (TDMR) case, where \(\chi = 0 \). That is, the second triple point lies on the wedge surface. The second Mach shock disappears and the reflected shock wave reflects as a regular reflection. Such reflections occur readily in gases with low values of \(\gamma \), such as Freon-12\(^\text{22} \) or SF\(_6\).\(^\text{23} \) They are not possible in perfect monatomic, diatomic, or triatomic gases, although they are possible when these gases are imperfect and have a low effective \(\gamma \) (see Fig. 3).

It is assumed that SMR becomes a CMR when the flow with respect to the first triple point T becomes sonic, i.e., \(M_{1T} = 1 \). This assumption is based on experimental observation and computational simulation.\(^\text{29-35} \) The same heuristic approach is taken for CMR--DMR transition, and the condition is applied to the kink or second triple point \(K \) or \(T' \) or \(M_{2K} = 1 \).

A change of curvature occurs in the reflected wave \(R \), which steepens into a sharp second triple point \(T' \). This marks the formation of the second Mach shock \(M' \), and a straight reflected shock \(R \), before \(M' \), and a curved reflected shock \(R' \), after \(M' \). The flow behind \(R \) is supersonic. It should be noted that \(M' \) grows in strength and length until it comes close to the slipstream \(S \). Idealy, it should terminate there. Then it raises the problem: How can the contact front remain stable with a sharp pressure gradient applied to it? Interferometrically, the Mach shock appears to go around the rolled-up slipstream; in this case, as a compression wave.\(^\text{34-39} \) This is also verified by numerical simulation of the interferograms in question for DMR in different gases.\(^\text{31,34} \)

If the preceding equations and conditions are applied and solved, it is possible to obtain a plot in the \((M, \theta_w, \theta_{2m}) \) plane,\(^\text{36} \) delineating the various regions of RR, SMR, CMR, and DMR and their transition lines, as shown in Figs. 3 and 4, for example, for perfect and imperfect air in vibrational, dissociational, and ionizational equilibrium, over a very large initial shock Mach number range \(1 < M < 20 \). It can be seen that, for \(M > 10 \), the curves do not change for perfect air,\(^\text{40} \) but undulate for equilibrium air as new degrees of freedom are excited.

By assuming that the Mach stem is straight and perpendicular to the wedge surface, from the triple point \(T \), it is possible to obtain an expression for the triple-point trajectory angle \(\chi \),\(^\text{41} \) as well as the second triple-point trajectory angle \(\chi^- \).\(^\text{42} \) Unfortunately, the Mach stem is usually curved. It is
Concave at the lower shock Mach number M_s, for significant stem heights, and convex at higher Mach numbers. This introduces an error in determining χ and χ', especially when χ is small.

Comparison with Experimental Results in the M_s, β_w, or β_w^* Plane

The interferometric, schlieren, and shadowgram data from the Institute for Aerospace Studies were obtained in the 10 × 18-cm Hypervelocity Shock Tube. The major instrument for this purpose was a 23-cm-diam field-of-view Mach-Zehnder interferometer with a giant-pulse Q-switched ruby laser with a frequency doubler at 6943 and 3471.5 Å, having an exposure time of 15 ns. The latter was short enough to photograph the strongest shock wave without blurring.

Figures 5–9 show comparisons of the analytical domains and transition boundaries for RR, SMR, CMR, and DMR with experiments in argon, oxygen, nitrogen, air, carbon dioxide, and sulfurhexafluoride. In addition, the detailed results obtained by Ikui et al. for air, CO$_2$, and Freon-12 are shown and discussed.

An examination of Fig. 5a shows the experimental results for RR and MR in Ar on an (M_s, β_w) plane. In our early experiments, the major effort was to show that the various regimes were predictable from the foregoing analysis. As more experience was gathered, it becomes clear that the various transition lines were the sensitive lines to be tested. Consequently, the various analytical regimes look reasonably well validated. Three DMR runs (1 at 50 deg and 2 at 40 deg) lie in the CMR regime. All of the other experiments are in their appropriate regimes. It has been found that, along with $M_{ST} = 1$ for SMR–CMR, another condition that must be satisfied is $\delta > 90$ deg. On all graphs, the dashed line represents $\delta = 90$ deg and its lower branch lies above the solid line for SMR–CMR, where $M_{ST} = 1$. The upper branch of the dashed line lies below the shock line, where $M_{ST} \neq 1$, yet. It can be seen that two points at $\beta_w = 40$ and 20 deg are improved to lie in CMR.

When these results are plotted on an (M_s, β_w^*) plane (Fig. 5b), which is more accurate since a relation for χ is not required, paradoxically, a poorer agreement is obtained for Ar. Now four DMR runs, one at $\beta_w = 50$ deg and three at $\beta_w = 45$ deg, definitely lie in the CMR regime and two other CMR’s are borderline runs; one other CMR run lies in the SMR regime at $M_s = 4$, all other runs are in their appropriate regimes. Since no runs were made along the RR–MR transition line, little can be said about the "von Neumann paradox."
Fig. 6a Regions and transition lines of regular (RR) and Mach (MR) reflections in the \((M_r, \theta_r')\) plane for air and experimental data. Solid lines are for air as a perfect gas \((\gamma = 7/5)\). For SMR—CMR transition boundary, solid line represents \(M_T = 1\) and dashed line represents \(\delta = 90\) deg. Experimental data: \(\circ\) RR, \(\bullet\) SMR, \(\triangle\) CMR, \(\circ\) DMR (O2—Ref. 25). NR is the no-reflection region.

Fig. 6b Regions and transition lines of regular (RR) and Mach (MR) reflections in the \((M_r, \theta_r')\) plane for frozen \(N_2\) and \(O_2\) \((\gamma = 7/5)\) and experimental data. For SMR—CMR transition boundary, solid line represents \(M_T = 1\) and dashed line represents \(\delta = 90\) deg. Experimental data: \(\circ\) RR, \(\bullet\) SMR, \(\triangle\) CMR, \(\circ\) DMR (N2—Ref. 30); \(\bullet\) SMR, \(\triangle\) CMR, \(\circ\) DMR (O2—Ref. 41). NR is the no-reflection region.

Fig. 6c Regions and transition lines of regular (RR) and Mach (MR) reflections in the \((M_r, \theta_r')\) plane for air and experimental data. Solid lines are for air as a perfect gas \((\gamma = 7/5)\). For SMR—CMR transition boundary, solid line represents \(M_T = 1\) and dash-dot line represents \(\delta = 90\) deg. Dashed lines are for imperfect air at \(P_g = 15\) Torr and \(T_g = 300\) K. Experimental data: \(\circ\) RR, \(\bullet\) SMR, \(\triangle\) CMR, \(\circ\) DMR (Ref. 36).

Fig. 6d Regions and transition lines of regular (RR) and Mach (MR) reflections in the \((M_r, \theta_r')\) plane for air and experimental data. Solid lines are for perfect air \((\gamma = 7/5)\). Dashed lines are for imperfect air at \(P_g = 15\) Torr and \(T_g = 300\) K. For SMR—CMR transition boundary, solid line represents \(M_T = 1\) and dashed line represents \(\delta = 90\) deg. Experimental data: \(\circ\) RR, \(\bullet\) SMR, \(\triangle\) CMR, \(\circ\) DMR (Ref. 36). NR is the no-reflection region.

Fig. 6e Regions and transition lines of regular (RR) and Mach (MR) reflections in the \((M_r, \theta_r')\) plane for air and experimental data. Solid lines are for air as a perfect gas \((\gamma = 7/5)\). For SMR—CMR transition boundary, solid line represents \(M_T = 1\) and dashed line represents \(\delta = 90\) deg. Experimental data: \(\circ\) RR, \(\bullet\) SMR, \(\triangle\) CMR, \(\circ\) DMR (Ref. 25).

Mach numbers of these experiments, as the relaxation lengths are too large and the gas remains frozen with \(\gamma = 5/3\).

Figures 6a and 6b show the results of \(N_2\) and \(O_2\) in the \((M_r, \theta_r')\) and \((M_r, \theta'_r)\) planes. In Fig. 6a, the six RR runs at the RR—MR transition are only marginally below it. All runs except a DMR at \(M_r = 6\) lie in their appropriate regimes. The line for \(\delta = 90\) deg is very helpful in this case, because all of the SMR runs lie in their appropriate regimes. The same comments apply to Fig. 6b. It is seen that as \(\gamma\) decreases the NR and SMR—CMR lines lie closer together, preventing a clear-cut distinction of the experiments.

Figures 6c and 6d show the results for air on the \((M_r, \theta_r')\) and \((M_r, \theta'_r)\) planes. It is seen from Fig. 6c that at the RR—MR transition line two RR runs lie in the SMR regime; one RR run lies in the CMR regime and seven RR runs lie in the DMR regime. This definitely shows the persistence of RR into the MR regime. Subsequently, it will be shown that this is due to the shock-induced boundary layer on the wedge surface. It is also known that the CMR—DMR line must curve and meet the SMR—CMR line at point P on the RR—MR line, as the
Fig. 7a Regions and transition lines of regular (RR) and Mach (MR) reflections in the \((M_{\text{r}}, \theta_{\text{r}})\) plane for CO\(_2\) as a perfect gas \((\gamma = 1.29)\) and experimental data. For SMR–CMR transition boundary, solid line represents \(M_{\text{r}} = 1\) and dashed line represents \(\theta = 90\) deg. Experimental data: o RR, o SMR, x CMR, o DMR (Ref. 37).

Fig. 7b Regions and transition lines of regular (RR) and Mach (MR) reflections in the \((M_{\text{r}}, \theta_{\text{r}})\) plane for CO\(_2\) as a perfect gas \((\gamma = 1.29)\) and experimental data. For SMR–CMR transition boundary, solid line represents \(M_{\text{r}} = 1\) and dashed line represents \(\theta = 90\) deg. Experimental data: o RR, o SMR, x CMR, o DMR (Ref. 37).

Fig. 7c Regions and transition lines of regular (RR) and Mach (MR) reflections in the \((M_{\text{r}}, \theta_{\text{r}})\) plane for vibrational equilibrium CO\(_2\) and experimental data. For SMR–CMR transition boundary, solid line represents \(M_{\text{r}} = 1\) and dashed line represents \(\theta = 90\) deg. Dash-dot lines are for frozen CO\(_2\) \((\gamma = 7/5)\). Experimental data: o RR, o SMR, x CMR, o DMR (Ref. 37).

Fig. 7d Regions and transition lines of regular (RR) and Mach (MR) reflections in the \((M_{\text{r}}, \theta_{\text{r}})\) plane for vibrational equilibrium CO\(_2\) and experimental data. For SMR–CMR transition boundary, solid line represents \(M_{\text{r}} = 1\) and dashed line represents \(\theta = 90\) deg. Dash-dot lines are for frozen CO\(_2\) \((\gamma = 7/5)\). Experimental data: o RR, o SMR, x CMR, o DMR (Ref. 37). NR is the no-reflection region.

Fig. 7e Regions and transition lines of regular (RR) and Mach (MR) reflections in the \((M_{\text{r}}, \theta_{\text{r}})\) plane for vibrational equilibrium CO\(_2\) and experimental data. For SMR–CMR transition boundary, solid line represents \(M_{\text{r}} = 1\) and dashed line represents \(\theta = 90\) deg. Dash-dot lines are for frozen CO\(_2\) \((\gamma = 7/5)\). Experimental data: o RR, o SMR, x CMR, o DMR (Ref. 37).

Fig. 7f Regions and transition lines of regular (RR) and Mach (MR) reflections in the \((M_{\text{r}}, \theta_{\text{r}})\) plane for vibrational equilibrium CO\(_2\) as a perfect gas \((\gamma = 1.31)\) and experimental data. For SMR–CMR transition boundary, solid line represents \(M_{\text{r}} = 1\) and dashed line represents \(\theta = 90\) deg. Experimental data: o RR, o SMR, x CMR, o DMR (Ref. 37).
distance between the two triple points TT' goes to zero there. As a consequence, the two DMR runs in CMR now lie in the appropriate regime. Real-gas effects shown by the equilibrium dashed lines do not explain the results, since the runs were done at different initial pressures. Eight DMR runs lie in the CMR regime and three SMR runs lie in the CMR regime. Consequently, it appears that better criteria are required for the RR-MR, SMR-CMR, and CMR-DMR transition lines. Similar remarks apply to Fig. 6d. Overall, the δ = 90-deg line is not helpful in this case.

Figure 6e includes the detailed results of Ikui et al.25 for air. It is seen that excellent agreement is obtained for RR at the RR-MR transition line. For M2 > 2, the runs lie marginally below it. One RR run lies in the CMR regime. Eight SMR's lie in the CMR regime. All CMR and DMR runs lie in their appropriate regimes. The perfect-gas (γ = 7/5) transition lines appear quite appropriate for their results. No significant evidence of the persistence of RR into MR regimes can be seen. The dashed line for δ = 90 deg is not helpful in this case, but a new SMR-CMR line closer to the MR-DMR line would place all of the SMR runs in their appropriate regime.

Figures 7a-7f deal with CO2 in the (M2, δ2) or (M2, e2) plane. Figure 7a shows the experiments for transition lines based on a perfect gas, γ = 1.29. Although such lines are in error, since the vibrational relaxation lengths are short, and an equilibrium flow is appropriate, nevertheless, excellent agreement is obtained, by and large, for all points except two DMR's at M2 = 3.5 in the CMR regime and one at M2 = 4.7. One CMR at M2 = 4 agrees better with the M9T = 1 criterion, and δ = 90 deg is not helpful in this case. The regular reflection runs at θ2 = 50 deg are not a test of the RR-MR transition, as they should have been done much closer to or below that line. Consequently, little can be said about boundary-layer effects in this case. Somewhat better agreement is obtained in the (M2, e2) plane shown in Fig. 7b.

The correct equilibrium transition is shown in Fig. 7c. Here, the frozen transition lines (γ = 7/5) are also shown for comparison. The agreement is quite good for the RR-MR line for the frozen case and poor for the rest of the frozen lines. Eight CMR runs lie in the equilibrium DMR regime and two SMR runs lie in the CMR regime. In this particular case, the δ = 90-deg line puts the SMR point at 10 deg in its proper place. It can be seen from Fig. 7a that the agreement there is accidentally better.

Figure 7d shows an (M2, e2) plot of the experimental runs in equilibrium CO2. Although this is a more accurate plot, since δ does not have to be known, the results are poorer, since nine CMR's find themselves in the DMR regime and one SMR occurs in the CMR regime. All of the DMR runs are located correctly, as well as all RR runs. Again, the various transition lines crowd together near θ2 = 20 deg.

Figure 7e shows the detailed results of Ikui et al.25 in the (M2, δ2) plane. It is clear that there is no agreement with CO2 treated as a frozen gas (γ = 7/5). However, the vibrational equilibrium lines show very good agreement with the experiments over the entire Mach number range. Only two RR's lie below the RR-MR line in the SMR region. There are three DMR runs lying in the RR region above the RR-MR line. There is no evidence of RR persistence of viscous boundary-layer effects. Four SMR runs at M2 = 2 lie marginally in the CMR region; eleven CMR's lie in the DMR regime. Sometimes it is difficult to distinguish a CMR from a DMR, and perhaps this might account for some of the discrepancy. In this case, the δ = 90-deg line makes it possible for several SMR runs at θ2 = 10 deg to lie in their proper regime.

Figure 7f shows the results of Ikui et al.25 plotted on the (M2, e2) plane with their analytical lines for a perfect gas (γ = 1.31). It is seen that good agreement is obtained with all experimental runs by and large. The RR-MR line does not fit the results as well as for the equilibrium flow. Since 14 RR runs lie in the DMR region. Only two RR runs lie in the SMR regime at M2 = 1.5 below the RR-MR line and two RR in the CMR region. One borderline DMR runs lie in the CMR regime at θ2 = 20 deg. The M9T = 1 line puts six CMR's in the proper regime, unlike δ = 90 deg; the preceding results are analogous to those of Ando and Glass (Fig. 7a).

Figure 8a shows the experimental results for Freon-12, from Ikui et al.25 plotted on an (M3, θ3) plane, for their transition lines based on a perfect gas (γ = 1.141). Again the perfect-gas lines give reasonable agreement. Four RR runs lie in the CMR region. Many DMR runs lie in the CMR regime. About four SMR's lie marginally in the CMR region and two CMR runs lie in the DMR regime. The dashed line is an experimental best fit for the RR-TDMR. Unfortunately, Ikui et al. did not extend the TDMR runs to higher M3 and lower θ3 to provide a better picture of the TDMR regime, which can be predicted analytically (see Fig. 8b). Only in the CMR region is there evidence of the persistence of RR. An equilibrium (M3, θ3)
plot is shown in Fig. 8b. It also includes the transition lines for a frozen flow with \(\gamma = 4/3 \), for which the agreement with experiment is poor. This time, more DMR runs lie in the RR region including the TDMR runs. Note that the condition \(x' = 0 \) yields only a small TDMR region below the RR-MR transition line. Consequently, one can only suspect that the detachment criterion of \(\theta_0 = \theta_{wm} \) due to von Neumann is invalid for pseudostationary flow. The equilibrium SMR-CMR is not improved from the one in Fig. 8a, nor does the criterion \(\delta = 90 \) deg help. The CMR-DMR line does not improve overall the location of the runs. Some CMR runs are more poorly located and some DMR runs are better located in their respective regions.

Figures 9a and 9b show the results for SF\(_6\) in the \((M_s, \theta_p)\) and \((M_s, \theta'_p)\) planes. Considerable effort was made in this case to check the transition lines themselves. Figure 9a shows the results for frozen \(\gamma = 4/3 \) and equilibrium flows. The frozen-flow lines do not represent the experiments. Two RR and two DMR runs lie in the CMR region below the RR-MR transition lines. Six RR runs lie right on the RR-MR transition line. There is no serious evidence of RR persistence up to \(M_s = 6.5 \) and two TDMR's at \(M_s = 8 \). One CMR run lies in the SMR region and five DMR's lie in the CMR regime. The \(M_s = 1 \), rather than \(\delta = 90 \) deg, puts five CMR runs in their proper place. However, overall the agreement is good. Similar remarks can be made for the \((M_s, \theta'_p)\) plot of Fig. 9b. Here, however, it is clear that DMR persists into the RR regime over the entire range of \(M_s \). Consequently, the \((M_s, \theta'_p)\) plot gives poorer rather than better agreement with the RR-MR transition line. It should be noted that, if three-shock theory was used here rather than two, \(\chi \) would have a value from 1 to 3 deg over the RR-MR line, which would be pushed upward for better agreement with experiments than the present line. The small dashed line running from CMR-DMR to point P on the RR-MR transition line indicates the fact that in actuality this takes place. It makes for better agreement in Figs. 9a and 9b in that the DMR runs at \(M_s = 2 \) lie in their correct region. Again, the transition lines are too close, especially at \(\theta_p = 10 \) deg in Fig. 9b.

Figure 9c shows the SF\(_6\) results in the \((M_s, \theta_p)\) plane for a perfect gas \((\gamma = 1.093) \). The experiments are quite well represented on this plot. Two RR runs lie below the RR-MR...
Fig. 10a TDMR regions in \((M_s, \theta_w)\) plane for vibrational equilibrium Freon-12 and for perfect gases with \(\gamma = 1.10, 1.093, \) and 1.08.

Fig. 10b TDMR regions in \((M_s, \theta_w)\) plane for vibrational equilibrium \(SF_6, \gamma = 1.06, \) and \(\gamma = 1.04.\)

Fig. 11 Variation of departure of experimental \(\delta_\nu\) from frozen-gas calculation \((\delta_\nu - \delta_\nu^*)\) normalized by the difference between equilibrium- and frozen-gas calculations \((\delta_\nu - \delta_\nu^*)\) (Ref. 43).

...transition line in the CMR region and four below in the DMR regime at \(M_s = 2,\) and four below at \(M_s = 4,\) showing a persistence of RR. Several DMR runs lie in the CMR region at \(\theta_w = 45, 43, 40, 20\) deg, and especially at 10 deg. All CMR runs lie properly in their region at or below the \(M_s = 1\) line, except two in the SMR region at \(M_s = 3.5.\) The equilibrium plot of Fig. 9a is superior since the \(RR - MR\) line lies lower for lower \(\gamma\) than for the fixed \((\gamma = 1.093)\) line of Fig. 9c. The SMR—CMR and CMR—DMR lines are also better in Fig. 9a for the same reason, providing better agreement with experiment overall for the equilibrium plot.

Figure 9d provides the \((M_s, \theta_w)\) plot for \(\gamma = 1.093.\) For overall agreement, it is not as good as Fig. 9b. Here three DMR’s lie in the CMR region at \(M_s = 3.5,\) and several at \(M_s = 2.\) These would lie correctly in the DMR region if the CMR—DMR line were curved to join the SMR—CMR line to the \(RR - MR\) line at point \(P,\) as noted previously. On the other hand, several DMR’s and the two TDMR’s lie in the RR region. Overall, the equilibrium curves of Fig. 9b provide better agreement.

Figure 10a shows the extent of the TDMR over a range of \(\gamma\) as well as for vibrational equilibrium Freon-12 and \(SF_6.\) It is seen that the regions are bounded by the two-shock theory RR—MR transition line and the line along which \(\chi^\prime = 0.\) The region for a perfect gas with \(\gamma = 1.10\) is very small, and occurs for \(M_s > 9\) and \(\theta_w > 38\) deg. For a perfect gas with \(\gamma = 1.093,\) the region is much larger and occurs for \(M_s > 7.5\) and \(\theta_w > 37\) deg. For vibrational equilibrium Freon-12, the region is much larger still and starts at \(M_s = 7.\) For \(\gamma = 1.08,\) the TDMR region is quite large and starts at \(M_s = 5.\) Note that, unlike the results of Ikui et al. shown in Fig. 8a, the TDMR experiments are supposed to lie in the DMR region, not in the RR regime, as they found. It is not clear why this has happened. Even if the three-shock theory \(RR - MR\) line was used and \(\chi^\prime\) was in error by 1 or 2 deg, it would not account for this larger discrepancy, as can be seen from Fig. 10b. One can only speculate that the \(RR - MR\) transition line is not appropriate for pseudostationary flows.

Figure 10b shows the regions of TDMR for vibrational equilibrium \(SF_6, \gamma = 1.06\) and 1.04. It is seen that the regions become progressively larger. It should be possible to observe TDMR in vibrational equilibrium \(SF_6,\) at \(M_s = 5.\) Ikui et al.3 observed TDMR in Freon-12 at \(M_s = 3.8\) and \(\theta_w = 46\) deg, and the present analysis shows this to occur at \(M_s = 7\) and \(\theta_w = 37\) deg. Consequently, this problem will require a resolution in the near future.

In summary, it can be stated that the \((M_s, \theta_w)\) plots provide the experimenter with good engineering results for all gases. Whether a point lies in one region or another sometimes depends on personal judgment when the result is not clear cut.
Consequently, it is more important to make measurements of the angles δ, χ, and ω, which are quantitative experimental results, and compare them with their counterparts from analysis using two- and three-shock theories, as applicable, in order to provide better tests for the state of the gas—frozen or equilibrium. The induced boundary layer causes δ to be larger and ω to be smaller. Consequently, one can learn a good deal about the boundary layer itself from such measurements. The angle χ can be affected by the fact that the inclination of the slipstream S depends on the two velocities on either side of the ideal contact surface, one in state (2) moving at a higher velocity than that in state (3). Consequently, the velocities in states (2) and (3) diverge due to the layer thickness, giving rise to a deflection, α, which could affect χ, as well as the relation $\theta_1 - \theta_2 = \theta_s$, used in the three-shock theory.

Critique

It has been shown above that many experiments in various gases have now been performed on regular and Mach reflections of oblique shock waves in pseudostationary flow. The experimental agreement with the analytical boundaries for such reflections using two- and three-shock theories are reasonable but not precise enough over the entire range of incident shock-wave Mach numbers (M_s) and compression wedge angle (θ_s). In order to improve the agreement, the assumptions and criteria employed in the analysis were critically examined using the foregoing experimental data.

Several criteria were proposed to predict analytically the transition boundaries between the various reflections. However, the first complete transition solution in the θ_s-plane was obtained by Refs. 30 and 37. The relevant criteria to obtain the transition lines were given in Refs. 30 and 31, respectively, for N_2, O_2, and Ar; in Ref. 37 for CO_2; in Ref. 28 for perfect and equilibrium air up to $M_s = 20$; and in Ref. 38 for SF$_6$; and in the present paper for Freon-12.

Comparison of Experimental and Numerical Values of δ

It has been noted previously that by measuring the angles δ, χ, and ω, it is possible to obtain quantitative checks with analysis as well as inferring the state of the gas, whether it was frozen or in equilibrium. A minimum finite length of 1 mm is required to measure the slope of a shock wave from an interferogram. The measured angle is then the average slope within this length. The vibrational relaxation length l_v at $P_0 = 15$ Torr and $T_0 = 300$ K becomes 1 mm at $M_s = 8$ for O_2, $M_s > 10$ for N_2, $M_s = 5$ for CO_2, and $M_s = 2$ for SF$_6$. In two and three shock-wave systems for regular and Mach reflections, the relaxation lengths do not vary significantly compared to a 10^9-10^{10} variation in l_v, for $2 \leq M_s < 10$. Consequently, the Mach number at which $l_v = 1$ mm behind each shock wave in Mach reflection does not differ very much. Therefore, the choice of 1 mm as a characteristic flow length is quite reasonable. When the relaxation length is of the same order as the characteristic length, the simplified two- and three-shock theories can no longer be used. Therefore, it is reasonable to apply a frozen ($l_v = 1$ mm) flow or an equilibrium ($l_v < 1$ mm) flow assumption. Only vibrational excitation need be considered in the present experiments as dissociation, electronic excitation, and ionization relaxation lengths are much longer than 1 mm in the present shock Mach number and pressure range of the experiments. Air with $21\% O_2$ is an exception at high shock Mach numbers. However, dissociation is negligible for $M_s < 10$. The specific heat ratio for frozen-gas calculation is $5/3$ for Ar; $7/5$ for N_2, O_2, air, and CO_2 (linear molecule); and $4/3$ for Freon-12 and SF$_6$.

In Ref. 43, there are several plots of the variation of angle δ, with shock Mach number for fixed effective wedge angle θ_s^0, for CO_2, N_2, and Ar, and in Ref. 38 for SF$_6$. These may be condensed by plotting the quantity $k = (\delta_s - \delta_0)/(\delta_s - \delta_0^*)$, where δ_s is the measured δ, δ_0 the calculated frozen δ, and δ_0^* the calculated equilibrium δ. It is seen from Fig. 11 for CO_2, for example, that for $M_s > 4$, $k = 1$, i.e., $\delta_s = \delta_0$, and the agreement is for CO_2 in equilibrium, despite the fact that the experiments in the θ_s-plane agree best with a perfect gas ($y = 1.29$). These results are more reliable: As no transition criteria are required in the calculation of δ, a quantitative comparison can be made for each pair of analytical and experimental results; a measurement of δ has no ambiguity unlike the classification of the reflection types near the transition boundaries where, for example, a SMR may look like a CMR or a SMR like a DMR. The parameter θ_s^0 should be used instead of θ_s, in the comparisons, since θ_s^0 can be obtained directly from Eqs. (1–4), while θ_s is derived by assuming that the Mach stem M is perpendicular to the wedge surface at the triple point. This is not always the case experimentally, as shown subsequently.

Effects of Mach Stem Curvature

In Figs. 1 and 2, all of the Mach stems M are drawn ideally perpendicular to the wedge surface from the triple point T. In reality, the Mach stem can have a convex curvature (+) at an angle ϵ from T or with a concave (−) curvature but again ending up perpendicular to the wedge surface.

![Image](Fig. 14) Comparison of experimental reflected wave angle ω with numerical results for various displacement angles θ_s^0 for CO_2: Experimental points (Ref. 37); 1. $\theta_s^0 = 45.5$ deg; 2. $\theta_s^0 = 47$ deg; 3. $\theta_s^0 = 30$ deg; 4. $\theta_s^0 = 0$ deg; 5. $\theta_s^0 = 1$ deg; 6. $\theta_s^0 = 2$ deg (Ref. 43).

![Image](Fig. 15) SMR, $M_s = 2.03$, $\theta_s = 27$ deg, $P_0 = 33.3$ kPa, $T_0 = 299.2$ K. Air, $\rho_0 = 0.357$ kg m$^{-3}$.
The Mach stem was assumed perpendicular to the wedge surface at the triple point in deriving θ_3 from ϕ_1 in the three-shock theory. The deviation ϵ from this idealization is shown for Ar, N$_2$, air, and CO$_2$ in Fig. 12. It is seen that ϵ has positive values (0-8 deg) for $M_3 > 4$ and decreases to negative values (-3 deg) at $M_3 = 2$. Consequently, θ_3, as derived from ϕ_1, has an error equal to ϵ. Therefore, comparisons of quantities in Mach reflection should be made with θ_3, as long as ϵ cannot be predicted accurately. This error is the main reason for the inaccurate prediction of χ using the three-shock theory.

In Fig. 13, the effect of ϵ on ϕ_1 is shown for CO$_2$ as the variation of $\Delta \phi = \phi_1$ (numerical) - ϕ_1 (experimental) with shock Mach number M_3. The numerical results are based on an equilibrium gas, verified in Fig. 11. It is seen that $\Delta \phi$ has a value of about -2 deg, independent of M_3. The results for other gases are similar albeit somewhat more dispersed.

Effect of Slipstream Thickness

In the solution of Eqs. (1-4), only the pressures [Eq. (7)] and flow directions [Eq. (8)] were assumed to be continuous across the slipstream, an idealized surface. In reality, it is a shear layer of increasing finite thickness, where the velocity in state (2) is greater than that in state (3) and the temperature in state (3) is greater than that in state (2). Near the triple point the layers are laminar; beyond they become turbulent. Consequently, as noted previously, the shear-layer thickness gives rise to a deflection of the velocities in states (2) and (3). If it is assumed that the velocity displacement in the layer α exists at the triple point, then its possible affect on χ should be taken into account in the discrepancies between the numerical and experimental values of χ.

Effect of Shock-Induced Boundary-Layer on the Wedge Surface

It has been found by many experimenters that RR persists into the MR regime. This has been called the "von Neumann paradox." Recently, several analyses39,41 have shown that this is due to the boundary-layer negative displacement thickness. Consequently, the displaced wall is below the actual wall. The reflected wave R moves below a new position so that the angle δ between R and L is now larger or the reflected wave angle $\omega' < \omega$. The condition $\theta_1 - \theta_3 = \theta_4$ must now be used instead of Eq. (6). This can be checked and has been verified experimentally. Figure 14 compares experimental ω' for CO$_2$ with calculations for several values of θ_4. The experimental results lie between the lines of $\theta_4 = 0$ and -2 deg. Similar results were obtained for Ar, N$_2$, and air. A displacement angle $\delta_4 = -1$ deg shifts the RR-MR von Neumann detachment transition boundary by $\Delta \phi = 0.7$ deg for N$_2$ and air, and $\Delta \phi = 0.5$ for CO$_2$. Recently, Sakurai43 proposed to use a pseudostationary RR-MR criterion. However, its effectiveness is yet to be tested experimentally.

Flowfield Solutions

The foregoing dealt with simplified algebraic solutions48 for RR and MR, which involved mainly the shock waves and the slipstream. In order to compare experimental and analytical solutions of the entire flowfield for such sensitive parameters as the density distribution, which can be measured interferometrically, it is necessary to solve the time-dependent31,34 or pseudostationary Euler equations as noted subsequently, for a perfect or equilibrium gas. Otherwise, it would be necessary to use rate equations for equilibration as well.

Continuity:

$$\rho_0 + (\rho u_0) + (\rho v_0) = 0$$

Momentum:

$$\rho_0 \frac{u_0}{L} + (\rho u^2 + p) + (\rho u v) = 0$$

$$\rho_0 \frac{v_0}{L} + (\rho v u) + (\rho v^2 + p) = 0$$

Energy:

$$(\rho E) + (\rho u E + \rho u) + (\rho v E + \rho v) = 0$$

where ρ is the density, $u = (u, v)$ is the velocity field, $E = \frac{1}{2}(u^2 + v^2)$ is the total specific energy, e is the specific internal energy, and p is the pressure. The system is closed by specifying an equation of state (EOS).

$$p = \rho(\rho, e)$$

Such an equation can be obtained from the thermal equation of state $p = \rho T$ and the specific internal energy for a perfect gas $e = C_v; T$, to yield

$$p = (\gamma - 1)\rho e$$

where γ is the ratio of specific heats and is considered to be a constant. For gases such as CO$_2$ and SF$_6$ in vibrational equilibrium the equation of state has to be modified. For self-similar motion, the problem has no intrinsic length scale. Consequently, a new pseudostationary coordinate system can be used, such that $(x, y) = [(x - x_0)/(t - t_0), (y - y_0)/(t - t_0)]$, where (x_0, y_0) are the coordinates of the wedge corner C, and t_0 is the time when the incident shock wave reaches the corner. As shown by Jones et al.,23 the system of Eq. (9) can be transformed into a pseudostationary system [Eq. (12)].44

$$\left(\rho \frac{\partial u}{\partial t} + \rho u \frac{\partial u}{\partial x} + \rho v \frac{\partial u}{\partial y}\right) = -\rho (\overrightarrow{\nabla}^2 \overrightarrow{u}) - 2\rho \overrightarrow{H}$$

where

$$\overrightarrow{u} = u - x, \quad \overrightarrow{H} = \frac{1}{2}(\overrightarrow{u}^2 + \overrightarrow{v}^2) + \overrightarrow{h}$$

and $h = e - p/p$ is the specific enthalpy. Also, \overrightarrow{u}, \overrightarrow{v}, and \overrightarrow{H} are referred to as the self-similar velocity field and self-similar total enthalpy, respectively. In addition M is defined by

$$M^2 = (\overrightarrow{u}^2 + \overrightarrow{v}^2)/a^2$$

where a is the sound speed and M is called the self-similar Mach number. The system of Eq. (12) is the steady Euler equations with the addition of source terms. Note that the ratio s/L is constant (Fig. 1c) for given initial conditions, for self-similar solutions of the nonstationary equations just as it is constant for steady supersonic flow. In this and other ways, a change to pseudostationary coordinates is very useful in the analysis of such flowfields and was used in numerical simulations of the interferometric experiments on oblique shock-wave reflections.19

Perhaps the best example of showing the great strides that have taken place in the reliability of numerical simulation of such problems is to compare the results of Schneyer,46 of a decade ago, with the present state-of-the-art simulation by Glaz et al.34 Figure 15a shows an interferogram of an SNR in air at $M_3 = 2.03, \theta_3 = 27$ deg, $p_0 = 250$ Torr, and $T_0 = 300$ K. The lines of constant density (isopycnics) over the flowfield are also shown in the caption. Figure 15b shows the same case treated by Glaz et al.34 a decade later, which is a very good simulation indeed. Many such cases were treated in air, Ar, and SF$_6$.44,46 The agreements with experiments are all surprisingly good considering that the simulations utilized the Euler equations for inviscid flow and the interferograms are for real flows with viscosity and real-gas effects. Needless to say, the simulations provide numerous data on pressure, temperature, Mach number, enthalpy, etc., that cannot readily be
Fig. 16a Collision of DMR with a 90-deg ramp in CO$_2$, $\theta = 20$ deg, $l = 136$ mm, $h = 12.7$ mm, $P_o = 10$ Torr, $\lambda = 6943$ Å. An interferogram taken at $t = 59$ μs, $M_x = 5.81$, $T_o = 297$ K, and $\rho_x = 2.38 \times 10^{-5}$ g/cm3. $\Delta \rho/\rho_o = 1.27$. I, incident shock wave; M, first Mach stem; M', second Mach stem; R, first reflected shock wave; R', second reflected shock wave; T, first triple point; T' second triple point (Ref. 24).

Fig. 16b An interferogram taken at $t = 119$ μs, $M_x = 5.78$, $T_o = 294$ K, $\rho_x = 2.40 \times 10^{-5}$ g/cm3, $\Delta \rho/\rho_o = 1.26$. B, bifurcation of shock wave; C_1, contact front; E, expansion wave; I, incident shock wave; P, protrusion due to local sidewall boundary-layer separation; S_I to S_5, shock waves; R, rarefaction wave.
measured experimentally. Undoubtedly, repeat simulations using the Navier-Stokes equations and equilibrium rate equations for the degrees of excitation involved would provide some important answers as to whether the costly refinements were warranted.

It is worth noting that some very worthwhile concepts have been added to pseudostationary oblique shock-wave reflections recently, using the Monte-Carlo technique. Here the reflections are simulated at the molecular level and, therefore, were warranted, some important transitions for the degrees of excitation involved would provide such a case.

A more complex simulation is that of a problem where self-similarity cannot be applied. For example, the collision of a Mach reflection with a 90-deg ramp on the wedge surface provides such a case. Figure 16a shows an interferogram of a DMR in CO2, $M_1 = 5.81$, $\theta_* = 20$ deg, $p_0 = 10$ Torr, $T_0 = 297$ K before colliding with a 12.7-mm ramp. Figure 16b shows the wave system $60 \mu s$ later, after the collision had taken place. It is seen that the wave system involving Mach stem-slipstream interactions, boundary-layer interactions, rarefaction, and expansion waves, etc., has become very complex. The type of interaction is dependent on the relative heights of Mach stem and ramp. Figure 17 shows the numerical simulations. Surprisingly good agreement is obtained of the main features of the flow using the Euler equations of motion. However, the viscous effects are not simulated and effectively show the need for using the Navier-Stokes equations for adequate simulation. Many additional details can be found in Refs. 24 and 49.

Conclusions

1) Although much has been learned about oblique shock-wave reflections since Mach32 wrote his pioneering paper in 1878, a great deal is still to be known. The best available data to date from several sources on such reflections have been presented graphically in a consistent format.

2) The presently accepted transition lines for RR-MR, SMR-CMR, and CMR-DMR provide very reasonable engineering answers as to the type of reflection that will occur, given M_1, θ_*, and γ for frozen and perfect gases and for vibrational equilibrium given additionally T_0. For gases with low γ at room temperature, such as CO2, Freon-12, and SF6, real-gas effects in vibration are very important and must be taken into account. They are not precise enough, and improved transition-line criteria will have to be found to account for those experiments that give rise to the "von Neumann paradox" for the RR-MR transition. For the SMR-CMR and CMR-DMR lines at lower θ_*, where a number of experiments fall outside the present lines (see Figs. 7-9), new criteria will have to remedy this situation.

3) The experimental CMR-DMR line leading to point P on the RR-MR line will have to be replaced by an analytical line (see Figs. 9a, 9b, and 9d).

4) It is not clear whether the induced boundary-layer slope or thickness is the important parameter to account for the "von Neumann paradox." Some experiments with induced turbulent boundary layers caused by specified roughness should help in a decision on this point.

5) It is not known why the TDMR experiments lie in the RR regime rather than in the DMR region as predicted from the condition $\chi = 0$. Perhaps the von Neumann RR-MR line is not applicable to pseudostationary flow.

6) More needs to be known about RR and MR over rough surfaces, spongy surfaces, surfaces with a thin layer of He or other gases, and in a dusty-air environment.

7) Improved computational simulations using the Navier-Stokes equations and real-gas rate equations are required for a comparison with the available interferometric data. It can be seen that much work still remains to be done in pseudostationary oblique shock-wave reflections in order to answer some of the above-noted problems. Undoubtedly, such work will be forthcoming in the near future. In addition to the single-wedge problems, the degree of complexity increases using multiple straight wedges, as well as convex and concave wedges. For further details see Ref. 55.

Acknowledgments

It is a pleasure to acknowledge the fine research conducted over the years on pseudostationary oblique shock-wave reflections by my former master's and Ph.D. candidates: R. R.
Weynants, C. K. Law, G. Ben-Dor, S. Ando, R. L. Deschambault, T. C. J. Hu, J. Wheeler, J. Urbanowicz, and Research Associates J.-H. Lee and M. Shirouzu. The author is grateful to Dr. J.-H. Lee and Mr. Masao Shirouzu for carrying out the computations of the Freon-12 and SF₆ curves in Figs. 10a and 10b. The present paper could not have been written without all their direct and indirect assistance. I thank Professor J. P. Sislian for a critical reading of my manuscript. I owe a particular debt of thanks to Drs. H. M. Glaz and P. Colella and their associates for their excellent numerical simulations of our experiments. The encouragement and support received over the years from Drs. M. J. Salkind, G. W. Ullrich, J. D. Wilson, and A. L. Kuhl is appreciated with thanks. I am grateful to Dr. Harland Glaz and Mr. Ralph Ferguson, Naval Surface Weapons Center, for the new results presented in Fig. 17.

The final assistance received from the U.S. Defense Nuclear Agency under DNA Contract 001-85-C-0368, from the U.S. Air Force Office under Grant AF-AFOSR 82-0096, and from the Canadian Natural Science and Engineering Research Council is acknowledged with thanks. Finally, I wish to thank the AIAA for bestowing the honor of presenting the Dryden Lecture on my university, my institute, and me.

References

40Ben-Dor, G. and Takayama, K., "A Reconsideration of the Analytical Solution of a Pseudo-Steady Mach Reflection," to be published.

From the AIAA Progress in Astronautics and Aeronautics Series . . .

AERO-OPTICAL PHENOMENA—V. 80

Edited by Keith G. Gilbert and Leonard J. Otten, Air Force Weapons Laboratory

This volume is devoted to a systematic examination of the scientific and practical problems that can arise in adapting the new technology of laser beam transmission within the atmosphere to such uses as laser radar, laser beam communication, laser weaponry, and the developing fields of meteorological probing and laser energy transmission, among others. The articles in this book were prepared by specialists in universities, industry, and government laboratories, both military and civilian, and represent an up-to-date survey of the field.

The physical problems encountered in such seemingly straightforward applications of laser beam transmission have turned out to be unusually complex. A high intensity, highly focused beam traversing the atmosphere causes heat-up and break-down of the air, changing its optical properties along the path, so that the process becomes a nonsteady interactive one. Should the path of the beam include atmospheric turbulence, the resulting nonsteady degradation obviously would affect the beam's coherence adversely. An airborne laser system unavoidably requires the beam to traverse a boundary layer or a wake, with complex consequences. These and other effects are examined theoretically and experimentally in this volume.

In each case, whereas the phenomenon of beam degradation constitutes a difficulty for the engineer, it presents the scientist with a novel experimental opportunity for meteorological or physical research and thus becomes a fruitful nuisance!
END
5-87
DTIC