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The Symposium on Neural Models of Sensory-Motor Control made possible by this

grant was held on August 19 and 20, 1986, at Harvard University as part of the annual

meeting of the Society for Mathematical Psychology. The Symposium was advertised by

the Society (see attached program) as well as by direct mailings from the Center for Adap-

tive Systems at Boston University (announcement attached). In addition, announcements

of travel scholarships for qualified junior scientists (graduate students and postdoctoral

fellows) were placed in several journals. The invited speakers included:

Professor Michael Arbib, University of Massachusetts at Amherst
Professor Daniel Bullock, Boston University
Professor Stephen Grossberg, Boston University
Professor John Hollerbach, Massachusetts Institute of Technology
Professor Scott Kelso, Florida Atlantic University
Dr. Lance Optican, National Institutes of Health
Professor Barry Peterson, Northwestern University
Professor David Robinson, Johns Hopkins University
Professor Gregor Sch6ner, Florida Atlantic University

I. SUMMARY OF THE SYMPOSIUM

The Symposium was divided into two sessions, each with four 50-minute presenta-

tions. The first session focused on neural models of the human oculo-motor system. a

system for which several advanced mathematical models are now available. Robinson de-

tailed a new model of the neural system for smooth pursuit (tracking-type) eye movements.

Optican presented new data and a model for adaptive control of ocular drift following sac-

cadic (ballistic-type) eye movements. Grossberg outlined a new model for several adaptive

components of the neural system for learning and maintaining accurate saccadic eye move-

ments. Finally, Peterson detailed experiments performed to constrain modeling of the

neural and computational linkage between the oculo-moror and the neck-motor systems.

The second session began with two papers on arm movement planning. Hollerbach

presented experimental and computational sti(lies indicating that human arm-movement
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planning probably occurs in joint-coordinates. Bullock then presented a neural model for

automatic trajectory formation in joint coordinates and related the model to a wide range

of experimental studies of arm-movement kinematics. To close the second session, Kelso

and Sch6ner presented studies of frequency-dependent phase transitions during rhythmical

finger movements of the two hands, and Arbib presented a wide-ranging discussion of issues

in physiological and computational studies of visually controlled locomotion in the presence

of barriers.

II. TRAVEL SCHOLARSHIPS

Besides reaching members of the Society for Mathematical Psychology, which has re-

cently begun to build a significant constituency with interests in network models (see

attached program), the Symposium offered a rare opportunity for ten junior scientists who

received travel scholarships funded by the grant. These junior scientists were:

Thomas Anastasio, Johns Hopkins Hospital
Rick Canfield, University of Denver
Barry Hughes, University of Wisconsin
Richard Ivry, University of Oregon
Dieter Jaeger, Un.versity of Michigan
Bruce Kay, Haskins Laboratories
Anne Luebke, Johns Hopkins School of Medicine
Lloyd Minor, University of Chicago
Kevin Munhall, Haskins Laboratories
Mark Nelson, California Institute of Technology

III. INTERACTIONS

Reactions from the junior scientists were very favorable. Several remarked that the

Symposium was among the most technically competent and informative that they had

experienced in any setting. Most salient to theri were the scope and precision of the

models and the seriousness of the treatment of adaptive brain properties by some of the

speakers. A number expressed intentions to pursue a niore quantitative tack in their

2



future brain studies, and several asked about further avenues for advanced training in

neural modeling. Finally, a number of the experimentalists volunteered to share new data

bearing on the predictions of some of the presented models.

Reactions among the speakers were also quite favorable. Several were quite excited by

unanticipated convergence towards common conclusions despite divergent research meth-

ods. Of course, speakers had been selected because of their shared dedication to compu-

tational models that are responsive to psychophysical and physiological data. However,

the speakers still represented a broad spectrum of backgrounds and predilections. Nev-

ertheless, several speakers were able to outline network solutions to problems posed by

prior speakers without any advance notice of the specifics of other speakers' presentations.

These spontaneous remarks increased the coherence of the Symposium and illustrated how

the same underlying neural circuitry is often manifested in diverse behavioral properties.

IV. PAPERS

Speakers were not asked to prepare papers for a formal publication because many

speakers were already overburdened with paper-preparation commitments. Several of the

speakers have nevertheless iupplied preprints or reprints that treat the topics of their

Symposium presentations. Typically, the paper's treatment is more ambitious than that

of the 50-minute presentation during the Symposium. The five papers supplied by Bullock

and Grossberg, by Grossberg, by Hollerbach and Atkeson, by Kelso, Sch6ner. and Scholz,

and by Optican and Miles are enclosed.

V. BUDGET

Most expenses associated with the Symposium were equal to or less than what had been

anticipated. Harvard University provided inexpensive dorrmitory accomodations for the

junior scientists, three junior scientists who had planned to come were forced by iinforseen

circumstances to change their plans. airfares were strongly discounted because participants
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made early reservations, and several participants unexpectedly came to the Symposium

from nearby locations in New England. As a result, $2941.15 remains in the Symposium

budget. A list of expenditures-to-date is attached.
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SYMPOSIUM EXPENDITURES

Travel Stipends for Speakers
Michael Arbib $460.80
Daniel Bullock $ 46.00
Stephen Grossberg $ 49.00
John Hollerbach $ 50.00
Scott Kelso $583.20
Lance Optican $343.94
Barry Peterson $382.38
David Robinson $347.08
Gregor Schdner $338.00

Total travel stipends for speakers: $2600.40

Travel Stipends for Junior Scientists
Thomas Anastasio $341.00
Rick Canfield $373.00
Barry Hughes $225.50
Richard Ivry $393.85
Dieter Jaeger $121.00
Bruce Kay $103.80
Anne Luebke $283.00
Lloyd Minor $293.00
Kevin Munhall $163.80
Mark Nelson $460.50

Total travel stipends for junior scientists: $2758.45

Other Expenses
Dinner for Speakers $ 200.00
Advertising and Mailing $1250.00
Photocopying $1250.00

Total other expenses: $2700.00

TOTAL EXPENSES: $8058.85



A Symposum at the Annual Met WX of the
Soety forMathematical Psychology

NEURAL MODELS OF SENSORY-MOTOR CONTROL

Co-sponsored by the
AFOSR Life Sciences Program

and the
Center for Adaptive Systems, Boston University

August 19-20, 1986
Harvard University

William James Hall, Room 1, 33 Kirkland Street
Cambridge, Massachusetts

AUGUST lg, P.M.:
1:30-2:20: David Robinson, Johns Hopkins University

"A model of the human smooth pursuit system"

2:20-3:10: Lance Optican, National Institutes of Health
"Adaptive suppression of post-saccadic ocular drift"
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3:25-4:15: Stephen Grossberg, Boston University
"Neural dynamics of adaptive sensory-motor control: Ballistic eye movements"

4:15-5:05: Barry Peterson, Northwestern University
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8:40-9:30: John Hollerbach, Massachusetts Institute of Technology

"Deducing planning variables from experimental arm trajectories:
Pitfalls and possibilities"

9:30-10:20: Daniel Bullock, Boston University and University of Denver
"Neural dynamics of planned arm movements: Invariants, synergies,
and trajectory formation"
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transitions in movement"

11:25-12:15: Michael Arbib, University of Massachusetts at Amherst
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A few travel scholarships for graduate ad postdoctoral students of motor-control are still
available. If interested, call Daniel Bullock (617-353-9482) as soon as possible. For further
information about the symposium. call 617-353-7857. Further information about the SMP
annual meeting is attached.



Le aa

j C0, a.a AM 017-"1

3 fa V

41 ~b C er2Ib. M-

a0 C 1

a~~V SP.M E :1
ow A~..~. "2 %"'~ M . * *- v.6

41 *e w C a-C 5s.
&b.O-. '.b. . .c I 1.A .5 0 I 4 C . s

I - U - 3,' b. b

a. A W2'

'a~

Cc31 M 8 ' £ =-.%~ 5

C! C 0 w C1

42 M - '- at 'a a as O 21
M U. Q.- -wbC

0- toa1a 0 3 03. .- _Ch .4

-A a. a~C

*~ ~ 40 ~ ~ .a a

4 C.

jh 2~. aa

I.;C I. I C ' -

az . I on a -- 0a-0 b. .0 b. 'c - 1 1 4 I I ~
t- w C Cu-

b. Mc --

A.: !0 ; del

IAI

A & : 4;



IW W WL 1 W

00

*1 a
c*

S ~ ~ ~ o abS .g * ;

a -a all

a~

c 0M = -- U! a g..0

402- 1-

C 40r
I U U a

1- . . U -
it 0 0 w t -~I a
a 9 a 0- C 4 C6 k

a bI . CA a

* at A

y . *, -, 0uc
3. an a

60 20 .0 a , so
,c 4. c~ I S l -i

b* A- ZO A- O f IU a so*
2 V C- C_ Of-l

.0le ~ CI .6,~ "0 OWw 0-

CC Vj, w' a a0 I I P

amI.g ca aC C- 0 0

-C 1.U~ 2 
U 

W% -

6.1~7 ha 3.P P

C.UH--
-~ mao - aU t N f



z,."waW ,, u o w r

a 
-a

b 
,-- ' -~

c /

1 0

/r

r. s

SO&.DIII S FIILD N~ o..N

;aa

semm 2 -wi c

' jJl

-17r 'hl: F '~



z -

*. z

z
zt2

dg! -Z z

== r-l - S-- S - -

- , BE

. .. . . . . .. . . . . . .

11111~ ~%



z fl f UW.------.-

pi z.~ z Z

Az x

~ ~ I

z Z

-~a f~-a

L.. C

N.. -



Sd

NEURAL DYNAMICS OF PLANNED ARM MOVEMENTS:

EMERGENT INVARIANTS AND SPEED-ACCURACY PROPERTIES

DURING TRAJECTORY FORMATION

by

Daniel Bullockt
Center for Adaptive Systems
Department of Mathematics

Boston University
Boston, Massachusetts 02215

and

Stephen Grossbergt
Center for Adaptive Systems
Department of Mathematics

Boston University
Boston, Massachusetts 02215

September, 1986

h

Supported in part by the National Science Foundation (NSF IST-84-17756).
t Supported in part by the Air Force Office of Scientific Research (AFOSR 85-0149 and

AFOSR F49620-86-C-0037) and the National Science Foundation (NSF IST-84-17756).
Acknowledgements: We wish to thank Carol Yanakakis and Cynthia Suchta for their

valuable assistance in the preparation of the manu-script and illustrations.

S,



TABLE OF CONTENTS

1. Introduction: Are Movement Invariants Explicitly Planned? 1
2. Flexible Organization of Muscle Groups into Synergies 3
3. Synchronous Movement of Synergies 4
4. Factoring Target Position and Velocity Control 6
5. Synchrony versus Fitts' Law: The Need for a Neural Analysis 7

of Synergy Formation
6. Some General Issues in Sensory-Motor Planning: 9

Multiple Uses of Outflow versus Inflow Signals
7. Neural Control of Arm Position Changes: 13

Beyond the STE Model
8. Gradual Updating of PPC's during Trajectory Formation 15
9. Duration Invariance during Isotonic Movements 18

and Isometric Contractions
10. Compensatory Properties of the PPC Updating Process 19
11. Target Switching Experiments: Velocity Amplification, 21

GO Signal, and Fitts' Law
12. Velocity Profile Invariance and Asymmetry 22
13. Vector Cells in Motor Cortex 24
14. Learning Constraints Mold Arm Control Circuits 28
15. Comparing Target Position with Present Position 29

to Gate Intermodality Learning
16. Trajectory Formation using DV's: Automatic Compensation 31

for Present Position
17. Matching and Vector Integration during Trajectory Formation 32
18. Intentionality and the GO Signal: Motor Priming 34

without Movement
19. Synchrony, Variable Speed Control, and Fast Freeze 36
20. Opponent Processing of Movement Commands 37
21. System Equations 38
22. Computer Simulation of Movement Synchrony and Duration Invariance 41
23. Computer Simulation of Decreasing Velocity Profile Asymmetry 42

at Higher Velocities
24. Why Faster-than-Linear or Sigmoid Onset Functions? 42
25. Computer Simulation of Velocity Amplification during 44

Target Switching
26. Reconciling Staggered Onset Times with Synchronous 44

Termination Times
27. Computer Simulation of the Inverse Relation between 46

Duration and Peak Velocity
28. Speed-Accuracy Trade-off: Woodworth's Law and Fitts' Law 47
29. Computer Simulation of Peak Acceleration Data 51
30. Updating the PPC using Inflow Signals during Passive Movements 52
31. Concluding Remarks 53

References 55
Appendix 1 63
Appendix 2 69

Appendix 3 71
Table 1 74
Table 2 75
Table 3 76
Figure Captions 77
Figures



ABSTRACT

A real-time neural network model, called the Vector Integration to Endpoint, or VITE,

Model, is developed and used to quantitatively simulate behavioral and neural data about

planned and passive arm movements. Invariants of arm movements emerge through net-

work interactions rather than through an explicitly precomputed trajectory. Motor plan-

ning occurs in the form of a Target Position Command, or TPC, which specifies where

the arm intends to move, and an independently controlled GO command, which speci-

fies the movement's overall speed. Automatic processes convert this information into an

arm trajectory with invariant properties. These automatic processes include computa-

tion of a Present Position Command, or PPC, and a Difference Vector, or DV. The DV

is the difference of the PPC and the TPC at any time. The PPC is gradually updated

by integrating the DV through time. The GO signal multiplies the DV before it is in-

tegrated by the PPC. The PPC generates an outflow movement command to its target

muscle groups. Opponent interactions regulate the PPC's to agonist and antagonist muscle

groups. This system generates synchronous movements across synergetic muscles by au-

tomatically compensating for the different total contractions that each muscle group must

undergo. Quantitative simulations are provided of the speed-accuracy trade-off known as

Woodworth's Law, of Fitts' Law, of isotonic arm movement properties before and after

deafferentation, of synchronous and "central error correction" compensatory properties of

isometric contractions, of velocity amplification during target switching, of velocity profile

invariance and asymmetry, of the symmetrization of velocity profiles at higher movement

speeds, of the automatic compensation for staggered onset times of synergetic muscles,

of vector cell properties in precentral motor cortex. of the inverse relationship between

movement duration and peak velocity, and of peak acceleration as a function of movement

amplitude and duration. It is shown that TPC. PPC. and DV computations are needed

to actively modulate, or gate. the learning of associative maps between TPC's of different



7.W7"R3?W. r ~f .W _r~rIW_-W-. W-0 W W Wn p -

modalities, such as between the eye-hand system and the hand-arm systein. By u1ing such

an associative map. looking at an object can activate a TPC of the hand-arm system. as

Piaget noted. Then a VITE circuit can translate this TPC into an invariant movement

trajectory. An auxiliary circuit, called the Passive Update of Position, or PUP. Model.

is described for using inflow signals to update the PPC during passive arm movements

due to external forces. Other uses of outflow and inflow signals are also noted, such as for

adaptive linearization of a nonlinear muscle plant, and sequential read-out of TPC's during

a serial plan, as in reaching and grasping. Comparisons are made with other models of

motor control, such as the mass-spring and minimum-jerk models.

I
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1. Introduction: Are Movement Invariants Explicitly Planned?

The subjective ease with which we carry out simple action plans-rotating a wrist-

watch into view, lifting a coffee cup, or making a downstroke while writing-masks the

enormously complex integrative apparatus needed to achieve and maintain coordination

among the thousands of sensors, neurons, and skeleto-motor units that contribute to any

act's planning and execution. Moreover, recent studies of the kinematics of planned arm

movements (Abend, et al., 1982; Atkeson and Hollerbach, 1985; Howarth and Beggs, 1981)

have shown that the integrative action of all these separate contributors produces velocity

profiles whose global shape is remarkably invariant over a wide range of movement sizes

and speeds. This raises a fundamental question for the theory of sensory-motor control,

and for the neurosciences in general: How can the integrated activity of thousands of

separate elements produce globally invariant properties?

Two broad species of answers to this question can be contemplated. The first includes

theories that posit the existence of a high level stage involving explicit computation and

internal representation of the invariant, in this case the velocity profile, as a whole. This

representation is then used as a basis for performing the desired action. Such theories have

been favored recently by many workers in the field of robotics, and at least one theory of

this type has already been partially formulated to accommodate kinematic data on human

movements: the "minimized Cartesian jerk theory" (Hogan, 1984: Flash and Hogan, 1985),

which is a special case of global optimization analysis. The second species of answers

includes theories in which no need arises for explicit computation and representation of

the invariant trajectory as a whole. In models associated with such theories, a trajectory

with globally invariant properties emerges in real-time as the result of events distributed

across many interacting sensory, neural, and muscular loci.

This article describes a theory of arm trajectory invariants that conforms to the latter

ideal (Bullock and Grossberg, 1986a). Our analysis suggests that trajectory invariants

are best understood not by focusing on velocity profiles as such. but by pursuing more

%#f*IW" d ~~~'?*V.
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fundamental questions: What principles of adaptive behavioral organization constrain the

system design that governs planned arm movements? What mechanisms are needed to re I-

ize these principles as a real-time neural network? Our development of this topic proceeds

via analyses of learned eye-hand coordination, synchronization among synergists. inter-

mediate position control during movement, and variable velocity control. These analyses

disclose a neural network design whose qualitative and quantitative operating characteris-

tics match those observed in a wide range of experiments on human movement. Because

velocity profile invariance, including the observed velocity asymmetry ignored by prior

models, is among the neural network's emergent operating characteristics, our work shows

that neither an explicit trajectory nor a kinematic invariant need be explicitly represented

within a motor control system at any time. Thus our work supports a critical insight

of workers in the mass-spring modeling tradition that movement kinematics need not be

explicitly pre-programmed. By the same token, our results reject a mass-spring model in

its customary form and argue against models based upon optimization theory. Instead we

show how a movement control system may be adaptive without necessarily optimizing an

explicit cost function.

To further support these conclusions, we use the neural model to quantitatively sim-

ulate Woodworth's Law and Fitts* Law. the empirically derived speed-accuracy tradeoff

function relating error magnitudes. movement distances and movement durations; isotonic

arm movement properties before and after deafferentation (Bizzi, Accornero. Chapple.

and Hogan. 1982. 1984: Evarts and Fromm. 1978: Polit and Bizzi. 1978): synchronous

and compensatory -central error correction" properties of isometric contractions (Freund

and Bfidingen, 1978: Ghez and Vicario, 1978; Gordon and Ghez. 1984. 1986a. 1986b.):

velocity amplification during target switching (Georgopoulos. Kalaska. and Massey, 1981):

velocity profile invariance and asymmetry (Abend. Bizzi. and .Morasso. 1982: Atkeson and

Hollerbach, 1985: Georgopoulos. Kalaska. and Massey. 1981: Beggs and Howarth, 1972:

Morasso. 1981: Soechting and Lacquaniti. 1981): the symmetrization of velocity profiles
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at higher movement speeds (Beggs and Howarth. 1972). vector cell properties in precen-

tral motor cortex (Evarts and Tanji. 1974: Georgopoulos. Kalaska. Caminiti. and Massey.

1982: Georgopoulos. Kalaska, Crutcher, Caminiti, and .Massey, 1984: Kalaska. Caminiti.

and Georgopoulos. 1983: Tanji an1d Evarts, 1976): the inverse relationship between move-

ment duration and peak velocity (Lestienne, 1979); and peak acceleration as a function of

movement amplitude and time (Bizzi. Accornero. Chapple, and Hogan, 1984). In addition.

the work reported here extends a broader program of research on adaptive sensory-motor

control (Grossberg, 1978, 1986a, 1986b; Grossberg and Kuperstein, 1986), which enables

functional and mechanistic comparisons to be made between the neural systems governing

arm and eye movements, suggests how eye-hand coordination is accomplished, and pro-

vides a foundation for work on mechanisms of trajectory realization which compensate for

the kinematical properties generated by variable loads and movement velocities (Bullock

and Grossberg, 1986b).

2. Flexible Organization of Muscle Groups into Synergies

In order to move a part of the body, whether an eye. head, arm, or leg, many muscles

must work together. For example, muscles controlling several different joints-shoulder,

elbow, wrist, and fingers-may contract or relax cooperatively in order to perform a reach-

ing movement. When groups of muscles cooperate in this way, they are said to form a

synergy (Bernstein, 1967, Kelso. 1982).

Muscle groups may be incorporated into synergies in a flexible and dynamic fashion.

Whereas muscles controlling shoulder, elbow, wrist, and fingers may all contract or relax

synergetically to produce a reaching movement, muscles of the fingers and wrist may form a

synergy to perform a grasping movement. Thus, one synergy may activate shoulder. elbow.

wrist, and finger muscles to reach towards an object. and another synergy may then activate

only finger and wrist muscles to grasp the object while maintaining postural control over

the shoulder and elbow muscles. Groups of fingers may move together synergetically to



play a chord on the piano, or separate fingers may be successively activated in order to

play arpeggios.

One of the basic problems of motor control is to understand how neural (ontrol struc-

tures quickly and flexibly reorganize the set of muscle groups that are needed to synergeti-

cally cooperate in the next movement sequence. Once one squarely faces the problem that

many behaviorally important synergies are not hard-wired, but are rather dynamically

coupled and decoupled through time in ways that depend upon the actor's experience and

training, the prospect that the trajectories of all synergists are explicitly preplanned seems

remote at best.

3. Synchronous Movement of Synergies

When neural commands organize a group of muscles into a synergy, the action of these

muscles often occurs synchronously through time. It is partly for this reason that the

complexity of the neural commands controlling many movements often goes unnoticed.

These movements seem to occur in a single gesture, rather than as the sum of many

asynchronous components.

Figure 1

In order to understand the type of control problem that must be solved to generate

synchronous movement, consider a typical arm movement of reaching forward and across

the body midline with the right hand in a plane parallel to the ground. Suppose for sim-

plicity that the synergist acting at the shoulder is responsible for across-midline motion.

that the synergist acting at the elbow is responsible for forward motion, and that the hand

is to be moved from points B1, B2, or B3 to point E. Figure 1 illustrates the effects of two

distinct control schemes that might be used to produce these three movements. In the first

scheme, the two synergists begin their contractions synchronously, contract at the same

rate. and cease contracting when their respective motion component is complete. This

typically results in asynchronous contraction terminations, and in bent-line movements.

4
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because the synergist responsible for the longer motion component takes longer to complete

its contribution. With this scheme, approximately straight-line motions and synchronous

contraction terminations occur only in cases like the B2-E movement, for which the com-

ponent motions happen to be of equal length. In the second scheme. the two synergists

contract, not at equal rates, but at rates that have been adjusted to compensate for any

differences in length of the component motions. This results in synchronous contraction

terminations. Normal arm movement paths are similar to those implied by the second

control scheme (e.g., Morasso, 1981) and experimental studies (Freund and Biidingen,

1978) have shown that contraction rates are made unequal in a way that compensates for

inequalities of distance.

What types of adaptive problems are solved by synchronization of synergists? Figure

1 provides some insight into this issue. Without synchronization, the direction of the first

part of the movement path may change abruptly several times before the direction of the

last part of the movement path is generated (Figure 1). This creates a problem because

transporting an object from one place to another with the arm may destabilize the body

unless one can predict, and anticipatorily compensate for, the arm movement's destabi-

lizing effects. which are always directional. In the same way, many actions require that

forces be applied to surfaces in particular directions. The first control scheme makes the

direction in which force is applied difficult to predict and control. Both of these problems

are eliminated by the approximately straight-line movement paths which become possible

,aen synergists contract synchronously. Finally, if the various motions composing a move-

ment failed to end synchronously, it would become difficult to ensure smooth transitions

between sequentially ordered movements.

In summary, the untoward effects of asynchrony place strong constraints on the mech-

anisms of movement control: Across the set of muscles whose synergistic action produces

a multi-joint movement, contraction durations must be roughly equal, and, because con-

traction distances are typically unequal. contraction rates must be made unequal in a way
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that compensates for inequalities of distance.

4. Factoring Target Position and Velocity Control

Inequalities of distance are translated into neural commands as differences in the total

amounts of contraction by the muscles forming the synergy, and thereby into mechanical

terms as the total amounts of change in the angles between joints (Hollerbach., Moore.

and Atkeson, 1986). In order to compensate for differences in contraction, information

must be available that is sufficient to compute the total amounts of contraction that are

required. Thus a representation of the initial contraction level of each muscle must be

compared with a representation of the target, expected, or final contraction level of the

muscle. A primary goal of this article is to specify how this comparison is made. Although

information about target position and initial position are both needed to control the total

contraction of a muscle group, these two types of information are computed and updated

in different ways, a fact that we believe has caused much confusion about whether only

target position needs to be coded (Section 7).

Another source of confusion has arisen because target position information is needed to

form a trajectory. This is the type of information which invites concepts of motor planning

and expectation. However tempting it may be to so infer, concepts of motor planning and

expectation do not imply that the whole trajectory is ezplicitly planned.

A second aspect of planning enters into trajectory formation which also does not imply

the existence of explicit trajectory planning. This aspect is noticed by considering that

the hand-arm system can be moved between fixed intital and target positions at many

different velocities. When, as a result of a changed velocity, the overall movement duration

changes, the component motions occurring around the various joints must nonetheless

remain synchronous. Since fixed differences in initial and target positions can be converted

into synchronous motions at a wide range of velocities, there must exist an independently

controlled velocity, or GO signal (Section 11). The independent control of target position
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commands and velocity commands is a special case of a general neural design which has

been called the factorization of pattern and energy (Grossberg, 1978, 1982).

5. Synchrony versus Fitts' Law: The Need for a Neural Analysis of Synergy

Formation

Our discussion of synchronous performance of synergies has thus far emphasized that

different muscles of the hand-arm system may need to contract by different amounts in

equal time in order to move a hand through a fixed distance. When movement of a hand

over different distances is considered, a striking contrast between behavioral and neural

properties of movement becomes evident. This difference emphasizes that synergies are

assembled and disassembled through time in a flexible and dynamic way.

Fitts' Law (Fitts, 1954; Fitts and Peterson, 1964) states that movement time (MT) of

the arm is related to distance moved (D) and to width of target (W) by the equation

2D

MT = a + blog 2 (),

where a and b are empirically derived constants. Keele (1981) has reviewed a variety

of experiments showing that Fitts' Law is remarkably well obeyed despite its simplicity.

For example, the law describes movement time for linear arm movements (Fitts, 1954).

rotary movements of the wrist (Knight and Dagnall. (1967), back-and-forth movements like

dart throwing (Kerr and Langolf, 1977), head movements (Jagacinski and Monk. 1985),

movements of young and old people (Welford. Norris. and Schock, 1969). and movements

of monkeys as well as humans (Brooks, 1979).

Equation (1) asserts that movement time (MT) increases as the logarithm of distance

(D) moved, other things being equal. The width parameter W in (1) is interpreted as a

measure of movement accuracy (Section 27). Although movement distance and time may

covary on the behavioral level that describes the aggregate effect of many muscle contrac-

tions. such a relationship does not necessarily hold on the neural level. %%here individual
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muscles may contract by variable amounts, or -'distances", in order to achieve synchronous

contraction within a constant movement time.

A fundamental issue is raised by this comparison of behavioral and neural constraints.

This issue can be better understood through consideration of the following gedanken exam-

pie. When each of two fingers is moved separately through different distances. each finger

may separately obey Fitts* Law. Then the finger which moves a larger distance should

take more time to move. other things being equal. In contrast, when the two fingers move

the above distances as part of a single synergy, then each finger should complete its move-

ment in the same time in order to guarantee synergetic synchrony. Thus either one of the

fingers must violate Fitts' Law, or it must reach its target with a different level of accuracy.

Kelso, Southard, and Goodman (1979) and Marteniuk and MacKenzie (1980) have exper-

imentally studied this type of synchronous behavior, and have documented within-synergy

violations of Fitts' Law.

Such examples suggest that Fitts' Law holds for the aggregate behavior of the largest

collection of motor units which form a synergy during a given time interval. Fitts' Law

need not hold for all subsets of the motor units which comprise a synergy. These subsets

may. in principle, violate Fitts' Law by travelling variable distances in equal time in order

to achieve synchirony of the aggregate movement. To understand how Fitts' Law can

be reconciled with movement synchrony thus requires an analysis of the neural control

mechanisms which flexibly bind muscle groups. such as those controlling different fingers.

into a single motor synergy. If such a binding action does not involve explicit planning of

a complete trajectory, yet does require activation of a target position command and a GO

command, then neural machinery must exist which is capable of automatically coverting

such commands into complete trajectories with synchronous and invariant properties. One

of the primary tasks of this article is to describe the circuit design of this neural machinery

and to explain how it works.

*:. -* * **. . .. **. *. ."*. .-* - - :



G. Some General Issues in Sensory-Motor Planning: Multiple Uses of Out-

flow versus Inflow Signals

Before beginning a mechanistic analysis of these circuits, we summarize several general

issues about motor planning to place the model developed in this article within a broader

conceptual framework. In Sections 8-13 and 27-29. a number of key experiments are

reviewed to more sharply constrain the theoretical analysis. In Sections 21-28 computer

simulations of these data properties are reported.

Figure 2

Neural circuitry automates the production of skilled movements in several mechanis-

tically distinct ways. Perhaps the most general observation is that animals and humans

perform marvelously dexterous acts in a world governed by Newton's Laws. yet can go

through life without ever learning Newton's Laws, and indeed may have a great deal of

difficulty learning them when they try. The phenomenal world of movements is a world

governed by motor plans and intentions, rather than by kinematic and inertial laws. A

major challenge to theories of biological movement control is to explain how we move so

well within a world whose laws we may so poorly understand.

The computation of a hand or arm's present position illustrates the complexity of this

problem. Two general types of present position signals have been identified in discussions

of motor control: outflow signals and inflow signals. Figure 2 schematizes the difference be-

,ween these signal sources. An outflow signal carries a movement command from the brain

to a muscle (Figure 2a). Signals that branch off from the efferpnt brain-to-muscle path-

way in order to register present position signals are called corollary discharges (Helmholtz.

1866: von Hoist and Mittelstaedt. 1950). An inflow signal carries present position infor-

mation from a muscle to the brain (Figure 2b). A primary difference between outflow

and inflow is that a change in outflow signals is triggered only when an observer's brain

generates a new movement command. A new inflow signal can, in contrast, be generated
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by passive movements of the limb. Evidence for influences of both outflow (Helmholtz.

1866) and inflow (Ruffini. 1898: Sherrington, 1894) has accumulated over the past century.

Disentangling the different roles played by outflow and inflow signals has remained one of

the major problems in motor control. This is a confusing issue because both outflow and

inflow signals are used in multiple ways to provide different types of information about

present position. The following summary itemizes some of the ways in which these signals

are used in our theory.

Although one role of an outflow signal is to move a limb by contracting its target

muscles, the laws which govern the muscle plant are not known a priori to the outflow

source. It is therefore not known a priori how much the muscle will actually contract

in response to an outflow signal of prescribed size. It is also not known how much the

limb will move in response to a prescribed muscle contraction. In addition, even if the

outflow system somehow possessed this information at one time, it might turn out to be

the wrong information at a later time, because muscle plant characteristics can change

through time due to development, aging, exercise, changes in blood supply, or minor tears.

Thus the relationship between the size of an outflow movement command and the amount

of muscle contraction is, in principle, undeterminable without additional information which

characterizes the muscle plant's actual response to outflow signals.

To establish a satisfactory correspondence between outflow movement signals and ac-

tual muscle contractions, the motor system needs to compute reliable present position

signals which represent where the outflow command tells the muscle to move. as well as

reliable present position signals which represent the state of contraction of the muscle.

Corollary discharges and inflow signals can provide these different types of information.

Grossberg and Kuperstein (1986) have shown how a comparison, or match, between corol-

lary discharges and inflow signals can be used to modify, through an automatic learning

process, the total outflow signal to the muscle in a way that effectively compensates for

changes in the muscle plant. Such automatic gain control produces a linear correspon-
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dence between an outflow movement commanid and the ailiount of muscle contraction even

if the muscle plant is nonlinear. The process which matches outflow and inflow signals to

linearize the muscle plant response through learning is called adaptive linearization of the

muscle plant. The cerebellum is implicated by both the theoretically derived circuit and

experimental evidence as the site of learning.

Given that corollary discharges are matched with inflow signals to linearize the re-

lationship between muscle plant contraction and outflow signal size, outflow signals can

also be used in yet other ways to provide information about present position. In Sections

17-23, it is shown how outflow signals are matched with target position signals to generate

a trajectory with synchronous and invariant properties. Thus outflow signals are used in

at least three ways, and all of these ways are automatically registered: They send move-

ment signals to target muscles; they generate corollary discharges which are matched with

inflow signals to guarantee linear muscle contractions even if the muscle plant is nonlinear:

and they generate corollary discharges which are matched with target position signals to

generate synchronous trajectories with invariant properties.

Inflow signals are also used in several ways. One way has already been itemized. A

second use of inflow signals is suggested by the following gedanken example. When you are

sitting in an armchair, let your hands drop passively towards your sides. Depending upon

a multitude of accidental factors, your hands and arms can end up in any of infinitely many

final positions. If you are then called upon to make a precise movement with your arm-

hand system. this can be done with the usual exquisite accuracy. Thus the fact that your

hands and arms st,4rt out this movement from an initial position which was not reached

under active control by an outflow signal does not impair the accuracy of the movement.

A wealth of evidence suggests, however, that comparison between target position and

present position information is used to move the arms. Moreover. as will be shown below.

this present position information is computed from outflow signals. In contrast, during the

passive fall of an arm under the influence of gravity, changes in outflow signal commands
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are not responsible for the changes in position of the limb. This observation identifies the

key issue: How is the outflow signal updated due to passive movement of a limb so that

the next active movement can accurately be made .? Since the final position of a passively

falling limb cannot be predicted in advance, it is clear that inflow signals must be used to

update present position when an arm is moved passively by an external force.

This conclusion calls attention to a closely related issiie that must be dealt with to un-

derstand the neural bases of skilled movement: How does the motor system know that the

arm is being moved passively due to an external force, and not actively due to a changing

outflow command? Such a distinction is needed to prevent inflow information from con-

taminating outflow commands when the arm is being actively moved. The motor system

must use internally generated signals to make the distinction between active movement

and passive movement, or postural, conditions. Computational gates must be open and

shut based upon whether these internally generated signals are on or off (Grossberg and

Kuperstein, 1986).

A third role for inflow signals is needed due to the fact that arms can move at variable

velocities while carrying variable loads. Because an arm is a mechanical system embedded

in a Newtonian world, an arm can generate unexpected amounts of inertia and acceleration

when it tries to move novel loads at novel velocities. During such a novel motion. the

commanded outflow position of the arm and its actual position may significantly diverge.

Inflow signals are needed to compute mismatches leading to partial compensation for this

uncontrolled component of the movement.

S;uch novel movements are quite different from our movements when we pick up a

familiar fountain pen or briefcase. When the object is familiar, we can predictively adjust

the gain of the movement to compensate for the expected mass of the object. This type of

automatic gain control can. moreover, be flexibly switched on and off using signal pathways

that can be activated by visual recognition of a familiar object. Inflow signals are used in

the learning process which enables such automatic gain control signals to be activated in

12



an anticipatory fashion in response to familiar objects (Bullock and Grossberg. 1986b).

This listing of multiple uses for outflow and inflow signals invites comparison between

how the arm movement system and other movement systems use outflow and inflow signals.

Grossberg and Kuperstein (1986) have identified and suggested neural circuit solutions to

analogous problems of sensory-motor control within the specialized domain of the saccadic

eye movement system. Several of the problems to which we will suggest circuit solutions in

our articles on arm movements have analogs with the saccadic circuits developed by Gross-

berg and Kuperstein (1986). Together these investigations suggest that several movement

systems contain neural circuits that solve similar general problems. Differences between

these circuits can be traced to functional specializations in the way these movement systems

solve their shared problems of movement,

For example, whereas saccades are ballistic movements, arm movements can be made

under both continuous and ballistic control. Whereas the eyes normally come to rest in

a head-centered position, the arms can come to rest in any of infinitely many positions.

Whereas the eyes are typically not subjected to unexpected or variable external loads,

the arms are routinely subjected to such loads. Whereas the eyes typically generate a

stereotyped velocity profile between a fixed pair of initial and target positions. the arms

can move with a continuum of velocity profiles between a fixed pair of initial and target

positions. Our analyses show how the arm system is specialized to cope with all of these

differences between its behaviors and those of the saccadic eye movement system.

7. Neural Control of Arm Position Changes: Beyond the STE Model

A number of further specialized constraints on the mechanisms controlling planned

arm movements are clarified by summarizing shortcomings of one of the simplest models

of movement generation. namely the Spring-to-Endpoint (,TE) Model recommended by

many theorists to formalize "mass-spring" properties of movement control (Cooke. 1980:

Feldman, 1974: Kelso and Holt. 1980: Sakitt. 1980). As Nichols (1985) has recently ob-
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served, many possible models address mass-spring properties of movement. Our criticisms

pertain only to the STE Model which is explicitly specified in this section. In particular.

no part of our critique denies that the peripheral motor system has mass-spring prop-

erties that may be critical to overall motor function. Indeed, in Bullock and Grossberg

(1986b), we analyse neural command circuits which exploit mass-spring muscle properties

to generate well-controlled movements.

The components of the STE Model for movement control can be summarized as follows.

Imagine that the eye fixates some object that lies within reach. To touch the object, it is

necessary t( .nove the tip of the index finger from its current position to the target position

on the object's nearest surface. The STE Model suggests that this is accomplished by

simply replacing the arm position command that specifies the arm's present posture with

a new arm position command that specifies the posture the arm would have to assume in

order for the index finger to touch the chosen object surface.

Instatement of the new arm position command is suggested to generate the desired

movement as follows. The arm is held in any position by balancing the muscular and other

forces (e.g., gravity) that are currently acting on the limb. Instatement of a new command

changes the pattern of outflow signals that contract the arm muscles. A step change in

the pattern of contraction creates a force imbalance that causes the limb to spring in the

direction of the larger force at a rate proportional to the force difference. The limb comes

to rest when all the forces acting on it are once again balanced. Despite its elegance. the

STE Model exhibits several deficiencies which highlight properties that an adequate control

system needs to have. We briefly summarize two fundamental problems: (1) confounding

of speed and distance control, and (2) inability to quickly terminate movement at an

intermediate position.

The first problem. the speed-distance confound, follows from the dependence of move-

ment rate on the force difference, which in turn depends on the distance between the

starting and final positions. This might at first seem to be a desirable property, because

14
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it appears to compensate for different distances in the manner needed to ensure synchro-

nization of svnergists (Section 3). However. consider also the need to vary the speed of

a fixed movement. An actor seeking to perform the same movement at a faster speed

would hve to follow a two-part movement plan: Early in the movement, instate a virtual

target position that is well beyond the desired end point and along a line drawn from

the initial through the true target position. This command will create a very large initial

force imbalance and launch the limb at a high speed. Then, at some point during the

movement, instate the true target position command, and let the arm coast to the final

position. This example illustrates that the STE Model requires a complex and neurally

implausible scheme for achieving variable speed control for movements of fixed length.

A second problem with the STE Model concerns the critical need to quickly abort an

evolving movement and stabilize current arm position. Such a need arises, for example,

when an animal wishes to freeze upon detection of a predator who uses motion cues to

locate prey. It also arises when an action, such as transporting a large mass. begins

to destabilize an animal's overall state of balance. At such times, it is often adaptive to

quickly freeze and maintain the current arm position. This is an easy task if the movement

command is never much different from the arm's present position. Freezing could then be

quickly achieved by preventing further changes in the currently commanded position. In

an STE Model. this simple freeze strategy is unavailable, because a large discrepancy exists

between present arm position and the target position command throughout much of the

trajectory. To implement a freezing response using the STE Model, the system would

somehow have to quickly determine and instate a new target position command capable

of maintaining the arm's present position. But this is precisely the type of information

whose relevance is denied by the STE Model.

8. Gradual Updating of PPC's during Trajectory Formation

Several lines of experimental evidence point to deficiencies of the ."TE Model. One line
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of evidence, due to Bizzi and his colleagues. demonstrates that a type of gradual updating

of the movement command occurs which is inconsistent with the sTE model. Earlier

studies from the Bizzi lab partially supported the STE model.

The experiments of Polit and Bizzi (1978) studied monkeys who were trained to move

their forearms. without visup. feedback of hand position, from a canonical starting position

to the position of one of several lights. The monkeys' arm movements were studied both

before and after a dorsal rhizotomy was performed to remove all sensory feedback from

the arm. Before deafferentation, the monkey could move its hand to the target's position

without visual feedback, even if its accustomed position with respect to the arm apparatus

was changed. After deafferentation, so long as the spatial conditions of training were

maintained-in particular the canonical starting orientation and position with respect

to the known target array-the animal remained able to move its hand to the target

position. However. if the initial position of the elbow of the deafferented arm was passively

shifted from thc position used throughout training, then the animal's forearm movements

terminated at a position shifted by an equal amount away from the target position. Thus

the movement of the forearm did not compensate for the change in initial position. Instead

the same final synergy of forearm-controlling muscles was generated in both cases.

The fact that deafferented monkeys moved to shifted positions emphasized the critical

role of the target position command in setting up the movement trajectory. The fact that

normal monkeys could compensate for rotation in a way that deafferented monkeys could

not indicated an additional role for inflow signals when the arm is moved passiveiy by an

external force (Section 29).

The later experiments of Bizzi. Accornero. Chapple. and Hogan (1982. 19841 carried

out an additional manipulation. The results of these experiments are inconsistent with

the STE assumption that the arm's motion is governed exclusively by the spring-like con-

traction of its muscles towards the position specified by a new target position command.

In these experiments, the monkey was again deprived of visual and inflow feedback. and
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placed in its canonical starting position. In addition. its deafferented arm was surrepti-

tiously held at the target position, then released at variable intervals after activation of

the target light. Undei these circumstances, the arm travelled back towards the canonical

starting position. before reversing direction and proceeding to the target. The arm trav-

elled further backward toward the starting position the sooner it was released after target

activation. Moreover, when the arm was moved to the target position and then released

in the absence of any target presentation, it sprang back to its canonical starting position.

Bizzi et al. (1984, p.2742) concluded that "the CNS had programmed a slow, gradual shift

of the equilibrium point, a fact which is not consistent with the 'final position control'

[read STE] hypothesis."

The Bizzi et a!. (1984) description of their results as a "gradual shift of the equilibrium

point" carries the language of the STE Model into a context where it may cause confusion.

From a mathematical perspective, the intermediate positions of a movement trajectory are

not, by definition, equilibrium points. In order to explicate the Bizzi et al. (1984) data.

we show how three quantities are computed and updated through time: a target position

command (TPC) which is switched on once and for all before the movement: an outflow

movement command. called the Present Position Command (PPC), which is continously

updated until it matches the TPC; and the arm position which closely corresponds to the

PPC.

We call a movement for which a single TPC is switched on before the movement begins

an elementary movement. Once it is seen how a single TPC can cause gradual updating of

the PPC. movements can also be analysed (luring which a sequence of TPC's is switched

on. either under the control of visual feedback or from a movement planning network which

can store arid release sequences of TPC 's from memory with the proper order and timing

(Grossberg and Kuperstein. 1986).

Our analysis of how the PPC is gradually updated during an elementary movement

partially supports the Bizzi et al. (1984) description of a "'gradual shift in equilibrium
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point" by showing that the arm remains in approximate equilibrium with respect to the

PPC. even though none of these intermediate arm po-itions is an equilibrium point of

the system. The only equilibrium point of the system is reached when both the neural

control circuit and the arm itself both reach equilibrium. That happens when the PPC

matches the TPC. thereby preventing further changes in the present position command

and allowing the arm to come to rest.

These conclusions refine, rather than totally contradict, the main insight of the STE

Model. Instead of concluding that the arm springs to the position coded by the TPC, we

suggest that the spring-like arm tracks the series of positions specified by the PPC as it

approaches the TPC. This conception of trajectory formation contrasts sharply with that

suggested by Brooks (1986, p.138) in response to the Bizzi data. Brooks inferred that

"animals learn not only the end points and their stiffness, but also a series of intermediate

equilibrium positions. In other words, they learn an internal 'reference' trajectory that

determines the path to be followed and generates torques appropriately to reduce mismatch

between the intended and actual events." In a similar fashion, Hollerbach (1982. p.192)

suggested that we practice movements to -learn the basic torque profiles.- In contrast, we

suggest that the read-out of the TPC is learned, but that the gradual updating of the PPC

is automatic. A number of auxiliary learning processes are also needed to update the PPC

after passive movements due to an external force (Section 30). to adaptively linearize the

response of a nonlinear muscle plant (Grossberg and Kuperstein, 1986), and to adaptively

compensate for the inertial effects of variable loads and velocities (Bullock and Grossberg,

1986b). These additional learning processes enable the automatic updating of the PPC to

generate controllable movements without requiring that the entire trajectory be learned.

9. Duration Invariance during Isotonic Movements and Isometric Contrac-

tions

Further information concerning the gradual updating process whereby PPC's match
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a TPC can be inferred from the detailed spatiotemporal properties of arm trajectory

formation. Freund and Bfidingen (1978) have studied "the relationship between the speed

of the fastest possible voluntary contractions and their amplitudes for several hand and

forearm muscles under both isotonic and isometric conditions. These experiments showed

the larger the amplitude, the faster the contraction. The increase of the rate of rise

of isometric tension or of the velocity of isotonic movements with rising amplitude was

linear. The slope of this relationship was the same for three different hand and forearm

muscles examined ... the skeleto-motor speed control system operates by adjusting the

velocity of a contraction to its amplitude in such a way that the contraction time remains

approximately constant ... this type of speed control is a necessary requirement for the

synchrony of synergistic muscle contractions" (p.1).

Figure 3

Two main issues are raised by this study. First, it must be explained why, "comparing

isotonic movements and isometric contractions, the time from onset to peak was similar in

the two conditions" (p.7). Figure 3 shows the fastest voluntary isometric contractions of

the extensor indicis muscle. Second, it must be explained why the force develops gradually

in time with the shapes depicted in Figure 3. Concerning this property, Georgopoulos

(1986. p.150) has written: "We do not know why this strategy is adopted." Below it is

shown that both duration invariance and the force development through time are emergent

properties of the PPC-updating process (see Section 22).

10. Compensatory Properties of the PPC Updating Process

Ghez and his colleagues (Ghez and Vicario. 1978: Gordon and Ghez. 1984. 1986a.

1986b) have confirmed the duration invariance reported by Freund and Bildingen (1978)

in an isometric paradigm which also disclosed finer properties of the PPC updating process.

These authors suggest that "compensatory adjustments add to preprogrammed specifica-

tion of rapid force impulses to achieve more accurately targeted responses" (Gordon and
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Ghez. 1986b).

In their isometric task, subjects were instructed to maintain superposition of two lines

on a ('RT screen. The experimenter could cause one of the lines to jump to any of three

positions. Subjects could exert force on an immobile lever to move the other line towards

the target line. Equal increments of force produced equal displacements of the line. Thus

more isometric force was needed to move the line over a larger distance to the target line.

Figure 4

Figure 4 defines the major variables of their analysis. The force target is represented by

the solid black horizontal line. If the subject performs errorlessly-that is, reaches target

without overshoot-the value of the peak force will equal the value of the force target, as

in the black curve. Overshoots and undershoots in force are represented by the gray and

dashed curves, respectively. Figure 5 plots the data of Gordon and Ghez (1986b) in a way

that illustrates duration invariance. The horizontal line through the data points shows

that force rise time is essentially independent of peak acceleration (d 2 F) for all the target

distances.

Figure 5

Gordon and Ghez (1986b) separately analysed the data for each of the three target

distances, and thereby derived the three oblique lines in Figure 5. They interpreted these

lines as evidence for an "error correction" process because a negative correlation exists

between peak acceleration and the force rise time. or duration. Thus, if the acceleration

for a small target distance was too high early in a movement, the trajectory was "corrected-

by shortening the rise time. Had this compensation not occurred, the high acceleration

could have produced a peak force appropriate for a larger target distance.

Gordon and Ghez (1986b) assumed that trajectories are preplanned and that their

peak accelerations are a signature indicating which trajectory has been preplanned. It

is from this perspective that they interpreted the compensatory effect shown in Figure
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5 as an "error correction" process. In contrast. we sugugest in 1>ections 13 and 21 that

this compensatory effect is one of the automatic properties whereby PPC's are gradually

updated. We hereby provide an explanation of the compensator" effect that avoids invoking

a special mechanism of "error correction" for a movement which does not generate an error

in achieving its target. In addition, this explanation provides a unified analysis of the

Bizzi et al. (1984) data on isotonic movements and the Gordon and Ghez (1986b) data on

isometric contractions.

11. Target Switching Experiments: Velocity Amplification, GO Signal. and

Fitts' Law

Our explanation of the Freund and Bfidingen (1978) and Gordon and Ghez (1986a)

data considers how a single GO signal applied to all components of the synergy defined

by a TPC can cause duration invariance. Georgopoulos, Kalaska, and Massey (1981) have

collected data which provide further evidence for the interaction of a GO signal with the

process which instates a TPC and thereby updates the PPC. In their experiments, monkeys

were trained to move a lever from a start position to one of eight target positions radially

situated on a planar surface. Then the original target position was switched to a new

target position at variable delays after initiation of movement towards the first target.

Part of the data confirm the fact that "the aimed motor command is emitted in a

continuous, ongoing fashion as a real-time process that can be interrupted at any time

by the substitution of the original target by the new one. The effects of this change on

the ensuing movement appear promptly. without delays beyond the usual reaction time"

(p.725). Figure 6 depicts movement paths found during the target switching condition.

We explain these data in terms of how instatement of a second TPC can rapidly modify

the future updating of the PPC.

Figure 6

In addition, Georgopoulous et al. (1981) found a remarkable amplification of peak
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velocity during the switched component of the mioverilent: "the peak velocity attained on

the way to the second target was generally much higher (up to threefold) than that of the

control ... these high velocities cannot be accounted for exclusively by a mec'lanism that

adjusts peak velocity to the amplitude of movement ... The cause of this phenomenon is

unclear" (pp.732-733). In Section 25, we explain this phenomenon in terms of the indepen-

dent control, or factorization, of the GO mechanism and the TPC-switching mechanism

that was described in Section 4. In particular. the GO signal builds up continuously in

time. When the TPC is switched to a new target, the PPC can be updated much more

quickly because the GO signal which drives it is already large. The more rapid updating

of the PPC translates into higher velocities.

These target switching data call attention to a more subtle property of how a GO signal

energizes PPC updating. indeed a property which has tended to mask the very existence

of the GO signal: How can a GO signal which was activated with a previous TPC interact

with a later TPC without causing errors in the ability of the PPC to track the later TPC?

How does the energizing effect of a GO signal transfer to any TPC? A solution of this

problem is suggested in Section 18.

The fact that peak velocity is amplified without affecting movement accuracy during

target switching implies a violation of Fitt's Law, as Massey, Schwartz. and Georgopoulous

(1985) have noted. Our mechanistic analysis of synergetic binding via instatement of a

TPC and of subsequent PPC updating energized by a previously activated GO signal

provides an explanation of this Fitts' Law violation as weil as of Fitts' Law itself (Section

28).

12. Velocity Profile Invariance and Asymmetry

Many investigators have noted that the velocity profiles of simple arm movements are

approximately bell-shaped (Abend. Bizzi, and Morasso. 1982: Atkeson and Hollerbach.

1985: Beggs and Howarth. 1972: Georgopoulous, Kalaska. and Massey. 1981: Howarth
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and Beggs. 1971: Nfor;isso. 1981: Soechting and Lacquaniti. 1981). Moreover the shape .4n.

of the bell, if rescaled appropriately, is approximately preserved for movements that vary
in duration. distance. or peak velocity. Figure 7 shows rescaled velocity profiles from

the experiment of Atkeson and Hollerbach (1985). These velocity profiles were generated

over a fixed distance at several different velocities. Thus both the duration scale and the

velocity scale were modified to superimpose the curves shown in Figure 7.

Figure 7

On the other hand, Beggs and Howarth (1972) showed that "at high speeds the ap-

proach curves of the practised subjects are more symmetrical than at low speeds" (p.451).

Since velocity profiles associated with slow movements are more asymmetric than those

associated with fast movements, they cannot be exactly superimposed. All the velocity

profiles shown in Figure 7 are taken from slow (1-1.6 sec) movements, and exhibit the sort

of more gradual deceleration than acceleration that Beggs and Howarth (1972) reported

for such movements. Asymmetry and its degree are of theoretical importance because the

Minimurn Jerk Model of Hogan (1984) predicts symmetric velocity profiles. whereas our

model shows how the gradual updating of the PPC can generate velocity profiles which

exhibit the type of speed-dependent asymmetry that is found in the data (Section 23).

Both the fact that asymmetry exists in velocity profiles and that the degree of asymme-

try depends upon movement speed indicate the need for an analysis of the neural dynamics

whereby a trajectory unfolds in real-time. In contrast, the Hogan (1984) model's global op-

timization criterion forces a strictly symmetric velocity profile because it does not represent

a process of temporal unfolding. Beggs and Howarth (1972) suggested that the asymmetry
.4

reflects a learned strategy of approaching the target as quickly as possible before making

corrective movements near the target. For example, these corrective movements could

be made under visual guidance by instating a corrected TPC as the arm approached the

target. The approach to such a new TPC would take more time. on the average. than
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the final approach to the previously tracked TPC. thereby causing greater velocity profile

asymmetry. Our simulation results show that velocity profiles become more symmetric as

movement speed increases even in the absence of newly instated TPC's. Thus the greater

symmetry of velocity profiles at higher speeds may be due to the combined effects of PPC

updating properties as the GO signal is parametrically increased, and the consequent elim-

ination of corrective TPC's as the target is rapidly approached. In support of this analysis,

Jeannerod (1984, p.252) noted that "the low velocity phase is still observed in the absence

of visual feedback, and even in the no-vision situation. This finding, however, does not

preclude that visual feedback, when present, will be incorporated ... In the present study,

movement duration and low-velocity phase duration were found to be increased in the

visual feedback situation."

In summary, our explanation of these data shows how a circuit capable of flexibly bind-

ing muscle groups into synchronous synergies automatically implies the observed velocity

profile asymmetry. Thus we suggest an explanation of movement invariants, such as du-

ration invariance and synchrony, using a control circuit which never computes an explicit

trajectory and whose outputs exhibit a type of asymmetry which other models have not

been able to explain.

13. Vector Cells in Motor Cortex

Before quantitatively developing our model. it remains to indicate how the Present

Position Command (PPC) is gradually updated until it matches a fixed Target Position

Command (TPC). Sections 15-18 motivate this mechanism through an analysis of the types

of information that can be used by a developing system to learn TPC's. The summary

here is merely descriptive and is made to link these introductory remarks to supportive

neural data.

When a new TPC is switched on, its relationship to the current PPC can be arbitrary.

Any realizable pair of positions can be coded by the TPC and the PPC. In order to track
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the TPC, the PPC needs to change in a directiorn determined by the difference between tile

TPC and the PPC. In addition. the amount of required change is also determined by this

difference. An array which measures both the direction and the distance between a pair

of arrays TPC and PPC is called a difference tector. or DV. At any given time, the DV

between the TPC and the PPC-namely, DV = TPC - PPC-is computed at a match

interface (Figure 8).

Figure 8

How does such a DV update the present PPC? Clearly the PPC must be updated

in the direction specified by the DV. Hence we assume that the PPC cumulatively adds.

or integrates, through time all the DV's which arise at the match interface. Due to this

arrangement, the PPC gradually approaches the TPC. At a time when the PPC equals

the TPC. the DV equals zero: hence, although the PPC may continue to integrate DV's, it

will not further change until either the switching on of a new TPC creates a non-zero DV.

or the PPC is updated by inflow information during a passive movement (Section 30).

Figure 9

Georgopoulos and his colleagues (Georgopoulos, Kalaska, Caminiti. and Massey, 1982:

Georgopoulos. Kalaska. Crutcher, Caminiti. and Massey. 1984; Kalaska, Caminiti, and

Georgopoulous. 1983) have found cell populations in the motor cortex whose collective

properties mirror those of the vector-computing nodes at the match interface of our model

(Figure 8). Figure 9 shows a histogram of the average number of spikes per unit time

recorded from a single such neuron. This temporal behavior closely matches that of DV

cells in our model (Figure 17). The vector cells in motor cortex, just like the DV cells in

the model, are very broadly tuned to direction (Figure 10). The DV cells in the model

are inhibited only if the inhibitory signal from the PPC exceeds the excitatory signal from

the TPC. Thus there exists a broad range of directions in which a given component of the

model DV is positive.
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Figure 10

Figure 11 plots data from a vector cell population in tivo alongside the velocity profile

of the corresponding movement. Note that the asymmetry in the velocity profile is in the

,,ame direction as the asymmetry in the vector cell population profile. This correspondence

suggests that the velocity asymmetry is at least partially due to the neural control circuit.

as our model also suggests.

Figure 11

Georgopoulos et al. (1984, p.510) also noted that: "No obvious invariance in cell

discharge was observed when the final position was the same ... these results show that,

at the level of motor cortex, it is the direction of movement and not its endpoint that is the

principle determinant of cell discharge during the initiation and execution of movement.

Therefore, if the hypothesis be true that the endvpoint of the movement is the controlled

spatial variable (Polit and Bizzi, 1979) then the motor cortex seems to be distal to that

end-point specifying process." In other words, if one accepts the STE Model, these data

suggest that the TPC cells occur closer to the periphery than the DV cells. On the other

hand. if one accepts our model, these data imply that the PPC cells occur closer to the

periphery than the DV cells, but that the TPC cells occur more central than the DV cells.

A combination of anatonomical and physiological experiments can be used to test this

prediction. It should also be noted, however, that the STE Model on which the conclusion

of Georgopoulos et al. (1984) is based is inconsistent with the very existence of vector

cells, because the spring-like properties of the muscles themselves, rather than a neural

computation of vectors, determines the direction and length of movement in the STE

Modei.

Several further properties of cells in precentral motor cortex, documented by Evarts

and Tanji (1974: Tanji and Evarts, 1976), lend support to identifying them with the vector

cells in our model. In their experiments, monkeys were trained to either push or pull a
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lever. During each trial (schematized in Figure 12a) animals first held the lever in a media]

position for 2-4 sec. Then either a green or a red priming signal was illuminated. If green,

the forthcoming movement required for reward was a push: if red, a pull. Finally, .6-1.2

seconds after the priming signal, the release signal occurred. This release signal took the

form of an externally imposed push or pull on the lever held by the monkey. It both cued

movement onset and perturbed the position of the lever so as to increase or decrease its

initial distance from target.

Figure 12

Figure 12b summarizes operating characteristics of two cells. The first cell increased

its activity after a "push" priming signal, but was inhibited by a "pull" priming signal;

the second cell showed the opposite response. From these data alone, it would not be clear

whether these cells' activities code DV's or TPC's. However, their further characteristics

confirm their status as DV cells. The second bracket for each cell in Figure 12b indicates

that their activities decline as movement proceeds in their preferred direction. This de-

cline rules out the TPC interpretation. In the model, it occurs because the movement

progressively cancels the difference with which DV cell activity is correlated.

The third bracket for each cell indicates that the initial position perturbations also have

the effect they must have if the DV interpretation is correct: perturbations that make the

starting point closer to target subtract from activity levels, whereas contrary perturbations

add to activity levels. This occurs automatically in the model because PPC's. and thus the

corresponding DV's, are updated by sensory feedback during passive movements (Section

Though the foregoing considerations argue strongly for the existence of DV cells in

precentral motor cortex, it might be argued that the DV's could be measuring force rather

than positional values. Indeed, Evarts interpreted his early experimental data (Evarts.

1968) as suggestive of force coding. However. the data of Schmidt. Jost and Davis (1975)
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ap~pear to rule out this alternative interpretation. After varying position and force inde-

pendently. they concluded that "motor cortex cell firing patterns appear to be unrelated

to the largo values of rate of change of force seen in this experiment" (p.213).

The data summarized in Sections 7-13 weigh heavily against the STE Model and

models based upon optimization principles. So too do the formal shortcomings of these

models noted in Sections 7 and 12. We now show that a new model., called the VITE, or

"vector integration to endpoint," Model overcomes these formal shortcomings and provides

a parsimonious quantitative explanation of all the behavioral and neural data summarized

above and in the subsequent sections.

14. Learning Constraints Mold Arm Control Circuits

Rejecting the STE Model does not entail rejecting all dependence upon endpoint com-

mands. An analysis of sensory-motor learning during eye-hand coordination enables us to

identify processes which supplement endpoint, or target position, commands to overcome

the shortcomings of the STE Model (Grossberg, 1978). The central role of learning con-

straints in the design of sensory-motor systems has elsewhere been developed for the case

of the saccadic eye movement system (Grossberg and Kuperstein, 1986).

We focus our discussion of learning within the arm movement system upon the basic

problem of how, when an observer looks at an object, the observer's hand knows where to

move in order to touch the object? We discuss this issue from the perspective of eye-hand

coordination in a mammal, but the issues that are raised, as well as the conclusions that

are drawn. generalize to many other species and sensory-motor systems. Why learning

processes are needed to solve this problem is illustrated by the following example.

The movement command which guides the hand to a visual target at a fixed position

relative to the body is not invariant under growth. If a young arm, with relatively short

limb segments, and an old arm with relatively long limb segments. react to the same

command-that is. assume equal angles at analogous joints-then the tips of the two arm's
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fingers will be at different loci with respect to the body frame. In short. any animal that

grows over an extended period will need to learn new movement commands even if its only

ambition is to perform the same act earlier and later in its life cycle. Put the other way.

that animals do remain able to reach desired targets throughout periods of limb growth

implies plasticity in their sensory-motor commands. Because such growth is slow relative

to the rate of learning, failures of sensory-motor coordination are rarely noticeable. In

humans, exceptions occur during the first few months of life, prior to experiential tuning of

the infant's initially coarse sensory-motor mapping (Fetters and Todd, 1986: von Hofsten,

1979, 1982).

15. Comparing Target Position with Present Position to Gate Intermodality

Learning

Thus, as the arm grows, the motor commands which move it to a fixed position in

space with respect to the body must also change through learning. Many arm movements

are activated in response to visually seen objects which the individual wishes to grasp.

We therefore formulate this learning process as follows: How is a transformation learned

and adaptively modified between the parameters of the eye-head system and the hand-arm

system so that an observer can touch a visually fixated object?

Following Piaget's (1963) analysis of circular reactions, let us imagine that an infant's

hand makes a series of unconditional movements, which the infant's eyes unconditionally

follow. As the hand occupies a variety of positions that the eye fixates, a transformation

is learned from the parameters of the hand-arm system to the parameters of the eye-head

system. A reverse transformation is also learned from parameters of the eye-head system

to parameters of the hand-arm system. This reverse transformation enables an observer

to intentionally move its hand to a visually fixated position.

How do these two sensory-motor systems know what parameters are the correct ones

to map upon each other? This question raises the fundamental problem that many neural
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signals. although large, are unsuitable for being incorporated into behavioral riaps and

commands. They are -functional noise" to the motor learning process. The learning

process needs to be actively modulated. or gated. against learning during inappropriate

circumstances.

In the present instance, not all positions which the eye-head system or the hand-

arm system assume are the correct positions to associate through learning. For example,

suppose that the hand briefly remains at a given position and that the eye moves to foveate

the hand. An infinite number of positions are assumed by the eye as it moves to foveate

the hand. Only the final, intended, or expected position of the eye-head system is a correct

position to associate with the position of the hand-arm system.

Learning of an intermodal motor map must thus be prevented except when the eye-

head system and the hand-arm system are near their intended positions. Otherwise, all

possible positions of the two systems could be associated with each other, which would

lead to behaviorally chaotic consequences. Several important conclusions follow from this

observation (Grossberg, 1978: Grossberg and Kuperstein. 1986).

(1) All such adaptive sensory-motor systems computt a representation of target posi-

tion (also called expected position. or intended position). Thus the importance of endpoint

computations is confirmed. This representation is the TPC. In addition:

(2) All such adaptive sensory-motor systems also compute a representation of present

position. This representation is the PPC.

(3) During movement, target position is matched against present position. Intermodal

map learning is prevented except when target position approximately matches present

position (Figure 13). A gating, or modulator. signal is thus controlled by the network

at which target position is matched with present position. This gating signal enables

learning to occur when a good match occurs and prevents learning from occurring when

a bad match occurs. This matching process takes place at the match interface that was

0S
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described in Section 13. The DV controls the gating signal.

(4) In order to compare target positions with present positions. both types of data must

be computed in the same coordinate system. Present eve position is computed with respect

to head coordinates. Thus there is an evolutionary presure to encode target position in

head coordinates.

Figure 13

16. Trajectory Formation using DV's: Automatic Compensation for Present

Position

The above discussion of how intermodality sensory-motor transformations are learned

also sheds light upon how intramodality movement trajectories are formed. Intermodality

transformations associate TPC's because only such transformations can avoid the multi-

ple confusions that could arise through associating arbitrary positions along a movement

trajectory. TPC's are not, however, sufficient to generate intramodality movement trajec-

tories. In response to the same TPC. an eye. arm, or leg must move different distances

and directions depending upon its present position when the target position is registered.

PPC's can be used to convert a single TPC into many different movement trajecto-

ries. Computation of the difference between target position and present position at the

match interface in Figure 8 generates a difference vector, or DV. that can be used to auto-

matically compensate for present position. Such automatic compensation accomplishes a

tremendous reduction in the memory load that is placed upon an adaptive sensory-motor

system. Instead of having to learn whole movement trajectories, the system only has to

learn intermodality maps between TPC's. As shall be shown below, the DV's which are

computed from target positions and present positions at the match interface can be used

to automatically and continuously update the PPC movement commands from which the

trajectory is formed. In summary, consideration of the types of information that can be

used to learn intermodality commands during motor development leads to general con-
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clusions about the quantities from which intramodality movement trajectories are formed,

and thus about the way in which other neural systems, such as sensory, cognitive, and

motivational systems, can influence the planning of such trajectories.

Computation of TPC's. PPC's. and DV's is a qualitatively different approach to gen-

erating a trajectory than are traditional computations based upon a Newtonian analysis

of movement kinematics. In a Newtonian analysis, every position within the trajectory is

assumed to be explicitly controlled (Atkeson and Hollerbach, 1985: Brody and Paul. 1984;

Hogan, 1984: Hollerbach, 1984). Such computations lead to a combinatorial explosion

which is hard to reconcile with the rapidity of biological movement generation in real-

time. In a vector computation, the entire trajectory is never explicitly planned. Instead, a

TPC is computed which determines where the movement expects, or intends, to terminate.

The subtraction of the PPC is an automatic process which compensates for the variability

of the starting position. The DV which is hereby computed can be used to generate an

accurate movement without ever explicitly computing a planned sequence of trajectory

positions for the whole movement. In arm movements, a continuous comparison is made

between a fixed TPC and all the PPC's that are computed during the movement. All

of these compensations for changes in present position are automatically registered. and

therefore place no further burden upon the computation of planned movement parameters.

In addition, such automatic compensations for present position spontaneously generate the

major invariants of arm movements that have been discovered to date (Sections 22-29).

Thus the general problem of how DV's are computed is a central one for the understanding

of trajectory formation in several movement systems.

17. Matching and Vector Integration during Trajectory Formation

We now specify in greater detail a model of how TPC's, PPC's. and DV's interact

with each other through time to synthesize a movement trajectory. Each PPC generates a

pattern of outflow movement signals to arm system muscles (Figure 8). Each such outflow
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pattern acts to move the arm system towards the present position which it encodes. Thus.

were only a single PPC to be activated, the arm system would come to rest at a single

physical position. A complete movement trajectory can be generated in the form of a

temporal succession of PPC's. Such a movement trajectory can be generated in response

to a single TPC that remains active throughout. the movement. Although a TPC explicitly

encodes only the endpoint of the movement, the process whereby present positions are

automatically and continuously updated possesses properties that are much more powerful

than those of an STE Model.

This process of continuous updating proceeds as follows. At every moment, a DV is

computed from the fixed TPC and the PPC (Figure 8). This DV encodes the difference

between the TPC and the PPC. In particular, the DV is computed by subtracting the

PPC from the TPC at the match interface.

Because a DV computes the difference between the TPC and the PPC, the PPC

equals the TPC only when all components of the DV equal zero. Thus, if the arm system's

commands are calibrated so that the arm attains the physical position in space that is

coded by its PPC, then the arm system will approach the desired target position in space

as the DV's computed during its trajectory approach zero. This is accomplished as follows.

At each time, the DV computes the direction and amplitude which must still be moved

to match the PPC with the TPC. Thus the DV computes an error signal of a very special

kind. These error signals are used to continuously update the PPC in such a way that

the changing PPC approaches the fixed TPC by progressively reducing the vector error

to zero. In particular, the match interface at which DV's are computed sends excitatory

signals to the stage where PPC's are computed. This stage integrates, or adds up, these

vector signals through time. The PPC is thus a cumulative record of all past DV's. and

each DV brings the PPC a little closer to the target position command.

In so doing, the DV is itself updated due to negative feedback from the new PPC to
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the match interface (Figure 8). This process of updating present positions through vector

integration and negative feedback continues continuously until the PPC equals the TPC.

Several important conclusions follow from this analysis of the TPC formation process.

Two processes within the arm control system do double duty: A PPC generates feed-

forward, or outflow, movement signals and negative feedback signals which are used to

compute a DV. A DV is used to update intramodality trajectory information and to gate

intermodality learning of associative transformations between TPC's. Thus the match

interface continuously updates the PPC when the arm is moving and disinhibits the inter-

modality map learning process when the arm comes to rest.

Within the circuit depicted in Figure 8, "position" and "direction" information are

separately coded. Positional information is coded within the PPC and directional infor-

mation is coded by the DV at the match interface. On the other hand, the computations

which give rise to positional and directional information are not independent, since DV's

are integrated to compute PPC's. and PPC's are subtracted from TPC's to compute DV's.

18. Intentionality and the GO Signal: Motor Priming without Movement

The circuit depicted in Figure 8 embodies the concept of intention, or expectation.

through its computation of a TPC. The complete movement circuit embodies intentionality

in yet another sense, which leads to a circuit capable of variable speed control. The need

for such an additional process can also be motivated through a consideration of eye-hand

coordination (Grossberg, 1978, 1982).

When a human looks at a nearby object, several movement options for touching the

object are available. The object could be grasped with the left hand or the right hand. The

object could even be touched with one's nose or one's toes! We assume that the eye-head

system can simultaneously activate TPC's in several motor systems via the intermodality

associative transformations that are learned to these systems. An additional "act of will.

or GO signal, is required to convert one or more of these TPC's into overt movement
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trajectories within only the selected motor systems.

Figure 14

There is only one way to implement such a GO signal within the circuit depicted in

Figure 8. This implementation is described in Figure 14. The GO signal must act at a

stage intermediate between the stages which compute DV's and PPC's: The GO signal

must act after the match interface so that is does not disrupt the process whereby DV's

become zero as PPC's approach the TPC. The GO signal must act before the stage which

computes PPC's so that changes in the GO signal cannot cause further movement after

the PPC matches the TPC. Thus, although the GO signal changes the outputs from the

match interface before they reach the present position stage, the very existence of such

processing stages for continuous formation of a trajectory enables the GO signal to act

without destroying the accuracy of the trajectory.

The detailed computational properties of the GO signal are derived from two further

constraints. First, the absence of a GO signal must prevent the movement from occurring.

This constraint suggests that the GO signal multiplies, or shunts, each output pathway from

the match interface. A zero GO signal multiplies every output to zero, and hence prevents

the PPC from being updated. Second, the GO signal must not change the direction of

movement that is encoded by a DV. The direction of movement is encoded by the relative

sizes of all the output signals generated by the vector. This constraint reaffirms that the

GO signal multiplies vector outputs. It also implies that the GO signal is nonspecific: The

same GO signal multiplies each output signal from the matching interface so as not to

change the direction encoded by the vector.

In summary. the GO signal takes a particularly simple form. When it equals zero. the

present position signal is not updated. Hence no overt movement is generated. On the

other hand, a zero GO signal does not prevent a TPC from being activated, or a DV from

being computed. Thus a motor system can become ready. or primed, for movement before
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its GO signal turns on. When the GO signal does turn on. the movement can be rapidly

initiated. The size of the GO signal regulates overall movement speed. Larger GO signals

cause faster movements, other things being equal. by speeding up the process whereby

directional information from the match interface is integrated into new PPC's. In models

of cognitive processing, the functional analog of the GO signal is an attentional gain control

signal (Carpenter and Grossberg, 1986a, 1986b: Grossberg. 1986c, 1986d: Grossberg and

Stone, 1986).

Georgopoulos. Schwartz, and Kettner (1986) have reported data consistent with this

scheme. In their experiment, a monkey is trained to withhold movement for 0.5 to 3

seconds until a lighted target dims. They reported that cells with properties akin to DV

cells computed a direction congruent with that of the upcoming movement during the

waiting period. These data support the prediction that the neural stage where the GO

signal is registered lies between the DV stage and the PPC stage.

19. Synchrony, Variable Speed Control, and Fast Freeze

The circuit in Figure 14 is now easily seen to possess qualitative properties of syn-

chronous synergetic movement, variable speed control, and fast freeze-and-abort. We

apply the circuit properties that each muscle synergist's motor command is updated at a

rate that is proportional both to the synergist's distance from its target position and to a

variable-magnitude GO signal, which is broadcast to all members of the synergy to initiate

and sustain the parallel updating process.

To fix ideas, consider a simple numerical example. Suppose that. prior to movement

initiation, muscle synergist A is 4 distance units from its target position and muscle syn-

ergist B is 2 distance units from its target position. In that case. if the mean rates at

which PPC's are updated for the two synergists are in the same proportion as the distance

(i.e., 2:1), then the updating of synergist A will take 4/2 time units while the updating of

synergist B will take 2/1 time units. Thus both processes will consume approximately 2
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time units. Although the PPC updating process occurs at different rates for different -yn-

ergists. it consumes equal times for all synergists. The result is a synchronous movement

despite large rate variations among the component motions.

Changing the magnitude of the GO signal governs variable speed control. Because

both of the updating rates in the example (2 and 1) are multiplied by the same GO signal.

the component motions will remain synchronous, though of shorter or longer duration.

depending on whether the GO signal multiplier is made larger or smaller, respectively. In

general, the GO signal's magnitude varies inversely with duration and directly with speed.

Finally, if the value of the GO signal remains at zero, no updating and no motion will

occur. Thus very rapid freezing can be achieved by completely inhibiting the GO signal

at any point in the trajectory. The fact that target position may be very different from

present position when the GO signal is withdrawn does not interfere with freezing, as it

would using a STE Model, because the arm position closely tracks the PPC, which stops

changing as soon as the signal shuts off.

20. Opponent Processing of Movement Commands

Mammalian motor systems are organized into pairs of agonist and antagonist mus-

cles. We now note a new functional role for such an opponent organization: An opponent

organization is needed to convert DV's into PPC's which can eventually match an arbi-

trary TPC. Figure 15 depicts how opponent organization is joined to the system's other

processing constraints.

Figure 15

The need for opponent signals can be seen from the following examples. If a target

position signal is larger than the corresponding present position signal, then a positive

output signal is generated by the corresponding component of the DV. Such positive output

signals increase the present position signal until it matches the target position signal.

Increasing the present position signal causes the target muscle group to contract. The

I
S1



opponent muscle group must also simultaneously relax. Inhibitory signals to the present

position node of the opponent muscle instate this latter property. When these inhibitory

signals are integrated by the present position node of the opponent muscle, the output

signal to the opponent muscle decreases, thereby relaxing the muscle.

The need for opponent processing can also be seen by considering the case in which the

target position signal is smaller than the present position signal. Then the corresponding

component of the DV is negative. Since only nonnegative activities can generate output

signals, no output signal is generated by this component of the DV to its corresponding

present position node. How, then, is this present position signal decreased until it matches

the target position signal? The answer is now obvious, since we have just considered

the same problem from a slightly different perspective: If a negative vector component

corresponds to an antagonist muscle group, a positive vector component corresponds to

its opponent agonist muscle group. This positive vector component generates inhibitory

signals to the present position command of the antagonist muscle, thereby relaxing the

antagonist muscle until its PPC equals its TPC.

21. System Equations

A quantitative analysis of movement invariants requires the development of a rigorous

real-time mathematical model of the constraints summarized in the preceding sections.

Qualitative algebraic analysis is insufficient because the trajectory is an emergent prop-

erty of a nonlinear integration and feedback process under variable gain control. Our

model defines the siwplest system-that is cunsist-srf-t-Vtn t -To fix ideas,-

we explicitly study how the TPC to an agonist muscle group generates a trajectory of

PPC signals to that muscle group. Generalizations to synergetic movement of multiple

agonist-antagonist muscle groups follow directly from this analysis. Figure 16 locates the

mathematical variables that are defined below. The network depicted in Figure 16 obeys
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the following system of differential equations:

dV
dt = a(-V + T - P) (2(

and
dPdt G[V] " (3}

In (2) and (3), T(t) is a target position input, V(t) is the activity of the agonist's DV

population, P(t) is the activity of the agonist's PPC population, G(t) is the GO signal.

dV is the rate of change of V, and dP is the rate of change of P.
if cn cn

Figure 16

Equation (2) says that the activity V(t) averages the difference of the input signals

T(t) and P(t) at a rate at through time. The TPC input T(t) excites V(t), whereas the

PPC input P(t) inhibits V(t) as part of the negative feedback loop between V(t) and P(t).

Equation (3) says that P(t) cumulatively adds, or integrates, the product G[V) , where

V if V > 0 (4)
[VT- = 0 ifV < 0.

In other words, the DV population elicits an output signal [VJ- to the PPC population

only if the activity V exceeds the output threshold 0. The output signal is a linear function

of V at suprathreshold values. The output signal [V]- is multiplied, or gated. by the GO

signal G(t) on its way to the PPC stage. The activity P(t) at the PPC stage integrates

the gated signal through time.

In particular. G(t) = 0 implies d-(t) = 0. In other words, if the GO signal is shut off

within a given time interval, the P(t) is constant throughout that time interval. Fast-freeze

can hereby be rapidly obtained by simply switching G(t) quickly to zero no matter how far

P(t) may be from T(t) at that time. In addition, this circuit generates compensatory. or

"error correcting," trajectories, as described in Section 10. For example. suppose that the

GO signal starts out larger than usual or that there is a slight (lelay in instatement of the



TPC relative to onset of the GO signal. In either case, P(t) can initially increase faster

than usual. As a result. T - P(t) can rapidly become smaller than usual. Consequently,

updating of P(t) terminates earlier than usual.

This compensatory process illustrates two critical features of the VITE Model: (1)

Trajectories are not pre-formed. (2) Because the GO signal feeds in between the DV stage

and the PPC stage and because the DV is continuously inhibited by feedback from the

PPC stage, accuracy is largely insulated from random variations in the size or onset time

of the GO signal, variations in the onset time of the TPC, or momentary perturbations of

the PPC due to internal noise or inflow signals.

The system of equations (2)-(4) is explicitly solved for a particular choice of GO signal

in Appendix 1. In Sections 22-29, we display the results of computer simulations which

demonstrate that this simple model provides a quantitative explanation of all the data

thus far summarized. In most of these simulations, we write the GO signal in the form

G(t) = Gog(t). (5)

Constant G0 is called the GO amplitude and function g(t) is called the GO onset function.

The GO amplitude parameterizes how large the GO signal can become. The GO onset

function describes the transient build-up of the GO signal after it is switched on. In our

simulations, we systematically studied the influence of choosing different GO amplitudes

Go and onset functions from the family

t,°
7r=,- ift> (6)

g 1= 0 if t < O.

In (6), we chose 3 and -, equal to I or 0. If ,3 0 and = 1. then g(t) is a step function

which switches from 0 to 1 at time t = 0. If 3 = I and = 1. then g(t) is a slower-than-

linear function of time if n = I and a sigmoid. or S-shaped. function of time if n > 1. In

both of these cases. function g(t) increases from g(O) = 0 to a maximum of 1, and attains

the value at time t = 3. If 3 = 1 and , = 0. then g(t) is a linear function of time if n 1

40t
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and a faster-than-linear function of time if n > 1. We will demonstrate below that an onset

function which is a faster-than-linear or sigmoid function of time generates a PPC profile

through time that is in quantitative accord with data about the arm's velocity profile

through time. On the other hand. if muscle and arm properties attenuate the increase

in velocity at the beginning of a movement, then linear or even slower-than-linear onset

functions could also quantitatively fit the data. Direct physiological measurements of the

GO signal and PPC updating processes would enable a more definitive selection of the

onset function to be made.

22. Computer Simulation of Movement Synchrony and Duration Invariance

In simulations of synchronous contraction, the same GO signal G(t) is switched on at

time t = 0 across all VITE circuit channels. We consider only agonist channels whose

muscles contract to perform the synergy. Antagonist channels are controlled by opponent

signals as described in Section 20. We assume that all agonist channels start out at

equilibrium before their TPC's are switched to new, sustained target values at time t = 0.

In all agonist muscles, T(O) > P(O). Consequently, V(t) in (2) increases, thereby increasing

P(t) in (3) and causing the target muscle to contract. Different muscles may be commanded

to contract by different amounts. Then the size of T(0) - P(0) will differ across the VITE

channels inputting to different muscles. Thus our task is to show how a VITE circuit

behaves given a single GO function G(t) if the initial value T(O) - P(0) is varied.

Figure 17 depicts a typical response to a faster-than-linear G(t) when T(0) > P(0).

Although T(t) is switched on suddenly to a new value T. V(t) gradually increases-then-

decreases, while P(t) gradually approaches its new equilibrium value, which equals T. The

rate of change 4 of P provides a measure of the velocity with which the muscle group

that quickly tracks P(t) will contract. Note that 4P also gradually increases-then-decreasesdT

with a bell-shaped curve whose decelerative portion (d2P < 0) is slightly longer than its

accelerative portion (e P > 0), as in the data described in Sections S. 9. 12. and 13.
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Figure 17

Figure 18 demonstrates movement synchrony and duration invariance. This figure

shows that the V" curves and the dPcurves generated by widely different T(O) - P(O) values

and the same GO signal G(I) are perfectly synchronous through time. This property is

proved mathematically in Appendix 2. These simulated curves mirror the data summarized

in Sections 12 and 13.

Figure 18

23. Computer Simulation of Decreasing Velocity Profile Asymmetry at

Higher Velocities

The next simulations reproduce the data reviewed in Section 12 concerning the greater

symmetry of velocity profiles at higher movement velocities. In these simulations, the initial

difference T(O) - P(O) between TPC and PPC was held fixed aad the GO amplitude Go

was increased. Figure 19a,b,c shows that the profile of d_ becomes more symmetric as Go

is increased. Figure 19d shows that if both the time axis t and the velocity axis are

rescaled, then curves corresponding to movements of the same size at different speeds can

approximately be superimposed, except for the mismatch of their decelerative portions, as

in the data summarized in Section 12.

Figure 19

24. Why Faster-than-Linear or Sigmoid Onset Functions?

The parametric analysis of velocity profiles in response to different values of T(O) - P(O)

and Go led to the choice of a faster-than-linear or sigmoid onset function g(t). In fact. the

faster-than-linear onset function should be interpreted as the portion of a sigmoid onset

function whose slower-than-linear part occurs at times after P(t) has already come very

close to T.
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Figure 20 Thows what happens when a slower-than-linear y(t) = t(3 t) - ' or a linear

y(t) = f is used. At slow velocities (small GO), the velocity profile dp becomes increasingly

a.,ymmetric when a slower-than-linear g(t) is used. At a fixed slow velocity, the degree of

asvinietrv increases as the slower-than-linear g(t) is chosen to more closely approximate a

step function. A linear g(l) leads to an intermediate degree of asymmetry. A faster-than-

linear, or sigmoid. g(t) leads to slight asymmetry at small values of Go as well as greater

symmetry at large values of Go. A sigmoid g(t) can be generated from a sudden onset of

GO signal if at least two cell stages average the GO signal before it gates [V]- in (3). A

sigmoid g(t) contains a faster-than-linear part at small values of t, and an approximately

linear part at intermediate values of t. Thus a sigmoid g(t) can generate different degrees

of asymmetry depending upon how much of the total movement time occurs within each

of these ranges.

Figure 20

We have also simulated a VITE circuit using sigmoid GO signals whose rate of growth

increases with the size of the GO amplitude. Such covariation of growth rate with ampli-

tude is a basic property of neurons which obey membrane. or shunting, equations (Gross-

berg, 1970. 1973: Sperling and Sondhi, 1968). Such a sigmoid GO signal G(t) can be simply

defined as the output of the second neuron population in a chain of shunting equations

perturbed by a step function input with amplitude Go. Thus, let

G°t G= oG if f <0 > 0  (7)
10 if t><O

ddG 1 = -AGI + 1  B - G)GO (8)

and
ddG 2 =-G 2 + (B - G 2)G I. (9)

Then G2 (t) is a sigmoid function of the desired shape. The GO signal G(t) can be set

equal to G 2 (t. as we did. or even to a sigmoid signal f(G 2 (t)) of G 2 (t). A typical result
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is shown in Figure 21. In this series of simulations, exemplified by Figure 21. the range of

symmetry ratios. namely .44-.5, was similar to that found in Figure 19 using a faster-than-

linear signal function. Final choice of a best-fitting G(t) awaits a more direct experimental

determination of the PPC profile through time.

Figure 21

25. Computer Simulation of Velocity Amplification during Target Switching

Velocity amplification by up to a factor of three can be obtained by switching to a

new value of T while a previously activated GO signal is still on. Figure 22 demonstrates

this effect by comparing two computer simulations. In the first simulation, onset of T(t)

and g(t) were both synchronous at time t = 0. (Figure 22a). In the second simulation,

onset of g(t) preceded onset of T(t) by a time equivalent to about 300 msec (Figure 22b).

Note the much higher peak velocity (235 versus 102) attained in Figure 22b. This effect,

which matches the "anomalous" velocity multiplication observed in the target-switching

experiments of Georgopoulos et al. (1981), is due to the prior build-up of the GO signal

during response execution.

Figure 22

In the ensuing sections, computer simulations will be compared with a variety of data

which were not reviewed in the preceding sections.

26. Reconciling Staggered Onset Times with Synchronous Termination

Times

Within the context of a target-switching experiment, velocity amplification may appear

to be a paradoxical property. On the other hand. such a property has an adaptive function

in the many situations where a hand will fail to reach a moving target unless it both changes

direction and speeds up. In addition. we now show that the same mechanism can generate
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synchronous termination times of synergetic muscle components which may individually

start to move at staggered onset times.

The need for this latter property has recently been emphasized by a study of Holler-

bach. Moore. and Atkeson (1986). who showed that nearly straight movement paths can

result from muscle coordinate planning if the onset times of muscles acting at different

joints are appropriately staggered and if all the muscles reach their final positions syn-

chronously. Their study did not, however, explain how a neural mechanism could generate

synchronous muscle offsets despite staggered muscle onsets.

We now show that the posited interaction of a growing GO signal with components

of a DV that may be switched on at different times automatically generates synchronous

offsets as an emergent property of the VITE circuit. Thus the interaction of a GO signal

with a DV both helps to linearize the paths generated by individual TPC's and, as in

the target-switching experiments, enables the hand to efficiently track a moving target by

quickly reacting to read-out of an updated TPC.

Figure 23

Figure 23 depicts the results of four blocks, labelled I. 1I, III. and IV, of computer

simulations. Each block represents the onset time, offset time. and duration of three

simulations. In the leftmost simulations of each block, onset of a DV component and a

GO signal were synchronous. In the other two simulations of each block, a different DV

component was read-out at successively longer delays with respect to the onset time of the

GO signal. Due to duration invariance (Appendix 2), the results are independent of the

initial sizes of the T(0) - P(0) values of these components.

The four blocks (I, II, III, IV) correspond to four increasing values of the GO amplitude

Go (10,20,40,80). The approximate invariance of termination times across components

with different onset delays is indicated by the nearly equal heights reached by all the bars

within the block. The different lengths of bars within each block show that less time is
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needed to update those components whose onset times are most delayed. Thus. in block

I. all the components terminate almost synchronously even though their onset times are

staggered by as much as 26' of the total movement time. In block II, almost synchronous

terminations occur even though onset times are staggered by as much as 39c of the total

movement time. At very large choices of Go (blocks III and IV). synchrony begins to gently

break down because the earliest components have executed over 50% of their trajectories

before later components even begin to move. These and other results in the article suggest

the critical importance of experimentally testing the existence and predicted properties of

GO-DV interactions, notably the predicted correlations between the temporal evolution

of the GO signal and the DV.

27. Computer Simulation of the Inverse Relation between Duration and

Peak Velocity

Each curve in the simulation result depicted in Figure 24 held T(O) - P(0) constant and

varied Go. In this way, a series of velocity profiles were generated whose peak velocities

differed even though their trajectories traversed the same distance. The duration of each

movement was computed by measuring the interval between velocity profile zero crossings.

The different curves in Figure 24a used different values of the distance parameter T(O) -

P(0).

Figure 24

These curves mirror the data of Lestienne (1979) summarized in Figure 24b. Figure

24b plots agonist burst duration against peak velocity. The overall shapes of the plots of

simulated durations (Figure 24a) and agonist burst durations (Figure 24b) as a function

of peak velocity are similar. This similarity reinforces the postulate that the VITE circuit

operates in agonist-antagonist muscle coordinates (Sections 3 and 20). It also suggests

that the relationship between VITE circuit outputs. motoneuron inputs, and actual muscle

activities might be relatively simple (Bullock and Grossberg, 1986b).
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Nevertheless, two caveats deserve mention. First. were Figure 24a a plot of movement

duration (IT) against mean velocity (V), it would necessarily have the shape shown, since

by definition.

D
MT = . (10)

where D denotes the distance. Multiplying by different values of D generates a family

of curves similar in shape to those shown in Figure 24a. The VITE model generates the

curve in Figure 24a because mean velocity and peak velocity are strongly correlated in

these VITE trajectories due to the duration invariance described in Section 22.

28. Speed-Accuracy Trade-off: Woodworth's Law and Fitts' Law

The VITE Model circuit predicts a speed-accuracy trade-off which quantitatively fits

the classical laws of Woodworth (1899) and of Fitts (1954). The existence of a speed-

accuracy trade-off per se can be understood by considering the role of the rate parameter

a in equation (1).

Given any finite averaging rate a, V(t) takes some time to react to changes in P(t).

In particular, even if P(t) = T at a given time t = to, V(t) will typically require some

extra time after t = to to decrease to the value 0. If a is very large. V(t) can approach 0

quickly. Consequently, by (2), V(t) will not allow P(t) to overshoot the target value T by

a large amount. On the other hand, given any choice of a, the relative amount whereby

P(t) overshoots the target T depends upon the size of the GO amplitude Go. This is true

because a larger value of Go causes P(t) to increase faster. due to (2). and thus P(t) can

approach T faster. In contrast, V(t) can only respond to the rapidly changing values of

T - P(t) at the constant rate a. As a result, V(t) tends to be larger at a time t = to

when P(to) = T if Go is large than if Go is small. It therefore takes V(t) longer to equal

0 after t = to if Go is large. Thus P(t) overshoots T more if Go is large. This covariation

of amount of overshoot with overall movement velocity is a speed-accuracy trade-off.

Fitts' Law, as described in equation (1). relates movement time (NIT), distance (D).
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and target width (NW). The target width may be thought of as setting the criterion for what

counts as an error. The law may be given two complementary readings. The first notes

that for a fixed movement time. error grows in proportion to amplitude. This component of

the law was discovered by Woodworth ( ".S96). Table i presents simulation results based on

the same parameter choices used in Figure 17. The results show that. in a parameter range

where model errors do occur, the model's error also grows in proportion to amplitude. In

these simulations, Go was held fixed and T(0) - P(O) was varied.

Table 1

The second way of reading the law notes that in order to maintain a fixed absolute error

size, while increasing movement distance, it is necessary to allow more time for completing

the -movement. In particular. every doubling of distance will add a constant amount. b,

to the time needed to perform the movement with the same level of accuracy. Allowing

less than b more time for a movement of twice the distance will lead to a less accurate

movement.

Table 2

Table 2 presents the results of a simulation (parameters as in Figure 17) in which the

rate parameter a was small enough that modest error resulted even at the smallest distance,

or initial value of T(O) - P(O), that was tested, namely a distance of 2 units. Then the

distance T(O)- P(O) was repeatedly doubled while the error level was held constant. As can

be seen, movement time increased approximately linearly with each doubling of distance,

as required by a logarithmic relation between MT and D. The model's striking replication

of the laws of Woodworth and Fitts, together with its other -uccesses in experimental

results, increases our confidence that the VITE Model captures some of the basic neural

design principles that underly trajectory generation in t'ivo.

Woodworth's Law is a consequence of duration invariance in the model. This can be

seen from the mathematical analysis provided in Appendix 2. There it is proved that the
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PPC value P(t) can be written in the form

P(t) = P(O) + (T(O) - P(O)q(t) (11)

given any continuous GO signal G(t). In (11), T(0) - P(0) represents the. amount of

contraction, or -distance" to be moved, that is mandated by the TPC value T(O) and

the initial PPC value P(O). Function q(t) is independent of P(O) and T(O). By (11). P(t)

approaches T(O) as q(t) approaches 1, and P(t) overshoots or undershoots if q(t) approaches

a value greater or less than 1, respectively. Since q(t) is multiplied by T(O) - P(O), the

amount of error (undershoot or overshoot), is proportional to distance, as in Woodworth's

Law.

Whereas the proof of Woodworth's Law is a general consequence of duration invariance

in the model, Fitts' Law has been mathematically proved in only one case as of the present

time (Appendix 1). although our computer simulations demonstrate that it occurs with

greater generality. In this case, the GO signal G(t) switches on from value 0 at times I < 0

to the constant value Go > 0 at times t > 0. In addition. Go is chosen sufficiently large to

generate overshoot errors. In particular, when 4G 0 > a.

2 log(T(O)- P(O)(

where E is the amount of overshoot error in the VITE command.

These instances of Woodworth's Law and Fitts' Law are generated by the VITE circuit

itself, without the intervention of visual feedback. A number of authors have commented

upon the applicability of these laws when visual feedback is unoperative. For example.

Keele (1982. pp.152-153) has written: -What is the underlying nature of the movement

system that yields Fitts' Law? ... One factor is the intrinsic accuracy of the motor control

system when visual feedback is unavailable. When the eyes are closed during a movement

(or the lights are turned off), an average movement will miss target by about 7% of the

total distance moved." Schmidt (1982. pp.253-254) plotted error functions for sighted
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and blind ::ovements across four movement times. A clear speed accuracy trade-off was

observed. Meyer. Keith, Smith, and Wright (1982. p.450) have reviewed data comparing

the initial impulse phase of a movement, where visual feedback is unimportant, with the

subsequent current-control phase. where visual feedback may be used to improve accuracy.

They noted that "the initial-impulse phase was found to contribute directly to the speed-

accuracy trade-off. Even when subjects had to perform with their eyes closed and relied

on just this phase to execute their movements, they still produced a trade-off ... models

that attempt to account for the speed-accuracy trade-off.., must include mechanisms that

modulate the trade-off during the initial-impulse phase, not just during the current-control

phase." The VITE circuit's ability to reproduce both Woodworth's Law and Fitts' Law

as emergent properties of the PPC updating process satisfies this requirement.

It should be emphasized that the VITE circuit is also capable of generating a PPC

that approaches the TPC without error in some parameter ranges (Appendix 1). In these

parameter ranges, an undershoot error will occur if the GO signal is prematurely ter-

minated. A range effect has also been reported (Georgopoulos. 1986, p.151) such that

"subjects tended to overshoot the target in small movements (2.5 cm) and to undershoot

in large movements (40 cm)." A number of factors may influence this result. For exam-

ple. during high speed small movements, auxiliary circuits for controlling the arm's initial

effects may not have a sufficient opportunity to act (Grossberg and Kuperstein. 1986.

Chapters 3 and 5). During large movements, the distance to be moved may be visually

underestimated, thereby leading to instatement of an incorrect TPC. The choice of GO

signal amplitude as a function of target distance may contribute to the range effect. The

relative importance of such factors will be easier to assess as new experiments and the

theory are progressively elaborated with the aid of the quantitative VITE circuit analysis

that is provided herein.
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29. Computer Simulation of Peak Acceleration Data

Bizzi et al. (1984) measured the peak accelerations of medium-speed forearm move-

ments by monkeys. They considered movements around the elbow that swept out 20 and

60 - A computer simulation is compared with their data in Table 3. In order to make

this comparison, we scaled 1 time unit in our simulation to equal 10 msec. We then chose

two values of the GO amplitude parameter Go which generated trajectories of duration

approximately equal to 554 msec. and 692 msec.. respectively. Due to duration invariance

(Section 22), the same durations obtain given these choices of Go over a wide range of

choices of the distance measure T(0) - P(O). The fact that movements were 200 or 60'

was translated into the constraint that the T(0) - P(0) value corresponding to the smaller

choice of Go must be chosen three times larger than the T(O) - P(0) value corresponding

to the larger choice of Go. Then we searched for values of T(0) - P(0) that gave the best

fit to the peak acceleration data subject to this constraint.

Table 3

The result is compared in Table 3 with the data and with the fit of the Minimum-

Jerk Model of Hogan (1984). The VITE Model fit these data substantially better than

the Minimum-Jerk Model. The values associated with the VITE- model indicate that a

perfect fit can be obtained (with Figure 17 parameters) if DV readout to the shunting stage.

rather than being instantaneous, occurs over a brief interval whose length is proportional

to the size of the DV.

As noted in Section 12, the Minimum-Jerk Model also erroneously predicts a symmetric

velocity profile. at least at the level of the central controller. Moreover. it is hard to see

how this model could explain the velocity amplification that occurs during target switching

(Section 11). Finally. the Minimum Jerk Model does not contain any representation that

may be compared with the existence of vector cells or with the manner in which vector

cell activities are integrated into outflow movement commands (Section 13). We therefore
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believe that the VITE Model provides a better foundation for developing a quantitative

neurallv-based theory of arm movements than does the Minimum-Jerk Model. The VITE

model, in addition to the model circuits developed in Grossberg and Kuperstein (1986).

also provides a mechanistic neural explanation of the types of invariant behaviors for whose

analysis the task dynamics approach to motor control was developed (Saltzman and Kelso.

1983).

30. Updating the PPC using Inflow Signals during Passive Movements

Despite these successes, the VITE Model as described above is far from complete. In

this section, a solution of one additional design problem is outlined. Bullock and Grossberg

(1986b) suggest solutions of a number of the other design problems whereby a VITE circuit

can effectively move an arm of variable mass subjected to unexpected perturbations at

variable velocities through a Newtonian world.

In Section 6, we noted that inflow signals are needed to update the PPC after a passive

movement terminates. Two basic problems motivate our model of PPC updating by inflow

signals: First, the process of updating the PPC during passive movements must continue

until the PPC registers the position coded by the inflow signals. Thus a difference vector

of inflow signals minus PPC outflow signals updates the PPC during passive movements.

We denote this difference vector by DVP to distinguish it from the DV which compares

TPC's with PPC's. At times when DVP = 0. the PPC is fully updated. Although the DVP

is not the same as the DV which compares a TP(" with a PP(. the PPC is a source of

inhibitory signals, as will be seen below, in computing both difference vectors.

Second, PPC outflow signals and inflow signals may. in principle, be calibrated quite

differently. We will show how corollary discharges of the PPC outflow signals are adaptively

recalibrated until they are computed in the same numerical scale as the inflow signals

to which they are compared. We also show that this adaptive recalibration mechanism

automatically computes a DVp which updates the PPC by just the correct amount.
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Figure 25 schematizes a model circuit for adaptively computing this DV%. We call

this circuit the passive update of position (PUP) rmodel. In Figure 25. the PPC sends

inhibitory corollary discharge signals towards the outflow-inflow match stage where the

inflow signals are registered. It is assumed that this stage is inhibited except when the

movement command circuit is inactive. A simple way to achieve this property is to assume

that active DV cells in the movement command circuit inhibit the outflow-inflow match

stage, as in Figure 25. Thus the mismatches of outflow and inflow signals which occur

during every active movement do not erroneously update the outflow-inflow match stage.

In addition, these signals from the DV stage inhibit learning at the LTM traces which

multiply the PPC signals on their way to the outflow-inflow match stage.

Figure 25

After a movement is over, both the outflow-inflow match stage and the LTM traces are

released from inhibition. Typically, the PPC represents the same position as the inflow

signals. but perhaps in a different numerical scale. The learning laws described in Appendix

3 define LTM traces which change until the PPC times the LTM trace equals the inflow

signal. After a number of such learning trials during stable posture. DVp = 0 and the PPC

signals are rescaled by the LTM traces to correctly match the inflow signals.

During a passive movement, the PPC does not change. but the inflow signal may

change. If the DVp becomes positive. it causes an increase in the PPC until The DV,

decreases to 0 and the PPC is correctly updated by the inflow signals. If the D1' becomes

negative, then the DV of the opponent muscle can decrease the PPC until a match again

occurs.

Z1. Concluding Remarks

The present article introduces a circuit for automatically translating a target position

command into a complete movement trajectory via a mechanism of continuous vector up-

dating and integration. A wide variety of behavioral and neural data can be quantitatively
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explained by this mechanism. The model also provides a foundation for clarifying some of

the outstanding classical issues in the motor control literature, highlights the relevance of

learning constraints upon the design of neural circuitry, and may be viewed as a specialized

version of a more general architecture for movement control.

The VITE circuit and the PUP circuit do not. however, exhaust the total neural

machinery that is needed for the control of arm movements. Mechanisms for properly

timed sequential read-out of TPC's in a serial motor plan, such as during reaching and

grasping or during a dance (Grossberg and Kuperstein, 1986, Chapter 9), for adaptive

linearization of a nonlinear muscle plant (Grossberg and Kuperstein, 1986, Chapter 5), and

for automatically or predictively adapting to the inertial properties generated by variable

loads and velocities (Bullock and Grossberg, 1986b) also form essential parts of the arm

control system. When all of these systems are joined together, however, one can begin

to understand quantitatively how the arm system achieves its remarkable flexibility and

versatility, and can begin to build a new type of biologically inspired adaptive robot whose

design is qualitatively different from the algorithms offered by traditional approaches to

artificial intelligence.
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APPENDIX I

Bell-Shaped Velocity Profile. Fitts* Law. and Staggered Onset Times

This Appendix solves the system of equations

dd- V = a(-I, + T - P) (A 1)

SP =d G[V]- 
(.42)

under the simplifying assumption that the GO signal G is a step function. Then the system

can easily be integrated to demonstrate some basic properties.

In many situations, the system starts out in an equilibrium state such that the PPC

equals the TPC. Then a new TPC is switched on and the system approaches a new equi-

librium. Before the new TPC is switched on. P = T in (Al). Since the system is at

equilibrium. TV = 0. Thus. by (AI), it also follows that V = 0 under these circum-

stances.

Suppose that a new TPC value is switched on at time t = 0. If the system represents an

agonist muscle, then T(0) > P(0) so that the PPC increases when T(0) turns on. thereby

causing more contraction of its target muscle group. Thus by (Al).

V(0) = 0, (,43)

and

d V(O) = a(T(O) - P(0)) > 0. (.44)

Consequently V(t) _ 0 for all t > 0. so that by (A2),

dd- P = GV 
(.45)

dt

for all t > 0.
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To solve equations (Al) and (A5). differentiate (Al) at times t > 0. Then

d2  dX dP
&2 1= a(- i -- i) (t6)

because T is constant. Substitniing (A5) into (AG) yields the equation

d2  d
d2" + t V + - (;" = 0 (At)

subject to the initial data (A3) and (A4).

This equation can be solved by standard methods. The solution takes the form

V(t) = (T(0) - P(0))f(t), (.48)

where f(t) is independent of T(0) and P(0). Thus V (t) equals the initial difference between

the new TPC and the initial PPC multiplied by a function f(t) which is independent of

the new TPC and the initial PPC. By (A2),

dd = (T() - P(O))g(t), (.49)

where g(t) = Gf(t). Integration of (A9) yields

P(t) = P(O) + (T(O) - P(O)) j g(v)dv. (.410)

Since AP provides an estimate of the arm's velocity profile. (A9) illustrates the property

of duration invariance in the special case that G(t) is constant. Duration invariance is

proved using a general G(t) in Appendix 2. Equation (A9) also illustrates how the velocity

profile can respond to a sudden switch in the TPC with a gradual increase-then-decrease

in its shape, although g(t) assumes a different form if a > 4G. a = 4G. or a < 4G. When

a > 4G.
_ __ __ - t [ ' : 4a

ck(t) = vo, _ -
2 4aG1

Term [exp(t vo 2 - 4aG)J - [exp(-' v/a2 - 4aG)j in (A l) increases exponentially from

the value 0 at f = 0. whereas term exp - 2't decreases exponentially towards the value 0
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at a faster rate. The net effect is a velocity function that ih('reases-then-(ecreases with an

approximate!y bell-shaped profile. In addition. g(t) > 0 ani

fI .
(.412)

By (A10) and JA12). P(t) increases towards T as t increases. Thu P(It) either approaches

T(O) with an arbitrarily small error. or an undershoot error occurs if the (;O signal is

switched off prematurely.

If a = 4G. then

g(t) = aGte-t (A13)

Again the velocity profile gradually increases-then-decreases. but starts to increase lin-

early before it decreases exponentially. The function in (A13) also satisfies (A12). so that

accurate movement or undershoot occur. depending upon the duration of the GO signal.

The case of a < 4G deserves special attention. In this case, the rate G with which P

is updated in equation (A2) exceeds the ability of the rate a in equation (Al) to keep up.

As a result. an overshoot error can occur. In particular.

2C)(; ' ,4oG -
git) = -2c ; -e : Ai . . .t .14)

,4o(; - ..

if o < I , When t exceeds -" function gilt and thus V1 t). becomes

iegat i've. By A2 " 0 when f exceeds o . that. bv (A2). P(t) stops

:nio-v iig at hs t ime I 'it, ovenent t inie in this case _hus at'-fie,

.\IT- __ . (.415)
\ t(," -o Ga

\\rhin h -' :i:i, frame :I, prn,,':" ;,robie -the -vrnnitetric function sin t ) mul-

• :4 Vd 11C. C t . "If"'X i-% -71 C , rc, fi' cr lon t (,reater overall s.ymnietry of

J al i f liv r. 1ich "inc IW nCfolln changes is rapid relative
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Since P(t) stops changing at time 1= v2r the final PPC value found from
,:74aG -.

equation (AIO) is

P/ G- ) = P(0) + (T(0) - P(0))(l + e V4-G- (A16)

Thus an overshoot error occurs of size

E = (T(o) - P(0))e ,4aG-o.2 (417)

In accordance with Woodworth's Law, the error is proportional to the distance (T(0) -

P(O)). Fitts' Law can be derived by holding E constant in (A17) and varying (T(O) - P(O))

to test the eff.ct on the MT in (A15). Substituting (A15) into (A17) shows that

oMT

E = (T(0) - P0))e (A 18)

which implies Fitts' Law

MT = 2 log T(0) P(0) (A19)

The initial condition V(O) = 0 in (A3) obtains if the system has actively tracked a

constant TPC until its PPC attains this TPC value. Under other circumstances. V(0)

may be negative. When this occurs, t in (A2) may remain 0 during an initial interval

while V(t) increases to nonnegative values. Thus P begins to change only after a staggered

onset time. Some properties of staggered onset times are derived below.

A negative initial value of V(o) may obtain if a particular muscle group has been

passively moved to a new position either by an external force or by the prior active con-

•raction of other muscle groups. In such a situation, P(1) may be changed by the PUP

rixrr'it (Section 30) even if T(t) = 0, and V(t) may track P(t) via equation (Al) until a

•. ,q ilibrium is reached. Under these circumstances. (Al) implies that

d
0 -V = a(-V + 0 - P). (.420)

dt
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If we assume that this equilibrium value obtains at time f = 0. then

V(0) = -P(0) < 0. (.421)

and equation (A2) implies that

d- P = G ]- = 0. (.422)

Thus P remains constant until V becomes positive. If a new TPC is switched on at time

t = 0 to an agonist muscle which satisfies (A21), then T(O) > P(O). By (AI). V increases

according to the equation

dd-V + aV = a(T(o) - P(O)). (.423)
di

where a(T(0) - P(0)) is a positive constant, until the time t = t1 at which V(tl) = 0.

Thereafter [Vj- = V > 0 so that V and P mutually influence each other through equations

(Al) and (AS).

Time t1 is computed by integrating equation (A10). We find

V(t) = V(O)e '" -- (T(o) - P(O))(I - o ) (.424)

for 0 < t < t. By (A21).

(t)= -P0) T(01( - , A25)

Thus

t, = In - (T))) (26i

By (A26), tj is a function of the ratio of the initial PPC value to the new TPC value.

For times t > ti. equations (Al) and (A5) can be integrated just as they were in The

preceding case. Indeed,

67it) = 0 .427)
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by the definition of t I, and
dd V(tl) = a(T(O) - P(0)) (.428)

by (A23) and (A28). The initial data (A27) and (A28) are the same as the initial data

(A3) and (A4) except for a shift of tj time units. Consequently if the GO signal onset

time is also shifted by t1 time units, then it follows from (A8) that at times t > tj.

V(t) = (T(0) - P(0))f(t - t1). (A29)

An estimate of such a velocity profile is found by piecing together (A24) and (A29). Thus

d { 0 for 0 <t <t (30

it G(T(O)-P(O))f(t - ti) for t<< (430)

Equation (A30) illustrates how a velocity profile with a staggered onset time can occur if

V (0) < 0. As shown in Section 26. the VITE command to a muscle group can compensate

for a staggered onset time if its DV is multiplied by the same GO signal as other muscles

in the synergy. In this case, the GO signal onset time is not shifted to match the onset

time of each component of the VITE command.
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APPENDIX 2

Synchrony and Duration Invariance

Consider equations (Al) and (A2) under the influence of an arbitrary nonnegative and

continuous GO function G(t); As in Appendix 1. let

V(O) = 0 (A3)

and P = T before T is switched to a new value. Suppose for definiteness that T(t) switches

from the value To to T, at time t = 0, and that

T, > To = P(0). (A31)

Consequently, equations
d V = a(-V + T - P) (A 1)dt

and

dP =GV (45)
dt

hold for t > 0. Define the new PPC variable

Q(t) =P(t) - TO (A32)

and the new target position constant

2  T, - To. (.433)

Then (Al) and (A5) can be replaced by equations

ddV= a(-V + T2 - Q) (.434)

and
ddQ = GV (.435)
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for I > 0. By (A31),

Q(O) = 0. (.436)

Thus by (A3) and (A36). both V and Q start out with 0 values at t = 0.

Now define new variables

v(t) - V(t) (A437)

and

q(t) Q(t) (A38)

By (A34) and (A35), these variables obey the equations

d

dt v = a(-v + 1 - q) (A39)

and

d q = G. (A40)

In addition,

v(O) = q(O) = 0 (.441)

by (A3) and (A36). It is obvious that a unique solution of (A39)-(A41) obtains no matter

how T2 and T, are chosen, if T 2 > T1 .

By combining (A31), (A32), (A33), and (A38), we find that

P(t) = P(0) + (Tj - P(0))q(t), (A42)

where q(t) is independent of T, and P(0). Equation (A42) proves duration invariance given

a general GO function G(t). Indeed, differentiating (A42) yields

d d
= (Ti - P(O)) j- q(t) (.443)

which shows that function jq generalizes function g(t) in equation (Ag).
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APPENDIX 3

Passive Update of Position

Mathematical equations for a PUP circuit are described below. As in our description

of a VITE circuit. equations for the control of a single muscle group will be described.

Opponent interactions between agonist and antagonist muscles also exist and can easily

be added once the main ideas are ur lerstood.

The PUP circuit supplements the equation

d P= G[V (a.2)

whereby the PPC integrates DV's through time. A PUP circuit obeys equations

Present Position Command

=d GjV]- -pil- (.444)

Outflow-Inflow Interface

d- M =- 3M.i --"P - z. (.445)

Adaptive Gain Control

- 6p(-EZ + [,I-). (.446)

The match function M in (A45) rapidly computes a time-average of the difference

between outflow (' P) and gated inflow (zI) signals. Thus

1
M -,(' P - Zl). (.447)

If the outflow signal -7P exceeds the gated inflow signal zl, then ,MJ > 0 in (A47).

Otherwise [MJ- = 0. The passive gating function Gp in (A44) is positive only when the

7'



muscle is in a passive, or postural, state. In particular. ( > 0 only whe, 1" 0 in the
VITE circuit. If hoth Gp and ., are positive in (A44). then d p< 0. (oniequely.P

decreases until M = 0: that is. until the outflow signal 3P equals the gated inflow ignal

:i. At such a time. the PPC is updated to match the position attained by the mnuicle

during a passive movement. To see why this is true. we need to consider The role of function

z in (A45) and (A46).

Function z is a long term memory (LTM) trace. or associative weight, which adaptively

recalibrates the scale, or gain, of inflow signals until they are in the same scale as outflow

signals. Using this mechanism, a match between inflow and outflow signals accurately

encodes a correctly updated PPC. Adaptive recalibration proceeds as follows.

In equation (A46). the learning rate parameter 6 is chosen to be a small (onstant to

assure that z changes much more slowly than M or P. Ths passive gating function (;,

also modulates learning, since z can change only at times when G > 0. At such times.

term -ez describes a very slow forgetting process which prevents z from getting stuck in

mistakes. The forgetting process is much slower than the process whereby : grows when

!,j- > 0. Since function M reacts quickly to its inputs ",P and -I.. as in (A47), term

-. If > 0 only if

,P > Iz. (.448)

Function I is an inflow signal which is multiplied, or gated. by : on its way to the match

interface where M is computed (Figure 24).

Because z changes only when the muscle is in a postural. or a passive state, terms -,P

and I typically represent the same position. or state of contraction, of the muscle group.

Then inequality (A48) says that the scale -rP for measuring position P using outflow

signals is larger than the scale zI for measuring the same position using inflow signals.

When this happens, z increases until M = 0; viz., until outflow and inflow measurement

scales are equal.
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On an occasion when the arm is passively moved by an external force, the outflow

signal - P may momentarily be greater than the inflow signal zI. Due to past learning.

however, the gated inflow signal satisfies

ZI = ":,P', (A49)

where P" is the outflow command that is typically associated with I. Thus by (A47),

M _ 3(P - P'). (.440)

By (A44) and (A50), P quickly decreases until it equals P'. Thus. after learning occurs.

P approaches P'. and M approaches 0, so quickly that spurious new learning due to the

passive movement has little opportunity to occur, since z changes slowly through time.

What small deviations may occur tend to average out due to the combined action of the

slow forgetting term -fz in (A46) and opponent interactions.

Equations (A45) and (A46) use the same formal mechanisms as the head-muscle inter-

face (H.MI) described by Grossberg and Kuperstein (1986). The HMI adaptively recodes a

visually activated target position coded in head coordinates into the same target position

coded in agonist-antagonist muscle coordinates. Such a mechanism for adaptive matching

of two measurement scales may be used quite widely in the nervous system.
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TABLE I

MT DISTANCE ERROR

.56 10 .084

.56 20 .170

.56 40 .349

.56 80 .700

FOR FIXED DURATION (MT), ERROR GROWS

IN PROPORTION TO DISTANCE.
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TABLE 2

ERROR DISTANCE MT

.059 2 .39

.057 4 .49

.058 8 .59

.059 16 .70

.057 32 .80

.059 64 .91

FOR FIXED ERROR LEVEL, DURATION (MT) GROWS

LINEARLY WITH DISTANCE DOUBLING.
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TABLE 3

DISTANCE MT PEAK P PEAK P SOURCE

20 .554 397°/sec2 Bizzi ct al. (1984)

60- .692 11300Isec 2  (experimental data)

200 .554 3760/sec2 Minimum-jerk model

600 .692 7220/sec2  (simulation)

200 .554 3940/sec2  VITE model

600 .692 8540/sec2  (simulation)

200 .554 3960/sec 2  VITE- model

600 .692 11270/sec 2  (simulation)

COMPARISON OF THREE MODELS' ABILITY TO PREDICT

DATA ON PEAK ACCELERATION.

',. ;.,i ,." - ','...'.'.'., -. '•'.." , , : . .: S U . .. . ,. . ,. ... ,., . .
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FIGURE CAPTIONS

Figure 1. Consequences of two motor-control schemes. Dashed lines: .Movement

paths generated when a synergist producing vertical motion and a synergist producing

horizontal motion contract in parallel and at equal rates to effect movements from various

beginning points (Bs) to the common endpoint E. Solid lines: Movement paths generated

when the synergists' contraction rates are adjusted to compensate for differences in the

lengths of the vertical and horizontal components of the movement.

Figure 2. Both outflow and inflow signals contribute to the brain's estimate of the

limb's present position, but in different ways.

Figure 3. Curves for subjects' approach to various targeted force levels. Targeted

(peak) levels are reached at nearly the same time, indicating duration invariance across

different force "distances". Only the initial part of each curve represents active move-

ment. Post-peak portions represent passive relaxation back to base-line. Reprinted with

permission from Freund and Biidingen (1978).

Figure 4. Overshooting (gray curve), hitting (black curve), and undershooting (dash-

ed line) a force-level target (horizontal line) in an isometric task. Reprinted with permission

from Gordon and Ghez (1986b).

Figure 5. Duration invariance across three force target levels. Oblique lines indicate

an inverse relation between rise time (duration) and peak acceleration across trials with

the same force target level. These trends overlay a direct relation between target level and

peak acceleration. Reprinted with permission from (;ordon and (;hez (1986b).

Figure 6.%1,Yikevs -eamlesslv transformed a inovenwnt initiateoi toward the 2 o'clock

tarKet int() a rmt)veixient toward the 10 i)' ciok taret when the latt er tarvvt wa., ,u b.-ituted ",

50 or M() ni,c after activation of the 2 ,- lock target iKht Reprinted %,th ;),ri l issiot

fromi -f al. 1r'pii0." I9*1

1% J



Figure 7. Velocity profiles from movements of iiniilar durat i,, ,trt <pr, ,

superimposable following velocity and time axis recablng Reprr .,i '.,'

from Atkeson and Hollerbach (1984).

Figure 8. A match interface within the inotor coiimandt cha: r, : * ,'- ,,'2

putes the difference between the target position and pre.ent position. a.,oi ;,,id, 4#,fcr-

ence to the present position command.

Figure 9. Quick buildup and gradual decline of activity :n motor-cortical v%-c!,,r cil,

Reprinted with permission from Georgopoulos et al. (1982).

Figure 10. Directional tuning curve for a motor-cortical cell exhibiting peak ac-

tivity during a 90' (forward from body) arm movement. Dotted line indicates control

period discharge rate. Thus this cell is inhibited when movement direction falls outside

the 180' hemisphere of movements to which it can contribute a positi e :not ion component.

Reprinted with permission from Kalaska et al. (1983).

Figure 11. A comparison of the population vector of 241 directionally tuned cells

(upper figure) with the velocity vector of the hand (lower figure), each measured at 20

msec. intervals during the reaction time and during movement. Note the asymmetry

(longer right tail) in both. Reprinted with permission from Georgopoulos et al. (1984).

Figure 12. (A): The time course of each trial in the push-or-pull task used by Evarts

and Tanji (1974). (B): Operating characteristics of two motor-cortical cells. Solid arrows

indicate increases (upward arrow) or decreases (downward arrow) in cell discharge rates.

Hollow arrows indicate a push-(upward arrow) or pull-(downward arrow) related event:

either the push/pull priming signal, a push/pull movement, or the push/pull perturbation

that also served as the release signal.

Figure 13. Learning in sensory-motor pathways is gated by a DV process which

matches TP( with PPC to prevent incorrect associations from forming between eye-head

TP( and hand-arm TP(".
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F iguare 14 A #-ACC~a '11:1 :oi* a ;)riH.e~i :iioveTnleft vector and regulares

;r. ~ ~ ~ i~ ,, -i :>: 14.itn i %ectIor iiidale, The ;)re'ent Position commiand.

Fiv~ire 15 )'l 'Sel ~n xlerac * loll!, ;11011 1 ha nneIS controlling agonists and their

7.1 T1I at :.Cil, 1r:1natedI automatic u.pdiat ing of their PPC's.

Figure 16 VNvork variables employedI in computer simulations. See text equations

Figure 17 The ;irnulated time course of the neural network activities V. G. and

P durinx an 1100 -rzisec. movement. The variable T (not plotted) had value 0 at t < 0,

it;d vaitue 20 thereafter. The derivative of P is also plotted to allow comparison with

-Aperirnienrai veiocity profiles. Parameters for equations (2), (3), (6): a = 30, n = 1.4,

1 0.-

Figure 18. With equal GO signals. movements of different size have equal durations

and perfectly 'hiuperimposable velocity profiles after velocity axis rescaling. (A, B): GO

- ignals and velocity profiles for 20 and 60 unit movements lasting 560 msec. (See Figure

17 caption for parameters.)

Figure 10. ( A. B, C): Velocity profiles associated with a slow. medium. and fast per-

formance of a 20 unit movement. Each SR value gives the trajectory's symmetry ratio: that

is. the time taken to move half the distance, .5(T(0) - P(O)), divided by the total move-

ment duration. MT. These ratios indicate progressive symmetrization at higher speeds.

(D): The velocity profiles shown in (A), (B), and (C) are not perfectly superimposable.

(See Figure 17 for parameters.)

Figure 20. (A, B): Velocity profiles for a slow and a fast movement with aSlwr

than-linear g(t): a = 30, n =1 3=,-y 1, (C, D): Velocity profiles for a -dow and ~A

fast movement with a linear g(t): a =30. n = 1, 3 = 1. =0.

Figure 21. Simulated time course of neural network activities and '~7; :-

movement. Note the S-shaped growth in G~ ilgmioid IFUA ,( -,
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equations (2), (3). (8), (9): a = 25. A = 1. B = 25.

Figure 22. A much higher peak velocity is predicted by the model whenever a target

is activated after the GO signal has already had time to grow. (A): The control condition.

in which T and the GO signal growth process are activated synchronously. (B): Same T

as in (A), but here T was activated after G(t) had been growing for 300 msec. (See Figure

17 for parameters.)

Figure 23. Simulation results showing automatic VITE circuit compensation for

contraction-onset-time staggering across components of a synergy. Each block (I, IL III,

IV) shows results for a different value (10, 20, 40, and 80, respectively) of the GO signal

scalar, Go. (See Figure 17 for parameters.)

Figure 24. (A): Simulation of movement duration (sec) as a function of peak velocity

(deg/sec) for a 30' (lower curve) and a 600 (upper curve) movement. (See Figure 17 for

parameters.) (B): Data on agonist burst duration (squares) and antagonist burst onset-

time (dots) as a function of peak velocity (rad/sec) for a 60' movement. Reprinted with

permission from Lestienne (1979).

Figure 25. A passive update of position (PUP) circuit. An adaptive pathway PPC -

DVp calibrates PPC-outflow signals in the same scale as inflow signals during intervals of

posture. During passive movements, output from DV equals zero. Hence the passive

difference vector DVp updates the PPC until it equals the new position caused by any

passive movements that may occur due to the application of external forces.
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1. Environment, Behavior, and Brain: The Central Role of Adaptive Mech-
anisms

A thorough ethological analysis of behavior requires the simultaneous consideration of
several interacting factors: the environment with which an organism interacts, the behav-
iors which are generated in that environment, and the neural mechanisms which control
and are modified by these environmental-behavioral interactions. The remarkable multi-
plicity of behaviors, of levels of behavioral and neural organization, and of experimental
paradigms and methods for probing this complexity present a formidable challenge to all
serious theorists of mind. The challenge is, quite simply, to discover unity behind this
diversity by characterizing a small set of theoretical principles and mechanisms capable
of unifying and predicting large and diverse data bases as manifestations of fundamental
processes.

My colleagues and I have repeatedly found that such fundamental processes can best
be discovered by analysing how the behavior of individuals successfully adapts in real-time
to constraints imposed by the environment. Such an analysis requires that one identify the
functional level on which an individual's behavioral success is defined. This is not the level
of individual nerve cells. Rather it is the level of neural systems, properly defined. My
chapter will describe several examples of adaptive mechanisms of sensory-motor control
to illustrate the fact that one cannot, in principle, determine the properties which govern
behavioral success from an analysis of individual cells alone. An analysis of individual
cells is insufficient because key behavioral properties are often emergent properties due
to interactions among cells. Different types of specialized neural circuits govern different
combinations of emergent properties.

On the other hand, it is equally incorrect to assume that the properties of individual
cells are unimportant, as many proponents of artificial intelligence have incessantly done
to promote the untenable claim that human intelligence can be understood through an
analysis of Von Neumann computer architectures. Carefully designed single cell properties
are joined to equally carefully designed neural circuits to generate the subtle relationships
among emergent behavioral properties which are characteristic of living organisms. Indeed,
on a finer level of analysis, single cells can also be represented by interactive networks of
still finer components. Remarkably, formal network mechanisms on different levels of
behavioral organization often recapitulate one another (Carpenter and Grossberg, 1983;
Cohen and Grossberg, 1983; Grossberg, 1978a, 1980).

In summary, the present approach analyses how brain systems are designed to form an
adaptive relationship with their environment. Instead of limiting consideration to a few
performance characteristics of a behaving organism, we consider the developmental and
learning problems that a brain system as a whole must solve before accurate performance
can be achieved. Accurate performance is not taken for granted. Rather the dynamical
mechanisms whereby it is achieved and maintained are analysed. Such an analysis is
necessary if only because an analysis of performance per se does not impose sufficiently
many constraints to determine underlying control mechanisms. The unifying power of such
theoretical work is due, we believe, to the fact that principles of adaptation-such as the
laws governing development and learning--are fundamental in determining the design of
behavioral mechanisms.

2. A Comparative Neuroethological Analysis of Ballistic Movement Systems
A wide variety of behaviors and their neural substrates have been subjected to this type

of modelling approach. Included are analyses of sensory processing, cognitive recognition
codes, reinforcement, attention, motivation, biological rhythms, and the interfacing of these
processes with mechanisms for the control of planned motor behavior. Many of these results

are brought together in several recent books (Grossberg, 1982, 1986a, 1986b; Grossberg
and Kuperstein, 1986). In this chapter, theoretical issues and results are described about
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visually guided motor behavior. These results are relevant to such central neuroethological
issues as localization, orienting, sensorimotor interfacing, and the design of motor pattern
generating circuitry (Evert, Capranica, and Ingle, 1981). They also clarify the types of
sensory-motor transformations that are modulated by sensory recognition, attentional,
and motivational mechanisms during the synthesis of a behavioral act. In fact, models
of how such modulatory mechanisms interface with sensory-motor mechanisms have been
developed hand-in-hand with the sensory-motor mechanisms themselves, and each class of
models has provided additional constraints upon the other's development.

The need for a sustained investigation of sensory-motor designs is illustrated by two
quotations from the important neuroethological proceedings that were summarized in Ev-
ert, Capranica, and Ingle (1981). Scheich (1981, pp.7-8) wrote that

"sensorimotor interfacing covers functional and structural mechanisms of
the brain which mediate between sensory and motor maps ... since much
less is known about the motor-organization of species-specific behaviors
and almost nothing is known about interfacing it is apparent that the state
of the art in neuroethology of vertebrates is hardly beyond the stage of a
conparative neurobiology of sensory systems."

In their analysis of frog prey capture behavior, Grobstein, Comer, and Kostyk (1981,
p.344) wrote that

"while a given retinal and tectal region corresponds to a single direction
in an eye-centered co-ordinate frame, they in fact correspond to a set of
directions in a body-centered or movement co-ordinate frame. Conversely,
a given point in a movement co-ordinate frame in fact corresponds to a
set of points in an eye-centered co-ordinate frame such as the retina or
the tectum. We are intrigued by the possibility that between the tectum
and the pattern generating circuitry there may be an intermediate level
of circuitry into which space is represented in a body-centered or move-
ment co-ordinate frame. Because of the many to one and one to many
character of the transformation in going from an eye-centered to a body-
center or movement co-ordinate frame, disturbances of circuitry involved
in this transformation might be expected to result not in disconnection of
particular tectal regions from pattern generating circuitry but rather in an
alteration in the particular output associated with activation of given tectal
regions."

These remarks illustrate the critical importance of understanding the computations
whereby sensory inputs generate motor actions. To the extent that one cannot character-
ize these sensory-motor transformations, understanding of the state-dependent mechanisms
which modulate them is correspondingly weakened. For example, unless one can say how a
motor trajectory is planned and executed, one cannot adequately understand how shifts in
reinforcement. attentional distractors, or other types of environmental feedback can alter
these planning mechanisms before or during the execution of a motor trajectory. Under-
standing how a motor trajectory is planned and executed is also needed to characterize
how the neural mechanisms which encode what a stimulus is interact with the mechanisms
which compute where it is to plan how to reach it.

In the present analysis, as in all neuroethological analyses, I illustrate some general
organizational principles and mechanisms through an analysis of a single sensory-motor
system, the mammalian saccadic eye movement system. Saccadic eye movements are
ballistic movements of great speed and accuracy in humans and many other mammals.
Toads do not make involuntary saccadic eye movements (Autrum, 1959; Evert, Burghagen,
and Schiirg-Pfeiffer, 1981). On the other hand, a number of vertebrates, including toads,
do make ballistic snapping movements which involve tectal interactions (Evert, Capranica,
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and Ingle, 1981). The tectum is a homolog of the mammalian superior colliculus, which
is involved in the generation of ballistic eye movements (Hikosaka and Wurtz, 1983; Mays
and Sparks, 1980; Schiller and Stryker, 1972; Sparks, 1978; Sparks and Mays, 1981). As
in the control of ballistic snapping behavior by the frog tectum (Grobstein, Comer, and
Kostyk, 1981), the monkey superior colliculus generates ballistic eye movements which
have been recoded from retinal coordinates into egocentric coordinates (Mays and Sparks,
1980, 1981; Schiller and Sandell, 1983). The mammalian saccadic eye movement system
thus offers neuroethology a useful source of insights for comparative analysis with systems
which have traditionally been subjected to a neuroethological analysis.

3. Hierarchical Resolution of Informational Uncertainty: Relating Anatomy

to Adaptive Function

A central theme running through an analysis of real-time adaptive behavior concerns
the manner in which neural subsystems are interconnected to solve a behavioral problem
which is incompletely specified at any one stage of neural processing. As mentioned in
Section 2, all the examples described in this chapter concern saccadic, or ballistic, eye
movements in mammals. Although saccadic eye movements are a relatively simple type of
motor behavior, a large number of brain regions are utilized to control them. These regions
include retina, superior colliculus, visual cortex, parietal cortex, frontal cortex, cerebellum,
peripontine reticular formation, and the oculomotor nuclei (Baker and Berthoz, 1977;
Fuchs and Becker, 1981; Ito, 1984; Keller and Zee, 1986; Zuber, 1981).

Our analysis of saccadic movements has identified a series of distinct learning problems
that its control system needs to solve in order to achieve and maintain accurate perfor-
mance characteristics (Grossberg and Kuperstein, 1986). We have hereby translated an
anatomical multiplicity of brain regions into a functional multiplicity of learning problems.
Each brain region can then be discussed as a real-time circuit realization that is capable of
solving a class of functionally characterized problems. Several sensory-motor control sys-
tems can all send circuits through a single brain region because these circuits all need to
solve a similar functional problem. Such an analysis suggests, for example, a single model
of the cerebellum which can be used by several sensory-motor circuits that all require a
certain type of conditionable gain control property. In each of these circuits, the internal
architecture of the cerebellar model is the same. Only the input pathways and output
pathways that are connected to the model are changed. Thus, once one has used adaptive
constraints on one type of behavior to characterize a neural design, one can then utilize
this design to help discover how functionally related adaptive behaviors are organized. For
his reason, our work on eye movements has provided a basis for developing an analysis of

arm movements (Bullock and Grossberg, 1986).

4. Planned versus Reactive Movements: The Problem of Infinite Regress
Once the primacy of adaptive constraints is granted, the problem of infinite regress

cannot be avoided. On what firm computational foundation can adaptive calibrations be
based? If parameters in several subsystems can all change due to learning, then what
prevents learning in one subsystem from undoing the learning in a different subsystem?
What prevents a global inconsistency from developing due to the very fact that individual
subsystems, by needing to be specialized to deal with part of an adaptive problem, cannot
have complete information about the problem as a whole?

We have found that infinite regress can be avoided through a mechanistically character-
ized developmental sequence. In it, obligatory saccadic movements to flashing or moving
lights on the retina are supplemented by attentionally mediated movements towards mo-
tivationally interesting or intermodal (e.g., auditory) sensory cues. These movements are
supplemented once again by predictive saccades which form part of planned sequences of
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complex movement synergies capable of ignoring the sensory substrate on which they are
built.

The distinction between reactive movements and planned movements illustrates the
subtlety of the infinite regress problem. In our theory, as in the data, the analysis of these
two types of movements implicates both the superior colliculus and the frontal eye fields
(Bruce and Goldberg, 1984; Buchtel and Guitton, 1980; Goldberg and Bushnell, 1981:
Hikosaka and Wurtz, 1983; Mays and Sparks, 1980, 1981. Schiller. Sandell, and Maunsell,
1984; Schiller, True, and Conway, 1979: Sparks and Mays, 1981). Although patients
with discrete frontal lobe removals for intractable epilepsy produce obligatory saccades to
visual stimuli (Buchtel and Guitton, 1980: Goldberg and Bushnell, 1981). normal humans
have a remarkable capacity to override the influence of sensory cues (Murphy, Haddad.
and Steinman, 1974; Steinman, 1965). Steinman (1976, p.121) has, for example, written:
"Perhaps the most striking aspect of human oculomotor performance is its independence
from stimulus variables. By this I mean that a normal human adult can look about in
his visual world and attend whatever region catches his fancy undisturbed by ... light
on his retina, or, in perceptual terms, the way the visual world looks at a particular
movement. Thus, when a human generates a planned eye movement, he or she does so
by suppressing the influence of lights on the retina that would otherwise have caused a
reactive eye movement.

When one considers how an accurate planned movement can be learned, however, it
becomes clear that visual error signals, although not the only type of error signals, are
the final arbiter of movement accuracy. The planned movement system. no less than the
reactive movement system, requires visual error signals to tune its movement commands.
Yet during a planned movement, sensitivity to visual signals is suppressed. How can the
planned movement system both suppress sensitivity to visual signals in order to generate a
planned movement at all, yet benefit from visual signals to learn how to generate accurate
planned movements? In particular, how are movement parameters that are learned by
the reactive movement system used to enable accurate planned movements to be learned,
thereby avoiding the problem of infinite regress? This issue, although critical to discovering
how reactive and planned movement systems are designed and interact, is invisible to an
analysis that is based entirely on movement performance. The same is true of many neural
designs that we have discovered during our analyses of sensory-motor data.

5. Learned Coordinate Transforms: Comparing Target Position with Pre-
sent Position to Gate Intermodal Learning

Many of the learning problems which are solved by an adaptive sensory-motor system
take the form of learned transformations between different coordinate systems, or neural
maps. Several of these learned transformations are summarized herein to illustrate major
issues in sensory-motor control. A good place to begin this discussion is with the central
problem of how, when an observer looks at an object, the observer's hand knows where to
move in order to touch the object? I will discuss this issue from the perspective of eye-hand
coordination in a mammal, but the issues that are raised, as well as the conclusions that
are drawn, generalize to many other species and sensory-motor systems.

How is a transformation learned between the parameters of the eye-hand system and
the hand-arm system so that an observer can touch a visually fixated object? Follow-
ing Piaget (1963), let us imagine that an infant's hand makes a series of unconditional
movements, which the infant's eyes unconditionally follow. As the hand occupies a variety
of positions that the eye fixates, a transformation is learned from the parameters of the
hand-arm system to the parameters of the eye-head system. A circular reaction. or reverse
transformation, is also learned from parameters of the eye-head system to parameters of
the hand-arm system. This reverse transformation enables an observer to intentionally
move its hand to a visually fixated position.
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How do these two sensory-motor systems know what parameters are the correct ones
to map upon each other? This question raises the fundamental problem that many neural
signals, although large, are unsuitable for being incorporated into behavioral maps and
commands. They are "functional noise" to the motor learning process. The learning
process needs to be actively modulated, or gated, against learning during inappropriate
circumstances.

In the present instance, not all positions which the eye-head system or the hand-
arm system assume are the correct positions to associate through learning. For example,
suppose that the hand briefly remains at a given position and that the eye moves to foveate
the hand. An infinite number of positions are assumed by the eye as it moves to foveate
the hand. Only the final, intended, or expected position of the eye-head system is a correct
position to associate with the position of the hand-arm system.

Learning of an intermodal motor map must thus be prevented except when the eye-
head system and the hand-arm system are near their intended positions. Otherwise, all
possible positions of the two systems coud be associated with each other, which would lead
to behaviorally disastrous consequences. Several important conclusions follow from this
observation (Grossberg, 1978b: Grossberg and Kuperstein, 1986).

(1) All such adaptive sensory-motor systems compute a representation, or map, of
target position (also called expected position, or intended position).

(2) All such adaptive sensory-motor systems also compute a representation of present
position.

(3) During movement, target position is matched against present position. Intermodal
map learning is prevented except when target position approximately matches present
position (Figure 1). A gating, or modulator, signal is thus controlled by the network at
which target position is matched with present position. This gating signal enables learning
to occur when a good match occurs and prevents learning from occurring when a bad match
occurs.

(4) In order to compare target positions with present positions. both types of data must
be computed in the same coordinate system. Present eye position is computed with respect
to head coordinates. Thus there is an evolutionary pressure to encode target position in
head coordinates.

Figure 1

6. Trajectory Formation Using Neural Vectors: Automatic Compensation
for Present Position

The above discussion of how intermodality sensory-motor transformations are learned
also sheds light upon how intramodality movement trajectories are formed. Intermodality
transformations associate target positions because only such transformations can avoid
the multiple confusions that could arise through associating arbitrary positions along a
movement trajectory. Target position commands are not, however, sufficient to generate
intramodality movement trajectories. In response to the same target position command,
an eye, arm, or leg must move different distances and directions depending upon its present
position when the target position is registered.

Present position signals can be used to convert a single target position command into
many different movement trajectories. Computation of the difference between target posi-
tion and present position at the match interface in Figure 1 generates a movement vector
that automatically compensates for present position. Such automatic compensation ac-
complishes a tremendous reduction in the memory load that is placed upon an adaptive
sensory-motor system. Instead of having to learn whole movement trajectories, the system
only has to learn intermodality maps between target positions. The neural vectors which
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are computed from target positions and present positions at the match interface automati-
cally generate the movement commands from which the trajectory is formed. In summary.
consideration of the types of information that can be learned during motor development
leads to general conclusions about how movement trajectories are formed, and thus about
the way in which other neural systems can influence the planning of such trajectories.

In the saccadic eye movement system, there is now convincing experimental evidence
that a critical stage in the generation of a movement command consists in the computation
of a neural vector (Bruce and Goldberg, 1984, 1985: Hallett and Lightstone, 1976; Mays
and Sparks. 1980, 1981: Schiller and Sandell, 1983; Sparks and Mays. 1981: Zee, Optican.
Cook. Robinson. and Engel. 1976), and that such vectors are manipulated both by the
superior colliculus and the frontal eye fields. As in the general discussion above, such
a vector computation compares a target position with a present position to generate a
movement command. In the case of eye movements, the target position is derived from the
position of a light on the retina (Figure 2). The present position is derived from a position
of the eye in the head. Subtraction of present position from target position generates a
difference vector that represents how far the eye must move in order to foveally fixate a
target. Before discussing the learned transformations which need to be carried out in order
to realize this ostensibly simple computation. I will pause to further emphasize some of its
conceptual implications.

Figure 2

Computation of movement vectors is a radically different approach to generating a tra-
jectory than are traditional computations based upon a Newtonian analysis of movement
kinematics. In a Newtonian analysis, every position within the trajectory is assumed to be
explicitly controlled (Atkeson and Hollerbach, 1985: Brody and Paul. 1984; Hogan, 1984:
Hollerbach, 1984). Such computations rapidly lead to a combinatorial explosion which is
hard to reconcile with the rapidity of biological movement generation in real-time. In a
vector computation, the entire trajectory is never explicitly planned. Instead, a target
position is computed which determines where the movement expects. or intends, to termi-
nate. The subtraction of present position is an automatic process which compensates for
the variability of the starting position. The vector which is hereby computed can generate
an accurate movement without ever explicitly computing a planned sequence of trajectory
positions for the whole movement. In a typical saccadic movement, a single vector may
generate the entire movement. In arm movements, by contrast, a continuous comparison
of a fixed target position with the present positions achieved during the movement is of-
ten made (Bullock and Grossberg, 1986). All of these compensations for present position
changes are automatically registered, and therefore place no further burden whatsoever
upon the computation of planned movement parameters. In addition, such automatic
compensations for present position spontaneously generate the major invariants of arm
movements that have been discovered to date. Thus the general problem of how neural
vectors are computed is a central one for the understanding of trajectory formation in

* several movement systems.
i4

7. Learned Transformation of Target Position from Retinotopic to Head
(Coordinates: A Many-To-One, Invariant, Self-Regulating Target Position Map

Despite the apparent simplicity of the difference vector concept. its actual computation
in an adaptive system requires the solution of several important problems. All of these
problems derive from the fact that target position and present position are computed
using different kinds of information. One thus cannot compare them unless they can first
be made dimensionally consistent.

In particular. a light on the retina is computed in a retinotopic coordinate system,
because lights hit the retina. Present eye position is computed in a head-centered, or
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egocentric, coordinate system because the eyes move in the head. In order to show how
target position and present position become dimensionally consistent, Kuperstein and I
analysed how the position of a light on the retina can be transformed from a retinotopic
coordinate system, or frame, into a head coordinate system, or frame. Once target positions
are computed in a head frame they can be compared with present positions which are also
computed in a head frame, as in Figure 1. Neurophysiological data suggest that one
place where a target position map in a head frame is computed is the posterior parietal
cortex (Anderson, Essick, and Siegel, 1984; Hyvi.rinen, 1982; Lynch, 1980; Motter and
Mountcastle, 1981).

In order to convert the position of a light on the retina into a target position in head
coordinates, one needs to join together information about the light's retinotopic position
with information about present position of the eye in the head (Figure 3). We suggest
that this type of transformation is learned. Otherwise, the retinotopic system and the
present position system--which are widely separated in the brain and designed according
to different internal constraints-would also have to be pre-wired with perfectly chosen
parameters for interaction with yet another brain system. We have shown how to avoid
precise pre-wiring. Indeed, we have shown how a transformation can be learned even if
parameters are coarsely chosen initially and if significant portions of either system are
damaged or even destroyed. This type of learning exhibits properties which are of general
interest in other movement systems and also in cognitive psychology. I will therefore
describe its major elements here.

Figure 3

The most important properties of this transformation are that it is many-to-one, in-
variant, and self-regulating. As Figure 3 illustrates, many combinations of retinal po-
sition and eye position correspond to a single target position with respect to the head,
as Grobstein et al. (1981) have also emphasized in their study of frog tectum. When a
single representation in the brain is activated by all of these possible combinations, the
transformation is said to be invariant (Figure 4). The key difficulty in understanding
how such an invariant transformation is learned arises from its many-to-one property. The

Figure 4

many-to-one property implies that each retinal position and each eye position can activate
many target positions in head coordinates (Figure 5). Even after learning takes place, each
pair of retinal and eye positions can activate many target positions in head coordinates,
but only the correct target position receives the maximal total activation.

Figure 5

What prevents learning due to one pair of retinal and eye positions from contradicting
learning due to a different pair of positions? In particular, if pairing retinal position R, with
eye position E, strengthens the pathways from these positions to target position T1, then
why does not future pairing of R1 with a different eye position E2 continue to maximally
excite T, instead of the correct target position corresponding to R, and E2 ? How is a
globally consistent rule learned by a network, despite the fact that all computations in
the network are local? How can a target position map be implicitly defined, such that
each eye position and retinal position, taken separately, activates a large number of target
positions, yet in combination always maximally activate the correct target position?

Finally, the property of self-regulation means that the map can correct itself even if
a large fraction of the retinal positions and/or eye positions are destroyed, or if their
parameters are otherwise altered through time. Destruction of a single retinal position
eliminates all the combinations which that position made with all eye positions to activate
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target positions. In a similar fashion, destroying a single eye position can disrupt all target
positions with which it was linked. A self-regulating map must thus be able to reorganize
all of its learned changes to maintain its global self-consistency after removal of any of its
components.

The self-regulation property is illustrated by the computer simulation summarized
in Figure 6. Each row in Figure 6 depicts learning of target positions corresponding
to a different number of retinal and eye positions. More combinations of positions are
represented in each successive row. The first column in each row depicts an intermediate
learning stage, and the second column depicts a late learning stage. The abscissa plots
topographic positions across the retinal and eye positions maps, whereas the ordinate plots
the sizes of the adaptive path strengths, or learned long term memory (LTM) traces, in
the pathways from these maps to the target position map (TPM). Such a TPM refines
the concept of target position map that is schematized in Figure 1. The LTM traces were
randomly chosen before learning began. A comparison of panels (b), (d), and (f) shows
that the LTM traces can reorganize themselves when more combinations of positions are
associated in such a way as to (approximately) preserve that part of the map which was
learned when fewer combinations of positions were associated. This self-regulation property
also holds when more combinations are replaced by fewer combinations, or if the initial
LTM traces are not randomly chosen.

Figure 6

8. Autoreceptors: Presynaptic Competition for Long Term Memory
The complete theory of how an invariant self-regulating target position map (TPM) can

be learned, as well as variants of this theory, are developed in Grossberg and Kuperstein
(1986). Herein I emphasize three key points about the theory that are especially relevant
from an ethological perspective: (i) the need to specialize the laws for individual cells
to enable them to interact effectively in a specialized network to achieve a prescribed
functional capability; (ii) the need to recognize these specialized laws as evolutionary
variations of general dynamical principles; and (iii) the need to solve the problem of infinite
regress.

(i) The specialization in question achieves the invariance and self-regulation properties
of the TPM. How do all the LTM traces whose pathways project to a single TPM cell
readjust themselves in a compensatory fashion when any one of these LTM tracs changes
due to learning (Figure 3)? We suggest that the synaptic endings in which these LTM traces
are computed contain autoreceptors (Cubeddu. Hoffmann, and James, 1983; Dubocovich
and Weiner, 1982; Groves and Tepper, 1983; Groves, Fenster, Tepper, Nakamura, and
Young, 1981; Niedzwiecku, Mailman, and Cubeddu, 1984; Siever and Sulser, 1984; Tepper,
Young, and Groves, 1984). Then when transmitter is released by one synaptic ending, a
portion of it can undergo reuptake via the autoreceptors of other active and nearby synaptic
endings. Reuptake has an inhibitory effect on the LTM trace of each synaptic ending. Thus
autoreceptors help to realize a type of presynaptic competition among all the LTM traces
whose pathways converge upon the same cell within the TPM.

Such an LTM trace obeys an equation of the form
rft

d[J St-Fz,, + x H Skzkj. (1)

k=1

In (1), z,, is the LTM trace in the pathway from the ith cell in the retinotopic map or eye
position map to the jth cell in the TPM; S, is the signal emitted by the ith cell into this
pathway; and x) is the activity, or short term memory (STM) trace, of the jth TPM cell.
The terms f, F, G, and H are constants. Equation (1) says that reuptake via autoreceptors
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of a fraction of released transmitter, as in term -H E= Skzk, inhibits the growth of the
corresponding LTM trace.

Although autoreceptors are well known to occur in certain transmitter systems, no-
tably catecholaminergic systems, this is the first time that they have been used to explain
such a high-order functional property as formation of an invariant, self-regulating TPM.
If this TPM is indeed to be found in posterior parietal cortex and if the autoreceptors are
catecholaminergic, then the theory suggests that experimentalists search for catecholamin-
ergic autoreceptors in those regions of the posterior parietal cortex that are used to build
up a TPM in head coordinates.

9. Invariant Map Formation by Associative Learning
(ii) There are several senses in which equation (1) is a specialization of a general learn-

ing law. For one, the type of learning which is used to generate a TPM is a variant of the
simplest type of associative learning, namely classical conditioning. The events controlled
by the external environment do not include an explicit conditioned stimulus (CS) and
unconditioned stimulus (US). However, a combination of externally delivered inputs and
internally generated signals functionally act like a CS and a US. The CS is a combination of
an externally delivered retinal input and an internally generated eye position signal. This
eye position signal computes the initial eye position before the movement occurs (Figure
3). The US is also an internally generated eye position signal. This eye position signal
computes the final eye position after the movement is over. The retinotopic position and
the initial eye position act together like a composite CS which is capable of learning a final
eye position US.

There is a second sense in which learning of an invariant TPM is a special case of a
more general learning scheme. Removing the autoreceptor term in equation (1) by setting
H = 0 converts the equation into a learning law which has been used to explain a variety of
data about classical conditioning, instrumental conditioning, list learning, and learning of
perceptual and cognitive recognition codes (Carpenter and Grossberg, 1986a, 1986b, 1986c;
Grossberg, 1976, 1982a, 1982b, 1982c, 1984: Grossberg and Levine, 1986; Grossberg and
Stone, 1986; Kohonen, 1982, 1983). Thus processes such as invariant map formation and
list learning, which appear to be quite unrelated when described using lay language, can
now be studied as variations of general dynamical laws using a formal language whereby
adaptive designs can be mechanistically characterized. Such linkages help to discover a
mechanistic unity behind the remarkablc behavioral diversity that I noted at the beginning
of this chapter.

The example of TPM formation also illustrates how the problem of infinite regress
(Section 4) enters an analysis of adaptive systems. Each composite CS learns a US that
represents the final eye position after a movement terminates. Map learning is invariant
because all composite CS's which are associated with a single final eye position are capable
of learning this position, due to the self-regulation property. However, the task of the
system is to learn a target position, not just any final eye position. The final eye position
equals the target position only if the eye movement is accurate.

In the complete theory, such accuracy is due to the fact that the visually reactive
movement system is sensitive to visual error signals (Section 13), and uses these error
signals to improve the accuracy of its movements until visually reactive saccades become
accurate. The theory assumes that learning of an invariant TPM takes place while the
system is in its visually reactive mode. Thus an invariant TPM can be learned because the
(distinct) visually reactive system can correct its movement errors. Once an invariant TPM
is learned, it stimulates further learning within the attentionally modulated and predictive
movement systems of which it forms a part. As a consequence of this learning, these
movement systems can compete effectively with the visually reactive system for control of
overt movements. I now discuss some of the other functional problems which the system
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as a whole needs to solve to realize this developmental progression, and whose solution is
triggered by the self-organization of a TPM.

10. Associative Transformation of Target Positions into Motor Coordinates:
Automatic Computation of Vectors

The transformation of target position from retinotopic coordinates into tiead coordi-
nates needs to be followed by further learned transformations. One such learned trans-
formation is necessary in order to compute a movement command vector by subtracting
present position from target position (Section 6). Target position, whether in retinotopic
or head coordinates, is determined by a visual input. In contrast, present position is com-

. puted in motor coordinates, since the position of each eye in the head is determined by
the relative lengths of six muscles that are organized into three agonist-antagonist pairs.
Before present position can be subtracted from target position, the two types of infor-
mation must be made dimensionally consistent. Only then can a vector be computed by
subtraction.

To solve this problem, we suggest how a target position in head coordinates can be
recoded, by a learned transformation, into a target position in motor coordinates (Figure
7). Then present position in motor coordinates can be subtracted from target position
in motor coordinates to compute a vector in motor coordinates. A surprising conclusionof this analysis is that the same network region which learns to transform target position

into motor coordinates also automatically computes a vector in motor coordinates. Thus
what appeared to be two distinct problems can be solved by a single properly specialized
network. This network is called the head-muscle interface, or HMI. The HMI is the match
interface that was schematically represented in Figure 1.

Figure 7

Figure 8 shows a macrocircuit which relates the HMI to its sources of target position
and present position signals. When a population within the TPM is activated by a retinal
light, the population sends inhibitory signals along conditionable pathways to all the cells

Figure 8

of the HMI. The HMI also receives present position signals, which are computed in motor
coordinates. These present position signals are corollary discharges that are derived from
outflow signals to the eye muscles (Figure 9). As in the learning of a TPM (Figure 4)
and in the learning of an intermodality associative transform between TPM's (Figure 1),
learning within the HMI is prevented from occurring by a learning gate. or modulator,
except after an eye movement is over. The visually reactive system guarantees that the
corollary discharges which the TPM-activated inhibitory pathways learn after a movement
terminates are actually target positions. Thus, transforming target position from head
coordinates into motor coordinates is also a specialized type of associative learning.

Figure 9

Each target position in motor coordinates is encoded by the LTM traces of the in-
hibitory pathways that are activated by that target position from the TPM. Thereafter,
when that TPM population is activated, it reads out these LTM values, as inhibitory sig-
nals, into the HMI. Present position signals are also read into the HMI, but as excitatory
signals. The differences between these target position and present position sigrals generate
an STM activity pattern across HMI cells that encodes a vector in motor coordinates.

These properties of HMI dynamics are succinctly summarized by the following network
equations:
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and P is a Now Print signal that becomes positive only after a movement is over. As
in equation (1), x) is an STM trace; in particular, x) is the activity of the jth HMI
population. Function z,, is the LTM trace from the ith TPM population to the jth HMI
population. A comparison of the learning equations (1) and (3) shows that both equations
are specializations of a more general learning process. Equation (1) contains autoreceptors.
Equation (3) contains a movement-sensitive Now Print signal. A. the discussion subsequent
to equation (1) noted, such Now Print modulation of learning is also needed when equation
(1) is specialized within a TPM-learning network.

The vector V in (4) is simply the pattern of output signals generated by the activities
(XX2, .. , X6) of the HMI cells. This output signal pattern also determines the LTM
pattern that is learned via equation (3). A complete analysis of how the HMI recodes target
positions into motor coordinates and reads out vectors in motor coordinates is provided in
Grossberg and Kuperstein (1986).

11. Vectors in Motor Coordinates Are Adaptively Transformed into Retino-
topic Coordinates

A vector in motor coordinates must itself be further transformed before it can effec-
tively generate accurate movements. This is true because the final test of an eye movement
command's accuracy is whether or not the command enables the eye to foveate a target
light. Such a test can only be carried out using visual error signals: in particular, using a
measure of how far the target light is from the fovea after the movement is over. This fact
suggests that the vector in motor coordinates must be recoded into a retinotopic coordi-

nate system so that it can benefit from visual error signals that are also computed in a
retinotopic coordinate system. Thus, after converting visual information into motor coodi-
nates in order to compute a vector command, the movement system then reconverts motor
coodinates back into retinotopic coordinates to utilize the error-correcting properties of
visual error signals.

The properties of the HMI are essential for carrying out this transformation. Target

positions in either head or motor coordinates cannot, in principle, be directly transformed
into a retinotopic frame, because the eye can move with respect to the head. On the other
hand, the HMI automatically transforms target positions into vectors. Vectors in motor
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coordinates can be transformed into retinotopic coordinates, because a vector compensates
for initial eye position.

12. Distinct Vectors Activate Distinct Movement Command Pathways Us-
ing Interactions Between Adaptive Filter and Competition Mechanisms

Two problems must be solved before a vector in motor coodinates can generate move-
ment commands capable of benefitting from visual error signals. The first problem is to
show how distinct vectors in motor coodinates, which all activate a common set of HMI
cells, can activate distinct movement command pathways. The second problem is to show
how each distinct movement command pathway can correct its movement command us-
ing visual error signals. Due to the parsing of vectors into distinct movement command
pathways, altering the command controlled by one pathway will not disrupt the movement
commands that are controlled by other pathways.

A solution to the first problem is schematized in Figure 10. The problem is to parse
vectors so that each vector maximally activates a distinct cell population at the next
processing stage. Expressed more generally, such a parsing process recodes distinct spatial
patterns into distinct locations in a topographically organized map. Then each location
can activate its own movement command pathway.

Figure 10

Several closely related models of this type of transformation are developed in Gross-
berg and Kuperstein (1986). Figure 11 illustrates a computer simulation of how such a
topographic map recodes a vector in motor coordinates into a unimodal focus of maximal
activity.

Figure 11

A model capable of realizing such a transformation through learning combines con-
ditionable pathways from the HMI to the topographic map with competition, or lateral
inhibition, between the populations of this map. The conditionable pathways are said to
form part of an adaptive filter. Combinations of adaptive filter and competition mech-
anisms are ubiquitous in neural models of map formation. See Banquet and Grossberg
(1986), Carpenter and Grossberg (1986a, 1986b, 1986c), Cohen and Grossberg (1986), and
Grossberg and Stone (1986) for some recent examples of such models in the learning of
cognitive recognition codes. Thus the problem of recoding vectors into locations is a spe-
cial case of a more general theory of code learning. The mechanistic unity achieved by this
theory can be clearly appreciated only by using a formal language capable of rigorously
characterizing its adaptive design principles.

The model of how an invariant TPM is learned (Section 7) may also be included in this
coding theory. Such a model also uses a combination of adaptive filter and competition
mechanisms. In forming an invariant TPM, competition is presynaptically mediated by
autoreceptors at the synaptic terminals of adaptive filter pathways. In forming a topo-
graphic map, competition is postsynaptically mediated by the target cells of the adaptive
filter.

13. Automatic Gain Control of Movement Commands by Visual Error Sig-
nals: Cerebellar Learning

The second problem concerns the manner in which each movement command pathway
can individually benefit from visual error signals to generate a more accurate movement in
the future. This analysis leads to a model of learning by the cerebellum which significantly
extends earlier models of cerebellar learning (Albus, 1971; Brindley, 1964: Fujita, 1982a,
1982b; Grossberg, 1964, 1969, 1972; Ito, 1974; Marr, 1969; McCormick and Thompson,
1984). I emphasize two key properties of this model herein: (i) the dual action of each
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light; and (ii) the learning of a motor synergy. The remainder of this section considers the
dual processing issue.

Each light on the retina which is chosen to generate a movement command is processed
in parallel along distinct pathways (Figure 12). One pathway-labelled I in Figure 12-
generates a movement command. The other pathway-labelled 2 in Figure 12-generates
an error signal. The movement command is registered and stored in short term memory
before the eye moves and can lead to an overt movement. The error signal is registered after
the eye moves and provides an error measure of how far the target light still deviates from
the fovea. Each movement pathway is, in turn. broken up into two parallel components:
an unconditioned pathway and a conditioned pathway. The unconditioned pathway can
generate a movement command even before movements become accurate through learning.
This pathway creates the occasions for registering visual error signals and thereby learning
a more accurate command. Thus learning by this system operates through a perform-and-
test-scheme. Such a scheme realized a type of instrumental conditioning, because behaviors
are emitted and the consequences of these behaviors, in the form of error signals, shape
their future accuracy. The actual conditioning law is, however, again a variant of a general
classical conditioning mechanism.

Figure 12

Conditioning in this system takes place in the Adaptive Gain Stage, or AG stage
(Figure 12). The AG stage is identified with the cerebellar vermis, based upon data which
show that this brain region controls modification of a saccade's pulse gain (Optican and
Robinson, 1980). The conditioned movement pathway generates sampling signals which
pass through the AG stage and add a conditionable movement signal to the total movement
command. An error signal acts to change the size, or gain, of the conditionable movement
signal. Thus the AG stage is a region where automatic gain control of the total movement
command takes place.

All the movement commands are feedforward commands in Figure 12. Feedback in-
fluences the system by controlling the size of the error signals which change the gain of
future movement commands. In Figure 12, feedback is ezternally mediated: a feedforward
movement command elicits a movement which generates feedback in the form of a visual
error signal. In other circuits which use the AG stage, feedback can be internally mediated
(Section 13).

14. Learning a Motor Synergy: Opponent Processing of Error Signals

The second key property of the AG stage concerns its ability to convert visual error
signals, which individually activate only a single retinal position, into correct and syn-
chronous movement commands to all the muscles which move the eye. This property
is realized by preprocessing the error signals several times before they can be sampled
by the conditioned movement pathway. Two processing constraints conceptualize these
preprocessing stages: (a) the Opponent Processing constraint, and (b) the Equal Access
constraint. The need for Opponent Processing-which is a new feature of our model-can
be seen as follows.

Each eye is moved by three pairs of agonist and antagonist muscles. One pair moves
the eye horizontally. The other two pairs move the eye obliquely, and together can generate
vertical movements (Figure 13a). I now indicate why an increase in the gain of an agonist
muscle command must generate a decrease in the gain of the corresponding antagonist
muscle command, and conversely. In other words, each visual error signal has antagonistic,
or opponent, effects on the conditionable gains of the muscle commands which it changes.

Figure 13

In order to realize the Opponent Processing constraint, suppose that the retina is
topographically transformed from retinotopic coordinates into a motor map containing
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six sectors (Figure 13a). Each pair of agonist-antagonist muscles-(a + ,a - , (a) ,3-),
'Y, _'y-)-is represented by opposite sectors in the sector map. A visual error signal which
alls within a prescribed sector increases the conditioned gain of the corresponding muscle
and decreases the conditioned gain of the antagonistic muscle. This scheme can correct
undershoot, overshoot, and skewed movement errors as follows.

Suppose that a light activates the retinal position labelled 1 in Figure 13b and thereby
causes a saccade. Suppose that, after movement, the light activates position 2. Such a

0 movement defines an undershoot error: the eye does not move far enough toward the right
to foveate the light. If the error signal increases the gain of muscle /+ and decreases the
gain of muscle 3-, then the eye will move further toward the right the next time that
position I is activated, thereby tending to correct the undershoot error.

The need for opponent processing can be seen by considering the case of an overshoot
error in Figure 13c. Here a light to position 1 moves the eye in such a way that the
error signal activates a position 2 on the opposite side of the fovea. In other words, the
eve moves too far to the right. Due to opponent processing, the error signal increases
the gain of muscle 3- and decreases the gain of muscle 3', thereby tending to correct
the overshoot error the next time position 1 is activated. A similar analysis shows how
opponent processing of error signals corrects skewed errors, as in Figure 13d.

15. The Equal Access Constraint
Figure 13 emphasizes the fact that, before learning occurs, a light to a fixed retinal

position (1) can cause undershoot, overshoot, or skewed errors. The system cannot a priori
predict which type of error will occur as a result of its inadequately tuned parameters. In
order to correct any possible error, each position must be able to activate a conditioned
movement pathway that is capable of sampling error signals delivered to any of the motor
sectors. This is the Equal Access constraint, which was first articulated in a formal model
of cerebellar learning by Grossberg (1964, 1969).

In order to realize the Equal Access constraint, we assume that the motor sectors are
mapped, via a complex logarithmic map (Schwartz, 1980), into motor strips (Figure 14).

Figure 14

Then a single conditioned movement pathway can sample gain changes due to error signals
which activate any motor strip. Figure 15 describes two variants of this design. Each
variant realizes both the Opponent Processing constraint and the Equal Access constraint.

Figure 15

The most obvious, and by now classical, cerebellar interpretation of this anatomy is
that the sampling signals are carried by parallel fibers through the dendrites of Purkinje
cells, whereas the error signals are carried by climbing fibers to the Purkinje cell dendrites
(Albus, 1971; Grossberg, 1964, 1969; Marr, 1969).

In summary, visual error signals are mapped from retinotopic coordinates into motor
sector coordinates and then into motor strip coordinates, so that they can all be sampled
by individual movement command pathways which can supply conditioned gain signals to
their corresponding muscles.

16. Adaptive Linearization of the Muscle Plant: Error Signals from Out-
flow-Inflow Mismatches

All of the above constraints have been implemented using a variant of the associative
equation (3) in which z, is replaced by a visual error signal. Then perfect learning is
achieved if the muscle plant responds linearly to the total movement signal, which is a
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sum of unconditioned and conditioned components (Figure 12). Figure 16A describes the
outcome of a computer simulation that demonstrates perfect learning. Unfortunately the
muscle plant is known to be nonlinear (Robinson, 1970; Schiller, 1970). When the muscle
plant is nonlinear, a single retinotopically coded source of conditioned pathways cannot
adequately learn to correct foveation errors using visual error signals. Figure 16B describes
the outcome of a computer simulation that illustrates this failure when the muscle plant
exhibits a slower-than-linear, or saturating, nonlinearity.

Figure 16

This failure raises one of the classical issues about sensory-motor control: How does
the brain compensate for changes in muscle plant gains and nonlinearities that may occur
throughout life due to normal development, aging, minor muscle tears, or changes in
blood supply? How does the brain continue to generate accurate movement commands
despite the fact that the muscles which execute these commands change their response
characteristics through time? In particular., how does the brain compensate for these
changes without altering the entire hierarchy of learned transformations that are used to
move the muscles? In Grossberg and Kuperstein (1986), a detailed analysis and solution
of this problem is offered. Herein I discuss some main points that are relevant to an
ethological perspective.

Outflow signals give rise to corollary discharges which provide information about
present position (Figure 9). However, the laws that goven the muscle plant are not known
a priori to the outflow source. It is not known how much the muscle will contract in
response to an outflow signal of fixed size. Even if the outflow source somehow possessed
this information at one time, it might turn out to be the wrong information at a later
time, since the muscle plant characteristics can change through time.

In order to use an outflow signal as a reliable source of present position information,
the movement system as a whole must guarantee that the muscle plant reacts linearly, and
with a reasonable gain, to outflow signals, even if the muscle plant is nonlinear. Once a
linear muscle response is achieved, perfect learning using visual error signals (Figure 16A)
will also be possible.

The relationship between the size of an outflow command and the amount of muscle
contraction is, in principle, undeterminable without some type of inflow information from
the muscle itself concerning its state of contraction. We suggest that a brain region exists
wherein comparisons between outflow and inflow signals are used for this purpose. This
region is called the outflow-inflow interface, or 011, and forms a part of a larger circuit
called the Muscle Linearization Network, or MLN (Figure 17).

Figure 17

We suggest how spatial patterns of outflow signals are matched against spatial patterns
of inflow signals at the OIl. Good matches imply that the muscles are responding linearly,
and with a reasonable gain, to outflow signals. Bad matches must be able to adjust
muscle plant gain as well as muscle plant nonlinearities. This is accomplished as follows.
Mismatches within the Oil generate error signals to the AG stage that can change the
size of the total outflow signal to the muscle plant (Figure 17). The conditionable part of
the total outflow signal adds or subtracts the correct amount of signal to make the muscle
react as if it is a linear muscle plant with a reasonable gain. Thus, in response to changes
in the muscle plant, automatic gain control signals compensate for these changes through
learning. If the muscle plant changes due to aging or accidents, mismatches are caused
within the Oil and trigger new learning. The gain control signals automatically alter the
total L atflow command until the muscle again reacts linearly. Thus the linearization of the

muscle plant is a learning process that takes place on a slower time scale than registration
of a corollary discharge. We have used this model of the MLN, and its microcircuit
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refinements, to suggest explanations of diverse neurophysiological and clinical data, such
as data about strabismus and dysmetria (Ron and Robinson, 1973; Steinbach and Smith,
1981; Vilis, Snow, and Hore, 1983).

The error signals from the 011 are assumed to reach the AG stage, or cerebellum, just
as in the circuit of Figure 12. In Figure 12, the error signals are visual error signals that
are mediated by feedback from the external environment. In Figure 17, the error signals
are due to outflow-inflow mismatches that are mediated by feedback pathways internal to
the brain. In both cases, the same AG stage model is employed, although different cells of
the AG stage are used in the two distinct circuits. In particular, Ron and Robinson (1973)
have reported data which indicate that the dentate nucleus of the cerebellum may form
part of the AG stage cells that are used by the MLN. A comparison of Figures 12 and 17
illustrates the following general conclusions:

Once a single functional processor, such as the AG stage. is successfully invented by
the evolutionary process, its functional capability can be used by several sensory-motor
circuits that may be invented or specialized at later evolutionary stages.

Solution of a single functional problem can provide the foundation for an adaptive
solution of several other functional problems. For example, adaptive linearization of the
muscle plant both enables corollary discharges to be used as present position signals and
enables visual error signals to effectively correct foveation errors.

Different types of present position information are available to the brain, but each
type is used in only certain ways. For example, I have already described four ways in
which outflow signals are used: to unconditionally move the eye (Figure 9), to modify
the unconditional movement command with a conditionable movement command through
the AG stage, to generate corollary discharges at the HMI (Figure 8), and to generate
error signals from the OI to the AG stage (Figure 17). Inflow signals, by contrast, have
only been used during my discussion to generate error signals from the OR to the AG
stage (Figure 17). Thus, although inflow signals are essential to determine how the eyes
will move, their role is indirect: They do not tell the system where the eyes are pointing,
but instead can initiate a learning process which enables the eyes to point where outflow
signals tell them to point.

The controversy about the role of outflow signals versus inflow signals as a source of
present position information is a classical one (Helmholtz, 1962; Ruffini, 1898; Sherrington,
1894). A mechanistic refinement of classical ideas, in the manner proposed above, seems
to be clarifying some of the core difficulties by introducing qualitatively new ideas, such
as the concept of a separate Muscle Linearization Network.

17. Attentionally Modulated Choices, Stable Postures, and Planned Move-
ment Sequences

The above discussion outlines some of the problems which need to be solved by a
neural and a computational theory of how a complex sensory-motor system adapts to
its environment. This list of problems does not, however, exhaust the problems which
such a system must solve. In addition, one must discover how an attentionally modulated
movement system, which bases its movement commands upon vectors (Section 6), can
benefit from the conditioned gains that are learned by a visually reactive movement system
(Section 13), yet can also suppress reactive movements in favor of attentionally salient
movements. One must analyse how a postural system can adaptively balance opponent
muscle forces to maintain stable postures in any of the positions to which a movement may
lead. One must characterize how a predictive movement system can encode a sequence
of movement commands, learn to group these commands into a unitized movement plan,
and read-out these commands in a manner that can override the momentary demands of
sensory cues. One must decide how intermodal cues, such as visual and auditory cues,
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can compete in a dimensionally consistent coordinate system to choose an overt movement
command.

Detailed neural models of all these processes have been suggested in the domain of
ballistic eye movements (Grossberg and Kuperstein, 1986) and are presently being devel-
oped in the domain of continuous arm movements and eye-hand coordination (Bullock
and Grossberg, 1986). The generality of the organizational principles and neural mecha-
nisms embodied within these models has begun to reveal a mechanistic unity behind the
rich diversity of behavioral and neural data about mammalian sensory-motor control, and
a still more far-reaching mechanistic unity between mechanisms of sensory-motor control,
perception, and cognition. These unifying principles and mechanisms have all been derived
from an analysis of how the real-time behavior of individual organisms adapts to complex
environments. Although a systematic comparative analysis of how such principles and
mechanisms are specialized across species will require an enormous amount of future work,
the theoretical framework which has already been articulated reaffirms the usefulness of a
neuroethological approach to the analysis of behavior.
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FIGURE CAPTIONS

1. Learning intermodal circular reactions: Learning is gated by signals which are
sensitive to how well target position matches present position within each modality. The
vectors which compare target position with present position are also used to generate
movement trajectories that automatically compensate for present position within each
modality.

2. A fixed target light excites a different retinal position wherever the eye assumes
a different position in the head. The difference between retinal position and eye position
provides a measure of how far the eye must move to foveate the target.

3. Many combinations of retinal position and eye position can encode the same target
position.

4. When the many combinations of retinal position and eye position that correspond
to each fixed target position all activate the same internal representation of that target
position in head coordinates, the ensemble of such head coordinate representations is said
to form an invariant map.

5. Every eye position and retinal position can send signals to many target position
representations.

6. Expansion of LTM maps due to an increase in the number of retinotopic positions
and eye positions that are combined to form target positions in head coordinates: (a)
Intermediate stage of learning using 40 positions of each type; (b) Final stage of learning
using 40 positions; (c) Intermediate stage of learning using 80 positions of each type;
(d) Final stage of learning using 80 positions; (e) Intermediate stage of learning using 160
positions of each type; (f) Final stage of learning using 160 positions. Initial values of LTM
traces are chosen randomly between 0 and 1. (Reprinted with permission from Grossberg
and Kuperstein, 1986.)

7. Target position is adaptively transformed from retinotopic coordinates into head
coordinates, and then into motor coordinates, so that it can be used to compute a vector
in motor coordinates at the head-muscle interface, or HMI.

8. Recoding of a target position map (TPM) into muscle coordinates at a head
muscle interface (HMI): The LTM traces at the ends of the conditioned pathways learn an
"adaptive inhibitory efference copy" from the corollary discharges that they are allowed
to sample when the learning gate is active between movements. When the efference copy
equals the sampled corollary discharges, learning ceases. On a future perfomance trial,
read-out of the target position subtracts from corollary discharge present position signals
to activate a vector in motor coordinates across the HMI cells. (Reprinted with permission
from Grossberg and Kuperstein, 1986.)

9. The outflow pathway generates present position information via corollary discharge
signals. (Reprinted with permission from Grossberg and Kuperstein, 1986.)

10. Distinct vectors in (a), (b), and (c) can activate the same populations of HMI cells.
In order for distinct vectors to activate distinct movement command pathways, they are
transformed into activations of distinct locations within a topographic map.

11. Computer simulation of a transformation from a vector in motor coordinates at the
HMI into a unimodal peak of activation within a topographic map. Difference vectors map
into distinct activation peaks. (Reprinted with permission from Grossberg and Kuperstein,
1986.)

12. The representation of the chosen first light gives rise to an unconditioned movement
signal and a conditioned movement signal. The unconditioned signal causes movements
that are corrected by the conditioned movement signal via learning. The conditioned
pathway carries sampling signals whose strength can be altered by second-light mediated
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error signals. These sampling signals give rise to the conditioned movement signal. The
representation of the first light must be stored until after the end of the saccade. so
that the second-light mediated error signal can act. The AG stage at which learning
occurs is identified with the cerebellum. (Reprinted with permission from Grossberg and
Kuperstein, 1986.)

13. (a) Motor sectors corresponding to agonist muscles (a. 3-,-) and antagonist
muscles (,3-,V) of one eye. The position of the light before movement (labelled
1) activates a movement command pathway. The position of the light after movement
(labelled 2) generates an increase in the gain of the muscle in whose sector it falls, and a
decrease in the gain of the antagonist muscle. (b) An undershoot error. (c) An overshoot
error. (d) A skewed undershoot error. (Reprinted with permission from Grossberg and
Kuperstein, 1986.)

14. Logarithmic map from sensory sectors into motor strips: Each sensory hemifield
(a'. 3 , -, - ) and (a-. ) maps into a row of parallel motor strips. In this fractured
somatotopy. the strips of agonist-antagonist pairs (a,.-). (3*3 )a and (-,. ) are
juxtaposed, much as in the case of ocular dominance columns in the striate cortex. A
pair of motor strip maps is depicted, one in each AG stage hemisphere. Outputs from
all agonist-antagonist pairs compete before the net outputs add to the total movement
command. This circuit works even if only agonist muscles (a'. 3 -. -1 -) receive excitatory
error signals in one hemifield and antagonist muscles (a-, 3-, -) receive excitatory error
signals in the other hemifield. An excitatory error signal to the cl- strip can weaken
the net a- output of the contiguous strip via competition of the outputs, but cannot
strengthen the o output signal. An excitatory error signal to the a' strip of the other
hemifield can strengthen the net a- output. (Reprinted with permission from Grossberg
and Kuperstein, 1986.)

15. Two ways to achieve opponent conditioning of agonist-antagonist muscles: (a)
An error signal increases the conditioned gain at the agonist muscle strip and decreases
the conditioned gain at the antagonist muscle strip; (b) An error signal increases the
conditioned gain at the agonist muscle strip. Competition between agonist and antagonist
muscle strip outputs cause the decrease in the net antagonist output. A single sampling
signal can learn the gain changes appropriate to all the muscles, and can synchronously
read out these learned gains due to the rapidity with which the sampling signal traverses
the motor strips. (Reprinted with permission from Grossberg and Kuperstein, 1986.)

16. Computer simulation of saccadic error correction model. (A) Linear Muscle Plant:
(a) Topographic distribution of learned gains across the sampling pathways. (b) Muscle
response function used during the simulation. (c) Errors in 100 trials before learning begins
and 100 trials after learning ends. Negative values correspond to undershoots and positive
values correpond to overshoots. Learning is perfect. (B) Slower-than-Linear Muscle Plant:
Learning improves performance but cannot correct an unacceptable error size. (Reprinted
with permission from Grossberg and Kuperstein, 1986.)

17. Some main features of the muscle linearization network, or MLN: The outflow-
inflow interface (011) registers matches and mismatches between outflow signals and inflow
signals. Mismatches generate error signals to the adaptive gain (AG) stage. These error
signals change the gain of the conditioned movement signal to the motoneurons (MN). Such
an MLN adaptively linearizes the responses of a nonlinear muscle plant to outflow signals.
The outflow signals can therefore also be used as a source of accurate corollary discharges
of present eye position. (Reprinted with permission from Grossberg and Kuperstein, 1986.)
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Abstract

This paper investigates whether endpoint Cartesian variables or joint variables better

describe the planning of human arm movements. For each of the two sets of planning

variables, a coordination strategy of linear interpolation is chosen to generate possible

trajectories, which are to be compared against experimental trajectories for best match.

Joint interpolation generates curved endpoint trajectories called N-leaved roses. End-

point Cartesian interpolation generates curved joint trajectories, which however can be

qualitatively characterized by joint reversal points.

Though these two sets of planning variables ordinarily lead to distinct predictions

under linear interpolation, three situations are pointed out where the two strategies may

be confused. One is a straight line through the shoulder, where the joint trajectories

are also straight. Another is any trajectory approaching the outer boundary of reach,

where the joint rate ratio always appears to be approaching a constant. A third is

a generalization to staggered joint interpolation, where endpoint trajectories virtually

identical to straight lines can sometimes be produced. In examining two different sets of

experiments, it is proposed that staggered joint interpolation is the underlying planning

strategy.
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1 Introduction

A major approach towards studying biological motor control rests on the premise that

one can infer representations used by the brain from regularities in observed behavior.

External observations of movement patterns may lead to a set of variables that most

concisely describes them. It is then hypothesized that these descriptive variables are

used internally by the motor control system during movement planning to generate the

observed trajectories.

This paper investigates this approach by presuming that there is a distinct geomet-

ric planning level for the whole movement. The whole motion evolves as a result of

controlled relations among kinematic variables, and any dynamic effects due to joint

torque production, muscle activation, and reflexes are subservient to the kinematic

goals. An alternative is to suppose that only the endpoints of movement have a deter-

mined geometrical relationship, and that intermediate trajectory points are dynamically

determined through interaction of dynamic effects, muscle properties, and reflexes.

One argument to support the presumption that there is a kinematic representation of

the whole movement is that the geometry of the external world is more simply captured.

With dynamically determined trajectories, the location of a moving limb is hard to

predict or control and ay violate environmental constraints (Hildreth and Hollerbach,

1986). Another argument derives from studies showing that the path of arm movement

and the tangential velocity profile along the path are not altered when the speed of

movement is changed or when the hand holds a weight (Atkeson and Hollerbach, 1985).

This indicates that dynamic effects are subservient to kinematic invariances. Yet the

final support must come from the success in locating a set of kinematic variables that

concisely describes movement.

Two obvious choices for kinematic planning variables that have been frequently made

are hand position and joint angles. Support for hand position in terms of endpoint

Cartesian coordinates derives from experimental observations of path shape (Morasso,

1981; Viviani and Terzuolo, 1982), theoretical analysis of optimization strategies (Flash

and Hogan, 1985), and teleological arguments about interfacing to the geometry of

the external world (Hollerbach, 1985). One disadvantage with endpoint planning is

that an inverse kinematics solution is required, i.e., the conversion to corresponding

joint coordinates. Fortunately, the human arm has the correct kinematic structure

that would allow this computation to be done relatively efficiently (Hollerbach, 1985),

2
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although the computation is not trivial. Support for joint variable planning derives from

experimental studies of Kots and Syrovegin (1966), Soechting and Lacquaniti (1981),

and Soechting et al. (1985). While an inverse kinematics computation is not required,

and hence joint variable planning is evidently a simpler strategy, the price paid is some

loss of endpoint control.

In this paper, we examine possibilities in terms of the kinds of trajectories that can
be produced utilizing either endpoint variables or joint variables. The eventual goal is

to find the best match of predicted trajectories to experimental trajectories. To proceed

after a choice of variables in order to generate trajectories, a coordination strategy must

be hypothesized. We examine the simplest and most commonly proposed coordination

strategy, simple linear interpolation, in both endpoint variables and joint variables.
More complex planning strategies variables are of course possible. Hollerbach (1981)

suggested that in handwriting each Cartesian variable described an oscillatory motion,

with adjustable relative phase and frequency relationships. Morasso and Mussa-Ivaldi

(1982) suggested that elemental strokes were overlapped in time to form the letters

in handwriting. Viviani and Terzuolo (1982) and Lacquaniti et al. (1983) suggested

functional relationships between curvature, tangential velocity, and angular velocity of

the path. Nevertheless, the movement goals in these curved motions are more complex

than the simpe point-to-point reaching movements considered here, and this paper is

restricted to the commonly proposed coordination strategy of linear interpolation.

At the same time this paper identifies some pitfalls in this approach. There may

be situations where alternative strategies lead to nearly indistinguishable behavior. We

identify one such situation in this paper when movement approaches the edge of the

workspace. This approach is also sensitive to assumptions either in the details of the

variables chosen or in the coordination strategy chosen. We demonstrate an intermediate

strategy between the proposed extremes that sometimes looks like one alternative and

sometimes like the other.

In the present study, the characterization of interpolated movements and the identi-

fication of possible pitfalls will serve as the basis for analyzing two different experimental

studies of human arm movement in a vertical plane. In the first of these, Soechting and

Lacquaniti (1981) noted that joint rate ratios in the deceleratory phases of the move-

ments they studied appeared to approach a constant. In the second study, Atkeson and

Hollerbach (1985) noted both curved and straight endpoint Cartesian trajectories. We

examine the possibility that the intermediate strategy alluded to above is in effect in

3



both studies. 4.

4.

a

p
4-

4.

.4.

a-
a-

p

dl

pa

.4-

-. 4

F.

4.

a-

4

* - *~ d ~J '.~** *'~ ~ ~ ~yI.K,,> ~: ~-



'Orr

2 Linear Interpolation

In the subsequent discussion the human arm will be represented by a two-link planar

manipulator (Figure 1A). Although the human arm is of course easily capable of three-

dimensional movement, many experimental studies have confined the arm motion to a

plane. Two-link kinematics is sufficiently complex to develop principles of coordination,

and the results prove useful in more general analyses. For this two-joint arm, 01 rep-

resents the shoulder angle and 02 represents the elbow angle. No motion of the wrist p

is assumed, and the length of the hand is included in the forearm length. The upper

arm length 11 is assumed equal to the forearm plus hand length 12, which is a good

approximation for the human forearm plus hand relative to the upper arm (Hollerbach

and Flash, 1982). For convenience, both lengths are set to 1.

The shoulder angle 01 corresponds to one of the psychophysical variables determined

by Soechting and Ross (1984). For a vertical arm movement the shoulder angle corre-

sponds to the second pitch shoulder rotation, while for a horizontal arm movement it

corresponds to the first shoulder yaw rotation. The elbow angle is the relative elbow

angle, as normally defined in robotics. Though the relative elbow angle is physiologi-

cally the most meaningful, Soechting and Ross (1984) suggest that the absolute forearm

inclination in the vertical plane is the most relevant psychophysical parameter. Never-

theless, in the section on joint interpolation the results are equivalent whether relative

or absolute elbow angle is used.

This section begins by developing the mathematics for linear interpolation in terms

of endpoint Cartesian coordinates and in terms of joint angles. Three equivalent math-

ematical forms are given that are useful in subsequent analysis, namely straight line,

interpolation, and constant velocity ratio.

2.1 Straight-Line Form

Conceptually the simplest strategy in terms of any planning variables is a straight line,

equivalent to a linear interpolation between initial and final points. In terms of endpoint

Cartesian variables (z, y), the familiar form for a straight line is (Figure 2A):

y(t) - y(t0) fy(t) - (t0)
M(t) - X(to) X(tf) - z(to)

or equivalently,
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y(t) = mx(t) + b (2)

where m = (y(tf) - y(to))/(z(tf) - z(to)) and b = y(to) - mx(to). Here the initial point

at time to is given by (z(to),y(to)) and the final point at time t1 by (z(t1 ),y(tf)).

Cartesian coordinates are of course not the only possible variables describing end-

point position, as the polar coordinates r and 0 (Figure 1B) are one of many possible

alternatives. Nevertheless, Cartesian coordinates have been primarily emphasized in

the literature, and have so far proven the most useful. Hence our attention will be

restricted to them.

A straight line in terms of joint variables is also the conceptually simplest planning

strategy. Such a straight-line motion is described by (Figure 2B):

0 0- 91(to) __ e(t1) - 91 (to)(3
a (t) - 02(to) - 8 o(t, - 01(to)

or equivalently,

01(t) = K2 (t) + 0 (4)

where K = (01(tf) - G1(to))/(O 2(tf) - 02(to)) and 0o = 01(to) - KO 2(to).

During a straight-line motion in joint space, there is no particular control of the end-

point position, which evolves incidentally according to the characteristics of this coordi-

nation strategy. At the movement ends, however, there must of course exist the knowl-

edge of the joint angles that correspond to the desired targets. Section 2.4 discusses

the inverse kinematic relation between the fixed Cartesian endpoints (x(to), y(to)) and

(z(tf), y(tf)), and the beginning and final joint angles (81(to), O2(to)) and (01(tf), e2(tf)).

2.2 Interpolation Form

The straight-line forms just developed do not explicitly indicate how time evolves during

the trajectory. This dependency is made clear in the interpolation form, by introducing

a common time function f(t) that parameterizes each variable.

X(t)=(X(tj) - X(to))f(t) + X(to)

y(t)=(y(t) - y(to))f(t) + y(to)

Rearrangement and division easily converts (5) into (1). In terms of joint variables, the

interpolation form is:

6



01(t)=(01(t,) - 81(to))f(t) + 01(to)

02(t)=(062 tf) - 02(to))fMt) -,- 02 (to) (6)
The time function starts and stops appropriately (f (to) = 0 and f (tf) = 1), and does
not reverse direction (j(t) _> 0). Later, considerable emphasis will be given to this
property of the interpolation form, namely that the trajectory cannot double back on
itself, although the trajectory may stop momentarily.

It is important that exactly the same time function f(t) be used for each variable;
otherwise a straight line would not result. The time function is most conveniently cast
in terms of rates i(t), so that in the case of joint velocities obtained by differentiating

(6):

0(t)=Aof(t) (7)

i 2(t) =AG02 fPt
where A9 1 = (01(tf) - 01(t0 )) and A0 2 = (02(t/) - 02(t0)) are the total angle displace-
ments through which each joint is interpolated. Figure 3A shows hypothetical joint
velocity profiles. Note once again that the joints execute the same time profile f(t) in
lockstep, starting and stopping together. The only difference is the amplitude of joint

displacement.

2.3 Velocity Ratio Form

A third equivalent form is a constant velocity ratio. In the case of joint angles, the joint
velocity ratio may be derived from (7):

- - K (8)
02 Y# 2

where K is a constant because the total joint displacements are fixed. We point out
again that this ratio is a constant precisely because each joint is executing the same

time profile, which cancels out in the division.

To show the equivalence in the other direction, suppose the joint rate ratio is a
constant K. Then by the chain rule:

O_ dO$ dt dO1  (9)

02 t 51dW2
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Integration of the equation dO1 = KdO2 yields the straight-line equation (2). Thus the

following three forms have been demonstrated equivalent:

1. Joint interpolation,

2. Straight line in joint space, and

3. Constant joint rate ratio.

2.4 Kinematics

To decide whether a given trajectory has been executed under one or the other set

of coordinates, a description of the trajectory must be given in terms of each set of

coordinates. Direct kinematics derives the endpoint Cartesian coordinates from the

joint angles. From Figure 1A:

=11 cos 1 + 2 cos(8 1 + 2) (10)

y= 1 sin 81 + 12 sin(81 + 02)

Inverse kinematics derives the joint angles from the endpoint position, and is more

computationally complex than the direct kinematics. From Figure 1B, since the link

lengths are assumed equal (11 = 12 = 1), an isosceles triangle is formed with the radial

line r to the endpoint. From the half-angle formula, each of the two equal interior angles

is half the exterior angle 82. Thus

cos(0 2/2) = r/2 = V/x + y2/2 ()

where the perpendicular from the elbow bisects the radial line of length r =

from shoulder to endpoint. The shoulder angle 01 is simply the difference between the

polar angle 4 = tan-(y/z) and the interior angle 02/2:

01 = tan-(y/z) - 82/2 (12)

The time parameter (t) has been left out for convenience.

In examining the kinematics, the transcendental functions relating joint angles to
endpoint positions would lead one to expect complex curves in one set of coordinates
corresponding to simple curves or straight lines in the other set of coordinates. The

following two sections investigate the joint angle trajectories corresponding to endpoint
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straight lines, and then the endpoint trajectories corresponding to joint angle straight

lines.

2.5 Trajectories under Endpoint Interpolation

The exact relationship between endpoint Cartesian variables and joint variables is highly

specific to the workspace region occupied by the straight line. To analyze this relation-

ship, it proves useful to focus on joint reversal points. Figure 4A shows a hypothetical

vertical straight-line motion. Points 1 and 4 correspond to maximum reach, when the

elbow joint is straight out. When the forearm is perpendicular to the straight line, the

shoulder joint reverses direction. This corresponds to point 2: both an upward and a

downward motion from this point causes the shoulder joint to rotate counterclockwise.

When the endpoint is closest to the shoulder, the elbow joint reverses direction. This

point 3 can also be characterized as the normal intersection from the shoulder to the

straight line. Motion either upward or downward from point 3 causes clockwise rotation

at the elbow joint.

Figure 4B shows the joint angle plot, where the specific joint angles are identified

corresponding to the four endpoints of Figure 4A. As can be seen, in general the joint

angle profile is curved. The extent of curvature depends on the portion of the curve

traversed, as determined by the exact start and stop points chosen along the straight

line. When the start and stop points do not cross a joint reversal point, the joint curves

are a bit simpler. This comprises motion within target pairs I and 2, 2 and 3. and 3

and 4. A motion crosses exactly one joint reversal point when, for the case of shoulder

reversal, one target is between 1 and 2 and the other target is between 2 and 3, and for

the case of elbow reversal, when one target is between 2 and 3 and the other is betweer.

3 and 4. These single-joint reversal trajectories will be somewhat more complex thar.

the former trajectories. Finally for long enough motions, both joints can reverse, onc

target is between 1 and 2 and the other between 3 and 4. These motions will yield .c

most complex joint angle plots.

This analysis covers all straight-line motions. First, if the straight line is at a differen'

inclination, the coordinate system can be rotated so that the line will appear ver, c a

Second, if the straight line is at a different normal distance from the shoulder "','

topology of the joint reversal points remains the same. The elbow joint reversal pod.'"

will remain on the z axis, while the shoulder joint reversal point 2 will move _1p as

9
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straight line moves away from the shoulder.

2.6 Trajectories under Joint Interpolation

When the link lengths for the two-link planar manipulator are the same, endpoint

trajectories arising from straight lines in joint space can be succinctly expressed using

polar coordinates. Letting r be the radial distance from the shoulder to the arm tip

and 0 the angle the radial line makes at the shoulder (Figure 1B):

0=01 + 02/2
(13)

r=2 cos(02/2)

Given the straight line in joint coordinates (4) and substituting above,

r=2 cos 02 ) 0 (14)

When the link lengths are substantially different, such a simple expression does not

arise.

This class of polar coordinate curves is known as an N-leaved rose (Burlington,

1942), presumably because each complete curve looks like a rose petal, with the thickness

determined by some slope N. Figure 5 illustrates some straight-line joint paths (5A) and

the corresponding endpoint Cartesian paths (5B). The straight-line joint paths chosen

here all pass through the origin, corresponding to both angles at 0 degrees when the

arm is perfectly straight and horizontal, and are numbered 1 through 13. The endpoint

Cartesian paths corresponding to them are also numbered from 1 to 13. Arrows in

both diagrams indicate the direction of travel in each. The endpoint Cartesian curves

are s., mmetrical, although only half of each curve has been presented because of elbow

joint limits. As can be seen in Figure 5B, N-leaved roses tend to be strongly curved,

especially for movements that are not primarily radial movements through the shoulder.

As mentioned earlier, Soechting and Ross (1984) argue that the relevant psycholog-

ical variable for the elbow is the absolute forearm orientation 01 - 02, rather than the

relative elbow angle 02. It is easily shown that joint interpolation using the absolute

forearm orientation also yields an N-leaved rose, and hence the results will not change.

10
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2.7 Distinguishing Endpoint from Joint Interpolation

Summarizing the last two sections, straight lines in one space generally yield curved lines

in the other space. Hence interpolation in joint variables generally yields trajectories

readily distinguishable from straight-line hand paths.

There is one important special case where the two planning strategies can be confused

- any Cartesian straight line through the shoulder. Then y z = m, b = 0, and from

(12):

= tan l rn - 8 2 (15)

In terms of joint variables 81 and 81 the trajectory is also straight. This is the only

circumstance in which there can be a straight line simultaneously in endpoint Cartesian

variable., and joint va;iables. In Figure 5, this would correspond to trajectory 4 (a rose

petal of zero width in 5A).

Past studies have provided evidence for both alternatives. Morasso (1981) investi-

gated horizontal planar arm movements with a pantograph experimental apparatus. In

all cases the movements appeared to be Cartesian straight lines, while the joint angle

profiles were quite varied, even involving joint reversal. Given the manifest simpliciy

of the endpoint trajectories and the greater complexity of the joint angle profiles, he

argued that the planning variables were Cartesian coordinates.

In an intriguing set of experiments, Soechting and Lacquaniti (1981) presented data

that apparently indicate simultaneous straight lines in both spaces for a large class of

movements. Sagittal plane arm motions were studied, with an initial starting posture

of a horizontal forearm and a vertical upper arm. Movements were made unidirection-

ally from this starting point towards six different targets near the workspace boundary.

located along a vertical line. Their data is reproduced in Figure 6. The endpoint trajec-

tories (A) appear to be straight lines. Their joint angles in (B) are defined differently

than the conventions of this paper. Their shoulder angle 8 = 81 -- 90- differs from 01

in terms of the zero position. Their elbow angle O = 7" - 82 is the interior angle 0

between the upper arm and forearm instead of the exterior angle 82 between the upper

arm extension and the forearm. Thus 0 = -82.

The joint angle plots (B) are generally curved, but the last half of the plots appear

straight and parallel. This is more clearly seen in the joint velocity diagrams (C)-(H).

corresponding to trajectories 1 through 6, respectively. In these diagrams, the motion is

11 "
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counterclockwise along the curves In he ast half. or Ilr eraor. pias 4'P'.

it appears that the joint velocity ratio is apprjaf nrg ' e 'Arr~e s ra.K . .'

motion phases are plotted in 11

Since a constant J oint rate ratio is Pf ii ~ aion, 't i straign r;P7- ,i, %;&p

thus appears that the last half of motion is (haracterized 1)v %frghT ';e

in both spaces. The analysis at the beginning of -his sertiof ias s;hfow')i ner

case where this can strictly be true is for a straight 'ine !hrmugh he shvy,1cr ri'

only trajectory 6 and perhaps trajectory i an be explained tis was FPir v')rier 'f,;.

trajectories cannot be explained on the basis of what has 6".n presented 1 so 'artwr

appear to run counter to the expectation that joint interpoiation generailv cI r

trajectories readily distinguishable fromr straight ;ines In endpoint Cartesian '.ariarilp"

The next section is entirely devoted towards expiaining this iwrepan( v
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3 The Boundary Artifact

7, ;)rol eed w'ih 'he ana.vsis, a simulation is set up in Figure 7 to capture the main
iat ir,' ,f Figuirp 6 In 'he silmulation, movements are straight lines with approximately

' he sarTP %tarting and target points as in Figure 6A. Link lengths are taken from a human

-1,0, anl, ' n gential vekxioty profiles are rmrnimum jerk (Hogan, 1984; Flash and

Ifgan. l85,i 'he simuiated straight-line paths are shown in (7A); the shoulder point

% r'iated by a , irrie. and the arm is shown in the starting position. The six targets

4re o ated near the workspce boundary, represented by the quarter-circle arc. The

oint angle plots appear in 17Bk. and the joint velocity plots in (7C).

he 1r1Miated joint velocities (7C) do indeed indicate that in the last half of the

rajecori"e 'he oint rate ratio approaches a constant for all movements. Thus the

iiri iation verifies ?he ,bservation of Soechting and Lacquaniti, and can serve as a

"epr"Pro'aton ,of their data for further discussion. This simulation also disproves the

p.oxsirity 'hat 'he m.aiil leviations from hand-space straight lines seen in the data are

iignifiyant and explain 'he constant joint rate ratio asymptote.

3.1 Joint Interpolation

' iwe 'he ast ia,f ,of the joint angle trajectories appear to be straight lines, we analyze

1rt 'hie ,tape of the trajectories if the whole joint angle trajectories were straight.

There ;s a iniqi -;aved rose between any two endpoints, and Figure 8A shows

',i sinnuated Cartesian straight lines and corresponding N-leaved roses for the higher

rajvtories ('early the N-leaved roses are significantly curved relative to the Cartesian

straight ine. and hence joint interpolation by itself cannot explain these trajectories.

%.so ,he ,ont angie plots (7B) are clearly curved as well.

3.2 Mixed Interpolation Strategies

knother possibility is to take this data at face value, namely that in the first half of the

trajectory there ;s a straight line in endpoint Cartesian variables and in the last half

there is a straight line in joint variables. There is, after all, no reason that the motor

control system needs to plan movements only in terms of one set of variables. Perhaps

endpoint Cartesian con'rol is used when demanded by the task, and joint variable

control is used in less restrictive situations. Presumably endpoint control is harder for

13
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the motor control system to accomplish, and the simpler joint variable control is reverted

to when it suffices. Even a mixing of joint variables and endpoint Cartesian variables in

the same trajectory is conceivable. Below we investigate the path that results when a

trajectory starts with interpolation in endpoint Cartesian coordinates and finishes with

interpolation in joint coordinates.

At the junction point, we impose a continuity condition in terms of the slopes. Given

the beginning and endpoints of the total movement, there is one free variable left to be

specified. This will be specified as the fraction of the distance covered by the straight-

line trajectory, and in particular by explicitly specifying the z coordinate at the junction

point and solving for the y coordinate. The relation between Cartesian coordinates and

polar coordinates of the endpoint is:

x=r cos (16)

y=r sin 0

The slope of the N-leaved rose at the junction point is found from the chain rule:

dy dy dO (17)

dx dO dz

Elements of this relation can be obtained by differentiating (14) and (16):

dy dr ydr
= sino + rcoso-
d d 

r 4 +d X

dx dr z drd--=dr coso-rsino = xr - Y (18)

d,= 2
d 2K+ 1 2K+1

Spliced trajectories for the same movement endpoints as in Figure 8A are shown

in Figure 8B. For a given set of endpoints, five spliced trajectories with the Cartesian

straight-line portion comprising 50, 55, 60, 65, and 70% of the total distance are shown.

It can be seen that the movements still have a significant curvature, particularly at the

end of the joint interpolated portion. Hence this explanation must be ruled out.

3.3 Joint Rate Ratio near Full Reach

The seeds for an explanation are planted in Figure 9A, which replots the joint veloci-

ties of Figure 7C as arctan(-0 2/01 ) versus normalized movement distance (the distance

14
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traveled so far divided by the total distance). Evidently the joint rate ratios are ap-

proaching a constant, but they are not yet there. Extending the trajectories all the way

to the workspace boundary yields the plots in (9B), and the joint rate ratios are seen

to converge to a point at 650.

Figure 9B leads to a suspicion that there is something peculiar about movements near

the workspace boundary. To develop this idea, we will solve for the joint velocity ratio

for a trajectory approaching the workspace boundary. Endpoint Cartesian velocities are

related to joint velocities by differentiating (10):

i=-0 111 sin 01 - (ii + 0 2)12 sin(81 + 02)

= I1, cos 81 + (01 + i2)12 cos(9 + 02)

Conversely, the joint velocities can be found in terms of the endpoint Cartesian velocities

by solving the equations above:

9 1 ( 12 cos(9 1 + 02) + y12 sin(8 1 + 02))0t-21,11 sin 02 (20)

2l SinO (0(2 cs,+,cs01 .) (xsn~ /snO =)

At the edge of the workspace the elbow becomes straight, i.e., 02 = 0. Taking the limit

of the joint rate ratio at the workspace boundary,

lira 0 = lira -i(1 cos0 1 + 12 cos(0I + 02)) + ' (11 sin 01 + 12 sin(9 1 + 02)) _ 11 + 12

*2-0 81 ,2-0 i12 cos(0 1 + 82) + 0h2 sin(O1 + 02) 12
(21)

Surprisingly, the joint rate ratio is a constant, dependent only on the link lengths.

The constancy holds for any point on the workspace boundary and for any trajectory

that approaches the boundary. This explains the convergence to the particular 650

point in Figure 9B; all joint velocity ratios approach the same constant value, although

in different ways.

Another way of viewing this phenomenon is presented in Figure 9C, which is a

contour map of constant arctan(-0 2 /i 1 ) lines connecting the shoulder point to the

movement starting point. Overlayed onto this contour map are the extended straight-

line hand-space movements of Figure 2. As these movements traverse towards the

boundary, they approach the boundary value of 650. Each movement, however, crosses

the contours at different rates, so that while in the limit the joint rate ratios are the

same, in detail the approaches to this limit differ.

15



3.4 Apparent Constancy of Joint Rate Ratios

Thus an insidious property of two-link kinematics at the outer boundary of the workspace

makes it appear that any trajectory approaching the boundary has been executed by a

strategy of joint interpolation, whether this is the case or not. The data of Soechting

and Lacquaniti therefore cannot be taken by itself as evidence for planning in terms of

joint variables. Before the workspace boundary, the joint rate ratios are not constant

despite appearances. It is critical to distinguish the statements is a constant versus

tending towards a constant. The trajectories do tend towards a constant, but in a dif-

ferent manner for each trajectory. Therefore this data does not actually demonstrate a

constant joint rate ratio in the deceleratory phase, and there is no contradiction with

the trajectory features of hand-space straight-line paths.

What this analysis shows is that if one is interested in tLe question of joint-space

versus hand-space planning, then one should stay away from the workspace boundary.

Movements near the boundary will always appear to have a constant joint rate ratio,

and there is not a clear enough distinction from hand-path trajectories. The experi-

mental movements in Figure 6A are an unfortunate choice because of the misleading

invariances they seem to compel. If the movements were made bidirectionally, then for

the movements from the boundary to the starting point the joint rate ratio would have

appeared constant in the first half of the trajectory. If both the start and stop points

were well interior to the workspace boundary, then possibly neither of these observations

would hold.

Hence a knowledge of path shape between targets in other parts of the workspace

would be desirable. The trajectories in Figure 6A all correspond to one particular

region of a straight line, namely between points 3 and 4 of Figure 4A. It would be of

interest to know the trajectory shapes when targets are placed along different parts

of this prototype straight line, particularly to encompass joint reversal points. In the

next section, a different set of experiments are described that lead to new insights into

differentiating endpoint Cartesian variable planning from joint variable planning.
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4 Staggered Joint Interpolation

In another set of experiments exarruning unrestricted arm moverments in a sagittal plane

Atkeson and Hollerbach (1985) noticed that curved movements occurred in certain por

tions of the workspace, while in other parts of the workspace the movements were

straight. In Figure 10A-D, four different movements are shown, represented by verticai

plane traces of markers on the fingertip, wrist, either side of the elbow, and shoulder

These markers allow the construction of shoulder and elbow joint angles, depicted in

Figures 10E-H respectively.

Trajectories 1OA-B are straight, and take place in workspace regions roughly rep-

resented by trajectories 1 and 5 in the data of Soechting and Lacquaniti (Figure 6AI

That is to say, they take place betweeen points 3 and 4 of the prototype straight-line

motion 4A. Thus both experiments agree on the kinematic features of these trajectories

Trajectories 10C-D are curved, and are in workspace regions not represented by the

studies of Soechting and Lacquaniti. Trajectory 1OC spans the elbow reversal point 3

of Figure 4A, and moves between vertical endpoints. Targets happened to be placed

so that the beginning and final elbow joint angles were the same, and joint angle plot

10G shows that the subject chose to move only the shoulder joint. Thus trivially this

is an example of joint interpolation, and the endpoint naturally follows a circular arc

caused by swinging of the whole arm through the shoulder. Trajectory 10D spans both

the shoulder and elbow reversal points 2 and 3, respectively. One endpoint is low and

out from the body, the other high and in, almost above the head. The joint angle plot

10H clearly shows that this trajectory is represented by a straight line in joint space.

While the straight lines in 10A-B seem to indicate a strategy of interpolation in

endpoint Cartesian coordinates, the straight lines in the joint angle plots 10G-H indicate

a strategy of joint interpolation for trajectories 10C-D. Superficially, it thus appears that

the coordination strategy depends on the workspace region the movement is executed

in. On the other hand, a reexamination of trajectory 10A shows that it a straight

line nearly through the shoulder, and the joint angle plot of Figure 10E verifies the

simultaneous straight line in joint space. Thus this trajectory could just as well have

been interpreted as evidence for joint interpolation. This would leave only trajectory

lOB as not explainable by joint interpolation, since its joint angle plot 1OF is clearly

curved. The next section proposes a slight generalization of joint interpolation that

explains trajectory 10B and unifies all results.

17
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4.1 A New Joint Coordination Strategy

In joint interpolation both joints execute the qame time profile. Suppose instead that

one joint is staggered in onset relative to the other by a ti-ne offset 6 and that its

time profile f(t) is scaled uniformly by a factor c (Figure 3B) The new time profile is

f(et - 6), yielding from (6).

0) -Mi (to))f~t) " 0 0(to) (22)

0 2(t)-(0l(t,) - 92(to))f(ct -6) 92(to)

Again. the same time profile is kept for both joints, but that for joint 2 is merely shifted

relative to the joint 1 time profile and uniformly expanded or compressed. The scaling

is needed so that joint 2 can end at the same time as joint 1 if its start is different, or

joint 2 can start at the same time as joint I if its finish is different. Given that one of

these two conditions holds, this strategy has only one free variable 6 since the other can

be determined by c = 1 - 6/(t! - to).

Figure I IA-B simulates the upward and outward diagonal movement JOB and 10F.

The solid line in 11A represents a perfect straight line in Cartesian coordinates, and

the solid line in I I B the inverse kinematic joint angle solution. The outer dotted line

in 11 A represents the endpoint trajectory resulting from simple joint interpolation; this

corresponds in 11 B to the dotted straight-line joint path. The remaining dotted lines

are staggered joint interpolations with increasing relative joint offset. Finally an offset

value is found that generates a trajectory nearly indistinguishable from the Cartesian

straight-line paths. It is hard to see in the Figure because the overlap is so good. Thus

all trajectories in Figure 10 can be explained in terms of joint variable planning, when

the coordination strategy is generalized to staggered interpolation.

4.2 Limitations of Staggered Joint Interpolation

Since staggered joint interpolation made trajectory lOB straight, could not this strat-

egy be used to make trajectories lOC-D straight as well? Why this cannot be done
is answered by the simulations in Figures lC and l1E, which represent trajectories

10C and 1OD respectively. The nearly vertical movement 11C requires a substantial

amount of elbow joint reversal in llD. For the upward and inward diagonaling move-

ment l1E, reversal is required in both joints (11F). By definition interpolation does

not allow a reversal in any variable. Thus staggered joint interpolation is incapable of
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approximating a Cartesian straight line whenever a substantial arriount of joint reversal

is required. This means that whenever points 2 or 3 of the prototytpe straight line 4A

are spanned by targets, a curved line should result because staggered joint interpolation

breaks down. Movements within the joint reversal zones, namely between points 1 and

2, 2 and 3, and 3 and 4 of Figure 4A do not require joint reversal, and hence can be

made fairly straight by straggered joint interpolation.

Even though a Cartesian straight line does not result, sometimes staggered joint

interpolation can make trajectories straighter than they might be otherwise. Though

trajectory liE requires a reversal in both elbow and shoulder joint movement 11F to

produce a straight line, by increasing the delay in relative joint onset a series of curves

is produced that eventually makes the joint-interpolated path straighter. The dotted

straight line in joint space 11F corresponds to the substantially curved outer dotted

line in IIE. As the shoulder motion is increasingly offset from the elbow motion, curves

intermediate in straightness are generated. From 11F it can be seen that the best strat-

egy would be an almost complete decoupling in the joint movements to approximate the

theoretical joint angle plotted as a solid line. The elbow should move alone, generating

a straight vertical line, and then the shoulder should move alone, generating a straight

horizontal line. Apparently such a strategy was occasionally used in some of the ex-

perimental movements reported in (Hollerbach et al., 1986). For endpoints similar to

Figure 1OD for a different subject, Figure 12 shows a large degree of decoupling between

elbow and shoulder joints. This subject therefore was able to make this motion much

straighter than the subject in Figure 10D.

On the other hand, staggering has no effect on the trajectories in 11C. The beginning

and final elbow joint angles are nearly the same, and there is hardly any elbow joint

displacement during joint interpolation. Hence introducing an offset in the elbow joint

motion has almost no effect on the trajectory, as seen by the clustering of the dotted

lines. Staggered joint interpolation cannot make the vertical movement of Figure 10C

straighter because the elbow joint is not moving, and substantial elbow joint reversal is

required to achieve a perfect Cartesian straight line.

4.3 A Unifying Explanation

In keeping with our definition of joint interpolation, subjects in the experiments of (Atke-

son and Hollerbach, 1985) almost never reversed a joint motion, either in the shoulder
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or in the elbow joints. We speculate that the planning goal of subjects is to execute a

straight-line Cartesian motion, but that this goal is limited by the restrictions of joint

interpolation. Figure 11 has already indicated when joint interpolation breaks down in

terms of realizing the straight-line goal, namely workspace regions where joint reversal

would be required. All subjects executed curved motions in these workspace regions,

ostensibly through joint interpolation. When joint reversal is not required, subjects

achieve a very good approximation to a straight line through staggered joint interpola-

tion. Even for trajectories requiring joint reversal to achieve a Cartesian straight line,

some subjects were able to make these trajectories straighter by decoupling the joints

through staggered joint interpolation.

Staggered joint interpolation is an intriguing explanation for the experiments of

Soechting and Lacquaniti (1981). The endpoints in 6A do not require joint reversal

(Figure 6B) to execute a straight line exactly. Hence they are candidates for close

approximation by staggered joint interpolation. The velocity space diagram in Figure

6C for trajectory 1 definitely shows an offset, with the shoulder joint moving before the

elbow joint. Smaller offsets are seen in 6D-E, and practically none in 10F. Staggered

joint interpolation is not a perfect explanation for this data, which is a little irregular.

To proceed with the analysis, the time function must be known because the joint rate

ratio is now definitely dependent on the exact time profile as well as on the path.

Differentiating (22):

= (t) (23)
02  A 2 cf(ct + 6)

where A0, = O(tf) - O,(to). Unlike regular joint interpolation, the time functions do

not cancel out in the joint rate ratio.

Joint interpolation could be generalized further by adding more adjustable param-

eters, and conceivably a better ability to achieve approximate endpoint goals would

be achieved. Nevertheless, after a certain point such generalizations become no less

complex than solving the inverse kinematics problem.
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5 Discussion

In this paper we have compared trajectories derived from endpoint variables and from

joint variables under a coordination strategy of linear interpolation. The straight lines

consequent from endpoint interpolation ordinarily are associated with complex joint-

variable curves. The endpoint trajectories consequent from joint interpolation are asso-

ciated with a class of polar coordinate curves known as N-leaved roses. Thus distinct

predictions are derived from these two possibilities, and ordinarily the matching to ex-

* perimental data should not result in any overlap or confusion. Nevertheless, situations

do exist that blur the distinction.

Linear interpolation in joint variables and in endpoint variables are merely two simple

extremes of a continuum of coordination possibilities, and intermediate strategies may

exist that provide a better match to the data. In particular, a strategy of staggered joint

interpolation has been identified that can generate nearly straight Cartesian trajectories

in certain portions of the workspace. Thus data described by Cartesian straight lines

do not automatically support planning in terms of these variables, and the distinction

between joint variable planning and endpoint Cartesian variable planning is not clear

cut.

Labeling a path as straight requires extracting metric features from a trajectory.
Since no trajectory is likely to be perfectly straight, one can only speak of degrees of

straightness. But then there may be other coordination strategies that yield approx-

imately straight lines within a reasonable statistical measure, such as the staggered

joint interpolation mentioned above. The departure from linearity may be small but

significant, and not detectable within experimental error.

Straightness may also result from a limiting process. A peculiar property of planar

two-link kinematics has been identified that causes all trajectories approaching the outer

workspace boundary to appear to be planned by simple joint interpolation. The joint

angle plots are close to being straight, but are not actually straight except in the limit at

the workspace boundary. Again, the departures from linearity will be slight but highly

significant.

Lastly, there is a danger of overgeneralizing from too little data. Studying an overly

restricted set of movements may prove misleading in terms of the invariance that appear

to emerge. If one studied only movements directed towards the workspace boundary,

then it would always appear that a strategy of joint interpolation was in effect. Kine-
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matic features of horizontal planar movement may differ from those in vertical planar
movement. Free arm trajectories may differ from trajectories constrained by a measure-

ment apparatus.

5.1 Staggered Joint Interpolation

In the last section, it was proposed that staggered joint interpolation may be the un-

derlying coordination strategy in the experiments of (Soechting and Lacquaniti, 1981.

Atkeson and Hollerbach, 1985). A main feature of staggered joint interpolation is that

there is no joint reversal, and that the resultant endpoint curvature can be mitigated

by staggering the relative joint onsets. Thus it is proposed that joint variables are

used by the motor control system in planning movement, but in a relatively flexible

way. In movement regions where joint reversal is not required to execute a Cartesian

straight-line motion, as in the studies of (Soechting and Lacquaniti, 1981), a fairly good

approximation to the straight line can be obtained. In movement regions where joint

reversal would be required, as in the studies of (Atkeson and Hollerbach, 1985), curved

endpoint motions result.

The observation that in the motions of (Atkeson and Hollerbach, 1985) no joint

reversals were seen is not a universal result. Morsso (1981) observed joint reversal in

horizontal arm movements measured with a planar pantograph. One may speculate as to

why subjects may choose to avoid joint reversal. In robotics, minimum-time trajectories

tend to be close to joint-interpolated motions (Sahar and Hollerbach, 1986). Intuitively,

it seems that reversing the direction of limb motion would be energetically inefficient,
p

There may also be some analogy with zones of muscle synergies in posture (Nshner

and McCollum, 1985). Nashner and McCollum propose that postural adjustments are

made so that switches in synergies are not required, presumably simplifying the control

of leg and trunk musculature. For arm movement, avoiding joint reversal would also

presumably simplify the control of the arm musculature.

5.2 Conclusion

This paper has hopefully shown that kinematics is a deep subject, and its understand-
ing is fundamental in designing experiments and interpreting results. At the outset, the
goal was to determine which set of planning variables under linear interpolation, namely

endpoint Cartesian variables or joint variables, best described human arm movement.
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planning strategies to experirnentailk r, ordl-d 'rae4 or," A '' a\ a- 'a, ...-

.dentified that makes all tralietores approaching 1ui, even%io appo'a- e : a.- -P

b, joint interpoiation Thus experiments attempl;ng -,- -3*a..:. a7..."..... ,

should specif- rajectories that stay awaN frm ",Ie ,.:ar \ea' . -"a.g ",

;n Cartesian coordinates- can lie generated , stagered ,,: :;-'., -,,r ".,

apparent :tnearit does not mpiy inear pianning
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Legends

1. (A) A planar two-link arm, with endpoint position described by the Cartesian
coordinates z, y. 01 and 02 are the joint angles, and 11 and 12 are the link lengths.
(B) The case of equal length links, with 11 = 12 = 1. The endpoint position is now
described by the polar coordinates (r, .O).

2. Straight-line trajectories in terms of endpoint Cartesian coordinates (A) and joint
coordinates (B).

3. (A) Joint velocity profiles have the same shape under joint interpolation. (B)
Under staggered joint interpolation, the joint 2 velocity profile has been delayed
and scaled.

4. (A) A vertical straight-line motion with extremal points 1 and 4, and joint reversal
points 2 and 3 for the shoulder and elbow, respectively. (B) Corresponding joint
angle plot, with joint angles identified for endpoints 1 to 4.

5. (A) A sampling of the straight lines in joint space from the origin. (B) The
corresponding endpoint trajectories, belonging to the class of polar coordinate
curves known as N-leaved roses.

6. Data reproduced from the experiments of (Soechting and Lacquaniti, 1981). The
endpoint coordinates are shown in (A), the joint coordinates in (B). The joint
velocities are plotted in (C)-(H), corresponding to trajectories 1 through 6 respec-
tively. In (I) the deceleratory phases are compared.

7. (A) Simulation of the six movements of Figure 6A. The movements are displaced
and reversed in direction due to different coordinate system conventions. (B) The
corresponding paths in joint space, which match Figure 6B. (C) The normalized
joint velocity-space trajectories, which match Figures 6C-I.

8. (A) Joint-interpolated trajectories between the same endpoints as for the upper
straight-line hand space movements depicted in Figure 7. (B) Spliced trajectories
between the same endpoints. The Cartesian straight-line portions are illustrated
by solid lines, the joint interpolated portions by dotted lines.

9. (A) The simulated joint rate ratios (in angular form) for each movement plotted
as the arctan(-41/il) of the points in velocity space versus normalized move-
ment distance. (B) A similar plot, but for movements extended to the workspace
boundary. (C) A contour map with the simulated movements shown extended to
the edge of the workspace. Each contour represents an N-leaved rose from the
starting point to the shoulder, corresponding to a particular joint rate ratio (in
terms of arctan(-i0/ 1 )).

10. (A)-(D) LED trajectories in the sagittal target plane for the four experimental
movements. In each plot the traces for each of the five LEDs attached to the arm
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are shown. Six movements are superimposed in each panel, three in one direction
and three in the reverse direction. Except for (A), the upward movements are
indicated by dotted lines, where the dots are equally spaced in time, and the
downward movements are indicated by solid lines. In (A) the outward movements
are indicated by dotted lines. (E)-(H) Joint angle plots of shoulder pitch angle a,
versus elbow angle 02 corresponding to plots (A)-(D) respectively.

11. (A) Simulation of Figure 10B. The solid line represents a theoretical straight line,
the dotted lines represent various staggered joint interpolations. (B) The corre-
sponding joint angle plots. The solid line corresponds to the straight line in (A).
The straight dotted line represents simple joint interpolation, and generates the
outer curve in (A). Increased staggering of relative joint onset produces a sequence
of curves that approaches the theoretical straight-line motion. (C) Simulation of
Figure 10C. The theoretical straight line in (C) (solid line) requires a significant
amount of elbow joint reversal, as seen by the solid line in (D). Since the begin-
ning and final elbow joint angles are nearly the same, joint interpolation results
in almost no elbow movement, even when staggered (dotted lines in (D) and the
corresponding endpoint trajectories in (C)). (E) Simulation of Figure 10D. The
theoretical straight line in (E) requires reversal in both shoulder and elbow joints
in (F). The more decoupled the elbow joint motion is from the shoulder joint
motion, the closer is the approximation to a straight line.

12. (A) An inward and upward diagonal movement for a different subject. (B) The
joint angle plot. (C) The joint velocity plot.
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Phase-Locked Modes, Phase Transitions and Component
Oscillators in Biological Motion
3 ~ A S Kelso(7,G Schriner; andjj. 7 co?)A

*( cfiiicf ( 1spc S Iom iia Atlanic tne i Btoca Rit,,n 1 1. 134 11. I S A .lljvikint L.,ber.irmo' Nc iten 5 (ifiI I I'

R,,,,.,,I tcQI%A 1-1 111~t- 108A9~,

%btracl qvi.itching cooperatie states. AlIthouigh our exrferiilieiitai l r -

'A.rciv th rsuts t sot Cerenltmd tiortictti~~rkonetor adigms are concerned with movement control. vve b-elie"e
dkr~tte thetgra mtif o dercrrntart n he oe tice tetteon cor they might also offer a window into slabrill -and change ini
(+qer' zitnq andt other nonequtlihrium phase transitions in nafurete g . h general. in a hiological systemi %%hose real-timte hehavior can
rrence of cririclt Ituctuarrtons critical slrisini doi Order parameters are be monitored continuously. W~e start with sotile basic racti,

cylriiti1ttl determnined taid ttieir tlo-sdimemnsinatt drnaimpcs used in order obtained by ourselves and others Then %%e map these iiI-svr
to explmn specific pattern form.,tioin in mosenient. including sighitity and vainotoneplctmdlhtinurpricsddi'iI

lt loss ofm1 fo stlsitri nt hehasir'I hange. phase-locked modes and entrain. toSot nepii oe hti unreit diini

* ment The sistem % comornents and their d% naici; are dentirted and it spet hc r losuid
qhor~n how. ihese may he coupled to produce observed cooperative state%
t hit phrenomenological ;s nergeticii apprroach is minimalist and operational
in iralegv. and may he used to understand other sistemst(e it speech).other 2. Phase tronsitiorrs in biological movement
tevels ie g neural) and the tinkage among lesels i aso promotes the search
for additionat formts of order in multi-componeni. mul -table systems. Our experiments deal with rhythmical fintger (or hand)I molie-

ments in human subjects. We monitor the kinematic chnac- -

1. Introduction teristics or these movements using infrared light-etnittine
diodes attached to the moving parts. The output of the-se

One may well ask: What role might the theoretical and exper- diodes is detected by a Setepot optoelectronics catmerasv-
itnental study of coordinated movement play in a conference tems. On occasion. we also record front relevatit musclcs
on the Physics of Structure and Complexity' There are at using surface or fine-wire platinum electrodes as thle occasitt
least two reasons for its inclusion. One is that the movements demands (see. e.g.. (31). Thus the behavioral phenomena can
of animals -and people are ordej 5 spatioteotporal .eiruetures he examined at both kinematic and neuromuscular levels All
that arise in a system composed of very mil neural, muscular data are recorded on a 14-channel FM recorder for later
and metabolic components that opeate on differenst time off-line digitization at 200 samplessec.. anid conseqsucnii
scales. The order is such that we are often able to classify it. 'computer analysis.,:
like the gaits of a horse, for example, or the limited number Following a paradigm introduced by Kelso 14. s). s~ubtects
of basic sounds (the so-called phonemes). that are common oscillate their index ringers bilaterally in the transverse plane
to all languages. Structure. then. emerges from complexity (i.e.. abduction- add uc tion) in one of Iwo patterns iin-plmsc
in a fashion reminiscent of the spontaneous formation of or anti-phase). In the former pattern. ltotttologous muscles
structure itt open. nonequilibrium systems (e.g.. [I, 21). contract simultaneously; in the latter. Sthe nmuscles contractI in

A second reason for allying movement to a physics of an alternattng fashion. Using a pacing niletronottte. the Ire.
complexity is that biological systems are bh/aviorallt coppi- quency of oscillation is systematically increased from 1 25141
r/er. They are multifunctional in the sense that they are to 3.50 Hz in 0 25 Ilz steps every 4 sec (see 13. 61
capable of producing a wide variety of behaviors often using Data from the last 3 sec of each frequenicv plateau (600l

the same set of anatomical components (e g.. speaking and data samples) are used for the calculation of averaees tn

chewing). In certain cases, this behavioral conmplexity may. secure stationarity Figure I shows a ttmie sertes Ms ien thie
nevertheless, have a common basis. For example, common to system is prepared initially in the anti-phase mode Ohv toush.
many creatures - vertebrate and invertebrate - is the ability' at a certain critical frequency the subject svrtcles span
to generate rhmi-tritra acts such as % alking. flying and feed- taneously into the in-phase mode. No such svvttching occurs
ing. Since rhythmic behaviors are supported by such a diver- when the subject starts in the in-phase mode 1 hus. "vvlic
sttv of neural processes, they may be a good starting place to there are two stable patteriss for low fequn M aueit-
look for laws underlying behavioral complexity. one pattern remains stable as f-equency is scaled he~iand a

flow then is order in biological coordination to be charac- critical region. Thts transition i-echavior can be momnred Is%
lert7ed? Ideally. one would like to have a model system that calculating the relative phase betwveen the mo5 fin~ers A po-ii

affords; the analysis of pattern and change in pattern, both in irtniate of relative phase is the latency of one rtneer v%%10l

terms of experimental data and theoretical tools. Ifere we respect to the other Finger's cycle, as detertntned from peaik-

describe an ongoing program of research in which theory and to-peak displacement. A r-untillmne efftiltote of relative phase
experiment have govie ililevallyY. hand in hand, and whose 6i e.. at thle samprling rate of 200 Iz) can be obtained from thle
main aimis are to understand: (1) The formation of ordered, phase plane trajectories of boilh fitngers (Tile velointres ire
cooperative states in biological motion; (21 The stability of obtained by a central difference numertcal differeitltort
these observed states; and (3) 1The conditions that give rise to procedure). Normalizing the finger oscillatiotns to the unil

-~ 5. 5 i .is - '. d~'PiJ.' A.. f . -. * . ,~ - .%
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I nair ic : i ''1 fn Pr @ can be ) rl', 't n flofli fl
1

,isciltiln r eqt,'' ...n for he Ail hin(d s , h i r ,h !r it'

Im hetk.een I h,,n (Ril %ke shall p l-tpr .. - -n
indts dual compOnent s d; cliIic t eciwn

frc 1 i t l Trme ercsof left and righi liner r-1si-n 'i, tin , ti,,m t t '\ chief srrateg , of the fi-regi ing dsnxi'nic If it i ti is I,
lhe rclinr ph.se e i( i I ( "nnuous r iaii',e rhseI ([

')
) The FMG record "f map the reproduch obsersed stales -I It .2 "

I DI item t ht and left inde hInuer moement' (see test for detalsl)=. attrami ctors (if a corr-rP(ondmna dnaimlca1ndl Ih us. ,
i/i is a central concept. not mh; is a characteri/at on o the

ctrcle. the phases of the mdiv.iduai fingers can be obtained two attractor states. but also because it is l,is ' w, iirti th-tl
sitnpl, fron the arctan ( * r) if x is normah7ed finger positon plays a chief role in effecting the transitin Stabhtlit can bc
(see 1jt Relatise phase is then just the difference between tieasured tn eeral ays It If a snall perturhation applicd
these mnditdtal phases In figure I the relattve phase to a sstem drives it awa, rorn its stationars state. the linlc
fluctuates before the transition and stabilizes thereafter (cf for the sstem to return to its stationar, state s independet

[1. 5. 1 41 of the size of the perturbation tas long as the latter is slif-
iciently sniall) The 'local relaxalion tioe. ,,.. I e , local

3. Dnamical modeling with respect to the attractorl is therefore an observahle s .s-
tern property that measures the stabilit, of the attractor state

In order to understaid temporal order and the observed The smaller r,,, is. the more stable is the attractor V,'jcase tS
change of such order in terms of dynamics, we need to r, -. 'r corresponds to a loss of stability
address the following questions First. what are the essential (2) A second measure of stabilit is related to noise sources

vartables (order parameters) and how can their dynamics be Any real systemtdescrtbed by low dimensional d% namics %%il l.
characterized' Second. what are the 'control' parameters, be composed of, and be coupled to. many subs.stems These
that move the system through its collective states? Third, act to a certain degree as sfochav.ic ]o)rces on the collective
Risen a model, what new observations does the model variables (cf. [I). Section 6 2 and references therein) The
predict' In a first step. relative phase. it may be considered a presence of stochastic forces and hence of flhucinrionir of the
suitable collecti,,e variable that can serve as order parameter. macroscopic variables, is not merely a technical issue. but of
The reasons are as follows (I) relative phase, tt characterizes both fundamental and practical importance (cf 11. Section
the oherved. coordinative modes: (2) it changes abruptly at 7 .. In the present context. the stochastic forces act as con-
the transition and is only weakly dependent on parameters tinously applied perturbations and therefore produce de\i-
oulside the transition; (3) fi has very simple dynamics in atiorgr from the attractor state. The size of these fluctuations
which the ordered phase-locked states are characterized by as measured, for example, by the variance or SD of45 around
fixed point attractors. Since the prescribed frequency of oscil- the attractor state, is a metric for the stability of this state
lation. manipulated during the experiment, is followed very The more stable the attractor, the smaller the mean devitation
closely, frequency does not appear to be system dependent from the attractor state for a given strength of stochastic
and can be considered the control parameter. force. Let us see how these stability measures behave in

It is thus possible to determine the dynamics of $ from a experiment.
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I I ~the level of d6nanhics rather than a litte redescripiori orf

o hservattons
I 7/oU account fort fluctuations,. and -iiin gmilcd K% sr~ 11

< e a,;um 0 1the source of tile noise ci'nsi-i . m 'fit\n

< %%eakl interacting degrees ,I frecdoii le g , ,t tile tic,-

equation II),and ( 1) tile noise sources are regular dluriiig lhe
I ~ ~ iransilion T hese assqimiiniions Imply ( hat stocliistic forces
5 20 711 5 0can he modeled as additive. gausstin. %%liste noise

93CAI tICY f PF OIJENCY' (Ili) d 1 (0 -

trriiencv ( sithicc mi averaged a - M ,its t'nwer trecirs cal- w4 till LIS
cimlaied frur Is i-ot daia 0610) pi-iisi oni each trial ai eaich vualue cit the scaling u- _ P
frequenol , ,.> =0. ~~ > iS t I 4

%here the parameter Q measures file noise strength [QJ This
mode %%is significantl% longer than that of the in-phase mode stochastic model is still incomplete. hotwever In order to
for all fii~e subjects Furthermore, as the critical frequencv for solve eq ( 1) anid compare its solution to expersimental data.

*mode transition w4as approached, the relaxation time %ke have to furnish initial conditions rinding thle aprpropriate:
increased monotonically The result is rescaled by a signifi- initial conditions reqluires adiscussion of several relevanit ippie
cant positive correlation between the pacing frequency and vi-1i- or tile preset( s %tem Because this is an imprntn
relaxation time up to the transition ( p < 00011 No such point for modeling biological d~namics in many situations.
increase occurred w~hen scaling was carried out ovser the same we will be somewhat more general here
frequency- range heginining in the in-phase mode "ere. etther In cltaractert~ie thle state of a hiological syteni within a
no relationship existed between pacing frequency and relax- stochastic dtonamical description three tvipes of time scales arc
ation little IN ,V 51 or relasation time actually decreased relevant 1 he first is the t~ptcal time scale on %%hlich thle s;%%stem
whith increasitng frequecy cof movemnent IN = 2,15:r < 0001) is ohierve-ed. r_ lie, how long the experimeter ohserves the
I he results of one of the subjects are presented in rig 3 ;ystem in a given preparatrir The second is tile prekiousl%

Additional. though more preliminary evidence for critical discussed local relaxation time r, cf Section 1). that is
sloina dowvn has also been found Isee 1111 JI he method for specific to a given attractor The third one is tile so-called
deternmining relaxaion time in this case uses the power spec- ijuilhra root timpe (or glohal relaxation litel. r_, vs Ich is
rum of the continuous relative phase calculated for thle defined as the tinme it takes, the s-,%tem to achieve the station-

stationair% portion 4f cach frequenlcy pileau D~ue to the ary probsabili distrihutton from a typical initial distribution
'A ietter Khinchin theoremt. this functiotn is lust the Fourter In a histahle situation like ours. below the transition r_, is
transform of thle relative phase autcorrelation function It has determined mostly by the tvpical time it takes to cross the
a lows frequency peak that reflects the refasattonal clynamics potential hill Isee. e g , (141)
of relative phase Stochastic theory lsee 19)) tellst us that the If thewe time scales fulfill the following relation
line wAidth of tisl- low frequencv peak is a measure of relaxt-
a 11io rate I the reciprocal of relaxation time)1 Figured4isa plot i-

of relasation time. r,,-,. as determined from the line width of then the interpretation of ohserved states as atiracior states
the powker qsectrum of relative phase for one subject f(he is consistent That is. the sstem has relased to a stationary
saute udata as shiown in Fig 2) state on thle observed time scale, hut is not set distributed

1 he strong enhancement of r, before the transtition can he ov.er all coexisting attractors; according to the stationary
cleitrlv seen Nevertheless, a lot of w4ork remains to be done probabil Ldisribution When stationary states in, anl esper-
on lti topic tii agorithmi for determnitg the line shapre of the iment arl, referred to. w4hat is meant is that the nine scale

*retitive phats pectral densit function has to he dev-eloped relation 15) is, obeyed
Petaliled modelling is necessary to compare theorv and esper- It is important to realire that much of tle stock in d% naini
intent %%titli respect to relasation tlime in a quantitative fashion cal modeling of biological stmsuses determiniic modelst

onily and thtus iniplicitl makes. thle assumption that I 5 holds

S. stschatc model of the Phae" framtioa Isee. for instance, the contributions to thle IQ92 ( onfereicer
on Nonlintarites; iii Brain Function 11 il for typical esartiplet'

\A ith respect to thle previousll, discussed features of the Phase I it neglect flucituations and assume I 5l througphout is dance,
transiton tile imodel 1I11 Is, as vet Incom-plete because it ous. however. because fial the relation (t f~rctek i10,%n it
lacks a representation of fluctuations Including fluctuations critical points. fh) fluctuations are an imp1ortantl leirure Mi



rtiCior hnrriirerra. and Mc fluclutriioirs are essential lit ~ ~ ~e.~Ti.'~I
hrincirric ihi-rr transitions Let us examrine these three points '

in moure detail
Ill oii ss;tim (1). as the lrinsition s aporoiched i e .theT1

itii rase moude loses; its stiiiv.the local relaxation litlme
I i respect lo the aniti phase niode I increases. %%htlre the

glohil reli xi oii itle decreases ( because the potentil hill
b e , e t nu l itlc l %in is ie st t t e c rit ia l pr otr w4 rw1 4I

-- 1~ crj hotiti are of tire aine ordier -is tire ohsers cd tinle anrd one
ini see tic trtrrntii hiimth rnio on,[leie

intlt's iclrur I 1t 5 sriilled ;111utI artitttinl tittle Scale Ao- ,i

I~ I lrclc, the f.ict that it our sssicni (:t% often .. .... ion elrrmcni riiee lxi for timriki
w i ier I sscirts t ie colt Irol pa ramieter ImatI hritgs about

ie instahritt\ is itself chanctied in lttrle Tire relation of tire regirne ;is an iitial condition WVithiout lurlier iditist
lttlre -1cai oip rireter chanice to the orther s~ steri tifle hntle prattieters the ntodei accounts nicels For lie ira nsicit
pins i iccit se role fii predicting the nratuire of tire phase belta\ ior 1QI
ransitrion 11, luir example. 1 lire stochastic irodel coirtains anot her feat ire Oi ~t c;r n he%

~ *r(6) conmpared Aith experinments Insl- is thie duratti o f tire I rani
sient from the anti-phise state to the in-phase state - kilchr

litn the ssstet changes onls. as lte old state actually " e call lte sri niritne troptc Tire hasic idea is t rat during tlic
beconie- uns table This transition behravior ts sometime s transition the probability densrty of relative phase - irritalls
referred ito as a T(ii.. ird order piiave rraplftrrn (because of air concentrated at 0 - ± Igflde'g flows to h li Odeg arid

- airatogs %ith equilibrium phase transitions, see t1j PIR!UJ accumulates there until the "new- peak at ds t Odeg is%
I ~ Section hx 71 In that case feature% of critical phnenonmena (suchn dominant and stationary. The model predicts the duration of

ais critical flucetuations or critical slowing down. see below) are tis process hotr in teris of its distribution and its nrean 1411
redicted If. on the other hand I hese sviitclning tinnes have been extracted front tire exper-

r_ 4%_ F, 7) imental data described in Section 4 2 abose In riro catscs

then the sssterr. %ith oser%-,einning probabilitv, always seeks they were easy to calculate a; lire time beiseenp Ire relatisc 1phase value immediately before the transition and tire silue
out the lowest potential minimum. It therefore switches state assumed immediately following tire transitiont The disturi-
before the old state actually become% unstable Jumps and bution of switching times for all live suht~cts is sito%%o in16
bssreresis tamong other features) are generally predicted Fg5Temthbtentertclpeito c Q
I Iis hehastopr is also called a first order tranirittrip. again in Fig I I) and empirical data is impressive, to sa,, tireleas.e~r es.
reference to equilibrium phnase transitions lNote In catas- to the shapes of the s wiiclntng time dlistibutions Tis ness4 tropne tireorN. thesw two different tratrsitionj behaviors are j aspect is particularly inieresting. because it sitos s tihat
sontetirues reierred io as conventions. although thney can, of the switching process itself is quite closeli. capitured h% the
course. be ilerised from the experimentally accessible rela- stoclnasric dynanmics of 13) Using ltre language of phase
tforms fit tand I li It is the failure to treat fluctuations thrat transitions may thus be adeq-uate to undert and t'ie resent
renders catastrophe tineorv incomplete in this respectI. phrenomnenon -even beyond tlie more stiperlictal lesel of

I inilowkiii these more general remarks, let us return to ihe anlg
concrete srrLit,ic niodel (3) Because 7, and r,,~ are of thne gy
same order in thre experiment, we expect triune scales relation
(61 to hrold tip to the transition At the tranusition all time 6. lMlase-locked modes: the "sea gull effect-
wcales nray then be of the same order. This requires us to In our discussion so far w4e hrave aiwas ss urned tat the
differentiate tIo Parameter regimes- (a) The noncritical syvstem has only two phase-locked patterns -- rn-phasze anid
regrinre. wkhere the system is stationary in the sense of (5). and alirti-pliase - at its disposal lis tis assusrption re.ills atlid

1hi b The critical rigime. %here the system exhibits transien t The experiments described in Sections 2 and 4 probe orils
behatorIn heseregmesonecan ow olv t~r stchatic these two states and their local environmrent ilocal in relatise

equation ( 1) via the corresponding Fokker- Planck equation phase)
1Q11I For sire noncritical regime. stationary probability distri- k We shall now discuss experiments; 116. 111. that allow% us
huliorts iof local nmodel% Ithat have only one stationary state to establish lte stabilities of all relarise phase . alues. thus
al either it or I1tideg ) cart be determined From these the affording a view of thre whole protenial landscape
stairiard deviation iSIDI as a measure oh' the width of thre In I uller and Kelsosq experriment 1161. the subject 5 1 14k
dusriutinin can be calculated. As thie transition is approached, w as simply to tap with the left index finger eserN tinre a licht
Ire SI) ofl tire locil niodcl of the anti-phase nmode increases, fo r the left hand flashed, and to tap with tire richt index lroecr
reilectitig lte etnhancement of fluctuations Usinig the exper- every time a light for the right hand flashied lire set oI
imental tnlortrritton on tire local relaxation time and the%
in the noncritical r~ine. one can determine all model prr
ameters in. It anil Q 1191) In lthe critical rtme the fuill thlie fnciim e i ii iionntrip xc iist iti Peir -m n, our ,i-5o

I o'kkcr Plinck equation can now be solved numerically. Atlarnic Ocean riase"d a rote ini naming it rthe %av -r did (i.. ini,r

using an appropriate distribution from tlie pre-transtitonal exampile. we I Il. ig 21

% % % %



tinder the paced conditions. Ihus. %4e represent the required
phase by addiing a1 term to tire potential that it tract; the J
iltrin-ic' rclaive~ phase toxvard tire reqluired plrrsc I lir ;ii-

- lest function that does tisll, tAile crrnlorrrrrr to ccrtrrrr

A ~periodicity requirements. see 11RR for details) is cost (,ii ,
~~%%here lk1,; iste required phaseA

The new potential thus reads:

a Co; h - hcs 'Cost(2,f) Ct

-~ ------ -~-.------* INote that the new term breaks the ih 'ptsninicirs as tth
3 paicing does in tile eperiinen)r ile 7ero of this potential are

Rlequired M'ase tire new stationary stares [UnfortunarelN tire corresporvlrrr
transcendental equation cannot be solved anal ircall \ %%
determnine~ thle tationarv states nutmertcall%. usine for par-.iA
ameters a and h% values similar to those pre% iousl% establid
to account for experimental data 191. anid choosing rc suf.
ticiettv large to see art effect of tire new term No zystcmatic

7 In thetop portion of Fig. t(ie deviation of t tationar\

6 ttmt oopiir~ prmees a ~rber irde ot ve oltition for relative phase fromt tire required phase -ri, -'P)
a t is plotted as a function of required phase. U1. 0bviously, ouir

* model captures the attractivity of tire two basic modes To

~ ~determine the stochastic properties we proceed as to thre
5 6 7 apreviously discussed case of noncritical properties for tile

Requred hasemodel (3) (cf. Section 5: [91Y Expanding the potential about
Requred haseit% stationary -solution and determining the stationary prob-

F'r 05 7,p lIe phase oft the pactep lights specifying the required phase ahility distribution of the resulting local model allovs us to
riaiicd apain tihe mean difference between the phase required and the phtase calculate the SI) in this approximation The bottom portion
aciualt produccd A neiite numbher means that the required phase %as of Fig. 7 shows the SD as, a function of required phase it
underesimsated Fach ssmtral represents an indisiduat subj~ects mean com-ri (Where a. h and r are as in the top portion atid( Q us chosen is
puled aser N > R0 mos-ements Hoiiar,, Standard deviation atf the phase
produced ploited afraini the required phase Symhols lame as above, in the model for the phase transition 191) Obviously this

function captures the qualitative features of tire esprerimental
.data (altlroughl it is a somrewhat edgy "see gull"') Our /

conditions involved different lag times beween onsets of tire modeling here acquires additional credibility thtrou gh the fact
L Ir ltwo lights i.arying in 10Otisteps from synchrony to a 500 ms that the potential (8) can again be derived front a model of tire

lag (or 0 5 out-of-phlase) and back to synchrony The cycle oscillatory components of tire sgtem, in vvhiclr the estertial
time for the lights %as constant at I sec. The phases of the pacing Iras been incorporated This is briefly discussed in thre
lighrts did not change within a trial. Four 24-sec trials of eachA
ten phase coinditions, were presented randomly

The top portion of Fig. 6 shows the mean deviation fronm
required relative phase as a function of the required phase
difference. The bottom portion of Fig. 6 shows the standardI /
deviation (SDI of the observed relative phase between the
hands as a function of the required relative phase. The dif-- .........................................................
ferent symbol refer to different subjects and the open tI-
itighet coitnected by strrtiglt litres arc tire meaniis ;rcrox% sub-.
iccts Obviuously in-phase (at 7crol and inti-phrase (at 0 ) S
movements are the most stably produced I I his is the case in
both musicians and non-musicians as well as in split-brain
patients 1 16j1. Moreover, the top portion of Fig 6 .hows how 0i
these two states attract neighrboring states - thle difference

between observed and required phrase passes thrrough 0.0 and

wiih our basic modeling assumption, namely, that in-phase
and anti-phase are the two basic stable phase-locked Patterns.
To make the implications of this experiment more tringent, I**.**.
however, we have to gencralt~e our model to include the
externally imposed required phase. A simple way to include tit 7 Trip The dc''.atwrn at retii rphase tronm reqirured phase i j,
the external pacing in the equation (3) for relative phrase is to in atf required ptiaae us calcultied (tons the minima of 1.a c it if ,-

- priranieters acre ai - I tn? 1, - I III r . 1011? A'R,''. The si"iedt-n
alter the potential The potential (2) represents the system*s deviation as determined fronm a tocatl model around the minima or I thr

intrinsic cooperativity We assuime that this remains valid parametvers a. h,. were as above and Q - QiS 5ItI

Cs.(~~~~~~~~ ** % V %s\~~* . V%* ~'i'



tilli,siii sctlioii A more detailed aimaissis of these models Anothmer assuimption mImplicit ill eqs Is9) anid I i 111.i1i1
,ill he pithlished elsevshere 1191 In suimmimars, the global oscillation is; essentiall% amitotioivrlus Tliscii heII I c' r.i

sthiit mmasmrcmient performcd iii this experiment together inientaills tested mm the peritirhatomi rar.tmlmcii H lls r 1 
-c rct

Alth I theoretical rmldl slmoSs tile ci'tmteicv of our concep- timig! techniqjues tse. e g .2 121 Ili sic mdci 11s.1titile lmi
M.11 111prO.icl %%C Loommiidcr this conntied chose match of (if in atitltoimous oscillalor is inareimal i,ill sale tiiiike iii it
Iliclr% midI expemmictit to he qite reniairkaible of a drisen oscillator Ahiich is locked to tile uis, imiL (!iit not,

tisl asumption has also bccn cliccd ill Kit , cxcriiiuci
P'reIIiita Irv .res;ults qlios ihli le isilii'ii mli

7. Nlndlingz the siils~ slens iutoioim Is itt thme absenlce ol c !crfi it I .iciiie I

A kcs lmmmre olf thme ippru;ichlit s lir has hceei to cliarac- Itos catl tIme cmrmoimemm is sth heiir dsmtiimits 'Ii ild 1 111
tcrm/c c,rdmiimmcd states ermiml% ill iterms oh time rlsianiics oif izuse rise to thme phase-locked cnoriliiiims limods' , (b )himi"-i
ima~croscuip~ic. cmmlcctmse stimiahles timl dis case relatise phas;e is their dil imamiics Imase to be Couipled I lAmkemi KClso im1id liii;1
aim ordecr paiaiiecrt I tcre %%c address thme nature of time (1 hase deteri ned comiplime structures ih:ii canmm iccimi f-vr
sulhssqnv smeimsimicls es aim I hoss these can he cotipled so as to thle obsersed phase-lockinmgs I he simimplest "i li1,1 -' ii,1
produce coomlminatecl Wtts se start at tlte next lesel doss mm. aclieses this Is a saim-der-Pol-like couplinig oh thle form
as, it %sere. Muhch is the indisidital hatds1 iliemqiclses Exper- h.'I h -stA 4Ptm-uK t
imemtait . thme beltasmior of mlime indis iduat hands is obersed as 1V
fitmcer p-iuton tafid selocity v xThme stable aid reproducible i, + flu.. (r, ti - h + 8 1%: -

oscillatorv perfoirmar~nce of cacti hand is modleled as; an attrac- MeeIi leoclao ucin10 n n r
tor iii time phasec plaite hr. k ). iti tisl, case a limuit cvcle Several coulmere coistthe osilTor expctiomena 11ridro Ih nhBtic
expcriiienrtal feattres coistrain the modeling. Kinematic kinematic relations (e.g.. ampltiude frequenes reltitont ire

eak ~uslc. bah se the"entiweuednI aipt9i Freq Ifromy not significantly different betsseen the coordimamise niodesano eklc~.h~ebe esrdl19) i~r fo and the single h and movetments show that time couiplimng conm-I tQtsliosss the amiplit ude- frequency relation for oscillatory8arsmlcopedtth repndig o-
mo~emev; ofoniv ne had. -1he obervedfrionlonc s tants .4. 8ae;ni oprdt iecr~odn ol
mosement ofonlyonehand Theobsrvedmnootoiie icients 2. yj of time oscillator function ( 10l) 101 tn spite or olii

d iecrease (if amplitude %%ill frequency can he modeled hy a the coupling structure ( IlIl atnd ( 12) gises rise to the tssoJ combinatmon of the well-know~n san der rot atmd Rayligh I phase-locked states Indeed Haken. Kelso and flun7 191 tscrc
os.cillators 19. 191 ahle to derive tile equation for relattse phase t 11. 121 (room eq,

4- +it 'I = 9) (lb anid (12) uimmig thieslowly sar%.ing amiplitude amidrotaiting

Ath wsave approximnations. These results not ofmls pro ide further
support for the dynamical model onl time collctise sariale

ft r. N 1 as -4- + Itv + , + iii V. I t0) level, bitt also establish in a rigorous fashion the relation or
the two levels of description.

tn mapping the observed oscillatory state onto a limit cycle Finally. we indicate briefly how the pacinig of both hands,
thle notion of stability is. onmce again, a key feature of our in the s ea-gull effect- (Secilon 6) may he incorporated into
ttueorv T is can agamn be tested by measuring the relaxation the model at the component level The'bas ic idea is stililar to
ltme after a1 perturbation of the hand in a fashion siimilar to that used to determinme the potential 1R) We assie that the
that dlescribed in Section 4 Stich experimuenti hase been %slem's intrinsic d~mmammcs are still intact and time pacing acts
recent% performed by Kay under time dtrectioil of time first as' anl additional esternal force For tie oscillator equations
iauthor (121111) Along sill thle observed kineitic relations. tll-, can be done bv addinig a periodic dismg force to, their

relaxatiomn tme imeasures allow otme to determitne all oscillator function." e; . as;
parameters in eqs; (9) and 1t0). V. +4- fIr,, (1, = - 4- Bit u,

-1, 1 F cos imm. i I '

+ csm~ + mRi 1t

l ere r is the coupling oitiito o1 time dris t o p I orce mo d 'Ii tic
"'~ ~restmilremd relativ e pha se tor conscimience \kssoe ti~s ilocm ilie

t~~iatural lreqiemc of time oscillators; as idenmticaml toi thme mni mie

lreqiiency t fact, the ability of the subiects to entrain ilieir
rim%ihmic imovenments witthout a phase lag to time exicmmil

pacing lights is an Interesting subtect in Is% limm right anmd
dheserves further theoretical amid experiomental stud\ iismine
again the slowlyv varving amplitude and the romimc

suave approimuatmons \%e %sere able to dense the follosimie!
tm criiomi i117.1 equations for the relatis-e phase 01 amid tire plmise sum i

Ic .A 5 - i.t ile %c~i (rmra.,eic fr rvsi tim icit muisi iieniq of a 'IiP4e I- inm 0sid. (tt
hsind the ecticiicniamt r.imoi itullitreei ime memitu ov~er %iihteti. ecitc mI
nmicni. it eii n d ir % iitu 1he i hu liid) oscillt~iuior n q mf i t and it ) ii -I)

fied iio the d~,ifA itemi 4qim..vcu I or lttimiaiin puuri'oea Fill of the van deitr -II

Pot and the Ri.iutemth oscittlimors atone are also shownit

.00 ir



%lilt ;I potential 1,,wlitra during feeding (cf f2sjt rhu, ilie long sosehi 1,I

I lp.Of ol i co, (hlink bci'Aeen nicuronal actis ies I iricrowcoric es erasl .i d
I lqi III - a ns s/ - CS /ihlior I macroscopic eirtis may ictilhi residle Ili lite

Cosk i-J (17 c oipliri of ds otrnicS oil ditherent lesels icf Section 7,ii c)
Sil CO 2 RelatedlN the classical dichotoniv in hioloes betweeni strsic-

isheelure Mrid lunction Inav he onIe of .IPPcar~mlC "tIf\ I lie
%% hercpresent theory, proolies a unified treiiii, %tii lirte Iso(

it 2 fI l - h~~ III arnd = r ,, processes separaited tiils h% lie titne scailes i %k hich lie. like
Firall%. ,%e %%arnt toi sires - lier ltridcirii,iri ['(, Ind

%tli airiplil isic llakcn I2'7 - tIle opranttloliall nat ureol tIle pre-11 a;lt'rrl'ih

= I 5/hi 4-~~Hi I hts. d~naniics ire formuatiled for r'hscr% ihiel rrhc
olyl arid predhictiorns are tiade thm cain he espericntrlh%

ItI one assumes% tile phas-e suit toaxt rclased~ 1t is iallan1irv tested As niuch as possible. aI ruiriririt% sirritecs is lolloistrl
kali It ; it -+ i tlie resulting equtiirr for rclatrse phase Ili sshicr aill coirequenices oIf a threoretical InrIIIItl. Itl ire

is esactl~checked for t heir emrpirical s ahldity Insight is not iiecess,ir I

- d t~ib~,/ih painred by inrc~sirglv acctrarte quarntirise dcscripitts
= - I(19) of data, or by using increasing)%, comrplicated dih initc.h

equtionsrs Rat'her, we seek to account for a larger nuitorer of
is ith the poteniail I of eq (8) T hus again ise rave dens ed experrimental features \%iti a smialler numrbcr of t heoretical

/ tire cohiectri e ssrrrable dvrrnrmics front thle comtponent level. concepts
The details of these calculation% will be published elsewhere

(11811Acknolried~ements

8. Conclusions. phcntimenologictil stinergefics" iThe work reported here was %urp'niccd. in lantc rat. h' Co'ntract No
(pN0011114-111 .KORI fromy rte U S Offi5ce of Nirsat Reech i0t 111,0',",

he ai g Verigtednircpten rdcdb o, scienific (Ificcniind by NINCDS Granti NS~t 1617 and IiRS (;rani RR;he a%%;gmering he c~naiic attens poducd bycont 55Qll C; Scironer wall 'uroriedf h) a rorn chuniritrpendium ofthen
- plex. biological systemns that posscs very ianv degress ofDeih orhinsmincarBn.FG

freedom Isquell as tire human posses wherh ni l neurons
'1 and neutron;%( co~lleCtnonSh are. Ii general. not known Unlike Rfrne

14~ certarir phrysicail ,yqtemrs. the path from the microscopic Rfrne
dynirrcs to ltre collective order parameters - as in Flaken s Itflaten. It .h'(S.nergrinir Apt Intrnsfrrion. Srringc erlft~i Ieidtrtip ful

rhorie prrcip -is; not readily accessible to thteoretical I, rd edt ... l -- - -_

anal's"r Ilere we suggest that an srnderstaiiding of biol Iogical I Kle. JI AdSiancd Src,Irc. Stsninr.\erts 1tirotsrll-.ii1
order nrav qtill be possihie via aIi allcrtrartic arpprorachr. r arricly, (i Kettan . In If rid ac tc~i'd I r to-pntrnxse lco I'lrnPrcrr., tt,ti I'
'tre Ill ii hrtdr tire irsltirr anrd dvtriatncqol nicreliiw'diiirniotralj Artnroacliei in Nteinnhtjey. t'h~nicaiNI trrn% titt I oorpsoir%.
order parami eters are first etmrpirical ly dietertmined, parltiCti- Spti un. Vetlai. litrtn. t,
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NOTES ADDED IN PROOF

1. Regarding the experiments decribed In S ec on 2,
Professor H. Swinney (University of Texas, Austin) has inquired
about additional bifurcations. In -act, as frequency -s scaled
to even higher values, a further bifurcation *as ceen obser-ed
(cf. [3]) in which the finaers shi t from a sy = er ca!
abduction-adduction pattern to a symmetrical f:exon-extension
oattern (see [3) Fig. 10 and Sect. 6.7). We do not dlscuss this
bifurcation further here, however, because it has not been
studied in any detail as yet. Nevertheless, the increase 1n mean
relaxation time at 3 Hz seen in the present Fig. 4 may oe because
this new bifurcation is observed near that value.

2. The analogy of the observed transition with equilibrium
second order phase transitions refers to the presence of critical
fluctuations and critical slowing down. The origin of these
critical phenomena in the present case, however, is different
from the equilibrium situation. In particular, symmetry breaking
does not occur. It is only due to the time scales relation (6)

that criticality is seen in what one might rather call--following
a suggestion of Professor R. Landauer (IBM)--a limiting case of a

first order transition. We would like to thank Profs. Swinney
and Landauer for raising these points with us.
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SUMMARY AND CONCLUSIONS for a saccade are usually simplified to only two
components: a pulse and a step. It has been

I. Saccades are the rapid eye movements hypothesized that suppression of pathological
used to change visual fixation. Normal sac- postsaccadic drift is achieved by adjusting the
cades end abruptly with very little postsaccadic ratio of the pulse to the step of innervation
ocular drift, but acute ocular motor deficits (19, 26). However, we show that the time con-
can cause the eyes to drift appreciably after a stant of the ocular drift is influenced by the
saccade. Previous studies in both patients and time constant of the adapting stimulus, which
monkeys with peripheral ocular motor deficits cannot be explained by the simple pulse-step
have demonstrated that the brain can suppress model of saccadic innervation.
such postsaccadic drifts. Ocular drift might be 5. A more realistic representation of the
suppressed in response to visual and/or pro- saccadic innervation has three components: a
prioceptive feedback of position and/or veloc- pulse, an exponential slide, and a step. Normal
ity errors. This study attempts to characterize saccades were accurately simulated by a
the adaptive mechanism for suppression of fourth-order, linear model of the ocular motor
postsaccadic drift. plant driven by such a pulse-slide-step com-

2. The responses of seven rhesus monkeys bination. Saccades made after prolonged ex-
were studied to postsaccadic retinal slip in- posure to optically induced retinal image slip
duced by horizontal exponential movements could also be simulated by properly adjusting
of a full-field stimulus. After several hours of the slide and step components. Thus we hy-
saccade-related retinal image slip, the eye pothesize that adaptive control of the gain of
movements of the monkeys developed a zero- the step, and of both the gain and the time
latency, compensatory postsaccadic ocular constant of the slide, is required to suppress
drift. This ocular drift was still evident in the postsaccadic ocular drift.
dark. although smaller (typically 15% of the
amplitude of the antecedent saccade, up to a INTRODUCTION
maximum drift of 8"). Retinal slip alone,
without a net displacement of the image, was Visual acuity begins to decline as images
sufficient to elicit these adaptive changes, and slip across the retina at more than a few degrees
compensation for leftward and rightward sac- per second. It is therefore desirable that the
cades was independent, eyes be reasonably stable during fixation of

3. It took several days to complete adap- the stationary world. Fixation is changed with
tation, but recovery (in the light) was much very rapid eye movements, called saccades,
quicker. The decay of this adaptation in dark- minimizing the period of poor visual acuity.
ness was very slow; after 3 days the ocular drift However, the nervous system is not always
was reduced by <50%. The time constants of successful in reestablishing fixation immedi-
single exponential curve fits to adaptation time ately after a saccade: occasionally there is an
courses of data from five animals were 35 h accompanying exponential drift of small am-
for acquisition, 4 h for recovery, and at least plitude, either onward or backward (3, 40). In
40 h for decay in darkness. normal subjects these postsaccadic drifts are

4. Descriptions of the central innervation usually too small to compromise acuity, but

940
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they can be quite pronounced in patients with were found to change with the same time
ocular motor nerve palsies ( 1. 19) and in some course. increasing with a time constant of
patients with cerebellar disease (20). about I day. and decreasing with a time con-

Kommerell et al. (19) demonstrated the ex- stant of about I: day. Total cerebellectomv re-
istence of a long-term adaptive mechanism suited in saccadic hypermetria and postsac-
that operates to reduce this postsaccadic drift. cadic ocular drift and abolished control of both
Using human patients with abducens nerve pulse and step gains. Ablations of the midline
palsies that result in hypometna and postsac- cerebellar vermis resulted in saccadic h~per-
cadic drift in one eye. they showed that the metria and destroved the animals' ability to
amount of saccadic dysmetria and postsac- adjust their pulse gain. but left intact their
cadic drift could be altered by monocular ability to adjust their step gain. The gain of
patching. When the normal eye was patched the step was not adjusted to match the target
for several days its saccades became hyper- displacement. but was always matched to the
metric (went beyond the target) and were fol- antecedent pulse of innervation. so that post-
lowed by drift. Switching the patch for 3 days. saccadic ocular drift was always suppressed
so that the normal eye was viewing, resulted despite steady-state position errors. Bilateral
in recovery of that eye. i.e., the saccades made flocculectomies in monkeys have been shown
by the normal eye were of normal amplitude to abolish the ability to suppress postsaccadic
and had no postsaccadic drift. Abel et al. (1) ocular drift. presumably by destroying the
found similar adaptive changes in a patient control of the step gain (27).
with an ocular motor nerve palsy. In addition, While the existence of the drift-suppression
they followed the time course of the saccadic mechanism is now well established, the mech-
gains in their patient after patching one eye. anism by which the system senses errors and
When the affected eye alone was viewing, the implements corrective adjustments is not
saccadic gain increased with a time constant known. Two different afferent systems could
of 0.85 days, and when the unaffected eye was be used to report the presence of ocular drift.
viewing the gain recovered with a time con- Since the world is stationary, any postsaccadic
stant of 1.54 days. ocular drift would result in tull-field retinal

The rapid part of a saccade is due largely to slip, which could therefore be used to indicate
a brief, high-frequency burst of innervation, the presence of such ocular drift. The assess-
or pulse, and the final eye position is deter- ment of ocular drift might also be made from
mined by a tonic level of innervation, or step muscle proprioceptive afference. The extra-
(31). Kommerell et al. (19) hypothesized that ocular muscles contain many proprioceptors,
saccadic adaptation was achieved by altering and these are known to project into the para-
the pulse and step of innervation. Drift vermal cerebellum (on which the pulse gain is
suppression would then depend upon adjust- dependent) over pathways with a short latency
ing the ratio of the pulse to the step. Optican in cats (5. 10, 37). Extraocular afferents have
and Robinson (26) were able to show, with also been shown to project to the flocculus (on
ablation studies, that the pulse and step gains which the step gain is dependent) in rabbits
were independent and that their control de- (22). Since the previously mentioned studies
pended on different parts of the cerebellum. of saccadic adaptation were done on patients
These workers tenectomized the horizontal with ocular motor nerve palsies or in animals
recti muscles (excised their distal ends) in one with tenectomized muscles, it is difficult to
eye of monkeys and allowed the stumps to determine the extent to which propnoception
reattach to the globe. This made saccades in plays a role in drift suppression. It is also not
the operated eye hypometric (too small) and known how the adaptive control of saccade
induced an exponential drift back (in the di- amplitude, presumably effected by changing
rection opposite to that of the antecedent sac- the gain of the brain's estimate of the target's
cade). By patching one eye or the other they position (23). interacts with the adaptive
were able to study adaptive changes in saccadic mechanism for drift suppression. Both mech-
gains. The amplitude of the saccade was mea- anisms appear to have similar time courses of
sured at the end of the initial rapid phase to many hours in abnormal subjects (IL 26).
provide an estimate of the pulse gain and after However. another, faster adaptive mechanism
the achievement of a steady-state position to that makes a parametric adjustment in sac-
provide an estimate of the step gain. Both gains cadic size within a few minutes has also been

I%
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demonstrated in normal human subjects (8. Motion of the projected image was controlled by
14,41). a PDP-I 1/34 computer driving a servo-controlled

The present study was undertaken to char- mirror galvanometer (General Scanning Corp.

actenze the contribution of retinal slip to the CCX-101 servo and G300-PD motor). The band-
adaptive mechanism responsible for mini- width ofthe scanner was - 100 Hz. and the controladainptivem canis responsible orvini- signal had a range of 100' of image motion with a
mizing postsaccadic ocular drift. The visual resolution of I part in 4.096. Three signals. hon-
experience of patients with extraocular muscle zontal and vertical eve position and the transducer
palsies ( I. 19) and monkeys after tenectomies output of the mirror galvanometer, were low-pass
(26). i.e.. exponential slips after saccades. was filtered (-3 dB at 240 Hz) and digitized with a 12-
reproduced as closely as possible in these ex- bit analog-to-digital converter sampling 1.000 times
periments in an attempt to stimulate the per second.
same gradual adaptive mechanism for drift E.e movements were recorded monocularly with

suppression. Monke. s with intact extraocular the magnetic-field/search-coil technique (24. 0 . -k
muscles expenenced opticall imposed. full- relative calibration was routinely made by moving

held. exponential postsaccadic retinal slip. The the image with a saw-tooth waveform (constant-
relocity slow phases at 10 deg/s. interrupted by 10-

monkeys responded to this retinal slip just as ms resets) and assuming that the maximum opto-
if it had been caused by pathological ocular kinetically induced eye \,elocitv matched the veloc-
dnft: changes in saccadic innervation led to ity of the projected scene. Absolute calibrations for
the development of a postsaccadic ocular drift testing saccadic accuracy were made by having the
that reduced the optically imposed postsac- monkey make saccades to targets at 20' eccentricity
cadic retinal slip. Unexpectedly. the time con- left. ight. up. and down.
stant of this ocular drift was dependent on the .Idaptation paradigm
time constant of the adapting image's drift. The adaptation paradigm was designed to elicit
Hence these studies show that. in addition to a change in the pulse-step ratio of saccadic inner-
the amplitude of the drift. the time constant of vation. While the animal faced the textured image
the drift is also under adaptive control. These and made saccadic eye movements spontaneously,
data lead to the proposal of a new model of the computer detected the saccades on the basis of
the final common path. the brain stem net- velocity and duration criteria (2). At the end of each
work and ocular motor plant, which is com- saccade (which could be determined with an ac-

mon to all ocular motor systems. The new curacy of a few milliseconds by waiting for the eye

hypothesis accurately models both normal velocity to fall below 12% of its peak value) the

and adapted saccades. allowing forthe suppres- computer made the projected image move hori-
zontally across the screen. There was a 5-ms latency

sion of postsaccadic ocular drift. A preliminary between the computer command and the mirror
report of some of these results has been pre- movement. Since the computer detected a low eye
sented (25). velocity. and not the true end of the saccade. the

METHODS movement of the image usually began within a few
milliseconds of the actual end of the saccade. Gen-

Eye movements were recorded from seven adult erally, an exponential waveform with a 50-ms time
rhesus monkeys (Macaca mulatta) before, during, constant was used. This value was chosen to be near
and after they experienced optically imposed post- that of the ocular drift found in a previous study
saccadic retinal image slip. All animals had previ- of lesioned animals where adaptation was observed
ously been trained to fixate small lights for a liquid (26). Some experiments were done with exponential
reward. Each animal was implanted with a head drifts having other time constants (25 and 100 ms),
holder and a scleral search coil (I5), using aseptic and in one experiment the scene was displaced
surgical procedures, while under pentobarbital so- abruptly. The amplitude of the image slip was al-
dium anesthesia. During the experiments animals ways 50% of the amplitude of the horizontal con-
were seated in a plastic chair, with their heads fixed, ponent of the antecedent saccade. In some experi-
facing a translucent screen subtending 1000 in both ments the slip was onward, in the direction of the
the horizontal and vertical direction at a distance antecedent eye movement, and in others it was
of 29 cm. Highly textured, colored images were backward. Animals remained in the apparatus for
projected onto the back of the screen and were the several days needed to complete a single exper-
moved by a mirror galvanometer system under iment. They were given food and water by hand,
computer control. This arrangement was used to at regular intervals, until satiated, regardless of their
dnft the scene with an exponential time course after behavior. Animals were kept awake during record-
every spontaneous saccade, thereby simulating the ing sessions by loud noises. At other times six an-
visual events associated with postsaccadic ocular imals were not artificially aroused. The seventh an-
drift. imal received a liquid reward for making brisk sac-

,...
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cades. There was little difference in this animal's Optca//v induced postsaccadic
adaptive performance. ocular drili in the dark

Latency of the oculpr following response to the Figure I shows the effect of prolonged ex-
full-field, exponential slip stimuli was measuredt
with the techniques of Kawano and Miles(16). The posure to the adaptation paradigm on spon-
eye velocity was digitally differentiated to obtain an taneous saccades made in the dark. In the nor-

acceleration trace. We computed the mean and mal state of the animal (Fig. 1.-I) the saccadic
'6ariance of this acceleration over the period before eye movement ended fairly abruptly and was
the stimulus. Onset of ocular drift was defined to followed by only a small amplitude drift back.

be when the e-e acceleration exceeded 2 SD from Such small drifts are often present in the light
the mean. This was typically at - 100°/s 2 . as well as in the dark in the normal state. After

several days of experiencing optically imposed
Saccadic performance retinal slip after every saccade. the eyes de-

Sample recordings of saccadic and postsaccadic veloped a drift in the direction of the adapting
waveforms were made while the animal was viewing motion that followed almost immediately after
the adapting stimulus and while it was in temporary the rapid part of the saccade was over (Fig. I.
darkness. For testing saccadic accuracy the eye B and C).
without the coil was patched, and the animal
tracked a spot of light that shifted abruptly among Comparing the panels in Fig. I. we see that
fixed positions at 0, ±5, ±10. ±15 and ±20. along the adapted movement looks like a rapid sac-
the horizontal meridian. The sequence of the target cade followed by a slow drift. To quantify this
movements was unpredictable and included various adaptive response, eye movements were di-
combinations of starting positions and amplitudes. vided into two parts: an initial rapid compo-

Data from the first two monkeys were measured nent of amplitude P. presumed to reflect a
by hand from chart paper records. Data from later phasic change of innervation, or pulse, and a
monkeys were analyzed off-line on a PDP-I 1/44 component of amplitude S that brings the eye
computer. Velocities were obtained by digital dif- to its final position, presumed to reflect a tonic
ferentiation. using a Chebyshev optimal nonre- level of innervation. or step. The size of com-
cursive linear filter acting as a low-pass filter (-3
dB at 30 Hz) (29). Each saccade was displayed on ponent P is measured from the initial eye po-
a video screen, and measurements were made of sition to the inflection point during the decel-
the beginning and ending positions of the saccades, eration phase of the rapid part of the saccade.
their peak velocity, and the amplitude and duration The size of component S is measured from the
of any postsaccadic drift. Time constants of image initial eye position to the point where the eye
and ocular drift were estimated by a nonlinear velocity returns to zero.
regression technique with linear constraints on the The amplitude of the postsaccadic ocular
parameters that determined the best fit, in the least- drift (S - P) varied with the amplitude of the
square-error sense, of a single exponential curve to antecedent saccade. Figure 2 shows data from
the data (21, 38). two monkeys, in which each point indicates

the ocular drift following a spontaneous sac-
RESULTS cade in the dark, after 5 days of adaptation.

In both cases the adapting stimulus was an
Whe th ful-feldimae frstbegns ov- exponential image drift with a time constant

ing after every saccade, the animal responds on m d itudeth a 50m o f

by tracking it with a delay of - 50-60 ms (cf. of 50 ms and an amplitude that was 50% of

Ref. 16). If the lights are turned off after only the antecedent saccade's. Circles show drifts

a few minutes of such experience, the animal's from monkey o . after adapting to a stimulus

spontaneous saccades in the dark appear nor- that drifted backward: plus symbols show dris

mal. After several hours of such experience, from monkey UL, after adapting to a stimulus
however, the monkey begins to show a zero- that drifted onward: the straight lines are least-
latency ocular drift after each saccade in the squares regressions of ocular drift on saccadic

light, and some of this drift persists when the amplitude for amplitudes less than about 250
lights are turned off. Our initial concern is en- (for OV: slope = -0.17, intercept = -0.540,
tirely with the postsaccadic ocular drifts that r = -0.97; for UL: slope = 0.12, intercept =
persist in the dark (though a later section will 0.10", r = 0.95). For larger saccades the points
consider some of the complex events recorded tend to fall off the regression line. indicating
in the presence of the adapting stimulus in the the presence of an amplitude saturation for
light), ocular drift. Indeed, ocular drifts in the dark
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FIG. I. Optically induced postsaccadic ocular drift persists in the dark. .4: normal spontaneous saccade in the
dark. Note small amount of drift back at the end of the rapid portion of the saccade. Spontaneous saccade in the dark
after several days of exposure to an onward (8) and backward (C) exponential drift that followed every saccade. The
saccade in the adapted state is followed by a zero-latency drift. To quantify the amount of ocular drift, the amplitude
of the rapid part of the saccade (P) and the final position of the movement (S) are measured from the saccade's starting
point. The portion P is called the saccade, and the portion (S - P) is called the postsaccadic ocular drift.

00 Uwith amplitudes >80 were not seen in any
OV UL / monkey.

The amount of drift was also expressed as
a fraction of the pulse amplitude. (P - S)/P.
and will be referred to as the pulse-step mis-

4- o . :,match (psm). The relationship between the
.- * * • .T.. pulse and step components was also expressed

4*. by the fraction (P/S), called the pulse-step ratio
,- "" (psr). The almost linear relationship between

the amplitude of the ocular drift and its an-
W Co tecedent saccade suggests the presence of a

.. .parametric adjustment (with saturation), andi"- supports the use of a single number, such as
V I. the psm or psr. to characterize the saccadic

a "": ° waveform in the presence of ocular drift. Table
I shows the psm (in %) for four monkeys. The

0 •visual scene was made to slip either backward
o or onward 50% of the amplitude of the ante-

0 0 tcedent saccade. In each case the monkey, in
response to the retinal slip, developed a post-

0 saccadic ocular drift that was in the adaptive

-60 -40 -20 0 20 40 60 direction.

Saccade Amplitude (deg) The amount of the postsaccadic drift in the
dark was always less than that in the light. As

no. 2. The amplitude of ocular drift in the dark is a typical example, in monkey UL. the psm
proporional to the amplitude of the antecedent saccade. after 6 days of adaptation (to an exponential
Ocular drift amplitudes were measured in monkey OV drift with 50% the amplitude of the antecedent
(with backward drifts, circles) and in monkey UL (with saccade and a time constant of 50 ms) was
onward dnfts. plus symbols). The solid lines are the
regressions ofocula drift amnitude on saccade amplitude 24.3 ± 1.2% (SE) in the presence of the adapt-
for saccad <25. ing stimulus, but only 13.6 ± 0.3% in the dark.

NA
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TABLE I. Pulse-step mismatch of spontaneous saccades made in the dark

Adapted. -,

Monkey Normal. % Backward slip Onward slip

OV I 6 0.2(57) ".50 5 (107) 1'3106I 84)
UL 2.5 _-02f108) _0.5(52) 136 o 0313291
RO 1I 102138) -l0:i)8 1")
QU 1 5 t 0 2 (751 -20 6 0 6 ('1)

Adapted state was induced by se,,eral da.s of exposure to an image slp %hose amplitude ,as 50 of the amplitude
of the antecedent saccade and w hich dnfted exponentialk with a time constant of 50i ms. 'v alues are means SE i n)

Time constant of (kular dritt (correlation coelficient 0.99) for the data of I
The time constant of the ocular drift asso- both monkeys. Hence the time constant of the

ciated with an adapting stimulus of a given ocular drift in the dark was dependent on the
time constant was fairly consistent in the same time constant of the stimulus used in the ad-
animal on different days. although there were aptation paradigm.
small differences between animals. The aver- Time course oliacquisition and recoverv
age time constant of ocular drift in four ani- The postsaccadic ocular drifts recorded tn
mals measured in nine separate experiments the dark develop gradually over time when an
was 68.8 ms (SD = 10.8) when the adapting
stimulus had a time constant of 50 Ms. The o
time constants within this group ranged from
51.0 ± 1.4 (SE) (n = 84) to 87.1 t 3.5 ms
(n = 61): analysis of variance showed that the
group was not homogeneous (F-test, P < 0.01 ),
and hence the time constants among monkeys
were significantly different.

These significant differences suggested that M
the time constant of the ocular drift might be
an idiosyncrasy of the animal and independent 0
of the time constant of the adapting stimulus.
To test this hypothesis, the effect of varying .
the time constant of the exponential image
drift used for adaptation was examined in two
monkeys. In three separate experiments the -
time constant of image motion was either 25, =
50. or 100 ms. Figure 3 shows that there was 0 7 - 9
a strong correlation between the time constant R 0 99
of the ocular drift and that of the image drift
used to adapt the animals. After adaptation 0 5'0 100
the psm was about 15% in all experiments,
and there was no marked difference in the ac- Adapting Images Drift (maec)
quisition time at the different adapting time Fm. 3. Time constant of ocular drift measured from
constants. Nor was there any correlation be- spontaneous saccades, made by monkey OV (open crcles)
tween saccade amplitude and the time con- and LF (filled circles) in the dark- depends on the time

stant of the ocular drift- for two monkeys (OV constant of the adapting stmulus. Vencaland horizontal
bars am ± I SE. Dotted line is from linear rereion. Timeand LF), with the three adapting image-drift constants of imale drift arm an average of 1S, and ume

time constants, the average of the absolute constants of oculardrift are averaiges of at least 60 noninear
values of the correlation coefficients was relpson estimates (see METHOOS). The correlation be-
0.20 ± 0.22 (SD) (ranging from 0.003 to tween ocular and image time constants is statisucally s-
0.500). Regression of the ocular-drift time nificant (P <0.001). [Actual time constants of imae dnft

for monkey OV were 250 ± 0.1 (SE). 50.1 ± 0.1. and
constant on the image-drift time constant gives 101.0 ± 0.2; for monkey LF they were 24.1 ± 0.1. 49. 1
a line with slope 0.70 and intercept 19.61 ms 0.3. and 98.5 ± 05.1

%-"I
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animal is continually exposed to optically im- 30.4 t 6.4 h (SE). Both reco,,er% phases were
posed postsaccadic slip. Figure 4 shows a tvp- well fit b* exponential functions. The time
ical time course for the adaptive change in the constant for recovery from a gain decrease was
psm in monkey UL. The animal was adapted 5.4 i: 1.0 h. and that for a recovery from a
tor 6 days to an exponential image drift (with gain increase was 4.7 - 1.2 h. Time course
a SO-ms time constant) that slipped onward data were also plotted using the number of
in one experiment (open circles) and backward saccades. instead of the elapsed time. as the
in another (filled circles). At the end of the 6th independent vanable. Essentiall. no difference
da. the image motion was stopped, and the in the smoothness or form of the curves re-
animal was allowed to recover while viewing suited from expressing the data in this wa.
the (now stationar) image. The recovery The time course of the acquisition of an
phase was much shorter than the acquisition adapted gain was studied i fin'e expenments
phase. regardless of the direction of the gain on four monkeys. The time course of the re-change, even though the visual stimulus was cover. from the adapted state was studied i

the same in the two cases, and the monkey four experiments in three monkes. In all the
generated saccades at a similar rate. An effort animals the change over time of the psm was
was made to fit a single exponential function usually smooth, although. as in Fig. 4. often
to the acquisition and recovery' time courses. one change was not well fit by a single expo-
This was not possible in the acquisition phase nential (but this could be the acquisition of
when the step gain was increasing (where a either an increased ora decreased psm). There
dashed line connects the points): the gain ap- were no systematic differences across monkeys
peared to increase in two stages for this mon- whether the gains were increasing or decreas-
key. When the step gain was decreasing, the ing, or between gains for leftward or rightward
acquisition phase had a time constant of movements. While there were differences in

the time constants for leftward and rightward
adaptation, this varied from monkey to mon-

a  30_o 4 M= 5 4 h key. In only two cases (out of 8) were the time
constants of acquisition shorter than the time
constants of recovery, and then only for one

I , direction: combining leftward and rightward
data to give a single time constant always gave
an acquisition time constant that was larger
than the recovery time constant. A character-
ization of the overall performance in all the
monkeys was obtained by normalizing the
psm so that the maximum value dunng each
phase (acquisition or recovery) in each mon-

2. n *key was + 1.0. All the normalized psm values
from each monkey were divided into acqui-
sition and recovery groups. The recovery val-
ues were time shifted so that all the recovery
phases started at 167 h. Single exponential

- 'functions were fitted to all the points in both
groups. In Fig. 5 the letters correspond to psm

1 r,,- 4 7 values from each monkey for leftward and
n f nghtward saccades. The solid lines are the

0 50 100 150 200 least-squares best fit to the data of a single ex-

Time (hrs) ponential function. The time constant of ac- Jquisition was 35.1 ± 6.5 h (SE). and that of
FG. 4. Time course of adaptation in monkey UL. At recovery was 4.1 ± 0.7 h.

time w o the animal wa pesented vith exponentui imap
slip that was 50% of the amplitude of the antecedent s-a Decay ofadaplanon in darkness
cade. In one expenment the imae dnfted in the sare If the postsaccadic ocular dr is to be as-
direction as the antecedent saccade (opn orcfes, and in
theothert tima dnfWbard (fillE dcircles). t e,,,a cnbed to changes in some plastic neural gain
harv are ± I SE. elements, one would expect those changes to

:.4-' 1
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- *While the deca, in the dark is not a simple
process that can be well fit bv a single expo-
nential. the psm clearlk does not go ava. rap-
idl, in the dark. and there is considerable re-
sidual psm: even after three days in darkness
both animals still retain >50, of their adap-

n ! tation.

.- 3 Dir'ctional s'Iectuvii
7, In all of these experiments the image dnfted

only in the horizontal plane. and ocular dnft
developed only in that plane. One experiment
\was performed %,. h monke, OV) to further
demonstrate the directional specitficit, of the

Z %\isually induced adaptive response. In this ex-
penment the image was made to move onward
after rightward saccades. and backward after
leftward saccades. Thus. the optical drift was
always in the same direction, so that the size
of the step of neural inneNation relative to

5 D'00 50 200 250
Time (h) o

FG. 5. Time course of adaptation averaged over 5 ex-
penments in 4 monkeys. Letters represent individual
monkeys. The curves represent the best-fit single expo-
nential function to the pooled data. at

C

persist in the dark when there can be no post- 1
saccadic retinal slip. The long-term persistence C10
of the psm was examined by adapting two 0 -
monkeys (for 4 and 5 days., respectively) and m }
then placing them in complete darkness. The ..
amount of postsaccadic ocular drift associated .
with spontaneous saccades in the dark was i-C
measured by pooling the psm values for right- o i "
ward and leftward data for each monkey (nor- Z
malized to the value at time zero).

Figure 6 shows the pooled values (open cir- COD

cles are monkey OV, filled circles are monkey
UL). Despite the variability of the data. re-
flected in the large standard errors, it is clear
that the decay of the psm in darkness is less
rapid than either the acquisition or recovery 0 20 40 60 80
phases. For comparison with the time con-
stants in Fig. 5, exponentials were fined to the
data in Fig. 6 as well. Fitting a single expo- FI. 6. Decay of adaptauon ndarkness. AJtradaMn
nential gives a very long time constant for de- to exponentus inul shp, 2 monkeys wer kept in compete
cay to zero [180 t 31 h (SE), solid line). As darknea for several days. The values are pooled for each
expected, fining a single exponential that de- of 2 monkeys for leftward and nghtward movements (open
cays to a nonzero asymptote gives a shorter circles from monkey OV. hlled crcles from UL. Vertcal
time constant (42 ± 32 h, with an asymptote bars are ± I SE. The solid curve is the benf-6t exponentialte t (time constant = 180 ± 31 h)decaying to zero. The dashed
of 0.53. dashed line), but one that is still longer line is the best-fit exponential with an asymptote of 0.53
than that for either acquisition or recovery. time constant of 42 i_ 32 h).

)
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the pulse was required to increase for rightward TABLE 2. Latency oiocular dritt *'ollowin,
movements and decrease for leftward move- pontaneous saccades in the dark
ments. This is exactly what happened. the psr
being appropriate for the direction of the an- Monkey Normal -Ndapted
tecedent saccade and the direction of adapting OV 3.6 0.4 5 3 4 = 0 2 07I
image motion: The rightward psm was -9.1% UL 6 2 =0.4(1081 54 02129)

(SE = 0.3. n = 116). while the leftward psm RO 4.8 : 08 (38) 4.6 = 0 5 (71)
was +9.0% (SE = 0.2. n = 130). QU 33:03(75) 2.4:01 73)

Displacement vs. drift E'.en normal saccades often hae small ocular drifts.

An exponential pattern of image motion There is 'er, little difference in the latenc from the end

induces both slip and displacement of the ret- of the saccade to the onset of drift between the normal
and adapted states. Values are mean times in milliseconds

inal image. Several other patterns of image :I SE n).
motion were used to study the adaptive mech-
anism. Prolonged exposure to step displace-
ments (duration of 5-8 ms) in the same di- not sufficient to elicit postsaccadic ocular drift.
rection as the antecedent saccade did not elicit Step displacements and exponential drifts were
postsaccadic ocular drift: after several days of combined to give an image slip without net
viewing step displacements that were 50% of image displacement: at the end of a saccade
the amplitude of the antecedent saccade. eye the image stepped away by 50% of the ampli-
movements still ended abruptly. Hence dis- tude of the antecedent saccade. then drifted
placement alone of the image on the retina is back exponentially to its original position with

a time constant of 50 ms. The response of the
monkey to this step-back exponential was
qualitatively identical to the response to the
simple exponential image motion- the psm in
the dark, after 3 days of adaptation, was - 12%
(SE = 0.4. n = 113). while after 3 days of ad-
aptation to the simple exponential it was - 17%

C" (SE = 0.6, n = 84) in the same monkey. Thus,
C optically imposed postsaccadic retinal slip

alone, without net retinal image displacement.
is sufficient to elicit postsaccadic adaptation.

oZ 0- Time of onset of postsaccadic ocular drift
In the normal state. before adaptation. the

exponential image drift gave rise to an ocular
following response. The latency of this re-
sponse, averaged over two experiments in each
of two monkeys, was 56.7 ± 6.6 ms (SD). After
several days of adaptation. the animals showed
postsaccadic ocular drifts that had much
shorter latencies and persisted in the dark.
Figure 7 shows examples of the endings of eye
movements made in the dark that resulted

0.0 0.1 0.2 0.3 0.4 0.5 from adaptation to exponential image slip for
Time (msec) several days, selected for their range of post-

saccadic ocular drift onset times.
FIG. 7. Representative transition waveforms from sac- Zero-latency drifts, such as in Fig. 7a, rep-

cade to ocular drift in spontaneous saccades in the darL.
Eye movemets w slufted sr ther bentnrs removed. resent only one end of a spectrum of latencies.
a: the dnft bqlns immediatliy after the pulse-driven pan Sometimes there is a short period between the
of the saccade is over. & there is a short period (- 10 end of the saccade and the beginning of the
ms) of zero or low velocity before the drift. c. a drift (Fig. 7b). In other cases the initial saccade
smaU backward saccade. or dynamic overshoot. p will be followed by a dynamic overshoot (a
the drift. All monkeys show this spectrum of response
waveforms. Which form predominates vanes with the small, backward saccade) before the drift be-
monkey and the direction of the saccade. gins (Fig. 7c. Which pattern predominates

I

N N -. bN N % % %
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ADAPTIVE CONTROL OF SACCADES 449

varies from one monkey to the next and also termining the end of the pulse-driven pan of
depends on the direction of the antecedcnt the saccade and the beginning of the ocular
saccade. The pattern in Fig. 7c was the must drift, which limits the minimum measurable
rare, occurring -- 1% of the time in the dark. latency to -2 ms. Clearly there is no signifi-
Table 2 shows the average latency in the dark cant change in drift latencies. measured in the
to the onset of ocular drift in different mon- dark, caused by adaptation.
keys. Ideally. in the normal state in the dark
there should be no postsaccadic drift, and Effect of adaptation on rapid
hence the latency measurement would be zero. component dynamics
The values for the latency in the animal's nor- The amplitude-peak velocity relationships
mal state in Table 2. however, reflect the fact of the initial rapid component of saccadic eye
that even many normal saccades are accom- movements were not affected by the adapta-
panied by small drifts. Also, there is a system- tion paradigm. Figure 8 shows examples of
atic error introduced by the method for de- the amplitude-peak velocity relationship, often

00

0-

OV: psm =+13% o

O"Q

00

06_

-) " ,- -It

6 -40 -20 0 20 40 60

% %
0

a 2 2 "

-60 -40 -20 0 20 40 60
Saccade Amplitude (deg)

noG. 8. Main sequence (amplitude-peak velocity relationship of the horizontai component of saccades) was the
same for spontaneous saccades in the dark made in the normal (circles) and adapted (p/us svmbols) states.
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referred to as the main sequence (2), obtained TABLE 3. Peak-velocity vs. amplitude
in the dark from two monkeys. Abscissa and relationship /or monkey s OV and LL in
ordinate values refer to the horizontal com- the normal and adapted state.. (ci Fiz, ,)
ponent of spontaneous saccades. Since the
vertical component of saccades was not altered K. des 4. deg J%. s
b. this adaptation paradigm. we assume that
any effect of oblique saccades on this main ov" "Normal

sequence would be the same in both the R -6"0=406 235 248 )12:434
adapted and unadapted states. The circles are L 487 14 1 3 4 - S -68' 8
the values before adaptation. and the plus Adapted
symbols are the values after 5 days of adap- R -575 57 9 5 - 2 3 679 41h

tation to a 50-ms time constant, exponential L 398 43 133: 3 1 -6 43
Com ined

image motion that drifted 50% of the ampli- R -579: 49 10 3 - 23 o88 3'
tude of the antecedent saccade. In Fig. 8, L 434- 38 133: 34 -,54

top. the data for monkey OV are shown before UL
and after adaptation to backward image slip. Normal

R -716 _ 92 198 '2 891 _- i2In the adapted state the monkey's psm was L 401 88 126: 4 - 958- 45
+17.5- (SE = 0.5. n = 107). In the bottom Adapted
part of Fig. 8. the data for monkey UL are R -794 -111 230: 80 906: 116
shown before and after adaptation to onward L 440 53 11 1 34 -5146 41

image slip. In the adapted state the monkey's Combined

R -794 t 83 22.9 !t h 1 414 :102 ipsm was -12.8% (SE = 0.3. n = 250). These L 5O8_ 60 119 2:29 -596 3_-1 Nmismatches were typical of those seen in our
experiments. The curves are the least-squares best fit (21. 38) of a

Even the largest saccades. up to 500 in am- single exponential: K exp(-a/,.) + V where a is the am-
plitude of the saccade. K is the slope constant. .4 is the

plitude. still fell on the same main sequence, angle constant, and V., is the peak velocity as. mptote.
The amplitude-peak velocity main sequence Curves were fit for saccades in both the nghtward (R) and
can be characterized by a single exponential. leftward (L) directions. The curves in the normal and

The curves are the best-fit exponentials to the adapted states were so similar that a single curve was also

data values from the normal (solid) and fit to the combination of the normal and adapted data sets
for each monkey (see text). Each parameter is given

adapted (dashed) states. The parameters of this SE.
exponential fit were compared for leftward and
rightward movements by each monkey in both
the adapted and normal states. There was no to be due to the fact that decreasing the step
significant difference between the values inthese two states (large sample test for difference of innervation (to cause a drift back) subtracts

of means could not reject the hypothesis of a small amount from the portion of the sac-

equal values even at the 70% confidence level), cade we call pulse-driven (the pulse is actually
made up of a burst from the pulse generator

Parameters of these exponential fits are given and the ramp part of the ramp-step from the
in Table 3.

neural integrator, see below). Hence the pulse-
While the mean amplitude-peak velocity driven saccadic amplitude is actually a little

relationship did not change, there is clearly a less than the amplitude programmed by the
wider range of velocities for a given amplitude pulse-generator. The effect of this underesti-
in the adapted state when the ocular drift is mate o c e mpl t os thif theram-

backward (Fig. 8A). From looking at the least- plitude-peak velocity relationship so that sac-upper-bound of this relationship, instead ofpltd-ekvocyreainhpotats-
cades in the adapted state (with backward drift)

the mean, it appears that the saccades in the have larger velocities than normal saccades.
adapted state can be faster than those in the Hence the asymptote for large amplitudes will
normal state for ampfitudes up to -25*. (This remain the same, but the least-upper-bound
characterization is not affected by the vertical will increase for small saccades.
component of oblique saccades. since slowing
of the horizontal component will affect the Effect of adaptation on pulse gain
mean, but not the least-upper-bound, of the To determine whether prolonged viewing
data.) This increase in the upper limit of peak of the exponential-drift stimulus would cause
velocities for a given amplitude is presumed any change in the amplitude of the rapid corn-

• ., %, " % % " --.- --. . .o- o.. . ... . .. .- . -.. . . .. -. , . . -o *."- . .'. '



ADAPTIVE CONTROL OF SACCADES

the rapid saccadic amplitude changes seen in
C'4 human subjects in psychophysical tests (8. 14).

The adaptation paradigm %;as designed to
induce the monkey to adjust the size of the
step of saccadic innervation to reduce image
slip: however, as the saccade tracking test be-
gan it was evident that both the pulse and the

step gains were larger than normal. In this test
I the projected image consisted onl of a small

spot of light. and the animal was rewarded onl
- for acquiring this (stationarN) target rapidl.

* .. For the first few movements of the saccade
o test. the high pulse and step gains droe the
- t. eye beyond the target. and the animal had to

.+ Imake corrective saccades. Dunng testing.
S :,- however, the animal began to decrease the

amplitude of the rapid part of the saccade. so
that large corrective saccades were no longer

0- + ,. necessary: yet the ratio of the rapid component
p; r to the step component (psr) did not change.

The pulse and step gains were both lowered
with a roughly exponential course [step-gain

-1 1 2 3 4 5 decay constant: 1,308 ± 272 saccades (SE):
Count x 103 pulse-gain decay constant: 1.438 ± 436 sac-

cades]. This monkey made - 770 saccades per
FIG. 9. Adaptation to amplitude dysmetna. Monkey hour. so the equivalent time constant for the

UL was adapted for 3 days to a stimulus that drifted on- change of both the rapid and step components
ward. The normal values of the pulse (filled circles) and
step (open circles) gains, and their ratio (tnantges) is was 2 h. This short course is longer than the
at -0.5 on the abscissa. After adaptation, the pulse and rapid parametric adjustment of saccadic gain
step gains are raised (and the pulse-step ratio, psr. is low- seen in psychophysical experiments on human
ered). In a spot-tracking task, where the monkey is re- subjects. which require only a few hundred
warded for rapidly acquinng the target, the gain of the saccades (8, 14), but is shorter than the several
pulse and step are decreased until a slight hypometra of
the pulse is restored. This happens with an exponential hours or days needed to adapt to pathological
timecoursewithatimeconstantof-2 h. Since thegan retinal slip (l, 19, 26. and Fig. 5 in this study).
change is in response to the saccades. however, the data
is plotted versus total number of saccades since the begin- DISCUSSION
ning of the behavioral task. Persistent postsaccadic retinal slip, induced

optically, is sufficient to elicit a postsaccadic
ponents of saccadic eye movements, an animal ocular drift that is evident even in the dark.
that had been adapted for 3 days was examined When the animal first experiences the full-field
on the saccadic tracking test. Figure 9 shows exponential retinal slip there is an ocular fol-
the pulse and step gains measured in monkey lowing response with a latency of only 50-60
UL from responses to the movement of a spot ms. This is shorter than the normal smooth-
target. (The pulse gain is the ratio of the am- pursuit latency of 130-150 ms (32). and ac-
plitude of the pulse-driven part of the saccade cords with the ultrashort latency ocular fol-
to the initial distance to the target. The step lowing response to full-field ramp movements
gain is the ratio of the final amplitude of the described by Kawano and Miles (16). After a
eye movement to the initial distance to the few hours of exposure to the postsaccadic ret-
target.) The step gain is indicated by open cir- inal slip, the animal begins to develop a cor-
cles, the pulse gain by filled circles. and the pensatory, often zero-latency, postsaccadic

pulse-step ratio (psr) by triangles. The values ocular drift.
for these variables in the preadapted state are This adaptation occurs in animals with in-
indicated by symbols at -0.5 on the abscissa. tact extraocular muscles, so the ocular drift
Note that the abscissa has units of thousands develops despite the normal propnoceptive
of saccades to facilitate easy comparison with signals coming from the extraocular afferents.

Sv, V""
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We assume that this is an adaptive response hundred saccades (8. 14. 41). Such rapid ac-
from a neural mechanism that normally op- quisition may be related to conscious strate-
erates to suppress postsaccadic ocular drift. gies. or short time constant, plastic mecha-
This adaptive response is not just the uncov- nisms. In contrast. the prolonged time course
enng of some intrinsic ocular drift. since it is of the changes in ocular drift and their rela-
only in the plane of the stimulus (horizontal), tixely slow decay in the dark are consistent
and since the direction of the drift is linked to with long-term, plastic alterations in neural
the antecedent saccade and can be either on- components, rather than the short-term de-
%%ard or backward. independently, after right- ployment of alternative strategies.
%4ard or leftward saccades according to the di- Figure I demonstrates for the first time that
rection of the adapting stimulus. The data ob- the saccadic system can reduce the amplitude
tained with the step. drift, and step-drift of the step of saccadic innervation below nor-
adapting waveforms are consistent with the mal. In pre%ious studies (1. 19. 26) saccadic U
suggestion of Optican and Robinson (26) that adaptation %as always a response to a reduc-
the adaptixe mechanism regulating postsac- tion of the effective strength of the extraocular
cadic ocular drift is sensitive to retinal slip but muscles. Patching one eye or the other could
not retinal displacement. These workers only be used to increase the amplitude of the
show~ed that the step gain is adjusted to min- step, or return it to its normal value. Abet et
imize postsaccadic ocular drift, rather than to al. (I) noted that the time constant for in-
match the desired final eye position. The creasing the gain in their patient was 0.85 da.s.
matching of the step to the pulse occurred even whereas the time constant for recover was
when the pulse gain was incorrect, resulting 1.54 days. Optican and Robinson (26) gave
in saccades of normal appearance but inap- the time constant for increasing the step gain
propriate amplitude, over three monkeys as - I day. with a recovery

The gain of the pulse component also in- time constant of -0.5 days. Since in these
creased slightly in response to the exponential experiments the gains could only be made to
slip stimulus (Fig. 9) and would have had the increase above normal, or decrease to normal
effect of reducing the final position error. The during adaptation, it was not clear whether
adapted animal in Fig. 9 had a pulse gain of the difference in the time constants between

I. 1 and a step gain of - 1.3. The gain of the the acquisition and recovery phases was due
step (G,) seems to be adjusted to match the to the direction of the change or somehow re-
pulse gain (G,), as indicated by the almost lated to the phase (acquisition or recovery) of
constant value of the pulse-step ratio (psr) in the adaptive process. In the present set of ex-
Fig. 9 and by lesion studies in monkeys (26). periments it was clear that there was an order
Thus we assume we can write the step gain as of magnitude difference in the time constants
G,/psr. To acquire an initial eccentricity of of the acquisition and recovery phases. re-
amplitude K, the pulse drives the eye to GpK. gardless of the direction of the actual gain
and the step carries the eye to GpK/psr. The change.
computer would detect the saccade. and move Why the recovery phase, which always re-
the image another 0.5GpK. So, the final image turns the step gain to - 1.0, should be faster
position is at (0 + 0.5Gp)K, which gives a po- than the acquisition phase is not known. One
sition error, e, between intended and final hypothesis is that the ocular drift is a pattern
eccentricities of [I + (0.5 - l/psr)Gp]K of eye movement that the animal learns to
For this example, e/K = (I + (0.5 - 1.3/ emit after every saccade. Then learning the
1.1)1.1] = 0.25. Hence the position error when pattern would be slow, but recovery would
both the gain of the pulse and step are in- only require that the pattern no longer be
creased is 25% of the intended eccentricity. If emitted. This explanation is no: completely
only the step had adapted, (i.e., GP = 1. G, = consistent, though, with the continued pres-
l/psr = 1.18), then the error would have been ence of the drift after prolonged periods in
32%. The change in pulse gain reduces the er- darkness or with the animal's inability to sup-
ror by (32 - 25%) = 7%. hence it contributes press the drift in the saccade test, apparently
an additional 7/32 = 22% to the reduction of finding it easier to adapt ;ie pulse gain instead
the error. (Fig. 9). Another potentially important factor

Other studies have shown that changes in is that during acquisition. propnoception and
pulse gain can occur in man after only a few vision are in conflict, whereas in recovery they

S
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are in accord. Another hypothesis is that the \as a passixe consequence of an imbalance
brain has a sery stable set point for the pulse- between the extraocular muscle forces and the
step ratio that corresponds \ith minimal orbital restonng forces at the end of a Saccade
postsaccadic ocular drift. To change the pulse- ( 19). The time constant of the ocular dnft
step ratio away from the set point ma\ require would then reflect the d\ynamics of the ocular
the long-term integration of persistent post- plant after a step input. The plant is not a sim-
saccadic retinal slip. It may be possible to re- pie linear s.stem. howe\er. and predtlting the
turn the ratio to the %alue specified b, the set time constant of ocular dnft is ditficult. The
point b% quickl, dumping the integrated error. dominant time constant of the orbital me-
The logical extension of this idea is that the chanics in the rhesus monke\ is - 20) ms (34.
set point itself must be either geneticall,, de- 39). Howeser. perturbations of the neural-
termined. or under a \er. slow-acting form of muscular s.stem can result in smaller time
adaptixe control. If the latter is the case. pa- constants: I I and 33 ms after oculomotor
tients with chronic disorders (e.g.. a 6th nerxe ner'e stimulation (33). 95 ms after monocular
palsy) might haxe a set point that calls for a Iorced ductions 1 18. 30). and hS ms after stim-
\,er-v high gain. In such a case. it might take ulation of the medial longitudinal fasciculus
longer for the gain to change to the %alue (28). Thus it is not a simple matter to predict
needed when only the normal e,e is ieing a pnon what the time constant ofpostsaccadic
and less time for the gain to go back to the ocular dnft would be if it Aere determined
raised %alue when onl, the paretic e.e is ,iew%- passixelN b the mechanics of the orbit.
ing ) In our expenments, howe,.er. it has been

The amplitude of the induced ocular drift shown for the first time that the time constant
is not constant but is roughly proportional to ofpostsaccadic ocular drift is not passixel. de-
the amplitude of the antecedert saccade. This termined but is under adaptive control. The
ratio was typically - 15% for spontaneous ocular-drift time constant is thus adjusted ac-
saccades in the dark. but the drift amplitude ti\ely to minimize retinal slip throughout the
was never >8'. Thus. while the ocular drift period of ocular drift. This new result moti-
would tend to reduce the retinal slip seen just %ates the incorporation of a third adaptable
after a saccade. it could not completely cancel component into the representation of saccadic
it. The adaptive mechanism was unable to innervation. and has important consequences
fully compensate for the optically induced slip. for our understanding of how the brain con-
In animals with peripheral muscle lesions. trols eve moxements.
however. Optican and Robinson (26) found
that postsaccadic drift suppression in the light 4 model o the fnal common path

was nearly complete after the operated eye had Expenments on human e.,,e movements led
been viewing for several days. In this study the Robinson (31 ) to represent the plant mechan-
amplitude of the ocular drift was 15-20%. with ics as a fourth-order. linear model with one

a time constant of 40 ms. The imperfect com- factor in the numerator (called a zero) and
pensation seen in the present study may have four factors (called poles) in the denominator
been because the optically induced retinal slip (2 real poles and a complex-pole pair) of its
(50% of the antecedent saccade in amplitude) transfer function. A similar transfer function
exceeded the physiological range in amplitude, can be used to get a good approximation of
or because of a difference in the proprioceptive our monke.,s" ee movements. As pointed out
afference in these two experiments (the ani- in the original study. the acate state tension
mals of Optican and Robinson had surgically (and hence the innervation) needed to make
altered muscles). The amplitude of the ocular a saccade with this fourth-order plant consists
drift is larger in the light in the presence ofthe of a brief pulse. a small exponential slide, and
adapting stimulus than in the dark. presum- a final step (31 ). There is also physiological
ably reflecting a contribution from some pre- support for this pulse-slide-step representation
dictive tracking mechanism. One assumes that of saccadic innervation. Fuchs and Luschei
such mechanisms are disabled in the dark. (II) reported and Goldstein (13) quantified

Kommerell et al. (19) hypothesized that the the exponential decay of the postsaccadic
ocular-drift adaptation was simply a readjust- neural firing rate in abducens nucleus single
ment of the ratio of the pulse to the step of units of monkeyIs. Collins et al. (7) recorded
saccadic innervation, and thus the ocular drift with implanted strain gauges dunng human
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posed brain stem neural network. The velocity
command (Vc) is passed through three blocks.
the sum of whose outputs constitutes the ocu-
lar motor control signal (Rn). The --elocity

++ R command is essentially a brief pulse. The top
__ _ block represents the neural integrator, with

gain .4, the output of which is a ramp-step ob-
tained by integrating the input pulse. The

C middle block represents the direct elocity
ST, + 1i contribution of the pulse (with gain B). acting

as a preemphasis for the sluggish plant. The

FIG. 10. Block diagram of brain stem network of the bottom block represents a low-pass filter with
final common path for all ocular motor systems. , is the time constant T, and DC gain C. The output
%elocity command signal coming from the brain stem pulse of this block is a low-pass filtered version of
generator. R, is the saccadic innervation being sent to the the pulse. Combining the output of these three
extraocular muscles. The upper block represents the neural branches gives a motor neuron command (Rn)
integrator, which provides a step with weight .-1. The middle
block provides a pulse with weight B. The first 2 blocks consisting of a pulse, a slide, and a step.
are identical with the final common path previously pro- The transfer function for the network shown
posed by Skavenski and Robinson (39). The bottom block in Fig. 10 is second order. having two factors
is new. and provides an exponentially decaying innerva- in the numerator (zeros) and two in the de-
tion, or slide, with time constant 7, and weight C. nominator (poles). The overall transfer func-

tion of the final common path. obtained by
strabismus surgery and demonstrated expo- cascading this neural network with a fourth-
nential decays in the muscle tension after sac- order plant, can give an approximation to the
cades. desired overall transfer function of I/s. Ne-

The time constant of the neural slide and glecting the high-frequency complex pole pair
the time constant of the plant's lead factor (the in the plant, the combined transfer function
numerator factor, or zero) have not been mea- (El V,) is
sured in the same species. Indeed, in Robin- s5(BT,) + s(AT, + B + C) + A

son's original study the value of this plant time ,(sT, + 1)

constant depended upon certain assumptions (sT4 + 0 _

about the distribution of stiffness in the model, x (sT. + +) + I)

and was not measured directly. Following s(TT 2 ) + s(T + "2)+1
Goldstein's approach (13), we propose that the where T:., T i, T2 represent the time constants
purpose of the neural slide is to compensate in the plant's transfer function (factor on the
for the lead element of the plant dynamics, right).
and thus in our model they are made to have The zero in the plant dynamics can be
similar time constants. The importance of the compensated for by the pole in the neural net-
slide of innervation to the present study lies work if T, = 7:. In the model of normal sac-
in its potential for determining the time con- cades, the DC gain is one, which sets the value
stant of postsaccadic ocular drift. We assume of A to one. The two zeros in the final common
that the dynamics of the plant are almost path can be used to compensate for two of the
completely compensated for by the dynamics poles in the plant. Since T, has already been
of the brain stem neural network, and that eye fixed at T,. we must choose the gain of the
velocity is determined solely by the firing rate pulse as B = T, T2/T,. The gain of the slide

of the medium lead burst neurons in the pon- must then be C = T, + T2 - T, - (T T,/T,).
tine reticular formation (6, 12, 17). If the firing Hence. we can compensate for all the dynam-
rate of the bursters is proportional to eye ye- ics of the ocular motor plant (except the high-
locity [neglecting an amplitude nonlinearity frequency, complex-pole pair, which, along
( 12)], then the overall effect of the final corn- with the dynamics of the pulse of innervation,
mon path must be to mathematically integrate will therefore determine the waveform of the
a burst of neuronal discharge encoding eye ye- saccade).
locity. thereby producing the eye position (39). If the pulse, slide, and step components of
Figure 10 shows a simplified block diagram innervation are not matched to the ocular
(in Laplace transform notation) of the pro- plant, the eye will drift exponentially after the

L 1 No.,~?
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rapid part of each saccade. An adaptive mech- to it. To shorten the time constant of the ocular
anism is presumed to exist that matches the drift further therefore requires another mech-
parameters of the brain stem pathway post- anism. The simplest approach is to decrease
saccadic retinal slip. Suppose that the gain of the time constant of the neural slide compo-
the step has been increased to suppress the nent. By changing both the amplitude and the
postsaccadic retinal slip caused by our adap- time constant of the slide it is possible to match
tation paradigm. If no other parameters were time constants over the range of ocular drifts
altered, the ocular drift that follows the end of that we obser ed ( 30-80 ms).
the pulse-drisen part of the saccade would
have a veryv long time constant (due to the Simulation tl ,pontaneun, eve mover'enfl
large plant time constant). Ocular drifts with made in the dark
longer time constants are produced by reduc- The above linear s stems analysis suggests
tions in the amplitude of the slide, which shifts that the neural slide ma. be contrbuting to
the time constant of the ocular drift toward postsaccadtc ocular drift. Individual ee-
the dominant time constant of the plant. To movement records from a monke% in both the
make ocular drifts with shorter time constants normal and adapted states were simulated to
the amplitude of the slide must be increased. e%aluate the abilit. of the new model of the
At some point (for ocular drifts with time con- final common path to adequatelv reproduce
stants of - 50 ms). however, further increases actual eye movements. Simulation of course.
of the amplitude of the slide do not decrease requires specification of more than just the fi-
the time constant of the ocular dnft: instead nal common path. The complete model of the
they cause the eye to overshoot the final po- saccadic system we used was very similar to
sition (determined by the step) and drift back one published earlier (42). with the exponen-
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FiG I I Recordinp and simulations of normal spontaneous swades made in the dark.4 four individual eve
movements frm monkey OV we offlet go that their initul pottions were at zero. Superimposed on each data trace
ii a doited curve obtained by simuliung the eye movement with a model based on the bran stem network shown in
Fig. 0 &f eve postion venus eye velocity phase plme. The eye-postion values from the actual and simulated eye
movement were differentiatd with the saum digital iter to obtain an eye-velocity signal. The phase-plane trajectones
.) the simulations idashed c(Uveyl are superimposed on their corresponding data trajectones I solid curves). The fit is
exce..;, for the beginning and ending (i.e.. low-velocty portions) of the saccades
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tial burst-cell nonlinearity replaced by a power the data and the simulated eye movements
function. the brain stem network replaced by were processed with the same digital filter, the
the one shown in Fig. 10. and with a fourth- oscillations on the eye-velocity data indicate -
order, lumped linear plant. a true physiological phenomenon. This would

Figure I I shows a family of spontaneous be consistent with more detailed models of the
saccades made by monkey OV in the dark and ocular motor plant, which are of at least sixth
simulated with the new model. Figure 11.4 order (4, 9. 35). Consideration of the higher-
shows four individual saccades of various am- order terms in the plant will not be necessary
plitudes (offset to start at zero), and super- for our study of the adaptive behavior of the
imposed upon them. their four simulations saccadic system.
(circles). (Model parameters were adjusted by Two examples of spontaneous saccades in
hand to obtain a reasonable fit to the normal the dark from the range of ocular drift time
saccades.) The simulations and the eye move- constants are shown in Fig. 12 (rm is the time
ments are virtually identical. The fit of the constant of the adapting image motion). Su-
model to the rapid part of the movement can perimposed on the eye-movement traces are
be better appreciated in Fig. I I B. which plots the corresponding simulated movements (cir-
each ee movement (solid curve) as a trajec- cles). The fits are fairly good, except that in
tory in the phase plane of eye position versus the simulation, after the pulse-driven part of
eye velocity. The simulations are shown as the saccade is over, the overshoot of the plant
dashed curves. Comparison of the phase plane (caused by the underdamped complex pole
trajectories reveals that the model matches the pair) always brings the eye to an almost com-
eye movements closely, except for the oscil- plete stop before the ocular drift begins. Figure
lations in the eye velocity > 100°/s. Since both 12.-I shows that a saccade with a long time
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io. 12. Recordings and simulations of adapted spontaneous saccades made in the dark. Individual responses were
chosen from monkey OV and offset to start from zero. A: eye movement (sad curve) and simulation (circles) after
adaptation to exponential image slip with a time constant of 100 ma. The ocular drift has a time constant of -80 ms.
8: eye movement after alaptation to exponential image slip with a time constant of 25 m. The ocular dnft has a
time constant of -3 4 ms. The dashed curve is the best-fit simulation that can be obtained by changing only 2 elements
the gain of the step and the pin of the slide. The circles are the best fit that can be obtained by changing 3 elements:
the gain of the step and both the ain and the time constant of the slide.
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constant ocular drift (-80 ms) can be simu- achieved by adaptiv-ly changing three ele-
lated by changing just the gain of the step and ments: the gain of tuc step of innervation and
the slide components. Figure 12B shows that both the gain and the time constant of the slide
a saccade with a short time constant ocular of innervation. This detailed understanding of
drift (-34 ms) can not be simulated very well the nature of the adaptive changes in the brain
by changing just the step and slide gains stem pathways makes it possible to study the
(dashed curve). The model makes a good sim- interaction between this part of the saccadic
ulation of this eye movement, though, if the system and other ocular motor systems. Since
gain of the step and both the gain and the the new branch (bottom of Fig. 10) is needed
time constant of the slide can be adjusted to compensate for the zero in the plant dy-
(circles). namics. it should be shared by all ocular motor

systems, thereby justifying its inclusion in the
ldaputve control final common path. rather than relegating it
The analytical discussion above, and the re- to the saccadic system alone. This shared role

suits of the simulation, demonstrate that both may be tested experimentally by measuring
the step and slide components of ocular motor the performance of uther ocular motor systems
innervation are needed to describe the char- before and after adaptation of the saccadic
acteristics of postsaccadic ocular drift. The system to persistent postsaccadic retinal slip.
amplitude of the step of innervation and both
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