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The Symposium on Neural Models of Sensory-Motor Control made possible by this
1 grant was held on August 19 and 20, 1986, at Harvard University as part of the annual
? meeting of the Society for Mathematical Psychology. The Symposium was advertised by
{ the Society (see attached program) as well as by direct mailings from the Center for Adap-
tive Systems at Boston University (announcement attached). In addition, announcements
of travel scholarships for qualified junior scientists (graduate students and postdoctoral

fellows) were placed in several journals. The invited speakers included:

Professor Michae] Arbib, University of Massachusetts at Amherst
! Professor Daniel Bullock, Boston University
! Professor Stephen Grossberg, Boston University
Professor John Hollerbach, Massachusetts Institute of Technology
l Professor Scott Kelso, Florida Atlantic University
’ Dr. Lance Optican, National Institutes of Health
: Professor Barry Peterson, Northwestern University
; Professor David Robinson, Johns Hopkins University
Professor Gregor Schoner, Florida Atlantic University

I. SUMMARY OF THE SYMPOSIUM

)
)
}
)
)
The Symposium was divided into two sessions, each with four 50-minute presenta-
tions. The first session focused on neural models of the human oculo-motor system. a
: system for which several advanced mathematical models are now available. Robinson de-
I
tailed a new model of the neural system for smooth pursuit (tracking-type) eye movements.
Optican presented new data and a model for adaptive control of ocular drift following sac-
cadic (ballistic-type) eye movements. Grossberg outlined a new model for several adaptive
components of the neural system for learning and maintaining accurate saccadic eye move-

|

!

" ments. Finally, Peterson detailed experiments performed to constrain modeling of the
)

| neural and computational linkage between the oculo-motor and the neck-motor systems.

The second session began with two papers on arm movement planning. Hollerbach
presented experimental and computational studies indicating that human arm-movement

1
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planning probably occurs in joint-coordinates. Bullock then presented a neural model for

automatic trajectory formation in joint coordinates and related the model to a wide range
of experimental studies of arm-movement kinematics. To close the second session, Kelso
and Schéner presented studies of frequency-dependent phase transitions during rhythmical
finger movements of the two hands, and Arbib presented a wide-ranging discussion of issues
in physiological and computational studies of visually controlled locomotion in the presence

of barriers.

II. TRAVEL SCHOLARSHIPS

Besides reaching members of the Society for Mathematical Psychology, which has re-
cently begun to build a significant constituency with interests in network models (see
attached program), the Symposium offered a rare opportunity for ten junior scientists who

received travel scholarships funded by the grant. These junior scientists were:

Thomas Anastasio, Johns Hopkins Hospital
Rick Canfield, University of Denver

Barry Hughes, University of Wisconsin

Richard Ivry, University of Oregon

Dieter Jaeger, Un.versity of Michigan

Bruce Kay, Haskins Laboratories

Anne Luebke, Johns Hopkins School of Medicine
Lloyd Minor, University of Chicago

Kevin Munhall, Haskins Laboratories

Mark Nelson, California Institute of Technology

HI. INTERACTIONS

Reactions from the junior scientists were very favorable. Several remarked that the
Symposium was among the most technically competent and informative that they had
experienced in any setting. Most salient to them were the scope and precision of the
models and the seriousness of the treatment of adaptive brain properties by some of the

speakers. A number expressed intentions to pursue a more quantitative tack in their

2

WRISN IO RN SR N AW SR XIN

YR
n ¥

- ". \
WAL JRL P

1
3

-



future brain studies, and several asked about further avenues for advanced training in

neural modeling. Finally, a number of the experimentalists volunteered to share new data

bearing on the predictions of some of the presented models.

Reactions among the speakers were also quite favorable. Several were quite excited by
unanticipated convergence towards common conclusions despite divergent research meth-
ods. Of course, speakers had been selected because of their shared dedication to compu-
[ tational models that are responsive to psychophysical and physiological data. However,
the speakers still represented a broad spectrum of backgrounds and predilections. Nev-
ertheless, several speakers were able to outline network solutions to problems posed by
prior speakers without any advance notice of the specifics of other speakers’ presentations.
These spontaneous remarks increased the coherence of the Symposium and illustrated how

the same underlying neural circuitry is often manifested in diverse behavioral properties.

IV. PAPERS

Speakers were not asked to prepare papers for a formal publication because many 3
i

B o e e e e o g g

speakers were already overburdened with paper-preparation commitments. Several of the
speakers have nevertheless supplied preprints or reprints that treat the topics of their
Symposium presentations. Typically, the paper’s treatment is more ambitious than that

of the 50-minute presentation during the Symposium. The five papers supplied by Bullock

S ——

and Grossberg, by Grossberg, by Hollerbach and Atkeson, by Kelso, Schéner. and Scholz.

and by Optican and Miles are enclosed.

V. BUDGET

Most expenses associated with the Symposium were equal to or less than what had been
anticipated. Harvard University provided inexpensive dormitory accomodations for the
junior scientists, three junior scientists who had planned to come were forced by unforseen

circumstances to change their plans. airfares were strongly discounted because participants
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made early reservations, and several participants unexpectedly came to the Symposium

from nearby locations in New England. As a result, $2941.15 remains in the Symposium

budget. A list of expenditures-to-date is attached.
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SYMPOSIUM EXPENDITURES

Travel Stipends for Speakers

Michael Arbib $460.80
Daniel Bullock $ 46.00
Stephen Grossberg $ 49.00
John Hollerbach $ 50.00
Scott Kelso $583.20
Lance Optican $343.94
Barry Peterson $382.38
David Robinson $347.08
Gregor Schoner - $338.00

Total travel stipends for speakers: $2600.40

Travel Stipends for Junior Scientists

: Thomas Anastasio $341.00
{ Rick Canfield $373.00
Barry Hughes $225.50
Richard Ivry $393.85
Dieter Jaeger $121.00
Bruce Kay ' $103.80
Anne Luebke $283.00
Lloyd Minor $293.00
{ Kevin Munhall $163.80
Mark Nelson $460.50 b
r

Total travel stipends for junior scientists: $2758.45 1

) Other Expenses

Dinner for Speakers $ 200.00
Advertising and Mailing $1250.00
Photocopying $1250.00

Total other expenses: $2700.00

TOTAL EXPENSES: $8058.85




A Symposium at the Annual Meeting of the
g:kty for Mathematical Psychology

NEURAL MODELS OF SENSORY-MOTOR CONTROL

Co-sponsored by the
AFOSR Life Sciences Program
and the
Center for Adaptive Systems, Boston University

August 19-20, 1986
Harvard University
William James Hall, Room 1, 33 Kirkland Street
Cambridge, Massachusetts

AUGUST 19, P.M.:
1:30-2:20: David Robinson, Johns Hopkins University
“A model of the human smooth pursuit system”

2:20-3:10: Lance Optican, National Institutes of Health
“Adaptive suppression of post-saccadic ocular drift”

3:10-3:25: Coffee break

3:25-4:15: Stephen Grossberg, Boston University
“Neural dynamics of adaptive sensory-motor control: Ballistic eye movements”

4:15-5:05: Barry Peterson, Northwestern University
“Sensory-motor transformation in ocular-motor and neck-motor systems”™

AUGUST 20, A M.:
8:40-9:30: John Hollerbach, Massachusetts Institute of Technology
“Deducing planning variables from experimental arm trajectories:
Pitfalls and possibilities”
9:30-10:20: Daniel Bullock, Boston University and University of Denver
“Neural dynamics of planned arm movements: Invariants, synergies,
and trajectory formation”
10:20~10:35: Coffee break

10:35-11:25: Scott Kelso and Gregor Schéner, Florida Atlantic University
“A synergetic (and stochastic) treatment of nonequilibrium phase
transitions in movement”

11:25-12:15: Michael Arbib, University of Massachusetts at Amherst
“Visual control of approach and avoidance behavior”

A few travel scholarships for graduate and postdoctoral students of motor-control are still
available. If interested. call Daniel Bullock (617-353-9482) as soon as possible. For further
information about the symposium. call 617-353-7857. Further information about the SMP
annual meeting is attached.
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ABSTRACT

A real-time neural network model, called the Vector Integration to Endpoint, or VITE,
Model, is developed and used to quantitatively simulate behavioral and neural data about
planned and passive arm movements. Invariants of arm movements emerge through net-
work interactions rather than through an explicitly precomputed trajectory. Motor plan-
ning occurs in the form of a Target Position Command, or TPC, which specifies where
the arm intends to move, and an independently controlled GO command, which speci-
fies the movement’s overall speed. Automatic processes convert this information into an
arm trajectory with invariant properties. These automatic processes include computa-
tion of a Present Position Command, or PPC, and a Difference Vector, or DV. The DV
is the difference of the PPC and the TPC at any time. The PPC is gradually updated
by integrating the DV through time. The GO signal multiplies the DV before it is in-
tegrated by the PPC. The PPC generates an outflow movement command to its target
muscle groups. Opponent interactions regulate the PPC’s to agonist and antagonist muscle
groups. This system generates synchronous movements across synergetic muscles by au-
tomatically compensating for the different total contractions that each muscle group must
undergo. Quantitative simulations are provided of the speed-accuracy trade-off known as
Woodworth's Law, of Fitts' Law, of isotonic arm movement properties before and after
deafferentation, of synchronous and “central error correction” compensatory properties of
isometric contractions, of velocity amplification during target switching. of velocity profile
invariance and asymmetry, of the symmetrization of velocity profiles at higher movement
speeds, of the automatic compensation for staggered onset times of synergetic muscles,
of vector cell properties in precentral motor cortex. of the inverse relationship between
movement duraticn and peak velocity, and of peak acceleration as a function of movement
amplitude and duration. It is shown that TPC. PPC. and DV computations are needed

to actively modulate, or gate. the learning of associative maps between TPC's of different
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modalities, such as between the eye-hand system and the hand-arm system. By using such
an associative map. looking at an object can activate a TPC of the hand-arm system. as
Piaget noted. Then a VITE circuit can translate this TPC into an invariant movement
trajectory. An auxiliary circuit, called the Passive Update of Position. or PUP. Model.
is described for using inflow signals to update the PPC during passive arm movements
due to external forces. Other uses of outflow and inflow signals are also noted, such as for
adaptive linearization of a nonlinear muscle plant, and sequential read-out of TPC’s during
a serial plan. as in reaching and grasping. Comparisons are made with other models of

motor control, such as the mass-spring and minimum-jerk models.
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1. Introduction: Are Movement Invariants Explicitly Planned?

The subjective ease with which we carry out simple action plans—rotating a wrist-
watch into view, lifting a coffee cup, or making a downstroke while writing—masks the
enormously complex integrative apparatus needed to achieve and maintain coordination
among the thousands of sensors, neurons, and skeleto-motor units that contribute to any
act’s planning and execution. Moreover, recent studies of the kinematics of planned arm
movements (Abend, et al., 1982; Atkeson and Hollerbach, 1985; Howarth and Beggs, 1981)
have shown that the integrative action of all these separate contributors produces velocity
profiles whose global shape is remarkably invariant over a wide range of :novement sizes
and speeds. This raises a fundamental question for the theory of sensory-motor control,
and for the neurosciences in general: How can the integrated activity of thousands of

separate elements produce globally invariant properties?

Two broad species of answers to this question can be contemplated. The first includes
theories that posit the existence of a high level stage involving explicit computation and
internal representation of the invariant, in this case the velocity profile, as a whole. This
representation is then used as a basis for performing the desired action. Such theories have
been favored recently by many workers in the field of robotics, and at least one theory of
this type has already been partially formulated to accommodate kinematic data on human
movements: the “minimized Cartesian jerk theory” (Hogan, 1984: Flash and Hogan, 1985).
which is a special case of giobal optimization analysis. The second species of answers
includes theories in which no need arises for explicit computation and representation of
the invariant trajectory as a whole. In models associated with such theories, a trajectory
with globally invariant properties emerges in real-time as the result of events distributed

across many interacting sensory, neural, and muscular loci.

This article describes a theory of arm trajectory invariants that conforms to the latter
ideal (Bullock and Grossberg, 1986a). Our analysis suggests that trajectory invariants
are best understood not by focusing on velocity profiles as such. but by pursuing more
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fundamental questions: What principles of adaptive hehavioral organization constrain the

system design that governs planned arm movements? What mechanisms are needed to re- |-
ize these principles as a real-time neural network? Our development of this topic proceeds
via analyses of learned eye-hand coordination. synchronization among synergists. inter-
mediate position control during movement, and variable velocity control. These analyses
disclose a neural network design whose qualitative and quantitative operating characteris-
tics match those observed in a wide range of experiments on human movement. Because
velocity profile invariance, including the observed velocity asymmetry ignored by prior
models, is among the neural network's emergent operating characteristics. our work shows
that neither an explicit trajectory nor a kinematic invariant need be explicitly represented
within a motor control system at any time. Thus our work supports a critical insight
of workers in the mass-spring modeling tradition that movement kinematics need not be
explicitly pre-programmed. By the same token, our results reject a mass-spring model in
its customary form and argue against models based upon optimization theory. Instead we
show how a movement control system may be adaptive without necessarily optimizing an

explicit cost function.

To further support these conclusions. we use the neural model to quantitatively sim-
ulate Woodworth's Law and Fitts’ Law. the empirically derived speed-accuracy tradeof®
function relating error magnitudes. movement distances and movement durations: isotonic
arm movement properties before and after deafferentation (Bizzi, Accornero. Chapple.
and Hogan. 1982, 1984: Evarts and Fromm. 1978: Polit and Bizzi. 1978): synchronous
and compensatory “central error correction” properties of isometric contractions (Freund
and Bidingen. 1978: Ghez and Vicario. 1978; Gordon and Ghez. 1984. 1986a. 1986b.):
velocity amplification during target switching {Georgopoulos. Kalaska. and Massey, 1981):
velocity profile invariance and asymmetry (Abend. Bizzi. and Morasso. 1982: Atkeson and
Hollerbach. 1985: Georgopoulos. Kalaska. and Massey. 1981; Beggs and Howarth. 1972:

Morasso. 1981: Soechting and Lacquaniti. 1981): the symmetrization of velocity profiles
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at higher movement speeds (Beggs and Howarth. 1972): vector cell properties in precen-
tral motor cortex (Evarts and Tanji. 1974: Georgopoulos. Kalaska. Caminiti. and Massey.
1982: Georgopoulos. Kalaska, Crutcher, Caminiti, and Massey, 1984: Kalaska. Caminiti.
and Georgopoulos. 1983: Tanji aud Evarts, 1976): the inverse relationship between move-
ment duration and peak velocity (Lestienne, 1979): and peak acceleration as a function of
movement amplitude and time (Bizzi. Accornero. Chapple, and Hogan, 1984). In addition.
the work reported here extends a broader program of research on adaptive sensory-motor
control (Grossberg, 1978, 1986a, 1986b; Grossberg and Kuperstein, 1986), which enables
functional and mechanistic comparisons to be made between the neural systems governing
arm and eye movements, suggests how eye-hand coordination is accomplished, and pro-
vides a foundation for work on mechanisms of trajectory realization which compensate for
the kinematical properties generated by variable loads and movement velocities (Bullock

and Grossberg, 1986b).

2. Flexible Organization of Muscle Groups into Synergies

In order to move a part of the body, whether an eye. head, arm, or leg, many muscles
must work together. For example. muscles controlling several different joints—shoulder.
elbow. wrist, and fingers—may contract or relax cooperatively in order to perform a reach-
ing movement. When groups of muscles cooperate in this way. they are said to form a

synergy (Bernstein, 1967; Kelso. 1982).

Muscle groups may be incorporated into synergies in a flexible and dynamic fashion.
Whereas muscles controlling shoulder, elbow, wrist, and fingers may all contract or relax
synergetically to produce a reaching movement. muscles of the fingers and wrist may form a
synergy to perform a grasping movement. Thus. one synergy may activate shoulder. elbow.
wrist. and finger muscles to reach towards an object. and another synergy may then activate

only finger and wrist muscles to grasp the object while maintaining postural control over

the shoulder and elbow muscles. Groups of fingers may move together synergetically to
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play a chord on the piano, or separate fingers may be successively activated in order to
play arpeggios.

One of the basic problems of motor control is to understand how neural (antrol struc-
tures quickly and flexibly reorganize the set of muscle groups that are needed to synergeti-
cally cooperate in the next movement sequence. Once one squarely faces the problem that
many behaviorally important synergies are not hard-wired. but are rather dynamically
coupled and decoupled through time in ways that depend upon the actor’s experience and
training, the prospect that the trajectories of all synergists are explicitly preplanned seems

remote at best.

3. Synchronous Movement of Synergies

When neural commands organize a group of muscles into a synergy. the action of these
muscles often occurs synchronously through time. It is partly for this reason that the
complexity of the neural commands controlling many movements often goes unnoticed.
These movements seem to occur in a single gesture, rather than as the sum of many

asynchronous components.
Figure 1

In order to understand the type of control problem that must be solved to generate
synchronous movement, consider a typical arm movement of reaching forward and across
the body midline with the right hand in a plane parallel to the ground. Suppose for sim-
plicity that the synergist acting at the shoulder is responsible for across-midline motion.
that the synergist acting at the elbow is responsible for forward motion. and that the hand
is to be moved from points B1, B2, or B3 to point E. Figure 1 illustrates the effects of two
distinct control schemes that might be used to produce these three movements. In the first
scheme. the two synergists begin their contractions synchronously, contract at the same
rate. and cease contracting when their respective motion component is complete. This

typically results in asynchronous contraction terminations. and in bent-line movements.
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because the synergist responsible for the longer motion component takes ionger to complete
its contribution. With this scheme, approximately straight-line motions and synchronous
contraction terminations occur only in cases like the B2-E movement. for which the com-

ponent motions happen to be of equal length. In the second scheme. the two synergists

contract, not at equal rates, but at rates that have been adjusted to compensate for any
differences in length of the component motions. This results in synchronous contraction
terminations. Normal arm movement paths are similar to those implied by the second
control scheme (e.g.. Morasso, 1981) and experimental studies (Freund and Bidingen,
1978) have shown that contraction rates are made unequal in a way that compensates for

inequalities of distance.

What types of adaptive problems are solved by synchronization of synergists? Figure
1 provides some insight into this issue. Without synchronization, the direction of the first
part of the movement path may change abruptly several times before the direction of the
last part of the movement path is generated (Figure 1). This creates a problem because
transporting an object from one place to another with the arm may destabilize the body
unless one can predict, and anticipatorily compensate for, the arm movement’s destabi-
lizing effects. which are always directional. In the same way, many actions require that
forces be applied to surfaces in particular directions. The first control scheme makes the
direction in which force is applied difficult to predict and control. Both of these problems
are eliminated by the approximately straight-line movement paths which become possible
-/.uen synergists contract synchronously. Finally, if the various motions composing a move-
ment failed to end synchronously, it would become difficult to ensure smooth transitions

between sequentially ordered movements.

In summary. the untoward effects of asynchrony place strong constraints on the mech-

anisms of movement control: Across the set of muscles whose synergistic action produces

a multi-joint movement, contraction durations must be roughly equal. and. because con- B
traction distances are typically unequal. contraction rates must be made unequal in a way i
. .
®
e}
d
"
AP AR . CC N R . . R
AT A VAT AN N AL AN NN N AN AR S RSN




that compensates for inequalities of distance.

4. Factoring Target Position and Velocity Control

Inequalities of distance are translated into neural commands as differences in the total
amounts of contraction by the muscles forming the synergy. and thereby into mechanical
terms as the total amounts of change in the angles between joints (Hollerbach, Moore.
and Atkeson, 1986). In order to compensate for differences in contraction. information
must be available that is sufficient to compute the total amounts of contraction that are
required. Thus a representation of the initial contraction level of each muscle must be
compared with a representation of the target, expected, or final contraction level of the
muscle. A primary goal of this article is to specify how this comparison is made. Although
information about target position and initial position are both needed to control the total
contraction of a muscle group, these two types of information are computed and updated
in different ways, a fact that we believe has caused much confusion about whether only

target position needs to be coded (Section 7).

Another source of confusion has arisen because target position information is needed to
form a trajectory. This is the type of information which invites concepts of motor planning
and expectation. However tempting it may be to so infer, concepts of motor planning and

expectation do not imply that the whole trajectory is ezplicitly planned.

A second aspect of planning enters into trajectory formation which also does not imply
the existence of explicit trajectory planning. This aspect is noticed by considering that
the hand-arm system can be moved between fixed intital and target positions at many
different velocities. When. as a result of a changed velocity. the overall movement duration
changes, the component motions occurring around the various joints must nonetheless
remain synchronous. Since fixed differences in initial and target positions can be converted
into synchronous motions at a wide range of velocities, there must exist an independently
controlled velocity, or GO signal (Section 11). The independent control of target position
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commands and velocity commands is a special case of a general neural design which has

been called the factorization of pattern and energy (Grossberg, 1978, 1982).

5. Synchrony versus Fitts' Law: The Need for a Neural Analysis of Synergy

Formation

Our discussion of synchronous performance of synergies has thus far emphasized that
different muscles of the hand-arm system may need to contract by different amounts in
equal time in order to move a hand through a fixed distance. When movement of a hand
over different distances is considered, a striking contrast between behavioral and neural
properties of movement becomes evident. This difference emphasizes that synergies are

assembled and disassembled through time in a flexible and dynamic way.

Fitts’ Law (Fitts, 1954; Fitts and Peterson, 1964) states that movement time (MT) of

the arm is related to distance moved (D) and to width of target (W) by the equation
2D v
MT = a + blogy (7). (1)

where a and b are empirically derived constants. Keele (1981) has reviewed a variety
of experiments showing that Fitts’ Law is remarkably well obeyed despite its simplicity.
For example, the law describes movement time for linear arm movements (Fitts, 1954).
rotary movements of the wrist (Knight and Dagnall, (1967), back-and-forth movements like
dart throwing (Kerr and Langolf, 1977), head movements (Jagacinski and Monk. 1985).
movements of young and old people (Welford. Norris. and Schock, 1969). and movements

of monkeys as well as humans (Brooks, 1979).

Equation (1) asserts that movement time (MT) increases as the logarithm of distance
(D) moved, other things being equal. The width parameter W in (1) is interpreted as a
measure of movement accuracy (Section 27). Although movement distance and time may
covary on the behavioral level that describes the aggregate effect of many muscle contrac-

tions. such a relationship does not necessarily hold on the neural level. where individual
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muscles may contract by variable amounts, or "distances”, in order to achieve synchronous

contraction within a constant movement time.

A fundamental issue is raised by this comparison of behavioral and neural constraints.
This issue can be better understood through consideration of the following gedanken exam-
ple. When each of two fingers is moved separately through different distances. each finger
may separately obey Fitts’ Law. Then the finger which moves a larger distance should
take more time to move. other things being equal. In contrast, when the two fingers move
the above distances as part of a single synergy, then each finger should complete its move-
ment in the same time in order to guarantee synergetic synchrony. Thus either one of the
fingers must violate Fitts’ Law, or it must reach its target with a different level of accuracy.
Kelso. Southard, and Goodman (1979) and Marteniuk and MacKenzie (1980) have exper-
imentally studied this type of synchronous behavior, and have documented within-synergy

violations of Fitts’ Law.

Such examples suggest that Fitts’ Law holds for the aggregate behavior of the largest
collection of motor units which form a synergy during a given time interval. Fitts’ Law
need not hold for all subsets of the motor units which comprise a svnergy. These subsets
may. in principle. violate Fitts’ Law by travelling variable distances in equal time in order
to achieve synchrony of the aggregate movement. To understand how Fitts" Law can
be reconciled with movement synchrony thus requires an analysis of the neural control
mechanisms which flexibly bind muscle groups. such as those controlling different fingers.
into a single motor synergy. If such a binding action does not involve explicit planning of
a complete trajectory. yet does require activation of a target position command and a GO
command, then neural machinery must exist which is capable of automatically coverting
such commands into complete trajectories with synchronous and invariant properties. One
of the primary tasks of this article is to describe the circuit design of this neural machinery

and to explain how it works.
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6. Some General Issues in Sensory-Motor Planning: Multiple Uses of Out-

flow versus Inflow Signals

Before beginning a mechanistic analysis of these circuits. we summarize several general

aadih i sl ok o 4

i1ssues about motor planning to place the model developed in this article within a broader
conceptual framework. In Sections 8-13 and 27-29. a number of key experiments are

reviewed to more sharply constrain the theoretical anulysis. In Sections 21-28 computer

Wy

simulations of these data properties are reported.

Figure 2

v 7 ¥ EJ

Neural circuitry automates the production of skilled movements in several mechanis-
tically distinct ways. Perhaps the most general observation is that animals and humans

perform marvelously dexterous acts in a world governed by Newton's Laws. vet can go

T TVyVYTYTUVw®

through life without ever learning Newton’s Laws, and indeed may have a great deal of
difficulty learning them when they try. The phenomenal world of movements is a world

governed by motor plans and intentions, rather than by kinematic and inertial laws. A

e o P

major challenge to theories of biological movement control is to explain how we move so

well within a world whose laws we may so poorly understand.

The computation of a hand or arm’s present position illustrates the complexity of this

i s

problem. Two general types of present position signals have been identified in discussions

of motor control: outflow signals and inflow signals. Figure 2 schematizes the difference be-
tween these signal sources. An outflow signal carries a movement command from the brain
to a muscle (Figure 2a). Signals that branch off from the efferent brain-to-muscle path-
way in order to register present position signals are called corollary discharges (Helmholtz.
1866: von Holst and Mittelstaedt. 1950). An inflow signal carries present position infor-
mation from a muscle to the brain (Figure 2b). A primary difference between outflow
and inflow is that a change in outflow signals is triggered only when an observer’s brain
generates a new movement command. A new inflow signal can. in contrast. be generated
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by passive movements of the limb. Evidence for influences of both outflow (Helmholtz.
1866) and inflow (Ruffini. 1898: Sherrington, 1894) has accumulated over the past century.
Disentangling the different roles plaved by outflow and inflow signals has remained one of
the major problems in motor control. This is a confusing issue because both outflow and
inflow signals are used in multiple ways to provide different types of information about
present position. The following summary itemizes some of the ways in which these signals

are used in our theory.

Although one role of an outflow signal is to move a limb by contracting its target
muscles, the laws which govern the muscle plant are not known a priori to the outflow
source. It is therefore not known a priori how much the muscle will actually contract
in response to an outflow signal of prescribed size. It is also not known how much the
limb will move in response to a prescribed muscle contraction. In addition, even if the
outflow system somehow possessed this information at one time, it might turn out to be
the wrong information at a later time, because muscle plant characteristics can change
through time due to development, aging, exercise, changes in blood supply, or minor tears.
Thus the relationship between the size of an outflow movement command and the amount
of muscle contraction is, in principle, undeterminable without additional information which

characterizes the muscle plant’s actual response to outflow signals.

To establish a satisfactory correspondence between outflow movement signals and ac-
tual muscle contractions, the motor system needs to compute reliable present position
signals which represent where the outflow command tells the muscle to move. as well as
reliable present position signals which represent the state of contraction of the muscle.
Corollary discharges and inflow signals can provide these different types of information.
Grossberg and Kuperstein (1986) have shown how a comparison, or match. between corol-
lary discharges and inflow signals can be used to modify. through an automatic learning
process, the total outflow signal to the muscle in a way that effectively compensates for
changes in the muscle plant. Such automatic gain control produces a linear correspon-
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dence between an outflow movement command and the amount of muscle contraction even
if the muscle plant is nonlinear. The process which matches outflow and inflow signals to
linearize the muscle plant response through learning is called adaptive linearization of the
muscle plant. The cerebellum is implicated by both the theoretically derived circuit and

experimental evidence as the site of learning.

Given that corollary discharges are matched with inflow signals to linearize the re-
lationship between muscle plant contraction and outflow signal size, outflow signals can
also be used in yet other ways to provide information about present position. In Sections
17-23, it is shown how outflow signals are matched with target position signals to generate
a trajectory with synchronous and invariant properties. Thus outflow signals are used in
at least three ways, and all of these ways are automatically registered: They send move-
ment signals to target muscles; they generate corollary discharges which are matched with
inflow signals to guarantee linear muscle contractions even if the muscle plant is nonlinear;
and they generate corollary discharges which are matched with target position signals to

generate synchronous trajectories with invariant properties.

Inflow signals are also used in several ways. One way has already been itemized. A
second use of inflow signals is suggested by the following gedanken example. When you are
sitting in an armchair. let your hands drop passively towards your sides. Depending upon
a multitude of accidental factors. your hands and arms can end up in any of infinitely many
final positions. If you are then called upon to make a precise movement with vour arm-
hand system. this can be done with the usual exquisite accuracy. Thus the fact that vour
hands and arms start out this movement from an initial position which was not reached

under active control by an outflow signal does not impair the accuracy of the movement.

A wealth of evidence suggests, however, that comparison between target position and
present position information is used to move the arms. Moreover, as will be shown below.
this present position information is computed from outflow signals. In contrast, during the

passive fall of an arm under the influence of gravity. changes in outflow signal commands
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are not responsible for the changes in position of the limb. This observation identifies the

"

. key issue: How is the outflow signal updated due to passive movement of a limb so that

X the next active movement can accurately be made” Since the final position of a passively

: falling limb cannot be predicted in advance. it is clear that inflow signals must be used to
» update present position when an arm is moved passively by an external force.

” This conclusion calls attention to a closely related iss:ie that must be dealt with to un-
' derstand the neural bases of skilled movement: How does the motor system know that the
- arm is being moved passively due to an external force, and not actively due to a changing
:’ outflow command? Such a distinction is needed to prevent inflow information from con-
X taminating outflow commands when the arm is being actively moved. The motor system
3 must use internally generated signals to make the distinction between active movement
and passive movement, or postural, conditions. Computational gates must be open and
? shut based upon whether these internally generated signals are on or off (Grossberg and

Kuperstein, 1986).

A third role for inflow signals is needed due to the fact that arms can move at variable

velocities while carrying variable loads. Because an arm is a mechanical system embedded

in a Newtonian world, an arm can generate unexpected amounts of inertia and acceleration
when it tries to move novel loads at novel velocities. During such a novel motion. the

commanded outflow position of the arm and its actual position may significantly diverge.

BePava a8 8

Inflow signals are needed to compute mismatches leading to partial compensation for this

uncontrolled component of the movement.

Such novel movements are quite different from our movements when we pick up a
familiar fountain pen or briefcase. When the object is familiar. we can predictively adjust
the gain of the movement to compensate for the expected mass of the object. This type of

: automatic gain control can. moreover. be flexibly switched on and off using signal pathways
that can be activated by visual recognition of a familiar object. Inflow signals are used in
the learning process which enables such automatic gain control signals to be activated in

12
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an anticipatory fashion in response to familiar objects (Bullock and Grossberg. 1986b).

This listing of multiple uses for outflow and inflow signals invites comparison between

how the arm movement system and other movement systems use outflow and inflow signals.

Grossberg and Kuperstein (1986) have identified and suggested neural circuit solutions to
analogous problems of sensory-motor control within the specialized domain of the saccadic
i
1

eve movement system. Several of the problems to which we will suggest circuit solutions in

our articles on arm movements have analogs with the saccadic circuits developed by Gross-

berg and Kuperstein (1986). Together these investigations suggest that several movement
systems contain neural circuits that solve similar general problems. Differences between
these circuits can be traced to functional specializations in the way these movement systems

solve their shared problems of movement.

For example, whereas saccades are ballistic movements, arm movements can be made
under both continuous and ballistic control. Whereas the eyes normally come to rest in
a head-centered position, the arms can come to rest in any of infinitely many positions.
Whereas the eyes are typically not subjected to unexpected or variable external loads,
the arms are routinely subjected to such loads. Whereas the eyes typically generate a
stereotyped velocity profile between a fixed pair of initial and target positions. the arms
can move with a continuum of velocity profiles between a fixed pair of initial and target
positions. Our analyses show how the arm system is specialized to cope with all of these

differences between its behaviors and those of the saccadic eve movement system.

7. Neural Control of Arm Position Changes: Beyond the STE Model

A number of further specialized constraints on the mechanisms controlling planned
arm movements are clarified by summarizing shortcomings of one of the simplest models
of movement generation. namely the Spring-to-Endpoint (STE) Model recommended by
many theorists to formalize “mass-spring” properties of movement control {Cooke. 1980:

Feldman, 1974; Kelso and Holt. 1980: Sakitt, 1980). As Nichols {1985) has recentiy ob-
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served. many possible models address mass-spring properties of movement. Our criticisms

pertain only to the STE Model which is explicitly specified in this section. In particular.
no part of our critique denies that the peripheral motor system has mass-spring prop-
erties that may be critical to overall motor function. Indeed. in Bullock and Grossberg
(1986b), we analyse neural command circuits which exploit mass-spring muscle properties

to generate well-controlled movements.

The components of the STE Model for movement control can be summarized as follows.
Imagine that the eye fixates some object that lies within reach. To touch the object, it is
necessary t. .nove the tip of the index finger from its current position to the target position
on the object’s nearest surface. The STE Model suggests that this is accomplished by
simply replacing the arm position command that specifies the arm’s present posture with
a new arm position command that specifies the posture the arm would have to assume in

order for the index finger to touch the chosen object surface.

Instatement of the new arm position command is suggested to generate the desired
movement as follows. The arm is held in any position by balancing the muscular and other
forces (e.g., gravity) that are currently acting on the limb. Instatement of a new command
changes the pattern of outflow signals that contract the arm muscles. A step change in
the pattern of contraction creates a force imbalance that causes the limb to spring in the
direction of the larger force at a rate proportional to the force difference. The limb comes
to rest when all the forces acting on it are once again balanced. Despite its elegance. the
STE Model exhibits several deficiencies which highlight properties that an adequate control
system needs to have. We briefly summarize two fundamental problems: (1) confounding
of speed and distance control, and (2) inability to quickly terminate movement at an

intermiediate position.

The first problem. the speed-distance confound, follows from the dependence of move-
ment rate on the force difference, which in turn depends on the distance between the
starting and final positions. This might at first seem to be a desirable property. because
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it appears to conipensate for different distances in the manner needed to ensure synchro-
nization of synergists (Section 3). However. consider also the need to vary the speed of
a fixed movement. An actor seeking to perform the same movement at a faster speed
would huve to follow a two-part movement plan: Early in the movement. instate a virtual
target position that is well beyond the desired end point and along a line drawn from
the initial through the true target position. This command will create a very large initial
force imbalance and launch the limb at a high speed. Then. at some point during the
movement. instate the true target position command. and let the arm coast to the final
position. This example illustrates that the STE Model requires a complex and neurally

implausible scheme for achieving variable speed control for movements of fixed length.

A second problem with the STE Model concerns the critical need to quickly abort an
evolving movement and stabilize current arm position. Such a need arises. for example.
when an animal wishes to freeze upon detection of a predator who uses motion cues to
locate prey. It also arises when an action. such as transporting a large mass. begins
to destabilize an animal's overall state of balance. At such times. it is often adaptive to
quickly freeze and maintain the current arm position. This is an easy task if the movement
command is never much different from the arm’s present position. Freezing could then be
quickly achieved by preventing further changes in the currently commanded position. In
an STE Model. this simple freeze strategy is unavailable. because a large discrepancy cxists
between present arm position and the target position command throughout much of the
trajectory. To implement a freezing response using the STE Model. the system would
somehow have to quickly determine and instate a new target position command capable
of maintaining the arm’s present position. But this is precisely the type of information

whose relevance is denied by the STE Model.

8. Gradual Updating of PPC’s during Trajectory Formation

Several lines of experimental evidence point to deficiencies of the STE Model. One line
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of evidence, due to Bizzi and his colleagues. demonstrates that a type of gradual updating

of the movement command occurs which is inconsistent with the STE mode!. Earlier

studies from the Bizzi lab partially supported the STE model.

The experiments of Polit and Bizzi (1978) studied monkeys who were trained to move
their forearms. without visue. feedback of hand position. from a canonical starting position
to the position of one of several lights. The monkeys’ arm movements were studied both
before and after a dorsal rhizotomy was performed to remove all sensory feedback from
the arm. Before deafferentation, the monkey could move its hand to the target’s position
without visual feedback, even if its accustomed position with respect to the arm apparatus
was changed. After deafferentation, so long as the spatial conditions of training were
maintained—in particular the canonical starting orientation and position with respect
to the known target array—the animal remained able to move its hand to the target
position. However, if the initial position of the elbow of the deafferented arm was passively
shifted from the position used throughout training, then the animal's forearm movements
terminated at a position shifted by an equal amount away from the target position. Thus
the movement of the forearm did not compensate for the change in initial position. Instead

the same final synergy of forearm-controlling muscles was generated in both cases.

The fact that deafferented monkeys moved to shifted positions emphasized the critical
role of the target position command in setting up the movement trajectorv. The fact that
normal monkeys could compensate for rotation in a way that deafferented monkeys could
not indicated an additional role for inflow signals when the arm is moved passively by an

external force (Section 29).

The later experiments of Bizzi. Accornero. Chapple. and Hogan {1982, 1984) carried
out an additional manipulation. The results of these experiments are inconsistent with
the STE assumption that the arm’s motion is governed exclusively by the spring-like con-
traction of its muscles towards the position specified by a new target position command.

In these experiments, the monkey was again deprived of visual and inflow feedback. and
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placed in its canonical starting position. In addition. its deafferented arm was surrepti-
tiously held at the target position. then released at variable intervals after activation of
the target light. Under these circumstances. the arm travelled back towards the canonical
starting position. before reversing direction and proceeding to the target. The arm trav-
elled further backward toward the starting position the sooner it was released after target
activation. Moreover, when the arm was moved to the target position and then released
in the absence of any target presentation, it sprang back to its canonical starting position.
Bizzi et al. (1984, p.2742) concluded that “the CNS had programmed a slow. gradual shift
of the equilibrium point, a fact which is not consistent with the ‘final position control’
iread STE] hypothesis.”

The Bizzi et al. (1984) description of their results as a “gradual shift of the equilibrium
point” carries the language of the STE Model into a context where it may cause confusion.
From a mathematical perspective, the intermediate positions of a movement trajectory are
not. by definition. equilibrium points. In order to explicate the Bizzi et al. (1984) data.
we show how three quantities are computed and updated through time: a target position
command (TPC) which is switched on once and for all before the movement: an outflow
movement command. called the Present Position Command (PPC). which is continously

updated urtil it matches the TPC; and the arm position which closely corresponds to the

PPC.

We call a movement for which a single TPC is switched on before the movement begins
an elementary movement. Once it is seen how a single TPC can cause gradual updating of
the PPC. movements can also be analysed during which a sequence of TPC's is switched
on. either under the control of visual feedback or from a movement planning network which
can store and release sequences of TPC's from memory with the proper order and timing

((irossherg and Kuperstein, 1986).

Our analysis of how the PPC is gradually updated during an elementary movement
partially supports the Bizzi et al. (1984) description of a “gradual shift in equilibrium

17

T, L " PG P A - - ST e .. C st et mtamas
1505 ' '\\ L SR A N a N \"\ N A e, S (AN KSLSKS RSO -_'_~_"-,' UL S S AT

.

oW



point” by showing that the arm remains in approximate equilibrium with respect to the
PPC. even though none of these intermediate arm pos~itions is an equilibrium point of
the system. The only equilibrium point of the system is reached when both the neural
control circuit and the arm itself both reach equilibrium. That happens when the PPC
matches the TPC. thereby preventing further changes in the present position command

and allowing the arm to come to rest.

These conclusions refine, rather than totally contradict. the main insight of the STE
Model. Instead of concluding that the arm springs to the position coded by the TPC, we
suggest that the spring-like arm tracks the series of positions specified by the PPC as it
approaches the TPC. This conception of trajectory formation contrasts sharply with that
suggested by Brooks {1986, p.138) in response to the Bizzi data. Brooks inferred that
“animals learn not only the end points and their stiffness, but also a series of intermediate
equilibrium positions. In other words. they learn an internal ‘reference’ trajectory that
determines the path to be followed and generates torques appropriately to reduce mismatch
between the intended and actual events.” In a similar fashion. Hollerbach (1982. p.192)
suggested that we practice movements to “learn the basic torque profiles.” In contrast. we
suggest that the read-out of the TPC is learned. but that the gradual updating of the PPC
is automatic. A number of auxiliary learning processes are also needed to update the PPC
after passive movements due to an external force (Section 30). to adaptively linearize the
response of a nonlinear muscle plant (Grossberg and Kuperstein. 1986). and to adaptively
compensate for the inertial effects of variable loads and velocities (Bullock and Grossberg.
1986b). These additional learning processes enable the automatic updating of the PPC to

generate controllable movements without requiring that the entire trajectory be learned.

9. Duration Invariance during Isotonic Movements and Isometric Contrac-

tions

Further information concerning the gradual updating process whereby PPC’s match
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a TPC can be inferred from the detailed spatiotemporal properties of arm trajectory J
formation. Freund and Bidingen (1978) have studied “the relationship between the speed
of the fastest possible voluntary contractions and their amplitudes for several hand and
forearm muscles under both isotonic and isometric conditions. These experiments showed :
the larger the amplitude, the faster the contraction. The increase of the rate of rise

of isometric tension or of the velocity of isotonic movements with rising amplitude was

N PR

linear. The slope of this relationship was the same for three different hand and forearm
muscles examined ... the skeleto-motor speed control system operates by adjusting the
velocity of a contraction to its amplitude in such a way that the contraction time remains .
approximately constant ... this type of speed control is a necessary requirement for the .

synchrony of synergistic muscle contractions” (p.1).

Figure 3

SR g -

Two main issues are raised by this study. First, it must be explained why, “comparing
isotonic movements and isometric contractions, the time from onset to peak was similar in

the two conditions™ (p.7). Figure 3 shows the fastest voluntary isometric contractions of

e v I T]

the extensor indicis muscle. Second, it must be explained why the force develops gradually

in time with the shapes depicted in Figure 3. Concerning this property, Georgopoulos
(1986. p.150) has written: "We do not know why this strategy is adopted.” Below it is
shown that both duration invariance and the force development through time are emergent 4

properties of the PPC-updating process (see Section 22).

10. Compensatory Properties of the PPC Updating Process .

Ghez and his colleagues (Ghez and Vicario. 1978: Gordon and Ghez. 1984. 1986a,
1986b) have confirmed the duration invariance reported by Freund and Budingen (1978)
in an isometric paradigm which also disclosed finer properties of the PPC updating process.
These authors suggest that “compensatory adjustments add to preprogrammed specifica-

tion of rapid force impulses to achieve more accurately targeted responses™ (Gordon and
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Ghez. 1986b).

In their isometric task. subjects were instructed to maintain superposition of two lines
on a CRT screen. The experimenter could cause one of the lines to jump to any of three
positions. Subjects could exert force on an immobile lever to move the other line towards
the target line. Equal increments of force produced equal displacements of the line. Thus

more isometric force was needed to move the line over a larger distance to the target line.
Figure 4

Figure 4 defines the major variables of their analysis. The force target is represented by
the solid black horizontal line. If the subject performs errorlessly—that is. reaches target
without overshoot—the value of the peak force will equal the value of the force target, as
in the black curve. Overshoots and undershoots in force are represented by the gray and
dashed curves, respectively. Figure 5 plots the data of Gordon and Ghez (1986b) in a way
that illustrates duration invariance. The horizontal line through the data points shows
that force rise time is essentially independent of peak acceleration (%) for all the target

distances.
Figure 5

Gordon and Ghez (1986b) separately analysed the data for each of the three target
distances. and thereby derived the three oblique lines in Figure 5. They interpreted these
lines as evidence for an “error correction” process because a negative correlation exists
between peak acceleration and the force rise time. or duration. Thus. if the acceleration
for a small target distance was too high early in a movement, the trajectory was “corrected”
by shortening the rise time. Had this compensation not occurred. the high acceleration
could have produced a peak force appropriate for a larger target distance.

Gordon and Ghez (1986b) assumed that trajeciories are preplanned and that their
peak accelerations are a signature indicating which trajectory has been preplanned. It
is from this perspective that they interpreted the compensatory effect shown in Figure
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5 as an “error correction” process. In contrast. we suggest in Sections 13 and 21 that
this compensatory effect is one of the automatic properties whereby PPC’s are gradually
updated. We hereby provide an explanation of the compensatory effect that avoidsinvoking
a special mechanism of “error correction” for 2 movement which does not generate an error
in achieving its target. In addition, this explanation provides a unified analysis of the
Bizzi et al. (1984) data on isotonic movements and the Gordon and Ghez (1986b) data on

isometric contractions.

11. Target Switching Experiments: Velocity Amplification, GO Signal. and

Fitts’ Law

Our explanation of the Freund and Bidingen (1978) and Gordon and Ghez (1986a)
data considers how a single GO signal applied to all components of the synergy defined
by a TPC can cause duration invariance. Georgopoulos, Kalaska, and Massey (1981) have
collected data which provide further evidence for the interaction of a GO signal with the
process which instates a TPC and thereby updates the PPC. In their experiments, monkeys
were trained to move a lever from a start position to one of eight target positions radially
situated on a planar surface. Then the original target position was switched to a new

target position at variable delays after initiation of movement towards the first target.

Part of the data confirm the fact that “the aimed motor command is emitted in a
continuous. ongoing fashion as a real-time process that can be interrupted at any time
by the substitution of the original target by the new one. The effects of this change on
the ensuing movement appear promptly. without delays bevond the usual reaction time”
(p.725). Figure 6 depicts movement paths found during the target switching condition.
We explain these data in terms of how instatement of a second TPC can rapidly modify

the future updating of the PPC.
Figure 6

In addition, Georgopoulous et al. (1981) found a remarkable amplification of peak
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velocity during the switched component of the movement: “the peak velocity attained on
the way to the second target was generally much higher {up to threefold} than that of the
control ... these high velocities cannot be accounted for exclusively by a mec'ianism that
adjusts peak velocity to the amplitude of movement ... The cause of this phenomenon is
unclear” (pp.732-733). In Section 25, we explain this phenomenon in terms of the indepen-
dent control, or factorization. of the GO mechanism and the TPC-switching mechanism
that was described in Section 4. In particular. the GO signal builds up continuously in
time. When the TPC is switched to a new target, the PPC can be updated much more
quickly because the GO signal which drives it is already large. The more rapid updating

of the PPC translates into higher velocities.

These target switching data call attention to a more subtle property of how a GO signal
energizes PPC updating. indeed a property which has tended to mask the very existence
of the GO signal: How can a GO signal which was activated with a previous TPC interact
with a later TPC without causing errors in the ability of the PPC to track the later TPC?
How does the energizing effect of a GO signal transfer to any TPC? A solution of this

problem is suggested in Section 18.

The fact that peak velocity is amplified without affecting movement accuracy during
target switching implies a violation of Fitt’'s Law. as Massey. Schwartz. and Georgopoulous
(1985) have noted. Our mechanistic analysis of synergetic binding via instatement of a
TPC and of subsequent PPC updating energized by a previously activated GO signal
provides an explanation of this Fitts’ Law violation as weil as of Fitts’ Law itself (Section

28).

12. Velocity Profile Invariance and Asymmetry

Many investigators have noted that the velocity profiles of simple arm movements are

approximately bell-shaped (Abend. Bizzi. and Morasso. 1982: Atkeson and Hollerbach.

1985: Beggs and Howarth. 1972: Georgopoulous. Kalaska. and Massey. 1981: Howarth
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and Beggs. 1971: Morasso, 1981: Soechting and Lacquaniti. 1981). Moreover the shape -E
of the bell. if rescaled appropriately. is approximately preserved for movements that vary [
in duration. distance. or peak velocity. Figure 7 shows rescaled velocity profiles from E
N
the experiment of Atkeson and Hollerbach (1985). These velocity profiles were generated N
over a fixed distance at several different velocities. Thus both the duration scale and the -
velocity scale were modified to superimpose the curves shown in Figure 7. :‘
A
“
Figure 7 o
On the other hand. Beggs and Howarth (1972) showed that “at high speeds the ap-
>
proach curves of the practised subjects are more symmetrical than at low speeds™ (p.451). )
Since velocity profiles associated with slow movements are more asymmetric than those :
associated with fast movements, they cannot be exactly superimposed. All the velocity '_
profiles shown in Figure 7 are taken from slow (1-1.6 sec) movements. and exhibit the sort ‘:
of more gradual deceleration than acceleration that Beggs and Howarth (1972) reported \
for such movements. Asymmetry and its degree are of theoretical importance because the
Minimum Jerk Model of Hogan (1984) predicts symmetric velocity profiles. whereas our \
model shows how the gradual updating of the PPC can generate velocity profiles which J
exhibit the type of speed-dependent asymmetry that is found in the data (Section 23).

Both the fact that asymmetry exists in velocity profiles and that the degree of asymme- '._'
try depends upon movement speed indicate the need for an analysis of the neural dynamics :
whereby a trajectory unfolds in real-time. In contrast. the Hogan (1984) model’s global op- :',
timization criterion forces a strictly symmetric velocity profile because it does not represent 5‘
a process of temporal unfolding. Beggs and Howarth (1972) suggested that the asvmmetry ’2
reflects a learned strategy of approaching the target as quickly as possible before making ':
corrective movements near the target. For example. these corrective movements could ::
be made under visual guidance by instating a corrected TPC as the arm approached the N
target. The approach to such a new TPC would take more time. on the average. than .:

‘
e
N




the final approach to the previously tracked TPC. thereby causing greater velocity profile
asymmetry. Our simulation results show that velocity profiles become more symmetric as
movement speed increases even in the absence of newly instated TPC's. Thus the greater
symmetry of velocity profiles at higher speeds may be due to the combined effects of PPC
updating properties as the GO signal is parametrically increased, and the consequent elim-
ination of corrective TPC's as the target is rapidly approached. In support of this 2nalysis.
Jeannerod (1984, p.252) noted that “the low velocity phase is still observed in the absence
of visual feedback., and even in the no-vision situation. This finding, however, does not
preclude that visual feedback, when present, will be incorporated ... In the present study,
movement duration and low-velocity phase duration were found to be increased in the

visual feedback situation.”

In summary, our explanation of these data shows how a circuit capable of flexibly bind-
ing muscle groups into synchronous synergies automatically implies the observed velocity
profile asymmetry. Thus we suggest an explanation of movement invariants, such as du-
ration invariance and svnchrony, using a control circuit which never computes an explicit
trajectory and whose outputs exhibit a type of asymmetry which other models have not

been able to explain.

13. Vector Cells in Motor Cortex

Before quantitatively developing our model. it remains to indicate how the Present
Position Command (PPC) is gradually updated until it matches a fixed Target Position
Command (TPC). Sections 15-18 motivate this mechanism through an analysis of the types
of information that can be used by a developing system to learn TPC's. The summary
here is merely descriptive and is made to link these introductory remarks to supportive

neural data.

When a new TPC is switched on. its relationship to the current PPC can be arbitrary.
Any realizable pair of positions can be coded by the TPC and the PPC. In order to track
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the TPC, the PPC needs to change in a direction determined by the difference between the
TPC and the PPC. In addition. the amount of required change is also determined by this
difference. An array which measures both the direction and the distance between a pair
of arrays TPC and PPC is called a difference vector. or DV. At any given time, the DV
between the TPC and the PPC—namely, DV = TPC - PPC —is computed at a match

interface (Figure 8).
Figure 8

How does such a DV update the present PPC? Clearly the PPC must be updated
in the direction specified by the DV. Hence we assume that the PPC cumulatively adds.
or integrates. through time all the DV’s which arise at the match interface. Due to this
arrangement, the PPC gradually approaches the TPC. At a time when the PPC equals
the TPC. the DV equals zero: hence, although the PPC may continue to integrate DV's, it
will not further change until either the switching on of a new TPC creates a non-zero DV,

or the PPC is updated by inflow information during a passive movement (Section 30).
Figure 9

Georgopoulos and his colleagues (Georgopoulos, Kalaska, Caminiti. and Massey. 1982:
Georgopoulos. Kalaska. Crutcher, Caminiti, and Massey. 1984; Kalaska, Caminiti, and
Georgopoulous. 1983) have found cell populations in the motor cortex whose collective
properties mirror those of the vector-computing nodes at the match interface of our model
(Figure 8). Figure 9 shows a histogram of the average number of spikes per unit time
recorded from a single such neuron. This temporal behavior closely matches that of DV
cells in our model (Figure 17). The vector cells in motor cortex, just like the DV cells in
the model, are very broadly tuned to direction (Figure 10). The DV cells in the model
are inhibited only if the inhibitory signal from the PPC exceeds the excitatory signal from

the TPC. Thus there exists a broad range of directions in which a given component of the

model DV is positive.
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Figure 10

Figure 11 plots data from a vector cell population in vivo alongside the velocity profile
of the corresponding movement. Note that the asymmetry in the velocity profile is in the
same direction as the asymmetry in the vector cell population profile. This correspondence
suggests that the velocity asvmmetry is at least partially due to the neural control circuit.

as our model also suggests.

Figure 11

Georgopoulos et al. (1984, p.510) also noted that: “No obvious invariance in cell
discharge was observed when the final position was the same ... these results show that,
at the level of motor cortex, it is the direction of movement and not its endpoint that is the
principle determinant of cell discharge during the initiation and execution of movement.
Therefore, if the hypothesis be true that the endpoint of the movement is the controlled
spatial variable (Polit and Bizzi, 1979) then the motor cortex seems to be distal to that
end-point specifying process.” In other words, if one accepts the STE Model, these data
suggest that the TPC cells occur closer to the periphery than the DV cells. On the other
hand. if one accepts our model. these data imply that the PPC cells occur closer to the
periphery than the DV cells. but that the TPC cells occur more central than the DV cells.
A combination of anatonomical and physiological experiments can be used to test this
prediction. It should also be noted, however, that the STE Model on which the conclusion
of Georgopoulos et al. (1984) is based is inconsistent with the very existence of vector
cells, because the spring-like properties of the muscles themselves, rather than a neural

computation of vectors, determines the direction and length of movement in the STE

Modei.

Several further properties of cells in precentral motor cortex. documented by Evarts
and Tanji (1974: Tanji and Evarts, 1976), lend support to identifying them with the vector

cells in our model. In their experiments, monkeys were trained to either push or pull a
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lever. During each trial (schematized in Figure 12a) animals first held the lever in a medial
position for 2-4 sec. Then either a green or a red priming signal was illuminated. If green,
the forthcoming movement required for reward was a push: if red, a pull. Finally, .6-1.2
seconds after the priming signal, the release signal occurred. This release signal took the
form of an externally imposed push or pull on the lever held by the monkey. It both cued
movement onset and perturbed the position of the lever so as to increase or decrease its

initial distance from target.

Figure 12

Figure 12b summarizes operating characteristics of two cells. The first cell increased
its activity after a “push” priming signal, but was inhibited by a “pull” priming signal;
the second cell showed the opposite response. From these data alone, it would not be clear
whether these cells’ activities code DV’s or TPC’s. However, their further characteristics
confirm their status as DV cells. The second bracket for each cell in Figure 12b indicates
that their activities decline as movement proceeds in their preferred direction. This de-
cline rules out the TPC interpretation. In the model, it occurs because the movement

progressively cancels the difference with which DV cell activity is correlated.

| The third bracket for each cell indicates that the initial position perturbations also have
the effect they must have if the DV interpretation is correct: perturbations that make the
starting point closer to target subtract from activity levels, whereas contrary perturbations
add to activity levels. This occurs automatically in the model because PPC’s. and thus the
| corresponding DV’s, are updated by sensory feedback during passive movements (Section

30).

Though the foregoing considerations argue strongly for the existence of DV cells in
precentral motor cortex, it might be argued that the DV's could be measuring force rather

than positional values. Indeed, Evarts interpreted his early experimental data (Evarts.

| 1968) as suggestive of force coding. However. the data of Schmidt. Jost and Davis (1975)
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appear to rule out this alternative interpretation. After varying position and force inde-

pendently. they concluded that “motor cortex cell firing patterns appear to be unrelated

to the large values of rate of change of force seen in this experiment™ (p.213).

The data summarized in Sections 7-13 weigh heavily against the STE Model and
models based upon optimization principles. So too do the formal shortcomings of these
models noted in Sections 7 and 12. We now show that a new model, called the VITE, or
“vector integration to endpoint,” Model overcomes these formal shortcomings and provides
a parsimonious quantitative explanation of all the behavioral and neural data summarized

above and in the subsequent sections.

14. Learning Constraints Mold Arm Control Circuits

Rejecting the STE Model does not entail rejecting all dependence upon endpoint com-
mands. An analysis of sensory-motor learning during eye-hand coordination enables us to
identify processes which supplement endpoint. or target position, commands to overcome
the shortcomings of the STE Model (Grossberg, 1978). The central role of learning con-
straints in the design of sensory-motor systems has elsewhere been developed for the case

of the saccadic eye movement system (Grossberg and Kuperstein, 1986).

We focus our discussion of learning within the arm movement system upon the basic

problem of how, when an observer looks at an object, the observer's hand knows where to

move in order to touch the object? We discuss this issue from the perspective of eye-hand

coordination in a mammal, but the issues that are raised. as well as the conclusions that

are drawn. generalize to many other species and sensory-motor systems. Why learning

processes are needed to solve this problem is illustrated by the following example.

The movement command which guides the hand to a visual target at a fixed position

relative to the body is not invariant under growth. If a young arm, with relatively short

limb segments, and an old arm with relatively long limb segments. react to the same
command—that is. assume equal angles at analogous joints—then the tips of the twoarm's
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fingers will be at different loci with respect to the body frame. In short. any animal that
grows over an extended period will need to learn new movement commands even if its only
ambition is to perform the same act earlier and later in its life cycle. Put the other way.
that animals do remain able to reach desired targets throughout periods of limb growth
implies plasticity in their sensory-motor commands. Because such growth is slow relative
to the rate of learning, failures of sensory-motor coordination are rarely noticeable. In
humans, exceptions occur during the first few months of life, prior to experiential tuning of
the infant’s initially coarse sensory-motor mapping (Fetters and Todd, 1986: von Hofsten,

1979, 1982).

15. Comparing Target Position with Present Position to Gate Intermodality

Learning

Thus, as the arm grows, the motor commands which move it to a fixed position in
space with respect to the body must also change through learning. Many arm movements
are activated in response to visually seen objects which the individual wishes to grasp.
We therefore formulate this learning process as follows: How is a transformation learned
and adaptively modified between the parameters of the eye-head syvstem and the hand-arm

system so that an observer can touch a visually fixated object?

Following Piaget’s (1963) analysis of circular reactions, let us imagine that an infant’s
hand makes a series of unconditional movements, which the infant’s eyes unconditionally
follow. As the hand occupies a variety of positions that the eve fixates, a transformation
is learned from the parameters of the hand-arm system to the parameters of the eye-head
system. A reverse transformation is also learned from parameters of the eye-head system
to parameters of the hand-arm system. This reverse transformation enables an observer

to intentionally move its hand to a visually fixated position.

How do these two sensory-motor systems know what parameters are the correct ones

to map upon each other? This question raises the fundamental problem that many neural
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signals. although large. are unsuitable for being incorporated into behavioral maps and
commands. They are “functional noise™ to the motor learning process. The learning
process needs to be actively modulated. or gated. against learning during inappropriate

circumstances.

In the present instance. not all positions which the eye-head system or the hand-
arm system assume are the correct positions to associate through learning. For example,
suppose that the hand briefly remains at a given position and that the eye moves to foveate
the hand. An infinite number of positions are assumed by the eye as it moves to foveate
the hand. Only the final, intended, or expected position of the eye-head system is a correct

position to associate with the position of the hand-arm system.

Learning of an intermodal motor map must thus be prevented except when the eye-
head system and the hand-arm system are near their intended positions. Otherwise. all
possible positions of the two systems could be associated with each other, which would
lead to behaviorally chaotic consequences. Several important conclusions follow from this

observation (Grossberg. 1978: Grossberg and Xuperstein. 1986).

(1) All such adaptive sensory-motor systems compute a representation of target posi- :
tion (also called expected position. or intended position). Thus the importance of endpoint

computations is confirmed. This representation is the TPC. In addition:

(2) All such adaptive sensory-motor systems also compute a representation of present

position. This representation is the PPC. X

(3) During movement, target position is matched against present position. Intermodal 3

map learning is prevented except when target position approximately matches present

position (Figure 13). A gating, or modulator. signal is thus controlled by the network ‘
at which target position is matched with present position. This gating signal enables
learning to occur when a good match occurs and prevents learning from occurring when )
a bad match occurs. This matching process takes place at the match interface that was ;
20 h
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described in Section 13. The DV controls the gating signal.

(4) In order to compare target positions with present positions. both types of data must
be computed in the same coordinate system. Present eve position is computed with respect
to head coordinates. Thus there is an evolutionary pressure to encode target position in

head coordinates.

Figure 13

16. Trajectory Formation using DV's: Automatic Compensation for Present

Position

The above discussion of how intermodality sensory-motor transformations are learned
also sheds light upon how intramodality movement trajectories are formed. Intermodality
transformations associate TPC's because only such transformations can avoid the multi-
ple confusions that could arise through associating arbitrary positions along a movement
trajectory. TPC’s are not, however, sufficient to generate intramodality movement trajec-
tories. In response to the same TPC. an eye. arm. or leg must move different distances

and directions depending upon its present position when the target position is registered.

PPC’s can be used to convert a single TPC into many different movement trajecto-
ries. Computation of the difference between target position and present position at the
match interface in Figure 8 generates a difference vector. or DV. that can be used to auto-
matically compensate for present position. Such automatic compensation accomplishes a
tremendous reduction in the memory load that is placed upon an adaptive sensory-motor
svstem. Instead of having to learn whole movement trajectories. the system only has to
learn intermodality maps between TPC’s. As shall be shown below. the DV's which are
computed from target positions and present positions at the match interface can be used
to automatically and continuously update the PPC fnovement commands from which the
trajectory is formed. In summary, consideration of the types of information that can be
used to learn intermodality commands during motor development leads to general con-
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clusions about the quantities from which intramodality movement trajectories are formed,
% and thus about the way in which other neural systems, such as sensory, cognitive. and

' motivational systems, can influence the planning of such trajectories.

" Computation of TPC's. PPC’s. and DV's is a qualitatively different approach to gen-
erating a trajectory than are traditional computations based upon a Newtonian analysis

of movement kinematics. In a Newtonian analysis, every position within the trajectory is

i

assumed to be explicitly controlled (Atkeson and Hollerbach, 1985: Brody and Paul. 1984;

[ e B J

Hogan, 1984: Hollerbach, 1984). Such computations lead to a combinatorial explosion
which is hard to reconcile with the rapidity of biological movement generation in real-
time. In a vector computation, the entire trajectory is never explicitly planned. Instead, a
TPC is computed which determines where the movement expects, or intends, to terminate.

The subtraction of the PPC is an automatic process which compensates for the variability

g

of the starting position. The DV which is hereby computed can be used to generate an

P e"s" s &

accurate movement without ever explicitly computing a planned sequence of trajectory
positions for the whole movement. In arm movements, a continuous comparison is made

between a fixed TPC and all the PPC’s that are computed during the movement. All

- e o
P e Y )

of these compensations for changes in present position are automatically registered. and
< therefore place no further burden upon the computation of planned movement parameters.
In addition. such automatic compensations for present position spontaneously generate the
major invariants of arm movements that have been discovered to date (Sections 22-29).
Thus the general problem of how DV's are computed is a central one for the understanding

of trajectory formation in several movement systems.

A 17. Matching and Vector Integration during Trajectory Formation

We now specify in greater detail a model of how TPC's, PPC’s. and DV’s interact
with each other through time to synthesize a movement trajectory. Each PPC generates a
pattern of outflow movement signals to arm system muscles (Figure 8). Each such outflow
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pattern acts to move the arm system towards the present position which it encodes. Thus.
were only a single PPC to be activated, the arm system would come to rest at a single
physical position. A complete movement trajectory can be generated in the form of a
temporal succession of PPC’s. Such a movement trajectory can be generated in response
to a single TPC that remains active throughout the movement. Although a TPC explicitly
encodes only the endpoint of the movement, the process whereby present positions are
automatically and continuously updated possesses properties that are much more powerful

than those of an STE Model.

This process of continuous updating proceeds as follows. At every moment, a DV is
computed from the fixed TPC and the PPC (Figure 8). This DV encodes the difference
between the TPC and the PPC. In particular, the DV is computed by subtracting the

PPC from the TPC at the match interface.

Because a DV computes the difference between the TPC and the PPC, the PPC
equals the TPC only when all components of the DV equal zero. Thus, if the arm system'’s
commands are calibrated so that the arm attains the physical position in space that is
coded by its PPC, then the arm system will approach the desired target position in space

as the DV's computed during its trajectory approach zero. This is accomplished as follows.

At each time, the DV computes the direction and amplitude which must still be moved
to match the PPC with the TPC. Thus the DV computes an error signal of a very special
kind. These error signals are used to continuously update the PPC in such a way that
the changing PPC approaches the fixed TPC by progressively reducing the vector error
to zero. In particular, the match interface at which DV's are computed sends excitatory
signals to the stage where PPC’s are computed. This stage integrates. or adds up, these
vector signals through time. The PPC is thus a cumulative record of all past DV’s, and

each DV brings the PPC a little closer to the target position command.

In so doing, the DV is itself updated due to negative feedback from the new PPC to
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the match interface (Figure 8). This process of updating present positions through vector
integration and negative feedback continues continuously until the PPC equals the TPC.

Several important conclusions follow from this analysis of the TPC formation process.

Two processes within the arm control system do double duty: A PPC generates feed-
forward. or outflow. movement signals and negative feedback signals which are used to
compute a DV. A DV is used to update intramodality trajectory information and to gate
intermodality learning of associative transformations between TPC's. Thus the match
interface continuously updates the PPC when the arm is moving and disinhibits the inter-

modality map learning process when the arm comes to rest.

Within the circuit depicted in Figure 8, “position” and “direction™ information are
separately coded. Positional information is coded within the PPC and directional infor-
mation is coded by the DV at the match interface. On the other hand. the computations
which give rise to positional and directional information are not independent, since DV's

are integrated to compute PPC’s, and PPC’s are subtracted from TPC’s to compute DV's.

18. Intentionality and the GO Signal: Motor Priming without Movement

The circuit depicted in Figure 8 embodies the concept of intention. or expectation.
through its computation of a TPC. The complete movement circuit embodies intentionality
in yet another sense, which leads to a circuit capable of variable speed control. The need
for such an additional process can also be motivated through a consideration of eye-hand

coordination (Grossberg, 1978, 1982).

When a human looks at a nearby object. several movement options for touching the
object are available. The object could be grasped with the left hand or the right hand. The
object could even be touched with one’s nose or one's toes! We assume that the eye-head
system can simultaneously activate TPC’s in several motor systems via the intermodality
associative transformations that are learned to these systems. An additional “act of will.”
or GO signal, is required to convert one or more of these TPC's into overt movement
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trajectories within only the selected motor systems.

Figure 14

There is only one way to implement such a GO signal within the circuit depicted in
Figure 8. This implementation is described in Figure 14. The GO signal must act at a
stage intermediate between the stages which compute DV's and PPC’s: The GO signal
must act after the match interface so that is does not disrupt the process whereby DV's
become zero as PPC’s approach the TPC. The GO signal must act before the stage which
computes PPC’s so that changes in the GO signal cannot cause further movement after "
the PPC matches the TPC. Thus, although the GO signal changes the outputs from the
match interface before they reach the present position stage, the very existence of such .
processing stages for continuous formation of a trajectory enables the GO signal to act ,

without destroying the accuracy of the trajectory.

The detailed computational properties of the GO signal are derived from two further
constraints. First, the absence of a GO signal must prevent the movement from occurring.
This constraint suggests that the GO signal multiplies, or shunts, each output pathway from .

the match interface. A zero GO signal multiplies every output to zero, and hence prevents

the PPC from being updated. Second, the GO signal must not change the direction of ;
movement that is encoded by a DV. The direction of movement is encoded by the relative 2
sizes of all the output signals generated by the vector. This constraint reaffirms that the

GO signal multiplies vector outputs. It also implies that the GO signal is nonspecific: The E
same GO signal multiplies each output signal from the matching interface so as not to :
change the direction encoded by the vector.

In summary. the GO signal takes a particularly simple form. When it equals zero. the ;
present position signal is not updated. Hence no overt movement is generated. On the }
other hand. a zero GO signal does not prevent a TPC from being activated. or a DV from
being computed. Thus a motor system can become ready. or primed. for movement before N
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its GO signal turns on. When the GO signal does turn on. the movement can be rapidly

initiated. The size of the GO signal regulates overall movement speed. Larger GO signals
cause faster movements, other things being equal. by speeding up the process whereby
directional information from the match interface is integrated into new PPC’s. In models
of cognitive processing. the functional analog of the GO signal is an attentional gain control
signal (Carpenter and Grossberg, 1986a, 1986b; Grossberg. 1986c, 1986d: Grossberg and

Stone, 1986).

Georgopoulos. Schwartz, and Kettner (1986) have reported data consistent with this
scheme. In their experiment, a monkey is trained to withhold movement for 0.5 to 3
seconds until a lighted target dims. They reported that cells with properties akin to DV
cells computed a direction congruent with that of the upcoming movement during the
waiting period. These data support the prediction that the neural stage where the GO

signal is registered lies between the DV stage and the PPC stage.

19. Synchrony, Variable Speed Control, and Fast Freeze

The circuit in Figure 14 is now easily seen to possess qualitative properties of syn-
chronous synergetic movement, variable speed control, and fast freeze-and-abort. e
apply the circuit properties that each muscle synergist’s motor command is updated at a
rate that is proportional both to the synergist’s distance from its target position and to a
variable-magnitude GO signal, which is broadcast to all members of the synergy to initiate

and sustain the parallel updating process.

To fix ideas. consider a simple numerical example. Suppose that. prior to movement
initiation. muscle synergist 4 is 4 distance units from its target position and muscle syn-
ergist B is 2 distance units from its target position. In that case. if the mean rates at
which PPC’s are updated for the two synergists are in the same proportion as the distance
(i.e., 2:1), then the updating of synergist A will take 4/2 time units while the updating of
2

synergist B will take 2/1 time units. Thus both processes will consume approximately 2

6
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time units. Although the PPC updating process occurs at different rates for different syn-
ergists. it consumes equal times for all synergists. The result is a synchronous movement

despite large rate variations among the component motions.

Changing the magnitude of the GO signal governs variable speed control. Because
both of the updating rates in the example (2 and 1) are multiplied by the same GO signal.
the component motions will remain synchronous. though of shorter or longer duration.
depending on whether the GO signal multiplier is made larger or smaller. respectively. In
general, the GO signal’s magnitude varies inversely with duration and directly with speed.
Finally, if the value of the GO signal remains at zero, no updating and no motion will
occur. Thus very rapid freezing can be achieved by completely inhibiting the GO signal
at any point in the trajectory. The fact that target position may be very different from
present position when the GO signal is withdrawn does not interfere with freezing, as it
would using a STE Model, because the arm position closely tracks the PPC. which stops

changing as soon as the signal shuts off.

20. Opponent Processing of Movement Commands

Mammalian motor systems are organized into pairs of agonist and antagonist mus-
cles. We now note a new functional role for such an opponent organization: An opponent
organization is needed to convert DV's into PPC’s which can eventually match an arbi-
trary TPC. Figure 15 depicts how opponent organization is joined to the svstem’s other

processing constraints.

Figure 15

The need for opponent signals can be seen from the following examples. If a target
position signal is larger than the corresponding present position signal, then a positive
output signal is generated by the corresponding component of the DV. Such positive output
signals increase the present position signal until it matches the target position signal.

Increasing the present position signal causes the target muscle group to contract. The

-
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opponent muscle group must also simultaneously relax. Inhibitory signals to the present
position node of the opponent muscle instate this latter property. When these inhibitory
signals are integrated by the present position node of the opponent muscle. the output

signal to the opponent muscle decreases, thereby relaxing the muscle.

The need for opponent processing can also be seen by considering the case in which the
' target position signal is smaller than the present position signal. Then the corresponding
component of the DV is negative. Since only nonnegative activities can generate output
signals, no output signal is generated by this component of the DV to its corresponding
present position node. How, then, is this present position signal decreased until it matches
the target position signal? The answer is now obvious, since we have just considered
the same problem from a slightly different perspective: If a negative vector component
' corresponds to an antagonist muscle group, a positive vector component corresponds to
its opponent agonist muscle group. This positive vector component generates inhibitory
signals to the present position command of the antagonist muscle. thereby relaxing the

antagonist muscle until its PPC equals its TPC.

21. System Equations

A quantitative analysis of movement invariants requires the development of a rigorous
| real-time mathematical model of the constraints summarized in the preceding sections.
Qualitative algebraic analysis is insufficient because the trajectory is an emergent prop-
erty of a nonlinear integration and feedback process under variable gain control. Our
model defines the simplest system-that is consistent with these constraints. To fix ideas, =

we explicitly study how the TPC to an agonist muscle group generates a trajectory of

PPC signals to that muscle group. Generalizations to synergetic movement of multiple

/3

agonist-antagonist muscle groups follow directly from this analysis. Figure 16 locates the

mathematical variables that are defined below. The network depicted in Figure 16 obeys
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the following system of differential equations:

dVv ;
T =al=V+T-P) 2)
and
dP
ar = ¢l (3)

In (2) and (3), T(t) is a target position input, V'(t) is the activity of the agonist’s DV
population, P(t) is the activity of the agonist’s PPC population. G(t) is the GO signal.

‘% is the rate of change of V', and %’t—’ is the rate of change of P.

Figure 16

Equation (2) says that the activity V7(¢) averages the difference of the input signals
T(t) and P(t) at a rate a through time. The TPC input T(t) excites V'(t), whereas the

PPC input P(t) inhibits V' (t) as part of the negative feedback loop between V() and P(t).

Equation (3) says that P(¢) cumulatively adds. or integrates. the product G[V]~. where

vim={y ¥Y

v V2o (4)

oo

In other words. the DV population elicits an output signal [V]~ to the PPC population
only if the activity V' exceeds the output threshold 0. The output signal is a linear function
of V at suprathreshold values. The output signal [V']~ is multiplied. or gated. by the GO
signal G(t) on its way to the PPC stage. The activity P(t) at the PPC stage integrates

the gated signal through time.

In particular, G(t) = O implies ‘%(t) = 0. In other words, if the GO signal is shut off
within a given time interval. the P(t) is constant throughout that time interval. Fast-freeze
can hereby be rapidly obtained by simply switching G(t) quickly to zero no matter how far
P(t) may be from T(t) at that time. In addition. this circuit generates compensatory. or
“error correcting,” trajectories, as described in Section 10. For example. suppose that the
GO signal starts out larger than usual or that there is a slight delay in instatement of the
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TPC relative to onset of the GO signal. In either case, P(t) can initially increase faster
than usual. As a result, T — P(t) can rapidly become smaller than usual. Consequently,

updating of P(t) terminates earlier than usual.

This compensatory process illustrates two critical features of the VITE Model: (1)
Trajectories are not pre-formed. (2) Because the GO signal feeds in between the DV stage
and the PPC stage and because the DV is continuously inhibited by feedback from the
PPC stage, accuracy is largely insulated from random variations in the size or onset time
of the GO signal, variations in the onset time of the TPC, or momentary perturbations of

the PPC due to internal noise or inflow signals.

The system of equations (2)-(4) is explicitly solved for a particular choice of GO signal
in Appendix 1. In Sections 22-29, we display the results of computer simulations which
demonstrate that this simple model provides a quantitative explanation of all the data

thus far summarized. In most of these simulations, we write the GO signal in the form
G(t) = Gog(t). (3)

Constant Gy is called the GO amplitude and function g(t) is called the GO onset function.
The GO amplitude parameterizes how large the GO signal can become. The GO onset
function describes the transient build-up of the GO signal after it is switched on. In our
simulations, we systematically studied the influence of choosing different GO amplitudes

(o and onset functions from the family

g(t)={3"'3—w 20 (6
0 ift <0.

In (6), we chose J and v equal to 1 or 0. If 3 = 0 and v = 1. then g(¢) is a step function
which switches from O to 1 at time ¢t = 0. If 3 = 1 and v = 1. then ¢(t) is a slower-than-
linear function of time if n = 1 and a sigmoid. or S-shaped. function of time if n > 1. In
both of these cases. function g¢(t) increases from ¢(0) = O to a maximum of 1, and attains

the value } at time t = J. If 3 = 1 and ~ = 0. then ¢(¢) is a linear function of time if n = 1
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and a faster-than-linear function of time if n > 1. We will demonstrate below that an onset

function which is a faster-than-linear or sigmoid function of time generates a PPC profile
through time that is in quantitative accord with data about the arm’s velocity profile
through time. On the other hand. if muscle and arm properties attenuate the increase
in velocity at the beginning of a movement, then linear or even slower-than-linear onset
functions could also quantitatively fit the data. Direct physiological measurements of the
GO signal and PPC updating processes would enable a more definitive selection of the

onset function to be made.

2. Computer Simulation of Movement Synchrony and Duration Invariance

In simulations of synchronous contraction, the same GO signal G(t) is switched on at
time ¢t = 0 across all VITE circuit channels. We consider only agonist channels whose
muscles contract to perform the synergy. Antagonist channels are controlled by opponent
signals as described in Section 20. We assume that all agonist channels start out at
equilibrium before their TPC’s are switched to new, sustained target values at time t = 0.
In all agonist muscles, T(0) > P(0). Consequently, V (¢) in (2) increases, thereby increasing
P(t) in (3) and causing the target muscle to contract. Different muscles may be commanded
to contract by different amounts. Then the size of T(0) — P(0) will differ across the VITE
channels inputting to different muscles. Thus our task is to show how a VITE circuit

behaves given a single GO function G(t) if the initial value T(0) — P(0) is varied.

Figure 17 depicts a typical response to a faster-than-linear G(¢) when T(0) > P(0).
Although T(t) is switched on suddenly to a new value T. V'(¢) gradually increases-then-
decreases. while P(t) gradually approaches ‘its new equilibrium value. which equals T. The
rate of change — of P provides a measure of the velocity with which the muscle group
that quickly tracks P(t) will contract. Note that dP also gradually increases-then-decreases
with a bell-shaped curve whose decelerative portion (‘%,R < 0) is slightly longer than its

accelerative portion (££ > 0), as in the data described in Sections 8. 9. 12, and 13.

dﬂ
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Figure 17

Figure 18 demonstrates movement synchrony and duration invariance. This figure
shows that the V" curves and the ‘%’ curves generated by widely different T(0) — P(0) values
and the same GO signal G(t) are perfectly synchronous through time. This property is

proved mathematically in Appendix 2. These simulated curves mirror the data summarized

in Sections 12 and 13.

Figure 18

23. Computer Simulation of Decreasing Velocity Profile Asymmetry at

Higher Velocities

The next simulations reproduce the data reviewed in Section 12 concerning the greater
symmetry of velocity profiles at higher movement velocities. In these simulations, the initial
difference T(0) — P(0) between TPC and PPC was held fixed ai1d the GO amplitude G
was increased. Figure 19a,b,c shows that the profile of %}zj becomes more symmetric as G
is increased. Figure 19d shows that if both the time axis t and the velocity axis %}T) are
rescaled, then curves corresponding to movements of the same size at different speeds can

approximately be superimposed, except for the mismatch of their decelerative portions, as

in the data summarized in Section 12.

Figure 19

24. Why Faster-than-Linear or Sigmoid Onset Functions?

The parametric analysis of velocity profiles in response to different values of T'(0) - P(0)

and Gy led to the choice of a faster-than-linear or sigmoid onset function g¢(t). In fact. the

faster-than-linear onset function should be interpreted as the portion of a sigmoid onset

P
function whose slower-than-linear part occurs at times after P(t) has already come very ®
close to T. :

~
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Figure 20 shows what happens when a slower-than-linear ¢(¢) = ¢{{3 + ¢) ! or a linear
glt) =t is used. Atslow velocities (small Gy). the velocity proﬁle ; becomes increasingly
asvmmetric when a slower-than-linear g(t) is used. At a fixed slow velocity. the degree of
asyvminetry increases as the slower-than-linear g(¢) is chosen to more closely approximate a
step function. A linear g(¢) leads to an intermediate degree of asymmetry. A faster-than-
linear. or sigmoid. g(t) leads to slight asymmetry at small values of Gy as well as greater
symmetry at large values of Go. A sigmoid ¢(t) can be generated from a sudden onset of
GO signal if at least two cell stages average the GO signal before it gates [V]* in (3). A
sigmoid g¢(t) contains a faster-than-linear part at small values of ¢, and an approximately
linear part at intermediate values of ¢t. Thus a sigmoid g¢(t) can generate different degrees

) of asymmetry depending upon how much of the total movement time occurs within each

|
| of these ranges.
Figure 20
We have also simulated a VITE circuit using sigmoid GO signals whose rate of growth

increases with the size of the GO amplitude. Such covariation of growth rate with ampli-

tude is a basic property of neurons which obey membrane. or shunting, equations (Gross-

berg, 1970. 1973: Sperling and Sondhi, 1968). Such a sigmoid GO signal G(¢) can be simply
defined as the output of the second neuron population in a chain of shunting equations

perturbed by a step function input with amplitude Gy. Thus. let

[ Gy ift>0 -
I f < ( )
d
7:G1 = —4G, + (B - G)Go (8)
and
d e
(thz = ".4GQ+(B—(12)GI. (9)

Then G,(t) is a sigmoid function of the desired shape. The GO signal G(t) can be set

equal to Gy(t). as we did. or even to a sigmoid signal f(G,(t)) of G,(t). A typical result
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is shown in Figure 21. In this series of simulations, exemplified by Figure 21, the range of
symmetry ratios. namely .44-.3, was similar to that found in Figure 19 using a faster-than-
linear signal function. Final choice of a best-fitting G(¢) awaits a more direct experimental

determination of the PPC profile through time.

Figure 21

25. Computer Simulation of Velocity Amplification during Target Switching

Velocity amplification by up to a factor of three can be obtained by switching to a
new value of T while a previously activated GO signal is still on. Figure 22 demonstrates
this effect by comparing two computer simulations. In the first simulation, onset of T(t)
and g¢(t) were both synchronous at time ¢t = 0.(Figure 22a). In the second simulation,
onset of g(t) preceded onset of T(t) by a time equivalent to about 300 msec (Figure 22b).
Note the much higher peak velocity (235 versus 102) attained in Figure 22b. This effect,
which matches the “anomalous” velocity multiplication observed in the target-switching
experiments of Georgopoulos et al. (1981), is due to the prior build-up of the GO signal

during response execution.

Figure 22

In the ensuing sections, computer simulations will be compared with a variety of data

which were not reviewed in the preceding sections.

26. Reconciling Staggered Onset Times with Synchronous Termination

Times

Within the context of a target-switching experiment, velocity amplification may appear
to be a paradoxical property. On the other hand. such a property has an adaptive function

in the many situations where a hand will fail to reach a moving target unless it both changes

direction and speeds up. In addition. we now show that the same mechanism can generate
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synchronous termination times of synergetic muscle components which may individually

start to move at staggered onset times.

The need for this latter property has recently been emphasized by a study of Holler-
bach. Moore. and Atkeson (1986). who showed that nearly straight movement paths can
result from muscle coordinate planning if the onset times of muscles acting at different
joints are appropriately staggered and if all the muscles reach their final positions syn-
chronously. Their study did not, however, explain how a neural mechanism could generate

synchronous muscle offsets despite staggered muscle onsets.

We now show that the posited interaction of a growing GO signal with components
of a DV that may be switched on at different times automatically generates synchronous
offsets as an emergent property of the VITE circuit. Thus the interaction of a GO signal
with a DV both helps to linearize the paths generated by individual TPC’s and, as in
the target-switching experiments, enables the hand to efficiently track a moving target by

quickly reacting to read-out of an updated TPC.

Figure 23

Figure 23 depicts the results of four blocks, labelled I. II, III. and IV, of computer
simulations. Each block represents the onset time, offset time. and duration of three
simulations. In the leftmost simulations of each block. onset of a DV component and a
GO signal were synchronous. In the other two simulations of each block, a different DV
component was read-out at successively longer delays with respect to the onset time of the
GO signal. Due to duration invariance {Appendix 2), the results are independent of the

initial sizes of the T(0) — P(0) values of these components.

The four blocks (I, I, III, IV) correspond to four increasing values of the GO amplitude
Gy (10,20.40,80). The approximate invariance of termination times across components
with different onset delays is indicated by the nearly equal heights reached by all the bars
within the block. The different lengths of bars within each block show that less time is
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needed to update those components whose onset times are most delaved. Thus. in block
I. all the components terminate almost synchronously even though their onset times are
staggered by as much as 26° of the total movement time. In block II, almost synchronous
terminations occur even though onset times are staggered by as much as 39 of the total
movement time. At very large choices of Gy (blocks III and IV). synchrony begins to gently
break down because the earliest components have executed over 50% of their trajectories
before later components even begin to move. These and other results in the article suggest
the critical importance of experimentally testing the existence and predicted properties of
GO-DYV interactions, notably the predicted correlations between the temporal evolution

of the GO signal and the DV.

27. Computer Simulation of the Inverse Relation between Duration and

Peak Velocity

Each curve in the simulation result depicted in Figure 24 held T(0) — P(0) constant and
varied Go. In this way. a series of velocity profiles were generated whose peak velocities
differed even though their trajectories traversed the same distance. The duration of each
movement was computed by measuring the interval between velocity profile zero crossings.
The different curves in Figure 24a used different values of the distance parameter T(0) —
P(0).

Figure 24

These curves mirror the data of Lestienne (1979) summarized in Figure 24b. Figure

24b plots agonist burst duration against peak velocity. The overall shapes of the plots of

simulated durations (Figure 24a) and agonist burst durations (Figure 24b) as a function

of peak velocity are similar. This similarity reinforces the postulate that the VITE circuit

AT

Py
U
%%

operates in agonist-antagonist muscle coordinates (Sections 3 and 20). It also suggests

that the relationship between VITE circuit outputs. motoneuron inputs. and actual muscle
activities might be relatively simple (Bullock and Grossberg, 1986b).
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Nevertheless, two caveats deserve mention. First. were Figure 24a a plot of movement
duration (MT) against mean velocity (V'), it would necessarily have the shape shown. since
by definition.

.WT = =

b w0

where D denotes the distance. Multiplying by different values of D generates a family
of curves similar in shape to those shown in Figure 24a. The VITE mode: generates the
curve in Figure 24a because mean velocity and peak velocity are strongly correlated in

these VITE trajectories due to the duration invariance described in Section 22.

28. Speed-Accuracy Trade-off: Woodworth's Law and Fitts’ Law

The VITE Model circuit predicts a speed-accuracy trade-off which quantitatively fits
the classical laws of Woodworth (1899) and of Fitts (1954). The existence of a speed-
accuracy trade-off per se can be understood by considering the role of the rate parameter
a in equation (1).

Given any finite averaging rate a, V' (t) takes some time to react to changes in P(t).
In particular, even if P(t) = T at a given time t = t5. V(t) will typically require some
extra time after ¢t = ty to decrease to the value 0. If « is very large. V (t) can approach 0
quickly. Consequently, by (2), V' (t) will not allow P(t) to overshoot the target value T by
a large amount. On the other hand, given any choice of a, the relative amount whereby
P(t) overshoots the target T depends upon the size of the GO amplitude Gy. This is true
because a larger value of Gy causes P(t) to increase faster. due to (2). and thus P(t} can
approach T faster. In contrast, V(t) can only respond to the rapidly changing values of
T — P(t) at the constant rate a. As a result, V' (t) tends to be larger at a time t = ¢,
when P(ty) = T if Gy is large than if Gg is small. It therefore takes V' (t) longer to equal
0 after t =ty if Gy is large. Thus P(t) overshoots T more if Gy is large. This covariation

of amount of overshoot with overall movement velocity is a speed-accuracy trade-off.

Fitts" Law. as described in equation (1). relates movement time (MT). distance (D).
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and target width (W). The target width may be thought of as setting the criterion for what

counts as an error. The law may be given two complementary readings. The first notes
that for a fixed movement time. error grows in proportion to amplitude. This component of
the law was discovered by Woodworth ("896). Table | presents simulation resuits based on
the same parameter choices used in Figure 17. The results show that. in a parameter range
where model errors do occur. the model’s error also grows in proportion to amplitude. In

these simulations, G was held fixed and T(0) — P(0) was varied.

Table 1

The second way of reading the law notes that in order to maintain a fixed absolute error
size, while increasing movement distance. it is necessary to allow more time for completing
the movement. In particular. every doubling of distance will add a constant amount. b,
to the time needed to perform the movement with the same level of accuracy. Allowing
less than b more time for a movement of twice the distance will lead to a less accurate

movement.

Table 2

Table 2 presents the results of a simulation (parameters as in Figure 17) in which the
rate parameter a was small enough that modest error resulted even at the smallest distance,
or initial value of T(0) — P(0), that was tested, namely a distance of 2 units. Then the
distance T(0)— P(0) was repeatedly doubled while the error level was held constant. Ascan
be seen, movement time increased approximately linearly with each doubling of distance,
as required by a logarithmic relation between MT and D. The model's striking replication
of the laws of Woodworth and Fitts, together with its other -uccesses in experimental
results, increases our confidence that the VITE Model captures some of the basic neural

design principles that underly trajectory generation in vivo.

Woodworth’s Law is a consequence of duration invariance in the model. This can be

seen from the mathematical analysis provided in Appendix 2. There it is proved that the
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PPC value P(t) can be written in the form

P(t) = P(0) + (T(0) - P(0)q(t) (11)

given any continuous GO signal G(t). In (11), T(0) — P(0) represents the amount of
contraction, or “distance” to be moved, that is mandated by the TPC value T(0) and
the initial PPC value P(0). Function ¢(t) is independent of P(0) and T(0). By (11). P(t)

approaches T(0) as ¢(t) approaches 1. and P(t) overshoots or undershoots if ¢(t) approaches

a value greater or less than 1, respectively. Since g¢(t) is multiplied by T(0) — P(0), the
amount of error (undershoot or overshoot), is proportional to distance. as in Woodworth's

Law.

Whereas the proof of Woodworth's Law is a general consequence of duration invariance

in the model, Fitts’ Law has been mathematically proved in only one case as of the present

time (Appendix 1). although our computer simulations demonstrate that it occurs with
greater generality. In this case, the GO signal G(¢) switches on from value O at times ¢ < 0
to the constant value Gy > 0 at times ¢ > 0. In addition. G is chosen sufficiently large to

generate overshoot errors. In particular, when 4Gy > a.

T(0) - P(O))

2
MT = > 1og( 1o

where E is the amount of overshoot error in the VITE command.

These instances of Woodworth's Law and Fitts’ Law are generated by the VITE circuit
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itself, without the intervention of visual feedback. A number of authors have commented
upon the applicability of these laws when visual feedback is unoperative. For example.
Keele (1982, pp.152-153) has written: “What is the underlying nature of the movement
system that yields Fitts’ Law? ... One factor is the intrinsic accuracy of the motor control
system when visual feedback is unavailable. When the eves are closed during a movement

(or the lights are turned off), an average movement will miss target by about 7¢ of the

PP,

total distance moved." Schmidt (1982, pp.253-254) plotted error functions for sighted
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and blind .uovements across four movement times. A clear speed accuracy trade-off was

observed. Mever. Keith. Smith. and Wright (1982. p.450) have reviewed data comparing
the initial impulse phase of a movement. where visual feedback is unimportant. with the
subsequent current-control phase. where visual feedback may be used to improve accuracy.
They noted that “the initial-impulse phase was found to contribute directly to the speed-
accuracy trade-off. Even when subjects had to perform with their eyes closed and relied
on just this phase to execute their movements. they still produced a trade-off ... models
that attempt to account for the speed-accuracy trade-off ... must include mechanisms that
modulate the trade-off during the initial-impulse phase, not just during the current-control
phase.” The VITE circuit’s ability to reproduce both Woodworth's Law and Fitts' Law

as emergent properties of the PPC updating process satisfies this requirement.

It should be emphasized that the VITE circuit is also capable of generating a PPC
that approaches the TPC without error in some parameter ranges (Appendix 1). In these
parameter ranges, an undershoot error will occur if the GO signal is prematurely ter-
minated. A range effect has also been reported (Georgopoulos. 1986, p.151) such that
“subjects tended to overshoot the target in small movements (2.5 cm) and to undershoot

.

in large movements (40 cm).” A number of factors may influence this result. For exam-
ple. during high speed small movements, auxiliary circuits for controlling the arm’s initial
effects may not have a sufficient opportunity to act (Grossberg and Kuperstein. 1986.
Chapters 3 and 3). During large movements. the distance to be moved may be visually
underestimated, thereby leading to instatement of an incorrect TPC. The choice of GO
signal amplitude as a function of target distance may contribute to the range effect. The
relative importance of such factors will be easier to assess as new experiments and the

theory are progressively elaborated with the aid of the quantitative VITE circuit analysis

that is provided herein.
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29. Computer Simulation of Peak Acceleration Data

Bizzi et al. (1984) measured the peak accelerations of medium-speed forearm move-
ments by monkeys. They considered movements around the elbow that swept out 20 and
60 . A computer simulation is compared with their data in Table 3. In order to make
this comparison. we scaled 1 time unit in our simulation to equal 10 msec. We then chose
two values of the GO amplitude parameter Gy which generated trajectories of duration
approximately equal to 534 msec. and 692 msec.. respectively. Due to duration invariance

(Section 22), the same durations obtain given these choices of Gy over a wide range of
choices of the distance measure T(0) — P{0). The fact that movements were 20° or 60°
was translated into the constraint that the T(0) — P(0) value corresponding to the smaller
choice of Gy must be chosen three times larger than the T(0) — P(0) value corresponding

to the larger choice of Gy. Then we searched for values of T(0) — P(0) that gave the best

fit to the peak acceleration data subject to this constraint.

Table 3

The result is compared in Table 3 with the data and with the fit of the Minimum-
Jerk Model of Hogan (1984). The VITE Model fit these data substantially better than
the Minimum-Jerk Model. The values associated with the VITE™ model indicate that a
perfect fit can be obtained (with Figure 17 parameters) if DV readout to the shuntingstage.
rather than being instantaneous. occurs over a brief interval whose length is proportional

to the size of the DV.

As noted in Section 12, the Minimum-Jerk Model also erroneously predicts a symmetric
velocity profile. at least at the level of the central controller. Moreover. it is hard to see
how this model could exp:ain the velocity amplification that occurs during target switching
(Section 11). Finally. the Minimum Jerk Model doeé not contain any representation that
may be compared with the existence of vector cells or with the manner in which vector
cell activities are integrated into outflow movement commands (Section 13). \We therefore
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believe that the VITE Model provides a better foundation for developing a quantitative
neurally-based theory of arm movements than does the Minimum-Jerk Model. The VITE
model. in addition to the model circuits developed in Grossberg and Kuperstein (1986).
also provides a mechanistic neural explanation of the types of invariant behaviors for whose
analysis the task dynamics approach to motor control was developed (Saltzman and Kelso

1983).

30. Updating the PPC using Inflow Signals during Passive Movements

Despite these successes, the VITE Model as described above is far from complete. In
this section, a solution of one additional design problem is outlined. Bullock and Grossberg
(1986b) suggest solutions of a number of the other design problems whereby a VITE circuit
can effectively move an arm of variable mass subjected to unexpected perturbations at

variable velocities through a Newtonian world.

In Section 6, we noted that inflow signals are needed to update the PPC after a passive
movement terminates. Two basic problems motivate our model of PPC updating by inflow
signals: First, the process of updating the PPC during passive movements must continue
until the PPC registers the position coded by the inflow signals. Thus a difference vector
of inflow signals minus PPC outflow signals updates the PPC during passive movements.
We denote this difference vector by DV} to distinguish it from the DV which compares
TPC’s with PPC’s. At times when DV, = 0. the PPC is fully updated. Although the DV,
is not the same as the DV which compares a TPC with a PPC. the PPC 1s a source of

inhibitory signals, as will be seen below. in computing both difference vectors.

Second. PPC outflow signals and inflow signals may. in principle. be calibrated quite
differently. We will show how corollary discharges of the PPC outflow signals are adaptively
recalibrated until they are computed in the same numerical scale as the inflow signals
to which they are compared. We also show that this adaptive recalibration mechanism
automatically computes a DV}, which updates the PPC by just the correct amount.
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Figure 25 schematizes a model circuit for adaptively computing this DV,. We call
this circuit the passive update of position (PUP) model. In Figure 25. the PPC sends
inhibitory corollary discharge signals towards the outflow-inflow match stage where the
inflow signals are registered. It is assumed that this stage is inhibited except when the
movement command circuit is inactive. A simple way to achieve this property is to assume
that active DV’ cells in the movement command circuit inhibit the outflow-inflow match
stage, as in Figure 25. Thus the mismatches of outflow and inflow signals which occur
during every active movement do not erroneously update the outflow-inflow match stage.
In addition, these signals from the DV stage inhibit learning at the LTM traces which

multiply the PPC signals on their way to the outflow-inflow match stage.

Figure 25

After a movement is over, both the outflow-inflow match stage and the LTM traces are
released from inhibition. Typically, the PPC represents the same position as the inflow
signals. but perhaps in a different numerical scale. The learning laws described in Appendix
3 define LTM traces which change until the PPC times the LTM trace equals the inflow
signal. After a number of such learning trials during stable posture. DV, = 0 and the PPC

signals are rescaled by the LTM traces to correctly match the inflow signals.

During a passive movement. the PPC does not change. but the inflow signal may
change. If the DV, becomes positive, it causes an increase in the PPC until the Dl
decreases to 0 and the PPC is correctly updated by the inflow signals. If the D17, becomes
negative. then the DV} of the opponent muscle can decrcase the PPC until a match again

occurs.

31. Concluding Remarks
The present article introduces a circuit for automatically transiating a target position
command into a complete movernent trajectory via a mechanism of continuous vector up-

dating and integration. A wide variety of behavioral and neural data can be quantitatively
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explained by this mechanism. The model also provides a foundation for clarifying some of
the outstanding classical issues in the motor control literature. highlights the relevance of
learning constraints upon the design of neural circuitry, and may be viewed as a specialized

version of a more general architecture for movement control.

The VITE circuit and the PUP circuit do not. however, exhaust the total neural
machinery that is needed for the control of arm movements. Mechanisms for properly
timed sequential read-out of TPC’s in a serial motor plan, such as during reaching and
grasping or during a dance (Grossberg and Kuperstein, 1986, Chapter 9), for adaptive
linearization of a nonlinear muscle plant (Grossberg and Kuperstein, 1986, Chapter 5), and
for automatically or predictively adapting to the inertial properties generated by variable
loads and velocities (Bullock and Grossberg, 1986b) also form essential parts of the arm
control system. When all of these systems are joined together, however, one can begin
to understand quantitatively how the arm system achieves its remarkable flexibility and
versatility. and can begin to build a new type of biologically inspired adaptive robot whose
design is qualitatively different from the algorithms offered by traditional approaches to

artificial intelligence.

a4

Y O P A P P s W ol o Sy P 0 e
AT SN VA SO N (R S L CR A CR ARE LA TR ST S




[ ' Laf .. .ol t et 1 \ Dal Sall e B o Vo AP God .0 W p do 8 d Yl V.4 V.80 “§.p ap’ Aop't

REFERENCES

Abend. W.. Bizzi. E., and Morasso. P.. Human arm trajectory formation. Brain. 1982, 105.
331-348.
Atkeson, C.G. and Hollerbach, J. M., Kinematic features of unrestrained vertical arm move-

ments. Journal of Neuroscience, 1985, 5(9), 2318-2330.

Beggs, W.D.A. and Howarth, C.I.,, The movement of the hand towards a target. Quarterly

Journal of Experimental Psychology, 1972, 24, 448-453.

Bernstein, N.A., The coordination and regulation of movements. London: Pergamon

Press, 1967.

Bizzi, E., Accornero, N., Chapple, W_, and Hogan, N., Arm trajectory formation in monkeys.

Experimental Brain Research, 1982, 46, 139-143.

Bizzi, E., Accornero, N., Chapple, W., and Hogan, N., Posture controi and trajectory for-

mation during arm movement. Journal of Neuroscience. 1984, 4(11), 2738-2744.

Brody, M. and Paul. R. (Eds.). Robotics research: The first international symposium.

Cambridge. MA: MIT Press, 1984.

Brooks. V.B.. Motor programs revisited. In R.E. Talbott and D.R. Humphrey (Eds.), Pos-
ture and movement: Perspective for integrating sensory and motor research on

the mammalian nervous system. New York: Raven Press, 1979, pp.13-49.

Brooks. V.B.. The neural basis of motor control. New York: Oxford University Press.

1986.

Bullock. D. and Grossberg, S., Neural dynamics of planned arm movements: Synergies, in-
variants. and trajectory formation. Paper presented at the Symposium on Neural Models of
Sensory-Motor Control at the annual meeting of the Society for Mathematical Psychology.

Cambridge, MA, August 20, 1986 (a).

Bullock, D. and Grossberg, S., Neuromuscular realization of planned trajectories: Adaptive

55

TR VA T T S R R St LA

(AR T, o

AR

J‘\c"

PR A

._\-_._ -\..' e LAY -fr.’ W
T N RV S 1 G A i TR L A AL SEAR (Y, (



and automatic mechanisms. In preparation. 1986 (b).

Carpenter. G.A. and Grossberg., S., A massively parallel architecture for a self-organizing
neural pattern recognition machine. Computer Vision. Graphics. and Image Processing.

in press. 1986 (a).

Carpenter, G.A. and Grossberg, S., Neural dynamics of category learning and recognition:
Attention. memory consolidation, and amnesia. In J. Davis, R. Newburgh. and E. Wegman
(Eds.), Brain structure, learning, and memory. AAAS Symposium Series, in press,
1986 (b).

Cooke, J.D., The organization of simple, skilled movements. In G.E. Stelmach and J. Requin
(Eds.), Tutorials in Motor Behavior. Amsterdam: North-Holland, 1980. pp.199-212.
Evarts, E.V., Relation of pyramidal tract activity to force exerted during voluntary move-

ment. Journal of Neurophysiology, 1968, 31, 14-27.

Evarts. E.V. and Fromm, C., The pyramidal tract neuron as summing point in a closed-loop
control system in the monkey. In J.E. Desmedt (Ed.), Cerebral motor control in man:
Long loop mechanisms. Basel, Switzerland: Karger, 1978, pp. 56-59.

Evarts. E.V. and Tanji, J., Gating of motor cortex r flexes by prior instruction. Brain

Research. 1974. 71, 479-494.

Feldman. A.G., Change in the length of the muscle as a consequence of a shift in equilibrium

in the muscle-load system. Biofizika, 1974. 19(3). 534-538.

Fetters. L. and Todd. J.. Quantitative assessment of infant reaching movements. Submitted

for publication. 1986.

Fitts. P.M.. The information capacity of the human motor system in controlling the ampli-

tude of movement. Journal of Experimental Psychology, 1954, 47(6), 381-391.

Fitts. P.M. and Peterson, J.R., Information capacity of discrete motor responses. Journal of
Experimental Psychology, 1964, 67(2). 103-112.
Flash, T. and Hogan, N., The coordination of arm movements: An experimentally confirmed

56

B DAL VL . T e I ) -"-"/',‘n'f'-h-’-.l".'.ﬁ'-'."'-,' @ Ta?la Ta € o
‘L AN PRI N NG RS SRS B GRS R A N S i 't.\'i:‘t:'lﬂ »




mathematical model. Journal of Neuroscience. 1985, 5(7). 1688-1703.

Freund. H.-J. and Budingen, H.J.. The relationship between speed and amplitude of the
fastest voluntary contractions of human arm muscles. Experimental Brain Research. 1978.
31.1-12.

Georgopoulos. A.P.. On reaching. Annual Review of Neuroscience. 1986, 9. 147-170. F

Georgopoulos, A.P.. Kalaska, J.F.. Caminiti, R.. and Massey. J.T.. On the relations between
the direction of two-dimensional arm movements and cell discharge in primate motor cor- !

tex. Journal of Neuroscience, 1982, 2(11). 1527-1537.

Georgopoulos. A.P., Kalaska. J.F., Crutcher, M.D.. Caminita, R., and Massey, J.T.. The

representation of movement direction in the motor cortex: Single cell and population I
. studies. In G.M. Edelman. W.E. Goll, and W.M. Cowan (Eds.). Dynamic aspects of
5 neocortical function. Neurosciences Research Foundation, 1984, pp.501-524.

Georgopoulos. A.P., Kalaska, J.F.. and Massey. J.T., Spatial trajectories and reaction times !
4 of aimed movements: Effects of practice, uncertainty, and change in target location. Jour-

nal of Neurophysiology, 1981, 46(4), 725-743.

Georgopoulos. A.P., Schwartz, A.B., and Kettner, R.E., Neuronal population coding of move-

ment direction. Science, 1986, 233, 1416-1419.

Ghez, C. and Vicario, D.. The control of rapid limb movement in the cat. II: Scaling of

isometric force adjustments. Experimental Brain Research. 1978, 33. 191-202.

Gordon, J. and Ghez, C.. EMG patterns in antagonist muscles during isometric contraction

in man: Relations to response dynamics. Experimental Brain Research. 1984. 55. 167-171.

VW YTEE T LW

Gordon. J. and Ghez, C., Control strategies determining the accuracy of targeted force

A A & 8w

impulses, I: Pulse height control. Experimental Brain Research. in press, 1986 (a).

A .

Gordon. J. and Ghez. C.. Control strategies determining the accuracy of targeted force

impulses, II: Compensatory adjustments for initial errors in trajectory. Experimental Brain

Research. in press, 1986 (b).

L an e 4 m an A 4

AW Akl sl Pl

AR TN N NI M RN SR I W N IO




Grossberg. S.. Neural pattern discrimination. Journal of Theoretical Biology. 1970. 27.
291-337.
Grossberg. S.. Contour enhancement. short-term memory. and constancies in reverberating

neural networks. Studies in Applied Mathematics. 1973. 52. 217-257.

Grossberg, S., A theory of human memory: Self-organization and performance of sensory-
motor codes. maps, and plans. In R. Rosen and F. Snell (Eds.), Progress in theoretical
biology, Vol. 5. New York: Academic Press, 1978, pp.233-374.

Grossberg, S.. Studies of mind and brain: Neural principles of learning, peception.
development, cognition, and motor control. Boston: Reidel Press, 1982.

Grossberg, S., Adaptive compensation to changes in the oculomotor plant. In E. Keller and

D. Zee (Eds.), Adaptive processes in the visual and oculomotor systems. Pergamon

Press, 1986 (a).

Grossberg, S.. Cooperative self-organization of multiple neural systems during adaptive
sensory-motor control. In D.M. Guthrie (Ed.). Aims and methods in neuroethology.

Manchester University Press, 1986 (b).

Grossberg, S. (Ed.), The adaptive brain, I: Cognition. learning, reinforcement. and

rhythm. Amsterdam: Elsevier/North-Holland. 1986 (c).

Grossberg. S. (Ed.), The adaptive brain. II: Vision. speech, language. and motor

control. Amsterdam: Elsevier/North-Holland. 1986 (d).

Grossberg, 3. and Kuperstein, M.. Neural dynamics of adaptive sensory-motor con-

trol: Ballistic eye movements. Amsterdam: Elsevier/North-Holland. 1986.

Grossberg, S. and Stone, G.O.. Neural dynamics of word recognition and recall: Attentional

priming. learning, and resonance. Psychological Review. 1986, 93. 46-74.
Helmholtz, H. von, Handbuch der Physiologischen Optik. Leipzig: Voss. 1866.

Hofsten. C. von, Development of visually directed reaching: The approach phase. Journal of

Human Movement Studies, 1979, 5. 160-178.

Ry

o TR PP

£ r

IAAARANN




b

Hofsten. C. von. Eve-hand coordination in the newborn. Developmental Psychology, 1982.

18(3). 450-461.
Hogan. N.. An organizing principle for a class of voluntary movements. Journal of Neuro-
science, 1984, 4(11). 2745-2754.

Hollerbach. J.M.. Computers. brain. and the control of movement. Trends in Neuroscience.

1982. 5, 189-192.

Hollerbach. J.M.. Dynamic scaling of manipulator trajectories. Journal of Dynamic Systems.

Measurement, and Control. 1984, 106, 102-106.

Hollerbach. J.M.. Moore, S.P.. and Atkeson, C.G., Workspace effect in arm movement kine-
matics derived by joint interpolation. In G. Gantchev. B. Dimitrov, and P. Gatev (Eds.),

Motor control. Plenum Press. 1986,

Holst. E. von and Mittelstaedt, H.. The reafference principle: Interaction between the central

nervous system and the periphery. Naturwissenschaften, 1950, 37, 464-476.

Howarth, C.I. and Beggs, W.D.A., the relationship between speed and accuracy of movement

aimed at a target. Acta Psychologica, 1971. 35. 207-218.

Howarth, C.I. and Beggs, W.D.A., Discrete movements. In D. Holding (Ed.). Human skills.
New York: Wiley and Sons, 1981. pp.91-117.
Jagacinski. R.J. and Monk. D.L.. Fitts" Law in two dimensions with hand and head move-

ments. Journal of Motor Behavior, 1985, 17(1). 77-95.

Jeannerod. M.. The timing of natural prehension movements. Journal of Motor Behavior.

1984, 16(3). 235-254.

Kalaska. J.F., Caminiti. R.. and Georgopoulos, A.P.. Cortical mechanisms related to the
direction of two-dimensional arm movements: Relations in parietal area 5 and comparison

with motor cortex. Experimental Brain Research. 1983. 51, 247-260.
Keele. S.W ., Behavioral analysis of movement. In V.B. Brooks (Ed.). Handbook of phys-

iology. Section 1. Volume 2: Motor Control. Bethesda. MD: American Physiological

59

A S Y P T e e AT AW e T A e A R A A A A A L A N A L A )

q
S
o5
'
)’ﬂ
O
§
3
o
&~
~

=

LR

el

N



Wy ¢:“v‘ilp "0"," i k.,.‘c‘g LS R R X TN OGRS G D

PPl el

A0 a, bl

PAL ISP

T RIS

Society, 1981, pp.1391-1414.

Keele. S.W.. Component analysis and conceptions of skill. In J.A.S. Kelso (Ed.). Human
motor behavior. Hillsdale. NJ: Erlbaum. 1982, pp.143-159.

Kelso. J.A.5.. Human motor behavior. Hillsdale. NJ: Erlbaum. 1982.

AKelso. J.A.S. and Holt. K.G., Exploring a vibratory systems analysis of human movement

production. Journal of Neurophysiology, 1980, 28, 45-52.

Kelso, J.A.S., Southard, D.L., and Goodman, D.. On the nature of human interlimb coordi-

nation. Science, 1979, 203, 1029-1031.

Kerr, B. and Langolf, G.D., Speed of aimed movements. Quarterly Journal of Experimental

Psychology, 1977, 29, 475-481.
Knight, A.A. and Dagnall. P.R., Precision in movements. Ergonomics, 1967, 10, 327-330.

Lestienne, F.. Effects of inertial load and velocity on the braking process of voluntary limb

movements. Experimental Brain Research, 1979, 35. 407-418.

Marteniuk, R.G. and MacKenzie, C.L., A preliminary theory of two-hand co-ordinated con-
trol. In G.E. Stelmach and J. Requin (Eds.), Tutorials in motor behavior. Amsterdam:

Elsevier/North-Holland. 1980, pp.185-197.

Massey, J.T.. Schwartz, A.B., and Georgopoulos., A.P., On information processing and per-
forming a movement sequence. In C. Fromm and H. Heuver (Eds.). Generation and

modulation of action patterns, Experimental Brain Research Supplement, 1985.

Mever. D.E.. Keith-Smith, J.E.. and Wright. C.E.. Models for the speed and accuracy of

aimed movements. Psychological Review, 1982, 89, 449-482.

Morasso, P., Spatial control of arm movements. Experimental Brain Research. 1981. 42.

223-227.

Nichols, T.R.. Is “the Mass-Spring Model” a testable hypothesis? Journal of Motor Behavior.
1985, 17(4). 499-300.

80




LN L | 0 i = - R W e . J . e 4" 3 A . L 1 X + v . " . N . . B N i ] . 1

Piaget. J.. The origins of intelligence in children. New York: Norton. 1963.

Polit, A. and Bizzi. E., Processes controlling arm movements in monkeys. Science. 1978.
201. 1235-1237.
Ruffini. A.. On the minute anatomy of the neuro-muscular spindles of the cat. and on their

physiological significance. Journal of Physiology. 1898, 23. 190-208.

Sakitt. B.. A spring model and equivalent neural network for arm posture control. Biological

Cyvbernetics, 1980, 37, 227-234.

Saltzman. E.L. and Kelso, J.A.S., Skilled actions: A task dynamics approach. Haskins

Laboratories Status Report on Speech Research, 1983. SR-76, 3-50.

Schmidt, E.M., Jost. R.G., and Davis. K.K.. Reexamination of the force relationship of
cortical cell discharge patterns with conditioned wrist movements. Brain Research. 1975,

83. 213-223.

Schmidt. R.A., Motor control and learning. Champaign. IL: Human Kinetics Press.

1982.

Sherrington. C.S., On the anatomical constitution of nerves of skeletal muscles: with remarks
on recurrent fibres in the ventral spinal nerve-root. Journal of Physiology. 1894, 17. 211-

258.
Soechting, J.F. and Lacquaniti. F., Invariant characteristics of a pointing movement in man.
Journal of Neuroscience, 1981, 1(7), 710-720.

Sperling, G. and Sondhi, M.M., Model for visual luminance distribution and flicker detection.

Journal of the Optical Society of America. 1968. 58, 1133-1145.

Tanji. J. and Evarts, E.V., Anticipatory activity of motor cortex units in relation to direction
of an intended movement. Journal of Neurophysiology, 1976, 39, 1062-1068.

Welford, A.T.. Norris. A.H., and Schock. N.W.. Speed and accuracy of movement and their
changes with age. In W.G. Koster (Ed.), Attention and performance II. Amsterdam:

North-Holland. 1969, pp.3-15.

61

WMy B W P emp "l L T N I A T T S P T T e T ) '----~"-.'....-_ ------ ----. ----- -y
\r.r J- -r ¢ ot A o J‘,-(' «[‘J‘ SR SC A AN SO, .-_ \ _.r S A SRR N

WG P It * Wy,



Woodworth, R.S.. The accuracy of voluntary movement. Psychological Review. 1899. 3.

1-114.

NI~




APPENDIX 1

Bell-Shaped Velocity Profile. Fitts' Law. and Staggered Onset Times

This Appendix solves the system of equations

d

ZV=al-V+T-P) (41)

d . »
ZP =GV (42)

under the simplifying assumption that the GO signal G is a step function. Then the system
can easily be integrated to demonstrate some basic properties.

In many situations. the system starts out in an equilibrium state such that the PPC
equals the TPC. Then a new TPC is switched on and the system approaches a new equi-
librium. Before the new TPC is switched on. P = T in (Al). Since the system is at
equilibrium. %V = 0. Thus. by (Al), it also follows that V = 0 under these circum-
stances.

Suppose that a new TPC value is switched on at time ¢ = 0. If the system represents an
agonist muscle. then T(0) > P(0) so that the PPC increases when T(0) turns on. thereby

causing more contraction of its target muscle group. Thus by (Al).
V(0) = 0, (A3) .

and

%V(O) = a(T(0) — P(0)) > 0. (44) :

Consequently V' (t) > 0 for all t > 0, so that by (A2). )

d - .

for all ¢t > 0. .
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To solve equations (A1) and (A5). differentiate (A1) at times ¢ > 0. Then

d? U= dv’ dP)
gt =l g T )
because T is constant. Substituting {A3) into (A6) vields the equation

2

. d.. —— -

di}‘ +()d1‘r +()(1‘ -—0 (.4‘)
subject to the initial data (A3) and (Ad4).

This equation can be solved by standard methods. The solution takes the form
V(t) = (T(0) - P(0))/(t), (48)

where f(t) is independent of T'(0) and P(0). Thus V'(t) equals the initial difference between
the new TPC and the initial PPC multiplied by a function f(t) which is independent of

the new TPC and the initial PPC. By (A2),

5P = (T(0) = PO)g(0). (49)

where ¢g(t) = Gf(t). Integration of (A9) yields
t
P(t) = P(0) + (T(0) - P(O))/O g(v)dv. (A410)

Since ‘%P provides an estimate of the arm'’s velocity profile. (A9) illustrates the property
of duration invariance in the special case that G(¢) is constant. Duration invariance is
proved using a general G(t) in Appendix 2. Equation (A9) also illustrates how the velocity
profile can respond to a sudden switch in the TPC with a gradual increase-then-decrease
in its shape. although ¢g(t) assumes a different form if a > 4G. @ = 4G. or a < 4G. When

a > 405,

glt) = = ‘e—%t{-’f_ﬂa:-«mc_eA{,\a:niaGl. (A11)

Term [exp(}va? — 4aG)] - [exp(—§va? — 4aG)] in (All) increases exponentially from
the value 0 at { = 0. whereas term exp[— Jt]| decreases exponentially towards the value 0
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at a faster rate. The net effect is a velocity function that increases-then-decreases with an

approximate!y bell-shaped profile. In addition. ¢(¢t) > 0 and

o o
/ git)dt = 1. (412}
0

By (A10) and (A12). P{t) increases towards T as { increases. Thus P(t} either approaches
T(0) with an arbitrarily small error. or an undershoot error occurs if the GO signal is

switched off prematurely.

If @ = 4G. then

g(t) = aGte %', (A13)

Again the velocity profile gradually increases-then-decreases. but starts to increase lin-
early before it decreases exponentially. The function in (A13) also satisfies (A12). so that

accurate movement or undershoot occur. depending upon the duration of the GO signal.

The case of a < 4G deserves special attention. In this case, the rate G with which P

y is updated in equation (A2) exceeds the ability of the rate a in equation (Al) to keep up.
h
: As a result. an overshoot error can occur. In particular.
p
PN
l Y N B )
2a( oo o vialG - al
F giry = e = 2tsing - 5 1] (A14)
vHdali - af -
3
L )
| f 0 <t < <= Whent exceeds —I—— function git!. and thus V{t). becomes
g - IR 1 VR 14 vdaG oo
negative. By A2). V11" = 0 when  exceeds T:—"— <o that. by [A2). P(t) stops
: N Yal, ot
moving at “his rune. [lie movement time 1 this case thus satisfies
Y -
\ ol — a-
.
S 1
Within this sine frame “he velocity profile is the svmmetrie function sin| \'4‘—"%' -2t} mul- ]
L
v o , « 0 ‘
! sobed by che ddecaving. hence asvinmetnic finetion o .0 Greater overall svmmetry of ]
g achieved of the race S5 77 svith wiiich “he sine function changes is rapid relative !
1
o cthe rate Dowath o wrnet the exponentia tineton shanges vz af 20 > o
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. Since P(f) stops changing at time { = \‘,402(;002. the final PPC value found from

i equation (A10) is

| | P T(0) = P(0) T VreGoE ) 6
) =P(0) + — P(O)){1+€e veuG-aT), Al
Tise—1) = PO +(T(0) ) | (A416)

Thus an overshoot error occurs of size

" E = (T(0) - P(0))e viac-oZ, (A417)
In accordance with Woodworth's Law, the error is proportional to the distance (T'(0) -
P(0)). Fitts’ Law can be derived by holding E constant in (A17) and varying (T(0) — P(0))

to test the eff:ct on the MT in (A15). Substituting (A15) into (A17) shows that

E = (T(0) - P(0))e~ %" (A18) r
which implies Fitts’ Law i
MT = ;log(ﬂo—);—w). (A19) l

The initial condition V(0) = 0 in (A3) obtains if the system has actively tracked a
constant TPC until its PPC attains this TPC value. Under other circumstances. V°(0)

may be negative. When this occurs, %P in (A2) may remain O during an initial interval

while V' {t) increases to nonnegative values. Thus P begins to change only after a staggered

onset time. Some properties of staggered onset times are derived below.

A negative initial value of V(0) may obtain if a particular muscle group has been
passively moved to a new position either by an external force or by the prior active con-
raction of other muscle groups. In such a situation, P(¢) may be changed by the PUP
circait (Section 30) even if T(t) = 0. and V (¢) may track P(¢) via equation (Al) until a

~ew equtlibrium is reached. Under these circumstances. (A1) implies that

e AW I, LB Ak RRIW A

_ 1" = __' _ )
0= -V =a(-V+0-P) (420)
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If we assume that this equilibrium value obtains at time ( = 0. then

1 (0) = - P(0) < O. (421)
and equation (A2) implies that

d _—

ZP=GV| =o. (A422)

Thus P remains constant until V' becomes positive. If a new TPC is switched on at time
t = 0 to an agonist muscle which satisfies (A21), then T(0) > P(0). By (Al). V increases

according to the equation

%V+QV = a(T(0}) - P(0)). {423)

where a(T(0) — P(0)) is a positive constant. until the time ¢t = ¢, at which V' {(¢t;) = 0.
Thereafter V|~ =V > 0so that V" and P mutually influence each other through equations

(Al) and (AS).

Time ¢ is computed by integrating equation (A10). We find

V(t) = V(0)e ® « (T(0) - PIO))(1 — ¢ °4 (424)

for 0 <t <t,. By (A21).

V(t) = —Pi0) + T(0O)(1 —e¢ ™). (425)
Thus
T L )
th= in il ‘T(’O))A‘ (A26]

By (A26), t; is a function of the ratio of the initial PPC value to the new TPC value.

For times t > t,. equations (Al) and (A3) can be integrated just as they were in the
preceding case. Indeed,

Vi) =0 (A27
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by the definition of ¢;, and

(%V(t,) = a(T(0) - P(0)) (428)

by (A22) and (A28). The initial data (A27) and (A28) are the same as the initial data
(A3) and (A4) except for a shift of (; time units. Consequently if the GO signal onset

time is also shifted by ¢, time units, then it follows from (A8) that at times ¢ > ¢,.
V(t) = (T{0) — P(0))f(t —t,). (A429)

An estimate of such a velocity profile is found by piecing together (A24) and (A29). Thus

d 0 foro0<t t
a”={c<r(0)—?(0)>f(t—m fort, <t (430)

Equation (A30) illustrates how a velocity profile with a staggered onset time can occur if
17(0) < 0. As shown in Section 26. the VITE command to a muscle group can compensate
for a staggered onset time if its DV is multiplied by the same GO signal as other muscles
in the synergy. In this case. the GO signal onset time is not shifted to match the onset

time of each component of the VITE command.
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APPENDIX 2

Synchrony and Duration Invariance

Consider equations (A1) and (A2) under the influence of an arbitrary nonnegative and

continuous GO function G(t). As in Appendix 1. let

V()=0 (43)

and P = T before T is switched to a new value. Suppose for definiteness that T'(t) switches

from the value T to T at time ¢t = 0, and that

T, > Ty = P(0). (A31)
Consequently, equations
d
a?V =a(-V+T-P) (41)
and
d P =GV 15)
a (‘ 9

hold for t > 0. Define the new PPC variable
Q(t) = P(t) - Ty (432)
and the new target position constant
T2 = T] - To. (.433)
Then (Al) and (A3) can be replaced by equations
d

and

d
ZQ=GV (435)
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for t > 0. By (A31),

Q(0) = 0. (A436)

Thus by (A3) and (A36). both V and @ start out with 0 values at ¢ = 0.

Now define new variables

(t) = T (A437)
and
0 =% (438)

By (A34) and (A35), these variables obey the equations

d—div=a(—v+1—q) (A39)
and
(%q = Gv. (.440)
In addition,
v(0) = ¢(0) =0 (A441)

by (A3) and (A36). It is obvious that a unique solution of (A39)-(A41) obtains no matter

how T, and T, are chosen, if T > T).

By combining (A31), (A32), (A33), and (A38), we find that
P(t) = P(0) + (T, — P(0))q(t), (A442)
where ¢(t) is independent of T} and P(0). Equation (A42) proves duration invariance given

a general GO function G(t). Indeed, differentiating (A42) yields

2P = (T, - P(0)) Lt (443)

which shows that function adiq generalizes function ¢(¢) in equation (A9).
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APPENDIX 3

Passive Update of Position

Mathematical equations for a PUP circuit are described below. As in our description
of a VITE circuit. equations for the control of a single muscle group will be described.
Opponent interactions between agonist and antagonist muscles also exist and can easily

be added once the main ideas are ur lerstood.

The PUP circuit supplements the equation

d .

whereby the PPC integrates DV's through time. A PUP circuit obeys equations

Present Position Command

d - -
EP = GV]™ - GplM]~. (A44]

Outflow-Inflow Interface

%4\42 -IM + 4P - zI. (A45)
Adaptive Gain Control

d .

E::éG,,(—c:%»[.\/f] ). (A446)

The match function M in (A43) rapidly computes a time-average of the difference

between outflow {yP) and gated inflow (z/) signals. Thus

M=~ (4P -:D. (A447)

Cavi =

If the outflow signal 7P exceeds the gated inflow signal =I. then [M|~ > 0 in (A47).

Otherwise [M|~ = 0. The passive gating function G, in (A44) is positive only when the




WU W

T

W

muscle is in a passive, or postural. state. In particular. G, > 0 only when V' " >~ 0.1n the

VITE circuit. If both G, and [M]~ are positive in {A44). then (%P < ). Consequentlv. P
decreases until M = 0: that is. until the outflow signal JP equals the gated inflow signal
zI. At such a time. the PPC is updated to match the position attained by the muscle
during a passive movement. To see why this is true. we need to consider the role of function

zin (A45) and (A46).

Function = is a long term memory (LTM) trace. or associative weight. which adaptively
recalibrates the scale. or gain. of inflow signals until they are in the same scale as outflow
signals. Using this mechanism. a match between inflow and outflow signals accurately

encodes a correctly updated PPC. Adaptive recalibration proceeds as follows.

In equation (A46), the learning rate parameter ¢ is chosen to be a small constant to
assure that z changes much more slowly than M or P. Ths passive gating function G,
also modulates learning, since = can change only at times when (i, > 0. At such times.
term —e¢: describes a very slow forgetting process which prevents : from getting stuck in
mistakes. The forgetting process is much slower than the process whereby - grows when
"M}~ > 0. Since function M reacts quickly to its inputs ~P and -/z. as in {Ad47), term

‘M|~ > 0 only if

~P > 1:. (A48)

Function [ is an inflow signal which is multiplied. or gated. by z on its way to the match

interface where M is computed (Figure 24).

Because z changes only when the muscle is in a postural, or a passive state. terms ~ P
and [ typically represent the same position. or state of contraction. of the muscle group.
Then inequality (A48) says that the scale yP for measuring position P using outflow
signals is larger than the scale z/ for measuring the same position using inflow signals.
When this happens, z increases until M = 0; viz.. until outflow and inflow measurement

scales are equal.
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On an occasion when the arm is passively moved by an external force, the outflow
signal ~ P may momentarily be greater than the inflow signal zI. Due to past learning.

however. the gated inflow signal satisfies
I =~P°, (A449)
where P* is the outflow command that is typically associated with I. Thus by (A47),
M= g(P-P'). (440)

By (A44) and (A50), P quickly decreases until it equals P*. Thus. after learning occurs.
P approaches P*. and M approaches 0. so quickly that spurious new learning due to the
passive movement has little opportunity to occur, since z changes slowly through time.
What small deviations may occur tend to average out due to the combined action of the

slow forgetting term —¢z in (A46) and opponent interactions.

Equations (A45) and (A46) use the same formal mechanisms as the head-muscle inter-
face (HMI) described by Grossberg and Kuperstein (1986). The HMI adaptively recodes a
visually activated target position coded in head coordinates into the same target position
coded in agonist-antagonist muscle coordinates. Such a mechanism for adaptive matching

of two measurement scales may be used quite widely in the nervous system.
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TABLE 1

FOR FIXED DURATION (MT), ERROR GROWS
IN PROPORTION TO DISTANCE.




TABLE 2

DISTANCE

FOR FIXED ERROR LEVEL, DURATION (MT) GROWS
LINEARLY WITH DISTANCE DOUBLING.
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TABLE 3
DISTANCE MT PEAK P PEAK P SOURCE
20 554 397°/sec? Bizzi et al. (1984)
60- .692 1130°/sec? ___ _(experimental data)
20° .554 376°/sec? Minimum-jerk model
60° 692 722°/sec? (simulation)
20° 554 394°/sec? VITE model
60° .692 854°/sec? (simulation)
20° .554 396° /sec? VITE™ model
60° 692 1127°/sec? (simulation)

COMPARISON OF THREE MODELS’ ABILITY TO PREDICT
DATA ON PEAK ACCELERATION.
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FIGURE CAPTIONS

Figure 1. Consequences of two motor-control schemes. Dashed lines: Movement
paths generated when a synergist producing vertical motion and a synergist producing
horizontal motion contract in parallel and at equal rates to effect movements from various
beginning points (Bs) to the common endpoint E. Solid lines: Movement paths generated
when the synergists’ contraction rates are adjusted to compensate for differences in the

lengths of the vertical and horizontal components of the movement.

Figure 2. Both outflow and inflow signals contribute to the brain's estimate of the

limb’s present position, but in different ways.

Figure 3. Curves for subjects’ approach to various targeted force levels. Targeted
(peak) levels are reached at nearly the same time, indicating duration invariance across
different force “distances”. Only the initial part of each curve represents active move-
ment. Post-peak portions represent passive relaxation back to base-line. Reprinted with

permission from Freund and Bidingen (1978).

Figure 4. Overshooting (gray curve), hitting (black curve). and undershooting {dash-
ed line) a force-level target {horizontal line) in an isometric task. Reprinted with permission

from Gordon and Ghez (1986b).

Figure 5. Duration invariance across three force target levels. Oblique lines indicate
an inverse relation between rise time (duration) and peak acceleration across trials with
the same force target level. These trends overlay a direct relation between target level and

peak acceleration. Reprinted with permission from (sordon and (hez (1986b ).

Figure 6. Monkeys seamlessly transformed a movement initiated toward the 2 o'clock
target into a movement toward the 10 o'ciock target when the latter rarget was substituted

30 or 100 msec  after activation of the 2 o clock target hght Reprinted w.th pernnssion

from Georgopoulos #f al  10%1

T Y - . )
5 ~ . ~ ~\

e . . . .
A " a"a®a 4 o g e s e

I O P R R U T I e

".



el LT B e Bt R B R R R R R Rt s it St Sul St Aok Bl S Bad 2al Aok S Suft Sal Aol aul faf Sab aoh Al Ad Mt Aot Bol Sod Bl Sl Bl kB¢ ] —]vr—,wvw?\.w

Figure 7. Velocity profiles from movements of sinular duration are spproxiiaten
superimposable following velocity and time axis rescaling  Reprinted saorh perssson

from Atkeson and Hollerbach (1984).

Figure 8. A match interface within the motor command channel o nuo<y con
putes the difference between the target position and present position. and avdds ~ne G ffer.

ence to the present position command.

Figure 9. Quick buildup and gradual decline of activity in motor-cortical vector cells

Reprinted with permission from Georgopoulos et al. {1982).

Figure 10. Directional tuning curve for a motor-cortical cell exhibiting peak ac-
tivity during a 90° (forward from body) arm movement. Dotted line indicates control
period discharge rate. Thus this cell is inhibited when movement direction falls outside
the 180° hemisphere of movements to which it can contribute a positive motion component.

Reprinted with permission from Kalaska et al. (1983).

Figure 11. A comparison of the population vector of 241 directionally tuned cells
(upper figure) with the velocity vector of the hand (lower figure). each measured at 20
msec. intervals during the reaction time and during movement. Note the asvmmetry

(longer right tail) in both. Reprinted with permission from Georgopoulos et al. (1984}.

Figure 12. (A): The time course of each trial in the push-or-pulil task used by Evarts

and Tanji (1974). (B): Operating characteristics of two motor-cortical cells. Solid arrows
indicate increases (upward arrow) or decreases (downward arrow) in cell discharge rates.
Hollow arrows indicate a push-{upward arrow) or pull-(downward arrow) related event:

either the push/pull priming signal, a push/pull movement. or the push/pull perturbation

that also served as the release signal.

Figure 13. Learning in sensory-motor pathways is gated by a DV process which
matches TPC with PPC to prevent incorrect associations from forming between eye-head

TPC s and hand-arm TPC's.
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Figure 14 A GO < unacgates execution of a pruned movement vector and regulates

"he tate atow el The noveient vector updates the present position comimand.

Figure 15 Opponent interactions among channels controlling agonists and their
asagonisTts enanie coordimated. automatic updating of their PPCs.

Figure 16 N.rwork variables emploved in computer simulations. See text equations
2 and 3

Figure 17 The simulated time course of the neural network activities V', G, and
F Jduring an 1100 msec. movement. The variable T (not plotted) had value 0 at t < 0,
and vaiue 20 thereafter. The derivative of P is also plotted to allow comparison with
»xperimental veiocity profiles. Parameters for equations (2), (3), (6): a = 30, n = 1.4,

1 -1 - =0

Figure 18. With equal GO signals. movements of different size have equal durations
and perfectly superimposable velocity profiles after velocity axis rescaling. (A, B): GO
~ignals and velocity profiles for 20 and 60 unit movements lasting 560 msec. (See Figure

17 caption for parameters.)

Figure 19. (A, B, C): Velocity profiles associated with a slow. medium. and fast per-
formance of a 20 unit movement. Each SR value gives the trajectory’s symmetry ratio: that
is. the time taken to move half the distance, .3(T(0) — P(0)), divided by the total move-
ment duration. MT. These ratios indicate progressive symmetrization at higher speeds.
(D): The velocity profiles shown in (A), (B), and (C) are not perfectly superimposable.

(See Figure 17 for parameters.)

Figure 20. (A, B): Velocity profiles for a slow and a fast movement with a slower-
than-linear g(t): « =30, n =1, 3 =1, vy = 1. (C, D): Velocity profiles for a slow and a
fast movement with a linear g(t): a =30.n =1, 3 =1.~=0.

Figure 21. Simulated time course of neural network activities and

movement. Note the S-shaped growth in ( (sigmoid GO ~ignar P ooraan-
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equations (2), (3). (8), (9): a =25, A =1, B = 25.

Figure 22. A much higher peak velocity is predicted by the model whenever a target
1s activated after the GO signal has already had time to grow. (A): The control condition.
in which T and the GO signal growth process are activated svnchronously. (B): Same T
as in (A), but here T was activated after G(t) had been growing for 300 msec. (See Figure

17 for parameters.)

Figure 23. Simulation results showing automatic VITE circuit compensation for
contraction-onset-time staggering across components of a synergy. Each block (I, II, III,
IV) shows results for a different value (10, 20, 40, and 80, respectively) of the GO signal

scalar, Gg. (See Figure 17 for parameters.)

Figure 24. (A): Simulation of movement duration (sec) as a function of peak velocity
(deg/sec) for a 30° (lower curve) and a 60° (upper curve) movement. (See Figure 17 for
parameters.) (B): Data on agonist burst duration (squares) and antagonist burst onset-
time (dots) as a function of peak velocity (rad/sec) for a 60° movement. Reprinted with

permission from Lestienne (1979).

Figure 25. A passive update of position (PUP) circuit. An adaptive pathway PPC —
DV'p calibrates PPC-outflow signals in the same scale as inflow signals during intervals of
posture. During passive movements, output from DV equals zero. Hence the passive
difference vector DVp updates the PPC until it equals the new position caused by any

passive movements that may occur due to the application of external forces.
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4 VARIABLE VARIABLE MOVEMENT
HOLD PRIME INTERVAL

N INTERVAL INTERVAL
Y l'_'—'-'__|—_'|
( ) )

2-4 seconds (.6-1.2 seconds

priming release
p signal signal

: (»)

CELL 1 OPERATING CHARACTERISTICS

ft priming signal produced 1 activity
: | priming signal produced | activity
>
. { ff movement produced | activity }
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1. Environment, Behavior, and Brain: The Central Role of Adaptive Mech-
anisms

A thorough ethological analysis of behavior requires the simultaneous consideration of
several interacting factors: the environment with which an organism interacts, the behav-
iors which are generated in that environment, and the neural mechanisms which control
and are modified by these environmental-behavioral interactions. The remarkable multi-
plicity of behaviors, of levels of behavioral and neural organization, and of experimental
paradigms and methods for probing this complexity present a formidable challenge to all
serious theorists of mind. The challenge is, quite simply, to discover unity behind this
diversity by characterizing a small set of theoretical principles and mechanisms capable
of unifying and predicting large and diverse data bases as manifestations of fundamental
processes.

My colleagues and I have repeatedly found that such fundamental processes can best
be discovered by analysing how the behavior of individuals successfully adapts in real-time
to constraints imposed by the environment. Such an analysis requires that one identify the
functional level on which an individual’s behavioral success is defined. This is not the level
of individual nerve cells. Rather it is the level of neural systems, properly defined. My
chapter will describe several examples of adaptive mechanisms of sensory-motor control
to illustrate the fact that one cannot, in principle, determine the properties which govern
behavioral success from an analysis of individual cells alone. An analysis of individual
cells is insufficient because key behavioral properties are often emergent properties due
to interactions among cells. Different types of specialized neural circuits govern different
combinations of emergent properties.

On the other hand, it is equally incorrect to assume that the properties of individual
cells are unimportant, as many proponents of artificial intelligence have incessantly done
to promote the untenable claim that human intelligence can be understood through an
analysis of Von Neumann computer architectures. Carefully designed single cell properties
are joined to equally carefully designed neural circuits to generate the subtle relationships
among emergent behavioral properties which are characteristic of living organisms. Indeed,
on a finer level of analysis, single cells can also be represented by interactive networks of
still finer components. Remarkably, formal network mechanisms on different levels of
behavioral organization often recapitulate one another (Carpenter and Grossberg, 1983;
Cohen and Grossberg, 1983; Grossberg, 1978a, 1980).

In summary, the present approach analyses how brain systems are designed to form an
adaptive relationship with their environment. Instead of limiting consideration to a few
performance characteristics of a behaving organism, we consider the developmental and
learning problems that a brain system as a whole must solve before accurate performance
can be achieved. Accurate performance is not taken for granted. Rather the dynamical
mechanisms whereby it is achieved and maintained are analysed. Such an analysis is
necessary if only because an analysis of performance per se does not impose sufficiently
many constraints to determine underlying control mechanisms. The unifying power of such
theoretical work is due, we believe, to the fact that principles of adaptation—such as the
laws governing development and learning-—are fundamental in determining the design of
behavioral mechanisms.

2. A Comparative Neuroethological Analysis of Ballistic Movement Systems

A wide variety of behaviors and their neural substrates have been subjected to this type
of modelling approach. Included are analyses of sensory processing, cognitive recognition
codes, reinforcement, attention, motivation, biological rhythms, and the interfacing of these
processes with mechanisms for the control of planned motor behavior. Many of these results
are brought together in several recent books (Grossberg, 1982, 1986a, 1986b; Grossberg
and Kuperstein, 1986). In this chapter, theoretical issues and results are described about
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visually guided motor behavior. These results are relevant to such central neuroethological
issues as localization, orienting, sensorimotor interfacing, and the design of motor pattern
generating circuitry (Evert, Capranica, and Ingle, 1981). They also clarify the types of
sensory-motor transformations that are modulated by sensory recognition, attentional,
and motivational mechanisms during the synthesis of a behavioral act. In fact, models
of how such modulatory mechanisms interface with sensory-motor mechanisms have been
developed hand-in-hand with the sensory-motor mechanisms themselves, and each class of
models has provided additional constraints upon the other’s development.

The need for a sustained investigation of sensory-motor designs is illustrated by two
quotations from the important neuroethological proceedings that were summarized in Ev-
ert, Capranica, and Ingle (1981). Scheich (1981, pp.7-8) wrote that

“sensorimotor interfacing covers functional and structural mechanisms of
the brain which mediate between sensory and motor maps ... since much
less is known about the motor-organization of species-specific behaviors
and almost nothing is known about interfacing it is apparent that the state
of the art in neuroethology of vertebrates is hardly beyond the stage of a
con,parative neurobiology of sensory systems.”

In their analysis of frog prey capture behavior, Grobstein, Comer, and Kostyk (1981,
p.344) wrote that

“while a given retinal and tectal region corresponds to a single direction
in an eye-centered co-ordinate frame, they in fact correspond to a set of
directions in a body-centered or movement co-ordinate frame. Conversely,
a given point in a movement co-ordinate frame in fact corresponds to a
set of points in an eye-centered co-ordinate frame such as the retina or
the tectum. We are intrigued by the possibility that between the tectum
and the pattern generating circuitry there may be an intermediate level
of circuitry into which space is represented in a body-centered or move-
ment co-ordinate frame. Because of the many to one and one to many
character of the transformation in going from an eye-centered to a body-
center or movement co-ordinate frame, disturbances of circuitry involved
in this transformation might be expected to result not in disconnection of
particular tectal regions from pattern generating circuitry but rather in an
alteration in the particular output associated with activation of given tectal
regions.”

These remarks illustrate the critical importance of understanding the computations
whereby sensory inputs generate motor actions. To the extent that one cannot character-
ize these sensory-motor transformations, understanding of the state-dependent mechanisms
which modulate them is correspondingly weakened. For example, unless one can say how a
motor trajectory is planned and executed, one cannot adequately understand how shifts in
reinforcement, attentional distractors, or other types of environmental feedback can alter
these planning mechanisms before or during the execution of a motor trajectory. Under-
standing how a motor trajectory is planned and executed is also needed to characterize
how the neural mechanisms which encode what a stimulus is interact with the mechanisms
which compute where it is to plan how to reach it.

In the present analysis, as in all neuroethological analyses, I illustrate some general
organizational principles and mechanisms through an analysis of a single sensory-motor
system, the mammalian saccadic eye movement system. Saccadic eye movements are
ballistic movements of great speed and accuracy in humans and many other mammals.
Toads do not make involuntary saccadic eye movements (Autrum, 1959; Evert, Burghagen,
and Schiirg-Pfeiffer, 1981). On the other hand, a number of vertebrates, including toads,
do make ballistic snapping movements which involve tectal interactions (Evert, Capranica,
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and Ingle, 1981). The tectum is a homolog of the mammalian superior colliculus, which
is involved in the generation of ballistic eye movements (Hikosaka and Wurtz, 1983; Mays
and Sparks, 1980; Schiller and Stryker, 1972; Sparks, 1978; Sparks and Mays, 1981). As
in the control of ballistic snapping behavior by the frog tectum (Grobstein, Comer, and
Kostyk, 1981), the monkey superior colliculus generates ballistic eye movements which
have been recoded from retinal coordinates into egocentric coordinates (Mays and Sparks,
1980, 1981; Schiller and Sandell, 1983). The mammalian saccadic eye movement system
thus offers neuroethology a useful source of insights for comparative analysis with systems
which have traditionally been subjected to a neuroethological analysis.

3. Hierarchical Resolution of Informational Uncertainty: Relating Anatomy
to Adaptive Function

A central theme running through an analysis of real-time adaptive behavior concerns
the manner in which neural subsystems are interconnected to solve a behavioral problem
which is incompletely specified at any one stage of neural processing. As mentioned in
Section 2, all the examples described in this chapter concern saccadic, or ballistic, eye
movements in mammals. Although saccadic eye movements are a relatively simple type of
motor behavior, a large number of brain regions are utilized to control them. These regions
include retina, superior colliculus, visual cortex, parietal cortex, frontal cortex, cerebellum,
peripontine reticular formation, and the oculomotor nuclei (Baker and Berthoz, 1977;
Fuchs and Becker, 1981; Ito, 1984; Keller and Zee, 1986; Zuber, 1981).

Our analysis of saccadic movements has identified a series of distinct learning problems
that its control system needs to solve in order to achieve and maintain accurate perfor-
mance characteristics (Grossberg and Kuperstein, 1986). We have hereby translated an
anatomical multiplicity of brain regions into a functional multiplicity of learning problems.
Each brain region can then be discussed as a real-time circuit realization that is capable of
solving a class of functionally characterized problems. Several sensory-motor control sys-
tems can all send circuits through a single brain region because these circuits all need to
solve a similar functional problem. Such an analysis suggests, for example, a single model
of the cerebellum which can be used by several sensory-motor circuits that all require a
certain type of conditionable gain control property. In each of these circuits, the internal
architecture of the cerebellar model is the same. Only the input pathways and output
pathways that are connected to the model are changed. Thus, once one has used adaptive
constraints on one type of behavior to characterize a neural design, one can then utilize
this design to help discover how functionally related adaptive behaviors are organized. For

his reason, our work on eye movements has provided a basis for developing an analysis of
arm movements (Bullock and Grossberg, 1986).

4. Planned versus Reactive Movements: The Problem of Iufinite Regress

Once the primacy of adaptive constraints is granted, the problem of infinite regress
cannot be avoided. On what firm computational foundation can adaptive calibrations be
based? If parameters in several subsystems can all change due to learning, then what
prevents learning in one subsystem from undoing the learning in a different subsystem?
What prevents a global inconsistency from developing due to the very fact that individual
subsystems, by needing to be specialized to deal with part of an adaptive problem, cannot
have complete information about the problem as a whole?

We have found that infinite regress can be avoided through a mechanistically character-
ized developmental sequence. In it, obligatory saccadic movements to flashing or moving
lights on the retina are supplemented by attentionally mediated movements towards mo-
tivationally interesting or intermodal (e.g., auditory) sensory cues. These movements are
supplemented once again by predictive saccades which form part of planned sequences of
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complex movement synergies capable of ignoring the sensory substrate on which they are
built.

The distinction between reactive movements and planned movements illustrates the
subtlety of the infinite regress problem. In our theory, as in the data, the analysis of these
two types of movements implicates both the superior colliculus and the frontal eye fields
(Bruce and Goldberg, 1984; Buchtel and Guitton, 1980; Goldberg and Bushnell, 1981:
Hikosaka and Wurtz, 1983; Mays and Sparks. 1980, 1981 Schiller. Sandell, and Maunsell,
1984; Schiller, True, and Conway, 1979: Sparks and Mays, 1981). Although patients
with discrete frontal lobe removals for intractable epilepsy produce obligatory saccades to
visual stimuli (Buchtel and Guitton, 1980; Goldberg and Bushnell. 1981). normal humans
have a remarkable capacity to override the influence of sensory cues (Murphy, Haddad.
and Steinman, 1974; Steinman, 1965). Steinman (1976, p.121) has, for example, written:
“Perhaps the most striking aspect of human oculomotor performance is its independence
from stimulus variables. By this I mean that a normal human adult can look about in
his visual world and attend whatever region catches his fancy undisturbed by ... light
on his retina, or, in perceptual terms, the way the visual world looks at a particular
movement.” Thus, when a human generates a planned eye movement, he or she does so
by suppressing the influence of lights on the retina that would otherwise have caused a
reactive eye rnovement.

When one considers how an accurate planned movement can be learned, however, it
becomes clear that visual error signals, although not the only type of error signals, are
the final arbiter of movement accuracy. The planned movement system. no less than the
reactive movement system, requires visual error signals to tune its movement commands.
Yet during a planned movement, sensitivity to visual signals is suppressed. How can the
planned movement system both suppress sensitivity to visual signals in order to generate a
planned movement at all, yet benefit from visual signals to learn how to generate accurate
planned movements? In particular, how are movement parameters that are learned by
the reactive movement system used to enable accurate planned movements to be learned,
thereby avoiding the problem of infinite regress? This issue, although critical to discovering
how reactive and planned movement systems are designed and interact. is invisible to an
analysis that is based entirely on movement performance. The same is true of many neural
designs that we have discovered during our analyses of sensory-motor data.

5. Learned Coordinate Transforms: Comparing Target Position with Pre-
sent Position to Gate Intermodal Learning

Many of the learning problems which are solved by an adaptive sensory-motor system
take the form of learned transformations between different coordinate systems. or neural
maps. Several of these learned transformations are summarized herein to illustrate major
issues in sensory-motor control. A good place to begin this discussion is with the central
problem of how, when an observer looks at an object, the observer's hand knows where to
move in order to touch the object? I will discuss this issue from the perspective of eye-hand
coordination in a mammal, but the issues that are raised, as well as the conclusions that
are drawn, generalize to many other species and sensory-motor systems.

How is a transformation learned between the parameters of the eye-hand system and
the hand-arm system so that an observer can touch a visually fixated object? Follow-
ing Piaget (1963), let us imagine that an infant’s hand makes a series of unconditional
movements, which the infant’s eyes unconditionally follow. As the hand occupies a variety
of positions that the eye fixates, a transformation is learned from the parameters of the
hand-arm system to the parameters of the eye-head system. A eircular reaction. or reverse
transformation, is also learned from parameters of the eye-head systemn to parameters of
the hand-arm system. This reverse transformation enables an observer to intentionally
move its hand to a visually fixated position.
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How do these two sensory-motor systems know what parameters are the correct ones
to map upon each other? This question raises the fundamental problem that many neural
signals, although large, are unsuitable for being incorporated into behavioral maps and
commands. They are “functional noise” to the motor learning process. The learning
process needs to be actively modulated, or gated, against learning during inappropriate
circumstances.

In the present instance, not all positions which the eye-head system or the hand-
arm system assume are the correct positions to associate through learning. For example,
suppose that the hand briefly remains at a given position and that the eye moves to foveate
the hand. An infinite number of positions are assumed by the eye as it moves to foveate
the hand. Only the final, intended. or expected position of the eye-head system is a correct
position to associate with the position of the hand-arm system.

Learning of an intermodal motor map must thus be prevented except when the eye-
head system and the hand-arm system are near their intended positions. Otherwise, all
possible positions of the two systems coud be associated with each other, which would lead
to behaviorally disastrous consequences. Several important conclusions follow from this
observation (Grossberg, 1978b: Grossberg and Kuperstein, 1986).

(1) All such adaptive sensory-motor systems compute a representation, or map, of
target position (also called expected position. or intended position).

(2) All such adaptive sensory-motor systems also compute a representation of present
position.

(3) During movement, target position is matched against present position. Intermodal
map learning is prevented except when target position approximately matches present
position (Figure 1). A gating, or modulator, signal is thus controlled by the network at
which target position is matched with present position. This gating signal enables learning
to occur when a good match occurs and prevents learning from occurring when a bad match
occurs.

{(4) In order to compare target positions with present positions. both types of data must
be computed in the same coordinate system. Present eye position is computed with respect
to head coordinates. Thus there is an evolutionary pressure to encode target position in
head coordinates.

Figure 1

6. Trajectory Formation Using Neural Vectors: Automatic Compensation
for Present Position

The above discussion of how intermodality sensory-motor transformations are learned
also sheds light upon how intramodality movement trajectories are formed. Intermodality
transformations associate target positions because only such transformations can avoid
the multiple confusions that could arise through associating arbitrary positions along a
movement trajectory. Target position commands are not, however, sufficient to generate
intramodality movement trajectories. In response to the same target position command.
an eye, arm, or leg must move different distances and directions depending upon its present
position when the target position is registered.

Present position signals can be used to convert a single target position command into
many different movement trajectories. Computation of the difference between target posi-
tion and present position at the match interface in Figure 1 generates a movement vector
that automatically compensates for present position. Such automatic compensation ac-
complishes a tremendous reduction in the memory load that is placed upon an adaptive
sensory-motor system. Instead of having to learn whole movement trajectories, the system
only has to learn intermodality maps between target positions. The neural vectors which
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are computed from target positions and present positions at the match interface automati-
cally generate the movement commands from which the trajectory is formed. In summary.
consideration of the types of information that can be learned during motor development
leads to general conclusions about how movement trajectories are formed. and thus about
the way in which other neural systems can influence the planning of such trajectories.

In the saccadic eye movement system, there is now convincing experimental evidence
that a critical stage in the generation of a movement command consists in the computation
of a neural vector (Bruce and Goldberg, 1984, 1985: Hallett and Lightstone. 1976; Mays
and Sparks. 1980, 1981: Schiller and Sandell, 1983; Sparks and Mays. 1981: Zee. Optican.
Cook. Robinson, and Engel. 1976), and that such vectors are manipulated both by the
superior colliculus and the frontal eye fields. As in the general discussion above, such
a vector computation compares a target position with a present position to generate a
movement command. In the case of eye movements, the target position is derived from the
position of a light on the retina (Figure 2). The present position is derived from a position
of the eye in the head. Subtraction of present position from target position generates a
difference vector that represents how far the eye must move in order to foveally fixate a
target. Before discussing the learned transformations which need to be carried out in order
to realize this ostensibly simple computation. I will pause to further emphasize some of its
conceptual implications.

Figure 2

Computation of mnovement vectors is a radically different approach to generating a tra-
jectory than are traditional computations based upon a Newtonian analysis of movement
kinematics. In a Newtonian analysis, every position within the trajectory is assumed to be
explicitly controlled {Atkeson and Hollerbach, 1985; Brody and Paul. 1984; Hogan, 1984:
Hollerbach. 1984). Such computations rapidly lead to a combinatorial explosion which is
hard to reconcile with the rapidity of biological movement generation in real-time. In a
vector computation, the entire trajectory is never explicitly planned. Instead. a target
position is computed which determines where the movement expects. or intends, to termi-
nate. The subtraction of present position is an automatic process which compensates for
the variability of the starting position. The vector which is hereby computed can generate
an accurate movement without ever explicitly computing a planned sequence of trajectory
positions for the whole movement. In a typical saccadic movement. a single vector may
generate the entire movement. In arm movements. by contrast. a continuous comparison
of a fixed target position with the present positions achieved during the movement is of-
ten made (Bullock and Grossberg, 1986). All of these compensations for present position
changes are automatically registered. and therefore place no further burden whatsoever
upon the computation of planned movement parameters. In addition. such automatic
compensations for present position spontaneously generate the major invariants of arm
movements that have been discovered to date. Thus the general problem of how neural
vectors are computed is a central one for the understanding of trajectory formation in
several movement systems.

7. Learned Transformation of Target Position from Retinotopic to Head
Coordinates: A Many-To-One, Invariant, Self-Regulating Target Position Map

Despite the apparent simplicity of the difference vector concept. its actual computation
in an adaptive system requires the solution of several important problems. All of these
problems derive from the fact that target position and present position are computed
using different kinds of information. One thus cannot compare thein unless they can first
be made dimensionally consistent.

In particular. a light on the retina is computed in a retinotopie coordinate system.
because lights hit the retina. Present eye position is computed in a head-centered. or
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egocentric, coordinate system because the eyes move in the head. In order to show how
target position and present position become dimensionally consistent, Kuperstein and I
analysed how the position of a light on the retina can be transformed from a retinotopic
coordinate system, or frame, into a head coordinate system, or frame. Once target positions
are computed in a head frame they can be compared with present positions which are also
computed in a head frame, as in Figure 1. Neurophysiological data suggest that one
place where a target position map in a head frame is computed is the posterior parietal
cortex (Anderson, Essick, and Siegel, 1984; Hyvarinen, 1982; Lynch, 1980; Motter and
Mountcastle, 1981).

In order to convert the position of a light on the retina into a target position in head
coordinates, one needs to join together information about the light’s retinotopic position
with information about present position of the eye in the head (Figure 3). We suggest
that this type of transformation is learned. Otherwise, the retinotopic system and the
present position system-—which are widely separated in the brain and designed according
to different internal constraints—would also have to be pre-wired with perfectly chosen
parameters for interaction with yet another brain system. We have shown how to avoid
precise pre-wiring. Indeed, we have shown how a transformation can be learned even if
parameters are coarsely chosen initially and if significant portions of either system are
damaged or even destroyed. This type of learning exhibits properties which are of general
interest in other movement systems and also in cognitive psychology. I will therefore
describe its major elements here.

Figure 3

The most important properties of this transformation are that it is many-to-one, in-
variant, and self-regulating. As Figure 3 illustrates, many combinations of retinal po-
sition and eye position correspond to a single target position with respect to the head,
as Grobstein ef al. (1981) have also emphasized in their study of frog tectum. When a
single representation in the brain is activated by all of these possible combinations, the
transformation is said to be invariant (Figure 4). The key difficulty in understanding
how such an invariant transformation is learned arises from its many-to-one property. The

Figure 4

many-to-one property implies that each retinal position and each eye position can activate
many target positions in head coordinates (Figure 5). Even after learning takes place, each
pair of retinal and eye positions can activate many target positions in head coordinates,
but only the correct target position receives the maximal total activation.

Figure 5

What prevents learning due to one pair of retinal and eye positions from contradicting
learning due to a different pair of positions? In particular, if pairing retinal position R, with
eye position E| strengthens the pathways from these positions to target position T;, then
why does not future pairing of R; with a different eye position E; continue to maximally
excite T} instead of the correct target position corresponding to R; and E;? How is a
globally consistent rule learned by a network, despite the fact that all computations in
the network are local? How can a target position map be implicitly defined, such that
each eye position and retinal position, taken separately, activates a large number of target
positions, yet in combination always maximally activate the correct target position?

Finally, the property of self-regulation means that the map can correct itself even if
a large fraction of the retinal positions and/or eye positions are destroyed. or if their
parameters are otherwise altered through time. Destruction of a single retinal position
eliminates all the combinations which that position made with all eye positions to activate
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target positions. In a similar fashion, destroying a single eye position can disrupt all target
positions with which it was linked. A self-regulating map must thus be able to reorganize
all of its learned changes to maintain its global self-consistency after removal of any of its
components.

The self-regulation property is illustrated by the computer simulation summarized
in Figure 6. Each row in Figure 6 depicts learning of target positions corresponding
to a different number of retinal and eye positions. More combinations of positions are
represented in each successive row. The first column in each row depicts an intermediate
learning stage, and the second column depicts a late learning stage. The abscissa plots
topographic positions across the retinal and eye positions maps, whereas the ordinate plots
the sizes of the adaptive path strengths, or learned long term memory (LTM) traces, in
the pathways from these maps to the target position map (TPM). Such a TPM refines
the concept of target position map that is schematized in Figure 1. The LTM traces were
randomly chosen before learning began. A comparison of panels (b), (d), and (f) shows
that the LTM traces can reorganize themselves when more combinations of positions are
associated in such a way as to (approximately) preserve that part of the map which was
learned when fewer combinations of positions were associated. This self-regulation property
also holds when more combinations are replaced by fewer combinations, or if the initial
LTM traces are not randomly chosen.

Figure 6

8. Autoreceptors: Presynaptic Competition for Long Term Memory

The complete theory of how an invariant self-regulating target position map (TPM) can
be learned, as well as variants of this theory, are developed in Grossberg and Kuperstein
(1986). Herein I emphasize three key points about the theory that are especially relevant
from an ethological perspective: (i) the need to specialize the laws for individual cells
to enable them to interact effectively in a specialized network to achieve a prescribed
functional capability; (ii) the need to recognize these specialized laws as evolutionary
variations of general dynamical principles; and (iii) the need to solve the problem of infinite
regress.

(i) The specialization in question achieves the invariance and self-regulation properties
of the TPM. How do all the LTM traces whose pathways project to a single TPM cell
readjust themselves in a compensatory fashion when any one of these LTM tracs changes
due to learning (Figure 3})? We suggest that the synaptic endings in which these LTM traces
are computed contain autoreceptors (Cubeddu. Hoffmann, and James, 1983; Dubocovich
and Weiner, 1982: Groves and Tepper, 1983; Groves, Fenster, Tepper, Nakamura, and
Young, 1981: Niedzwiecku, Mailman, and Cubeddu, 1984 Siever and Sulser, 1984; Tepper,
Young, and Groves, 1984). Then when transmitter is released by one synaptic ending. a
portion of it can undergo reuptake via the autoreceptors of other active and nearby synaptic
endings. Reuptake has an inhibitory effect on the LTM trace of each synaptic ending. Thus
autoreceptors help to realize a type of presynaptic competition among all the LTM traces
whose pathways converge upon the same cell within the TPM.

Such an LTM trace obeys an equation of the form
d n
am= €5,|-Fz,+Gr, - H Z Skzk]]. (1)
k=1

In (1), 2,; is the LTM trace in the pathway from the ith cell in the retinotopic map or eye
position map to the jth cell in the TPM; S, is the signal emitted by the ith cell into this
pathway; and z, is the activity, or short term memory (STM) trace, of the jth TPM cell.

The terms ¢, F, G, and H are constants. Equation (1) says that reuptake via autoreceptors
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of a fraction of released transmitter, as in term —H Y_F_, Sy 2,, inhibits the growth of the
corresponding LTM trace.

Although autoreceptors are well known to occur in certain transmitter systems, no-
tably catecholaminergic systems, this is the first time that they have been used to explain
such a high-order functional property as formation of an invariant, self-regulating TPM.
If this TPM is indeed to be found in posterior parietal cortex and if the autoreceptors are
catecholaminergic, then the theory suggests that experimentalists search for catecholamin-
ergic autoreceptors in those regions of the posterior parietal cortex that are used to build
up a TPM in head coordinates.

9. Invariant Map Formation by Associative Learning

(i1) There are several senses in which equation (1) is a specialization of a general learn-
ing law. For one, the type of learning which is used to generate a TPM is a variant of the
simplest type of associative learning, namely classical conditioning. The events controlled
by the external environment do not include an explicit conditioned stimulus (CS) and
unconditioned stimulus (US). However, a combination of externally delivered inputs and
internally generated signals funetionally act like a CS and a US. The CS is a combination of
an externally delivered retinal input and an internally generated eye position signal. This
eye position signal computes the initial eye position before the movement occurs (Figure
3). The US is also an internally generated eye position signal. This eye position signal
computes the final eye position after the movement is over. The retinotopic position and
the initial eye position act together like a composite CS which is capable of learning a final
eye position US.

There is a second sense in which learning of an invariant TPM is a special case of a
more general learning scheme. Removing the autoreceptor term in equation (1) by setting
H = 0 converts the equation into a learning law which has been used to explain a variety of
data about classical conditioning, instrumental conditioning, list learning, and learning of
perceptual and cognitive recognition codes (Carpenter and Grossberg, 1986a, 1986b, 1986¢;
Grossberg, 1976, 1982a, 1982b, 1982c, 1984: Grossberg and Levine, 1986; Grossberg and
Stone, 1986; Kohonen, 1982, 1983). Thus processes such as invariant map formation and
list learning, which appear to be quite unrelated when described using lay language, can
now be studied as variations of general dynamical laws using a formal language whereby
adaptive designs can be mechanistically characterized. Such linkages help to discover a
mechanistic unity behind the remarkablc behavioral diversity that I noted at the beginning
of this chapter.

The example of TPM formation also illustrates how the problem of infinite regress
(Section 4) enters an analysis of adaptive systems. Each composite CS learns a US that
represents the final eye position after a movement terminates. Map learning is invariant
because all composite CS’s which are associated with a single final eye position are capable
of learning this position, due to the self-regulation property. However, the task of the
system is to learn a target position, not just any final eye position. The final eye position
equals the target position only if the eye movement is accurate.

In the complete theory, such accuracy is due to the fact that the visually reactive
movement system is sensitive to visual error signals (Section 13), and uses these error
signals to improve the accuracy of its movements until visually reactive saccades become
accurate. The theory assumes that learning of an invariant TPM takes place while the
system is in its visually reactive mode. Thus an invariant TPM can be learned because the
(distinct) visually reactive system can correct its movement errors. Once an invariant TPM
is learned, it stimulates further learning within the attentionally modulated and predictive
movement systems of which it forms a part. As a consequence of this learning, these
movement systems can compete effectively with the visually reactive system for control of
overt movements. | now discuss some of the other functional problems which the system
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i as a whole needs to solve to realize this developmental progression, and whose solution is
X triggered by the self-organization of a TPM.

10. Associative Transformation of Target Positions into Motor Coordinates:
Automatic Computation of Vectors

The transformation of target position from retinotopic coordinates into head coordi-
nates needs to be followed by further learned transformations. One such learned trans-
formation is necessary in order to compute a movement command vector by subtracting
present position from target position (Section 6). Target position. whether in retinotopic
or head coordinates. is determined by a visual input. In contrast, present position is com-
puted in motor coordinates, since the position of each eye in the head is determined by
the relative lengths of six muscles that are organized into three agonist-antagonist pairs.
Before present position can be subtracted from target position, the two types of infor-
mation must be made dimensionally consistent. Only then can a vector be computed by
subtraction.

To solve this problem, we suggest how a target position in head coordinates can be
recoded, by a learned transformation, into a target position in motor coordinates {Figure
7). Then present position in motor coordinates can be subtracted from target position
in motor coordinates to compute a vector in motor coordinates. A surprising conclusion
of this analysis is that the same network region which learns to transform target position
into motor coordinates also automatically computes a vector in motor coordinates. Thus
what appeared to be two distinct problems can be solved by a single properly specialized
network. This network is called the head-muscle interface, or HMI. The HMI is the match
interface that was schematically represented in Figure 1.

T

2 AL NN

Figure 7

Figure 8 shows a macrocircuit which relates the HMI to its sources of target position
and present position signals. When a population within the TPM is activated by a retinal
light, the population sends inhibitory signals along conditionable pathways to all the cells

2 Figure 8

of the HMI. The HMI also receives present position signals, which are computed in motor
coordinates. These present position signals are corollary discharges that are derived from
outflow signals to the eye muscles (Figure 9). As in the learning of a TPM (Figure 4)
and in the learning of an intermodality associative transform between TPM's (Figure 1),
learning within the HMI is prevented from occurring by a learning gate. or modulator,
except after an eye movement is over. The visually reactive system guarantees that the
corollary discharges which the TPM-activated inhibitory pathways learn after a movement
terminates are actually target positions. Thus, transforming target position from head
coordinates into motor coordinates is also a specialized type of associative learning.

-ta s 2 &

Figure 9

Each target position in motor coordinates is encoded by the LTM traces of the in-
hibitory pathways that are activated by that target position from the TPM. Thereafter,
when that TPM population is activated, it reads out these LTM values, as inhibitory sig-
nals, into the HMI. Present position signals are also read into the HMI, but as excitatory
\ signals. The differences between these target position and present position sigrals generate
3 an STM activity pattern across HMI cells that encodes a vector in motor coordinates.

These properties of HMI dynamics are succinctly summarized by the following network
equations:
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Short Term Memory

d

(EIJ = _AIJ+G(ZSI)(_ZStZt]+I))' (2)

Long Term Memory

d
(‘EZU = EPS,(-'Z,] + B[IJ]*)'. (3)
Vector

= ([z1] " [z2] " oo [z6] 7). (4)

where f
Gy s)={y TLg20 (5)

+ f
w17 = {8 e 2o ©)

and P is a Now Print signal that becomes positive only after a movement is over. As
in equation (1), z, is an STM trace; in particular, r, is the activity of the jth HMI
population. Function 2,; is the LTM trace from the ith TPM population to the jth HMI
population. A comparison of the learning equations (1) and (3) shows that both equations
are specializations of a more general learning process. Equation (1) contains autoreceptors.
Equation (3) contains a movement-sensitive Now Print signal. As the discussion subsequent
to equation (1) noted, such Now Print modulation of learning is also needed when equation
(1) is specialized within a TPM-learning network.

The vector V in (4) is simply the pattern of output signals generated by the activities
(zy,z9, .... xg) of the HMI cells. This output signal pattern also determines the LTM
pattern that is learned via equation (3). A complete analysis of how the HMI recodes target
positions into motor coordinates and reads out vectors in motor coordinates is provided in
Grossberg and Kuperstein (1986).

11. Vectors in Motor Coordinates Are Adaptively Transformed into Retino-
topic Coordinates

A vector in motor coordinates must itself be further transformed before it can effec-
tively generate accurate movements. This is true because the final test of an eye movement
command’s accuracy is whether or not the command enables the eye to foveate a target
light. Such a test can only be carried out using visual error signals: in particular. using a
measure of how far the target light is from the fovea after the movement is over. This fact
suggests that the vector in motor coordinates must be recoded into a retinotopic coordi-
nate system so that it can benefit from visual error signals that are also computed in a
retinotopic coordinate system. Thus, after converting visual information into motor coodi-
nates in order to compute a vector command, the movement system then reconverts motor
coodinates back into retinotopic coordinates to utilize the error-correcting properties of
visual error signals.

The properties of the HMI are essential for carrying out this transformation. Target
positions in either head or motor coordinates cannot, in principle. be directly transformed
into a retinotopic frame, because the eye can move with respect to the head. On the other
hand, the HMI automatically transforms target positions into vectors. Vectors in motor
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coordinates can be transformed into retinotopic coordinates, because a vector compensates
for initial eye position.

12. Distinct Vectors Activate Distinct Movement Command Pathways Us-
ing Interactions Between Adaptive Filter and Competition Mechanisms

Two problems must be solved before a vector in motor coodinates can generate move-
ment commands capable of benefitting from visual error signals. The first problem is to
show how distinct vectors in motor coodinates, which all activate a common set of HMI
cells, can activate distinct movement command pathways. The second problem is to show
how each distinct movement command pathway can correct its movement command us-
ing visual error signals. Due to the parsing of vectors into distinct movement command
pathways, altering the command controlled by one pathway will not disrupt the movement
commands that are controlled by other pathways.

A solution to the first problem is schematized in Figure 10. The problem is to parse
vectors so that each vector maximally activates a distinct cell population at the next
processing stage. Expressed more generally, such a parsing process recodes distinct spatial
patterns into distinct locations in a topographically organized map. Then each location
can activate its own movement command pathway.

Figure 10

Several closely related models of this type of transformation are developed in Gross-
berg and Kuperstein (1986). Figure 11 illustrates a computer simulation of how such a
topographic map recodes a vector in motor coordinates into a unimodal focus of maximal
activity.

Figure 11

A model capable of realizing such a transformation through learning combines con-
ditionable pathways from the HMI to the topographic map with competition, or lateral
inhibition, between the populations of this map. The conditionable pathways are said to
form part of an adaptive filter. Combinations of adaptive filter and competition mech-
anisms are ubiquitous in neural models of map formation. See Banquet and Grossberg
(1986), Carpenter and Grossberg (1986a, 1986b, 1986¢), Cohen and Grossberg (1986), and
Grossberg and Stone (1986) for some recent examples of such models in the learning of
cognitive recognition codes. Thus the problem of recoding vectors into locations is a spe-
cial case of a more general theory of code learning. The mechanistic unity achieved by this
theory can be clearly appreciated only by using a formal language capable of rigorously
characterizing its adaptive design principles.

The model of how an invariant TPM is learned (Section 7) may also be included in this
coding theory. Such a model also uses a combination of adaptive filter and competition
mechanisms. In forming an invariant TPM, competition is presynaptically mediated by
autoreceptors at the synaptic terminals of adaptive filter pathways. In forming a topo-
graphic map, competition is postsynaptically mediated by the target cells of the adaptive
filter.

13. Automatic Gain Control of Movement Commands by Visual Error Sig-
nals: Cerebellar Learning

The second problem concerns the manner in which each movement command pathway
can individually benefit from visual error signals to generate a more accurate movement in
the future. This analysis leads to a model of learning by the cerebellum which significantly
extends earlier models of cerebellar learning (Albus, 1971; Brindley, 1964: Fujita, 1982a,
1982b; Grossberg, 1964, 1969, 1972; Ito, 1974; Marr, 1969; McCormick and Thompson,
1984). I emphasize two key properties of this model herein: (i) the dual action of each
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light; and (ii) the learning of a motor synergy. The remainder of this section considers the
dual processing issue.

Each light on the retina which is chosen to generate a movement command is processed
in parallel along distinct pathways (Figure 12). One pathway—labelled 1 in Figure 12—
generates a movement command. The other pathway-—labelled 2 in Figure 12—generates
an error signal. The movement command is registered and stored in short term memory
before the eye moves and can lead to an overt movement. The error signal is registered after
the eye moves and provides an error measure of how far the target light still deviates from
the fovea. Each movement pathway is, in turn. broken up into two parallel components:
an unconditioned pathway and a conditioned pathway. The unconditioned pathway can
generate a movement command even before movements become accurate through learning.
This pathway creates the occasions for registering visual error signals and thereby learning
a more accurate command. Thus learning by this system operates through a perform-and-
test-scheme. Such a scheme realized a type of instrumental conditioning, because behaviors
are emitted and the consequences of these behaviors, in the form of error signals, shape
their future accuracy. The actual conditioning law is, however, again a variant of a general
classical conditioning mechanism.

Figure 12

Conditioning in this system takes place in the Adaptive Gain Stage, or AG stage
(Figure 12). The AG stage is identified with the cerebellar vermis, based upon data which
show that this brain region controls modification of a saccade’s pulse gain (Optican and
Robinson, 1980). The conditioned movement pathway generates sampling signals which
pass through the AG stage and add a conditionable movement signal to the total movement
command. An error signal acts to change the size, or gain, of the conditionable movement
signal. Thus the AG stage is a region where automatic gain control of the total movement
command takes place.

All the movement commands are feedforward commands in Figure 12. Feedback in-
fluences the system by controlling the size of the error signals which change the gain of
future movement commands. In Figure 12, feedback is ezternally mediated: a feedforward
movement commmand elicits a movement which generates feedback in the form of a visual
error signal. In other circuits which use the AG stage, feedback can be internally mediated
(Section 13).

14. Learning a Motor Synergy: Opponent Processing of Error Signals

The second key property of the AG stage concerns its ability to convert visual error
signals, which individually activate only a single retinal position. into correct and syn-
chronous movement commands to all the muscles which move the eye. This property
is realized by preprocessing the error signals several times before they can be sampled
by the conditioned movement pathway. Two processing constraints conceptualize these
preprocessing stages: (a) the Opponent Processing constraint, and (b) the Equal Access
constraint. The need for Opponent Processing—which is a new feature of our model—can
be seen as follows.

Each eye is moved by three pairs of agonist and antagonist muscles. One pair moves
the eye horizontally. The other two pairs move the eye obliquely, and together can generate
vertical movements (Figure 13a). I now indicate why an increase in the gain of an agonist
muscle command must generate a decrease in the gain of the corresponding antagonist
muscle command, and conversely. In other words, each visual error signal has antagonistic,
or opponent, effects on the conditionable gains of the muscle commands which it changes.

Figure 13

In order to realize the Opponent Processing constraint, suppose that the retina is
topographically transformed from retinotopic coordinates into a motor map containing
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six sectors (Figure 13a). Each pair of agonist-antagonist muscles—(a*,a~), (8%,087),
" p’ ,7~ ) —is represented by opposite sectors in the sector map. A visual error signal which

alls within a prescribed sector increases the conditioned gain of the corresponding muscle
and decreases the conditioned gain of the antagonistic muscle. This scheme can correct
undershoot, overshoot, and skewed movement errors as follows.

(]

3 Suppose that a light activates the retinal position labelled 1 in Figure 13b and thereby
j causes a saccade. Suppose that, after movement, the light activates position 2. Such a
g movement defines an undershoot error: the eye does not move far enough toward the right
to foveate the light. If the error signal increases the gain of muscle 3% and decreases the
gain of muscle 37, then the eye will move further toward the right the next time that
position 1 is activated, thereby tending to correct the undershoot error.

The need for opponent processing can be seen by considering the case of an overshoot
error in Figure 13c. Here a light to position 1 moves the eye in such a way that the
’ error signal activates a position 2 on the opposite side of the fovea. In other words, the

: eye moves too far to the right. Due to opponent processing, the error signal increases
the gain of muscle 3~ and decreases the gain of muscle 3%, thereby tending to correct
the overshoot error the next time position 1 is activated. A similar analysis shows how
opponent processing of error signals corrects skewed errors, as in Figure 13d.

15. The Equal Access Constraint

Figure 13 emphasizes the fact that, before learning occurs, a light to a fixed retinal
position (1) can cause undershoot, overshoot, or skewed errors. The system cannot a prior:
predict which type of error will occur as a result of its inadequately tuned parameters. In
order to correct any possible error, each position must be able to activate a conditioned
movement pathway that is capable of sampling error signals delivered to any of the motor
sectors. This is the Equal Access constraint, which was first articulated in a formal model
of cerebellar learning by Grossberg (1964, 1969).

~ In order to realize the Equal Access constraint, we assume that the motor sectors are
mapped, via a complex logarithmic map (Schwartz, 1980), into motor strips (Figure 14).

'S Figure 14

. Then a single conditioned movement pathway can sample gain changes due to error signals
o which activate any motor strip. Figure 15 describes two variants of this design. Each
= variant realizes both the Opponent Processing constraint and the Equal Access constraint.

. Figure 15

The most obvious, and by now classical, cerebellar interpretation of this anatomy is
2 that the sampling signals are carried by parallel fibers through the dendrites of Purkinje
2 cells, whereas the error signals are carried by climbing fibers to the Purkinje cell dendrites
(Albus, 1971; Grossberg, 1964, 1969; Marr, 1969).

" In summary, visual error signals are mapped from retinotopic coordinates into motor
sector coordinates and then into motor strip coordinates, so that they can all be sampled
by individual movement command pathways which can supply conditioned gain signals to
their corresponding muscles.

\ 16. Adaptive Linearization of the Muscle Plant: Error Signals from Out-
X flow-Inflow Mismatches

3 All of the above constraints have been implemented using a variant of the associative
A equation (3) in which z, is replaced by a visual error signal. Then perfect learning is
A

achieved if the muscle plant responds linearly to the total movement signal, which is a
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sum of unconditioned and conditioned components (Figure 12). Figure 16A describes the
outcome of a computer simulation that demonstrates perfect learning. Unfortunately the
muscle plant is known to be nonlinear (Robinson, 1970; Schiller, 1970). When the muscle
plant is nonlinear, a single retinotopically coded source of conditioned pathways cannot
adequately learn to correct foveation errors using visual error signals. Figure 16B describes
the outcome of a computer simulation that illustrates this failure when the muscle plant
exhibits a slower-than-linear, or saturating, nonlinearity.

Figure 16

This failure raises one of the classical issues about sensory-motor control: How does
the brain compensate for changes in muscle plant gains and nonlinearities that may occur
throughout life due to normal development, aging, minor muscle tears, or changes in
blood supply? How does the brain continue to generate accurate movement commands
despite the fact that the muscles which execute these commands change their response
characteristics through time? In particular, how does the brain compensate for these
changes without altering the entire hierarchy of learned transformations that are used to
move the muscles? In Grossberg and Kuperstein (1986), a detailed analysis and solution
of this problem is offered. Herein I discuss some main points that are relevant to an
ethological perspective.

Outflow signals give rise to corollary discharges which provide information about
present position (Figure 9). However, the laws that goven the muscle plant are not known
a priori to the outflow source. It is not known how much the muscle will contract in
response to an outflow signal of fixed size. Even if the outflow source somehow possessed
this information at one time, it might turn out to be the wrong information at a later
time, since the muscle plant characteristics can change through time.

In order to use an outflow signal as a reliable source of present position information,
the movement system as a whole must guarantee that the muscle plant reacts linearly, and
with a reasonable gain, to outflow signals, even if the muscle plant is nonlinear. Once a
linear muscle response is achieved, perfect learning using visual error signals (Figure 16A)
will also be possible.

The relationship between the size of an outflow command and the amount of muscle
contraction is, in principle, undeterminable without some type of inflow information from
the muscle itself concerning its state of contraction. We suggest that a brain region exists
wherein comparisons between outflow and inflow signals are used for this purpose. This '
region is called the outflow-inflow interface. or OIl, and forms a part of a larger circuit ;
called the Muscle Linearization Network, or MLN (Figure 17).

Figure 17

We suggest how spatial patterns of outflow signals are matched against spatial patterns
of inflow signals at the OIl. Good matches imply that the muscles are responding linearly,
and with a reasonable gain, to outflow signals. Bad matches must be able to adjust
muscle plant gain as well as muscle plant nonlinearities. This is accomplished as follows.
Mismatches within the OII generate error signals to the AG stage that can change the )
size of the total outflow signal to the muscle plant (Figure 17). The conditionable part of
the total outflow signal adds or subtracts the correct amount of signal to make the muscle
react as if it is a linear muscle plant with a reasonable gain. Thus, in response to changes
in the muscle plant, automatic gain control signals compensate for these changes through
learning. If the muscle plant changes due to aging or accidents, mismatches are caused
within the OII and trigger new learning. The gain control signals automatically alter the
total ¢ stflow command until the muscle again reacts linearly. Thus the linearization of the
muscle plant is a learning process that takes place on a slower time scale than registration
of a corollary discharge. We have used this model of the MLN, and its microcircuit
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refinements, to suggest explanations of diverse neurophysiological and clinical data, such
as data about strabismus and dysmetria (Ron and Robinson, 1973; Steinbach and Smith,
1981; Vilis, Snow, and Hore, 1983).

The error signals from the OII are assumed to reach the AG stage, or cerebellum, just
as in the circuit of Figure 12. In Figure 12, the error signals are visual error signals that
are mediated by feedback from the external environment. In Figure 17, the error signals
are due to outflow-inflow mismatches that are mediated by feedback pathways internal to
the brain. In both cases, the same AG stage model is employed, although different cells of
the AG stage are used in the two distinct circuits. In particular, Ron and Robinson (1973)
have reported data which indicate that the dentate nucleus of the cerebellum may form
part of the AG stage cells that are used by the MLN. A comparison of Figures 12 and 17
illustrates the following general conclusions:

Once a single functional processor, such as the AG stage. is successfully invented by
the evolutionary process, its functional capability can be used by several sensory-motor
circuits that may be invented or specialized at later evolutionary stages.

Solution of a single functional problem can provide the foundation for an adaptive
solution of several other functional problems. For example, adaptive linearization of the
muscle plant both enables corollary discharges to be used as present position signals and
enables visual error signals to effectively correct foveation errors.

Different types of present position information are available to the brain, but each
type is used in only certain ways. For example, I have already described four ways in
which outflow signals are used: to unconditionally move the eye (Figure 9), to modify
the unconditional movement command with a conditionable movement command through
the AG stage, to generate corollary discharges at the HMI (Figure 8), and to generate
error signals from the OII to the AG stage (Figure 17). Inflow signals, by contrast, have
only been used during my discussion to generate error signals from the OII to the AG
stage (Figure 17). Thus, although inflow signals are essential to determine how the eyes
will move, their role is indirect: They do not tell the system where the eyes are pointing,
but instead can initiate a learning process which enables the eyes to point where outflow
signals tell them to point.

The controversy about the role of outflow signals versus inflow signals as a source of
present position information is a classical one (Helmholtz, 1962; Ruffini, 1898; Sherrington,
1894). A mechanistic refinement of classical ideas, in the manner proposed above, seems
to be clarifying some of the core difficulties by introducing qualitatively new ideas, such
as the concept of a separate Muscle Linearization Network.

17. Attentionally Modulated Choices, Stable Postures, and Planned Move-
ment Sequences

The above discussion outlines some of the problems which need to be solved by a
neural and a computational theory of how a complex sensory-motor system adapts to
its environment. This list of problems does not, however, exhaust the problems which
such a system must solve. In addition, one must discover how an attentionally modulated
movement system, which bases its movement commands upon vectors (Section 6), can
benefit from the conditioned gains that are learned by a visually reactive movement system
(Section 13), yet can also suppress reactive movements in favor of attentionally salient
movements. One must analyse how a postural system can adaptively balance opponent
muscle forces to maintain stable postures in any of the positions to which a movement may
lead. One must characterize how a predictive movement system can encode a sequence
of movement commands, learn to group these commands into a unitized movement plan,
and read-out these commands in a manner that can override the momentary demands of
sensory cues. One must decide how intermodal cues, such as visual and auditory cues,
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can compete in a dimensionally consistent coordinate system to choose an overt movement
command.

Detailed neural models of all these processes have been suggested in the domain of
ballistic eye movements (Grossberg and Kuperstein, 1986) and are presently being devel-
oped in the domain of continuous arm movements and eye-hand coordination (Bullock
and Grossberg, 1986). The generality of the organizational principles and neural mecha-
nisms embodied within these models has begun to reveal a mechanistic unity behind the
rich diversity of behavioral and neural data about mammalian sensory-motor control, and
a still more far-reaching mechanistic unity between mechanisms of sensory-motor control,
perception, and cognition. These unifying principles and mechanisms have all been derived
from an analysis of how the real-time behavior of individual organisms adapts to complex
environments. Although a systematic comparative analysis of how such principles and
mechanisms are specialized across species will require an enormous amount of future work,
the theoretical framework which has already been articulated reaffirms the usefulness of a
neuroethological approach to the analysis of behavior.
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FIGURE CAPTIONS

1. Learning intermodal circular reactions: Learning is gated by signals which are
sensitive to how well target position matches present position within each modality. The
vectors which compare target position with present position are also used to generate
movement trajectories that automatically compensate for present position within each
modality.

2. A fixed target light excites a different retinal position wherever the eye assumes
a different position in the head. The difference between retinal position and eye position
provides a measure of how far the eye must move to foveate the target.

3. Many combinations of retinal position and eye position can encode the same target
position.

4. When the many combinations of retinal position and eye position that correspond
to each fixed target position all activate the same internal representation of that target
position in head coordinates, the ensemble of such head coordinate representations is said
to form an invariant map.

5. Every eye position and retinal position can send signals to many target position
representations.

6. Expansion of LTM maps due to an increase in the number of retinotopic positions
and eye positions that are combined to form target positions in head coordinates: (a)
Intermediate stage of learning using 40 positions of each type; (b) Final stage of learning
using 40 positions; {c¢) Intermediate stage of learning using 80 positions of each type;
(d) Final stage of learning using 80 positions; {e) Intermediate stage of learning using 160
positions of each type; (f) Final stage of learning using 160 positions. Initial values of LTM
traces are chosen randomly between 0 and 1. (Reprinted with permission from Grossberg
and Kuperstein, 1986.)

7. Target position is adaptively transformed from retinotopic coordinates into head
coordinates, and then into motor coordinates, so that it can be used to compute a vector
in motor coordinates at the head-muscle interface, or HMI.

8. Recoding of a target position map (TPM) into muscle coordinates at a head
muscle interface (HMI): The LTM traces at the ends of the conditioned pathways learn an
“adaptive inhibitory efference copy” from the corollary discharges that they are allowed
to sample when the learning gate is active between movements. When the efference copy
equals the sampled corollary discharges, learning ceases. On a future perfomance trial,
read-out of the target position subtracts from corollary discharge present position signals
to activate a vector in motor coordinates across the HMI cells. (Reprinted with permission
from Grossberg and Kuperstein, 1986.)

9. The outflow pathway generates present position information via corollary discharge
signals. (Reprinted with permission from Grossberg and Kuperstein, 1986.)

10. Distinct vectors in (a), (b), and (c) can activate the same populations of HMI cells.
In order for distinct vectors to activate distinct movement command pathways, they are
transformed into activations of distinct locations within a topographic map.

11. Computer simulation of a transformation from a vector in motor coordinates at the
HMI into a unimodal peak of activation within a topographic map. Difference vectors map
into distinct activation peaks. (Reprinted with permission from Grossberg and Kuperstein,
1986.)

12. The representation of the chosen first light gives rise to an unconditioned movement
signal and a conditioned movement signal. The unconditioned signal causes movements
that are corrected by the conditioned movement signal via learning. The conditioned
pathway carries sampling signals whose strength can be altered by second-light mediated
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error signals. These sampling signals give rise to the conditioned movement signal. The
representation of the first light must be stored until after the end of the saccade. so
that the second-light mediated error signal can act. The AG stage at which learning
occurs is identified with the cerebellum. (Reprinted with permission from Grossberg and
Kuperstein, 1986.)

13. (a) Motor sectors corresponding to agonist muscles (a@™.3~ .37 ) and antagonist
muscles {a”,37,77) of one eye. The position of the light before movement (labelled
1) activates a movement command pathway. The position of the light after movement
(labelled 2) generates an increase in the gain of the muscle in whose sector it falls, and a
decrease in the gain of the antagonist muscle. (b) An undershoot error. (c¢) An overshoot
error. (d) A skewed undershoot error. (Reprinted with permission from Grossberg and
Kuperstein, 1986.)

14. Logarithmic map from sensory sectors into motor strips: Each sensory hemifield
(a*.37,~v7) and (@ .37 .5 ) maps into a row of parallel motor strips. In this fractured
somatotopy, the strips of agonist-antagonist pairs (a”.a”). (3.3 ). and (v~.~ ) are
juxtaposed, much as in the case of ocular dominance columns in the striate cortex. A
pair of motor strip maps is depicted, one in each AG stage hemisphere. Outputs from
all agonist-antagonist pairs compete before the net outputs add to the total movement
command. This circuit works even if only agonist muscles (a™.J3".~~) receive excitatory
error signals in one hemifield and antagonist muscles (a™,37,~7) receive excitatory error
signals in the other hemifield. An excitatory error signal to the a~ strip can weaken
the net a~ output of the contiguous strip via competition of the outputs, but cannot
strengthen the a™ output signal. An excitatory error signal to the a™ strip of the other
hemifield can strengthen the net a™ output. (Reprinted with permission from Grossberg
and Kuperstein, 1986.)

15. Two ways to achieve opponent conditioning of agonist-antagonist muscles: (a)
An error signal increases the conditioned gain at the agonist muscle strip and decreases
the conditioned gain at the antagonist muscle strip; (b) An error signal increases the
conditioned gain at the agonist muscle strip. Competition between agonist and antagonist
muscle strip outputs cause the decrease in the net antagonist output. A single sampling
signal can learn the gain changes appropriate to all the muscles. and can synchronously
read out these learned gains due to the rapidity with which the sampling signal traverses -
the motor strips. (Reprinted with permission from Grossberg and Kuperstein. 1986.) b

16. Computer simulation of saccadic error correction model. {A) Linear Muscle Plant:
(a) Topographic distribution of learned gains across the sampling pathways. (b) Muscle
response function used during the simulation. (c¢) Errors in 100 trials before learning begins
and 100 trials after learning ends. Negative values correspond to undershoots and positive
values correpond to overshoots. Learning is perfect. (B) Slower-than-Linear Muscle Plant:
Learning improves performance but cannot correct an unacceptable error size. (Reprinted
with permission from Grossberg and Kuperstein, 1986.) )

17. Some main features of the muscle linearization network, or MLN: The outflow-
inflow interface (OII) registers matches and mismatches between outflow signals and inflow
signals. Mismatches generate error signals to the adaptive gain (AG) stage. These error
signals change the gain of the conditioned movement signal to the motoneurons (MN). Such »
an MLN adaptively linearizes the responses of a nonlinear muscle plant to outflow signals.

The outflow signals can theretore also be used as a source of accurate corollary discharges .
of present eye position. (Reprinted with permission from Grossberg and Kuperstein, 1986.)
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Abstract

This paper investigates whether endpoint Cartesian variables or joint variables better
describe the planning of human arm movements. For each of the two sets of planning
variables, a coordination strategy of linear interpolation is chosen to generate possible
trajectories, which are to be compared against experimental trajectories for best match.
Joint interpolation generates curved endpoint trajectories called N-leaved roses. End-
point Cartesian interpolation generates curved joint trajectories, which however can be
qualitatively characterized by joint reversal points.

Though these two sets of planning variables ordinarily lead to distinct predictions
under linear interpolation, three situations are pointed out where the two strategies may
be confused. One is a straight line through the shoulder, where the joint trajectories
are also straight. Another is any trajectory approaching the outer boundary of reach,
where the joint rate ratio always appears to be approaching a constant. A third is
a generalization to staggered joint interpolation, where endpoint trajectories virtually
identical to straight lines can sometimes be produced. In examining two different sets of
experiments, it is proposed that staggered joint interpolation is the underlying planning

strategy.
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1 Introduction

A major approach towards studying biological motor control rests on the premise that
one can infer representations used by the brain from regularities in observed behavior.
External observations of movement patterns may lead to a set of variables that most
concisely describes them. It is then hypothesized that these descriptive variables are

used internally by the motor control system during movement planning to generate the

observed trajectories.

This paper investigates this approach by presuming that there is a distinct geomet-
ric planning level for the whole movement. The whole motion evolves as a result of
controlled relations among kinematic variables, and any dynamic effects due to joint
torque production, muscle activation, and reflexes are subservient to the kinematic
goals. An alternative is to suppose that only the endpoints of movement have a deter-
mined geometrical relationship, and that intermediate trajectory points are dynamically
determined through interaction of dynamic effects, muscle properties, and reflexes.

One argument to support the presumption that there is a kinematic representation of

the whole movement is that the geometry of the external world is more simply captured.

With dynamically determined trajectories, the location of a moving limb is hard to
predict or control and may violate environmental constraints (Hildreth and Hollerbach,
1986). Another argument derives from studies showing that the path of arm movement
and the tangential velocity profile along the path are not altered when the speed of
movement is changed or when the hand helds a weight (Atkeson and Hollerbach, 1985).
This indicates that dynamic effects are subservient to kinematic invariances. Yet the
final support must come from the success in locating a set of kinematic Qa.ria.blu that
concisely describes movement.

Two obvious choices for kinematic planning variables that have been frequently made
are hand position and joint angles. Support for hand position in terms of endpoint
Cartesian coordinates derives from experimental observations of path shape (Morasso,
1981; Viviani and Terzuolo, 1982), theoretical analysis of optimization strategies (Flash
and Hogan, 1985), and teleological arguments about interfacing to the geometry of
the external world (Hollerbach, 1985). One disadvantage with endpoint planning is
that an inverse kinematics solution is required, i.e., the conversion to corresponding
joint coordinates. Fortunately, the human arm has the correct kinematic structure

that would allow this computation to be done relatively efficiently (Hollerbach, 1985),
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although the computation is not trivial. Support for joint variable planning derives from

]

"

i experimental studies of Kots and Syrovegin (1966), Soechting and Lacquaniti (1981),
and Soechting et al. (1985). While an inverse kinematics computation is not required,
and hence joint variable planning is evidently a simpler strategy, the price paid is some
loss of endpoint control.

i In this paper, we examine possibilities in terms of the kinds of trajectories that can

' be produced utilizing either endpoint variables or joint variables. The eventual goal is

: to find the best match of predicted trajectories to experimental trajectories. To proceed

after a choice of variables in order to generate trajectories, a coordination strategy must

be hypothesized. We examine the simplest and most commonly proposed coordination
strategy, simple linear interpolation, in both endpoint variables and joint variables.

More complex planning strategies variables are of course possible. Hollerbach (1981)

suggested that in handwriting each Cartesian variable described an oscillatory motion,
with adjustable relative phase and frequency relationships. Morasso and Mussa-Ivaldi
(1982) suggested that elemental strokes were overlapped in time to form the letters
in handwriting. Viviani and Terzuolo (1982) and Lacquaniti et al. (1983) suggested
functional relationships between curvature, tangential velocity, and angular velocity of
the path. Nevertheless, the movement goals in these curved motions are more complex
than the simpe point-to-point reaching movements considered here, and this paper is
restricted to the commonly proposed coordination strategy of linear interpolation.

At the same time this paper identifies some pitfalls in this approach. There may
be situations where alternative strategies lead to nearly indistinguishable behavior. We
identify one such situation in this paper when movement approaches the edge of the
workspace. This approach is also sensitive to assumptions either in the details of the
variables chosen or in the coordination strategy chosen. We demonstrate an intermediate
strategy between the proposed extremes that sometimes looks like one alternative and
sometimes like the other.

In the present study, the characterization of interpolated movements and the identi-
fication of possible pitfalls will serve as the basis for analyzing two different experimental

studies of human arm movement in a vertical plane. In the first of these, Soechting and

Lacquaniti (1981) noted that joint rate ratios in the deceleratory phases of the move-
ments they studied appeared to approach a constant. In the second study, Atkeson and
Hollerbach (1985) noted both curved and straight endpoint Cartesian trajectories. We

examine the possibility that the intermediate strategy alluded to above is in effect in
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2 Linear Interpolation

In the subsequent discussion the human arm will be represented by a two-link planar
manipulator (Figure 1A). Although the human arm is of course easiiy capable of three-
dimensional movement, many experimental studies have confined the arm motion to a
plane. Two-link kinematics is sufficiently complex to develop principles of coordination,
and the results prove useful in more general analyses. For this two-joint arm, 6, rep-
resents the shoulder angle and 8, represents the elbow angle. No motion of the wrist
is assumed, and the length of the hand is included in the forearm length. The upper
arm length [/, is assumed equal to the forearm plus hand length l;, which is a good
approximation for the human forearm plus hand relative to the upper arm (Hollerbach
and Flash, 1982). For convenience, both lengths are set to 1.

The shoulder angle 8, corresponds to one of the psychophysical variables determined
by Soechting and Ross (1984). For a vertical arm movement the shoulder angle corre-
sponds to the second pitch shoulder rotation, while for a horizontal arm movement it
corresponds to the first shoulder yaw rotation. The elbow angle is the relative elbow
angle, as normally defined in robotics. Though the relative elbow angle is physiologi-
cally the most meaningful, Soechting and Ross (1984) suggest that the absolute forearm
inclination in the vertical plane is the most relevant psychophysical parameter. Never-
theless, in the section on joint interpolation the results are equivalent whether relative
or absolute elbow angle is used.

This section begins by developing the mathematics for linear interpolation in terms
of endpoint Cartesian coordinates and in terms of joint angles. Three equivalent math-
ematical forms are given that are useful in subsequent analysis, namely straight line,

interpolation, and constant velocity ratio.

2.1 Straight-Line Form

Conceptually the simplest strategy in terms of any planning variables is a straight line,
equivalent to a linear interpolation between initial and final points. In terms of endpoint

Cartesian variables (z,y), the familiar form for a straight line is (Figure 2A):

y(t) = y(to) _ y(ts) — y(to)
z(t) - z(to)  =z(ty) ~ z(to)

(1)

or equivalently,
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y(t) = mz(t) + b (2)
where m = (y(t;) — y(to))/(z(ty) — z(to)) and b = y(to) — mz(¢,). Here the initial point
at time ¢o is given by (z(to), y(to)) and the final point at time t; by (z(t,), y(t/)).

Cartesian coordinates are of course not the only possible variables describing end-
point position, as the polar coordinates r and ¢ (Figure 1B) are one of many possible
alternatives. Nevertheless, Cartesian coordinates have been primarily emphasized in
the literature, and have so far proven the most useful. Hence our attention will be
restricted to them.

A straight line in terms of joint variables is also the conceptually simplest planning

strategy. Such a straight-line motion is described by (Figure 2B):

81(t) — Bi(to) _ Gi(ts) = 6:(to) (3)
82(t) — 03(to) ~ Ga(ty) — 85(to)

or equivalently,

0,(t) = K0:(t) + ¢0 (4)
where K = (8,(t;) — 01(20))/(02(¢;) — 02(t0)) and @0 = 6 (to) — K8,(to).

During a straight-line motion in joint space, there is no particular control of the end-
point position, which evolves incidentally according to the characteristics of this coordi- '
nation strategy. At the movement ends, however, there must of course exist the knowl-
edge of the joint angles that correspond to the desired targets. Section 2.4 discusses
the inverse kinematic relation between the fixed Cartesian endpoints (z(¢,), y(to)) and
(z(ts),y(ts)), and the beginning and final joint angles (6;(to), 8;(to)) and (61(t)), 82(ty)).

2.2 Interpolation Form R

The straight-line forms just developed do not explicitly indicate how time evolves during )
the trajectory. This dependency is made clear in the interpolation form, by introducing

a common time function f(t) that parameterizes each variable.

et

z(t)=(z(ty) = z(to)) £(t) + z(to)
y(t)=(y(ts) — y(ta)) f(t) + y(to)

Rearrangement and division easily converts (5) into (1). In terms of joint variables, the

(5)

interpolation form is:
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8:(t)=(8:(ts) = 6:(t0)) f(t) + 6,(t0)
82(t)=(82{ts) — 82(t0)) f(t) + 05(t0)
The time function starts and stops appropriately (f(to) = 0 and f(t;) = 1), and does

(6)

not reverse direction (f(t) > 0). Later, considerable emphasis will be given to this
property of the interpolation form, namely that the trajectory cannot double back on
itself, although the trajectory may stop momentarily.

It is important that exactly the same time function f(t) be used for each variable;
otherwise a straight line would not result. The time function is most conveniently cast

in terms of rates f (t), so that in the case of joint velocities obtained by differentiating

(6):

él(t)=A91f(t)
éz(t)=A92j(t)
where A6, = (6,(t;) - 8,(to)) and A8, = (8,(t;) — 8,(to)) are the total angle displace-
ments through which each joint is interpolated. Figure 3A shows hypothetical joint

(7)

velocity profiles. Note once again that the joints execute the same time profile f(t) in
lockstep, starting and stopping together. The only difference is the amplitude of joint

displacement.

2.3 Velocity Ratio Form

A third equivalent form is a constant velocity ratio. In the case of joint angles, the joint

velocity ratio may be derived from (7):

6 A8,
—_—= — = 8

where K is a constant because the total joint displacements are fixed. We point out
again that this ratio is a constant precisely because each joint is executing the same
time profile, which cancels out in the division.

To show the equivalence in the other direction, suppose the joint rate ratio is a

constant K. Then by the chain rule:

6, _do, dt _ db, ©)
6, dt do,  db,
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Integration of the equation df, = Kdf, yields the straight-line equation (2). Thus the

following three forms have been demonstrated equivalent:

1. Joint interpolation,
2. Straight line in joint space, and

3. Constant joint rate ratio.

2.4 Kinematics

To decide whether a given trajectory has been executed under one or the other set
of coordinates, a description of the trajectory must be given in terms of each set of
coordinates. Direct kinematics derives the endpoint Cartesian coordinates from the

joint angles. From Figure 1A:

I=ll cos 01 + Iz COS(G] + 03)

: (10)
y=11 sin 01 + 12 sm(01 + 02)

WO

Inverse kinematics derives the joint angles from the endpoint position, and is more
computationally complex than the direct kinematics. From Figure 1B, since the link

lengths are assumed equal (I; = I3 = 1), an isosceles triangle is formed with the radial

v

line r to the endpoint. From the half-angle formula, each of the two equal interior angles

is half the exterior angle ;. Thus

cos(8;/2) =r/2 = /2% + y3/2 (11)
where the perpendicular from the elbow bisects the radial line of length r = /z7 + y?
from shoulder to endpoint. The shoulder angle 8, is simply the difference between the
polar angle ¢ = tan~!(y/z) and the interior angle 8,/2:

8, = tan"'(y/z) — 8,/2 (12)

The time parameter (t) has been left out for convenience.
In examining the kinematics, the transcendental functions relating joint angles to
endpoint positions would lead one to expect complex curves in one set of coordinates
corresponding to simple curves or straight lines in the other set of coordinates. The

following two sections investigate the joint angle trajectories corresponding to endpoint
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straight lines, and then the endpoint trajectories corresponding to joint angle straight

lines.

2.5 Trajectories under Endpoint Interpolation

The exact relationship between endpoint Cartesian variables and joint variables is highly
specific to the workspace region occupied by the straight line. To analyze this relation-

ship, it proves useful to focus on joint reversal points. Figure 4A shows a hypothetical

l
I
l
]
!
i
,
3
4

vertical straight-line motion. Points 1 and 4 correspond to maximum reach, when the
elbow joint is straight out. When the forearm is perpendicular to the straight line, the
shoulder joint reverses direction. This corresponds to point 2: both an upward and a
downward motion from this point causes the shoulder joint to rotate counterclockwise.
When the endpoint is closest to the shoulder, the elbow joint reverses direction. This
point 3 can also be characterized as the normal intersection from the shoulder to the
straight line. Motion either upward or downward from point 3 causes clockwise rotation
at the elbow joint.

Figure 4B shows the joint angle plot, where the specific joint angles are identified
corresponding to the four endpoints of Figure 4A. As can be seen, in general the joint
angle profile is curved. The extent of curvature depends on the portion of the curve
traversed, as determined by the exact start and stop points chosen along the straight
line. When the start and stop points do not cross a joint reversal point, the joint curves
are a bit simpler. This comprises motion within target pairs 1 and 2, 2 and 3. and 3
and 4. A motion crosses exactly one joint reversal point when, for the case of shoulder
reversal, one target is between 1 and 2 and the other target is between 2 and 3, and for
the case of elbow reversal, when one target is between 2 and 3 and the other is between
3 and 4. These single-joint reversal trajectories will be somewhat more compiex thar
the former trajectories. Finally for long enough motions, both joints can reverse one
target is between 1 and 2 and the other between 3 and 4. These motions will yieid *he
most complex joint angle plots.

This analysis covers all straight-line motions. First, if the straight line is at a differen-
inclination, the coordinate system can be rotated so that the line will appear vertica
Second, if the straight line is at a different normal distance from the shoulder. ‘¢
topology of the joint reversal points remains the same. The elbow joint reversai poin:

will remain on the r axis, while the shoulder joint reversal point 2 will move up as '«
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straight line moves away from the shoulder.

2.6 Trajectories under Joint Interpolation

When the link lengths for the two-link planar manipulator are the same, endpoint
trajectories arising from straight lines in joint space can be succinctly expressed using
polar coordinates. Letting r be the radial distance from the shoulder to the arm tip

and ¢ the angle the radial line makes at the shoulder (Figure 1B):

¢=0, + 02/2
(13)
r=2cos(82/2)
Given the straight line in joint coordinates (4) and substituting above,
é — do \
r—2cos<2K+l) (14)

When the link lengths are substantially different, such a simple expression does not
arise.

This class of polar coordinate curves is known as an N-leaved rose (Burlington,
1942), presumably because each complete curve looks like a rose petal, with the thickness
determined by some slope N. Figure 5 illustrates some straight-line joint paths (5A) and
the corresponding endpoint Cartesian paths (5B). The straight-line joint paths chosen
here all pass through the origin, corresponding to both angles at O degrees when the
arm is perfectly straight and horizontal, and are numbered 1 through 13. The endpoint
Cartesian paths corresponding to them are also numbered from 1 to 18. Arrows in
both diagrams indicate the direction of travel in each. The endpoint Cartesian curves
are symmetrical, although only half of each curve has been presented because of elbow
joint limits. As can be seen in Figure 5B, N-leaved roses tend to be strongly curved,
especially for movements that are not primarily radial movements through the shoulder.

As mentioned earlier, Soechting and Ross (1984) argue that the relevant psycholog-
ical variable for the elbow is the absolute forearm orientation 8, + 8,, rather than the
relative elbow angle 8;. It is easily shown that joint interpolation using the absolute

forearm orientation also yields an N-leaved rose, and hence the results will not change.
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2.7 Distinguishing Endpoint from Joint Interpolation

Summarizing the last two sections, straight lines in one space generally yield curved lines
in the other space. Hence interpolation in joint variables generally yields trajectories
readily distinguishable from straight-line hand paths.

There is one important special case where the two planning strategies can be confused
— any Cartesian straight line through the shoulder. Theny z = m, b = 0, and from
(12):

9, =tan’'m -4, 2 (15)

In terms of joint variables 8, and 8, the trajectory is also straight. This is the only
circumstance in which there can be a straight line simultaneously in endpoint Cartesian
variables and joint va:ziables. In Figure 5, this would correspond to trajectory 4 (a rose
petal of zero width in 5A}.

Past studies have provided evidence for both alternatives. Morasso (1981) investi-
gated horizontal planar arm movements with a pantograph experimental apparatus. In
all cases the movements appeared to be Cartesian straight lines, while the joint angle
profiles were quite varied. even involving joint reversal. Given the manifest simplicity
of the endpoint trajectories and the greater complexity of the joint angle profiles, he
argued that the planning variables were Cartesian coordinates.

In an intriguing set of experiments, Soechting and Lacquaniti (1981) presented data
that apparently indicate simultaneous straight lines in both spaces for a large class of
movements. Sagittal plane arm motions were studied, with an initial starting posture
of a horizontal forearm and a vertical upper arm. Movements were made unidirection-
ally from this starting point towards six different targets near the workspace boundary.
located along a vertical line. Their data is reproduced in Figure 6. The endpoint trajec-
tories (A) appear to be straight lines. Their joint angles in (B) are defined differently
than the conventions of this paper. Their shoulder angle § = 8, ~ 90° differs from 6,
in terms of the zero position. Their elbow angle ¢ = r - 6, is the interior angle ¢
between the upper arm and forearm instead of the exterior angle §; between the upper
arm extension and the forearm. Thus ¢ = —6;.

The joint angle plots (B) are generally curved, but the last half of the plots appear
straight and parallel. This is more clearly seen in the joint velocity diagrams (C)-(H).

corresponding to trajectories 1 through 6, respectively. In these diagrams, the motion is
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3 The Boundary Artifact

To proceed aith *he ana.vsis, a simulation is set up in Figure 7 to capture the main
‘eat-jres of Figiure 6 [n the simulation, movements are straight lines with approximately
*he sarmne starting and target pointsas in Figure 6A. Link lengths are taken from a human
ubiect and *he rangential velocity profiles are minimum jerk {Hogan, 1984; Flash and
Hogan. 1983, The simuiated straight-line paths are shown in (7TA); the shoulder point
s ndirated by a rircie. and the arm is shown in the starting position. The six targets
are ocated near the workspace houndary, represented by the quarter-circle arc. The
oint angle plots appear :n (7B}, and the joint velocity plots in (7C).

Ihe simuiated joint velocities (7C) do indeed indicate that in the last half of the
‘rajectories the .oint rate ratio approaches a constant for all movements. Thus the
<imiaiation verifies the hservation of Soechting and Lacquaniti, and can serve as a
representation of their data for further discussion. This simulation also disproves the
possibiity that the smail deviations from hand-space straight lines seen in the data are

significant and explain the ronstant joint rate ratio asymptote.

3.1 Joint Interpolation

~ince the ast haif of the joint angle trajectones appear to be straight lines, we analyze
“iret *he snape of the trajectories if the whole joint angle trajectories were straight.
There s a unique N-ieaved rose between any two endpoints, and Figure 8A shows
‘he simuiated (‘artesian straight lines and corresponding N-leaved roses for the higher
‘rajectories (‘learly the N-leaved roses are significantly curved relative to the Cartesian
straight .ine. and hence joint interpoliation by itself cannot explain these trajectories.

\.s0 the oint angie plots (TB) are clearly curved as well.

3.2 Mixed Interpolation Strategies

Another possibility is to take this data at face value, namely that in the first half of the
trajectory there s a straight line in endpoint Cartesian variables and in the last half
there 1s a straight line in joint variables. There is, after all, no reason that the motor
control system needs to plan movements only in terms of one set of variables. Perhaps
endpoint Cartesian con'rol is used when demanded by the task, and joint variable

control is used in less restrictive situations. Presumably endpoint control is harder for
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the motor control system to accomplish, and the simpler joint variable control is reverted
w to when it suffices. Even a mixing of joint variables and endpoint Cartesian variables in
the same trajectory is conceivable. Below we investigate the path that results when a
trajectory starts with interpolation in endpoint Cartesian coordinates and finishes with
interpolation in joint coordinates.

At the junction point, we impose a continuity condition in terms of the slopes. Given
the beginning and endpoints of the total movement, there is one free variable left to be
specified. This will be specified as the fraction of the distance covered by the straight-
line trajectory, and in particular by explicitly specifying the z coordinate at the junction
point and solving for the y coordinate. The relation between Cartesian coordinates and

polar coordinates of the endpoint is:

z=rcos¢ (16)
y=rsing
The slope of the N-leaved rose at the junction point is found from the chain rule:
_dy _dy d¢
M=3z " 44 dz (7
Elements of this relation can be obtained by differentiating (14) and (16):
dy dr y dr
a—d—; sing +rcos¢p = = E+
dz dr ) z dr
a_zz cos¢-—rsm¢—;£— (18)
dr 2 sin ¢ — do
dp 2K +1 MK +1

Spliced trajectories for the same movement endpoints as in Figure 8A are shown
in Figure 8B. For a given set of endpoints, five spliced trajectories with the Cartesian
straight-line portion comprising 50, 55, 60, 65, and 70% of the total distance are shown.
It can be seen that the movements still have a significant curvature, particularly at the

end of the joint interpolated portion. Hence this explanation must be ruled out.

3.3 Joint Rate Ratio near Full Reach

The seeds for an explanation are planted in Figure 9A, which replots the joint veloci-

ties of Figure 7C as arctan(—6,/6,) versus normalized movement distance (the distance
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traveled so far divided by the total distance). Evidently the joint rate ratios are ap-

proaching a constant, but they are not yet there. Extending the trajectories all the way

to the workspace boundary yields the plots in (9B), and the joint rate ratios are seen

) to converge to a point at 65°.

J Figure 9B leads to a suspicion that there is something peculiar about movements near
the workspace boundary. To develop this idea, we will solve for the joint velocity ratio
for a trajectory approaching the workspace boundary. Endpoint Cartesian velocities are

related to joint velocities by differentiating (10):

i=—é111 sinf, — (01 + 0.2)13 sin(01 + 92)
il= 0.1[1 Ccos 0! + (é; + éz)lz cos(01 + 03)

Conversely, the joint velocities can be found in terms of the endpoint Cartesian velocities

(19)

by solving the equations above:

9 1 . - »

01—21113 sin 8, (£l cos(fy + 62) + gla sin(6: + 63)) 0
. 1 . ) ) ‘

0’=—21112 sin 0, (£ (! cos @y + Iy cos(8, + 6;)) + ¢ (L1 sinb; + I3 sin(8, + 6,)))

At the edge of the workspace the elbow becomes straight, i.e., 8 = 0. Taking the limit

of the joint rate ratio at the workspace boundary,

z (11 cosfd, + I, COS(al + 02)) +vy (11 sinfd, + [, Siﬂ(ﬂl + 92)) _ “11 + 1

0,
00§ a0 %1, cos(0; + 02) + Uiz sin(0; + 07) R
(21)

Surprisingly, the joint rate ratio is a constant, dependent only on the link lengths.

\ The constancy holds for any point on the workspace boundary and for any trajectory
that approaches the boundary. This explains the convergence to the particular 65°
point in Figure 9B; all joint velocity ratios approach the same constant value, although
in different ways.

Another way of viewing this phenomenon is presented in Figure 9C, which is a
contour map of constant arctan(—é,/él) lines connecting the shoulder point to the
movement starting point. Overlayed onto this contour map are the extended straight-
line hand-space movements of Figure 2. As these movements traverse towards the
boundary, they approach the boundary value of 65°. Each movement, however, crosses
the contours at different rates, so that while in the limit the joint rate ratios are the

same, in detail the approaches to this limit differ.
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3.4 Apparent Constancy of Joint Rate Ratios

Thus an insidious property of two-link kinematics at the outer boundary of the workspace
makes it appear that any trajectory approaching the boundary has been executed by a
strategy of joint interpolation, whether this is the case or not. The data of Soechting
and Lacquaniti therefore cannot be taken by itself as evidence for planning in terms of
joint variables. Before the workspace boundary, the joint rate ratios are not constant
despite appearances. It is critical to distinguish the statements 1s a constant versus
tending towards a constant. The trajectories do tend towards a constant, but in a dif-
ferent manner for each trajectory. Therefore this data does not actually demonstrate a
constant joint rate ratio in the deceleratory phase, and there is no contradiction with
the trajectory features of hand-space siraight-line paths.

What this analysis shows is that if one is interested in the question of joint-space
versus hand-space planning, then one should stay away from the workspace boundary.
Movements near the boundary will always appear to have a constant joint rate ratio,
and there is not a clear enough distinction from hand-path trajectories. The experi-
mental movements in Figure 6A are an unfortunate choice because of the misleading
invariances they seem to compel. If the movements were made bidirectionally, then for
the movements from the boundary to the starting point the joint rate ratio would have
appeared constant in the first half of the trajectory. If both the start and stop points
were well interior to the workspace boundary, then possibly neither of these observations
would hold.

Hence a knowledge of path shape between targets in other parts of the workspace
would be desirable. The trajectories in Figure 6A all correspond to one particular
region of a straight line, namely between points 3 and 4 of Figure 4A. It would be of
interest to know the trajectory shapes when targets are placed along different parts
of this prototype straight line, particularly to encompass joint reversal points. In the
next section, a different set of experiments are described that lead to new insights into

differentiating endpoint Cartesian variable planning from joint variable planning.
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4 Staggered Joint Interpolation

In another set of experiments examining unrestricted arm movements in a sagittal plane
Atkeson and Hollerbach (1985) noticed that curved movements occurred in certain por-
tions of the workspace, while in other parts of the workspace the movements were
straight. In Figure 10A-D, four different movements are shown, represented by verticai
plane traces of markers on the fingertip, wrist, either side of the elbow. and shoulder
These markers allow the construction of shouider and elbow joint angles, depicted in
Figures 10E-H respectively.

Trajectories 10A-B are straight, and take place in workspace regions roughly rep-
resented by trajectories 1 and 5 in the data of Soechting and Lacquaniti (Figure 6A)
That is to say, they take place betweeen points 3 and 4 of the prototype straight-line
motion 4A. Thus both experiments agree on the kinematic features of these trajectories

Trajectories 10C-D are curved, and are in workspace regions not represented by the
studies of Soechting and Lacquaniti. Trajectory 10C spans the elbow reversal point 3
of Figure 4A, and moves between vertical endpoints. Targets happened to be placed
so that the beginning and final elbow joint angles were the same, and joint angle plot
10G shows that the subject chose to move only the shoulder joint. Thus trivially this
is an example of joint interpolation, and the endpoint naturally follows a circular arc
caused by swinging of the whole arm through the shoulder. Trajectory 10D spans both
the shoulder and elbow reversal points 2 and 3, respectively. One endpoint is low and
out from the body, the other high and in, almost above the head. The joint angle plot
10H clearly shows that this trajectory is represented by a straight line in joint space.

While the straight lines in 10A-B seem to indicate a strategy of interpolation in
endpoint Cartesian coordinates, the straight lines in the joint angle plots 10G-H indicate
a strategy of joint interpolation for trajectories 10C-D. Superficially, it thus appears that
the coordination strategy depends on the workspace region the movement is executed
in. On the other hand, a reexamination of trajectory 10A shows that it a straight
line nearly through the shoulder, and the joint angle plot of Figure 10E verifies the
simultaneous straight line in joint space. Thus this trajectory could just as well have
been interpreted as evidence for joint interpolation. This would leave only trajectory
10B as not explainable by joint interpolation, since its joint angle piot 10F is clearly
curved. The next section proposes a slight generalization of joint interpolation that

explains trajectory 10B and unifies all results.
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4.1 A New Joint Coordination Strategy

In joint interpolation both joints execute the same time profile. Suppose instead that
one joint is staggered in onset relative to the other by a tine offset § and that its
time profile f(t) is scaled uniformly by a factor ¢ (Figure 3B) The new time profile is
flet - 8), yielding from (6):

0,(t)=(0,(t;) - 8,(to)) flt) + 0;(to)
0;(t) =(83(ty) — 83(to)) fct + &) + 8,(to)
Again, the same time profile is kept for both joints, but that for joint 2 is merely shifted

(22)

relative to the joint 1 time profile and uniformly expanded or compressed. The scaling
is needed so that joint 2 can end at the same time as joint 1 if its start is different, or
joint 2 can start at the same time as joint 1 if its finish is different. Given that one of
these two conditions holds, this strategy has only one free variable é since the other can
be determined by ¢ = 1 - §/(t; — t5).

Figure 11A-B simulates the upward and outward diagonal movement 10B and 10F.
The solid line in 11A represents a perfect straight line in Cartesian coordinates, and
the solid line in 11B the inverse kinematic joint angle solution. The outer dotted line
in 11A represents the endpoint trajectory resulting from simple joint interpolation; this
corresponds in 11B to the dotted straight-line joint path. The remaining dotted lines
are staggered joint interpolations with increasing relative joint offset. Finally an offset
value is found that generates a trajectory nearly indistinguishable from the Cartesian
straight-line paths. It is hard to see in the Figure because the overlap is so good. Thus
all trajectories in Figure 10 can be explained in terms of joint variable planning, when

the coordination strategy is generalized to staggered interpolation.

4.2 Limitations of Staggered Joint Interpolation

Since staggered joint interpolation made trajectory 10B straight, could not this strat- .
egy be used to make trajectories 10C-D straight as well? Why this cannot be done
is answered by the simulations in Figures 11C and 11E, which represent trajectories
10C and 10D respectively. The nearly vertical movement 11C requires a substantial

amount of eibow joint reversal in 11D. For the upward and inward diagonaling move-

ment 11E, reversal is required in both joints (11F). By definition interpolation does

not allow a reversal in any variable. Thus staggered joint interpolation is incapable of
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approximating a Cartesian straight line whenever a substantial amount of joint reversal

is required. This means that whenever points 2 or 3 of the prototytpe straight line 4A
are spanned by targets, a curved line should result because staggered joint interpolation
breaks down. Movements within the joint reversal zones, namely between points 1 and
2, 2 and 3, and 3 and 4 of Figure 4A do not require joint reversal, and hence can be
made fairly straight by straggered joint interpolation.

Even though a Cartesian straight line does not result, sometimes staggered joint
interpolation can make trajectories straighter than they might be otherwise. Though
trajectory 11E requires a reversal in both elbow and shoulder joint movement 11F to
produce a straight line, by increasing the delay in relative joint onset a series of curves
is produced that eventually makes the joint-interpolated path straighter. The dotted
straight line in joint space 11F corresponds to the substantially curved outer dotted
line in 11E. As the shoulder motion is increasingly offset from the elbow motion, curves
intermediate in straightness are generated. From 11F it can be seen that the best strat-
egy would be an almost complete decoupling in the joint movements to approximate the
theoretical joint angle plotted as a solid line. The elbow should move alone, generating
a straight vertical line, and then the shoulder should move alone, generating a straight
horizontal line. Apparently such a strategy was occasionally used in some of the ex-
perimental movements reported in (Hollerbach et al., 1986). For endpoints similar to
Figure 10D for a different subject, Figure 12 shows a large degree of decoupling between
elbow and shoulder joints. This subject therefore was able to make this motion much
straighter than the subject in Figure 10D.

On the other hand, staggering has no effect on the trajectories in 11C. The beginning
and final elbow joint angles are nearly the same, and there is hardly any elbow joint
displacement during joint interpolation. Hence introducing an offset in the elbow joint
motion has almost no effect on the trajectory, as seen by the clustering of the dotted
lines. Staggered joint interpolation cannot make the vertical movement of Figure 10C
straighter because the elbow joint is not moving, and substantial elbow joint reversal is

required to achieve a perfect Cartesian straight line.

4.3 A Unifying Explanation

In keeping with our definition of joint interpolation, subjects in the experiments of (Atke-

son and Hollerbach, 1985) almost never reversed a joint motion, either in the shoulder
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or in the elbow joints. We speculate that the planning goal of subjects is to execute a
straight-line Cartesian motion, but that this goal is limited by the restrictions of joint
interpolation. Figure 11 has already indicated when joint interpolation breaks down in
terms of realizing the straight-line goal, namely workspace regions where joint reversal
would be required. All subjects executed curved motions in these workspace regions,
ostensibly through joint interpolation. When joint reversal is not required, subjects
achieve a very good approximation to a straight line through staggered joint interpola-
tion. Even for trajectories requiring joint reversal to achieve a Cartesian straight line,
some subjects were able to make these trajectories straighter by decoupling the joints
through staggered joint interpolation.

Staggered joint interpolation is an intriguing explanation for the experiments of
Soechting and Lacquaniti (1981). The endpoints in 6A do not require joint reversal
(Figure 6B) to execute a straight line exactly. Hence they are candidates for close
approximation by staggered joint interpolation. The velocity space diagram in Figure
6C for trajectory 1 definitely shows an offset, with the shoulder joint moving before the
elbow joint. Smaller offsets are seen in 6D-E, and practically none in 10F. Staggered
joint interpolation is not a perfect explanation for this data, which is a little irregular.
To proceed with the analysis, the time function must be known because the joint rate
ratio is now definitely dependent on the exact time profile as well as on the path.

Differentiating (22):

6 _ a6 f(1)
8, A cf(ct+ )
where A8; = 8;(t;) — 0,(t;). Unlike regular joint interpolation, the time functions do

(23)

not cancel out in the joint rate ratio.

Joint interpolation could be generalized further by adding more adjustable param-
eters, and conceivably a better ability to achieve approximate endpoint goals would
be achieved. Nevertheless, after a certain point such generalizations become no less

complex than solving the inverse kinematics problem.
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5 Discussion

In this paper we have compared trajectories derived from endpoint variables and from
joint variables under a coordination strategy of linear interpolation. The straight lines
consequent from endpoint interpolation ordinarily are associated with complex joint-
variable curves. The endpoint trajectories consequent from joint interpolation are asso-
ciated with a class of polar coordinate curves known as N-leaved roses. Thus distinct
predictions are derived from these two possibilities, and ordinarily the matching to ex-
perimental data should not result in any overlap or confusion. Nevertheless, situations
do exist that blur the distinction.

Linear interpolation in joint variables and in endpoint variables are merely two simple
extremes of a continuum of coordination possibilities, and intermediate strategies may
exist that provide a better match to the data. In particular, a strategy of staggered joint
interpolation has been identified that can generate nearly straight Cartesian trajectories
in certain portions of the workspace. Thus data described by Cartesian straight lines
do not automatically support planning in terms of these variables, and the distinction
between joint variable planning and endpoint Cartesian variable planning is not clear
cut.

Labeling a path as straight requires extracting metric features from a trajectory.
Since no trajectory is likely to be perfectly straight, one can only speak of degrees of

straightness. But then there may be other coordination strategies that yield approx-

imately straight lines within a reasonable statistical measure, such as the staggered
joint interpolation mentioned above. The departure from linearity may be small but
significant, and not detectable within experimental error.

Straightness may a!so result from a limiting process. A peculiar property of planar
two-link kinematics has been identified that causes all trajectories approaching the outer
workspace boundary to appear to be planned by simple joint interpolation. The joint
angle plots are close to being straight, but are not actually straight except in the limit at
the workspace boundary. Again, the departures from linearity will be slight but highly
significant.

Lastly, there is a danger of overgeneralizing from too little data. Studying an overly
restricted set of movements may prove misleading in terms of the invariance that appear
to emerge. If one studied only movements directed towards the workspace boundary,

then it would always appear that a strategy of joint interpolation was in effect. Kine-

21



matic features of horizontal planar movement may differ from those in vertical planar

movement. Free arm trajectories may differ from trajectories constrained by a measure-

ment apparatus.

5.1 Staggered Joint Interpolation

In the last section, it was proposed that staggered joint interpolation may be the un-
derlying coordination strategy in the experiments of (Soechting and Lacquaniti, 1981.
Atkeson and Hollerbach, 1985). A main feature of staggered joint interpolation is that
there is no joint reversal, and that the resultant endpoint curvature can be mitigated
by staggering the relative joint onsets. Thus it is proposed that joint variables are
used by the motor control system in planning movement, but in a relatively flexible
way. In movement regions where joint reversal is not required to execute a Cartesian
straight-line motion, as in the studies of (Soechting and Lacquaniti, 1981), a fairly good
approximation to the straight line can be obtained. In movement regions where joint
reversal would be required, as in the studies of (Atkeson and Hollerbach, 1985), curved
endpoint motions result.

The observation that in the motions of (Atkeson and Hollerbach, 1985) no joint
reversals were seen is not a universal result. Morasso (1981) observed joint reversal in
horizontal arm movements measured with a planar pantograph. One may speculate as to
why subjects may choose to avoid joint reversal. In robotics, minimum-time trajectories
tend to be close to joint-interpolated motions (Sahar and Hollerbach, 1986). Intuitively,
it seems that reversing the direction of limb motion would be energetically inefficient.
There may also be some analogy with zones of muscle synergies in posture (Nashner
and McCollum, 1985). Nashner and McCollum propose that postural adjustments are
made so that switches in synergies are not required, presumably simplifying the control
of leg and trunk musculature. For arm movement, avoiding joint reversal would also

presumably simplify the control of the arm musculature.

5.2 Conclusion

This paper has hopefully shown that kinematics is a deep subject, and its understand-
ing is fundamental in designing experiments and interpreting results. At the outset, the
goal was to determine which set of planning variables under linear interpolation, namely

endpoint Cartesian variables or joint variables, best described human arm movement.
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Legends

1. (A) A planar two-link arm, with endpoint position described by the Cartesian
coordinates z,y. 8, and 0, are the joint angles, and !/, and I, are the link lengths.
(B) The case of equal length links, with /; = l; = 1. The endpoint position is now
described by the polar coordinates (r, ).

2. Straight-line trajectories in terms of endpoint Cartesian coordinates (A) and joint
coordinates (B).

3. (A) Joint velocity profiles have the same shape under joint interpolation. (B)
Under staggered joint interpolation, the joint 2 velocity profile has been delayed
and scaled.

4. (A) A vertical straight-line motion with extremal points 1 and 4, and joint reversal
points 2 and 3 for the shoulder and elbow, respectively. (B) Corresponding joint
angle plot, with joint angles identified for endpoints 1 to 4.

5. (A) A sampling of the straight lines in joint space from the origin. (B) The
corresponding endpoint trajectories, belonging to the class of polar coordinate
curves known as N-leaved roses.

6. Data reproduced from the experiments of (Soechting and Lacquaniti, 1981). The
endpoint coordinates are shown in (A), the joint coordinates in (B). The joint
velocities are plotted in (C)-(H), corresponding to trajectories 1 through 6 respec-
tively. In (I) the deceleratory phases are compared.

7. (A) Simulation of the six movements of Figure 6A. The movements are displaced
and reversed in direction due to different coordinate system conventions. (B) The
corresponding paths in joint space, which match Figure 6B. (C) The normalized
joint velocity-space trajectories, which match Figures 6C-I.

8. (A) Joint-interpolated trajectories between the same endpoints as for the upper
straight-line hand space movements depicted in Figure 7. (B) Spliced trajectories
between the same endpoints. The Cartesian straight-line portions are illustrated
by solid lines, the joint interpolated portions by dotted lines.

9. (A) The simulated joint rate ratios (in angular form) for each movement plotted
as the arctan(—6,/6,) of the points in velocity space versus normalized move-
ment distance. (B) A similar plot, but for movements extended to the workspace
boundary. (C) A contour map with the simulated movements shown extended to
the edge of the workspace. Each contour represents an N-leaved rose from the
starting point to the shoulder, corresponding to a particular joint rate ratio (in
terms of arcta.n(—éz/él)).

10. (A)-(D) LED trajectories in the sagittal target plane for the four experimental
movements. In each plot the traces for each of the five LEDs attached to the arm
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are shown. Six movements are superimposed in each panel, three in one direction
and three in the reverse direction. Except for (A), the upward movements are
indicated by dotted lines, where the dots are equally spaced in time, and the
downward movements are indicated by solid lines. In (A) the outward movements
are indicated by dotted lines. (E)-(H) Joint angle plots of shoulder pitch angle 8,
versus elbow angle 8; corresponding to plots (A)-(D) respectively.

. (A) Simulation of Figure 10B. The solid line represents a theoretical straight line,
the dotted lines represent various staggered joint interpolations. (B) The corre-
sponding joint angle plots. The solid line corresponds to the straight line in (A).
The straight dotted line represents simple joint interpolation, and generates the
outer curve in (A). Increased staggering of relative joint onset produces a sequence
of curves that approaches the theoretical straight-line motion. (C) Simulation of
Figure 10C. The theoretical straight line in (C) (solid line) requires a significant
amount of elbow joint reversal, as seen by the solid line in (D). Since the begin-
ning and final elbow joint angles are nearly the same, joint interpolation results
in almost no elbow movement, even when staggered (dotted lines in (D) and the
corresponding endpoint trajectories in (C)). (E) Simulation of Figure 10D. The
theoretical straight line in (E) requires reversal in both shoulder and elbow joints
in (F). The more decoupled the elbow joint motion is from the shoulder joint
motion, the closer is the approximation to a straight line.

. (A) An inward and upward diagonal movement for a different subject. (B) The
joint angle plot. (C) The joint velocity plot.
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Phase-Locked Modes, Phase Transitions and Component
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Abstract

We review the results of jomt experimentat and theoretical work on coar.
dinited hrological monon demonsirating the cloce alliance hetucen our
obeersations and other nonequilibrium phase tranaitions 1n nature (e g . the
presence of crincal Muctuattens. critical siowing down) Order parameters are
cpncally determined and their tlow.dimensionaly dy ramics used in order
to explan spectfic pattern formation in movement, including stabdity and
locs of stability leading 10 behavicf change. phase-locked modes and entrain-
ment The cictem « componente and their dyvnamics are identified and it is
shown how these may be coupled to produce obcerved conperative siates
Thi« “phenomenoclogical syncrgetics”” approach is minimalist and operational
in sirategy. and may be used to understand other svstems (e g . <peech), other
levels e g . neural) and the linkage among levels. Tt also promotes the search
for additionat forms of order in muiti-component. mulLtlablc systems.

1. Introduction

One may well ask: What role might the theoretical and exper-
imental study of coordinated movement play in a conference
on the Physics of Structure and Complexity? There are at
least two reasons for its inclusion. One is that the movements
of animals and people are ordelfd spatiotemporal structures
that arise in a system composed of very md} neural, muscular
and metabolic components that operate on differznt time
scales. The order is such that we are often able to classify it,
tike the gaits of a horse, for example, or the limited number
of basic sounds (the so-called phonemes), that are common
to all languages. Structure, then, emerges from compiexity
in a fashion reminiscent of the spontaneous lormation of
structure in open, nonequilibrium systems (e.g.. {!. 2].

switching cooperative states. Although our experimental par-
adigms are concerned with movement cantrol. we beheve
they might also offer a window into stability and change in
general. in a biological system whose real-time behavior can
be monitored continuously. We start with some basic facts
obtained by ourselves and others. Then we map these ohser-
vations onto an explicit model that in turn predicts additional
aspects which are also studied.

2. Phase transitions in biological movement

Our experiments deal with rhythmical finger (or hand) move-
ments in human subjects. We monitor the kinematic charac-
teristics of these movements using infrared hght-emstting
diodes attached to the moving parts. The output of these
diodes is detected by a Selspot optoelectronics camera sis.
tems. On occasion, we aiso record from relevant muscles
using surface or fine-wire platinum electrodes as the occasion
demands (see. e.g.. [3]). Thus the behavioral phenomena can
be examined at both kinematic and neuromuscular levels All
.data are recorded on a I4-channel FM recorder for later
off-line digitization at 200 samples;sec., and conseguent
‘computer analysis.

Following a paradigm introduced by Kelso [4. 5], subiccts
oscillate their index fingers bilaterally in the transserse planc
(i.e.. abduction-adduction} in one of two patterns tin-phase
or anti-phase). In the former pattern. homolegous muscles
contract simuitaneously; in the latter. the muscles contract 1

el W

ot
2

2.0

A second reason for allying movement 1o a physics of
complexity is that biological systems are beltaviorally com-
plex. They are multifunctional in the sense that they are
capable of producing a wide variety of behaviors often using
the same set of anatomical components (e.g.. speaking and

an alternating fashion. Using a pacing metronome. the fre-
quency of oscillation is systematically increased from | 25 Hz
to 3.50Hz in 0 25 Hz steps every 4 sec (see {3, 6]

Data from the last Ysec of each frequency plateau (K00
data samples) are used for the calculation of averages n

1@

chewing). In certain cases, this behavioral complexity may.
nevertheless, have a common basis. For example, common to
many creatures — vertebrate and invertebrate — is the ability
to generate riivthmical acts such as walking, (lying and feed-
ing. Since rhythmic behaviors are supported by such a diver-
sity of neural processes. they may be a good starting place to
look for laws underlying behavioral complexity.

How then is order in biological coordination to be charac-
tenized? ldeally. one would like to have a model system that
afTords the analysis of pattern and change in pattern, both in
terins of experimental data and theoretical tools. Here we

secure stationarity. Figure | shows a time series when the
system is prepared initially in the anti-phase mode Obuvioushy.
at a certain critical frequency the subject switches spon
taneously imto the in-phase mode. No such switching occurs
when the subject starts in the in-phase mode Thus. whiic
there are two stahle patterns for low frequency values, only
one pattern remains stable as frequency s scaled hevond a
critical region. This transition tehavior can be monttored by
calculating the relative phase between the two fingers A ponr
estmate of relative phase is the latency of one finger with

BT R RABANFNISSY T W)

respect to the other finger’'s cycle, as determined from peak-
to-peak displacement. A contmuous estimate ol relative phase
ti.e.. at the sampling rate of 200 Hz) can be obtained from the
phase plane trajectories of both fingers. (The velocities are

I describe an ongoing program of research in which theory and
experiment have gone (literally). hand in hand, and whose
main aims are to understand: (1) The formation of ordered,

a

cooperative states in hiological motion; (2) The stability of
these observed states: and (1) The conditions that give rise to

obtained by a central difference numernical differentiation
procedure). Normalizing the finger oscillations (o the unu
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Fre ! AL Time senies of eft and right finger postion 1By Point e<timate ot
the relative phase (C Connnuous refative phase (1)) The FMG record of
FOU! trom reght and left index linger mosements tsee [ext {or details)

circle. the phases of the individuai fingers can be obtarned
simply f[rom the arctan (¥ ¢)1f v is normalized finger position
tzee [ Relative phase 1s then just the difference between
these individual phases. In figure 1| the refauve phase
fluctuates before the transiton and stabilizes thereafter (cf
(RN

3. Dynamical modeling

In order to understand temporal order and the observed
change of such arder in terms of dvnamics, we need to
address the following questions: First, what are the essential
vanables (order parameters) and how can their dynamics be
characterized” Second. what are the ‘control’ parameters,
that move the system through its collective states? Third,
given a model. what new observations does the model
predict? In a first step. relative phase. ¢ may be considered a
suttable collective variable that can serve as order parameter.
The reasons are as follows: (1) relative phase, ¢ characterizes
the ohserved. coordinative modes: (2) ¢ changes abruptly at
the transition and is only weakly dependent on parameters
oulside the transition; (1) ¢ has very simple dynamics in
which the ordered phase-locked states are characterized by
fixed point attractors. Since the prescribed frequency of oscil-
lation. manipulated during the expenment, is followed very
closely, frequency does not appear to be system dependent
and can be considered the control parameler.

It is thus possible 10 determine the dynamics of ¢ from a

va‘J'J'd‘J'
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dyvnamies (1) and 12) foe o can Re dariied frem noni neys
nscillator equatons for the tao hands with v~ onlinear oo o
ling hetween them ({RI1 We chall poctpene Lisogssinn of the
individual compaonent < dvnamics o Sectien T

A chief strategy of the foregamg dyvnomical anlveas <
map the reproducthlv obcerved states of the <veiem anre
attractors of a corresponding dsnamical medel Thys, <o
tirvas a central concept. not only as a characterization of the
two attractor states. but also because 1115 /oss af crabkiiry that
plays a chief role in effecung the trancition Stabthity can be
measured tn several wavs (1) If @ small perturbation applicd
to a system drives it away [rom i1ts stationary state. the tme
[or the system to return to its stationary state 1s independent
of the size of the perturbation (as long as the latter 1s <ul-

ficiently small). The “local relaxation ume

e e local '\"

with respect to the attractor) s therefore an observable sys. =,

tem property that measures the stabihty of the attractor state

The smaller t,,, is, the more stable 1s the attractor VcUcasc trs

t — C corresponds to a loss of stability
(2) A second measure of stability is related to noise sources
Any real system{ described by low dimenstonal dynamics will JL

. be composed of, and be coupled to. many subsystems These

act to a certain degree as stochastic forces on the collecune

ivanables (cf. [I]). Section 62 and reflerences therein). The

.f\f’f.'lf(

presence of stochastic forces and hence of flucruanions of the
macroscopic variables. is not merely a technical issue. but of
both fundamental and practical importance (¢f [1]. Section

. In the present context. the stochastic forces act as con-
tinously applied perturbations and therefore produce devi-
atiors from the attractor state. The size of these fuctuations
as measured, for example, by the vanance or SD of ¢ around
the attractor state. is a metric for the stabihty of this state
The more stable the attractor. the smaller the mean deviation
from the atiractor state for a given strength of stochastic
force. Let us see how these stability measures behave in

experiment.
\[28)
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where the cvcrem s sull stattonary (¢f Y Al This provides
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andd A quantitatively consistent fit between data and theory

{within the fumits of precision in such an approach. see (9] and
Section <)
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CPIVING FREJUENCY (M)

MODE SCALED MEAN 30

Ant-gymmerrical . e [NeYO)
Symengiricsl a o INe1Y

Fre 7 The average mean rclative phase madulus for the in.phase (open
triangic) and anti phase (cloted tnangle) modes of coordination and the
average S (in phuse = open crrcles. antr-phase = closed circlee) oy 8
fumction of derving frequency (in 117) for a set of 10 experimental runs On
2 prven run. the mean and ST were calculated for the fase 1< (600 samples)
at a pven frequency (from Schotr: and Schaner. in yne«’)
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b part of s Ph D dissertatinngndor e doe o g
first anthor The hasic experiment i e dpercges oo e
the mdex finpers swith 2 tor e padce s f0one oy,

subsects pertermed in the bao Macic coor binge o in 1
The appararcs consisted of adresdv e ihiog sopport g ey
vetex nnger that aitowed lexvan and evienaon s e
metacarperaatangeal wont o the hormzent g pbine ore 1)
tor deseniption)y Plectromes pravided for the dhee EYNTR ST
fnctton of posthion, velocity and acceleration and for (he
pphe .'lll“l\/"«)lil predetermimed magmitude of tor e tyeiriner
o1 the index fingers [n Scholz’s experiment ol the ripin
mndex finger was perturbed at random umes duning 1 teral and
the torque onset was electromcallty timed to the prak flevon
seloaity of that finger Torque magmitude was set indeadualhy
for each subject in arder to produce readily obcervahle dis-
prtacement of the finger into extension Subjects (V' = Sywere
asked to move therr fingers thythmically 1in one of two modes
of coordination- in-phase (relative phase * Odeg ). and antr-
rhase (relative phase = 180deg ) Scaling tnals consisted of
increasing the frequency of oscillation in nine 0 2 Hz steps
every |0sec starting at 1 0 Hz. When scaling began 1n the
anti-phase mode of coordination a transition nvanably
occurred to the in-phase mode.

Relaxation ume was operationally defined as the ume
from the offset of the perturbation untit the continudstk rel..
tive phase — calculated from the difference between each
hand’s phase plane trajectory — returned (o s previous
steady-state value. Except for the lowest movement fre-
quencies (e.g.. 1.0 to .2 Hz). relaxation time of the anti-phasc

/ Mean Relaxation Time Subject EB
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Fig 3 The mean relazation ime (in ms) a< a function of pacing frequencs
for the two coordinative modes. 1n-phase (cloted triangleet and antt phaw
(open iriangies) Most of the transitiont occur for this subsect at | 8Hz 1 ach
iriangle contains at least 10 observations
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SCALING FREQIENCY (H7)

fre 4 Plotof mean relavien ume calculated as the inaerse of the hine
width of the power spectra of celative phace at half power versus the «caling
frequency One subicct « data averaged acrose 11 10 qlc Pruer tpecira cal-
culated for Ve of data 16D pornis) on each trial a1 each value of the scahing
frequencs

mode was sigmficant!y longer than that of the in-phase mode
for all five subjects Furthermore. as the critical (requency (or
mode transinon was approached. the relaxation time
increased monotonically. The result is revealed by a signifi-
cant positive correlation between the pacing frequency and
relaxation time up to the transition (p < 0 001) No such
ncrease occurred when scaling was carned out over the same
frequency range beginning 1n the in-phase mode Here. either
no relationship existed hetween pacing frequency and relax-
ation time (N = 1,5), or relaxation ume actually decreased
with increasing frequency of movement (N = 2;S: p < 0001).
The results of one of the subjects are presented in Fig )

Additonal. though more preliminary evidence for critical
stlowing down has also heen found (see {11)) The method for
determining relaxation nime in this case uses the power spec-
trum of the continuous relative phase calculated for the
stationary portien of each frequency plateau Due to the
Wiener Khinchin theorem. this function 1s yust the Founer
transform of the relative phase autcorrelation function ft has
a low frequency peuak that reflects the relavationat dynamics
of refative phase Stochastic theory (see [9)) tells us that the
ltne width of this low frequency peak is a measure of relax-
aunon rate (the reciprocal of relaration ume) Figure 4132 plot
ol relaxation time, 1,,,. as deternined from the line width of
the power spectrum of relative phase for one subject (the
same data as shown in Frig 2)

The strong enhancement of 1,,, before the transition can be
clearly seen Nevertheless, a lot of work remans to be done
nn this topic gn algonithm for determing the line shape of the
relatne phd«jﬂpec(ral density function has 1o be deseloped
Detaled modelhng is necessary to compare theory and exper-
rment with respect to relaxation tme in a2 quantitative fashion

S. Stochastic model of the phase transition

With respect to the previously discussed features of the phase
transinon the madel (11, (21 19 as yet incomplete hecause 1t
lucks a representation of fluctuations Including Nuctuations

m the model allows us 1o (1) test the consisiency of the
dynamical modcel experimentally (via tume scales relations).
(2) determine model parameters quantitativels and (1) make
non-trivial predictions that can be further tested evpertnen-
tally  The latter posnt amms at finding 1awful refations on
the level of dvnamucs rather than a mtrc redescription of
observations

To account for fluctuations, and agan ginded by severl
reasonable assumptinns, we add a stochasue forge toeq ()
We assume (1) the source of the neowse concisic of man .
weakly interacting degrees of frecdom (e g . on the neurn-
wmuscular levelt (21 the nowse sources are correlated over shart
tnimes compared 10 the observed macroscopic dynannee
(ntherwise they are included n the deternumistic part of
equatton (1)), and () the noise sources are reguliar during the
tansiion  These assumptions umply that stochwsic forces
can be niodeled as additive. gausstan, whie noise 2,

di (o) - .
¢ - —"dm' Q4 —_— X th
ﬂ‘( Pﬁuﬂy 1 at g
with - ;‘qg bire
&y = 00 (& &) = S -1) 4

where the parameter Q measures the nosse strength {9] This
stochastic model 15 sull incompiete, howeser In order (o
solve eq (1) and compare its solution (o experimental data.
we have to furnish initial conditions Finding the appropriate
nitial conditions requires a discussion of several relevant 1
scales of the present system Because this is an important
point for modeling brological dyvnamics 1n many situations,
we will be somewhat more general here

To charactenize the state of a biological svstem within a
stochastic dynamucal description three types of time scales are
relevant The firstis the typrcal time scale on which the system
18 ohserved, 1., (1€ . how long the experimeter observes the
systern in a given preparationy The second is the presiously
discussed local retaxation ume r,, (cf Section Y. that s
specific to a given attractor The tiurd one is the so-calied
vquihtbration time (or global relaxation timed, r,, which 1
defined as the time 1t takes the system 10 achieve the station-
ary probability distribution from a typical imial distribution
In a bistable situation like ours. below the transition ¢, i<
determined mostly hy the typical ime it takes to cross the
potential hill (see e g . [14])

IT these tme scales (ulfill the fallowing relation

Tt €ty € o £

then the tnierpretation of observed states as attractor states
18 conuistent That s, the <vstem has relaxed to a stationary
state on the observed tme scale, but s not vet dictributed
over all coexicting attractors according to the stationary
probabil} distnibution When stationary states i an exper-
iment ar€ referred to. what 1s meant 1s that the tine <cale
refation (5115 obeved

It 1 tmportant 1o reahze that muych of the work in dynams.
cal modeling of biological svetems uses deternmimisiic modete
only and thus imphcitly makes the assumption that ( 81 helds
(sce. for mnstance. the contnbutions (o the 1982 Conlerence
on Nonlineanities t Brain Function [ §] for tspical examples)
1o neglect fluctuations and sssume () throughout 1< danger
ous. however, because (a) the relauvon (%) hreaks down
critical pornts; (b) fluctuations are an important leature ol
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hiturcanon phenomena, and (¢) luctuations are essential in
hrnging about transitions Let us examine these three points
in more detanl

In our syvstem (), as the transiion s apnroached (re . the
ant phase mode loses 1ts stability), the local relaxauon time
fwith respect o the antr phase mode) increases. while the
global refiuxation time decreases (because the potential till
hetsween 0 and 1RO dee vanishes) At the cnitcal pmulHnw'
p\(‘r‘ hath are of the sime order as the ohserved time and one
i sce the transion Thus, gt the transition point, the time
seales relation (9 s viobued and an additional tume scale
ASsumes amportianee naneh the rome scule of pdrameter
This reftects the tact that 1o cur sveicm (as often
i hiotogie 1l svstemsy the control parameter that brings about
the rnstability s atsell changed 1n time  The relation of the
time <cale ol parameter change to the other <vstem tunes
plavs a dectsive role in predicting the nature of the phase
tranaition 11, lor example,

e

[T ST SN ()

then the svstem changes only as the old state actually
hecomes unstable This transitton behavior s sometmes
referred 1o as a cccond order phase trancition (because of an
analogy with equihbrium phase transitions. see {1). [[983a
Section 6 71 In that case features of critical phenomena (such
ascnncal Nuctuanons or critcal slowing down. see below) are
predicted I, on the other hand

€t T (N

oy "

4

et

then the svstem. with overwhelming probability, always seeks
out the lowest potentual mimmum. It therefore switches state
betore the old state actually becomes unstable. Jumps and
histeresis famong other features) are generally predicted
This hehavior 1s al<o called a first order 1rancinion, again in
reference (o equilibnium phase transitions [Note: In catas-
trophe theory. these two different lransmon‘ behaviors are
sometimes referred to as conventions, although they can, of
course. be dernved from the experimentally accessible rela-
toms (6) and (7) 1t is the failure to teeat fluctuations that
renders catastrophe theory incomplete in this respect].

F ollowing these more general remarks, let us return to the
concrete stochastic model (3) Because 1, and r,, are of the
same order in the expernment, we expect time scales relation
t6) to hold up to the transition. At the transition all tine
scales may then be of the same order. This requires us to
dilferentiate two parameter regimes (a) The noncnitical
regime. where the system s stationary in the sense of (5); and
1hy The critical rignmc. where the system exhibits transient
hehavior In these regimes one can now solve the stochastic
equation (1) via the corresponding Fokker - Planck equation
({9 For the noncriical régume. stationary probability distri-
hutions of local models (that have only one stationary state
at etther O or IR0 deg ) can be determined. From these the
standard deviation (SD) as a measure of the width of the
disiribution can be calculated. As the transition 1< approached.
the S of the local model of the anti-phase mnde increases,
reltecting the enhancement of fluctuations Using the exper-
1mental information on the local relaxation time and the S¢
in the noncritical rhm\e_ one can determine all model par-
ameters . hoand Q (9D In the criucal r¢gime the full
fokker Planck equation can now be <olved numericaily,
using an approprate disttbution (rom the pre-transitional
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régime as an mtial conditon  Without further adyust.
able parameters the model accounts nicely for the tranaent
hehavior (9]

The stochastic model contains another feature that can be
compared with experiments. This 1s the duration of the tran
stent from the anti-phase state to the in-phase stute — wluch
we call the swirciing rome The basic idea is that during the
transition the probability denstty of relative phase — mtiaihy
concentrated at 4 = + 1R0deg flows to 4 = Odeg and
accumulates there until the “new’™ peak at ¢ = Odeg 1<
dominant and stationary. The model predicts the duration nf
this process both 1n terms of its distribution and its mean [9)
These switching times have been extracted from the exper-
imental data described in Section 4.2 above In maost cases
they were casy (o calculate as the time between the refative
phase value immediately before the transition and the valuce

~assumed immediately following the transiton. The distr-
bution of switching times for all five <ubiects 1< shown in
Fig. S The match between theoretical prediction (cf [9)
.Fig 11)and empinical data 1s impressive, to say the least. exen
i 1o the shapes of the switching time distributions This new
laspect is particularly interesting. because it shows that
the switching process 1tself s quite closely captured by the
stochasuc dynamncs of (1) Using the language of phace
transitions may thus be adequate to understand the present
phenomenon - even beyond the more superficial level of
analogy

6. Phase-locked modes: the “sea gull effect”"*

In our discussion <o far we have alwavs assumed that the
system has only two phase-locked patterns - in-phase and
anti-phase — at its disposal s this assumption really vahd?
The experiments described in Sections 2 and 4 probe nniv
these two states and their local environment (local in relatine
phase)

We shall now discuss expernments (16, 17]. that allow us
to establish the stathties of all relative phase «atues. thus<
afTording a view of the whote “potential landscape

In Tuller and Kelso's experiment [16]. the subject < tack
was simply to tap with the feft index finger every ume a hicht
for the left hand Nashed. and to tap with the nehtindex tinger
every time a light for the nght hand flashed The sct ol

t

* The reavon we dub thus the  sca gull effect s nbvicus [rem the thaw !
the functinn shown in Tig & (hottom) Perhape nur peavmte e s
Atlantic Ocesn piaved a role 1n naming 1t the way we did foe anciher

example. see {17]. Fig 2}
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Required Plhisse

Fie & Top The phase of the pacing hghts tpecifving the required phase
plotted against the mean difference between the phase required and the phasc
actualty produccd A negiative number means that the required phase was
underestrmated Each cumbol represents an individual subject’s mean com-
puted orer A > RO mavements Bortom Standard deviation of the phase
penduced plotted against the required phase. Symbols same as above

conditions involved different lag times between onsets of the
two lights varying in 100 f steps from synchrony to a 500 ms
lag (or 0 § out-of-phase) and back to synchrony The cycle
time for the lights was constant at | sec. The phases of the
lights did not change within a trial. Four 24-sec trials of eachy
ten phase conditions were presented randomly

The top portion of Fig. 6 shows the mean deviation from
required relative phase as a function of the required phase
difference. The bottom portion of Fig. 6 shows the standard
deviation (SD) of the observed relative phase between the
hands as a function of the required relative phase. The dif-
ferent symbolis refer to different subjects and the open tri-
angles connected by straight lines are the means acrose cub.
jccts. Obviously in-phase (at zero) and anti-phase (at 0°5)
movements are the most stably produced. (1his is the case in
both nmusicians and non-musicians as well as in split-brain
patients [16]). Moreover, the top portion of Fig. 6 shows how
these two states attract neighboring states — the difference
between observed and required phase passes through 0.0 and
0 S with a negative slope. These findings are highly consistent
with our hasic modeling assumption, namely, that in-phase
and anti-phase are the two basic stable phase-locked patterns.
To make the imphcations of this experiment more siringent,
however, we have to generalize our model to include the
externally imposed required phase. A simple wayv to include
the external pacing in the equation (3) for retative phase is to
alter the potential The potennial (2) represents the system's
intrinsic cooperativity We assume that this remains valid

e T A e e N e N

under the paced conditions. Thus. we represent the required -
phase by adding a term to the potential that attracis the ';‘,/

antninsic’ relative phase toward the required phase The i« &
plest function that does this (wlile confornung to certain,
periodicity requirements. sec [ IR] for detailshiscos (4 ~ o ZL ,»\[
where ¢ 1s the required phase A A\
The new potential thus reads: \ )
h o L
b () = —acosd — hcos(2p) —rcm("———-{ Ry = J

~

(Note that the new term breaks the d — - psymmetry asthe i
pacing does in the expertment) The zero of this potental are !
the new stationary states [Unfortunately the corresponding
transcendental equation cannot be solved analsucally MWe |
determine, the stationary slales numerically. using for par- /\\:\
ameters a and h values similar to those presiously estabhished

to account for experimental data [9}. and choosng ¢ sul-
ficiently large to see an effect of the new term No svstematic
attempt to optimize parameters has yet been made. however |

tn the top portion of Fig. 7 the deviation of the stationary
solution for relative phase from the required phase (s, ~ )

is plotted as a function of required phase. . Obsiously our
model captures the attractivity of the two basic modes To
determine the stochastic properties we proceed as in the
previously discussed case of noncritical properties for the
model (1) (cf. Section S: [9])): Expanding the potential about

its stationary solution and determining the stationary prob-
ability distribution of the resulting local model aliows us to
calcufate the SO n this approximation. The battom poruon

rof Fig. 7 shows the SD as a function of required phasc v
(where a. h and ¢ are as in the top portion and () is chosen as

'in the model for the phase transition {9]) Obviously ths

, function captures the qualitative features of the experimental
idata (alllmugh’ it is a somewhat edgy “'sce gull’™). Our (,1
madeling here acquires additional credibility through the fact

that the potential (8) can again be derived from a model of the
osciltatory components of the syvstem. in which the external
pacing has been incorporated This is briefly discussed in the
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parameters a. b, ¢ were as above and Q = 0 SH»
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tallowmg section A more detarled analysis of these models

witl be pubhished elsewhere [IR] In summary. the global
stability imcasurement performed in this expeniment together
with . theoretical model shows the consistencs ol our concep-
taal approach We consider this continued close match of
theory and expenment to he guite remarkable

7. Modeling the subsystems

A kev feature of the approach thus tar has been to charac-
terize coordhnated states entuely in terms of the dvnanucs of
macroscopic, collective vantables (in this case relative phase s
an order parametery Here we address the nature of the
subsystems themselves anid how these can be coupled so as to
produce coordmated states. We start at the next lesel down,
as it were. which is the individual hands themscives. Exper-
imentally. the behavior of the individual hands i1s observed as
linger posiion v and velocity 1. The stable and reproductbic
oscillatory performance of each hand is modeled as an attrac-
tarin the phase plane (x. X). in this case a it cycle. Several
experunental features constrain the modeling. Kinematic
relationships. such as those between amplitude. frequency
and peak velocity. have been measured ([19]). Figure R (from
{191 shows the amplitude-frequency refation for oscillatory
movements of onfy one hand. The observed monolonic
decrease of amphitude with frequency can be modeled by a
combination of the well-known van der Pol and Rnyletgh'
oscillators R 19)

U+ f(vw) =0 9
with
Sl a) = 20 4+ B 4 e 4wl (1)

In mapping the observed oscillatory state onto a limit cycle
the notion of stability is, once again, a key feature of our
theory This can again be tested by measuring the relaxation
time after a perturbation of the hand in a fashion similar to
that described tn Section 4. Such experiments have heen
recently performed by Kav under the direction of the first
author ([20]) Along with the observed kinematic relations,
refaxation time measures allow one to determine all
parameters in eqs (9) and (10).

o frcar-, eq

- Hoyvre 4 ner

an twr Py
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frequency tHz)

e 3 Amphtide sersus frequency for rhvihimical moseinents of a ungle !
hand The cipetimental pomnte tfgll ciecles) are means aver suhrects, exper-
mmental cecaonc and trafe The thybred) nsotlator of eqs (9) and (1) was
fitted 1o the data tleast squarest | nr ihustranon purposes fits of the van der
Pol and the Raslergh osciifators alone are also chown

G+ Y, ‘L) = (y,

Another assumption imphicit ineqs (95 and (10 < that the
oscilfation 1s essentally autonomous  This can be cvper.
imentally tested in the perturbation paradigm by pluree reset
tngtechmques(sec.e g . [21) The hasic rden s that the phase
of an autonomous osciflator is margmally stable unlike that
of a driven osaillator which 1< tocked to the drvine function
This assumption has also heen checked i Kav < experimeny
Prelimumnary results show  that the
autonomous (1n the ahsence of externid pacime)

How can the components with therr dynamics ¢ and 14
give rise Lo the phase-lacked coordimative modes” Obvinga,
thetr dynanucs have 1o be coupled Haken kelco and Rony
[R] have determined coupling structures that can acconnt for
the observed phase-lockings  The <implest that
aclueves this 1s a van-der-Pol-like coupling of the form

oscrtbanon g endecd

maodel

v“+ fleo v = (4 — wnd 4+ Bty - (1

U fve ) = (- G+ By - (12

where / is the oscillator function (100 and 1 and B uarc
coupling constants. The expertmental ohcervation that the
kinematic relations (e.g.. amplitude (requencs relationd are
not significantly different between the coordinatine modes
and the single hand movements show that the coupling con-
stants 4. 8 are small compared to the corresponding coct-
ficients 2. y of the oscillator function (1M {19} In spite of this
the coupling structure (1) and (12) gives nse to the two
phase-locked states Indeed Haken. Kelso and Bunz [R] were
able to derive the equation for relative phase (1. (2) (romegs
(1Y and (12) using the slowly varving amplitude and rotating
wave approximations. These results not onky provide further
support for the dynamical model on the collective vanable
level. but also establish in a rgorous lashion the relation of
the two levels of description.

Finally. we indicate briefly how the pacing of both hands
in the “'sea-gull effect” (Section 6) may be incorporated into
the model at the component level. The basic idea ts simular to
that used to determine the potential (R) We acsume that the
system s intrinsic dyvnamics are stillintact and the pacing acts
as an additional external force For the oscillator equations
this can be done by adding a periodic driving force to ther
oscillator funcuon, e g.. as

A+ Blx, — )y

+ F cos (), (4
U+l ) = (4 - y)id + By, — )
+ Fcostor + y) (14

Here F i< the coupling constant of the driving lorce and W the
required refative phase 'or convemence we have chosen the
natural Irequency of the osaitkators as idennical to the drivine
[requency In fact. the abihity of the subjects to entrain therr
rhythmic movements without a phase lag to the exicrnal
pacing hghts is an interesung subject 1n e own rnght and
deserves further theoretical and experimental study  Using
again the slowly varying amplitude and the retiung
wave approumations we were able to derive the following
equations for the relative phase ¢ and the phase sum (!

P ) (. th
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P(p.th = —qcasd — hcos Xp
] — y -
-«im(—,—y)cm(d’ ,-“) (7N
where
a = -4 - :”’.“.. h = g”r, and = Feny)
with amphtude
B P

If one assumes the phase sum to have refiaxed 10 ns tationary
vtlue 1 = — 4+ W the resuluing equatton for relative phase
12 exactly

b = -

d X
dop

with the potential 1, of eq (R) Thus agiin we have derived
the collective vanable dynamics from the component level.
The details of these calculations will be published elsewhere
e
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8. Conclusions. phenomenological synergetics™
<

i he laws gn\'crni:g the dvnamic patterns produced by com-
plex. bhiological systems that possess very many degress of
freedom (such as the human brain which has ~ 10'* neufrons
and ncu[rm\;\l coHecum\ss are. i general. not known. Unlike
certain physical svstems. the path from the microscopic
dynamics to the collective order parameters — asin Haken's
slaving princip§] — is not readily accessible to theoretical
anahvais Here we suggest that an understanding of biological
order mav sull be possible via an alternative approach, namely
anc in whicl the natare and dynamics of the (low-dimensional)
order parameters arc first empirically determined, particu-
larty ncar noncquiibrium phase transivons tor bifurcations)
Then the relevant subsystems and their dynamics can be
identificd. This approach, which we may call “phenom-
enological synergetics”, has provided the conceptual frame-
work for the empirical studies of spatiotemporal order in
bimanual coordinion that we have reported here. Parenthet-
ically. we have preliminary. but exciting evidence that the
approach is useful for understanding another cyslem‘{. namely
the multiple articulator movements that structure the <ounds
of speech ((7)). A sunilar strategy has been successfully
apphicd 1o “muscle strecaming” by Shimizu and  Haken
[22.2Y)

“Understanding” is sought. in the present approach, not
through some privileged scale of analysis, but within the
abstract level of the essential (collective) vartables and their
dynamics. regardless of scale or material subsirate. Nol only
may the language of dynamics be appropriate at the behav-
1oral level (e g.. in the patterns among muscles and kinematic
events), but also. we hypothesize, at the more microscope
scale of neurons and ncquonul assemblies. Many of the
dynamical features we have observed and modeled in our
experiments. for example, svachronization, phase-locking,
switching. etc.. can also be ohserved in the neuronal behavior
of even the lowliest creatures. e g . in the buccal ganglion of
the snail. Helisoma tas in Kater and colleagues’ work, cf {24)
for review) or in the motoncuronal firing patterns of Pleuro-
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hranc haea during feeding (cf {28]) Thus the long soueht-tor
hink between neuronal activities (mucroscopic eventsy and
behavior (macroscopic events) may actually reside in the
couphing of dynanucs on different levels (¢f Section 7 above)
Relatedly. the classical dichotomy 1n hiology between stryc-
ture and (unction may be one of appearance nnhv The
present theory promotes a untfied treatment. with the two
processes separated only by the tme scales onwhich thes e

Finallv. we want to stress - after Brideeman (26} ind
Haken [27] - the operationat nature of the pre<ent approach
Fhat ss. dynamics are formulated for observable varables
onty and prechcuons are made that can be experimentally
tested As much as possible, a nuntmality strategy 1< followed
in which all consequences of a theorencal formulation are
checked for thewr empurical sahidity. Insight 1s not neces<arnily
gamed by ncreasingly accurate quantitatine descriptions
of data. or by using increasingly comphcated dynanucal
equations Rather, we seek to account for a larger number of
experimental features with a smaller number of theoretical
concepts
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NOTES ADDED IN PROOF

1. Regarding the experiments decribed i1n 3ecticn 2,
Professor H. Swinney (University of Texas, Aus<in) has inquired
about additional bifurcations. In facz, as freguency :is scalesd
to even higher values, a further bifurcaticn nhas bteen observed
(cE. [3]) 1in which the fingers shifz frem a svmmetrical b
abduction-adduction pattern to a symmetrical Ilexion-2x%2ns1ion b
pattarn (see [3] Fig. 10 and Sect. 6.7). We do not discuss zhis
pifurcation further here, however, bDbecause 17 has not Dbdeen
studied 1n any detail as yet. Nevertheless, the increase in mean
relaxation time at 3 Hz seen in the present Fig. 4 may de because

this new bifurcation is observed near *that value. 3

2. The analogy of the observed transition with eguilibrium
second order phase transitions refers to the presence of critical
fluctuations and critical slowing down. The origin of these
critical phenomena in the present case, however, 1s different
from the equilibrium situation. In particular, symmetry breaking
does not occur. It 1s only due to the time scales relation (6)
that criticality is seen in what one might rather call--following
a suggestion of Professor R. Landauer (IBM)--a limiting case of a
first order transition. We would like to thank Profs. Swinney
and Landauer for raising these points with us.
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Visually Induced Adaptive Changes in Primate
Saccadic Oculomotor Control Signals

L. M. OPTICAN aND F. A. MILES

Laboratory of Sensorimotor Research. National Eye Institute: and
Laboratory of Neurophysiology. National Institute of Mental Health,

SUMMARY AND CONCLUSIONS

1. Saccades are the rapid eye movements
used to change visual fixation. Normal sac-
cades end abruptly with very little postsaccadic
ocular drift. but acute ocular motor deficits
can cause the eyes to dnft appreciably after a
saccade. Previous studies in both patients and
monkeys with peripheral ocular motor deficits
have demonstrated that the brain can suppress
such postsaccadic drifts. Ocular drift might be
suppressed in response to visual and/or pro-
prioceptive feedback of position and/or veloc-
ity errors. This study attempts to characterize
the adaptive mechanism for suppression of
postsaccadic drift.

2. The responses of seven rhesus monkeys
were studied to postsaccadic retinal slip in-
duced by horizontal exponential movements
of a full-field stimulus. After several hours of
saccade-related retinal image slip, the eye
movements of the monkeys developed a zero-
latency, compensatory postsaccadic ocular
drift. This ocular drift was still evident in the
dark, although smaller (typically 15% of the
amplitude of the antecedent saccade, up to a
maximum dnft of 8°). Retinal slip alone,
without a net displacement of the image, was
sufficient to elicit these adaptive changes, and
compensation for leftward and rightward sac-
cades was independent.

3. It took several days to complete adap-
tation, but recovery (in the light) was much
quicker. The decay of this adaptation in dark-
ness was very slow; after 3 days the ocular drift
was reduced by <50%. The time constants of
single exponential curve fits to adaptation time
courses of data from five animals were 35 h
for acquisition, 4 h for recovery, and at least
40 h for decay in darkness.

4. Descriptions of the central infniervation
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for a saccade are usually simplified to only two
components: a pulse and a step. It has been
hypothesized that suppression of pathological
postsaccadic drift is achieved by adjusting the
ratio of the pulse to the step of innervation
(19. 26). However, we show that the time con-
stant of the ocular drift is influenced by the
time constant of the adapting stimulus. which
cannot be explained by the simple pulse-step
model of saccadic innervation.

5. A more realistic representation of the
saccadic innervation has three components: a
pulse, an exponential slide, and a step. Normal
saccades were accurately simulated by a
fourth-order, linear model of the ocular motor
plant driven by such a pulse-slide-step com-
bination. Saccades made after prolonged ex-
posure to optically induced retinal image slip
could also be simulated by properly adjusting
the slide and step components. Thus we hy-
pothesize that adaptive control of the gain of
the step, and of both the gain and the time
constant of the slide, is required to suppress
postsaccadic ocular drift.

INTRODUCTION

Visual acuity begins to decline as images
slip across the retina at more than a few degrees
per second. It is therefore desirable that the
eyes be reasonably stable during fixation of
the stationary world. Fixation is changed with
very rapid eye movements. called saccades,
minimizing the period of poor visual acuity.
However, the nervous system is not always
successful in reestablishing fixation immedi-
ately after a saccade; occasionally there is an
accompanying exponential dnift of small am-
plitude, either onward or backward (3. 40). In
normal subjects these postsaccadic drifts are
usually too small to compromise acuity, but

+
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they can be quite pronounced in patients with
ocular motor nerve palsies (1. 19) and in some
patients with cerebellar disease (20).

Kommerell et al. (19) demonstrated the ex-
istence of a long-term adaptive mechanism
that operates to reduce this postsaccadic dnft.
Using human patients with abducens nerve
palsies that result in hypometna and postsac-
cadic dnft in one eye. they showed that the
amount of saccadic dysmetria and postsac-
cadic dnft could be altered by monocular
patching. When the normal eye was patched
for several days its saccades became hyper-
metric (went beyond the target) and were fol-
lowed by drift. Switching the patch for 3 days.
so that the normal eye was viewing. resulted
in recovery of that eve. i.e., the saccades made
by the normal eye were of normal amplitude
and had no postsaccadic drift. Abel et al. (1}
found similar adaptive changes in a patient
with an ocular motor nerve palsy. [n addition,
they followed the time course of the saccadic
gains in their patient after patching one eve.
When the affected eye alone was viewing, the
saccadic gain increased with a time constant
of 0.85 days. and when the unaffected eye was
viewing the gain recovered with a time con-
stant of 1.54 days.

The rapid part of a saccade is due largely to
a brief, high-frequency burst of innervation.
or pulse, and the final eye position is deter-
mined by a tonic level of innervation, or step
(31). Kommerell et al. (19) hypothesized that
saccadic adaptation was achieved by altering
the puise and step of innervation. Drift
suppression would then depend upon adjust-
ing the ratio of the pulse to the step. Optican
and Robinson (26) were able to show, with
ablation studies, that the puise and step gains
were independent and that their control de-
pended on different parts of the cerebellum.
These workers tenectomized the hornzontal
recti muscles (excised their distal ends) in one
eye of monkeys and allowed the stumps to
reattach to the globe. This made saccades in
the operated eye hypometric (too small) and
induced an exponential drift back (in the di-
rection opposite to that of the antecedent sac-
cade). By patching one eye or the other they
were able to study adaptive changes in saccadic
gains. The amplitude of the saccade was mea-
sured at the end of the initial rapid phase to
provide an estimate of the pulse gain and after
the achievement of a steady-state position to
provide an estimate of the step gain. Both gains

were found to change with the same time
course. increasing with a time constant of
about | day. and decreasing with a time con-
stant of about ': day. Total cerebellectomy re-
sulted in saccadic hypermetria and postsac-
cadic ocular dnft and abolished control of both
pulse and step gains. Ablations of the midline
cerebellar vermis resulted 1n saccadic hyper-
metna and destroved the animals™ abihity to
adjust their pulse gain. but left intact their
ability to adjust their step gain. The gain of
the step was not adjusted to match the target
displacement. but was always matched to the
antecedent pulse of innervation. so that post-
saccadic ocular drift was alwayvs suppressed
despite steady-state position errors. Bilateral
flocculectomies in monkeys have been shown
to abolish the ability to suppress postsaccadic
ocular dnft. presumably by destroying the
control of the step gain (27).

While the existence of the dnift-suppression
mechanism is now well established. the mech-
anism by which the system senses errors and
implements corrective adjustments is not
known. Two different afferent systems could
be used to report the presence of ocular dnft.
Since the world is stationary, any postsaccadic
ocular drift would result in full-field retinal
slip, which could therefore be used to indicate
the presence of such ocular drift. The assess-
ment of ocular drift might also be made from
muscle proprioceptive afference. The extra-
ocular muscles contain many proprioceptors,
and these are known to project into the para-
vermal cerebellum (on which the pulse gain is
dependent) over pathways with a short latency
in cats (5. 10, 37). Extraocular afferents have
also been shown to project to the flocculus (on
which the step gain is dependent) in rabbuts
(22). Since the previously mentioned studies
of saccadic adaptation were done on patients
with ocular motor nerve palsies or in animals
with tenectomized muscles. it is difficult to
determine the extent to which propnoception
plays a role in dnfi suppression. It 1s also not
known how the adaptive control of saccade
amplitude. presumably effected by changing
the gain of the brain’s estimate of the target's
position (23). interacts with the adaptve
mechanism for drift suppression. Both mech-
anisms appear to have similar time courses of
many hours in abnormal subjects (1. 26).
However, another, faster adaptive mechanism
that makes a parametric adjustment in sac-
cadic size within a few minutes has also been
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demonstrated in normal human subjects (8.
4. 41).

The present studyv was undertaken to char-
actenze the contribution of retinal slip to the
adaptive mechanism responsible for mini-
mizing postsaccadic ocular dnft. The visual
expenence of pauents with extraocular muscle
palsies (1. 19) and monkeys after tenectomies
{26). i.e.. exponential slips after saccades. was
reproduced as closely as possible in these ex-
penments in an attempt to stimulate the
same gradual adaptive mechamism for dnft
suppression. Monkevs with intact extraocular
muscles experienced optically imposed. tull-
tield. exponential postsaccadic retinal slip. The
monkeys responded to this retinal shp just as
if 1t had been caused by pathological ocular
dnft: changes in saccadic innervation led to
the development of a postsaccadic ocular dnift
that reduced the opticallv imposed postsac-
cadic retinal slip. Unexpectedly. the time con-
stant ot this ocular dnift was dependent on the
time constant of the adapting image's dnft.
Hence these studies show that, in addition to
the amplitude of the dnft. the time constant of
the drift is also under adaptive control. These
data lead to the proposal of a new model of
the final common path. the brain stem net-
work and ocular motor plant, which is com-
mon to all ocular motor systems. The new
hypothesis accurately models both normal
and adapted saccades. allowing for the suppres-
sion of postsaccadic ocular drift. A preliminary
report of some of these results has been pre-
sented (25).

METHODS

Eve movements were recorded from seven adult
rhesus monkeys (Macaca mulatta) before, during,
and after they experienced optically imposed post-
saccadic retinal image slip. All animals had previ-
ously been trained to fixate small lights for a liquid
reward. Each animal was implanted with a head
holder and a scleral search coil (15), using aseptic
surgical procedures, while under pentobarbital so-
dium anesthesia. During the experiments animals
were seated in a plastic chair. with their heads fixed,
facing a translucent screen subtending 100° in both
the honzontal and vertical direction at a distance
of 29 cm. Highly textured. colored images were
projected onto the back of the screen and were
moved by a mirror galvanometer system under
computer control. This arrangement was used to
dnft the scene with an exponential time course after
every spontaneous saccade. thereby simulating the
visual events associated with postsaccadic ocular
dnft.
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Motion of the projected tmage was controlled by
a PDP-11/34 computer driving a servo-controlled
mirror galvanometer (General Scanning Corp.
CCX-i01 servo and G300-PD motor). The band-
width of the scanner was ~ 100 Hz. and the control
signal had a range of 100° of image mouon with a
resolution of 1 part in 4,096. Three signals. hon-
zontal and vertical eve position and the transducer
output of the mirror galvanometer, were low-pass
filtered (-3 dB at 240 Hz) and digitized with a 12-
bit analog-to-digital converter sampting 1.000 umes
per second.

Eve movements were recorded monocularly with
the magnetic-field/search-coll technigue (24. 301 A
relative calibration was routinels made by moving
the image with a saw-tooth waveform (constant-
velocity stow phases at 10 deg/s. interrupted by 10-
ms resets) and assuming that the maximum opto-
kinetically induced eve velocity matched the veloc-
ity of the projected scene. Absolute calibrations for
testing saccadic accuracy were made by having the
monkey make saccades to targets at 20° eccentncity
left. nght. up. and down.

Adapration paradigm

The adaptation paradigm was designed to elicit
a change in the pulse-step ratio of saccadic inner-
vation. While the animal faced the textured image
and made saccadic eye movements spontaneously,
the computer detected the saccades on the basis of
velocity and duration criteria (2). At the end of each
saccade (which could be determined with an ac-
curacy of a few milliseconds by waiting for the eye
velocity to tall below 12% of its peak value) the
computer made the projected image move hon-
zontally across the screen. There was a 5-ms latency
between the computer command and the mirror
movement. Since the computer detected a low eye
velocity. and not the true end of the saccade. the
movement of the image usually began within a few
milliseconds of the actual end of the saccade. Gen-
erally. an exponential waveform with a 50-ms time
constant was used. This value was chosen 10 be near
that of the ocular drift found in a previous study
of lesioned animals where adaptation was observed
(26). Some experiments were done with exponential
drifts having other time constants (25 and 100 ms).
and in one experiment the scene was displaced
abruptly. The amplitude of the image slip was al-
ways 50% of the amplitude of the horizontal com-
ponent of the antecedent saccade. In some expen-
ments the slip was onward,. in the direction of the
antecedent eye movement. and in others it was
backward. Animals remained in the apparatus for
the several days needed to compilete a single exper-
iment. They were given food and water by hand,
at regular intervals, until satiated, regardless of their
behavior. Animals were kept awake dunng record-
ing sessions by loud noises. At other times six an-
imals were not artificially aroused. The seventh an-
imal received a liquid reward for making bnsk sac-
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cades. There was little difference in this animal’s
adaptive performance.

Latency of the ocular following response to the
full-tield. exponential slip stimuli was measured
with the techniques of Kawano and Miles (16). The
eve velocity was digitally differentiated to obtain an
acceleration trace. We computed the mean and
variance of this acceleration over the period before
the stimulus. Onset of ocular drift was defined to
be when the eye acceleration exceeded 2 SD from
the mean. This was typically at ~ 100°/s%.

Saccadic performance

Sample recordings of saccadic and postsaccadic
waveforms were made while the animal was viewing
the adapting stimulus and while it was in temporary
darkness. For testing saccadic accuracy the eve
without the coil was patched. and the animal
tracked a spot of light that shifted abruptly among
fixed positions at 0, £5, =10, =15 and £20° along
the horizontal meridian. The sequence of the target
movements was unpredictable and included various
combinations of starting positions and amplitudes.

Data from the first two monkeys were measured
by hand from chart paper records. Data from later
monkeys were analyzed off-line on a PDP-11/44
computer. Velocities were obtained by digital dif-
ferentiation. using a Chebyshev optimal nonre-
cursive linear filter acting as a low-pass filter (-3
dB at 30 Hz) (29). Each saccade was displayed on
a video screen, and measurements were made of
the beginning and ending positions of the saccades,
their peak velocity, and the amplitude and duration
of any postsaccadic drift. Time constants of image
and ocular dnft were estimated by a nonlinear
regression technique with linear constraints on the
parameters that determined the best fit. in the least-
square-error sense, of a single exponential curve to
the data (21, 38).

RESULTS

When the full-field image first begins mov-
ing after every saccade, the animal responds
by tracking it with a delay of ~50-60 ms (cf.
Ref. 16). If the lights are turned off after only
a few minutes of such experience, the animal’s
spontaneous saccades in the dark appear nor-
mal. After several hours of such experience,
however, the monkey begins to show a zero-
latency ocular drift after each saccade in the
light, and some of this drift persists when the
lights are turned off. Our initial concern is en-
tirely with the postsaccadic ocular dnifts that
persist in the dark (though a later section will
consider some of the complex events recorded

in the presence of the adapting stimulus in the

light).
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Optically induced postsaccadic
ocudar drift in the dark

Figure | shows the effect of proionged ex-
posure to the adaptation paradigm on spon-
taneous saccades made in the dark. In the nor-
mal state of the animal (Fig. 1.4) the saccadic
eve movement ended fairly abruptly and was
followed by only a small amplitude dnft back.
Such small drifts are often present in the light
as well as in the dark in the normal state. After
several days of experiencing optically imposed
retinal slip after every saccade. the eyes de-
veloped a dnft in the direction of the adapting
motion that tollowed almost immediatelv after
the rapid part of the saccade was over (Fig. 1.
B and O).

Companng the panels in Fig. 1. we see that
the adapted movement looks like a rapid sac-
cade followed by a slow drift. To quantify this
adaptive response, eye movements were di-
vided into two parts: an initial rapid compo-
nent of amplitude P. presumed to reflect a
phasic change of innervation, or pulse. and a
component of amplitude S that brings the eve
1o its final position, presumed to reflect a tonic
level of innervation, or step. The size of com-
ponent P is measured from the initial eye po-
sition to the inflection point during the decel-
eration phase of the rapid part of the saccade.
The size of component S is measured from the
initial eye position to the point where the eye
velocity returns to zero.

The amplitude of the postsaccadic ocular
drift (S — P) varied with the amplitude of the
antecedent saccade. Figure 2 shows data from
two monkeys, in which each point indicates
the ocular drift following a spontaneous sac-
cade in the dark. after 5 days of adaptation.
In both cases the adapting stimulus was an
exponential image dnft with a time constant
of 50 ms and an amplitude that was 50% of
the antecedent saccade’s. Circles show dnifts
from monkey OV, after adapting to a stimulus
that drifted backward: plus symbols show dnfts
from monkey UL, after adapting to a stimulus
that drified onward; the straight lines are least-
squares regressions of ocular dnift on saccadic
amplitude for amplitudes less than about 25°
(for OV: slope = —0.17, intercept = —0.54°,
r = —0.97; for UL: slope = 0.12, intercept =
0.10°, r = 0.95). For larger saccades the points
tend to fall off the regression line. indicating
the presence of an amplitude saturation for
ocular drift. Indeed, ocular drifts in the dark
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FIG. 1. Optically induced postsaccadic ocular dnift persists in the dark. 4: normal spontaneous saccade in the
dark. Note small amount of drift back at the end of the rapid portion of the saccade. Spontaneous saccade in the dark
after several days of exposure to an onward (B) and backward (C) exponential drift that followed every saccade. The
saccade in the adapted state is followed by a zero-latency drift. To quantify the amount of ocular dnift. the amplitude
of the rapid part of the saccade (P) and the final position of the movement (S) are measured from the saccade’s starting
point. The portion P is catled the saccade, and the portion (S — P) is called the postsaccadic ocular dnft.
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F1G. 2. The amplitude of ocular drift in the dark is
proportional to the ampiitude of the antecedent saccade.
Ocular drift amplitudes were measured in monkey OV
(with backward drifts, circles) and in monkey UL (with
onward drifts, plus symbols). The solid lines are the
regressions of ocular drift amplitude on saccade amplitude
for saccades <25°.

with amplitudes >8° were not seen in any
monkey.

The amount of drift was aiso expressed as
a fraction of the pulse amplitude. (P — S)/P,
and will be referred to as the pulse-step mis-
match (psm). The relationship between the
pulse and step components was also expressed
by the fraction (P/S), called the pulse-step ratio
(psr). The aimost linear relationship between
the amplitude of the ocular dnft and its an-
tecedent saccade suggests the presence of a
parametric adjustment (with saturation). and
supports the use of a single number, such as
the psm or psr. to charactenize the saccadic
waveform in the presence of ocular drift. Table
1 shows the psm (in %) for four monkeys. The
visual scene was made to slip either backward
or onward 50% of the amplitude of the ante-
cedent saccade. In each case the monkey, in
response to the retinal slip, developed a post-
saccadic ocular dnft that was in the adaptive
direction.

The amount of the postsaccadic dnft in the
dark was always less than that in the light. As
a typical example, in monkey UL, the psm
after 6 days of adaptation (to an exponential
drift with 50% the amplitude of the antecedent
saccade and a time constant of 50 ms) was
24.3 + 1.2% (SE) in the presence of the adapt-
ing stimulus, but only 13.6 + 0.3% in the dark.
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TABLE 1. Pulse-step mismatch of spontaneous saccades made tn the dark

Adapted. -

Monkey Normal. % Backward ship Onward ship
ov 16=02(5N 175 = 0.50107) 17320684
UL 25020108 TT 0515 S136 = 031329y
RO 1.1 =202(38) 110 =087
Qu 1.5£02(78%) =206 =067}

Adapted state was induced by several days of exposure (0 an image slip whose amphitude was 0% of the amplitude
of the antecedent saccade and which dnfted exponentially with a ime constant of 0 ms. Values are means = | SE (m)

Time constant of ocular drift

The time constant of the ocular dnft asso-
ciated with an adapting stimulus of a given
time constant was fairly consistent in the same
animal on different days. although there were
small differences between animals. The aver-
age time constant of ocular dnft in four ani-
mals measured in nine separate experiments
was 68.8 ms (SD = 10.8) when the adapting
stimulus had a time constant of 50 ms. The
time constants within this group ranged from
510 + 1.4 (SE) (n = 84) 10 87.1 = 3.5 ms
(n = 61): analysis of variance showed that the
group was not homogeneous (F-test, P < 0.01),
and hence the time constants among monkeys
were significantly different.

These significant differences suggested that
the time constant of the ocular drift might be
an idiosyncrasy of the animal and independent
of the time constant of the adapting stimulus.
To test this hypothesis, the effect of varying
the time constant of the exponential image
drift used for adaptation was examined in two
monkeys. In three separate experiments the
time constant of image motion was either 25,
50, or 100 ms. Figure 3 shows that there was
a strong correlation between the time constant
of the ocular drift and that of the image drift
used to adapt the animals. After adaptation
the psm was about 15% in all experiments,
and there was no marked difference in the ac-
quisition time at the different adapting time
constants. Nor was there any correlation be-
tween saccade amplitude and the time con-
stant of the ocular drift: for two monkeys (OV
and LF), with the three adapting image-drift
time constants, the average of the absolute
values of the correlation coefficients was
0.20 + 0.22 (SD) (ranging from 0.003 to
0.500). Regression of the ocular-drift time
constant on the image-drift time constant gives
a line with slope 0.70 and intercept 19.61 ms

e e e o e

(correlation coethicient 0.99) for the data of
both monkeys. Hence the ume constant ot the
ocular dnft in the dark was dependent on the
time constant of the stimulus used in the ad-
aptation paradigm.

Time course of acquisition and recovery

The postsaccadic ocular dnfts recorded in
the dark develop gradually over time when an

o
QO -

Ocular Drift in Dark (msec)
50

4 Y=070% 136"
R =099
(@] v v N I — Y M 1 ?
0 50 100

Adapting Image’'s Drift (msec)

FAG. 3. Time constant of ocular dnft measured from
spontaneous saccades, made by monkey OV (open circles)
and LF (filled circles) in the dark, depends on the time
constant of the adapting stimulus. Vertical and horizontal
bars are x| SE. Dotted line is from linear regression. Time
constants of image dnift are an average of (S, and time
constants of ocular drift are averages of at least 60 nonlinear
regression estimates (see METHODS). The correlation be-
tween ocular and image time constants is staustically sig-
nificant (P < 0.001). [Actual time constants of image dnft
for monkey OV were 250 + 0.1 (SE). 50.1 =+ 0.1, and
101.0 £ 0.2; for monkey LF they were 24.1 £ 0.1.49.1 =
0.3.and 98.5 £ 0.5
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animal is continually exposed to optically im-
posed postsaccadic slip. Figure 4 shows a typ-
ical time course for the adaptive change in the
psm 1n monkey UL. The ammal was adapted
tor 6 days to an exponential image dnft (with
a 50-ms time constant) that slipped onward
1n one experiment (open circles) and backward
in another (filled circles). At the end of the 6th
day the image motion was stopped. and the
antmal was allowed to recover while viewing
the (now stationary) image. The recovery
phase was much shorter than the acquisition
phase. regardless of the direction of the gain
change. even though the visual stimulus was
the same in the two cases, and the monkey
generated saccades at a similar rate. An effort
was made to fit a single exponential function
to the acquisition and recovery time courses.
This was not possible in the acquisition phase
when the step gain was increasing (where a
dashed line connects the points); the gain ap-
peared to increase in two stages for this mon-
key. When the step gain was decreasing, the
acquisition phase had a time constant of
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AG. 4. Time course of adaptation 1n monkey UL At
time zero the ammal was presented with exponential image
slip that was 50% of the amplitude of the antecedent sac-
cade. In one expenment the image dnfted in the same
direction as the antecedent saccade (open circles), and 1n
the other the image dnfted backward (filled circles). § ¢rical
bars are = | SE.
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30.4 + 6.4 h (SE). Both recovery phases were
well fit by exponential functions. The ume
constant for recovery from a gain decrease was
34 £ 1.0 h, and that for a recovery trom a
gain increase was 3.7 = 1.2 h. Time course
data were also piotted using the number of
saccades. instead of the elapsed time. as the
independent vanable. Essentially no difference
in the smoothness or form of the curves re-
sulted from expressing the data in this way.

The time course of the acquisition of an
adapted gain was studied in five expenments
on four monkeys. The time course ot the re-
covery from the adapted state was studied 1n
four expertments in three monkeys. In all the
animals the change over time of the psm was
usually smooth. although. as in Fig. 4, often
one change was not well fit by a single expo-
nential (but this could be the acquisition of
either an increased or a decreased psm). There
were no systematic differences across monkeys
whether the gains were increasing or decreas-
ing, or between gains for leftward or nghtward
movements. While there were differences in
the time constants for leftward and nghtward
adaptation, this varied from monkey to mon-
key. In only two cases (out of 8) were the time
constants of acquisition shorter than the time
constants of recovery. and then only for one
direction: combining leftward and rightward
data to give a single time constant always gave
an acquisition time constant that was larger
than the recovery time constant. A character-
1zation of the overall performance in ail the
monkeys was obtained by normalizing the
psm so that the maximum value dunng each
phase (acquisition or recovery) in each mon-
key was +1.0. All the normalized psm values
from each monkey were divided into acqui-
sition and recovery groups. The recovery val-
ues were time shifted so that all the recovery
phases started at 167 h. Singie exponential
functions were ftted to all the points 1n both
groups. In Fig. S the letters correspond to psm
values from each monkey for leftward and
nghtward saccades. The solid lines are the
least-squares best fit to the data of a single ex-
ponential function. The ume constant of ac-
quisition was 15.1 + 6.5 h (SE). and that of
recovery was 4.1 + 0.7 h.

Decay of adaptation 1n darkness

If the postsaccadic ocular dnft 1s 1o be as-
cnbed to changes 1n some plastic neural gain
elements, one would expect those changes to

L

o o L 3 U CaX e .
LN IO O G ERNRSLRAN, O, G CR AN K Gy Ny TRt

T s n TR

LR R IRAINRS

- W

.



y ¢ P T RTELNSTRELVLELINOELONL Y WYV W S O ST W -

)

¥,
¥

)

'
+
¥ / .
= ¥
22 4
= : \
B & .
N L I
) = [ . .
3 o . \'._‘?_—
. - 4
P, R 4
) s Ty
o z:‘x

TR A,
(Ve
)
wn
&) K
]
- (W)
_ (Y]
O
(]
)
w
O
+
rJ
fa) 1
O 'S
) ’
-
(@]

AG. 5. Time course of adaptation averaged over S ex-
penments 1n 4 monkeys. Letters represent individual
monkeys. The curves represent the best-fit single expo-
nential function to the pooled data.
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persist in the dark when there can be no post-
saccadic retinal slip. The long-term persistence
of the psm was examined by adapting two
monkeys (for 4 and 5 days, respectively) and
then placing them in complete darkness. The
amount of postsaccadic ocular dnft associated
with spontaneous saccades in the dark was
measured by pooling the psm values for nght-
ward and leftward data for each monkey (nor-
malized to the value at time zero).

. Figure 6 shows the pooied values (open cir-
. cles are monkey OV, filled circles are monkey
UL). Despite the variability of the data. re-
flected in the large standard ervors, it is clear
that the decay of the psm in darkness is less
rapid than either the acquisition or recovery
phases. For companison with the time con-
stants in Fig. 5, exponentials were fitted to the
A data in Fig. 6 as well. Fitting a single expo-
nential gives a very long time constant for de-
cay to zero [180 x 31 h (SE), solid line}. As
expected. fitting a single exponential that de-
cays to a nonzero asymptote gives a shorter
time constant (42 *+ 32 h, with an asymptote
of 0.53. dashed line), but one that is still longer
than that for either acquisition or recovery.

d

v

KLALLL

: . w
R AN NN AN B NN N

ADAPTIVE CONTROL OF SACCADES 947

While the decay in the dark s not a simpie
process that can be well fit by a singie expo-
nential. the psm clearly does not go away rap-
idly 1n the dark. and there 1s considerabie re-
sidual psm: even atter three davs 1n darkness
both animals sull retain >30% of their adap-
tation.

Directional selectivity

In all of these expenments the image dnfted
only 1n the honzontal plane. and ocular dnft
developed only in that plane. One expenment
was performed (w' h monkey OV) to turther
demonstrate the directional specificity of the
visually induced adaptive response. In this ex-
penment the image was made to move onward
after nghtward saccades. and backward atter
leftward saccades. Thus. the optical dnft was
always in the same direction. so that the size
of the step of neural innervaton relative to

Normalized PSM

N
o — y - \
0] 20 40 60 80
Time (h)

AG. 6. Decay of adaptation in darkness. After adapting
to exponenual image siip, 2 monkeys were kept in compiete
darkness for several days. The values are pooled for each
of 2 monkeys for leftward and nghtward movements (open
circles from monkey OV. fifled circles from UL). Verncal
bars are +1 SE. The solid curve 1s the best-fit exponential
(ume constant = 180 + 31 h) decaying to zero. The dashed
{tne 1s the best-fit exponenual with an asymptote of 0.53
(time constant of 42 = 32 h).
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the pulse was required to increase for nghtward
movements and decrease for leftward move-
ments. This is exactly what happened. the psr
being appropriate for the direction of the an-
tecedent saccade and the direction of adapting
image motion: The rightward psm was —9.1%
(SE = 0.3. n = 116), while the leftward psm
was +9.0% (SE = 0.2, n = 130).

Displacement vs. drift

An exponentiai pattern of image motion
induces both slip and displacement of the ret-
inal image. Several other patterns of image
_ motion were used to study the adaptive mech-
anism. Prolonged exposure to step displace-
ments (duration of 5-8 ms) in the same di-
rection as the antecedent saccade did not elicit
postsaccadic ocular drift: after several days of
viewing step displacements that were 50% of
the amplitude of the antecedent saccade. eve
movements still ended abruptly. Hence dis-
placement alone of the image on the retina is
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FIG. 7. Representative transition waveforms from sac-
cade to ocular dnft in spontancous saccades in the dark.
Eye movements were shifted and their beginnings removed.
a the dnft begins immediately after the puise-dnven part
of the saccade 18 over. & there is a short penod (~ 10
ms) of zero or low velocity before the dnft. ¢« a
small backward saccade. or dynamic overshoot, precedes
the dnft. All monkeys show this spectrum of response
waveforms. Which form predominates vanes with the
monkey and the direction of the saccade.
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TABLE 2. Latency of ocular drift following
spontaneous saccades in the dark

Monkey Normal Adapted
ov 36 =045 J4=02010M
UL 62 =04(108) $4=-0.20329)
RO 48 =08(38) 46 =057
QuU 33203079 24017

Even normal saccades often have small ocular dnfts.
There 15 very little difference in the latency from the end
of the saccade to the onset of dnft between the normal
and adapted states. Values are mean times in milhseconds
< | SE (n).

not sufficient to elicit postsaccadic ocular dnift.
Step displacements and exponential drifts were
combined to give an image slip without net
image displacement; at the end of a saccade
the image stepped away by 50% of the ampli-
tude of the antecedent saccade. then dnifted
back exponentially to its original position with
a time constant of 50 ms. The response of the
monkey to this step-back exponential was 4
qualitatively identical to the response to the
simple exponential image motion; the psm in
the dark, after 3 days of adaptation, was — 2%
(SE = 0.4, n = 113), while after 3 days of ad-
aptation to the simple exponential it was —17%
(SE = 0.6, n = 84) in the same monkey. Thus,
optically imposed postsaccadic retinal slip
alone, without net retinal image displacement,
is sufficient to elicit postsaccadic adaptation.

Time of onset of postsaccadic ocular drift

In the normal state. before adaptation. the
exponential image drift gave nse to an ocular
following response. The latency of this re-
sponse, averaged over two experiments in each
of two monkeys, was 56.7 + 6.6 ms (SD). After
several days of adaptation. the animals showed
postsaccadic ocular drfts that had much
shorter latencies and persisted in the dark.
Figure 7 shows examples of the endings of eye
movements made in the dark that resulted
from adaptation to exponentiai image slip for
several days. selected for their range of post- :
saccadic ocular dnift onset times. '

Zero-latency dnfts, such as in Fig. 7a, rep-
resent only one end of a spectrum of latencies.
Sometimes there is a short period between the
end of the saccade and the beginning of the
drift (Fig. 7b). In other cases the initial saccade
will be followed by a dynamic overshoot (a
small, backward saccade) before the drift be-
gins (Fig. 7¢). Which pattern predominates
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varies from one monkey to the next and also
depends on the direction of the antecedent
saccade. The pattern in Fig. 7¢ was the most
rare, occurring ~ 1% of the time in the dark.
Table 2 shows the average latency in the dark
to the onset of ocular dnft in different mon-
keys. Ideally. in the normal state in the dark
there should be no postsaccadic dnft, and
hence the latency measurement would be zero.
The values for the latency in the animal’s nor-
mal state in Table 2. however, reflect the fact
that even many normal saccades are accom-
panied by small drifts. Also. there is a system-
atic error introduced by the method for de-

500 1000

0

-500

OV: psm = +187%

termining the end of the pulse-dniven part of
the saccade and the beginning of the ocular
dnft. which limits the minimum measurable
latency to ~2 ms. Clearly there is no signifi-
cant change in dnift latencies. measured in the
dark. caused by adaptation.

Effect of adaptation on rapid
component dynamics

The amplitude-peak velocity relationships
of the initial rapid component of saccadic eve
movements were not affected by the adapta-
tion paradigm. Figure 8 shows examples of
the amplitude-peak velocity relationship. often

Peak Velocity (deg/s)

-60 -40 -20

T Y 1

0 20 40 60

Saccade Amplitude (deg)

FG. 8. Main sequence (amplitude-peak velocity relationship of the honzontal component of saccades) was the
same for spontaneous saccades in the dark made in the normal (circles) and adapted (plus symbols) states.
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referred 10 as the main sequence (2), obtained
in the dark from two monkeys. Abscissa and
ordinate values refer to the horizontal com-
ponent of spontaneous saccades. Since the
vertical component of saccades was not altered
by this adaptation paradigm. we assume that
any effect of oblique saccades on this main
sequence would be the same in both the
adapted and unadapted states. The circles are
the values before adaptation. and the plus
svmbols are the values after 5 days of adap-
tation to a 30-ms time constant. exponential
image motion that dnfted 50% of the ampli-
tude of the antecedent saccade. In Fig. 8,
top. the data for monkey OV are shown before
and after adaptation to backward image slip.
In the adapted state the monkey's psm was
+17.5% (SE = 0.5, n = 107). In the bottom
pant of Fig. 8. the data for monkey UL are
shown before and after adaptation to onward
image slip. In the adapted state the monkey's
psm was —12.8% (SE = 0.3, n = 250). These
mismatches were typical of those seen in our
experiments.

Even the largest saccades. up to 50° in am-
plitude. still fell on the same main sequence.
The amplitude-peak velocity main sequence
can be characterized by a single exponential.
The curves are the best-fit exponentials to the
data values from the normal (solid) and
adapted (dashed) states. The parameters of this
exponential fit were compared for leftward and
nghtward movements by each monkey in both
the adapted and normal states. There was no
significant difference between the values in
these two states (large sample test for difference
of means could not reject the hypothesis of
equal values even at the 70% confidence level).
Parameters of these exponential fits are given
in Table 3.

While the mean amplitude-peak velocity
relationship did not change, there is clearly a
wider range of velocities for a given amplitude
in the adapted state when the ocular dnift is
backward (Fig. 84). From looking at the least-
upper-bound of this relationship, instead of
the mean, it appears that the saccades in the
adapted state can be faster than those in the
normal state for ampiitudes up to ~25°. (This
characterization is not affected by the vertical
component of oblique saccades, since stowing
of the horizontal component will affect the
mean, but not the least-upper-bound. of the
data.) This increase in the upper limit of peak
velocities for a given amplitude is presumed

TABLE 3. Peak-velocity vs. amplitude
relationship for monkeys OV and UL 1n
the normal and adapted states (cf. Fig. 8

K. deg/s 1. deg b degs
ov
Normal
R -670 = 406 235 =248 912 = 434
L 487 = 74 134+ 75 682 = X8
Adapted
R -575 = §7 98+ 23 679 = 14
L 98 - 43 133+ 39 -hd9 = 13
Combined
R -579 = 49 103« 23 688 = 17
L 134 + 18 133 = 34 -hig T 39
UL
Normal
R =716 = 92 198 72 BRI = 112
L 401 = 88 126 = 54 -338 = 4%
Adapted
R -794 = |11 230= 80 906 = 116
L 40 = 53 = 34 =506 = 41
Combined
R -794 = 83 229+ 61 94 = 102
L S08 = 60 19+ 29 -496 = 31

The curves are the least-squares best fit (21, 38) of a
single exponential: K exp(—a/.4) + }, where a1s the am-
plitude of the saccade. K is the slope constant. { s the
angle constant, and V,, is the peak velocity asymptote.
Curves were fit for saccades in both the nghtward (R) and
leftward (L) directions. The curves in the normal and
adapted states were so similar that a single curve was also
fit to the combination of the normal and adapted data sets
for each monkey (see text). Each parameter 1s given = |
SE.

to be due to the fact that decreasing the step
of innervation (to cause a dnft back) subtracts
a small amount from the portion of the sac-
cade we call pulse-driven (the pulse is actually
made up of a burst from the pulse generator
and the ramp part of the ramp-step from the
neural integrator, see below). Hence the pulse-
driven saccadic amplitude is actually a little
less than the amplitude programmed by the
pulse-generator. The effect of this underesti-
mate of saccade amplitude is to shift the am-
plitude-peak velocity relationship so that sac-
cades in the adapted state (with backward drift)
have larger velocities than normal saccades.
Hence the asymptote for large amplitudes will
remain the same, but the least-upper-bound
will increase for small saccades.

Effect of adaptation on pulse gain
To determine whether prolonged viewing

of the exponential-drift stimulus would cause
any change in the amplitude of the rapid com-
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Gain

T T T T T 1
-1 0 1 2 3 4 5
Count x 103

F1G. 9. Adaptation to amplitude dysmetrnia. Monkey
UL was adapted for 3 days to a sumulus that drifted on-
ward. The normal values of the pulse (filled circles) and
step (open circles) gains, and their ratio (triangles) is shown
at —0.5 on the abscissa. After adaptation, the puise and
step gains are raised (and the pulse-step ratio. pst., is low-
ered). In a spot-tracking task, where the monkey is re-
warded for rapidly acquiring the target. the gain of the
pulse and step are decreased until a slight hypometna of
the pulse 1s restored. This happens with an exponential
time course with a time constant of ~2 h. Since the gain
change is in response to the saccades, however, the data
is plotted versus total number of saccades since the begin-
ning of the behavioral task.

ponents of saccadic eye movements, an animal
that had been adapted for 3 days was examined
on the saccadic tracking test. Figure 9 shows
the pulse and step gains measured in monkey
UL from responses to the movement of a spot
target. (The pulse gain is the ratio of the am-
plitude of the pulse-driven part of the saccade
to the initial distance to the target. The step
gain is the ratio of the final amplitude of the
eye movement to the initial distance to the
target.) The step gain is indicated by open cir-
cles, the pulse gain by filled circles, and the
pulse-step ratio (psr) by triangles. The values
for these variables in the preadapted state are
indicated by symbols at —0.5 on the abscissa.
Note that the abscissa has units of thousands
of saccades to facilitate easy comparison with

\f$-'~ J'\-‘ \..\'.‘.-"..

the rapid saccadic amplitude changes seen 1n
human subjects in psychophvsical tests (8. [4).

The adaptation paradigm ‘aas designed to
induce the monkeyv to adjust the size of the
step of saccadic innervation to reduce image
slip: however. as the saccade tracking test be-
gan it was evident that both the pulse and the
step gains were larger than normal. In this test
the projected image consisted oniy of a small
spot of light. and the animal was rewarded only
for acquinng this (stationary) target rapidly.
For the first few movements of the saccade
test. the high pulse and step gains drove the
eve bevond the target. and the animal had to
make corrective saccades. Dunng testing.
however. the animal began to decrease the
amplitude of the rapid part of the saccade. so
that large corrective saccades were no longer
necessary. vet the ratio of the rapid component
to the step component (psr) did not change.
The pulse and step gains were both lowered
with a roughly exponential course [step-gain
decay constant: 1,308 + 272 saccades (SE);
pulse-gain decay constant: 1,438 + 436 sac-
cades]. This monkey made ~ 770 saccades per
hour, so the equivalent time constant for the
change of both the rapid and step components
was ~2 h. This short course is longer than the
rapid parametric adjustment of saccadic gain
seen tn psychophysical experiments on human
subjects, which require only a few hundred
saccades (8, 14), but is shorter than the several
hours or days needed to adapt to pathological
retinal slip (1, 19, 26. and Fig. 5 in this study).

DISCUSSION

Persistent postsaccadic retinal slip. induced
optically, is sufficient to elicit a postsaccadic
ocular dnft that is evident even in the dark.
When the animal first experiences the full-field
exponential retinal slip there is an ocular fol-
lowing response with a latency of only 50-60
ms. This is shorter than the normal smooth-
pursuit latency of 130-150 ms (32). and ac-
cords with the ultrashort latency ocular fol-
lowing response to full-field ramp movements
described by Kawano and Miles (16). After a
few hours of exposure to the postsaccadic ret-
inal slip. the animal begins to develop a com-
pensatory. often zero-latency. postsaccadic
ocular dnft.

This adaptation occurs in animals with in-
tact extraocular muscles, so the ocular dnft
develops despite the normal propnoceptive
signals coming from the extraocular afferents.

-
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We assume that this is an adaptive response
from a neural mechanism that normally op-
erates to suppress postsaccadic ocular dnft.
This adaptive response is not just the uncov-
ering of some intnnsic ocular dnft. since it is
only in the plane of the stimulus (honzontal),
and since the direction of the drift is linked to
the antecedent saccade and can be either on-
ward or backward. independently. after nght-
ward or leftward saccades according to the di-
rection of the adapting stimulus. The data ob-
tained with the step. dnft. and step-dnft
adapting waveforms are consistent with the
suggestion of Optican and Robinson (26) that
the adaptive mechanism regulating postsac-
cadic ocular dnft is sensitive to retinal slip but
not retinal displacement. These workers
showed that the step gain is adjusted to min-
imize postsaccadic ocular dnft. rather than to
match the desired final eye position. The
matching of the step to the pulse occurred even
when the pulse gain was incorrect. resulting
in saccades of normal appearance but inap-
propnate amplitude.

The gain of the pulse component also in-
creased slightly in response to the exponential
slip stimulus (Fig. 9) and would have had the
effect of reducing the final position error. The
adapted animal in Fig. 9 had a pulse gain of
~ 1.1 and a step gain of ~1.3. The gain of the
step (G,) seems to be adjusted to match the
pulse gain (Gg). as indicated by the almost
constant value of the pulse-step ratio (psr) in
Fig. 9 and by lesion studies in monkeys (26).
Thus we assume we can write the step gain as
Gyp/pst. To acquire an initial eccentricity of
amplitude K. the pulse drives the eye to G,X,
and the step carries the eye to G,K/psr. The
computer would detect the saccade. and move
the image another 0.5G,X. So, the final image
position is at (1 + 0.5G,)K. which gives a po-
sition error, e, between intended and final
eccentricities of [1 + (0.5 — 1/psr)G,)K.
For this example, e/K = [I + (0.5 — 1.3/
1.1)1.1] = 0.25. Hence the position error when
both the gain of the pulse and step are in-
creased is 25% of the intended eccentricity. If
only the step had adapted, (i.e.. G, = 1. G, =
1/psr = 1.18), then the error would have been
32%. The change in pulse gain reduces the er-
ror by (32 — 25%) = 7%, hence it contributes
an additional 7/32 = 22% to the reduction of
the error.

Other studies have shown that changes in
pulse gain can occur in man after only a few

L. M. OPTICAN AND F. A. MILES

hundred saccades (8. 4. 41). Such rapid ac-
quisition may be related to conscious strate-
gies. or short time constant. plastic mecha-
nisms. In contrast. the prolonged time course
of the changes in ocular dnft and their rela-
tively slow decay in the dark are consistent
with long-term. plastic alterations in neural
components, rather than the short-term de-
ployment of alternative strategies.

Figure | demonstrates for the first time that
the saccadic system can reduce the amplitude
of the step of saccadic innervation below nor-
mal. In previous studies (1. 19. 26) saccadic
adaptation was always a response to a reduc-
tion of the effective strength of the extraocular
muscles. Patching one eve or the other could
only be used to increase the amplitude of the
step. or return tt to its normal value. Abel et
al. (1) noted that the time constant for in-
creasing the gain in their patient was 0.85 days,
whereas the time constant for recovery was
1.54 days. Optican and Robinson {26) gave
the time constant for increasing the step gain
over three monkeys as ~ | day. with a recovery
time constant of ~0.5 days. Since in these
experiments the gains could only be made to
increase above normal, or decrease to normal
during adaptation, it was not clear whether
the difference in the time constants between
the acquisition and recovery phases was due
to the direction of the change or somehow re-
lated to the phase (acquisition or recovery) of
the adaptive process. In the present set of ex-
periments it was clear that there was an order
of magnitude difference in the time constants
of the acquisition and recovery phases. re-
gardless of the direction of the actual gain
change.

Why the recovery phase. which always re-
turns the step gain to ~ 1.0, should be faster
than the acquisition phase is not known. One
hypothesis is that the ocular dnift is a pattern
of eye movement that the animal learns to
emit after every saccade. Then learning the
pattern would be slow. but recovery would
only require that the pattern no longer be
emitted. This explanation is no: completely
consistent, though, with the continued pres-
ence of the dnft after prolonged periods in
darkness or with the animal’s inability to sup-
press the drift in the saccade test, apparently
finding it easier to adapt e pulse gain instead
(Fig. 9). Another potentially important factor
is that during acquisition, propnoception and
vision are in conflict, whereas in recovery they
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are 1n accord. Another hypothesis 1s that the
brain has a very stable set point for the pulse-
step ratio that corresponds with minimal
postsaccadic ocular dnft. To change the puise-
step ratio away trom the set point may require
the long-term integration of persistent post-
saceadic retinal ship. It may be possible to re-
turn the ratio to the value specified by the set
point by quickly dumping the integrated error.
The logical extension of this idea 1s that the
set point itselt must be either genetically de-
termined. or under a very slow-acting torm of
adaptive control. If the latter 1s the case. pa-
tients with chronic disorders (e.g.. a 6th nerve
palsy) might have a set point that calls for a
very high gain. In such a case. it might take
longer for the gain to change to the value
needed when only the normal eye 1s viewing
and less ume for the gain to go back to the
raised value when only the paretic eve 1S view-
ing (1),

The amplitude of the induced ocular dnft
1s not constant but is roughly proportional to
the amplitude of the antecedeit saccade. This
ratio was typically ~15% for spontaneous
saccades in the dark. but the dnft amplitude
was never >8°. Thus, while the ocular dnft
would tend to reduce the retinal slip seen just
after a saccade. it could not completely cancel
it. The adaptive mechanism was unable to
fully compensate for the optically induced slip.
In animals with pernipheral muscle lesions.
however, Optican and Robinson (26) found
that postsaccadic dnft suppression in the light
was nearly complete after the operated eve had
been viewing for several days. In this study the
amplitude of the ocular drift was [5-20%. with
a time constant of 40 ms. The imperfect com-
pensation seen in the present study may have
been because the opticaily induced retinal slip
(50% of the antecedent saccade in amplitude)
exceeded the physiological range in amplitude.
or because of a difference in the propnoceptive
afference in these two experiments (the ani-
mals of Optican and Robinson had surgically
altered muscles). The amplitude of the ocular
drift is larger in the light in the presence of the
adapting stimulus than in the dark, presum-
ably reflecting a contribution from some pre-
dictive tracking mechanism. One assumes that
such mechanisms are disabled in the dark.

Kommerell et al. (19) hypothesized that the
ocular-drift adaptation was simply a readjust-
ment of the ratio of the pulse to the step of
saccadic innervation, and thus the ocular dnft

was a passive consequence of an imbalance
between the extraocular muscle forces and the
orbital restoning forces at the end of a saccade
{191, The ume constant of the ocular dnft
would then reflect the dyvnamics ot the ocular
plantatter a step input. The plantis nota sim-
ple hinear svstem. however. and predi-ting the
time constant of ocular dnft 1s dithcult. The
dominant time constant ot the orbital me-
chanics in the rhesus monkey 1s ~ 200 ms (34,
39). However. perturbations ot the neural-
muscular ssstem can result n smaller time
constants: 11 and 33 ms atter oculomotor
nerve sumulation (33). 93 ms atter monocular
torced ductions ¢ 18, 361, and 68 ms after sum-
ulation of the medial longitudinal tasciculus
(28). Thus it 1s not a simple matter to predict
a priont what the ime constant of postsaccadic
ocular dnft would be if 1t were determined
passively by the mechanics of the orbit.

In our expenments. however. it has been
shown tor the first time that the time constant
of postsaccadic ocular dnftis not passively de-
termined but 1s under adaptive control. The
ocular-dnft ume constant 1s thus adjusted ac-
tively to minimize retinal ship throughout the
period of ocular dnft. This new result moti-
vates the incorporation of a third adaptable
component into the representation of saccadic
innervation. and has important consequences
for our understanding of how the brain con-
trols eve movements.

A model of the final common path

Expenments on human eve movements led
Robinson (31) to represent the plant mechan-
ics as a fourth-order. linear model with one
factor in the numerator (called a zero) and
four factors (called poles) in the denominator
(2 real poles and a complex-pole pair) of its
transfer function. A similar transfer function
can be used to get a good approximation of
our monkeys' eve movements. As pointed out
in the onginal study. the active state tension
(and hence the innervation) needed to make
a saccade with this fourth-order plant consists
of a bnef pulse. a small exponent:al shde, and
a final step (31). There is also physiological
support for this pulse-siide-step representation
of saccadic innervation. Fuchs and Luschei
(11) reported and Goldstein (13) quantihied
the exponential decay of the postsaccadic
neural finng rate in abducens nucteus single
units of monkeys. Collins et al. (7) recorded
with 1mplanted strain gauges dunng human
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AG. 10. Block diagram of brain stem network of the
final common path for all ocular motor systems. I is the
velocity command signal coming from the brain stem puise
generator. R, is the saccadic innervation being sent to the
extraocular muscles. The upper block represents the neural
sntegrator. which provides a step with weight 4. The middle
block provides a pulse with weight 8. The first 2 blocks
are dentical with the final common path previously pro-
posed by Skavenski and Robinson (39). The bottom block
1s new. and provides an exponentially decaying innerva-
tion, or slide. with time constant T, and weight C.

strabismus surgery and demonstrated expo-
nential decays in the muscle tension after sac-
cades.

The time constant of the neural slide and
the time constant of the plant’s lead factor (the
numerator factor, or zero) have not been mea-
sured in the same species. Indeed. in Robin-
son’s original study the value of this plant time
constant depended upon certain assumptions
about the distribution of stiffness in the model,
and was not measured directly. Following
Goldstein's approach (13), we propose that the
purpose of the neural slide is to compensate
for the lead element of the plant dynamics,
and thus in our model they are made to have
similar time constants. The importance of the
slide of innervation to the present study lies
in its potential for determining the time con-
stant of postsaccadic ocular drift. We assume
that the dynamics of the plant are almost
completely compensated for by the dynamics
of the brain stem neural network, and that eye
velocity is determined solely by the firing rate
of the medium lead burst neurons in the pon-
tine reticular formation (6, 12, 17). If the firing
rate of the bursters is proportional to eye ve-
locity {neglecting an amplitude nonlinearity
(12)], then the overall effect of the final com-
mon path must be to mathematically integrate
a burst of neuronal discharge encoding eye ve-
locity. thereby producing the eye position (39).
Figure 10 shows a simplified block diagram
(in Laplace transform notation) of the pro-
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posed brain stem neural network. The velocity
command (1) is passed through three blocks,
the sum of whose outputs constitutes the ocu-
lar motor control signal (R,). The velocity
command is essentially a brief pulse. The top
block represents the neural tntegrator, with
gain A, the output of which is a ramp-step ob-
tained by integrating the input pulse. The
middle block represents the direct velocity
contribution of the pulse (with gain B). acting
as a preemphasis for the stuggish plant. The
bottom biock represents a low-pass filter with
time constant 7, and DC gain . The output
of this block 1s a low-pass filtered version of
the pulse. Combining the output of these three
branches gives a motor neuron command (R,)
consisting of a pulse. a slide, and a step.

The transfer function for the network shown
in Fig. 10 is second order. having two factors
in the numerator (zeros) and two in the de-
nominator (poles). The overall transfer func-
tion of the final common path. obtained by
cascading this neural network with a fourth-
order plant. can give an approximation to the
desired overall transfer function of {/s. Ne-
glecting the high-frequency complex pole pair
in the plant, the combined transfer function
(E/V.) is

sXBT,) + s(AT, + B+ CY+ A
sisT, + 1)

x (sT.+ 1)
ST\ TY) + (T, + Ty) + |

where T., T, T, represent the time constants
in the plant’s transfer function (factor on the
night).

The zero in the plant dynamics can be
compensated for by the pole in the neural net-
work if T, = T.. In the model of normal sac-
cades, the DC gain is one. which sets the value
of 4 to one. The two zeros in the final common
path can be used to compensate for two of the
poles in the plant. Since T, has already been
fixed at T,. we must choose the gain of the
pulse as B = T,T,/T,. The gain of the slide
mustthenbe C=T,+ T, — T, — (T, Ty/T)).
Hence. we can compensate for all the dynam-
ics of the ocular motor plant (except the high-
frequency, complex-pole pair, which, along
with the dynamics of the pulse of innervation,
will therefore determine the waveform of the
saccade).

If the pulse, slide, and step components of
innervation are not matched to the ocular
plant, the eye will drift exponentially after the
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rapid part of each saccade. An adaptive mech-
anism is presumed to exist that matches the
parameters of the brain stem pathway post-
saccadic retinal slip. Suppose that the gain of
the step has been increased to suppress the
postsaccadic retinal slip caused by our adap-
tation paradigm. If no other parameters were
altered. the ocular drift that follows the end of
the pulse-dnven part of the saccade would
have a very long time constant (due to the
large plant time constant). Ocular drifts with
longer time constants are produced by reduc-
tions in the amplitude of the slide. which shifts
the time constant of the ocular dnft toward
the dominant time constant of the plant. To
make ocular drifts with shorter time constants
the amplitude of the slide must be increased.
At some point (for ocular dnfts with time con-
stants of ~ 50 ms). however. further increases
of the amplitude of the slide do not decrease
the time constant of the ocular dnft; instead
they cause the eve to overshoot the final po-
sition (determined by the step) and dnft back

A

25

20

1

Eye Position (deg)

1

to 1t. To shorten the ime constant of the ocular
dnft further therefore requires another mech-
anism. The sunplest approach is to decrease
the time constant of the neural slide compo-
nent. By changing both the amplitude and the
time constant of the shde 1t ts possible to match
time constants over the range of ocular dnfts
that we observed ( — 30-80 ms).

Simudation of spontaneous eve movements
made in the durk

The above linear systems analvsis suggests
that the neural shde may be contnbuting to
postsaccadic  ocular dnft. individual eve-
movement records from a monkey 1n both the
normal and adapted states were simulated to
evaluate the ability of the new model of the
final common path to adequately reproduce
actual eve movements. Simulation of course.
requires specification of more than just the fi-
nal common path. The complete model ol the
saccadic system we used was very similar to
one published earher (42). with the exponen-

000 005 010 0.1% 020 0.25

Time (sec)

0 100 200 300 400
Eys Velocity (deg/sec)

AG. 1] Recordings and umulations of normal spontaneous saccades made in the dark. 4: four indinidual eve
movements from monkey OV were offset 30 that their initial positions were at zero. Supenmposed on each data trace
1$ a dotied curve obtained by amulating the eye movement wmith a model based on the brain stem network shown in
Fig. 10 B eve posiuon versus eye veloaity phase plane. The eye-position values from the actual and simulated eye
movement were differentiated with the same digital filter 10 obtain an eye-veloaity signal. The phase-plane trajectones
of the umulations (dashed curves) are supenmposed on their corresponding data trajectones (solid curves). The fit 1s
exce’’ca* for the beginning and ending (1.¢.. low-velocity portions) of the saccades.
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nal burstcell nonlineanty replaced by a power
function. the brain stem network replaced by
the one shown in Fig. 10, and with a fourth-
order. lumped linear plant.

Figure 11 shows a family of spontaneous
saccades made by monkey OV in the dark and
simulated with the new model. Figure 1.4
shows four individual saccades of various am-
plitudes (offset to start at zero). and super-
imposed upon them. their four simulations
(circles). (Model parameters were adjusted by
hand to obtain a reasonable fit to the normal
saccades.) The simulations and the eye move-
ments are virtually identical. The fit of the
model to the rapid part of the movement can
be better appreciated in Fig. | 1 B. which plots
¢ach eve movement (solid curve) as a trajec-
tory in the phase plane of eye position versus
eve velocity. The simulations are shown as
dashed curves. Comparison of the phase plane
trajectories reveals that the model matches the
eye movements closely, except for the oscil-
lations in the eye velocity > 100°/s. Since both

L. M. OPTICAN AND F A. MILES

the data and the simulated eye movements
were processed with the same digital filter, the
oscillations on the eve-velocity data indicate
a true physiological phenomenon. This would
be consistent with more detailed models of the
ocular motor plant. which are of at least sixth
order (4. 9. 35). Consideration of the higher-
order terms in the plant will not be necessary
for our study of the adaptive behavior of the
saccadic system.

Two examples of spontaneous saccades in
the dark from the range of ocular dnift time
constants are shown in Fig. 12 (7, is the time
constant of the adapting image motion). Su-
penimposed on the eye-movement traces are
the corresponding simulated movements (cir-
cles). The fits are fairly good. except that in
the simulation, after the pulse-driven part of
the saccade is over. the overshoot of the plant
(caused by the underdamped complex pole
pair) always brings the eye to an almost com-
plete stop before the ocular drift begins. Figure
12.4 shows that a saccade with a long time
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AG. 12. Recordings and simulations of adapted spontaneous saccades made in the dark. Individual responses were
chosen from monkey OV and offset to start from zero. A: eye movement (sofid curve) and simulation (circles) after
adaptation to exponential image slip with a time constant of {00 ms. The ocular drift has a time constant of ~80 ms.
B: eye movement after adaptation 10 exponential image slip with a time constant of 25 ms. The ocular dnift has a
time constant of ~ 34 ms. The dashed curve is the best-fit simuiation that can be obtained by changing only 2 elements:
the gain of the step and the gain of the slide. The circles are the best fit that can be obtained by changing 3 elements:
the gain of the step and both the gain and the time constant of the slide.
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ADAPTIVE CONTROL OF SACCADES 957

constant ocular dnft (~80 ms) can be simu-
lated by changing just the gain of the step and
the slide components. Figure 128 shows that
a saccade with a short time constant ocular
drift ( ~ 34 ms) can not be simulated very well
by changing just the step and slide gains
(dashed curve). The model makes a good sim-
ulation of this eye movement. though, if the
gain of the step and both the gain and the
time constant of the slide can be adjusted
(circles).

Adaptive control

The analvtical discussion above. and the re-
sults of the stmulation. demonstrate that both
the step and slide components of ocular motor
innervation are needed to descnibe the char-
actenstics of postsaccadic ocular drift. The
amplitude of the step of innervation and both
the amplitude and the time constant of the
neural slide need to be under adaptive control
to compensate for changes in ocular motor
strength and to exactly cancel the equivalent
zero in the plant dynamics. Since the effect of
the newly proposed pole in the brain stem net-
work is to hide the zero of the plant neither
the pole nor the zero have been taken into
account in previous studies of the saccadic
system. However, we now suggest that the
suppression of postsaccadic ocular drift is
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