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Preface

This study analyzed the relative motion between

satellites arranged as a constellation in an attempt to

quantify the magnitude of any gravity induced relative

motion. It was felt that knowledge of this type of motion

could be used by designers of satellite constellations

for sizing of propulsion systems for station-keeping

and/or for deciding what orbital parameters to use for the

satellites within the constellation.

Motion was analyzed between two satellites in

circular orbits at altitudes ranging from 300 km to

6000 km and orbit inclinations from 400 to 80*. The J2

gravitational harmonic was used as the perturbing force,

and results from 18 different test cases showed that rela-

tive motion does occur as an undamped oscillation in range.

However, the magnitude of this oscillation under J 2 per-

turbations is small enough that the relative motion need

not be applied as a constraint on satellite constellation

design. The method employed does provide a means of

analyzing other perturbing forces, and this could be done

to further substantiate the findings of this study.

I wish to extend my thanks to Captain Keith Jenkins

from the Systems Concepts Group at AFWAL for identifying

this topic as an area which needed investigation. I also

ii

'I



want to thank Lt Col Joe Widhalm for agreeing to be the

advisor for this thesis even though I wasn't a "real

astro guy."

Mark J. Buechter
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Abstract

Current plans for systems to be used for ballistic

missile defense sometimes call for using satellites that

are placed so as to form a constellation that can continu-

ously monitor specified areas of the Earth's surface or

direct weapons against attacking missiles or warheads.

This study analyzes the relative motion between satellites

within such a constellation under gravitational perturba-

tions caused by the Earth's equatorial bulge (oblateness).

Relative motion is calculated using a system of equations

which describes the variation of relative orbital elements

between two satellites. The cases studied simulate the

position of two satellites that are located within a con-

stellation containing ten orbi'ts with ten satellites in

each orbit. The orbits investigated were all circular with

altitudes ranging from 300 km to 1000 km and inclinations

ranging from 40 degrees to 80 degrees. Range between the

satellites was oscillatory with deviations from the average

range of up to 5 km. The results vary only slightly with

changes in orbital inclination or altitude. These results

show that the relative motion between satellites in a low

altitude constellation caused by the Earth's oblateness

does not significantly affect the initial geometry of the

constellation.

*vii
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AN ANALYSIS OF GEOPOTENTIAL EFFECTS

ON SATELLITE CONSTELLATIONS

I. Background

President Reagan, in a speech given in March of

1983, proposed that the scientific community of the United

States help develop a capability for ballistic missile

defense (BMD) to render nuclear weapons "impotent and

obsolete" (3:39). This proposal touched off debate

throughout the country's scientific community as to how

technologically achievable or economically feasible this

type of defense system would be.

Both sides in this argument have put forth pro-

posals on how such a system for BMD should be structured.

All of these options call for some type of airborne or

spaceborne sensor system to detect incoming missiles/war-

heads, but the various options differ on how much of the

actual weaponry should be placed in orbit.

When orbiting weapons are needed they must be

placed in an arrangement that allows continuous coverage

of those areas of the Earth's surface over which a ballis-

tic missile attack might occur. When several satellites

are placed into orbits so that they can provide comple-

mentary capabilities for sensor coverage, data relay or

1 ]
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any other purpose, the satellites' position relative to

one another will need to be specified. Such arrangements

of satellites are commonly referred to as constellations

and generally consist of several orbits, all of equal

geometry and inclination, with their lines of nodes spaced

equally around the Earth's equatorial plane. Each orbit

contains several satellites evenly spaced throughout.

Figure 1 illustrates such a constellation of satellites.

Fig. 1. Illustration of a Satellite Constellation

The satellites may be the actual weapons or in some cases

they are mirrors used to redirect a laser beam emanating

from a surface based weapon. In either case, the relative

positions of the satellites within the constellation will

determine the coverage the weapon has over the Earth's

surface. Should the satellites' spacing within the

2
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constellation become disrupted there is the possibility

that a gap may occur in the weapons' coverage. This gap

would, of course, be u.-_desirable.

It appears, however, that none of the designers

of these constellations have looked at how perturbing

forces will affect the constellations. Since all of the

current proposals put the satellites at relatively low

altitudes, the orbits are considered near-earth and will

experience perturbations due to the Earth's non-spherical

shape. These perturbations could result in oscillations

of the relative positions of the satellites within the con-

stellation that may be inconsequential or perhaps will

lead to total disruption of the constellation.

Research Problem

It is necessary to know how the actual gravita-

tional field of the Earth will affect the movement of satel-

lites within a constellation to determine if there are

adverse changes in the weapons coverage of the total system.

There may be some altitudes, inclinations or combinations

that need to be avoided because they tend to accentuate

the relative motion between the satellites, or that can

be capitalized upon to lessen any relative motion problem.

If some constellation geometries are deemed vital for the

weapon's coverage but run contrary to the satellites'

natural motion, appropriate propulsion systems will need

to be included in the satellites' design.

3



Previous Research

A literature search for previous research con-

cerning satellite motion within a satellite constellation

revealed nothing directly addressing this problem. How-

ever, this initial screening did reveal work on the motion

of one satellite that is very close to another (7; 8).

This work was directed at applications such as the proposed

free-flying microgravity lab to be used with the U.S. space

station, but also appeared applicable to the satellite con-

stellation problem. The foundation of the analysis was

rendezvous theory, and since the rendezvous problem also

involves solving for the relative motion between two orbit-

ing objects, research into the solution methods for the

rendezvous problem seemed an appropriate starting point

for the constellation problem. Early studies of the

rendezvous problem give approximate solutions and deal

only with special conditions, but the more recent work

gives improvements on these techniques.

One of the earliest attempts at solving the rela-

tive motion problem inherent in the rendezvous of two

orbiting satellites was accomplished by Eggleston. In his

study, Eggleston looked at how to calculate the minimum

change in velocity needed to achieve rendezvous between

two satellites, and listed several sets of equations which

can be used to solve this problem depending upon the amount

4



of accuracy needed (4:27). However, this investigation

was limited to circular orbits about a spherical earth

(4:10).

Anthony and Sasaki further developed the solution

for the rendezvous problem by allowing the use of orbits

with small eccentricities and by including second-order

terms in the equations (1:1669). These additions to the

solution method allowed the problem to be solved for either

large or small relative distances (1:1673).

The research by Anthony and Sasaki, and Eggleston

provided only approximate solutions to the relative posi-

tion problem, but Lancaster (5:1878) showed how to solve

the problem exactly. Like the previously discussed works,

however, Lancaster's solution was also based on a spherical

earth assumption.

All of these methods for solving the relative motion

problem were based on assumptions that simplified the solu-

tion method. The one common assumption was that the satel-

lite was orbiting a spherical planet, and therefore the

gravitational field of that planet was uniform. Since the

Earth has many nonuniformities in its mass distribution,

the primary one being a bulging at the equator, an object

in orbit experiences perturbing forces as it passes over

different areas of the Earth's surface. To solve for the

true motion of the satellite when these forces are added

to the satellite's equations of motion requires the use of

5



a computer for numerical integration. Unfortunately, when

the two satellites of interest come close together, and

their position vectors become almost equal, much precision

in the solution is lost because of the requirement to

subtract these nearly equal vectors.

Nacozy and Szebehely developed a technique for

finding relative position and velocity using numerical

integration that retains the precision of the solution when

two nearby satellites are studied (7:449). They used the

basic technique outlined by Eggleston, but improved it

to allow for non-circular orbits (7:449). Nacozy and

Szebehely's study was done in conjunction with a study by

McKenzie in which eight different sets of equations were

evaluated for computational efficiency (6:10). Efficiency

was measured by the number of computations done by the

computer during numerical solution of the equations. The

equations identified in McKenzie's report as Set 6 apply

the Nacozy-Szebehely technique to the classic method of

Cowell for perturbations and are applicable to the case

where the two satellites are in nearly equal orbits (6:15).

Van der Ha's work, the foundation of which can be

traced to all of the previously cited works, developed

equations for the motion between two satellites requiring

no simplifying assumptions. Van der Ha's technique trans-

forms the satellites' position and velocity vectors into

six elements which completely describe the relative

6
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motion (8:287). There are no limitations on the eccentrici-

ties or inclinations of the orbits, or on the distance

between the satellites. Van der Ha's study was aimed at

the motion between a space station and a subsatellite

launched from the station and included perturbations for

a non-spherical earth and for air drag (8:287). Since the

non-spherical effects did not produce significant changes

from the spherical assumption due to the closeness of the

satellites, the test cases studied mostly dealt with

changes due to air drag (8:299). Nonetheless, the solution

method developed by Van der Ha was also applicable to this

author's study.

Research Objective

The objective of this study was to determine if

perturbations of the orbits of satellites arranged as a

constellation cause relative motion between the satellites.

If there is relative motion, the magnitude must be deter-

mined and the stability of the motion must be evaluated to

see if there is any tendency for the satellites to stay in

the same general relative position or to drift even further

apart.

Scope of the Research

Because the current proposals for satellite con-

stellations to be used for ballistic missile defense (BMD)

call for low altitude orbits (less than one earth radius),

7



irregularities in the Earth's gravitational field will be

a major perturbing force. Therefore, this investigation

focused on gravitational perturbations and, more specifi-

cally, was limited to inclusion of the primary oblateness

term (the J2 harmonic) from the mathematical expansion of

the geopotential.

Captain Keith Jenkins from the Air Force Wright

Aeronautical Laboratories, who originally posed this

research question, noted that a constellation of 10 circular

orbits with 10 satellites per orbit at an altitude of

1000 km is being used as a baseline by many BMD designers.

This constellation geometry was used as a baseline from

which several test cases were drawn. The basic investiga-

tion looked at the relative motion between two adjacent

satellites in the same orbit, and at the motion between

two satellites in different, but adjacent, orbits. Then

the altitude and inclination of the orbits were varied to

determine the sensitivity of the results to these param-

eters.

I



II. Methodology

Discussion of Method Used

The method chosen to conduct this study of relative

motion between satellites in a constellation was to

numerically integrate a set of equations of motion for one

satellite and a set of equations describing the change in

the state of the second satellite with respect to the first.

This method is described by Vander Ha (8) and major points

will be described here. The core of this method is the

development of a set of difference elements between the two

satellites, and equations for the time rate of change of

these difference elements. Difference elements are used

to avoid losing precision in the solution caused by the

subtraction of two nearly equal numbers (8:293). This

methodology allows analysis of relative motion regardless

of how close the two satellites approach one another.

Therefore, this methodology could be applied to satellite

constellations containing large numbers of satellites as

has been suggested by the distributed assets, or "swarm,"

concept for deployment of space-based ballistic missile

defenses.

To allow for circular and/or equatorial orbits,

the state of the satellites is described using a set of

9



orbital elements different from the classical elements.

These elements are listed as Equation (1).

a = (h,f,g,j,k,L) (i)

These elements are written in terms of the classical

elements as

h = /7

f = e cose

g = e sine

j = tan(i/2)cos

k = tan(i/2)sin2

L = 6 + w + 2 (2)

where 2 is the semi-lattus rectum, e is the eccentricity,

i is the orbit's inclination, . is the longitude of the

ascending node, . is the argument of perigee, and is the

true anomaly of the satellite.

Conversely, the classical elements can be written

in terms of the elements in Equation (1) as

2-= h2 /;

f2 2e f + g

=arctan (g/f)

i = 2 arctan( j2 + k2

= arctan(k/j)

w=LL -ei 1 0(3)

10



To avoid loss of precision when solving for rela-

tive motion, a set of difference elements is used, and are

written as

Aa = (Ah,Af,Ag,Aj,Ak,AL) (4)

These difference elements are defined as the dif-

ference between the orbital elements of the two satellites

where one of the satellites is designated as the reference.

The relationship between the positions of the two satel-

lites is shown in Figure 2 where the coordinate system

OX1 X2 X3 is an inertial frame centered at the Earth's mass

center and the X1 and X2 axes are in the equatorial plane.

_. SA T C..

"SAT J

0

X2

Fig. 2. Relationship Between Position
Vectors of Two Satellites
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• ".'- . , "- .. "","V ,""" ,"-, -"'" , ."-"-, ."-" , ." '-. . -"""", v . " . ,',',. .. ,, . . , .v -....'","11,',,"
. J ' e # . , • -" - * '- " . " . ' " "% " " ' € " * " ' , '% ' ' S



Therefore one can write

r2 r1 + r (5)

or

Ar r 2 - r 1(6)

This relationship can also be applied to the ele-

ment sets so that

a = a 2  - a1  (7)

and therefore

Ah =h 2  h 1

Af = 2 f 1

Ag = 92 -1

APj = j2 - l

1k = k - k 1

'L = L - L1  (8)

A set of six differential equations can be written

describing the change in the orbital elements with time

which include the components of the perturbing force on

the satellite. These force components are with respect

to a reference frame centered at the satellite with the

x-axis along the position vector from the Earth to the

satellite, the z-axis along the orbit normal, and the

y-axis in the direction which completes the right-handed

triad as shown in Figure 3.

12



X3i

Fig. 3. Satellite Centered Reference Frame

Development of these equations is through the

technique of variation of parameters, and the six equations

are as follows (8:292)

h = rF
y

f =-hg/r2 + 2hFy /P

2
g = hf/r + hF x/p + grF y/h

j = rF cos L (l+j 2+k 2 )/(2h)z .

k = rF z sin L (l+j 2 +k2 ) /(2h) A.

2
h/r + rFz (j sin L-k cos L) /h (9)

where

r = h 2/[(l+f)]

and F , F and F are the components of the perturbingx y z

force along the corresponding local axes shown in Figure 3

(8:292).

13



The equations for the variation of the relative

elements are found by subtracting the equations for the

two satellites. For example

Lf = f2 - fl = -A(hg/r 2) + 21(hFy )/(0)

Expansion of this equation without loss of pre-

cision is done by using the following procedures where

x and y denote arbitrary variables (8:293),

I(x 2 ) = (2x+Ax)l'x

L(xy) = (y+A y)Ax + x y

L (xyz) = (z+&z)A(xy) + xyz

A (x/y) = [Ax- (x/y)Ay] / (y+Ay) (11)

A partial application of these rules to Equa-

tion (10) leads to

2 2f -[ (g+-,g) (h/r ) + hlg/r I + 2'(hF )/ (12)

where the first term in Equation (10) has been grouped so
2

that x = h/r and y = g for use with Equations (11).

Similar applications of these rules allow one to

derive the following full-precision equations for the

variation of all of the difference elements (0:293)

Ah = (rFy

2 2Af = -[(g+g)A(h/r 2 ) + hAg/r 2 ] + 2-(hF y)/U

14
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Ag = [(f+Af)A (h/r 2 ) + hAf/r 2 ] + A (hF )

+ [ (g+Ag)AGy + Gy Ag]

Aj [ (I+J+AJ)AGz + GAJ] cos (L+AL)

+ G (1+J)A (co L)z

Ak = (I1+J+AJ)AGz + GAJ sin (L+L)

+ G (L+J)I (sin L)
2z

AL A(h/r 2 ) + (j sin L-k cos L) L G + (G +,G z sin(L+!L)

- k cos (L+AL) + jA (sin L) - kA (cos L)]

(13)

where
.2 2

J= 3j + k

G. = rF./h, j=y,z3 3

(2 2iJ i j2)+ (k 2

1Gi = [1 (rF.) - G.Ah]/(h+Ih), i=y,z

Lr = [A (h 2 ) h 2Af/(1+f)]/[ (l+f+!f)]

A(h/r 2 )= [Ah-h (r 2 ) /r 2 / (r+Ar) 2

It should be noted that the difference force com-
ponents -'F x , IF and IF should not be interpreted as the

y z-
vector difference of the two perturbing forces, 2 - Fi,

written in the local reference frame of Satellite 1.

Rather, each difference force component is simply the

scalar difference of the corresponding components of each

15



vector written in its own local frame (8:292). For

example, if the local unit vectors for Satellite 1 are

x,y,z and the local unit vectors for Satellite 2 are i,j,k,

the local perturbing forces would be written as

F X x + Y y + Z z

F 2 i+Jij +K k (14)

The difference force components are then

F =I - X
x

F =J - Y
y

F K- Z (15)z

The perturbing forces themselves are derived from

an equation for the potential energy of the satellite.

This potential function follows from Poisson's equation

and can be written in spherical coordinates as

n

V(r, ,) _ GM - (R /r)n pm(cos
n=O m=0

x [S sin (m t) + C cos (mn)] (16)

where r is the length of the position vector from the

center of mass of the Earth to the satellite, is the

co-latitude and is the longitude as shown in Figure 4

(9:57).

16
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X3H - i

Fig. 4. Definition of Co-latitude and Longitude

Other constants appearing in the geopotential

function are the universal gravitational constant, G, the

mass of the Earth, M, and the Earth's mean equitorial

radius, R e

ew

The perturbing force is then calculated as

F = -VV

The potential function can be written in terms

of the inertial cartesian coordinates by observing from

Figure 4 that cosY = X3ir. Thus Equation (16) can be

written

V=-3,R J (X 3 /r) 2 (2r 3 (17)

where Pi GM.

17 .
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Solving for force yields

-2 -2- 55
F = -7V = -;:[1-5(X 3 /r) Ir/r - 2-X 3 U3 /r (18)

where = 3ujR 2/2.
2we

However, the quantities F , F and F needed inx y z

Equations (5) are components of the force vector written

in the local frame, so the force vector must be transformed

into the local reference frame. This transformation can

be written as

uX1  U11
uy [A] (19)

where U. are the components of a vector in the inertial

frame and ui are the local frame components. The com-

ponents of the transformation matrix are (8:306)

11= k + cos Lii 13

-A12 = -J 413 + sin L

13 = 2 (j sin L - k cos L) / (l+J)

"21 = ka23 - sin L

22 = -J423 + cos L

O23 = 2(j cos L+k sin L) / (l+J)

31 = 2k(l+J)

18



32 = -2j/ (l+J)

33 = (l-J)/(l+J) (20)

Performing this transformation yields (8:298)

F x = - (1- 3, 12 )/r 4
24x 1

Fy -l13A23/r

Fz  -2-a 13_ 33/r (21)

The difference components are found using the

relationship

F= (F2) - (F) ,i = x,y,z (22)
i 2i

and the relationships of Equations (11).

'F = [ _ 2) i 3 2 , r4 4 4
F 2 + ( 13l3 2 (r )/r 4 ]/(r+Ir)

F=2 [( 4 )
'Fy l2 , 13-23 (r )/r - (13'23 )]/(r+*r)

IF =2& ( 4/r 4  ( 4
z 13 33 ) / (13 33) 1 / (r+Ir) (23)

Implementation of Equations

To solve the equations for the variation of the

orbital elements and the difference elements a computer

program was written using Fortran 77 and a numerical inte-

gration package. The numerical integrator employed was a

fourth order predictor-corrector called HAMING which was

19



provided by Dr. William Wiesel of the Air Force Institute

of Technology, Wright-Patterson Air Force Base, Ohio.

This program provided a time history of the orbital ele-

ments of Satellite 1 and of the difference elements, and

was verified using two test cases whose results could be

predetermined. Both verification tests involved unper-

turbed motion.

The first test case used two satellites in the same

orbit but separated by 36' of true anomaly. The orbital

parameters in terms of classifical elements were

1 6778 km =0'

e =0 =0

i= 450 'l - 200

2 -5602

where subscripts denote parameters for the first and

second satellites. For unperturbed motion, the separation

between the satellites should remain constant because the

satellites are in circular orbits. This was noted by

observing the distance between the satellites at each time

step during the integration. The initial separation dis-

tance was calculated using the equation

R 2 ;sin [ (c 2 - 1 )/2) = 4189.034 km (24)

where R is the range between the two satellites.

20



When this first test case was run on the computer

program, the distance between the satellites did remain

constant at the predicted value of 4189.034 km.

The second verification test case consisted of

having two satellites in circular orbits of equal altitude

but at different inclinations. The two orbits intersected

along their lines of nodes and the test run was begun with

both satellites together at the ascending node. The

initial conditions were

*' 1 = 6778 km 0= 0

e = 0 Q = 00

i = 300 e= 00

i 2 = 600

For unperturbed motion the range between the two

satellites will oscillate from the initial condition of

zero to a maximum value after one-fourth of a period and

back to zero after one-half period. This sequence will

repeat every half period. The relationship between the

satellites after one quarter period is illustrated in

Figure 5.

The range at this time is

R = 2 Zsin[ (i 2 -i 1 ) /2] = 3508. 551 km (25)

The time history of this test case is shown in Figure 6.

21
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Since there was no real data against which the

computer program's output could be compared for perturbed

relative motion, the author attempted to verify Van der Ha's

force equations by deriving the perturbing force components

expressed in the satellite's local frame. However, the

force components as expressed by Equations (21) could not

be obtained, so intermediate solutions for F , F y, and Fx yz

were implemented in the computer code.

Several cases were run using this new coding for

the perturbed force components and the original version of

the computer program which used the expressions shown in

Equations (21). Identical results were obtained from

both versions of the program, so Equations (21) were con-

sidered to be accurate and coded properly.

Since the results of the verification runs were

as anticipated and the code appeared to contain no syntax

errors, the model was considered to be verified and ready

for use.
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III. Discussion of Results

With the equations programmed and the computer

routine verified for proper execution, a series of test

cases was developed to examine the relative motion problem

and its sensitivity to changes in orbit altitude and

inclination. As mentioned in the opening chapter, two

basic scenarios were used to evaluate relative motion

within a constellation: two satellites in the same orbit

but separated by some amount of true anomally, and two

satellites at identical positions within two different

orbits. In the second scenario the orbits were of identi-

cal geometry but had different ascending nodes. While the

second scenario geometry could result in satellites being

in orbits that would result in a collision (polar orbits),

this situation was not investigated. The baseline orbit

investigated was circular with a radius of 7378 km and

inclined 60 degrees to the equatorial plane.

First Scenario

For the first scenario the two satellites were

placed 36 degrees apart within the orbit and the relative

motion calculated for ten orbits. The difference in true

anomally of 36 degrees between the satellites corresponds

to the spacing between te. satellites equally spaced within

one orbit. The results of this test case using the

24
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baseline orbit are shown in Figure 7, where range is simply

the magnitude of the relative position vector between the

two satellites.

Using Equation (24) the unperturbed range was ,

calculated to be

R = 2 i sin[ (e2 -0 1 )/2] 
= 4560 km (26)

However, as shown in Figure 7 the average value around

which the range oscillates remains constant at the value

of 4624.5 km. The difference between these two values can

be explained in part by the way in which the initial

conditions for the computer program were calculated and

25

SI



partly by the fact that the perturbed orbit will be

slightly non-circular.

The initial conditions used as input to the main

computer program were established by first defining the

initial orbit and the satellite's position within it using

the classical orbital elements (7,e,i,,,-). These orbital

elements, transformed into the element set and defined in

Equation (1) and the equations for the variation of the

elements, Equations (13), were then integrated for one-

tenth of a period. The values for the orbital elements at

this time were used as the initial conditions for the first

satellite. Integration for another one-tenth of a period

yielded another set of orbital elements to use as initial

conditions for the second satellite. This was done to

ensure that the initial orbital elements for both satellites

were in the same perturbed orbit. A vector of these orbital

elements, (a 0) and (a) , was then used as the initial102

state vector for the main computer program.

However, it was not possible to obtain a and a
0 1 2

exactly one-tenth of a period apart because of the inte-

gration step size. For example, the total period for an

unperturbed circular satellite is found using the equation

TP = (2-/ ) r 1.5 (27)

where r is the radius of a circular orbit. For an orbit

with a radius of 7378 km the period will be 6307 seconds.
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If one-tenth of this time is rounded off to 630 seconds,

there is a round-off error of .7 seconds which can be

transformed into an angular error by multiplying by the

angular velocity of the satellite. Angular velocity is

calculated as follows:

SAT = 360'/6307 sec = .05708 deg/sec (28)

Multiplying SAT by the round-off time yields the angular

error.

-(t)( -SAT

= (.7 sec)(.05708 deg/sec) = .03996 deg (29)

The relationship used in Equation (24) then yields the

range error.

R = 2 r sin(I-/2)

= 2 (7378 km) sin (.10998) = 5.15 km (30)

While this particular value is small, it does partially

account for the difference between the unperturbed range

and the perturbed result.

A further explanation of this discrepancy lies in

the evolution of the orbit's eccentricity over time. The

time variation of eccentricity under any arbitrary per-

turbing force is given by the equation (2:401)
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where n is the mean motion, V/a 3 , anc a is the length

of the semi-major axis of the orbit. While this equation

has a singularity when eccentricity is zero and therefore

cannot be implemented to use with circular orbits, it does

show that if there are any force components in the local

x-y plane then the eccentricity of the orbit will change

over time. For any non-circular orbit one would then

expect the relative position to change with time, even

for unperturbed motion. Values of eccentricity calculated

during the baseline case run were on the order of 10 to

10-4

To determine how much of the range oscillation

shown in Figure 7 is attributed to the chancge in the orbit's

eccentricity, a case was run using a typical value of

eccentricity from the baseline run. The initial condi-

tions for this non-circular case were the same as the

baseline (r = 7378 km, i = 60, 2 - :l = 360) except for

the eccentricity which was set at .001. The results are

shown in Figure 8.

Comparison of Figures 7 and 8 shows that the out-

comes have the same trend for both the initially circular,

perturbed case and the slightly eccentric, unperturbed

case. From this comparison one can conclude that the
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change in range between two satellites orbiting within the

same orbit is a result of the oscillation in the orbit's b

eccentricity caused by the Earth's oblateness perturbation.

Examination of Figure 7 also reveals a tendency

for the range oscillations to be nonsymmetric about the

average value rather than being purely sinusoidal.

Equation (31) shows that the time rate of change in the

orbit's eccentricity is a function of the satellite's true

anomally, (3. However, true anomally is based upon the

argument of perigee, which will also change with time when

the orbit is perturbed as shown in the next equation

(2:405).
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dw _ -/ Cos e F + s e1 + 1 F
dt nae x eh l+e cos )]Fy

r cot i sin (+-) (32)

2 2 Z
n a le

As with Equation (31), this equation is unstable

when eccentricity is zero, but serves to show that the

argument of perigee is influenced by local force components

and will change over time. The result of gravitational

perturbations on the argument of perigee is a rotation of

the line of apsides. The magnitude and direction of this

rotation depends upon the orbit's radius and inclination

(2:158). Because of the apsidal rotation, it was hypo-

thesized that the location of the asymmetry in the plot

of range versus time was dependent upon where the argument

of perigee was defined in the initial conditions.

To test this hypothesis the baseline case was run

several times using different initial values for the

argument of perigee, but with the satellite always at the

same starting point in the orbit. However, the results

from all of these test cases yielded the same plot for

range versus time, leading to the conclusion that the

asymmetry in the range versus time plot was independent

of the argument of perigee. Therefore, several additional

test cases were formulated that used a common argument of

perigee but started with the satellites at various locations
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throughout the orbit. Calculation of where the asymmetry

and the maximum/minimum range values occurred relative to

the ascending node showed no consistent location for any of

these three conditions.

The only definite conclusions which can be drawn

from this series of test cases are that the range between

two satellites located in the same orbit is oscillatory,

the oscillations repeat with a frequency equal to one

orbital period, and the magnitude of the oscillations

neither damps out nor diverges with time.

To analyze the sensitivity of the baseline results

to variations in orbital parameters, several test cases

were run using different combinations of orbital radius

and inclination. The initial conditions for all of the

first scenario orbits are summarized in Table I.

The results for all of these cases shcwed the same,.

general trend as the baseline case discussed previously.

Because the average value for the range between the satel-

lites was not equal to the calculated range for a separa-

tion of 36 degrees, the plots of range versus time are

difficult to compare directly. Therefore, to see the magni-

tude of the oscillations only, the results were normalized

by subtracting each test case's minimum range from the

calculated range at each time step during that run. These

normalized results are shown in Figures 9 through 11,

where squares indicate the 400 inclination cases, octagons
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TABLE I

INITIAL ORBITAL ELEMENTS, FIRST SCENARIO

Case e i 2w

17378 km 0 400 450 0

2* 7378 km 0 600 450 00

3 7378 km 0 800 450 0

4 6678 kmn 0 400 450 00

5 6678 km 0 600 450 0

6 6678 km 0 800 450 0

7 12378 km 0 400 450 00

8 12378 km 0 600 450 00

9 12378 km 0 800 450 0

*Baseline orbit.

C,

Z

(I C,

ICE

9*2/ II

Fig. 9.Normalized Range vs. Time; Cases 12,and 3
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indicate 60' cases and triangles indicate 80* cases. The

total magnitude of the oscillations ranged from 2.5 km to

6.1 km which, for all cases, is a deviation of less than

two-tenths of 1 percent of the average value.

Second Scenario

The second scenario involved evaluating the rela-

tive motion between two satellites in similar, but differ-

ent, orbits with ascending nodes spaced 36 degrees apart.

Again, this spacing equates to the ten orbit constellation

originally proposed as the baseline condition. Initial

conditions for the nine test cases run for the second

scenario are outlined in Table II, with Case 11 using the

baseline orbit conditions.

TABLE II

INITIAL ORBITAL ELEMENTS, SECOND SCENARIO

Case Z e i 2

10 7378 km 0 400 200 100 460

11* 7378 km 0 600 200 100 460

12 7378 km 0 800 200 100 460

13 6678 km 0 400 200 100 460

14 6678 km 0 600 200 100 460

15 6678 km 0 800 200 100 460

16 12378 km 0 400 200 100 460

17 12378 km 0 600 200 100 460

18 12378 km 0 800 200 100 460

* Baseline conditions.
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Fig. 12. Illustration of Second Scenario
Initial Conditions

Unlike the in-plane arrangements evaluated under

the first scenario, the range between satellites in differ-

ent orbit planes will oscillate between some maximum and

minimum value even for unperturbed motion. This can be

illustrated by a simple example.

Suppose two satellites are initially positioned

over the equator (at the ascending node) in circular orbits

that are both at 90 degrees of inclination. If the nodes

of the two orbit planes are separated by some amount, the

initial range can be visualized as illustrated in Figure 12.
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The range at this point can be calculated as

R = 2 r sin(LV2/2)

= 2 (7378) sin(18) = 4559 km (33)

As the satellites progress in their orbits from

this initial position, they will arrive over the pole

simultaneously after one-fourth of a period, at which time

the range between them will be zero. From this point the

range will again increase to a maximum as the satellites

reach the equator at the descending node. This pattern

will repeat every half period. For orbits at inclinations

other than 90 degrees, the same general pattern will occur

for range versus time but the minimum range value will be

greater than zero and dependent upon the inclination.

For the baseline orbits inclined at 60 degrees

with a radius of 7378 km, the minimum range was calculated

by finding the inertial position vectors for the two satel-

lites from the orbital elements after one quarter period.

This is done by transforming each position vector expressed

in its own perifocal reference frame into the inertial

frame (2:82,83) and then finding the magnitude of the

relative position vector. This calculation resulted in an

unperturbed minimum range of 2279.972 km for the baseline

case.

36

P P .



The results for the second scenario baseline case

are shown in Figure 13. The maximum range for this case

was 4559.543 km and the minimum was 2279.730 km.

Figure 14 is a plot of range versus time for the

unperturbed, baseline case. The maximum range for this

case was 2279.973 km and the minimum was 4559. 932 km.

Comparison with Figure 13 shows that both cases are stable

over time, with a difference between maximum and minimum

range of 2279.959 km for the unperturbed case and

2279.813 km with perturbations.

Because of the large excursions in range present

even in the absence of perturbations, the results are

somewhat difficult to interpret. Because the range rate

for the second scenario cases was always on the order of

hundreds or thousands of kilometers per second, it was

not possible to synchronize the results of the perturbed

and unperturbed cases to allow the deviations to be calcu-

lated. However, a comparison of the range versus time

plots for theperturbed and unperturbed cases shows that

the difference between these two cases is insignificant.

As was done with the first scenario cases, the

baseline case for the second scenario was tested for sensi-

tivity to changes in orbital altitude and inclination using

the initial conditions shown in Table II.

The results of these additional eight cases are

shown in Figures 15 through 17, and as with the baseline
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to 40 inclination
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cate 80 orbits. This indicates that the relative motion

is stable, and, as calculated 
for the baseline condition,

the deviations from two-body 
motion are minor.
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IV. Conclusions and Recommendations

Conclusions

The basic question this research effort attempted

to answer was whether the perturbations caused by the

Earth's non-uniform gravitational field on the relative

positions of satellites arranged as a constellation are

large enough to significantly alter the constellation's

operational capabilities. Relative motion was calculated

using a set of equations for the variation of the differ-

ence between the orbital elements of two satellites. These

equations allow the inclusion of any arbitrary perturbing

forces, and such forces are introduced into the equations

as components of the force vector expressed in a reference

frame centered at the satellite. The perturbing force

used for this study was the J2 harmonic term of the Earth's

geopotential function.

Two basic scenarios were evaluated for the study.

The first scenario looked at the relative motion between

two satellites orbiting in the same orbit plane, and the

second scenario calculated relative motion between satel-

lites in similar orbits but different orbital planes.

The results presented in the previous chapter show

only small oscillations in range between adjacent satel-

lites within one orbit or between satellites in adjacent
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orbits. The magnitude of the oscillations in all cases

was essentially equal regardless of the initial orbit or

the initial location of the satellite within the orbit,

and never exceeded more than .2 percent of the average

range value in any case investigated. This basic result

showed only minor deviations due to changes in altitude or

inclination.

Oscillations in range between two satellites which

provide some type of coverage, or footprint, on the Earth's

surface or upper atmosphere will result in an even smaller

oscillation of the footprint at the Earth's surface as

illustrated in Figure 18 where R is the range between the
p

subpoints of the satellites, R is the range between the%
5

satellites, re is the radius of the Earth, and r is the

length of the satellite's radius vector.

Figs18illationshi nrneBetween Sw atellites nge

proidean some tpofcRange, o footrint, ontheErh'

42.
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Because of similar triangles, Rp can be found from

the ratio

R 2 r sin (A/2)__P = e (34)
R 2 r sin (A/2)

so that

r I_Re (35)
p sr s

Similarly, oscillations in range between satellites will

result in oscillations in the range between the subpoints.

rR e
R = ,R r (36)p s

Since rs will always be greater than re, ARp will always

be less than .,R When combined with the fact that the

range oscillations are in no case larger than 4 km, the

effect of perturbation induced relative motion on a satel-

lite constellation appears to be insignificant. The

designer of a satellite constellation should be able to

handle motion of adjacent weapons or sensor footprints by

using only small amounts of overlap in the coverages.

Keeping in mind that the geopotential model used

in this study was only latitude dependent, the findings of

this investigation point to the conclusion that perturba-

tions caused by the Earth's non-uniform gravitational field

on the relative positions of satellites arranged as a
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constellation are insignificant and do not need to be con-

sidered as a constraint on the design of such constella-

tions.

Recommendations for Further Study

While the J2 harmonic used in the geopotential

model has the largest magnitude of any of the harmonic

coefficients, resonance caused by longitudinal variations

in the earth's gravity field are possible, but no longi-

tudinal dependence was modeled in this study. Therefore,

expansion of the geopotential model to include major

sectoral and/or tesseral harmonics provides an avenue for

further investigation of this problem which may have sig-

nificant results.
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Appendix: Geopotential Expansion Theory

The dominant cause of gravitational perturbations

on earth satellites is the bulge at the Earth's equator.

This physical anomally shows up in the geopotential expan-

sion of Equation (9) as the term for n=2, m=0, and can

be written as

2  0 3V GMRe (Cos) C20r

e '2 2cos

since sin(m:) vanishes and cos(m-) ecuals one for m=0.

The terms P (cos ) are known as the Legendren

polynomials, and for this case can be solved so that

0 2
P2 (cos (Jcos -1)/2 (A-2) W

Substituting this into Euuation A-] results In

the potential being a function of latitude only, and ter-s

of this type are known as zonal harmonics.

The harmonic coefficients C and S are derivedn J

empirically from satellite observations with coefficients
*1

of the form Cn0 usually written as J The reported value
nO n-3

of J2 is 1.0827x10 (9:290) with the values of all the

other harmonic coefficients being on the order of 106

or less. Thus the J harmonic has the largest effect on

gravitational perturbations. j
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Current plans for systems to be used for ballistic missile defense sometimes
call for using satellites that are placed so as to form a oonstellaticn that can
continuously monitor specfied areas of the Earth's surface or direct weapons
against attacking missiles or warheads. Ihis study analyzes the relative motion
between satellites within such a constellation under gravitational perturbations
caused by the Earth's equatorial bulge (otlateness). Relative motion is
calculated using a system of equations which describes the variation of relative
orbital elements between two satellites. The cases studied simulate the position
of two satellites that are located within a constellation containing ten orbits
with ten satellites in each orbit. The orbits investigated were all circular
with altitudes ranging from 300 km to 1000 km and inclinations ranging from
40 degrees to 80 degrees. Range between the satellites was oscillatory with
deviations from the average range of up to 5 km. The results vary only slightly
with changes in orbital inclination or altitude. These results sha,; that the
relative motion between satellites in a low altitude constellation caused by the
Earth's oblateness does not significantly affect the initial geometry of the
constellation. . + , .
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