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J 
ment policies, invalidation techniques, etc). 

Baaed on the above extensions, a relation field may contain more than one QUEL 

commands. Accessing such a field triggers the execution of all these commands. We 

present a set of tactics that can be used to reduce the cost of processing multiple com- 

mands using some interquery analysis. Special cases amenable to different kind of pro- 

cessing are also identified and studied. 

In the case where all commands stored in a field are retrievals from the database, 

sharing of accessed data is possible. We study the optimization of processing a set of 

queries in detail, by deriving efficient access plans which take advantage of common 

intermediate results. Experimental results are also given in support of the proposed 

algorithms. These results show that significant savings (up to 50%) can be achieved 

by sharing common data. 
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CHAPTER  1 

INTRODUCTION 

Traditionally Database Management Systems (DBMS) have been used in business 

applications to efficiently store and organize large amounts of data. The main thrust 

of database research has focused on designing data structures and algorithms 

[WONG76,SELI79] so that operations, common in this environment, can be processed 

efficiently. Recently, there has been considerable interest in extending the use of data- 

base management systems into new application areas. In particular, relational DBMSs 

[CODD70] have been used in support of applications such as text processing 

(PAVL83,STON83), computer graphics (LORI79], Computer Aided Design (CAD) 

[LORI81,KATZ82,LOR183,GUTT84b|, Artificial Intelligence and Expert Systems 

[KERS84,KERS86]. The main difference between the business applications and the 

ones mentioned above lies in the type of information that the two types of applications 

are using. Business applications are mainly concerned with large volumes of data , 

while Artificial Intelligence or Engineering Applications usually involve a sophisticated 

control mechanism that handles relatively smaller amounts of data. Therefore, a sys- 

tem of the second type should be able to support storing and handling control infor- 

mation in addition to data. Our interest is to investigate the possibility of extending 

current relational database management systems to support storing information of 

both kinds. 

lO-^^J^^XAi^JOU^^^^ 



1.1.   Why Database Management Systems? 

Using a data manager with full capabilities offers the advantages of better data 

organization, simple user interface, integrity of data in multi-user environments 

[BERN79,CARE84] and recovering from hardware or software crashes [GRAY78]. 

Given these advantages, there have been various attempts to build systems that sup- 

port non-traditional database applications over large volumes of data. In general, 

there are three different approaches that can be taken 

• One can enhance a specific application system (e.g. VLSI design system) with a 

specialized data manager 

• One can interface a specific application to a general purpose DBMS 

• Finally, one can extend a general purpose data manager by enhancing it with 

more sophisticated capabilities (e.g. inference, triggers, etc). 

The first approach suffers from two major disadvantages. First, considerable 

effort must be put into designing end building several modules that DBMSs already 

include (data definition and data manipulation facilities, query processing algorithms, 

etc). Second, such specialized data managers are very narrow, in the sense that they 

cannot be easily modified to support applications other than the ones, for which they 

were originally written. 

In the second approach there is a clean interface between a specialized applica- 

tion program and a general purpose DBMS. The DBMS acts as a server to the appli- 

cation program by supplying on demand the data that the latter requires. However, 

the major disadvantage of this approach lies in the difficulty to define exactly where 

vK:c<i*fö>£^c^.^^^ 



the two systems must be interfaced. As an example, consider the problem of interfac- 

ing PROLOG [CLOC81] with a general purpose DBMS. Although that interface 

appears particularly natural, due to the common theoretical foundations of the two 

environments, attempts to build such an interface have not been very successful 

because of the differences in the way each system retrieves its data 

[WARR81,JARK84a,CERI86]. These attempts to interface PROLOG and general pur- 

pose DBMSs make significant changes to the PROLOG query processor trying to 

improve its performance in an environment where data resides in secondary storage. 

[BROD84,ZANI84,SCI084] provide good criticisms of this approach. 

Because of the above mentioned difficulties, data managers with extended capa- 

bilities have been proposed. In this third approach data manipulation and control 

functions are integrated into a single system in a homogeneoua way. As a first exam- 

ple, consider previous work in supporting various semantic data models 

[MYLO80,SHIP81,ZANI83). In all these proposals several new constructs were intro- 

duced (general objects, classes, unnormalized relations, set-valued attributes, etc). 

Another similar approach is to design systems based on the object oriented program- 

ming paradigm [COPE84,DERR86|. The data manager stores objects that a general 

program can then fetch and store. Both of these approaches however suffer from two 

major disadvantages. First, due to the incompatibility between the needs of the vari- 

ous application environments, it is very hard to incc. pirate all of the above mentioned 

constructs in a single data manager. Such a system would be extremely complicated 

and, most probably, inefficient. A second disadvantage is that a complete database 

management system must be written from scratch.   For example, a query optimizer is 

I 
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needed to support queries. A transaction management system is needed to support 

shared access and to maintain data integrity in case of software or hardware crashes. 

Clearly, these modules account for a large fraction of the code that already exists in 

current DBMSs. 

Looking at a different direction, several researchers have proposed other ways of 

extending relational DBMSs. The basic idea is to come up with a simple system that 

gives to the user the capability to build on top of a basic set of functions whatever 

constructs are required by specific applications. Moreover, it has been assumed that 

minimal extensions to the relational model should be attempted. An example of such 

an effort has been Deductive Databases (GALL78|. The direction here is to provide 

basic support for expert systems applications. In a deductive database System both 

deductive aspects of the world (ru/„'«) and asserted information (facts) are stored in 

the same system. The framework represented by logic programming [KOWA74] and 

typified by the programming language PROLOG, is used as a common example. How- 

ever, because of the problems mentioned above, various researchers have been engaged 

in designing extensions of DBMSs instead of trying to interface PROLOG or a general 

inference engine to a data manager. In [IOAN84,DAYA85,ULLM85,ZANI85] several 

designs for database systems enhanced with inference capabilities are proposed, each 

being a specific implementation of the above model of rules and facts. In particular, 

these systems are distinguished based on the representation they adopt for rules. This 

approach has been rather successful, the main reason being that relational database 

systems require minimal extensions to support inference. 

Giifii^i^ii^GiKfc?^^ 



Rules have been used in deductive database systems to allow users to incorporate 

control information in a form other than the simple operators t'iat the relational 

model offers (e.g. selections, joins, etc). In general, control irformation can be 

represented procedurally and/or declaratively. A database can be clearly used for the 

latter. As a final approach to building extended data managers, the following section 

describes the idea of extending DBMSs based on the use of procedures. 

1.2.   Extending Database Systems Using Procedures 

Stonebraker et. al. proposed in (STON84] the idea of storing database commands 

in the database as a means for increasing the functionality of the system. Commands 

are stored in relation fields and can be accessed as any other field using a slightly 

extended query language. Moreover, since these commands can be executed, a new 

operation is introduced allowing a user to execute the contents of relation fields. In 

that sense, it is suggested that databaae procedures are considered as full fledged data- 

base objects. Hence, using this extension of [STON84|, the database can be made the 

single source of information, either procedural or declarative. This is the approach we 

will take in this investigation also. 

To motivate the use of procedures for increasing the functionality of a relational 

data manager, we give some examples of possible applications. 

•   Storing Program« in a Database 

In many applications that use data residing in a database there is a need for code 

written in the data manipulation language of the DBMS, i.e. database programs. 

These programs can be stored in the database and then be executed using the DBMS 

x^i^cv' >^>>:->^V-ü-^>:.-'V v--^^^^-^-^-»^-^; -y-:^v-^N>>>>:miöQ^^ 



query language. For example, in [KUNG84| it was shown how a problem like heuristic 

search can be addressed using such an extended database management system. There, 

a relation ALGORITHMS(alg.id,alg.type,code) was used, where alg_id is a unique 

identifier, a/y.type indicates the general class that the given algorithm belongs to (e.g. 

Dynamic Programming, Branch and Bound, etc.) and code is a field used to store the 

database procedure that implements the algorithm. Therefore the form of the relation 

ALGORITHMS will be 

alg.id alg.type code 

10 Dynamic Progr code line 1 

code line 2 

15 Dynamic Progr code line 1 

20 Branch and Bound code line 1 

•• 

The syntax of the DBMS allows the user to select and execute an algorithm based on 

its alg_id and alg_type.  Such a syntax may for example be 

execute (ALGORITHMS code) where ALGORITHMS alg.id ■ 15 

which will select the Dynamic Programming algorithm with i^-ntifier 15 and will pro- 

cess the commands that constitute the body (code). 

ö&«^^^«S)Ätf}S^^ 



•   Supporting Rule« 

Suppose a relation EJIP  (name, salary,ag«), with the obvious meanings for its fields, 

and another relation CATEG.EMPS with the following contents 

status 

wellpaid 

emps 

underpaid 

retrieve  (EUP name) 

where EUP salary > 60 

retrieve  (EUP name) 

where EUP salary > 60 and EUP age < 30 

retrieve  (EUP name) 

where EUP salary > 65 and EUP age < 40 

retrieve  (EUP.name) 

where EUP salary < 20 

are given. This second relation gives a way to categorize employees according to their 

salaries or salaries and ages. In some sense it is a set of rules that define when an 

employee is wellpaid, underpaid, etc. isking for wellpaid employees would 

then be 

retrieve  (CATEG.EUPS.emps name)  where CATEG.EUPS status = ■wellpaid'1 

where the reference to CATEG.EUPS emps name will first evaluate the queries stored in 

the empa field of CATEG.EUPS and then project the result of this evaluation on the 

:5f^;y;'>>^:v:y:v^ 



name column. More complicated rules can be expressed using the full capabilities of 

the query language. In addition, general condition-action rules can be defined, since a 

procedure in a relation field may include update operations as well. Actions can be 

then implemented through updates to other relations in the database. 

•   Supporting Complex Objects 

Complex objects can also be implemented using database procedures. A query expres- 

sion in a relation field simply describes the way components of other relations (i.e. 

tuples) are combined to build an instance of a more complex object. As an example, 

suppose we have a relation P0INTS(x,y) describing points on the plane. Another 

relation LINES (line. id. description) can then be defined, where description is a 

field containing expressions of the form 

range of POINT,P0INT1  is POINTS 

retrieve   (POINT x,POINT y.POINTlx.POINTly)  where Qualification 

Qualification describes how the two points POINT and P0INT1 that define a line 

segment are selected from the POINTS relation. A significant advantage of using pro- 

cedures for the definition of complex objects is the ability to allow many objects to 

share the same subobjects. Hence, a hierarchy of objects can be built and inheritance 

is free since it can be naturally achieved through retrievals of data from the same rela- 

tions [STON85]. 

It is clear from the above examples that supporting procedures in a DBMS is of 

significant importance. POSTGRES [STON86b], a new relational DBMS under 

development at the University of California, Berkeley, will support procedures as full 
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fledged database objects. Among other capabilities, the user of POSTGRES can mani- 

pulate data, define rules, specify triggers and alerters, etc., using only the extended 

query language that the system provides (POSTQUEL). However, preliminary results 

in [STON85] show that there is a serious degradation in performance for non-standard 

data retrieval operations. In addition, there is a need in modifying algorithms that 

work efficiently in a main memory based system, to algorithms that will work 

sufficiently well in a database environment [KUNG84,SELL85]. The purpose of this 

investigation is to study these problems and suggest techniques that improve the per- 

formance of extended database management systems. 

Optimizing the execution of procedures will be a significant part of this work. 

Procedures are simply sequences of database commands. However, these commands 

do not have necessarily to be processed one at a time. Some interquery optimization 

is possible, leading to a more efficient execution. For example, in the special case of 

read-only procedures where only retrieval commands are used, savings can be achieved 

by means of common data that the queries may access. In the employee example men- 

tioned above, determining which employees are wellpaid, requires the execution of all 

three queries stored under the emp« field of CATEG.EMPS. When processing these 

queries the intermediate result built for answering the second request and containing 

the tuples of employees with salaries more than 60K can be used to answer the first 

query on employees with salary more than 80K. This way the second look-up of the 

EMP relation is avoided. 

Some researchers have studied in the past the problem of multiple query (i.e. pro- 

cedure) optimization or other related problems.   In [GRAN80] and [GRAN81], Grant 

riN\v\v\vlV.>^N\VA'^\s\v.\N\v.,-\>\v.vv.\-."-A-.v.v>Vv-_,.,_ . ■ .•'^■-/•J"^-->->yv> W • V V V V v/^V.VJ> v/,^.v.v/. 
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and Minker describe the optimization of sets of queries in the context of deductive 

databases. Roussopoulos in [ROUS82a] and (ROUS82b| provides a framework for 

interquery analysis based on query graphs [WONG76], in an attempt to find fast view 

processing algorithms. More recently, Chakravarthy and Minker [CHAK82,CHAK85] 

have suggested an algorithm based on the construction of integrated query graphs. 

All of the above proposals assume procedures to be sets of retrieve-only commands. 

When updates are allowed, different techniques must be used. We propose such tech- 

niques in later chapters of this thesis. 

1.3.   Outline of Thesis 

In the remainder of this report we investigate, analyze and solve problems associ- 

ated with extended relational database management systems. Although the discussion 

is restricted to the INGRES (STON76] relational DBMS, the ideas are generally appli- 

cable to other systems as well. 

Chapter 2 begins by describing QUEL-f- [STON85|, an extension to the query 

language QUEL used by INGRES. QUEL+ introduces two new features. First, a new 

operator that allows repetitive execution of database commands is introduced. This 

way, iterative constructs can be embedded in database procedures. The second 

feature introduced, is the ability of the system to support procedures by means of 

storing query language expressions in relation fields. Chapter 2 then continues with a 

detailed discussion on how query processing should be done in light of these exten- 

sions. A variation of the original INGRES decomposition algorithm [WONG76J is first 

presented.    Then   various   improvements   to   this  algorithm   are  discussed.    These 

baiö«M^»2wöKsc9^ 



11 

improvements aim at producing more efficient access plans for some special classes of 

queries. 

The query processing algorithm deals only with the problem of generating 

efficient access plans to process a given query. Other ideas that can improve the per- 

formance of a system that supports procedures are also discussed in Chapter 2. First, 

we examine the idea of storing results of previously processed procedures in secondary 

storage. That idea is called caching of procedure results (STON85]. Using a cache, 

the I/O and CPU cost of processing a query can be reduced by preventing multiple 

evaluations of the same procedure. Problems associated with cache organizations are 

examined in depth. Policies for replacing entries of the cache with newly produced 

procedure results along with algorithms that decide if a given result should be cached, 

are discussed. However, results of procedures may become invalid when relations used 

in the evaluation of a procedure are updated. The problem of checking the validity of 

cached entries is also examined. Finally, schemes for efficient searching of the cache 

are discussed. 

Another means for reducing the execution cost of queries is indexing. Indexes are 

used in DBMSs to provide efficient access to relations. When procedures are 

evaluated, the fields of the resulting relations can also be indexed. However, at any 

given time, it is highly probable that not all procedures stored in a relation have been 

evaluated. Therefore, a conventional indexing scheme cannot be used, for it would 

assume that all values resulting from the execution of procedures are known. As a 

solution to that problem, a new indexing scheme. Partial Indexing, is proposed and 

analyzed.  A partial index contains information only on results of procedures that have 

IÄWöKIW,^^^^^^ 
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been materialized in the pa^t.   Uses of partial indexes in conventional database sys- 

tems are also described. 

Chapter 2 deals with the problem of efficiently processing queries that reference 

results of procedures.  These procedures are simply sequences of database commands. 

How to efficient^ process the procedures themselves is also an interesting issue.  It was 

mentioned  in the previous section that some interquery optimization is possible. 

Chapters 3 and 4 investigate this problem and propose algorithms for processing mul- 

tiple database commands.   Chapter 3 examines general database procedures where 

update  as weil  as retrieval operations are possible.   Several transformations and 

optimization techniques are suggested.  Some of them are drawn from the area of com- 

piler design where similar problems have been examined in the context of general pro- 

gramming languages (e.g. moving loop invariants out of loops).   Others are extensions 

to conventional query processing or physical database design techniques.  Cases where 

special transformations are possible are also identified and studied.   Although such 

transformations are not applicable to all kinds of procedures, they are very important 

to several engineering applications [KUNG84). 

Chapter 4 studies a special case of procedure optimization, where only retrieval 

commands are used. In this case, savings can be achieved by means of common data 

that the queries may access. The model that will be assumed for queries is first 

described and then an analysis of several algorithms that perform some interquery 

analysis and suggest efficient access plans is given. These algorithms differ in the 

amount of time one is willing to spend to preprocess a given set of queries. There is a 

trade-off between the time required for interquery optimization and the actual cost for 
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executing the queries. Such issues are also discussed in depth. We then present some 

experimental results that show that multiple query optimization is useful and can 

significantly improve the performance of systems that support database procedures. 

Finally, in Chapter 5, a summary of our results is given along with some discussion on 

important problems for future research. 



CHAPTER 2 

QUEL+ : THE LANGUAGE AND HOW TO PROCESS QUERIES 

2.1.   Introduction 

This chapter examines the approach of extending a database manager to handle 

not only data but control information as well. We will first present the structure of 

QUEL+ [STON85], which is an extension to QUEL, the query language designed for 

INGRES [STON76].  There are two major extensions made to QÜEL: 

a) repetitive execution of commands, and 

b) storng query language commands in relation fields 

The first extension allows the user to implement iteration using the query language 

itself instead of escaping to a general purpose programming language. In EQUEL/C 

[ALLM76] for example, the programmer can embed INGRES commands in C 

[KERN78] programs and therefore can inplement iteration through the iterative con- 

structs of C. The second feature follows the paradigm of LISP [W1LE84] and allows 

the uniform treatment of data and control information, or procedures in [STON85], 

where the latter is implemented using database commands. 

Physical and conceptual modeling, query processing, concurrency control and 

crash recovery are some of the well known DBMS problems [ULLM82]. The solutions 

to many of these problems can still be us;J in the QUEL+ environment. However, 

performance will deteriorate due to the complexity of the new operations.  Our goal in 

H 
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this chapter is to examine ways of improving the performance by providing a. ve 

sophisticated optimization tactics. More specifically, we concentrate on the problem of 

query processing. Issues that deal with user interfaces, physical and conceptual model- 

ing, consistency in a multiple user environment and robustness, are examined in more 

detail in {STON86b] in the context of the design of a new DBMS being developed at 

the University if California, Berkeley, called POSTGRES. 

This chapter is organized as follows. Section 2.2 presents the language QUEL+ 

and motivates its use with a set of examples. Then, in section 2.3 we study the prob- 

lem of query processing by presenting first a simple algorithm and then proposing a 

set of possible improvements. Sections 2.4 and 2.5 present ideas on supporting 

schemes that improve the performance of the system, like caching and indexing. 

Finally, we conclude in section 2.6 by summarizing the discussion of this chapter. 

2.2.   The Query Language QUEL+ 

As mentioned above, the major extensions that are introduced to QUEL-I- are the 

repetitive execution of standard QUEL commands and storing QUEL commands in 

relations fields. [STON85] gives a detailed discussion of the language. We review here 

some of the extensions that will serve as the basis of our presentation. 

2.2.1.   Iterative Execution of QUEL Commands 

Iterative execution of commands was first introduced to INGRES by Guttman in 

[GüTT84b]. Guttman mainly used the iterative version of the append command in 

order to express queries that produce the transitive closure of a binary relation, in his 

case, parts explosion in a VLSI design environment. 

•'■•v«/"-.-"..-"-■"-''-■■•"•- _"■■---•"-'•--•.-•..'■-• -•    • • ■  •"••r-/.y-".---v'..i'--vv-'v-'.''.--".r^.^^-o".-v^--•'-.■ ■ ■ -.'• • • "-o--■._' 
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To motivate the use of iterative execution, we use the following example of a 

relation EUP (name,salary.mgr), with the obvious information about employees. 

The goal is to perform an update on the EMP relation, so that all employees that even- 

tually work for Smith (through the manager hierarchy), change their mgr field to 

Smith.  For example, given the following EMP relation 

name salary mgr 

Stones 20K Smith 

Jones 10K Stones 

Laa 15K Riggs 

Felps 10K Jones 

it is required that the mgr field values be modified, yielding the following relation 

name salary mgr 

Stones 20K Smith 

Jones 10K Smith 

Lam 15K Riggs 

Felps 10K Smith 

One way this can be achieved, is by repetitively executing the command 

range of EMP.EUPl  is EMP 
replace EMP (mgr = •Smith") 

where EMP mgr = EMP1 name 
and      EMP mgr = "Smith" 

until it fails to modify  EMP.   In QUEL+ we add a * (asterisk) to a standard QUEL 

command and introduce r     tition with the following semantics 

V.V.V.V.V.-. ,v>/.v>^yf,>.>>v >^ 
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To proceaa command*, proeeea command repetitively unti'. it has no further 
effect on the database 

The above semantics do not necessarily imply that the command will be processed by 

iterative execution. The work of [GUTT84b] and [IOAN86] shows that iterative exe- 

cution of the same operation is not always the most efficient way process transitive 

closure commands in a database environment. Using the * extension, we can perform 

the above update with the single QUEL+ command 

range of EMP.EMPl   is EUP 
replace* EUP (mgr = ■Smith") 

where EUP mgr ■ EUP1 name 
and EJi? mgr = ■Smith* 

This shorthand notation not only simplifies the user interface but also gives the flexi- 

bility to the query optimizer to optimize the loop as a unit instead of a single replace 

command. 

2.2.2.   QUEL as a Datt. Type 

It was first proposed in [STON84] that QUEL commands be stored in relation 

fields in the same way data is stored in relations. For simplicity, these fields are 

thought as variable length strings. In INGRES, relation fields can be accessed indivi- 

dually through the dot (.) operator. For example, EMP mgr in the above command 

accesses the manager names recorded in EMP. Extending these semantics, it will be 

assumed that accessing a relation field containing QUEL commands (QUEL field) 

implies the execution of the commands that are stored in the field. In addition to that 

accessing mechanism,  a new  QUEL+  command,  called   execute,   is allowed.   The 

v«.yvyw^A^vvvyy* „VLV^VVV».^".-/, ■ •-.^ VW\M}VA W .-,-.■ -.•■:-Avvo■uv, ■.-, o.-.-i vi *P -.• -.■ «JI - ■ • •..-, - - ■ • • ■ -.- -.v-.-, v^ o■ •■ o oo^ -.i..^-.i 
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semantics of 

execute   (Relation fd)  where Qualification 

where fd is a QUEL field of some relation Relation, is to process the commands 

stored in the fd field of those tuples in Relation that satisfy the Qualification. 

Through execute, the user can explicitly request the execution of specific commands. 

For example, in (KUNG84], an ALGORITHMS relation is defined where specific imple- 

mentations of algorithms that solve the shortest path problem are stored in the form 

of sequences of QUEL commands (or database procedures). Using execute, a user 

can then select and process any of these procedures. 

In light of these two extensions, we differentiate for processing reasons between 

two types of QUEL fields. 

a) collections of retrieve-only commands (queries), or 

b) collections of general QUEL commands (i.e. queries and updates) 

In the first case the result of processing the queries is a set of relations that the user 

has requested while in I ■*■ second case updates may be performed on the database and 

no specific result is returned. Processing QUEL fields amounts to evaluating the com- 

mands that are stored in these fields. As mentioned in the introduction, we study the 

problem of efficiently evaluating the contents of QUEL fields in Chapters 3 and 4. 

Here, we will concentrate on the problem of processing QUEL-I- queries. 

We motivate the discussion that will follow in the next section on the problem of 

processing QUEL-I- queries by using aTa example. Consider, a relation 

EUP   (name. salary,mgr,hobbies)   where  name,   salary  and   mgr  are  conventional 

jBBflflafiaomääöflQflcuxyöSMÄ^^ 
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fields while hobbies is a field of type QUEL. We use hobbiec to retrieve data on the 

various hobbies of employees. Assume also that the following relations exist in the 

system 

SOFTBALL   (name,position,performance) 
SOCCER      (name.position,goals,performance) 
MUSIC (name,instrument.performance) 

Adding Jones as an employee can be done now as follows: 

append to EMP  (name = 'Jones".salary ■ 40K,Bgr = ■Smith', 
hobbies = 'retrieve  (SOFTBALL position,SOFTBALL performance) 

where SOFTBALL name = 'Jones' 
retrieve  (SOCCER position,SOCCER performance) 

where SOCCER name = 'Jones" 
) 

It is assumed that the corresponding entries for Jones have been already inserted in 

SOFTBALL and SOCCER. An instance of the EUP relation after the above insertion of 

the above tuple will be 

name salary mgr hobbies 

Riggs 20 Smith retrieve (SOFTBALL position,SOFTBALL.performance) 

where SOFTBALL name = 'Riggs' 

Jones 30 Smith retrieve (SOFTBALL.position,SOFTBALL.performance) 

where SOHBALL name = 'Jones' 

retrieve (SOCCER position,SOCCER performance) 

where SOCCER name = 'Jones' 

Lam 80 Moore retrieve (MUSIC all) 

where MUSIC name = 'Lam' 

•• .... .... 

We discuss how fields of type QUEL are accessed and used in queries in the next 
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subsection. 

2.2.3.   Using QUEL Fields in Queries 

The QUEL syntax is extended using the multiple dot notation borrowed from 

Zaniolo's GEM language [ZAN183IZAN184]. For example, one can retrieve the perfor- 

mance of Jones in all his hobbies as follows: 

rstneve  (EMP hobbies performancs) 
where EMP name = 'Jones' 

The number of dots that can be used depends on the relation nesting level. With the 

use of the multiple dot notation, QUEL+ allows the user to actually "navigate" 

through relations using QUEL fields as links between the accessed tuples. 

Clearly, the result of evaluating ( materializing ) a QUEL field is a set of rela- 

tions, or in general a set of tuples. These sets are themselves database objects (rela- 

tions). It is very natural for a user to be able to use these objects as parts of his/her 

queries. For example, one may wish to get all pairs of employees that play in the 

same positions and with the same performance in their hobbies. QUEL-I- supports the 

most common set operators like set equality, set inequality, union, intersection and 

containment as well as database oriented operators like the outer and natural join. 

The above query can then be formulated as 

range of EMP.EMPl  is EMP 
retrieve   (EMP name,EMP1 name) 

where EMP name ^ EMP1  name 
and      EMP hobbies == EMP1 hobbies 

where  == is the set equality operator.   We briefly discuss here some issues on the 

implementation of such operators. 

s»»oNfcM8&™&a^^ 
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The relation level operators can be implemented in either of two ways. First, one 

can write specialized routines. These routines must of course be coded to work 

efficiently in a database environment where whole pages are read and written as a 

unit. This approach seems to oe rather straightforward, with the only disadvantage 

that some (considerable) eßort must be put in writting this code. The second way is 

based on the fact that one can use the expressive power of the query language to write 

programs that implement the set operators. This approach requires minimal effort 

and no substantial extension to the query optimization code, since the only thing that 

is needed is the capability to issue queries from within the system itself. It is also 

similar to the approach taken in [WONGSS] for extending relational database systems 

with new types and operators. To give an example, let us assume that we want to 

find out if two QUEL fields evaluate to identical relations. After processing the left 

and right hand operands, two relations Rl and R2 respectively will be produced. 

Checking if Rl == R2 can be done using the following QUEL query 

/•  aaaume  that  it return» 1  if they are equal,   null  othermiMe  •/ 

retrieve  (true=l) where 
count  (Rl TID)  = count  (Rl TID where Rl fd.l=R2 fd.l  and 

Rl £d.2=R2 fd.2 and 

Rl fd.n=R2 fd.n) 

where it has been assumed that relations Rl and R2 have fields fd,!, fdm2, ...,fd,n 

and TID is a unique TUple /Dentifier that is used to augment every tuple in the data- 

base. Similarly, one can derive QUEL queries for the rest of the relation level opera- 

tors. 
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After reviewing the structure and semantics of QUEL+, we now examine the problem 

of query processing. As mentioned above the analysis is restricted to QUEL fields con- 

taining retrieve-only commands. 

2.3.   Processing QUEL+ 

This section presents a query processing algorithm that INGRES can use to 

evaluate QUEL-(- queries. First, it discusses how the original decomposition algorithm 

of Wong and Youssefi [WONG76] was extended to handle queries in relation fields and 

the extended relation level operators. An example is also used to illustrate the flow of 

the algorithm. Then, some possible improvements are suggested and explained 

through examples. 

2.3.1.   Extended Decomposition 

Figure 2.1 shows a diagram of the extended decomposition algorithm as suggested 

in [STON85]. The modifications done to the original Wong-Youssefi algorithm can be 

summarized as follows 

a) All one-variable clauses except those that include a multiple dot reference or a 

relation level operator are processed fint. The reason is that clauses involving 

extended operators cannot be processed efficiently. For example, none of the fol- 

lowing two clauses 

EMP hobbies position = ,catclle^, 

or 

EMP hobbies == «ome_eonstantmrelation 

should be processed first because that would imply the materialization of the hob- 
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QUEL+ Query 

Extract and process one variable clauses 
which do not contain relation level or 

multiple dot operators 

Apply reduction algorithm 

Is the qualification variable free? Yes 

No 
Yes 

Do tuple substitution 

Are there relations 
to materialize? 

No 

Materialize a relation Pass to extended OVQP 
for relation level 

operator evaluation 

Figure 2.1: Extended Decomposition Strategy 

(OVQP : One Var»a6/e Query Processor) 

hies entries of al^employees, which is very expensive. An exception to that is the 

case where an index exists on EMPhobbiss position. This case is discussed in 

more detail in section 2.5. 

b) An extra step is required to check if all QUEL field entries have been material- 

ized. Materialization is done by passing the queries found in the QUEL field to a 

second INGRES process which in turn returns the result relation(s). The decom- 

position algorithm continues processing one-variable clauses and materializing 
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QUEL fields until no more such fields are left unevaluated. 

c) In [WONG76) the criterion for selecting a relation to iterate over in the case of 

tuple substitution, is the size of the relations. The presence of QUEL fields 

makes this criterion ineffective. Not only the number of tuples but the cost for 

materializing the corresponding QUEL fields should be considered. The reason is 

that during tuple substitution, each tuple variable will be replaced with specific 

field values read from the relav>n. In case of QUEL fields these values are the 

materialization results. Therefore the criterion for selecting a relation to iterate 

over will generally be a function of the size of the relation and the characteristics 

of the materialized objects. One of these characteristics which is of major impor- 

tance is the ability of the system to keep materialized objects in secondary 

storage, i.e. caching.  This aspect is treated in more detail in section 2.4. 

To illustrate the extended decomposition algorithm, a detailed example is now 

presented. Given the EUP relation of the previous section, we are looking for the 

names of employees that play as catchers, play is the same positions and with the 

same performance with their managers and these managers are well paid. In QUEL+ 

this is expressed as 

range of EMP.EMPl  is DIP 

retrieve   (EUP name) 
where EUP hobbies == EUP1 hobbies 
and      EMP hobbies position = 'catcher' 
and      EMP mgr = EMP1 nace 
and      EMPl salary > 70 

Following the flow chart of Figure 2.1, we first identify the one-variable clause on 
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«alary and process it 

retrieT« into TEMPI   (EMP.name,QG5 hobbies)  where EM? salary > 70 

The new query is now 

retrieve  (EM? name) 
where EMP hobbies == TEMPI hobbies 
and      EMP hobbies position = "catcher" 
and     EMP mgr = TEMPI name 

Notice that the other one-variable clause EMP hobbies position = "catcher" is not 

processed, since that would require materialization of all hobbies entries in EMP. Con- 

tinuing, we find that no reduction is possible. Since there are still variables in the 

query, tuple substitution must be performed. Assume that iteration is done over 

TEMPI.  Then the query becomes 

retrieve  (EMP name) 
where EMP hobbies == QUEL-constant-1 
and      EMP hobbies position = "catcher" 
and     EMP mgr = constant-1 

QUEL-constant-1 is now a collection of QUEL commands that were stored in the hob- 

bies field of TEMPI. Since the -;bove query now has a one-variable clause, we process 

that first 

retrieve into TEMP  (EMP name,EMP hobbies)  where EMP mgr = constant-1 

changing the query to 

retrieve  (TEMP name) 
where TEMP hobbies == QUEL-constant-1 
and      TEMP hobbies position = "catcher" 

Processing again returns to tuple substitution and variable TEMP is chosen.   Substitut- 
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ing the fields for their values we get 

retrieve  (constajit-2) 
where QUEL-constant-2 == QUEL-constant-l 
and     QUEL-constaiit-2 position = •catcher1 

Now  the query has no variables and is passed to the materialization module.   If 

QUEL-constant-2 is chosen the resulting query will be: 

retrieve  (constant-2) 
where TEUP3 == (JUEL-constant-1 
and     TEMP2 position = "catcher1 

As pointed out in [STON85] QUEL-constant-l is not changed to TEMP2 in both 

occurrences, the reason being that TEMP2 will be processed separately to check if the 

second qualification clause is satisfied. As a result, TEMP2 will be reduced to being 

only the tuples with positions'catcher*, which would make impossible to check the 

first condition (==) correctly. That is why two variables ranging over the same rela- 

tion were introduced. Should we have liked to avoid that, the above original query 

could have been expressed with a clause that checked if catcher was contained itiHhe 

list of positions an employee plays.  That is, use 

and EMP bobbies position »  ('catcher') 

where >> is the containment operator. Then one tuple variable would be enough since 

the modified OVQP (One Variable Query Processor) would handle that clause by sim- 

ply returning true or falee and not altering TEMP2. Generally, more than one tuple 

variables need be introduced if the same QUEL-constant appears in both simple selec- 

tion or join clauses that include relation level operators. However, the latter must 

have only one level of reference (i.e. one dot).  For example. 
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and EMP Al A2.A3 = constant-Talue 
and EMP A4 > constant 

will be changed to 

and TEUP A2 A3 ■ constant-value 

where TEMP is the set of employees with values of A4 higher than constant.  Then, in 

the next iteration, two different variables will be used to substitute for TEUP A2. 

Returning to our example, we sec that the new query now has a one-variable 

clause which can be detached and processed. If TEkP2 does not contain ■catcher1, 

the query is false and will be terminated.  Otherwise, we continue with the query 

retrieve (constant-2) 

where TEMPS == QUEL-constant-1 

Now, there is just one more QUEL field (QUEL-constant-1) to materialize, yielding 

retrieve  (constant-2) 
where TEMPS == TEMP4 

This is a variable-free query that must be passed to the one-variable query processor. 

This module will process the operator == for the two relations involved and if it 

returns true, the value constant-1 can be returned to the user. 

The above extended decomposition algorithm delays materializing a QUEL field 

until there is nothing else that the conventional query processor can do. Even tuple 

substitution must be done first, the reason being that checking a condition that 

involves multiple dot references implies a loop over all tuples in the relation. During 

that loop QUEL fields are materialized and checked through lower level fields. Gen- 

erally, the absence of any information about the contents of relations in QUEL fields 

» 
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makes optimization very hard, if not impossible. In the next section we discuss one 

possible improvement through saving the results of materializing QUEL fields (cacA- 

ing); in this case, the contents of QUEL fields are known and conventional cardinality 

estimation methods [SELI79| can be used to estimate the cost of the various processing 

strategies. However, before moving to caching we suggest some other possible 

improvements that apply directly on the algorithm itself. 

2.3.2.   Improvements to Extended Decomposition 

!n this subsection some possible improvements to the algorithm presented above 

are examined. First, we give some rules that can be applied in general; then, some 

other special case transformations that can be used are outlined. 

The first general rule as, suggested above, is to process one-variable clauses and 

do reduction as the initial Wong-Youssefi algorithm proposes [WONG76]. This will 

certainly be the best ibing to do independent of the number of relations or QUEL field 

materializations that will follow. The problem arises when tuple substitution is neces- 

sary.  We motivate our proposal using an example. 

Let us assume that in the EMP relation the hobbies field produces a relation, 

which itself has a field per for mane e that also produces a relation as a result and the 

field we are interested in is the location field of that last relation. We also assume the 

existence of another relation DEPT  (name.mgr, location). The query is 

retrieve  (EMP name,DEPT name) 
where EUP hobbies performance location = DEPT location 
and      EMP mgr = DEPT mgr 

The question that arises here is over which relation to iterate doing tuple substitution. 
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The main idea behind tuple substitution is to introduce single variable select'gn 

clauses as early as possible.   Using such clauses relation sizes are reduced and, wnk? 

quently, the number of materializations that will be needed is aba lower.   For exam- 

pie, in the above query tuple substitution should be done over DEPT independently of 

the sizes of the two relations.   The following analysis supports this decision.   ' •* 

I DtP I and   I DEPT I be the cost of scanning the relations EMP and DEPT respective 

For simplicity we will assume here that the cost of processing a one-variable clause 

equal to the cost of scanning the relation, while the cost of processing a join hetw. 

two relations is equal to the product of the costs of scanning each of th-se relations. 

The reason for making such assumption* is to simplify the analysis that follows.   We 

discuss in the end of the paragraph how general cost functions can be used in tht pres- 

ence of indexes or other join algorithms (e.g. merge scan).  Also let SEL.E be the per- 

centage of ötP tuples that satisfy a constraint  EMP mgr=DEPT mgr for the various 

departments and  SEL.D be the percentage of DEPT tuples that satisfy a constraint 

DEPT irgr=constant.   Finally, it will be also assumed that the cost of producing 

EMP hobbies performance for the various employee tuples is M and S is the average 

size of the resulting relation (i.e.   S=|EMP hobbies performance I).   Based on the 

above, we now analyze the cost of processing the above query by tuple substituting 

either over EMP or DEPT. 

a)     Tuple substitute over EMP: For each EMP tuple, process the query 

retrieve (constant,DEPT name) 

where QUEL-constant performance location = DEPT location 
and  constant-1 = DEPT mgr 

•f 
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Since IDEPTI is the cost of processing the one-variable clause and assuming that 

materialization results are kept in secondary storage to avoid re-evaluation of 

QUEL fields, the cost of processing each employee tuple will be 

IDEPTI ♦      /« cost of doing tue one-variabl« selection */ 
M *     /* cost of materializing the QUEL field «/ 

S*|DEPT|*SEL.D =     /* cost of doing the join */ 

=  |DF1ST|*(1*S*SEL.D)  ♦ V 

for a total of 

IEMPI*IDEPTI*a*S*SEL.D) ♦ |EMP|*M (1) 

b)     Tuple substitute over DEPT: For each DEPT tuple, process the query 

retrieve  (EMP name,constant) 
where EMP.hobbies performance.location = constant-1 
and      EMP.mgr = constant-1 

Again under the above assumptions, for each department tuple the cost will be 

iEMPl ♦      /* cost of doing the one-variable selection */ 
IEMP|*SEL.E*M    ♦      /* cost of materializing the QUEL fields ♦/ 
|EMP|*SEL,F.«S    =     /* cost of doing the final one-variable selection */ 

=  |EyP|*(l ♦ SEL.E*(y*S)) 

and assuming that re-materialization of the same field is never needed, the total 

cost will be 

|EMP|*|DEPT|*(1*S*SEL.E)  ♦  |EMP|*SEL.E*y (2) 

Subtracting (2) from (1) we get 

DIFF =  IEMPl*IDEPTI*S*(SEL.D-SEL.E)  ♦   |EkP|*y*(l-SEL.E) 

and considering the second factor to be much more significant because of the high 
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materialization cost, we may conclude that it is better to tuple substitute over the 

relation that will cause the least number of materializations, in our example DEPT 

since SEL.E<1. The reason for that is that tuple substitution will create some one- 

variable clauses which can then be used to restrict the number of tuples that need to 

be considered for materialization of their fields (in the above case that was EMP). 

Returning now to the simplistic assumptions made for the cost of processing 

one-variable clauses and joins between two relations we can see that the above 

analysis still holds. However, the formulas are not that simple any more. In general, 

the cost of doing the one-variable selection on a relation R is a function F(|R|) and 

the cost of doing a join between two relations Rl and R2 will be J(|R1|,|R2|). 

Hence the two corresponding formulas for (1) and (2) will be 

lEkP|*F(|DEPT|)  ♦  lEyP|*J(|S|,|DEPT|*SEL.D)  ♦  |EyP|*M (la) 

and 

|DEPT|*F(|EMP|)  ♦  |DEPTMEyP|*SEL.E*|S|  ♦   |EMP|«SEL.E*M (2a) 

Evaluating these two formulas and checking their difference will indicate which plan is 

preferable. However, if we assume that still the materialization cost U is the primary 

factor in the above, DEPT will be the best candidate for tuple substitution. 

In general, an algorithm that selects a relation to iterate over, attempts to 

minimize the total number of tuple substitutions required, assuming the most expen- 

sive processing lies in QUEL field materializations. Such an algorithm would go as fol- 

lows. Let V be the set of all non one-variable clauses. Assume also the existence of at 

least one clause of the form Äp/rf, = R2.fd2.   Such clauses are called simple.   Let 
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r5(Ci?1) be the number of tuple substitutions required over Rl for the clause C to be 

evaluated. In other words, TSfC.Ä,) is the number of dots in the reference to relation 

/?!■  For example, assume that we have the clauses 

(Cl) EMP hobbies p«rfonnance location = DEPT location 

and 

(C2) EkP mgr = DEPT mgr 

Clearly, three tuple substitution loops must be executed over EMP in order to make 

the first clause effective. Hence, TS(Cl, Dtp) — 3. DEPT can become effective with 

only one substitution, i.e. TS(Cl.dEPT) = 1. Considering the second clause, both EMP 

and DEPT need only one tuple substitution; therefore, TS(C2.DIP) =» 1 and 

TS(C2.dE?T)^ 1. 

Next we compute 

diff{R) = max TS{C,R) 
C€V 

for each rt ;on R involved in some clause. Intuitively, these numbers measure the 

difficulty of proceaeing the query depending over which relation tuple substitution is 

performed. This difficulty is considered to be mainly due to the number of tuple sub- 

stitutions required to reach ground relations, i.e. relations with no QUEL fields. Sup- 

pose that RM is the relation with the minimum diff value, i.e. the relation such that 

d*Jf(RM)<:diff{R), for all R that are involved in simple clauses. We choose to tuple 

substitute over the relation RM (in case of ties we favor the smaller relation). For 

example, in the example mentioned above, we will have difffEMP)=3 and diff(DEPJ}=l 

and we choose to tuple substitute over DEPT due to clause C2.  It is straightforward to 
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show with an analysis similar to the one presented for the example that this is the best 

tuple substitution strategy. 

The above algorithm gives a rigorous way of selecting the relation over which 

tuple substitution will be done. In cases where every clause involves at least one rela- 

tion accessing a QUEL field, i.e. there are no simple clauses, the above algorithm will 

not work. However, these are not of major interest since one way or the other the 

entries will all be materialized during tuple substitution. Notice also that in the above 

analysis, three basic assumptions have been made. First, computed results were kept 

in secondary storage to prevent multiple materializations of the same entries. Second, 

the materialization cost K was dominating any other cost in our formulas (1) and (2). 

Finally, the costs for processing one-variable and join clauses were very simplistic. In 

general, formulas (1) and (2) will have two factors. One is the estimated cost for 

doing the join between the two relations EMP and DEPT by tuple substituting over 

either of the relations. This factor is determined using conventional cost estimating 

techniques [SELI79]. In the general case, the cost M may not dominate all other cost 

factors. Then, in order to compare the costs of the two processing strategies, some 

estimate for the cost of materializing a given QUEL nJd is needed. This cost can be 

calculated using standard techniques, at the time tuples with QUEL fields are inserted. 

If for efficiency reasons preprocessing of queries at insertion time is not possible, some 

kind of off-line processing can compute the estimated costs and store them along with 

the QUEL fields. In any way, the query processor will have two specific estimated 

values for the costs of the two strategies derived from formulas similar to (1) and (2). 

Comparing these values and selecting the minimum one will suggest the most efficient 
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processing strategy. 

Let us now describe a different technique that can be used to improve the perfor- 

mance of the query processor. The basic idea is that when an entry from a QUEL 

field is materialized, the query that has to be processed next is known. More 

specifically, the structure of the query is known and through that the optimizer can 

identify access structures that may be desirable in order to speed up processing. For 

example, in the query 

retrieve   (EMP name,DEPT name) 
■here EMP hobbies performance  average = 10 
and      EMP mgr = DEPT mgr 
and      EMP hobbies leader = DEPT mgr 

the algorithm outlined above, will choose to tuple substitute over DEPT, the new query 

being 

retrieve   (EMP name,constant-1) 
where EMP hobbies performance average = 10 
and      EMP mgr = constant-2 
and      EMP hobbies leader = coastant-2 

Finally, after the detachment of the one-variable clause the following query will be 

processed 

retrieve (TEMP name.constant-1) 

where TEMP hobbies performance average = 10 

and  TEMP hobbies.leader = constant-2 

At this point the query processor will start materializing entries from the hobbies field 

of TEMP. Let TEMPI be the result of materializing a specific entry of hobbies; then the 

type of queries that will have to be processed for each TEMP tuple will be 

retrieve (constant-2,constant-1) 
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where TEMPI performance average = 10 
and      TEMPI  leader = constant-2 

From that last query one can observe that depending on the size of TEMPI it may be 

beneficial to build a secondary index on leader so that the second qualification clause 

can be processed efficiently. This structure will be built in the process of producing 

TEMPI (on the fly) and no extra time need be spent at the time the query will be 

evaluated. Dynamic creation of indexes or imposing other structures on relations (like 

sorting) has also been used in conventional query processing [YOUS78,KOOI82]. How- 

ever, a difference is that in the QUEL+ environment no significant additional cost 

need be spent on creating the index. At the same time a result of a materialization is 

produced and stored in a temporary relation, some adequate organization is chosen or 

a secondary indexing structure is built. 

In the same spirit we describe another optimization technique that can be used to 

reduce the cost of processing a query. Clearly, one wants to materialize QUEL fields 

and produce results that will be used subsequently in the course of processing a given 

query. However, in some cases, not all queries stored in QUEL fields will give relevant 

information. For example, consider the relation EMP (name,salary,mgr.hobbies) of 

the previous section, and the query 

retrieve (EMP.name) 

where EMP hobbies instrument = 'violin' 

When the various entries in the hobbies field are materialized, only those queries that 

involve in their result a field inatrument should be evaluated. In our example, the 

queries that retrieve data from the  SOFTBALL and   SOCCER relations should not be 
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evaluated.   Checking which queries are useful is not hard.   It amounts to simply 

checking the target list (projection fields) of each query.   Moreover, even if the query 

in hobbies retrieves many fields from the MUSIC or any other relation that includes a 

field inetrument, the contents of the materialized relations should be restricted to 

contain only the information that is absolutely necessary, in this case the inetrument 

field.  This way the size of the materialized objects is kept as small as possible which is 

especially crucial in the case where these objects are kept in secondary storage.   We 

should also notice here that the same idea exists in conventional query processing as 

well.   When intermediate relations are built as the result of processing a one-variable 

clause or a join, the fields that are projected in sjch a relation are the ones that are 

needed either to form the final result of the query or to continue processing the query 

[WONG76,SELI79]. 

The above technique tries to reduce the amount of space required for storing 

materialized objects. However, there are some cases where no space at all need be 

allocated for materialization. This is the case where a QUEL field contains a single 

retrieve or define view command. In this special (but very common case) there is 

no need to even produce the result of the command. What we propose to do is to sim- 

ply transform the original query in the same way conventional query modification 

(STON75] does in view processing and integrity constraint enforcement. For example, 

consider the following query 

retrieve  (EMP hobbies position)    where    EUP hobbies average < 5 

and the hobbies field of the EMP relation contains one of the following QUEL expres- 
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sions 

retrieve  (SOCCER all) where SOCCER name = con et ant 
or 

retrieve  (SOFTBALL all) where SOFTBALL name = constant 

i.e. all employees have at most one hobby. Then the given query can be transformed 

to 

retrieve  (REL position) 
where REL average < 5 
and      REL name = constant 

where REL is either SOCCER or SOFTBALL. This transformation not only prevents the 

query processor from materializing relations, but it also allows the optimizer to have 

more information on the structure of the query, and therefore to process it with a 

better access plan. It is possible to generalize this technique to handle multiple state- 

ments but only in the case where all queries in the QUEL field are returning data from 

exactly the same relation. Then the transformed query will be simply the disjunction 

(or in QUEL) of smaller subqueries like the one we us>»d in the above example. Sec- 

tion 4 of Chapter 3 discusses this transformation in a diff;rent context. 

This concludes our presentation of the extended decomposition algorithm for process- 

ing QUEL+ queries. In addition to the basic algorithm, we presented some less gen- 

eral tactics that can be used to improve the performance of the query processor. In 

the two sections that follow two other issues that are of significant importance to 

query processing are discussed, namely caching and indexing of the results of QUEL 

fields. » 
- 
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2.4.   Caching Materialized QUEL Fields 

As it was seen in the previous section, materializing sn entry of type QUEL 

amounts to executing, possibly several, QUEL queries. Hence, it will be generally very 

slow to perform this operation every time a QUEL field is accessed. This section 

examines ways to make QUEL+ processing more efficient through the use of a cache. 

2.4.1.   What is Caching? 

We mentioned at several points in the previous section: that one way to avoid 

evaluating the same QUEL field entries multiple times, is caching. By caching we 

mean computing the values of QUEL fields and storing them in some specifically 

assigned area of secondary storage. This computation can be done either at the time 

tuples are inserted in relations or the first time they are referenced. We will call the 

former preeomputation of QUEL field entries since it occurs before even the content 

of the specific field is accessed. However, our focus here is on the latter case which is 

more natural. The basic idea is to keep in secondary storage materialized objects that 

are frequently used in queries. Under that formulation, the caching problem is con- 

ceptually the same with the well known caching problem in operating systems 

[MATT70]. Notice also, that the cache can be used not only for materialized QUEL 

fields but for generally holding the results of any query issued by the user. These can 

be saved because either the same query may be given by a user frequently or they can 

be used to answer other queries [FINK82,LARS85,SELL86]. 

The caching problem introduces several subproblems to be solved.  The following 

list is the set of issues that will be discussed in this section. 
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a) Which query results to cache? 

b) What algorithm should be used for the replacement of cache entries? 

c) How to cheek the validity of a cached object? 

d) How to index the entries of the cache ? 

We will assume that the general model of the cache is a limited area in secondary 

storage where entries of the form 

(Qid,Query.expression,Result) 

are stored. Qid is some unique identifier, Query, expression is some canonical 

representation for queries, e.g. query graphs [WONG76], and Rest.lt is the relation 

resulting after executing the query or set of queries that were found in some QUEL 

field and described by the second field (Query.expression). The folio 'iug four sub- 

sections give answers to each of the above mentioned questions (a) through (d). 

2.4.2.   Which Query Results to Cache? 

Depending on the information known about the queries, the system can decide 

whether a result is worth caching it or not. For a given materialuation result R, this 

decision will be generally based on the frequency of references to R, the frequency of 

updating the relations used to build R and the costs for computing, storing and using 

R.  Specifically, the following is the list of parameters ,o the caching problem 
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Caching Problem Parameters 

CC Size allocated for the cache 

n Probability of refererdng result /?,• 

«• Probability of updating /?, 

Mi Cost of producing ß, (materialisation) 

Si Cost of writting fi,- in the cache 

'h Cost of using /?,- from tL? cache 

\Ri\ Siie of Ri 

IN Cost of invalidating a cache entry 

Table 2.1: Caching Problem Parameters 

C is the number of disk pages allocated for the cache, r,- and u, are the probabilities 

of referencing and updating respectively a result i?,-. A/,- is the cost of materializing 

the QUEL field that gives the result Ä, while 5,- and C/,- are the costs of writting to 

and reading from the cache /?,- respectively. Finally, it will be assumed that invalidat- 

ing an object in the cache incurs a cost IN. Given these parameters, we now describe 

various alternatives for the problem of selecting which results to cache. Depending on 

the amount of storage allocated for the cache, we differentiate between two cases: 

Unbounded and Bounded Space. 

Unbounded Space 

In this case   (T =oo and therefore the decision to cache a result /?,-, is local; that is, it 

depends only on the values of parameters associated with i?,-.   Since each object is 

examined individually, it will be u.+r.^l.   The criterion is based on comparing the 

cost of processing /?, without using the cache with the corresponding cost assuming 
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that /?, will be cached. Let the two costs be denoted by M7, and C,- respectively. In 

the case where no caching is used, the result must be produced at each reference by 

materializing the corresponding QUEL field.  Hence the total cost will be 

NCf = r.- Mi 

In the case where caching is used, a result is stored in the cache and is invalidated 

each time an update to the database has some effect on it.  In order to compute the 

cost C,- we will differentiate between the following four cases for the types of two sub- 

sequent requests: 

a) Read-Update: In this case the result is invalidated because of the update, the con- 

tribution to the total cost being 

r. u,- IN 

b) Read-Read: In this case the result is simply read from the cache with total cost 

r, r, Uf 

c) Update-Update: The cost here is due to doing only the invalidation of the cached 

entry, that is 

u, u, IN 

d) Update-Read: This is the case where the object must be re-materialized and 

stored in the cache. The total cost will be 

u, r. (M.+5,) 

Hence for the case where the cache is used, the cost of processing will be 
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C, - r, u, IN + ri r,- C/.+u, u,- /N + u,- r,- (A/,+5,) 

or, since r,+u,»»l, 

Ci = u,- /AT + r,. [r,. C/.+u,- (M,+S,)] 

Comparing now C, and iVC,- we can identify the cases ^ here * is worth caching result 

Ä,-. That happens when ArC,'>C,-. Using the formulas extracted above, we can see 

that this is true if 

Checking the above condition will determine if the result of i given Ql'EL field 

materialization should be kept in the cache. 

Bounded Space 

This case is more realistic than the previous, in the sense that some limited space on 

secondary storage is allocated for caching. Hence, in this case C is some finite 

number of disk blocks. In contrast to the criterion used for Unbounded Space, all 

objects to be cached must be considered. Let N be the number of results to be 

cached. Each object /?,- has reference and update probabilities, r, and u, respectively. 

Since many results can now be affected by the same update to a ground relation, it 

cannot any more be assumed that r,+u,=l. We will however state the following pro- 

perty that holds in this case 

r('-.+«.)=i 
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The formulas derived above for the case of using the cache are still valid. There is an 

additional constraint that must be imposed here, and that has do with space limita- 

tions. This restriction indicates that the total space occupied by cached resnHs cannot 

be more than <S. Given all these parameters we formulate now the problem of cz a- 

ing in the case of Bounded Space. 

Let A:IN—{0,1} be an allocation function. A result /?, will be cached if 

A(i)=l; if A(i)=0, /?,• will be discarded after it is used. Hence in the lifetime of the 

system, result fi,- will contribute 

BCi 
ci if A{i)=l 
NCi        if A(i)=0 

to the total processing cost. The optimal caching policy will be to cache some of the 

N objects so that the total cost is minimal and the space required is less than the 

allowed fragment on secondary storage. In other words, we seek a function A such 

that 

N 
£ BCi 's minimal <QI\ 

subject to the constraint 

EMi)\Ri\ < a (C2) 

This problem of optimal allocation has been shown to be NP-completo (see [CHAN77| 

for a similar problem). However, almost identical constraints have to be satisfied in 

the view indexing problem that Roussopoulos examined in the context of improving 

the  performance  of view   based  queries   (ROUS82a,ROUS82b).    In   (ROUS82a],   he 
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defines a state model to formulate the above allocation problem and then gives an A* 

algorithm [RICH83) that finds a near-optimal allocation. We will not go here into the 

details of that algorithm; the ret referred to (ROUS82a) for a rigorous and 

detailed presentation of the technique. 

The output of the A* algorithm identifies which results are worth keeping in the 

cache. This allocation will be used throughout the lifetime of the system. Hence, this 

approach is meaningful only in the case where all QUEL fields are materialized in 

advance and a decision is made on which of them should be cached. However, that 

policy may not be the best to use. Periodically the system may re-run the same algo- 

rithm and use statistics acquired during the execution of various queries and updates. 

Even for objects not cached, the system may keep some statistics and recompute the 

allocation function A so that new results can get a chance to be stored in the cache. 

In summary, the above two cases shared the fact that the reference and update 

probabilities for the various objects were known in advance. In the most general case, 

the values of the above parameters are not known and the system must be able to 

dynamically adapt its caching behaviour, so that the contents of the cache always 

reflect the most frequently used and/or costly results. We will not present here a spe- 

cial algorithm for the case where no statistics are available. The following subsection 

discusses that issue in the context of the replacement policies that can be used for the 

cache. 
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2.4.3.   Replacement Algorithm 

The problem of selecting a policy for replacing objects in the cache, is abstractly 

formulated aa follows: 

A state 8 of the cache is the set of objects that are stored in it 

</?1,i?2, • • ,Rn> along with some statistical information associated with each 

fi,'. We will assume here that this information is 

t; The time since /?,• was last referenced 
u, Probability of updating R, 
Mi Cost of producing /?,■ (materialization) 

I fi, I Size of Hi 

and that the cost of writting and reading an object from the cache is equal to the 

size of that object. Let S and R be the set of all possible states and results to 

cache, respectively. Then, a replacement policy P, is a function P.SXR-*S 

that, given a state e for the cache and a newly materialized result /?,-, decides 

a) if /?,- should be cached, and 
b) in case the answer to a) is positive but there is not enough free space 
in the cache to accommodate Ä,-, which other result(s) should be discard- 
ed to free the space needed. 

In operating systems an optimal page buffer replacement policy is one that uses the 

whole (past and future) pattern of references to decide on which pages should be 

cached (see algorithm OPT in (MATT70]). This algorithm is not practical though, 

unless one can predict with high probability the future behaviour of the system. The 

closest approximation is the LRU (Least Recently Used) algorithm which selects to dis- 

card the object with maximum time since last reference.   In the area of database 
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management systems, the same policy can be used in the design of buffer managers. 

DeWitt and Chou give in a recent article [CHOU85] an analysis of these algorithms in 

a database environment. 

In our caching problem, an object fi,- is cached independently of its parameters, 

as long as space can be allocated to store J?, in the cache. If this is not the case, then 

some result(s) must be discarded to free the space needed for storing fi,-. There are 

generally two approaches one can take 

a) We can first try to approximate the parameters of Table 2.1 using the statistics 

the system has acquired. The sizes j Ä,- j and the materialization costs M, are 

given since the objects have been computed already. The update probability u,- 

is also easy to derive, assuming that the probabilities of updating ground rela- 

tions are given. For example, the probability of updating the result of a join 

between two ground relations is equal to the sum of the probabilities of updating 

each of the two relations. What remains to be provided is the probability of 

referencing a result as well as the probability of updating the result, in the case 

where the frequencies with which ground relations are updated are not known. 

For objects already in the cache, these probabilities can be estimated from the 

reference patterns already observed. For new results, one can predict the refer- 

ence pattern if the query processing algorithm is known. For example, in the 

case of processing a join, if it is known that either nested loops or merge scan will 

be used, we can predict the way QUEL fields are accessed, and therefore have a 

rough estimate for the needed probabilities. 
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Once these values are known, the A* algorithm of the previous subsection can be 

run and give a new allocation for the cache. This will provide the system with a 

good cache allocation for a limited time interval. Clearly, because the A* algo- 

rithm is very expensive to run, one would not like to decide on a new allocation 

each time a new object is materialized. The solution we propose is to run the 

algorithm once some threshold is reached. Such a threshold may be a fixed 

number of materializations. Another threshold may be the difference between 

the values for the statistics used to run the allocation algorithm (i.e. reference 

and update probabilities, sizes of results, etc.) and the actual values observed 

while the system is running. For instance, if that difference gets above some 

prespecified percentage of the original estimates the system may decide to re-run 

the A* algorithm. 

b) A different approach is to consider the values of given parameters only and try to 

approximate the optimal policy with an LRU-like policy. If, for example, we 

assume that the materialization cost, the size and the probabilities of referencing 

or updating an object are uniformly distributed over all objects, then LRU will 

be enough to guarantee a good caching behaviour. The point is that by making 

the above assumption the original problem has been reduced to the known page 

buffering problem in operating systems. However, in the general case LRU will 

not work. In that case, we propose the derivation of some experimental formula 

ranA:(Ml',u,,t,, I Ä, I ) which would rank objects according to the values of their 

associated parameters, given some weights and scaling factors. The lowest 

ranked object(s) should be discarded at a point where space is needed.  Examples 
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of rank are 

(1) ran*(M.,u,-,*ljÄ,|)-M,- 

The assumption made here is that objects are very expensive to materialize and 

the rest of the parameters are uniformly distributed. Therefore, objects with low 

A/,- values should be discarded to free space for objects with high M,- values. 

(2) ran*(A/,-,ii.-,«.-,|ß.|)=l 
H 

In this case objects are expected to be frequently referenced and very rarely 

updated. Then a pure LRU algorithm based on the times since last reference is a 

good choice. 

(3) ron*(Afl-,M|.,|Ä|.|)-i- 
«. 

If some materialiied results are very frequently updated, it may not be worth 

caching them or, for the purposes of a replacement policy, should be discarded to 

allow other less frequently updated objects be cached. 

(4) rank{Mi,ui,ti,\Ri\)-  I Äf I 

Small objects should be discarded in case larger ones need be cached. 

Trying to generalize rank by combining all four functions we suggest the following 

function for rank 

ron*(Ml,u,-,<l-, I Ä.-1) - -i-KA/. + u^ | /?• | ) + «;3.JL | ß. | 
u,- tf 

This formula is the simplest one that can be devised and incorporates in an easy way 

the effects of the various parameters. The specific format was chosen to agree "with 

the formulas derived during the analysis of section 2.4.2.   The first factor is based on 
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the fact that updates require materialization of objects as well as storing the results in 

the cache. The second part simply introduces the LRU-like behaviour. How to derive 

the weights wv w2 and ws is an interesting open problem and should be attacked 

through extensive experimentation. 

2.4.4.   Checking the Validity of Cached Objects 

Cached results of materialized QUEL field entries may become invalid when the 

relations used to compute these results are modified. Checking the validity of the 

cached objects amounts to identifying which results are affected from a given update. 

When such a result .R,- is found to be affected, one of two actions can take place 

a) One can simply invalidate the corresponding entry of the cache. The next query 

that tries to use the result, will find it invalidated and will have to re-evaluate 

the associated query. This is the scheme assumed in the analysis of the previous 

subsection. 

b) One can use the updates performed to the underlying relations and propagate 

them to all cached entries affected by these updates. In this case, some algorithm 

must be used which, given an update and the query that was used to derive of a 

specific result, will provide a set of update operations that will bring the cached 

result up to date. Such algorithms are described in various articles where the 

same problem is attacked in different contexts 

[BUNE79,ADIB80,KUNG84,BLAK86]. 
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In our environment however, the second approach suffers from two very serious draw- 

backs. First, it is the case that between two references to a specific cached result 

many updates to underlying relations may be performed. Clearly, for each of these 

updates significant effort will be spent doing propagation of the updates. Another pos- 

sibility is to log all updates and propagate them at the time a retrieval i?« performed 

(batch update) [ROUS86]. The second drawback is due to the fact that updates may 

be propagated to bring up to date entries that may never be used in the future. From 

the above discussion, it is clear that a good caching scheme will discard these results 

and replace them with others more frequently used which makes any effort to pro- 

pagate updates useless. 

We take the approach that entries must be brought up to date on demand, that 

is, the next time the specific entry is requested in a query. Then the system can either 

incrementally propagate the modifications, assuming that we keep the updates in 

some kind of a log (ROUS86), or simply re-evaluate the query. That is an optimiza- 

tion question and depends on the specific characteristics of the query and the updates. 

We will not attempt here to discuss in more detail these algorithms. 

The rest of this subsection discuss briefly the problem of detecting which cached 

results are affected by a given set of updates. [STON86a| presents a detailed discus- 

sion of the problem and the proposed solutions. The two approaches taken there, 

Basic Locking and Predicate Indexing, share the same properties with physical and 

predicate locking respectively {GRAY78,ESWA76] as used in concurrency control. 

Abstractly, a set of tuples is used to produce the result of some query and our goal is 

to be able to detect when a given update conßcts with this set.   Hence, the similarity 
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■with the concurrency control problem. 

In Basic Locking all tuples used in processing a given query are marked with a 

special kind of marker which contains the identifier Qid of the query. If an index is 

used for accessing the data tuples these markers are set on data records and on the 

key interval inspected in the index. Index interval locks are required to correctly deal 

with insertion of new records (the phantom problem in concurrency control 

[ESWA76]). If a new tuple is inserted in one of the relations used to produce the 

result of a QUEL field entry, then the collection of markers must be found for the new 

tuple. To ascertain what collection of cached entries are affected by the insertion of a 

tuple t, one first collects all the markers on t and then determines which of the 

corresponding queries are really affected. 

In Predicate Indexing »he cache has a specific organization. A data structure is 

built allowing efficient search of the cache and detection of entries affected by the 

insertion of a specific tuple in one of the underlying relations. In (STON86a], a special 

kind of R-tree [GUTT84a] is used for that reason. Using Predicate Indexing implies 

no special treatment of insertions to ground relations but a search of the whole R-tree 

is required whenever one asks for the cached entries affected by an update. 

Perforaance analysis results in [STON86a], show that it is not possible to choose 

one implementation to support efficiently any cache based environment. Depending on 

the probability of updating ground relations and the number of cached entries that 

overlap (in the sense that their read sets share some tuples from ground relations), the 

first or the second approach becomes more efficient.   Basic Locking seems the most 
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This last subsection concludes our presentation on caching results of QUEL fields. 

A working version of extended INGRES has a very simplified cache which performed 

very well in the experiments of [STONSS). POSTGRES (STON86b| will be supported 

by a more sophisticated caching scheme which will use LRU for replacement and Basic 

Locking for checking the validity of the entries. 

2.6.  Indexing Results of QUEL Fields 

Imagine a query that is frequently asked and has the following form 

retrieve   (EMP name)  where EUP hobbies average < constant 

One would most probably like to build an index on EMP hobbies average in the 

same way indexes are built on simple attributes. However, there is a difficulty in 

using conventional indexing schemes to index results of QUEL fields. This would 

require the materialization of all entries in the QUEL field and, roorcover, mat-'i-idua- 

tion must be done when a new tup* With a QUEL iu'sd is inserted, tot exaasple, it c. 

new employee tuple is inserted in -he EMP relation the hobbies field must be processed, 

the result cached if possible and the index on EMP hobbies average must be updated 

with the new values. This indexing scheme suffers from two serious drawbacks. First, 

insertion time increases significantly since it is no longer a simple addition of a tuple in 

a relation, but the execution of (possibly) many queries as well, the ones stored in 

QUEL fields. In particular, in the case of queries involving clauses with multi-dot 

expressions, response time may increase drastically. Second, by precomputing QUEL 

field entries the-system materializes all objects and therefore spends a lot of time (and 

possibly space in the cache) in processing field entries t'jai may be never referenced in 
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promising because of its ease of implementation, performance in simple environments, 

and extensibility to join predicates. Analysis of these schemes and investigation of 

other extensions are a topic of future research. 

2.4.5.   Indexing the Cache 

As a final issue in the caching problem we touch briefly .he problem of indexing 

the cache.   By "indexing" we mean an efficient way to detect if for a given query Q 

there is a cached result R that is the answer to Q. The problem therefore is to search 

for Query.expression values in the cache which are identical to Q, up to renaming 

of tuple variables used.   In other words, the expressions are identical once we substi- 

tute the tuple variables with the names of relations they range over.   Checking for 

identical queries is rather straightforward.   It involves transforming the query to be 

check«c1 into the canonical form that we assumed in subsection 2.4.1 and then a simple 

syntactic matching.   But, clearly one does not want to compare all entries of the cache 

with Q.   It is desirable to quickly reject all of the entries that do not relate at all to 

the given query.   We therefore associate with each entry a signature that contains 

high level and easy to check infor/nation about the query.   The relations involved and 

the fields that appear in the qualification and the target list of the queries are used to 

build the signature.   If the signatures of a cached entry and the given query match we 

can then continue with a more detailed checking, the syntactic comparison of the two 

canonical representations.   To have quick comparison of the signatures themselves, a 

hash table where hashed representations of the signatures are stored can be used. 
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name 

Riggs 

Jones 

Felps 

salary 

20 

mgr 

Smith 

30 

40 

Smith 

hobbies 

retrieve (SOFTBALL.position,SOFTBALL.average) 

where SOFTBALL name = •Riggs" 

Moore 

catcher 

pitcher 

5 

4 

Assume also that there is a unique tuple identifier TID associated with each tuple in 

the EMP relation, with value 100,101 and 102 for the first, second and third tuple 

respectively. These values are stored in the EMP relation but are not visible to the 

user. The results of the second and third tuples have been materialized and stored in 

the cache. That is indicated in the above relation by representing them with small 

relations stored in the hobbies field of EMP. Suppose the query that has caused that 

materialization was 

retrieve  (EMP name) 
where EMP salary > 20 
and      EMP hobbies average < 6 

and was processed by scanning EMP and materializing only the hobbies fields of 

employees with salary more than 20K.   The index on EMP hobbies average was of 
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the future. 

Another proposal that overcomes the above problems is presented here. The 

main idea is to have the index reflect only values that have been seen in the past and 

not all possible ones. Through this scheme, it is expected to achieve better perfor- 

mance in cases where the same set of queries is frequently asked. We are also willing 

to pay some penalty to update the index in the case where the set of queries changes. 

Given a field, the structure to be described, contains information OR all values of that 

field that appear solely in results of materialized entries. These results do not have to 

exist in the cache; they can exist in the index even if the object that included them has 

been flushed out of the c ,. In these cases, the index simply shows that some QUEL 

fields, even if not curren y materialized, can produce the specific values stored. More- 

over, some extra information is associated with the index; information that character- 

izes the class of tuples that are indexed. In summary, the indexing scheme proposed is 

a partial index in the sense that it indexes only a part of the relation. 

Let us use an example o motivate the discussion on partial indexes that follows. 

The relation EMP (name,salary,mgr.lobbies) of section 2.2 has an index defined on 

EMP hobbies average.  The following tuples are currently in QIP 
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no use because no entries were materialized before the above query was executed. 

However, after the execution of the query the index was updated to 

salary > 20 

average TID 

4 101 

4 102 

5 102 

8 101 

Notice that the above index differs in two ways from conventional indexes. First, 

»here may be more than one average values for the same TID value. This cannot be 

true in conventional relations because all fields carry a single value (First Normal 

Form [ULLM82]). Second, there is a predicate associated with the index (salary > 

20). This predicate uses only non-QUEL fields and is a simple way to identify the 

kind of tuples indexed by the given index. That predicate is also used to decide if an 

index is useful in answering a given query. For example, a future query that includes 

a restricf'on on Elff hobbies average and references employees with salaries more 

than xK, with a;>20, can use the index to avoid a full scan of EUP. However, for 

a; <20 the relation must be scanned and the entries with salary values under 20 will be 

materialized. As a side effect, the index table and the corresponding predicate will be 

updated. 
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Let us now describe the operation of a partial index. A partial index is a pair 

(QUALJNDX), where QUAL is a disjunction of conjunctive one-variable selection 

clauses and INDY is a conventional index structure. We will say that a qualification 

QUALl covers another qualification QUAL^ if the set of tuples satisfying QUAL^ is a 

subset of the set of tuples satisfying QUALx, for any instance of the database. In any 

other case we will say that QUALx is not useful to QUALz- When au index is 

requested by a user on a field F of a QUEL field result, a pair (QUALJNDX) is allo- 

cated with initial values QUAL= false and INDX*=&. Then depending on the opera- 

tion performed on the relation, the following actions will take place. 

Queries that use Fin an one-variable clause in the qualification: 

Let QUAL~ be the part of the qualification of the query that has no references to 

QUEL fields an«! is composed only from one-variable clauses on the relation that 

the index is built on. Then, if the predicate QUAL which is associated with the 

index covers QUAL~, the query processor may consider using the available index 

on F for answering the query. If QUAL is not useful to QUAL~, then the query 

cannot use the index on F. That index can be used to give only the tuples satis- 

fying QUAL while the rest of the requested tuples must be retrieved from the 

relation by other means. However, in that case, once the QUEL field entries are 

materialized, the values of F are used to update the index and the associated 

qualification QUAL is changed to {QUAL y QUAL~). 

Queries that do not use F in an one-variable clause in the qualification but 

materialize the QUEL field that contains F: 
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In this case we take the steps followed in the second case above where the index 

is updated after the materializations are performed. 

Ineertion of a new tuple in the indexed relation: 

Given a new tuple to be inserted in the indexed relation, we check if this tuple 

satisfies QUAL and if so. the corresponding QUEL field is materialized and the 

index is updated.   Otherwise, the index remains as is.   In the former case, we 

may materialize entries that show no indication if they will be used in the future. 

Although this was one of our arguments against pre-materialization of all entries 

in the beginning of the section, there seems to be no easy way to get around that 

problem.   If the predicate QUAL is satisfied it is required that the F value of the 

new tuple be in the index.   Another approach, would be to change QUAL to 

(QUAL A {not QUAL'), where QUAL~ is a qualification that describes the tuple 

inserted and can be built according to the above discussion.  This way we avoid 

inserting the new values in the index.   Although this solution is conceptually 

correct, it is very hard to check whether QUAL covers other predicates if nega- 

tion is allowed (ROSE80]. 

Deletion of a tuple from the indexed relation 

In case of deleting a tuple with tuple identifier TID, the entries of the index that 

contain the same TID value are also deleted. The predicate QUAL can then be 

changed to reflect the fact that the specific value is not any more represented in 

the index by introducing negative clauses in QUAL. Because of the above men- 

tioned efficiency problems, we propose to leave the qualificatiou ^art unchanged 
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and simply allow incoming new tuples to be inserted in the index ever in the case 

they match deleted values. Hence, the predicate QUAL is only "increasing" by 

means of the number of tuples it covers. 

Updates to ground relations may also affect the contents of a partial index. In the 

case where these updates are affecting results of QUEL fields, changes may have to 

occur in the index as well. Using a validation scheme similar to the one of the previ- 

ous section, we can check which index entries must be changed after a given update to 

a ground relation. 

The above are the only actions required to keep an index up to date. Clearly, 

the content of the index reflects the dynamics of the system by providing information 

only on data frequently asked. In that sense, partial indexing is also some kind of aea- 

eion support [KUCK86], witetc <» user starts up a session and depending on the queries 

he/she uses, the system may create secondary structures to speed up common opera- 

tions. Another comment is that the predicate QUAL associated with the index, may at 

some point get extremely complicated because of the number of disjuncts it may con- 

tain. At such a point the system may use some statistics to estimate the percentage of 

the tuples that have already been indexed. If that is above a predefined threshold (e.g. 

80%), the system may select to index all QUEL entries. QUAL is then changed to 

"true ' and all incoming new tuples ^ill have to be indexed. We then arrive in the 

situation that was discussed in the beginning of the section where all materialized 

objects are guaranteed to have an entry in the index table. 
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Finally, we would like to mention another possible use of partial indexes. Many 

times users issue all their queries through specific views that they have defined over 

ground relations. Users are not allowed to keep materialized versions of the views in 

the system because of its high space cost, but they still would like queries to execute 

fast. Indexes on ground relations will be helpful for that. However, these indexes con- 

tain more information than what these users need, namely an index only on the result 

of the view materialization. A partial index seems like a clean solution to that prob- 

lem. The QUAL part will be static since it will be the predicate that defines the view, 

but querying and updating will be performed under the guidelines outlined above. 

This idea can also be extended to normal relations, since these are special cases of 

views. Using partial indexes better performance can be achieved by allowing the index 

to keep information only on frequently accessed data. 

2.6.   Summary 

This chapter first presented the language QUEL-I- and its capabilities. Then, an 

extended decomposition algorithm based on the INGRES query processing algorithm 

was proposed. The extensions made were mainly due to the fact that one new opera- 

tion was introduced, namely the materialization of QUEL fields. We showed how a 

general algorithm can be used to take under account the fact that materialization is 

very expensive and the number of times it is performed should be minimized. Also, 

some special case strategies were discussed that aim to reduciug the sizes of material- 

ized results. 
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Caching was then proposed as a way to avoid evaluating the queries found in 

QUEL fields more than once. Several issues associated with caching were discussed. 

Among others, replacement policies, invalidation algorithms and policies that decide 

which objects to cache were examined in detail. The discussion shows that caching is 

essential in the QUEL+ environment and various solutions to the above problems can 

be derived once the cached object characteristics are known. How to compute these 

characteristics and how to adapt the system caching policies according to these statis- 

tics is a very interesting open problem. 

Lastly, a new indexing technique. Partial Indexing, was proposed to provide 

efficient access to results of QUEL field materializations. A partial index is a combina- 

tion of both a conventional index table and a predicate. Predicates characterize the 

set of tuples that can be accessed through the corresponding index tables. We also 

described how the system can check if an index is useful in processing a given query 

and what are the necessary operations to maintain a partial index when queries and 

updates are performed. 
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CHAPTER  3 

OPTIMIZING THE EXECUTION OF PROCEDURES 

3.1.  Introduction 

The previous chapter introduced the language QUEL+ and suggested some ways 

to speed up query processing in the case where the commands stored in QUEL fields 

are exclusively queries (or retrieve commands in INGRES). This chapter is con- 

cerned with the more general problem of procedure optimization in the QUEL+ 

environment. To motivate the discussion that follows, we give an example drawn 

from [KUNG84]. 

Suppose that we are given a set of algorithms that can be used to solve the Shor- 

test Path (SP) problem on a grid representation of a map. These algorithms find a 

sequence of points in the grid starting from a given point S (source) and ending to 

another point D (destination) such that the total cost of traveling through these 

points is minimal. This set of algorithms will be represented through the use of a rela- 

tion 

ALGORITHMS (alg.id,alg.type,code) 

where alg_id is a unique identifier, alg_type indicates the general class that the given 

algorithm belongs to (e.g. Dynamic Programming [LARS78], Branch and Bound 

[RICH83], etc.) and code is a field of type QUEL that is used to store the actual set of 

database commands (procedure) that implement the algorithm.  Therefore the form of 
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the relation ALGORITHMS will be 
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alg.id 

15 

20 

»ig-typ« 

10    Djmamic Progr 

Dynamic Progr 

Branch and Bound 

code 

code line  1 

code line 2 

code line 1 

code line  1 

To give an example of an entry in the code column of the above relation, we will 

present a database procedure that solves the Shortest Path problem using an algo- 

rithm based on Dynamic Programming. Assume the existence of a relation 

FEASIBLE (source,dest,cost) that provides the cost of getting from a node source 

to a neighbor node dtst. Another relation STATES (dest,cost,open) is also used to 

record the cost of getting from the initial source point S to any already visited point 

dtat in the map. The third field open indicates if the corresponding dest node has 

been visited in the past. If open=0, the algorithm will avoid visiting that node again. 

Baaed on these relations, the following is a database procedure that finds the shortest 

path between two points 5 and D of the map. 

retrieve  into STATES  (dest = 5,   cost = 0,   open = 1) 

range of s.t is STATES 
range of f  is FEASIBLE 
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execute* 

< 

append to STATES (dest = f dest, 

cost = f cost*s cost, 
open = 2) 

where s dest = f source and s open = 1 

delete s 

where s dest = t dest and s cost > t cost 

or   s cost > t cost and t dest = D 

replace s (open = s open - 1) 

where s open > 1 

> 

The details of the ahove algorithm and its particular implementation are further dis- 

cussed in [KUNG84). Suppose that the above is stored as the algorithm with unique 

identifier 15. As mentioned in the previous chapter, a user can request the execution 

of this specific algorithm, using the QUEL+ command 

execute   (ALGORITHMS code) 
where ALGORITHMS alg.type = "Dynamic Progr ' 
and      ALGORITHMS alg.id = 15 

How to pass parameters and other issues that deal with the details of fully supporting 

database procedures will not be explored here. In (STON85] and [STON86b], Stone- 

braker et at. give an extensive analysis of these problems and suggest solutions. 

Our focus here will be the problem of efficiently processing these QUEL fields. 

The system may consult the given set of commands and process them in a way that 

minimizes the total execution cost. Relational DBMSs were made efficient largely 

through the use of sophisticated optimization algorithms ([WONG76,SELI79]). This 

chapter suggests extensions to these optimization algorithms for the new extended 

query language  QUEL+.   Although QUEL+  is used as an example, the proposed 
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principles should be applicable to a wide variety of extended languages. 

Given a set of database commands, it is a common practice in conventional 

DBMSs to optimize each command separately. To "optimize" a command means to 

choose among the various ways of executing the command. For example, there may 

be a choice of indexes to use, or a choice of strategies for executing a relational opera- 

tor such as the join. We extend these ideas here for the case of multiple command 

processing by discussing interquery optimization techniques. 

This chapter is a more detailed presentation of the ideas presented in [SELL85] 

and is organized as follows: In the next section we define the notion of an optimization 

unit. Then, in sections 3.3 and 3.4 various optimization tactics for use by a QUEL+ 

optimizer are described. Each of these tactics is related to corresponding techniques 

from some other area, in particular compiler construction and query optimization. 

Section 3.5 presents two new transformations, each of which transforms a sequence of 

QUEL+ commands into a single replace command. Finally, concluding the presenta- 

tion of this chapter, section 3.6 summarizes the ideas discussed. 

3.2.   What is Optimization? 

Optimization in database systems means to choose among the various ways of 

executing a commard. In this section we will examine what optimization will mean 

for extended languages like QUEL-K We motivate our definition of optimization by 

reviewing some QUEL+ constructs. 

The execute command, as presented in the previous chapter, gives recursive 

power to QUEL by allowiug the system to execute relation fields.   It is very useful in 

w&ytä^ywtoßüinji^^ 



66 

its «xecute* form, where the given sequence of QUEL+ commands is executed 

repeatedly, until the database does not change. Generally, each new command of 

QUEL+ represents a sequence of one or more simple QUEL commands. This is also 

true in the other extended database languages mentioned in the introductory chapter. 

For example, in Guttman's thesis [GUTT84b], the new construct is the repetitive exe- 

cution operator (*) of QUEL+. Also in GEM [ZANISS), processing of a multi-dot 

query has been implemented by translating it to QUEL queries [TSUR84|. Since a 

command in an extended language typically represents several commands in a classical 

database language, this section proposes that a QUEL+ query optimizer operates on a 

sequence of commands rather than the traditional approach of optimizing a single 

command at a time. 

As a first attempt at designing a QUEL+ optimizer, one could merely optimize 

each corresponding QUEL command separately, using an existing QUEL optimizer. 

For example, a replace« command would be processed by generating one replace 

command, optimizing and executing it, and continuing until the execution of the 

replace command does not change the database. We use the term optimization unit 

to refer to the unit acted on by the optimizer. Thus in QUEL the optimization unit is 

a single QUEL command. We propose that for QUEL+ the optimization unit will be 

a single QUEL+ command, including even an execute or execute* operation. 

Therefore, the optimization unit has been effectively made equal to any sequence of 

QUEL+ commands, for any such sequence can be the argument of an execute com- 

mand. In fact, if the programmer wishes, he/she can code an entire QUEL+ program 

(containing no programming language commands) inside a single  execute statement 
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and the optimization unit will then be that entire program.   There are at least two 

advantages to enlarging the optimization unit: 

(a) The optimizer has more information on which to base its decision. For example, 

knowing that there will be several consecutive replace commands executed, the 

optimizer may elect to build an index which is not worthwhile for only one 

replace. 

(b) The optimizer has mor? fkxibility to rearrange the order and implementation of 

operations. For example, in an execute* which includes a delete command, it 

will be useful to perform the delete operations as early as possible, in order to 

reduce the size of the relation to be processed. 

One possible disadvantage to this approach is the following: 

As the size of the opuü'ization unit grows, so does the complexity of the optimi- 

zation task. The firs*, comprehensive approach to query optimization [WONG7Q] 

proposed qi^ry cuxomposition as a method to avoid searching the exponentially 

t;rowiüg space of query processing strategies. However, the most successful query 

optimization method has been that of System R [SELI79|, which does perform 

essentially an exhaustive search of the strategy space. Even System R's strategy 

avoids searching the full strategy space by using some heuristics to prune down 

the cost of the decision process [SELI79|. Therefore by allowing the optimization 

unit to grow arbitrarily, the cost of searching the strategy space may exceed the 

savings in efficiency. 
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The benefit of these advantages, and the cost of the disadvantages, grows with 

the size of the optimization unit. Clearly this size is to a significant extent under the 

control of the programmer, who can enlarge it by placing several QUEL+ commands 

inside an execute command. Notice also that an optimization unit must be smaller 

than or equal to a transaction unit. This is because the optimizer may completely 

rearrange the order of execution of commands in an optimization unit. If there was an 

end-transaction statement inside the optimization unit, it would have a completely 

different meaning after a rearrangement. 

Following the above discussion, the remaining sections examine various tech- 

niques that can be used by a QUEL+ optimizer. These are general database program 

transformations that aim at reducing the execution cost. The classes of optimization 

tactics presented in the following sections are each closely related to techniques used in 

other contexts, namely compiler design and query optimization. 

3.3.   Compiler Design Techniques 

Optimization techniques in compiler design focus especially on two areas [AH079] 

- temporary storage management (space), and 

- loop optimization (time) 

Suppose a sequence of operations on an employee relation is given; in addition all 

qualifications restrict the initial relation to the set of tuples of employees working for 

Joe. Then it may be more efficient to create a temporary relation in advance that will 

contain only the tuples of those employees. We view this problem as the problem of 

temporary  storage  management.    Managing temporary storage  in the context of 
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database operations means optimizing the execution of commands by reusing results 

(e.g. temporary relations) produced during the execution of other commands. The 

major difficulty in solving this problem is caused by the presence of update commands. 

Updates prevent the optimizer from making significant predictions on the kind of data 

that is accessed during the execution of the commands. The most interesting and 

tractable case arises when all commands are retrievals from the database. It is then 

possible to even rearrange the order in which retrievals are performed so that access- 

ing the same data pages is avoided. Algorithms for this special case are given in 

Chapter 4. 

The focus of this section will be the second problem, i.e. loop optimization. In 

database operations loops are found in two levels, single queries and transitive closure 

(*) operations. In the former, repetitive execution is inherent in the commands. For 

example, a query involving a join between two relations can be implemented with a 

nested loop.   On the other hand * operations are explicitly user defined loops. 

The case of implicit loops has been studied in the past as the problem of finding 

query execution plans that minimize execution time and avoid evaluating the same 

expressions many times [BLAS76,EPST79]. This corresponds to identifying loop 

invariants in compiler design. 

In the context of * operations some new problems arise. The following two sub- 

sections examine two of them. 
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3.3.1.   Loop Invariants 

An interesting version of the same problem discussed above is the problem of 

identifying loop invariants within a set of commands. For example, aggregate compu- 

tations that involve relations not updated during the execution of an iteration can be 

evaluated outside the loop and be replaced with a constant in the body of the loop. 

The following command changes the salaries of employees with age more than the 

average employee age and satisfying some other condition Qual. 

replace* EMP  (salary=new8a/ary) 
where EMP age > avg(EMP age) 
and     Qual 

Clearly the average employee age computation can be moved out of the qualification 

and be performed only once, turning the single replace« command into the following 

two, presumably more efficient, commands (the first one is assumed to be some system 

operation) 

Set AVG = avg   (EMP age) 

replace* EMP (salary=ne«;«o/ary) 

where EMP age > AVG 

and  Qual 

The above transformation resembles the previous case of intraquery optimization 

described in [EPST79] and the gain in execution time is substantial, especially in cases 

where the result of the aggregate is involved in join clauses. An algorithm that 

transforms the first database procedure to the second one can be very easily derived; 

for each aggregate in the loop, it checks if ail relations or relation fields involved are 

not updated during an iteration step.   If this is the case then the aggregate can be 
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computed outside the loop  and stored  in  a variable which tLen replaces every 

occurrence of the agp-egate in the body of the procedure. 

In general, there will be iterative database programs where invariants are not 

easily identified. Then another technique may prove useful. 

3.3.2.   Incremental Computation 

A more careful treatment of aggregates in loops is also possible if after doing the 

simple transformation suggested above there are still aggregates to be calculated in 

each iteration. In that case, it may be worth incrementally computing those aggie- 

gates, i.e. computing them once in advance and then updating them every time the 

data involved changes. As an example, suppose a relation 

PARTS (pid,typt,supplier,quantity) with the obvious meaning is given, the com- 

mand 

replace* PARTS'  (quantity=PARTS quantity^) 
where PARTS type = »pipes1 

and      PARTS s^ppller■-•Smith, 

and      PARTS quantity < avg(PARTS quantity where PARTS.type^pipes1) 

modifies the PARTS relation according to the following semantics 

if the quantity <>/ •one typt of pipe« tÄat Smith Buppliet ia leg» 
than the average quantity of pipe» aupplied. repetitively in- 
ereaae hi» »upply for that type of pipe» by t 

We can then define a "variable" AVG to hold the result of the above aggregate which 

computes the average quantity of pipes supplied by the various suppliers. Let also 

COUNT be another variable that holds the numj>er of tuples satisfying the qualification 

of the aggregate, that is COUNT —  I PARTS   [type^pipes]   j.   Then, given a change 

NöK^I^^^A:'^ 
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that modifies k tuples, the new value for AVG can be computed using the formula 

2k 
AVG   <~  AVG + 

COUNT 

The number of tuples modified is always available at the end of performing an update. 

For example, in INGRES because deferred update is used for crash recovery reasons, 

the size of the intermediate relation created to hold the new tuples, is used to compute 

COUNT. The new database procedure that is equivalent to the one presented initially 

will be 

/•  /nittali««  the variablec u*ed  •/ 

Set AVG ■■ avg(PARTS quantity where PARTS type^pipes») 
COUNT =  I  PARTS [type=pipes]   I 

/•  Then repeatedly pro tea» the PARTS relation •/ 

execute* 
< 
replace PARTS (quantity=PARTS quantity+2) 

where     PARTS type = »pipes1 

and PARTS supplier^Smith" 
and PARTS quantity < AVG 

2k 
AVG ♦- AVG ♦ 

COUNT 

Similar formulas can be derived for all common aggregates, like MIN, MAX, SUM 

and COUNT. This technique will usually result in a more efficient implementation, if 

the number of modified tuples is small. Finding the formulas that compute the new 

value of an aggregate computation, given the previous value of the aggregate and the 

new values for the tuples, might be hard depending on the structure of the command. 

However, even  if more effort is needed to construct the equivalent database pro- 

^i>>*:.s^>:>:HS'c.>>3>iN>i.>!.v:v:sv/v-.- :      - .■/£M^:/:t>:K':':'^^^^:sZ'^^*/^<(<f*s*<i 
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cedures, it may pay off at execution time, especially if most of these procedures are 

"canned" transactions that are processed frequently. In this case optimization at 

eompile time is possible; that is, preprocessing of the database command and deriva- 

tion of a semantically equivalent but more efficient procedure is possible at the point 

where the transaction is coded rather than the time it is executed. 

As a final comment it should be meciioned that the incremental computation of 

aggregates is in another sense a way to update cached results. The ideas discussed in 

the previous chapter can be therefore used to detect when an aggregate computation is 

affected by specific database updates. Similarly, one might also like to pull the whole 

subexpression 

»here PARTS type = "pipes'1 

and     PARTS name = ,3lnlth, 

out of the loop by building a temporary relation to hold only that data. This is part 

of the temporary management problem that was mentioned in the beginning of the 

section and is treated in more detail in Chapter 4. 

3.4.   Query Optimization Techniques 

In this section we examine some ideas from query optimization that are useful in 

optimizing extended query language constructs.  They are categorized as 

- early restrictions, and 

- combining operations. 
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3.4.1.   Early Restrictions 

It is usually advantageous to restrict the size of the relations involved in a query 

as early as possible in the execution plan. For example, INGRES selects to execute all 

one variable selection clauses in the first step of processing a query. In QUEL+, 

delete commands can be considered as restrictions since they reduce the size of rela- 

tions involved in subsequent commands. Therefore, in a way analogous to one- 

variable clause detachment (WONG76), on«: may want to incorporate the effects of 

delete commands as early as possible. Unfortunately delete's cannot simply moved 

earlier in the sequence without affecting the semantics of the procedure. For example, 

in the case of an append followed by a delete, if the second command is processed 

first it may remove from the updated relation tuples that are used in the append com- 

mand. The absence of these tuples will clearly affect the result. Only in the very sim- 

ple cases where the read set of the append command is non-overlapping with the read 

set of the delete it is possible to reverse their order. However, a safe modification 

would be to introduce the effects of a delete command earlier in the sequence by 

enchancing the qualifications of preceding commands. For example, the following 

sequence of operations on the relation Off*  (name, salary, mgr) 

range of EMP.EMPl  is EUP 

/* make Joe the manager of all employee» •/ 
append to EUP  (name=EkP name, 

salary=EMP salary, 
mgrs'Joe") 

/* but ... nobody can make more  than hie/her manager  •/ 
delete EUP 

where EMP salary > EMP1 salary 
and  EMP1 name = EUP.mgr 

;>£VWM^^>S>S>M^^ 



can be changed to 

/« append only tuple» of employee» that make  lea» than Joe */ 
append to EUP (nanie=emp name, 

salary=emp salary, 

mgrs'Joe') 

where emp salary < empl salary 

and  empl name = 'Joe' 

/• but ... «till have  to delete »ome old tuple»  */ 
delete EUP 

where EUP salary > EUP1 salary 
and      EUP1 name ■ EUP mgr 

The savings introduced are due to the fact that new employee tuples inserted and then 

immediately deleted by the delete statement, are simply not inserted at all. An 

interesting case arises in situations where iterations of the same sequence are pro- 

cessed. For example, assume that the above two commands are executed every time a 

new super-manager is declared. Then, it is true that before executing the above com- 

mands no employee was making more than his/her manager which makes the delete 

statement unnecessary.  Hence, the single append command 

append to EUP  (name=emp name. 
salary=emp salary. 
mgr2''Joe1) 

where emp salary <  empl  salary 
and      empl name = "Joe* 

is equivalent to the initial sequence. Clearly, that one-command program is more 

efficient than the original append-delete pair. However, in general, the delete com- 

mand must be added at the end to make sure that the old employee-manager pairs 

satisfy the restriction on their salaries. In that latter case, the savings achieved are 

not obvious.   The size of the relation on which the delete command will act upon is 

i 
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smaller (since the append statement has more restrictive qualification than the origi- 

nal one) which will make that command execute faster. In contrast, the append 

operation is more expensive to process because of the more complex qualification. 

Formally, the  above transformation can be expressed as follows.   Given the 

sequence 

range of t,ti,t3,...,tn is T 
range of a|>...,«m,r|,...,rj are other releticns 

append ((/i=F1(<,«„...,fn,«„...,«n,), 

/2==^,2('>'l>--.'n>*I>-"'«m)' 

where Q(7AL1(M„ . • • ,tn,*v . . . ,«m) 

delete t 
where QUAL2(t,tl) . . . ,tn,rv . . . .rO 

it can be transformed to 

append «(/^F^f.t,,...,^,«, em), 
f2:saP,^t>tl'—>tn,Bi,...,8m), 

fhami!'lt(t,tl,...,tn,»l,...,am)) 
where QUALl(t,...) and QUAL2(t',t,l,...,t'n,...) 

delete t 
where QUAL2{t,...) 

where 

t'j «— the tuple tj where its fields /,• (1< «< *) are changed to F,-(t,...) 

and 

QUAL2 is the negation of QUAL2 

The hard part of the above transformation is the computation of QUAL2.  In the case 

y^^&/coxi>.^i0s?!j^^ «QDöMöftM </.•:•,-" .• ■■'mxmm 
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where QUAL2 is simply a conjunction of one-variable clauses, QUAL2 is the disjunc- 

tion of '.fee same one-variable clauses with reversed operators. However, when joins 

are allowed, the task of producing QUAL2 becomes very hard. Aggregate functions 

must then be used since the query language semantics cannot support negatior in the 

same sense with first order logic. Stonebraker's proposal for the implementation of 

integrity constraints using query modification (STON75| can be used to   construct 

QVJ\L2.   Finally, a similar transformation can be derived for replace-delete pairs 

of commands. 

Generally, performing this syntactic rather than semantic transformation, does 

not require any specific knowledge about the pair of commands. On the other hand, 

the gain in performance is high, especially in cases where the number of tuples 

appended and immediately deleted by the next command, is large. Also, as mentioned 

above, sometimes the second operation need not be performed at all, i.e. its effects are 

totally introduced into the first command. This requires extra information that can 

be either derived from the form of the program (e.g. the example mentioned above 

about iterative programs) or from the use 

3.4.2.   Combining Operations 

In conventional query optimization one might prefer to execute both a selection 

and a join in a relation at tht same time, thus avoiding scanning the same tuples 

twice. In the extended environment of QUEL+ one might like, analogously, to com- 

bine the execution of multiple commands. In the case of retrieve only commands, 

merging is possible and practical in many cases (see the discussion of Chapter 4). 
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Alternatively, consider a sequence of two replace commands. We will show 

that there is a single replace operation that produces the same result. This new 

command is the composition of the two original replace commands, where composi- 

tion in the context of database operations is defined in the same way as with 

mathematical functions.  An update command like 

replace T (Target-list) where Q(T,RvR2,...,Rn) 

can be thought as the operation 

t *-t(t,RvR2,...,Rn) 

on a tuple variable t ranging over T, where 

f(«,fil,-,Än) 
h («,/?„...,/?„)     if Q= true 

t if g = false 

Here, h is a function that describes how values are assigned to fields of the relation T 

according to "Target-list", and i?,, R2,...,Rn are relations not affected by the replace 

command. 

The transformation we propose is as follows: given a relation T (f \,f 2<---Jk) and 

the following two replace commands 

range of Mi,*2,-.*n is T 
range of «1,...,«rn,rl,...,r( are other relations 

(I) replace t (/,—f ,(<,<„...,<„,«„...,»„,), 

A^üC-* i, ••■,<„ .«lr--.«m). 

/*"B'»(Ml....,<n.«lr..,«m)) 
where   gC/ALl(M„...,«„,«„....,«„,) 

(II) replace t (fl^G1(t,tv...,tn,rl,...,rt), 
fi=G£t ,t „...^„.r,,...,^), 

:%w^&''&A&-^^&^rt^' Z'Ji •:-:■ vv: .^VIN^SV-:^^^ 
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fk-Gk{t,t1,...,tn,rl r,)) 
wh«re  QUAL2{t,tl,...,tn,r1,...,rt) 

transform it to the following replace command 

replace t (fi*-f;i+{f"i-f,
l)*d2.value, 

whtTe 
[ (QUALlitJi tn,3i,...,em) and d^value^l) 
or  

{QUALl(t,tl,...,tn,8i,...,8m) and </,.t;o/ue=0) 
1 

and 
[ (QUAL2it')t'l Oiv,r,) and d2.vatue~l) 
or 

{QUAL2(t,,t!
v...,t'rK,rl,..,ri) »ad d2.value=0) 

where 

f'i mm tfi + [ /^(t,«!,...,«,,,«^...,«^) - t.fi ] * devalue 

/". = Gi(t',t'l,...,t'n,sl 8m) 

t'j = the tuple tj where its fields /, (1< • < *) are changed to /', 

QUALl and QUAL2 are the negations of Qt/ALl and QUAL2 respectively, 
and 

dl and rf2 are range variables over some dummy relation DUM (value) with a 
single field value. This relation contains only two tuples with values 0 and 1 
respectively. 

What the above transformation proposes is to simply propagate the updates of the 

first replace to the qualification of the second one and then merge the two operations 

into one, in the same way the composition of two functions is performed. 

>:M^>>VJ.>>>/'^VJ>:V'V:V^ 
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To give an example, the following two commands 

replace EMP (depts'shoe1) 
»h?re EUP age < 40 [EyP^-/(EMP)] 

replace EMP (salar7=ll*EyP.salary) 
where EUP age < 40 [EUP*-;(EUP)l 

can be obviously replaced by 

replace EMP (dept^shoeV  salary=l  1*EUP salary) 
where EMP age < 40 tEMP*-y(/(EMP))] 

As a harder example where more complex composition takes part, consider 

replace EMP (salary=ll*EMP salary) 
ihere EMP age < 40 [EMP —/(EMP)] 

replace EMP (dept^shoe1) 
where EMP salary < 25 [EMP —j (EMP)] 

These two will now be replaced by 

replace EMP  Cdept-EMPdept*(»shoe"-EMP dept)*(/2.t;o/ue, 
salary=EMP salary*0 1*EMP salary*«/,.vo/ue) 

where 
KEMP age < 40 and d^alue*!) or  (EMP age  > 40 and rf,.t;o/ue=0)] 

and 
[(IMP salary+0 1*EMP salary*(/,.t;o/uö  < 25 and t/j.vo/oesl) 
or 
(EMP salAry+O 1*EMP salaryfrrfpva/He  > 25 and d^value^O)} 

[EMP-?(/(EMP))] 

Notice that we have geatrally expresset? differences using the standard "-" operator. 

It is not difficult to define tikis )per     » !or strings also, so that if s is a string 

s-s=0 
s*0=s 
s-0=s 
s*l=s 

£:^>:>&fr:v*&^^^ 
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s*0=0 

The importance of the above transformation relies on the fact that the relation 

updated is opened and accessed only once; moreover, the query processing engine can 

make the new command more efficient than the separate execution of the two initial 

commands. The undesirable effect of producing a much more complex qualification is 

mainly due to the fact that negation is not handled well in query languages like 

QUEL. Due to that, the variables rf, and d2 had to be introduced. The modified 

qualification will in many cases require accessing all tuples of the relation unless more 

clever processing techniques are used (e.g. techniques that recognize that a tuple will 

either satisfy QUAL or QUAL but never both and will therefore avoid searching all 

tuples more than once). We can also show with similar transformations that two 

append or two delet« aggregate-free commands can be merged to a single append or 

delete respectively. 

Examining other combinations of update commands it can be seen that there is 

no easy (and sometimes there is not at all a) way to combine two different commands 

in one. For example, an append followed by a replace cannot be generally -tianred 

to a single append or replace. The reason is that an append ^nuo" Se f: -»«sse » 

an equivalent replace command since the latter only modifies exL! ag tnples am5 

cannot insert new values, and vice versa. Therefore. tJie iäecw T tliei it« ru' c/ 

the other command cannot be reflected through a single pj» .atk .. lt. raste* wherr th;s 

combination is not possible, the di^ussion of the preview subsection ?.Sr»a 5r me ..i 

on producing more efficient programs by changing the order m % hi<:h the gjv^ com- 
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mands are executed or modifying the qualifications. 

3.5.   Some Special Case Transformations 

In this section we present two new optimization techniques which extend the 

technique of combining operations mentioned above. Each transforms a sequence of 

QUEL+ commands to a single replace command. The transformation of several 

commands to a single replace* command can yield significant savings. It allows the 

optimizer to concentrate its efforts on processing one canonical type of command, 

namely replace. Since replace does not change the size of the relation, the optim- 

izer need make no estimates about that size. Experimental evidence (KUNG84I a'so 

indicates that such a transformation does in fact save significant processing time for a 

particular class of problems. 

3.5.1.   Bounded Problem Space Problems 

Consider a QUEL+ command where only one relation, say R, is modified and 

this relation is known to be a subset of some other relation 5, where 5 is known 

before the execution of tbe given QUEL+ command. It is also known that R remains 

a subset of 5 throughout the execution of the given command. We will show that in 

this case it is possible to transform the given command to a single replace or, in the 

case of execute*, in a single replace* program. 

In order to show that this transformation to a single command is possible, we 

first note the :esult of the previous section, which shows that any two replace com- 

mands can be combined to a single replace. Thus we nee<: only show that any data- 

base operation on R can be expressed as a   replace command.   We do that by 

Mfftäüüüßütö^^ ->::<v>->':-->v--:-^-/:<-.-.---:".v.-:%v-:v:---:--':----.-: ■: m ■■:: 



83 

constructing a relation S* which is equal to 5 witb the addition of a new field, 

Present, with the following semantics : 

• a tuple from 5 that is currently in R will have a 1 in its Preaant field in S* 

• a tuple from 5 that is not currently in R will have a 0 in its Preeent field in 5* 

We will now show that every database operation on R is equivalent to a replace 

command on S* by giving a set of transformations. 

Tl, An  append command is transformed to a replace command where the tuples 

that satisfy the qualification change their Preeent field value to 1. That is 

range of rl,rtt...,rm is R 
range definitions for other tuple variables 

append to fi (/, = valv...,fh mm valh) 
where q  (r„r,,...,rOT ) 

becomes 

replace  « {Present — 1) 
where «./, = vo/i 
and 
and «•/* — valk 

and q  («1,«2,...,«m,...) 
and «i-Present - 1 
and 
and e-.Present  = 1 

T2. A  delete command is transformed to a replace command where the tuples 

that satisfy the qualification change their Present field value to 0. 

range of r,rl,ri,...,rm is R 
range definitions for other tuple variables 

delete r 
where q (rl,r2,...,rm ) 

v->^v^:v:^:v?x\s:\*\vv\o> .^^^ •_ ■ i 
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becomes 

replace  e (Present ■ 0) 
where q  («,,«2,...,^,....) 
and     «t-Preaent = 1 
and 
and      »m.Present « 1 

T3. Finally, a replace command is transformed to two new replace commands: the 

first one corresponds to the deletion of the old tuples while the second one 

corresponds to the addition of the new version of the deleted tuples. As was 

shown in the previous section, these two commands can be merged to a single 

replace. 

In all of the above cases the tuple variables », range over 5*. Notice that the basic 

idea in the transformations proposed, is the addition in the qualification of the clauses 

Si.Present ■■ 1 

for all tuple variables r, that range over the given relation R. This clause simply 

states that the tuples that should be referenced from S are only those that would nor- 

mally be in R, i.e. those that result from append or replace commands (Present =1) 

and not those that have been deleted (Present—0). This query modification process 

is very similar to the one proposed in (STON86b| in support of data managers that 

use optical disks to store the data. There a deletion does not imply the removal of 

tuples. Deleted tuples are simply marked as being invalid. It is also clear that in the 

case of an append command one need not include all fields in the new qualification. 

Only tl^ose fields that constitute a key should be included. The number of such fields 

is in most of the cases less than-the total number of fields and the size of S much less 

ii^-ööffiöÄfi^»^^ 
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than the cartesian product of the domains of the fields of R. 

A problem that arises in some cases is that the relation 5 is not known in 

advance or it is an extremely large relation. In the first case this transformation sim- 

ply cannot be used and other optimization techniques must be used to get a better 

version for the database procedure. In the second case it is possible to do the 

transformation but not necessarily beneficial because of the size of 5. In such cases 

special algorithms may need to be devised. We see an example of this in the next sub- 

section. 

3.5.2.   Dynamic Programrr.ing Problems 

The problems discussed in this section share the property that all are some 

implementation of the dynamic programming paradigm. A STATES relation, which 

contains (in each tuple) the current best value of the cost to be maximized, is built 

using the usual dynamic programming method. The example used is the shortest path 

problem described in the beginning of this chapter. The same tactic to be presented 

here can be used with other standard applications of dynamic programming as well, 

like the knapsack problem or the reliability problem. 

A complete QUEL-i- program for the shortest path example appears in section 

3.1. There, ihe relation FEASIBLE (source,dest,cost) is fixed and the relation 

STATES (dest. cost,open) contains at all times the current state of knowledge about 

the problem, i.e. the cost of getting from the original source point 5 to any point deet 

in the given map. If we were to apply the technique of the previous section, we would 

seek a fixed relation S which contains STATES for the lifetime of the algorithm's exe- 

KOO6W^>^<--^^C<«'.:<--^.:-^<--.- ;•v■^^^^>;^■;v>>^^v>^.";^^Ä•f:.^^v^■>^•;^^^^v^'^^.•:v^1-:v^^:^v 
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cution. The problem ia that such an S would have to hold a large number of tuples 

for each node, namely one tuple for every number less than the current cheapest cost 

of getting to that node. We will propose here a way to overcome this problem. The 

program that solves the SP problem, like any program using the dynamic program- 

ming approach, consists of two phases. 

In the first phase the relation STATES is expanded with the introduction of 
new nodes, i.e. the ones that can now be reached in the search space 
(expanaion phase) 

Then in the second phase, nodes with the same dest value are compared and 
all but one are deleted according to some criterion, e.g.   the cost of getting 
from the initial node 5 tc »hat specific node 
(optimality phase) 

The main loop of the program would be 

range of r,r',r,,r2,...,rm   is STATES 
range definitions for other tuple variables 

execute* 
< 
/* expansion phase   */ 

append to STATES (.dest  = val0, 
/, — vo/,, 

/2 = va/2, 

/* = fo/jfc) 
where  q(r1,r2,...,rm,     .  ) 

/•   optimality phase  <?/ 
delete r 

where r.dest — r'.dest 
and      tt'(r,r',..-) 

> 

Moreover the condition w is such that w(r,r',...) and w(r',r,...) cannot be both true 

(antisymmetric relation of r and r').   This means that only one tuple with a specific 

ÖQÖ&KNKSr>>>^^,-'V^^ 



87 

value of r.dest will remain in the STATES relation after the optimality phase. 

Let us now show that the above program can be transformed to a single replace 

command. First, we add a field Preeent to the STATES relation and call the new rela- 

tion NSTATES. Assume that initially all tuples in the NSTATES relation have their 

Present field value equal to 0. As was explained in the previous section an append 

command will set the corresponding Present value to 1 while a delete will reset it to 

0.  Then the first command of the above program will be transformed to 

range of »,«',«„«2,...,«,„ is NSTATES 
r.  ge definitions for other tuple yariables 

replace s (/, = vall,...,fk = valk, Present  s 1) 
where    s.dest = i;a/0 

and        q  («„«2,...,«m ) 
and        Si.Present  = 1 
and ... 
and        sm.Present  = 1 

Note that we have used the fact that dest is a key in order to identify the tuple from 

NSTATES to be updated. Hence, all restrictions of the form «./,=i/o/, have been elim- 

inated. 

An attempt to transform the second command using the transformations from 

the previous section would fail since in the NSTATES relation there cannot be two 

tuples with the same dest value. So the second command should be translated as fol- 

lows 

if the tuple appended during the expansion phase is the first one appended to 
NSTATES for that value of the dest field (i.e. r.Present =0), then do the up- 
date, 

else do the update only if the new tuple would not be deleted by the second 

KvM>(X<14t4^^ 
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command, i.e. if w(«,(v{},vl,v2,....vk)y....) is true, which guarantees that this tu- 
ple will not be deleted by the delete command. 

This interpretation allows us to omit the optimality phase command by only enhanc- 

ing the qualification of the replace command that the initial append operation was 

transformed to (see similarities with the example presented in section 3.4). The final 

one-replace command program will be 

replace a (fl = va/, fk = valk, Present  = 1) 
where    e.dest = val0 

and q  («„«2,...,«m ) 
and al.Prisent  = 1 
and   
and 8m.Present  = 1 
and (s.Present  = 0    or    w(s,{val0,vall,...,valic),        )) 

We should also note here that the command shown above might now be ambigu- 

ous. There may be more than one value to be assigned to a single tuple (non- 

functional update). This corresponds to the case where man> tuples with the same 

dest field value are appended to STATES, due to the existence of multiple paths from 5 

to dest. However, this is a general problem of ambiguous updates and in our case is 

easy to solve by using the condition w to eliminate tuples with higher cost. 

We have shown how the above dynamic programming problem for search spaces 

has been reduced to a single replace* program. The difference between the two pro- 

grams is that the first one starts with a rather small relation which incrementally 

grows as the iterations are executed while the second one starts with the whole prob- 

lem space and updates the information recorded about the nodes. What remains to be 

examined is how this new version compares in execution time and I/O operations with 

the initial version of the algorithm.  The result of this comparison depends not only on 

>7^?-;v':<^< •<<^:<*;^^ 
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the size of the NSTATES relation but also on the fraction of it that will be used in the 

program, li has been shown through a series of experiments that Dynamic Program- 

ming problems is a class of problems that will gain in performance from this transfor- 

mation [KUNG84). The single replace command runs ten times faster than the ini- 

tial two command program for a FEASIBLE relation with 100 nodes, almost 100 times 

faster for 400 nodes and infinitely faster for more ,han 500 nodes. 

3.6.   Summary 

The problem of optimizing extended query language commands and in particular 

sequences of QUEL commands (procedures) was described. Our presentation included 

several optimization tactics, some based on similar tactics in other areas and some new 

ones. 

Moving invariant aggregate computations out of loops and incremental computa- 

tion of aggregates were used as examples to illustrate how iterative constructs can be 

made more efficient. Another aspect that can be found in compiler design as well, 

common subexpression analysis and reusal of common intermediate results, is dis- 

cussed in detail in the chapter that follows. The ideas of performing early restrictions 

and combining of operations where drawn from conventional query optimization and 

abstracted in our environment as merging database commands. Physical database 

design techniques [SCHK78] are also applicable in the environment of QUEL+. The 

optimizer is given a set of data, namely the given relation?» m:1 their organizf.uon plus 

a set of commands, and some information about the frequency of the command» h 

then seeks an optimal reorganization (perhaps none) of the physical database.  What is 
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missing in the case of procedures is complete data on the frequency of the commands 

but estimation techniques like the ones referenced in [KUNG84] can be devised. Also, 

the QUEL+ optimizer must take care not to reorganize the database in a way which 

will degrade future performance, e.g. creating an index which will slow down updates 

for future commands which do not use that index. The solution to the a,bove problem 

is to create temporary secondary structures (indexes) or primary organizations that 

will be used during the execution of a repetitive command or a procedure but they will 

not persist beyond that. 

Finally, some special case transformations that are applicable to database pro- 

cedures with a specific structure were discussed. Our new tactics include the some- 

what surprising result that any QUEL program satisfying certain criteria is equivalent 

to a QUEL program which consists of one replace statement. We have also shown 

that a large class of problems, namely those which use the dynamic programming 

approach, satisfy these criteria. The transformations presented are useful not only in 

this context but in general transaction processing as well, since they are motivated 

solely by the need to expand the optimization unit from one database language com- 

mand to a sequence of commands. Experimental results have shown that these 

transformations require minimal effort to be applied; in return, performance gains are 

substantial. 
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CHAPTER  4 

MULTIPLE QUERY OPTIMIZATION 

4.1.  Introduction 

The discussion of the previous chapter, suggested a set of transformations and 

tactics for optimizing collections of commands in the presence of updates. In this 

chapter we examine a special case which gives rise to more elegant and general solu- 

tions to the multiple command processing problem. The retrieve-only case where the 

set of commands to be evaluated is restricted to retrieve queries only is studied. Such 

sets arise in the QUEL+ environment if a procedure stored in a QUEL field is solely 

retrieving data from the database. 

However, there are many other applications where more than one query are 

presented to the system in order to be processed. First, consider a database system 

enhanced with inference capabilities (deductive database syetem) [GALL78]. A single 

query given to such a system may result to more than one actual queries that will 

have to be run over the database. As an example, consider the following relation for 

employees 

EUP  (name.salary,experience,manager,dept.Dame) 

Assume also the existence of a set of rules that define when an employee is well paid. 

We will express these rules in terms of i" trieve commands. 

/•  A%  employtt  xm well paid if he/»he makea more  than 4OK */ 

: 

■ 

■ 
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Rule 1:     retrieve  (EMP all)    where EMP salary > 40 

/• i«  employee ia «ell paid if he/ahe. make» mort than SSK 
provided Ke/ahe ha» no more than 5 year» of experience  •/ 

Rule 2:     retrieve  (EMP all)    where EMP salary > 35 and EMP experience <5 

/• in employee i» mill paid if he/ahe make» more than SOK 
provided he/ahe ha» no more than 3 year» of experience  •/ 

Rule 3:     retrieve  (EMP all)    where EMP salary > 30 and EMP experience < 3 

Then a query that asks 

I» Mike mell paid? 

will have to evaluate all three rules in order to come up with the answer. Because of 

the similarities that PROLOG [CLOC81] clauses have with the above type of rules, 

our discussion on multiple query processing applies to the optimization of PROLOG 

programs as well, assuming that secondary storage is used to hold a PROLOG data- 

base of facts. As a second example, consider cases where queries are given to the sys- 

tem from various users. Then batching all users' requests is a possible processing stra- 

tegy. In particular, queries given within the same time interval r may be considered 

to be processed all together (we will see in the following what "all together" means). 

Finally, some proposals on processing recursion in database systems 

[NAQV84,IOAN86], suggest that a recursive Horn clause should be transformed to a 

set of other simpler Horn clauses (recursive and non-recorsive). Therefore, the prob- 

lem of multiple query processing arises in that environment as well. However, it is 

more complicated because of the presence of recursive queries. 
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Current query processors cannot optimize the execution of more than one queries. 

If given a set of queries, the common practice is to process each query separately. 

There are generally many possible ways of executing a query {access plane). For 

example, there may be a choice of indexes to use, or a choice of strategies for execut- 

ing a relational operator such as the join. Access plans are simply sequences of such 

simple tasks as relation scans, index scans, etc. The query processor chooses the 

cheapest among these plans and then executes it to produce the result of the query. In 

the case where more than one query is given at the same time there is another possible 

optimization, namely sharing of common operations (or tasks). Examples of such 

tasks may be performing the same restriction on the tuples of a relation or performing 

the same join between two relations. Taking advantage of these common tasks, 

mainly by avoiding redundant pagp accesses, m^y prove to have a considerable effect 

on execution time. 

The presentation of the multiple query optimization problem is the focus of this 

chapter and is organized as follows. Section 4.2 presents an overview of previous work 

done in similar problems while Section 4.3 first defines the query model that will be 

used throughout this chapter and then presents a formulation for the multiple (or glo- 

bal) query optimization problem. Section 4.4 presents our approach to the problem 

and introduces through the use of some examples, algorithms that can be used to solve 

the multiple query optimization problem. Then, Sections 4.5 through 4.7 present 

these algorithms in more detail. Section 4.5 suggests an algorithm which finds a serial 

sequence for executing the queries with better performance than any other serial exe- 

cution which executes the queries in an arbitrary order.   Then, in Section 4.6 we 
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describe an algorithm that goes one step further by allowing the executions of the 

queries to interleave, while Section 4.7 proposes a more general heuristic algorithm. 

Finally, Section 4.8 presents some experimental results and the last section concludes 

the presentation of the multiple query processing problem by summarizing our results. 

4.2.   Previous Work 

Problems similar to the problem of multiple query processing have been exam- 

ined in the past in various contexts. Hall (HALL74,HALL76] for example, uses heuris- 

tics to identify common subexpressions, especially within a single query. He uses 

operator trees to represent the queries and a bottom-up traversal procedure to identify 

common parts. In (GRAN80] and [GRANSl] Grant and Minker describe the optimiza- 

tion of sets of queries in the context of deductive databases and propose a two stage 

optimization procedure. During the first stage ("Preprocessor") the system obtains at 

compile time (i.e. at the time the queries are given to the system) information on the 

access structures that can be used in order to evaluate the queries. Then, at the 

second stage, the "Optimizer" groups queries and executes them separately as groups 

instead of one at a time. During that stage common tasks are identified and sharing 

of the results of such tasks is used to reduce processing time. 

Roussopoulos in [ROUS82a] and [ROUS82b] piw .des a framework for interquery 

analysis based on query graphs (WONG76|, in an attempt to find fast access paths for 

view processing (view indexing). The objective of his analysis is to identify all possible 

ways to produce the result of a view, given other view definitions and ground rela- 

tions.   Indexes are then built as data structures to support fast processing of views. 
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Other researchers have also recently examined the problem of global query 

optimization. Chakravarthy and Minker [CHAK82,CHAK85] propose an algorithm 

based on the construction of integrated query graphs. These graphs are extensions of 

the query graphs introduced by Wong and YousseB in (WONG76]. Using integrated 

query graphs, Chakravarthy and Minker suggest a generalization of the query decom- 

position algorithm of [WONG76]; however, this algorithm does not guarantee that the 

access plan constructed is the cheapest one possible. Kim in [KIM84] suggests also a 

two stage optimization procedure similar to the one in [GRAN81]. The unit of sharing 

among queries in Kim's proposal is the relation which is not always the best thing to 

assume, except in cases of single relation queries. 

The work of [F1NK82| and [LARS85| on the problem of deriving query results 

based on the results of other previously executed queries, is also related to the problem 

of multiple query optimization. The solutions suggested are useful to our analysis 

because they include efficient algorithms to detect common subexpressions among 

queries. These subexpressions characterize the data that is shared and accessed by 

more than one query. Jarke also discusses in [JARK84b] the problem of common 

subexpression isolation. He presents several different formulations of the same prob- 

lem under various query language frameworks such as relational algebra, tuple cal- 

culus and relational calculus. In the same article he also describes how common 

expressions can be detected and used according to their type (e.g. single relation res- 

trictions, joins, etc). 

The main objective of our approach to multiple query processing is to use exist- 

ing query optimizers as much as possible.   We would like to avoid making significant 
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changes to the query optimizsr; injtead, our goal is to provide a preprocessor that will 

reduce the execution cost as much as possible. This preprocessing phase is introduced 

as an extra step between the optimizer and the execution modules. However, since not 

all relational databasr svftems have br-o desjgued based od liie same query processing 

concepts, we will differentiate between two alternative architectures that can be used 

for a system with multiple query processing capability. Figure 4.1 illustrates these 

two approaches.  Architecture 1 can be used with minimal changes to existing optimiz- 
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Figure 4.1: Multiple Query Processing Systems Architecture 
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ers. A conventional Local Optimizer generates one {locally) optimal access plan per 

query. The Pit i Merger is a component which examines all n access plans and gen- 

erates a larger plan, the global access plan, which is in turn processed by the Run- 

Time System. In many existing systems queries are compiled and saved in the form 

of access plans (see for example System-R [ASTR76] and POSTGRES (STON86b]). It 

is then an interesting problem to derive procedures that, given a set of such plans, 

identify a sequence in which they must be run in order to reduce the I/O and/or CPU 

cost. More sophisticated procedures can also be used for that reason. For example, 

Chakravarthy and Minlcer (CHAK85] describe an algorithm to process multiple joins 

involving the same relation R by scanning R once and examining several restriction 

conditions in parallel. Using such a procedure though implies rewritting the query 

processor which, as we argued above, requires a major effort. 

On the other hand, there are systems that do not store access plans for future 

reusa! (e.g. INGRES [STON76]). To make our framework general enough to capture 

these systems as well, we introduce Arcuitecture 2. The set of queries is processed by 

a more sophisticated component, the Global Optimizer, which in turn passes the 

derived global access plan to the Run-Time System for processing. Architecture 2 

therefore is not restricted to using locally optimal plans already stored in the system. 

The purpose of the following sections is to exhibit a set of optimization algo- 

rithms that can be used fur multiple query optimization either as Plan Mergers or as 

Global Optimizers. The algorithms to be presented differ on the complexity of the 

Plan Merger and on whether Architecture 1 or 2 is used. The trade offs between the 

complexity of the algorithms and the optimality of the global plan produced are also 
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discussed. 

4.3.   Formulation of the Problem 

We assume that a database D is given as a set of relation« {RiMi, ■ ■ . ,Rm}, 

each   relation   defined   on   a   set   of   attributes   (or   fields).    A   set   of   queries 

Q= {Qi'Qto • • ■ >Qn}  on D is also given.   A simple model for queries is now 

described.   A aeleetion predicate is a predicate of the form R.A op cone where Ä is a 

relation,   A   a  field  of  R,  op6{=,7^,<,<,>,>}   and   con«   some  constant.    A 

join predicate is a predicate of the form R^A =■ R2.B where Ä, and fi2 are relations, 

A and B are fields of Rl and i?2 respectively.   For simplicity we will assume that the 

given queries are conjunctions of selection and join predicates and all attributes are 

returned as the result of the query (i.e. we assume no projection on specific fields). 

Clearly  the above model  excludes aggregate computations or functions as well as 

predicates of the form R^A op R2.B=*R3.C.   Extending a system to support such 

predicntes is possible but would require significant increase in its complexity.  The res- 

triction on conjunctive queries only is not a severe limitation since the result of a dis- 

junctive query can be considered of as the union of the results of the disjuncts, i.e. 

each disjunct can be thought as a different query.   Equijoins are also the only type of 

joins allowed among relations.   This assumption is made in all the proposals men- 

tioned in the previous section and seems quite natural consider'ng the most common 

types of queries.   Finally, not allowing projections enables us to concentrate on the 

problem of using effectively the results of common subexpressions rather than the 

problem of detecting if the result of a query can be used to compute the result of 
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another query. Assuming projection lists, does not increase the complexity of the algo- 

rithms that perform multiple query optimization. It only increases the complexity of 

the algorithms that detect common subexpressions among queries. The proposals of 

[LARS85] and [FINK82] provide such algorithms. 

A task is an expression relname *~ expr. relname is s» name of a temporary 

relation used to store an intermediate result or the keyword RESULT, indicating that 

this task provides the result of the query, expr is a conjunction of either selection 

predicates over the same relation or joins between two, possibly restricted, relations. 

This latter type covers queries that are processed not by performing the selections first 

followed by the join, but in a "pipelining" way. For example, consider the following 

query on the relations EMP  (name, age, dept.name) and 

DEPT (dept.name.num.of.emps) 

retrieve   (EMP all.DEPT.all) 
where EUP age  < 40 
and DEPT.num.of.emps < 20 
and EMP dept_name = DEPT dept_name 

One way to process the query is by scanning the relation EMP and having each 

employee tuple with qualifying age be checked across the DEPT relation. There is no 

need in storing intermediate results for both EMP and DEPT. To be able to include 

this kind of processing in our model, the second type of join tasks was introduced. In 

the remaining discussion, tasks will be referred to as if they were simply the expr 

part, unless otherwise explicitly stated. 

Let us define now a partial order on tasks. A task <, implie* task tj ((, =^ < ) iff 

t,- is a conjunction of selection predicates on attributes A^ An, ..., A^ of some relation 
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R, tj is a conjunction of selection predicates on the same relation R and oc attributes 

■^i» -^2 Ai with /<* and it is the case that for any instance of the relation R the 

result of evaluating (,• is a subset of the result of evaluating tj. 

A task t, is identical to task tj (t, m tj) iff 

a) Selections : t,- =^ (;- and tj =^ t,- 

b) Joins : (,• is a conjunction of join predicates Ej.A, — E^Bj, Ei.A2 = E2.B2,..., 

EfAk — E^.Bk and tj is a conjunction of join predicates E'l.A1 = E'^B,, 

E'iA2 Ä ^'2^2 E'^At - E'j.ß* where each of £„ £;2( E', and E'2 is a con- 

junction of selections on a single relation and £", m £"', and E2 m E'2 

Based on the above definition for tasks we now define the notion of an access plan. 

An access plan for a query Q is a sequence of tasks that produces the result of 

answering Q. Formally, an access plan is an acyclic directed graph P = {V,E,L) (V, 

E and L being the sets of vertices, edges and vertex labels respectively) defined as fol- 

lows : 

• For every task t of the plan introduce a vertex v 

• If the result of a task f, is used in task (;, introduce an edge t;,—v; between the 

vertices v, and Vj that correspond to <, and t; respectively 

• The label L(t;,) of vertex t;,- is the processing done by the corresponding task (, 

(i.e. relname <— expr) 

For       example,       consider       .the       following       query       on       the       relations 

EMP  (name,age.dept.name) and DEPT  (dept.name.num.of.emps) 
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retrieve  (EMP all.DEPT all) 
where EMP age < 40 
and DEFT num.of.emps < 20 
and EU? dopt,name = DEPT dept.name 

One way to process this query is 

TEMPI      —  EMP age < 40 
-■'1IP2      <- DEPT num.of.emps < 20 
RESULT    *- TEMPI dept.name ■ TEMP2 dept.name 

The graph of Figure 4.2 shows the corresponding access plan. 

TEMPI — 

EMP.age < 40 

TEMP2 — 

DEPT.num.of.emps < 20 

RESULT «- 
TEMPI.dept. name=TEMP2.dept. name 

Figure 4.2: Example of an Access Plan 

Notice that there are generally many possible plans that can be used in order to pro- 

cess a query. 

Next we define a cost function coat : V—*'E for tasks. In general this cost 

depends on both the CPU time and the number of disk page accr -es needed to pro- 

cess the given task. However, to simplify the analysis, we will consider only I/O costs. 

Including CPU costs would only make the formulas more complex (see for example 
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[SELITQ]). Therefore, 

co«t(v,) = the number of page accesses needed to process task f,- 

The cost Coat(P) of an access plan P is defined as 

Co«t(P)=  jreo*t{vi) 

We will refer to the minimal cost plans for processing each query Q; individually, as 

locally optimal plans.   Similarly, we use the term globally optimal plan to refer to an 

access plan that provides a way to compute the results of all n queries with minimal 

cost.   The union of the locally optimal plans is generally different than the globally 

optimal plan.  Finally, for a given query Q, Be«teost(Q) gives the cost of the (locally) 

optimal plan P.   Hence, BeateoetiQ) =■ min(Co«<(p)|, where P is the set of all possi- 
p€P 

ble plans that can be used to evaluate Q. 

Let us now consider a syotem that given a set Q of queries it is required to exe- 

cute them with minimal cost. According to the above definitions, a global access plan 

is simply a directed labeled graph that provides a way to compute the results of al]_n 

queries.  Based on this formulation, the problem of global query optimization becomes 

Given n aete of acceaa plana S^ Sj, ..., Sn, «i     S,—{p,,, P|2, ..., Pik,} be- 
ing the aet of poaaible plane for proeeaaing <n, 

Find a global acceaa plan GP by "merging" u local acceaa plana (one out of 
each aet SJ auch that Coat(GP) ia minimal 

The Plan Merger or the Global Optimizer of Figure 4.1 performs the "merging" 

operation mentioned above. It is the purpose of the following sections to define this 

operation and derive algorithms that find GP. 
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4.4.   A Hierarchy of Algorithms 

The primary source of redundancy in multiple query processing is accessing the 

same data multiple times in different queries. Recognizing all possible cases where the 

same data is accessed multiple times requires in general a procedure equivalent to 

theorem proving, including retrieving data from the database. Our intention here is 

to detect common subexpressions looking only at the logical expressions used in the 

descriptions of queries, that is by simply isolating pairs of expressions «i and «2 where 

<i ■■► «o- Therefore, detection of sharing is done at a high level using only the 

query expressions (qualifications) and without going to the actual data stored in the 

database. For example, el may be QIP age < 30 and e2 may be EMP ago < 40. 

Then ej =^ e2. However, we do not consider cases where «j may be Off. dept.name 

= ■shoe1 and it happens in the specific instance of the database that all employees 

under 40 years old are the shoe department. Unless such a rule is explicitly known to 

the system in the form of an integrity constraint or functional dependency, it is not 

possible to detect that tl=^ t^ without looking at the actual data stored 

(JÄRK84a,CHAK84,CHAK86]. Hence, query expressions are considered to be the only 

source for detecting common subexpressions. Because several algorithms have been 

published in the past on the problem of common subexpression isolation 

[ROSE80,F1NK82,LARS85| we will not attempt here to present a similar algorithm. It 

is assumed that a procedure which decides, given two expressions Cj and tn, if 

«i =^ «2 or «2 ■■"► ei> is available. 

Second, as it was stated in the previous section, many systems store in the data- 

base optimal local access plans that have been produced in the past (e.g. System-R 
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[ASTR761 and POSTGRES [STON86b] choose to do so). Because it is not realistic to 

expect from the system to store more than one plan for each query, it is assumed that 

only locally optimal access plans are stored. Then, if a set of queries is given, there is 

no need to generate new plans for those queries that have precomputed plans already 

stored in the database. However, for the rest of the queries, optimal plans are pro- 

duced and saved for future reusal. When both precomputed and newly generated 

plans are available the global access plan is derived. 

The various algorithms that can be used for global query optimization are 

grouped in a hierarchy shown in Figure 4.3.  The reason the algorithms are organized 

(AS) 

(BS) 

(D) 

(HA) 

ARBITRARY SERIAL EXECUTION 

BETTER SERIAL EXECUTION 

DECOMPOSITION INTO 

SMALLER QUERIES 

HEURISTIC ALGORITHM (A*) 

Figure 4.3: A Hierarchy of Multiple Query Processing Algorithms 
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in such a hierarchy is to indicate the interemiag trade off between the time spent for 

optimization and the cost of executing the resulting global access plan. As we descend 

the hierarchy, the complexity of the algorithm increases while the access plan cost 

decreases. Algorithms AS, BS and D consider only access plans that are locally 

optimal. As mentioned above, the locally optimal plan for executing a query Q is 

derived by considering Q alone. Algorithm AS (Arbitrary Serial Execution) simply 

executes these plans in an arbitrary order. This corresponds to Architecture 1 of Fig- 

ure 4.1 with the Plan Merger absent, i.e. no optimization is performed. Algorithm BS 

(Better Serial Execution) preprocesses the plans and generates a better order of execu- 

tion so that intermediate results (temporaries) are reusable. In this case the Plan 

Merger of Figure 4.1 simply rearranges the order in which the plans are processed. 

Notice that in both algorithms AS and BS the unit of execution is a whole query, i.e. 

the second query is processed after the first one has been totally processed. 

Algorithm D (Decomposition) presents a different paradigm. A query is decom- 

posed into smaller subqueries which now become the unit of execution. Therefore, a 

query is not processed as a whole but rather in small pieces, the results of which are 

assembled at various points to produce the result. As an example why D might be a 

better algorithm than BS, consider the following database, 

EMP (name,age.salary,job,dept.name) 

DEPT (dept.name.num.of.emps) 
JOB (job,project) 

with the obvious meanings for EMP, DEPT and JOB. We also assume that there are no 

fast access paths for any of the relations, and that the following queries 
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{Qi)    retrieve  (EMP all.DEPT all) 
»here EMP age  < 40 
and DEPT num.of.eops < 20 
and EMP dept.name ■ DEPT dept.name 

[Qi)     retrieve  (EMP all,DEPT all) 
where EMP age  < 50 
and DEPT num.of.emps < 10 
and EMP dept_name = DEPT dept.name 

are given. If we run either QiOT Q2 first we will be unable to use the intermediate 

results from the restrictions on EMP and DEPT effectively. However, the following glo- 

bal access plan is more efficient 

retrieve into tempEMP (EMP all) 
where EMP age < 50 

retrieve into tempDEPT  (DEPT all) 
where DEPT num.of.emps < 20 

retrieve  (tempEMP all,tempDEPT all) 
where tempEMP age < t0 
and tempEMP dept.name = tempDEPT dept.name 

retrieve (tempEMP all,tempDEPT all) 
where tempDEPT num.of.emps < 10 
and tempEMP dept.name = tempDEPT dept.name 

because it avoids accessing the EMP and DEPT relations more than once. It is drasti- 

cally more efficient in the cases where restrictions reduce the sizes of the original rela- 

tions significantly. The function of the Plan Merger, in the case of algorithm D, is to 

"glue" the plans together in a way that provides better utilization of common tem- 

porary (intermediate) results. 

Finally, algorithm HA (Heuristic Algorithm) is based on searching among local 

(not necessarily optimal) query plans and building a global access plan by choosing one 
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local plan per query. Architecture 2 of Figure 4.1 applies to this case. The 

effectiveness of algorithm HA is illustrated with the following example. Suppose we 

have the queries 

{Q3)     retrieve   UOB all.EMP all.DEPT all) 
where E'V? dept.naffle = DEPT dept.name 

and JOB job ■ EUP job 

(Q4)  retrieve (EMP all.DEPT all) 

where EMP dept.name = DEPT dept.name 

with optimal local plans 

(P3)     retrieve  into TEMPI   (JOB all.EMP all) 
where  JOB job = EMP job 
retrieve  (TEMPI  all.DEPT all) 
where TEMPI dept.name = DEPT dept.name 

(P4)    retrieve  (EMP all.DEPT all) 
where EMP dept.name = DEPT dept.name 

respectively. Notice that Ps and Pi do not share the common subexpression 

EMP dept.name=DEPT dept.name. Algorithm HA considers in addition to fj the plan 

that processes the join EUPdept.name=DEPT dept.name. It also uses some heuristics 

to reduce the number of permutations of plans it has to examine in order to find the 

optimal global plan. All the above algorithms are examined in more detail in the fol- 

lowing three sections. 

4.5.   Serial Execution 

Algorithms AS and BS of Figure 4.3 are based on some serial execution of the 

given queries Qj, Q^,..., Qn. As stated in the previous section we only consider the 

locally optimal plans P,, I<«^n.   In the first case no restrictions are imposed on the 
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order in which the queries are processed; that is what a conventional query processor 

would do. In the second case some simple preprocessing is done aiming to better per- 

formance. 

4.5.1.  Arbitrary Serial Execution 

In Algorithm AS the sequence in which the queries are run is chosen arbitrarily. 

We assume that all queries are processed without taking advantage of any common 

tasks that they may share. The global plan GP that is produced is simply the con- 

catenation of the locally optimal plans for the queries in an arbitrary way. Therefore, 

for any order of processing S - {g,, Qit ■ ■ ■ Q.J, with gu6Q and all ik distinct, 

the cost of the global access plan will be 

Cost(GP) = JJBeetcostlQiJ 

As an example, consider the following queries Qs and Qj 

(Qs)     retrieve   (EMP all.DEPT.all) 
*here  EMP age  < 40 
and EMP salary < 10 
and EMP dept.name = DEPT dept.naoe 

(QB)     retrieve  (EMP all,DEPT all) 
«here EMP age  < 40 
and EMP dept.name = DEPT dept.name 

Assume also that the sizes of the initial relations and temporary results are as follows 

size (EMP) = 100 pages 

size (DEPT) = 10 pages 

size   (EMP age<40)  = 20 pages 
size  (EMP[age<40 and salary <  10])  = 10 pages 

It is also assumed that the local plans for Qj and Q8 store temporaries for the above 
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restrictions. Then, processing S would require llO+CyflO.lO) page accesses for Qs 

and 120+0^(20,10) page accesses for Qt, where C;-(o,6) is the cost of processing a join 

between two relations of sizes a and b pages. Hence, the total cost would be 

230+C,y(10,10)+C;(20,10) page accesses. 

The above algorithm does not consider at all of reusing results that are produced 

as intermediate (temporary) relations. A simple extension would be to keep temporary 

relations after they are used so that subsequent queries may use them. Better than 

that, with some simple preprocessing we can find a serial execution that makes use of 

such temporary results.  The next subsection presents such an approach. 

4.5.2.   Better Serial Execution 

The goal of algorithm BS is to look at the optimal local plans and derive a serial 

execution schedule S that makes use of common subexpressions. Checking if a given 

temporary result can be used by another query is done through the procedure pro- 

posed in [FINK82]. 

The first step in deriving the execution schedule S builds a directed graph that 

will eventually suggest S using the directed paths of the graph. This kind of graph is 

very similar to the precedence graphs used in concurrency control [ULLM82] and it is 

used to indicate how the read set of one query is related to the read sets of other 

queries. K some query Q, does not share any of its input relations with any other 

query, it is put first in the sequence S. These queries are not amenable to any optimi- 

zation other than what the locally optimal plan suggests. For the rest of the queries 

we define the following directed labeled graph QG(V,E,L), with V being the set of 

^M^££^>>:^>>^ : vtämnw>r*m, 
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vertices, E the set of edges and L a set of labels associated with edges 

• For each plan P,{V;,£;,-,L,) a node 7, is defined 

• A directed edge g,-*gy is introduced i* 

a) Proper   Implication   :   There   are   t;,€V;   and   Vif-Vj   such   that 
^•(vy)-»- Liivf) and L,^,)^L;(v;) 

b) Identical   Nodes   :   There   are   v.EV;    and   V/6V}   such   that 
Lj(vj) m L,(t;,) and 1 <j 

• Assume that edge ?,—♦qry is introduced because of nodes v,- of P, and t;; of P, 

respectively. Then the label of the edge ?,—»e/y is the savings in the cost of exe- 

cuting Ly(vy) given the result of L,(t;,). This cost is estimated assuming that one 

or more of the rebtioLj used in vy are substituted by the temporary relation that 

is created in the task v,-. 

Edges of type (a) are introduced to indicate which queries (tail of an edge) can be used 

in the evaluation of other queries (head of an edge). The second rule for edge 

definition is introduced to break ties between identical expressions in a specified 

manner.  Algorithm BS then proceeds in the following way : 

[l] If multiple edges with the same direction are found between two nodes g,- 

and «/y replvre them with a single edge with label the sum of the labels of 

the previous edges. 

[2] If the resulting graph is acyclic then the execution order S is derived from 

the directed paths that are imposed on the graph. 

^«»M«s^:v:v:v:-:^^>^^^ 
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[3]   If the resulting graph haa cycles, these are broken by omitting a set of 

edges with minimal sum of labels.  S is then produced as in [2]. 

Let QG'iy^'jL) be the resulting graph. The last step of the above algorithm is a well 

known NP-complete problem, known as "the feedback arc set problem" (GARE79]. 

However, in multiple query optimization the graph will have few nodes equal to the 

number of queries that access common data and not many cycles. Therefore, this 

problem has only minor effect on the performance of the algorithm. A simple analysis 

shows that the formula for computing the estimated cost of the global plan imposed 

by the sequence S is 

Cost(GP)~ JJBetteottiQi)- ^(e) 

n 
= JJBestcostlQi)—   yj n,-eaving8{a) 

i—i »ecs 

where CS is the set of common subexpressions « found among the queries and used in 

the final graph QG', n, is the number of times the result of a common subexpression 

« is used in the final sequence and javinj»{$) is the cost that is saved if temporary 

results instead of ground relations are used.  That cost is defined as follows: 

Let i? be a relation and a, and «2 two subexpressions defined on R such that «2 

can be processed using the result of «, instead of R. Let also Cff be the cost of 

accessing R to evaluate «, and Ct| be the cost of accessing tne result of «! to 

evaluate «2-   Then 

savingsir    = 
G/i—Clt if  «2—^ ai 

CR+C,, if  »2=«! 

¥!&GlHWSi^&b>^^ 
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In order to construct graph QG, the above algorithm requires time in the order of 

I 
JJ \Vi\ , where /:= I F|  is the number of vertices of graph QG and V^- are the sets 

of vertices for plans P,, 1<I <*.  Step [3] is the most expensive step and in the worst 

case requires time exponential en the number of the edges. 

Let us show with an example how BS works. Suppose that the queries Qs and 

Qt of the previous subsection are given. The directed graph constructed is shown in 

Figure 4.4. 

80 
lij \95. 

Figure 4.4: QG Graph for Queries Qs and Q, 

The edge qt-*qs is introduced because [EMP ag« < 40 and EMP salary < 10] =^ 

EUP age < 40. Therefore the serial execution will be S=«{QB (55} which uses 80 

page accesses less than an arbitrary serial execution which was seen in the previous 

section, for a savings of 35%. 

To give an example where a cyclic graph QG may occur, consider queries Ql and 

<52 of section 3 

((?,)     retrieve  (EMP all,DEFT all) 
where EUP age < 40 
and DEPT num.of.emps < 20 
and EMP dept.name = DEPT dept.name 

(Q2)     retrieve   (EMP all,DEPT all) 
where EMP age  < 50 
and DEPT num.of.emps <  10 
and EMP dept.Eame = DEFT dept.name 

^V>IV.N\VV.\-.äV\".V.":>V.-.--'. : . w&y&yx&y^mi^bmtirtiZfitw 
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with optimal local plans 

{Pi)        retri«T« into tenpEMPKEMP all) 
where EMP age < 40 

retrieve into tempDEPTl(DEFT.all) 

where OEPT.nuo.of.eDps < 20 

retrieve (teopEUPl all.tempDEPTl all) 

where teupEMPl.dept.name = tempDEPTl dept.name 

(P2)   retrieve into tempEMP2(EMP.all) 

where EMP age < 50 

retrieve into tempDEPT2(DEPT all) 

where DEPT num.of.emps < 10 

retrieve (tempEyP2 all,tempDEPT2 all) 

where tempEUP2 dept.name = tempDEPT2 dept.name 

and sizes of relations and intermediate results 

size   (EMP)  = 100 pages  ,  size  (DEPT)  = 10 pages 

size  (tempEMPl)  ■ 20 pages ,  size  (tempEMP2)  ■ 40 pages 

size   (tempDEPTl)  ■ 3 pages  .  size  (tempDEPT2)  = 5 pages 

Figure 4.5 shows the QG graph built for these queries.  The edge qi--q2 is introduced 

because  tempDEPT2 can be derived from  tempDEPTl, while the edge ?2-*g1 is .atro- 

60 

Figure 4.5: QG Graph for Queries Q1 and Q2 
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duced because   tempEMPl can be derived from   teiapEUP2.   The .ycle is broken by 

removing the edge gi—»gj for a tota' savings of 60 page accesses. 

Although algorithm BS provides better plans than AS it still does not take 

advantage of all common subexpressions because of the requirement that queries must 

be run in some order and no interleaving is possible. In the next section we present 

another approach which takes advantage of all common subexpressions that can be 

identified in locally optimal plans. 

4.6.   Decomposition Algorithm 

If query processing is done based on creating tempcrary intermediate relations, 

then it is known from existing algorithms (WONG76] that it is beneficial to break the 

query down to smaller and simpler subqueries. In the case of global query optimiza- 

tion, a similar approach seems promising also. Relaxing the assumption of the previ- 

ous section which forced each plan to be processed totally before other plans start 

being processed, we will examine here the possibility of interleaving the execution of 

various access plans. Algorithm D (Decomposition) takes an approach based exactly 

on this idea of interleaved plan execution. 

The main idea is to decompose the given queries into smaller subqueries and run 

those in some order depending on the various relationships among the queries. Then, 

the results of various subqueries are simply assembled to generate the answers to the 

original queries. The only restriction imposed is that the partial order defined on the 

execution of tasks in a local access plan, must be preserved in the global access plan as 

well.  As it was the case in the previous algorithms, only locally optimal plans are con- 

W^AA^A^>.>^>V>>?\i^^^^ 



115 

sidered. A final assumption made for algorithm D is that temporary intermediate 

results are replacing relations used in tasks and this is done without changing the 

operations performed in the local plans. That is, the only transformation allowed is 

renaming of input relations. This restriction makes the global access plan produced 

by D easier to derive. Allowing more complex transformations on query plans in 

order to achieve even better utilization of temporary results is also possible and is 

described in the context of the heuristic algorithm of the following section. 

Algorithm D proceeds as follows. First, as in BS, the queries that possibly over- 

lap on some selections and joins are identified by checking the ground database rela- 

tions that are used. For all queries Q.EQ that overlap with some other queries, we 

consider the corresponding plans P, (local access plans) and define a directed graph 

GP{V,E,L) (global access plan) in the following way 

•  v = u v,- 

• E~UEi 

• For every v,-6V, L(t;,) — /-,K) 

GF is in a sense the union of the local plans. We also define a function /?«« : Q—»F 

such that i?e«(Q,)»«v,-, where c,- is the node of plan P,- that provides the result to Q,-. 

Based on this graph, the decomposition algorithm performs some simple steps that 

introduce the effects of sharing among various tasks. The main idea is to avoid access- 

ing the same data pages multiple times. Hence, the transformations that are done on 

the graph are  based on changing the input relations to subqueries, to previously 

VK»ÜÄK!OQWÜÖ00!WSQ/. .->.'.-.V.V.V.v;^/-•/•/.VA/./»y^iV<V^ / .^^'- 
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computed temporary relations. Figure 4.6 illustrates the basis of our transformations. 

In the following figures nempe and dept are used in place of num.o/.emp« and 

dept.name respectively. The temporary relation TEMPI created by subquery SQi can 

be further restricted to give the result of subquery SQ2 (SQ2=^SQl). Therefore, 

TEMPI can be used as the input to that last subquery, instead of EMP. This is accom- 

plished by adding a new edge from the node representing 5(5 j to the corresponding 

node for 5^2- Also the relation name in 5(^2 is changed to TEMPI. 

Formally algorithm D proceeds as follows.  After building the graph GP, the fol- 

lowing transformations are performed in the order they are presented 

Subquery 

SQx 

TEMPI «- 

EMP.age < 40 

Rest of Plan 

SQi ,=> SQi 

Subquery Subquery 

SQ, SQt 

TEMP2 ♦- 

EMP.age < 30 

Rest of Plan Rest of Plan 

Subquery 

SQi 

i-EMPl *- TEMP2 i- 

EMP.age < 40 TEMPI.age < 30 

i ' ' ' 

Rest of Plan 

Figure 4.6: Basic Merge Operation 
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[1]     Proper    Impiieation« Let    P/fv,)    —    {v;-I L(t;,) ==^ L(t;y)    and 

^(v;)¥^ ^K)}- for a given task t;,-, P/(v,) gives the set of tasks Vj, 

the results of which can be used by t;,- as inputs instead of other base 

relations. Let c,-€P/(v«) be the task such that V f;€P/(t>,), 

L(ci)=$>iL(vj) (if more than one such task exists, let c,- be the one 

belonging to the plan Pk with the least k). In other words c, is the 

strongest condition that can be performed on some input relation(s) so 

that the result of this condition can still be used to answer t;,-. Then, 

replace the occurrences of base relations used in tasks t;,- with the 

corresponding temporary relations TEMPj, found in the tasks 

c,=[rEA/PA<—«zprj. This is accomplished by adding an edge c,—»v,- and 

changing L(v,) by substituting the relation name involved in the selection 

or join to the name of the temporary relation which holds the result in 

Hci) (i.e. TEMPk). 

[2] Identical Nodes : In the case of nodes that produce identical temporary 

relations we use a simple step to compute that temporary relation result 

only once and then change relation names to the one selected to hold the 

result. First, the equivalence classes C, are determined, each composed of 

nodes from V, such that for every t;;-,vfceC,, L(VJ) m L(vk). Select the 

vertex Vj belonging to the plan Pj with the least index j as the represen- 

tative c,- of class C,-. Then, for each equivalence class C,, remove from 

the graph GP all nodes t;;-6C, —{c,} and substitute each edge Vj—'-Vj, 

with a new edge c,-—vt.   Let L(t;jk)=[rE'AfFik<-ezprAl], for all such vk. 

:&^s&tem\-^mb&^^ 
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Also let c,=[TEA/P,*—ea:pr,|. Change all occurrences of relation name 

TEMPk in vk to lEMP;. Finally, if for some query Qm, v, — Äe«(gm) 

and Vj-GC,-, set Rt«{Qm) to c,-. This last step makes sure that identical 

final results are never computed more than once. 

[3] Recursive Elimination : Because steps [l] and [2] may have introduced 

new nodes that are now identical, we apply step (2| repeatedly until it 

fails to produce any further reduction to the graph GP. Example of such 

a case is a join performed on two relations that are restricted with identi- 

cal selection clauses. Step (2) will merge each pair of identical selections 

to a single one and then in the next iteration the two join nodes will also 

be merged into a single node. 

The result of the above transformation is a directed graph GP1 which is guaranteed to 

be acyclic if the initial graphs P, are acyclic. This is due to the fact that any transfor- 

mation performed on the graph in all cases adds new edges that go always from less to 

more restrictive tasks. Therefore a cycle is not possible, for it would introduce a chain 

of proper implications of the form v1=^V2=3> ••• =^vl. Finally, using the 

directed arcs of GP1 a partial order on the execution of the various tasks can be 

imposed. That is the global access plan that algorithm D suggests. The function Ree 

also gives the nodes that hold the results for all queries. 

To give an example of the algorithm, Figures 4.7, 4.8 and 4.9 show the initial 

access plan graphs, the graph GP after transformation [l] and the final global access 

plan graph (as a sequence of operations ) respectively for the two queries Q l and Qzof 

.&ÜJQtfMGiX)Mtfil^^ .'       •      . •''.'-.-- 
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section 3. 

TEMPI «— 

ET^Pjf* < 40 

TOAP2 *— 

DEFTnemp« < 20 

TEMPI <— 

EMPj(e < 60 

TEWP2 <— 

DEPT.nemp« < 10 

RESULT*- 
TEXlPl.dept ■■ TEJk<P2.d«i)t 

RESULT ♦- 
TOHPlxlept «■TEMPS.dept 

Figure 4.7: Initial Global Access Plan 

•ra^Ri «— 

DETT-aem» < 10 

RESULTS- 
TEMPI dept ■■ TEMRl Aepl 

TEMP2 «— 

DEFTnemj» < 20 

TEMPll ♦— 

EMPJC* ^ 40 

RESULTS- 
TEMPI 1 .dept M TEMP2 Jept 

Figure 4.8: Global Access Plan after Transformation [l] 

retrieve into TEMPI   (EMP all) 
where EMP age  < 50 

retrieve into TEMP2  (DEFV all) 
where DEPT num.of.emps  < 20 

retrieve into TEMPll   (TEMPI all) 
whore TEMPI  age  < 40 

retrieve into TEMP21   (TEMP2 all) 

8^asasB*ffisiö«Mffl^^ 
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where TEMP2 num.of.emps < 10 

retrieve  (TEMPI! all.TaiP2 all) 
where TEMPI 1 dept.name ■ TEMP2 dept.name 

retrieve  (TEMPI all,TEMP21 all) 
where TEMPI dept.name ■ TEMP21 dept.name 

Figure 4.0: Final Global Access Plan 

Estimating the cost of the global plan imposed by the graph Gf*, we have 

0081(0?)= gBetteoitiQi)  - £ n^savingeie) 
»-1 .€C5 

where CS is now the set of aW common subexpressions found in the local access plans 

and n, and 8avings(a) are defined in the same way as in the previous section. For 

example, for the queries Q, and Q2, 0081(0?) = 223 + (7,(20,5) + C;(40,3), where 

Oj(a,b) is the cost function for a join between two relations as introduced in the pre- 

vious section. This cost represents a savings of 65 page accesses compared to an arbi- 

trary serial execution.  Concerning the complexity of the algorithm, it can be observed 

that steps [l] and [2] of the above ai^orithm require time in the order of /7 I V, I , 
t—i 

where k is the number of queries represented by their representative plans in graph 

OP and V; is the set of vertices for plans Pt, l<i<k. The number of times N step 

(2| is executed aa a result of the recursive elimination of common subgraphs, generally 

depends on the size of common subexpressions and in the worst case is the depth of 

the longest query plan.   The total time required by the algorithm is therefore in the 

order of N-/7 IV, I . 
i—i 
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We now move on to discuss the most general algorithm that can be used to pro- 

cess multiple queries. As mentioned in the beginning of this section, the heuristic algo- 

rithm to be described also captures more general transformations than the ones 

allowed here (simple relation name change). 

4.7.   Heuristic Algorithm 

As it was illustrated through an example in section 4, merging locally optimal 

plans to produce the global access plan is not always the optimal strategy. The main 

reason is that there are more than one possible plans to process a query, yet the algo- 

rithms presented in the previous sections consider only one of them, i.e. the optimal in 

terms of execution time. Using suboptimal plain may prove to be better. Grant and 

Minker in [GRAN80] present a Branch and Bound algorithm (RICH83] that uses more 

than locally optimal plans. One assumption they make is that queries involve only 

equijoins while all selections are of the form R.A=eon9. This section presents a simi- 

lar algorithm which is defined as a state space search algorithm (A* [RICH83]) with 

better average case performance than the one of [GRAN80]. To simplify the presenta- 

tion of the algorithm we will also make here the assumption that all queries have 

equality predicates. At the end of the section extensions that can be made to include 

more general predicates in queries are discussed. 

As shown in Figure 4.1, the Global Optimizer receives as input a set of queries 

Q=={Qi'<32> ' " ' <Qn}- Then for each query Q,- a set of possible plans that can be 

used to process that query is derived. Let that set be S, = {F,1, P^, ■■■, Atj- For a 

given query Q,, S,- contains the optimal plan to process Q, along with all other possi- 

SöMWOii^Ätty^^in^^ 
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ble plans that share tasks with plans for other queries. For example, for the two 

queries (?j and Q^ of section 3, in addition to the plans Pa and P4 presented there the 

plan 

(PS2)     retrieve into TEMPI   (EMP.all.DEPT.all) 
where EMP dept.name = DEPT dept.name 

retrieve  (JOB all,TEMPI all) 
where JOB job = TEMPI  job 

should also be considered for query Q3 because it shares the join 

EMP dept.naae=DEPT dept.name with P4. Hence, the sets of plans S, and S4 will be 

s3 ^{^a.^j} and S^j/'J. Generally, this algorithm considers opti tiding a set of 

queries instead of a set of plans, which was the case with algorithms BS and D. Con- 

sidering more than one candidate plans per query has the desirable effect of detecting 

and using effectively all common subexpressions found among the queries. 

This section is organized as follows: in the first subsection a state space is defined 

and an A* algorithm that finds the solution by searching that space is described. 

Then subsection 4.7.2 presents a preprocessing step that can be applied in order to 

improve the average case performance of the algorithm. Finally, the last subsection 

discusses the performance of the algorithm and suggests some possible extensions. 

4.7.1.   The Heuristic Algorithm 

In order to present an A* algorithm, one needs to define a state space S, the 

way transitions are done between states and the costs of those transitions. 
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Definition 1 : A etate s is an n-tuple <Pi,P2> • • • >P»>> where 

p^E {NULL} US,-. If Pi ■■ NULL it is assumed that state « suggests no plan 

for evaluating query Q,-. 

Definition 2 : Let «i~<P\,p%, . . . ,pn> and a function next : S-—2L 

with 

next(«,) =» min{y I p^NULL}      if {; I p;=-=NULL}^0 

A transition Tie%,«'>] from state al to «2 exists iff »j has at least one NULL 

entry and «2~<9i'72r • • •/9n>> ^h Qi^Pi for I <»* <»i«lt(»i), 

»««^(•jCSn^.j and «7y=NULL, for near«(«i)+l <;<n. 

Definition 3 : The coat tcostjl) of a transition (=7,(/*,,«2) is defined as 

the additional cost needed to process the new plan qm introduced at t 

(according to Definition 2), given the (intermediate or final) results of pro- 

cessing the plans of «(. 

From the above definition it can be seen that the way transitions are defined, the first 

NULL entry of a state vector, say at position i, will always be replaced by a plan for 

the corresponding query Q,. Finally, we define the initial and final states for the algo- 

rithm. The state «0=<NULL,NULL, . . . ,NULL> is the initial state of the algorithm 

and the states »/ = <Pi,P2, . . . ,pn> with p^NULL, for all i, are the final states. 

The A* algorithm starts from the initial state a0 and finds a final state 8F such 

that the cost of getting from «0 t0 8F ls minimal among all paths leading from s0 to 

any final state.   The cost of such a path is the total cost required for processing all n 

a«VM^ÄWQW*KMAM'»^ 
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queries. For brevity it will be assumed that each plan is an unordered aü of tasks 

instead of a directed graph. In order for an A* algorithm to have fast convergence, a 

heuristic function h is introduced on states [RICH83]. This function is used to prune 

down the sire of the search space that will be explored. Such a function Ä: S —Z 

WJ>8 introduced in (GRAN80] in the following way : let «=»<Pi,p2,...vpn> be some 

state.  Then 

n . 
M'H     JJ      min [e«f.co«<(/,,>)-J7n<.<<co«t(0] 

where t are common tasks found in plans already in s and nt is the number of times 

task t appears in these plans. The function tat,co«t is defined on tasks as follows 

eoat{t) t8t_coet(t) = 
n» 

where n? is the number of queries the task t occurs in. The idea behind defining such 

a function is that the cost of a task is amortized among the various queries that will 

probably make use of it.   For a plan p, it is assumed that 

t8t_co8t(p)T= V}e8t_eoat(t) 

If it is true that ect_eo8t(p)<Co8t[p) then the convergence of the A* algorithm is 

guaranteed [RICH83]. Therefore, one significant issue is to define a correct function 

t8t_co8t, "correct" meaning that it underestimates the actual cost. Let us give an 

example, also drawn from [GRAN80], which will motivate the discussion of the follow- 

ing subsection. 

t 

I 
I 
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Two queries Ql and Q2 are given along with their plans : Pn, Pl2, P2l, P^, 

P^. We will use *£. to indicate the *-th task of plan P1;-.  The table below gives the 

costs for the tasks involved in each plan 

Plan Task Cost Task Cost Task Cost Total 

Pn 'A 40 * 30 5 75 

Pi* '/, 35 ^ 20 55 

Pit ^ 40 *l 10 ^ 5 55 

P22 ^ 10 & 30 & 10 50 

P* 'i 30 <l 20 50 

and the identical tasks are 

Ml  "l2l      '     Ml   "l22      '     f12 Äl23    ' 

Given  the  actual  task costs and the sets of identical tasks, the estimated costs 

(eat.coat) for these tasks are 

Task tl 
■11 tf Ml 'i'. 'i22 ^ '21 *k l22 'i 

Estimated 

Cost 
20 15 5 35 10 10 5 10 10 30 

and the estimated costs for the plans are, 

Plan ^11 Pit P21 PZ2 ^23 

Coalesced 

Cost 
40 45 35 35 40 

Based on the above numbers and the construction procedure outlined, Figure 4.10 

M^>^yM^^-^ivi--> . ^MM^öMüö««*^^^ 
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shows the search space  S   along with the costs of transitions between states and 

estimated costs of going from intermediate to final states. 

(0) 
<Pu,mLL> 

75 

<NULL,NULL> 
.55 

<P12,NULL> 
(30) 

Figure 4.10: Example Search Space for A* Algorithm 
(numbers in parentheses show estimated costs) 

Tracing the A* algorithm we get 

«0 = <NULL,NULL> 

«1 - <Pn rNULL> 

«2 - <P2l ,NULL> 

»f = <Pn ,Pn> 

I * expand «täte s0 */ 

I* expand state sx */ 

/* expand otate «2 */ 

/ * the final solution */ 

yielding <P12.^>23> M the best solution.   Notice that with this set of estimators the 

algorithm exhaustively searches all possible paths in the state space.   It is exactly this 
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bad behaviour of the algorithm that we will try to improve by examining more closely 

the relationships among various tasks. For example, in the case presented above, it is 

clear right from the beginning that plan Pn will not be able to share both of its tasks 

'n an<^ *u w't'1 P'an9 ^21 ail<* ^22 respectively, since only one of these two latter plans 

will be in the final solution (final state). Therefore, the value «»t.co^Fjj) is less than 

what could be predicted after looking more carefully at the query plans. It is a known 

theorem in the case of A* algorithms, that the higher the estimator values the faster 

the convergence [RICH83]. Hence, estimating the cost function better will enable the 

algorithm to converge faster to the final solution. 

4.7.2.   The Modified Algorithm 

The goal of this subsection is to describe a preprocessing phase which provides a 

way to compute a better cost estimation function. Suppose that n sets of plans 

Sj, S2, ..., Sn are ven, with S, = {P,j, P,2, ..., P,*.}. Assume also that the pairs of 

tasks tjEPn and tj^P^ such that «,- mtj are known. We then define a directed 

graph G (V,E) in the following way 

• For each plan F.y that has a task <*■ identical to ta3k(s) used for evaluat- 

ing other than the i-th query, introduce a vertex v,-,- 

• For each pair t^ePu, ^GPp, of such identical tasks there is an edge 

connecting the two vertices {vu—v^) if there is no other plan Pp, with a 

task t' such that f s t •' pr pr pq 

:-:-■:•-•; ^^v^^^^ 
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Given the above definition a unique graph can be built based on a set of plans and a 

set of identitiei among tasks. Notice that not all plans are needed to build the graph. 

Only those having identical tasks among them are considered. Also, there may be 

more than one directed edge (w,;-»vw) going from v^ to vu if there are more than 

one pair of identical tasks involved in plans P|;- and P«. In order to reduce the size of 

the graph, only one edge v,;-»t;w is recorded for any two vertices Vy and v^ that have 

at least one edge between them. No information is lost that way. The number of 

identical tasks found between the two plans is of no importance. 

The goal of the preprocessing phase is to find plans that are most probably not 

sharing their tasks with other plans. The algorithm used is a slightly modified Depth- 

First-Search (DFS) algorithm. The difference is that in the course of backing up to 

the vertex vi; from which another vertex t>w was reached using the edge v,;->t;w, the 

identification (subscript) kl is stored in some set associated with vertex v,;-. Call that 

set the Need set of vertex Vy. Then, at the end of the algorithm, delete from G all 

vertices that have two or more members k'l' and kl in their Need sets, such that 

k'—k. Along with the vertex, its edges (both out- and in-going) are also marked as 

OUT. This deletion process is continued by deleting vertice« »hat have at least one 

out-going edge marked OUT. The edge and vertex elimination process stops when no 

more deletions are possible. Call the final graph G'{V,E') and let S' be the set of 

plans Py that have a corresponding vertex t;,;- in G'. 

What is achieved through that preprocessing phase, is to reduce considerably the 

size of the search space for the A* algorithm. Only plans in S' are considered in order 

to derive the eet.eoat values.   To give an example of the preprocessing phase along 
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with a run of the A* algorithm, we will redo the example of the previous subsection. 

We are given again the same two queries and five plans : Pn, P^, P21, Pn< ^23• 

The graph of Figure 4.11 gives the graph G for the set of plans given. 

■vn v-a) 

Figure 4.11: Graph G for Queries Ql and Q2 

After the DFS s performed the Need sets for the various vertices, will be 

Vertex Need 

^n {11,21,22} 

"12 {12,23} 

"21 {11,21} 

"22 {11,22} 

"23 {12,23} 

From the above table it can be seen tha,.* vertex wu must be eliminated since it can 

reach both 21 and 22 through directed paths. After that, the edges (uu-*V2i), 

{v2i — vu), (v11—►t;22) and («22""^n) are marked as OUT. This causes vertices t;21 

and V22 to be deleted also.   Finally, we see that no more vertices can be deleted.  The 
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remaining graph is shown in Figure 4.12. 

121 ( "ja 

Figure 4.12: Final Graph G' 

Finally, S'= {P^Paj}. 

Using the result of the preprocessing phase, we next compute the new estimated 

costs for tasks and plans. First, based on the cost function cost defined for tasks, the 

following function coaleaeed_eoet on tasks t [GRAN80| (which is identical to the esti- 

mator used in the previous subsection) is defined 

coalesced M«f («) - £2lLiÜ 

where n? is the number of queries this task occurs in, and for plans 

eoalesced.coet (P.y) ==   £ coalesced.co«t{t) 
'€P( o 

Now, given a plan Py and a specific task t*. , let £,, be the set of, other than 1, 

queries q that have common tasks with P.y.   Also, let n9. be the number of plans Pr 

that correspond to query q in Qy.  Then, eat,cost is defined as follows 

a)     If the plan P0 is not in S' and n,^ 1 for at least one query q, then 

est.eottiPy) — CoatiPij) - £ m*x\eoaleaeedmeost{M 

where tl mt' , for some r and a. 
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b)     If the plan is in S' or it is not in S' but the above condition on n 1- is not true, 

then 

e»t.co«t(/',;) = coa/e«cerf.co«t(P,y) 

Finally, we show how to compute the function /»(«).  First, define 

add_coat(i) — m\a[t8t,co«t{Pij)  -    £   ntedt_coat(t)] 

where O,- = U Pn, and Pu, is the plan that provides, for a given /, the above minimum 
(-1 

value in the computation of add_eo8t{l).   Also, t are common tasks that belong to 

plans already in the state « and n( is the number of times task t appears in these 

plans.  Then, define 

n 
A(«)=     £;    add_co8t(i) 

The A* algorithm can then be applied using these new estimators.  For example, pro- 

cessing the two queries Ql and Q^ given above, the following are the computed 

estimated costs for the plans 

Plan Pu P.2 P« ^22 ^23 

Estimated 

Cost 
55 45 35 35 40 

Tracing the A* algorithm, we see that it explores the following states 

«0 = <NULL,NULL>       /* expand state «„ */ 

«i = <Pi2,mLL> I* expand state »1 */ 
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»F— <P\2,P'a> I* the final solution */ 

yielding again <Pi2,Pn> »■ the optimal solution with cost 85. Notice that if the 

commands were executed sequentially it would have costed Co«t(PI3) + CoatiP^) = 

105. Therefore, a total savings of 19% was achieved using the global optimization 

algorithm. Moreover, compared to the trace of the previous subsection, it can be seen 

that exhaustive search is avoided because of the high cost estimates for some paths. 

Summarizing, the final algorithm is the following 

ALGORITHM HA 

[1].    Build graph G and apply the preprocessing DFS algorithm 

[2].     For all queries with no representative plan in the initial graph G, find 

the originally cheapest plan and put it in the final solution 

[3].     Based on the result set S', compute the function cct^eoet 

[4].     For the rest of the queries run the A* algorithm described n the previ- 

ous subsection 

4.7.3.   Discussion and Extensions 

The global access plan is derived from integrating the local plans found in the 

final state 8F returned by the A* algorithm. The integrating process is very similar to 

the one described for the decomposition algorithm where local plan graphs are merged 

together.   Examining the estimated cost of the global access plan, we have 
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Co8t{GP)=*  £Cost{p)- £ n.eavingsia) 
p€tr ieCS 

where C5 represents the total number of subexpressions found in the n queries (not 

plan« as it was the case in algorithm D) and n, and savings{o) are defined in section 

4.5. Regarding the complexity of the algorithm HA we must notice that it is very 

hard to analyze the behaviour of an A* algorithm and give a very good estimate on 

the time required. In the worst case of course it may require time exponential on the 

number of queries but on the average the complexity depends on how close the cost 

estimation function is to the actual cost. However, the A* algorithm with the new 

estimator function we proposed will not take more steps than the original A* algo- 

rithm presented in subsection 4.7.2 (which uses eoaleaced.eoat as its estimator func- 

tion). This is based on the fact that for any task t it is true that eat_eo8t{t)> 

eoaU8eed,eo8t(t). Therefore with the help of a known theorem [RICH83| our algo- 

rithm will give a solution in at^ most the same number of steps as the algorithm of 

[GRAN80]. 

Finally, note that the algorithm described is correct only in the cases where 

queries use solely equijoins and equality selection clauses. If arbitrary selection clauses 

are used, the A* algorithm presented above will not find the optimal solution. This is 

true because the imposed order in which the state vectors are filled (i.e. in ascending 

query icdex) may not result to the best utilization of common subexpression results. 

As an example, consider two queries Ql and Q?, such that Ql has a more restrictive 

selection than Q^. Then clearly, it would be better to consider executing Q2 first since 

in that case the result of Q2 can be used to answer Q^ the opposite being impossible. 
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This problem with the heuristic algorithm can be easily fixed by changing the transi- 

tions to fill not the next available NULL slot in a state «, as it was before done through 

the use of next(a), but rather any available (NULL) position of a. This results to 

larger fanout for each state and clearly more processing for the A* algorithm. The 

heuristic cost function eet.cost is defined similarly with the difference that in addition 

to identical tasks, pairs of tasks f, and tj such that ti=^tj and <;=j^<, must be con- 

sidered as well. 

4.8.   Some Experimental Results 

We expect that for a large number of applications and query environments global 

query optimization will offer substantial improvement to the performance of the sys- 

tem. In a series of experiments, the algorithms of the previous sections hare been 

simulated using EQUEL/C (RTI84] and the version of INGRES that is commercially 

available. The experiments were run over the set of queries that Finkelstein used in 

[FINK82]. The database schema used was modeling a world of employees, corpora- 

tions and schools that the employees have attended, the relations being Employees, 

Corporations and Schools respectively. All eight queries along with a brief descrip- 

tion of the data they return are shown in Appendix A. Seven different sets of queries 

QSET1-QSET7 where chosen and the queries within each of these sets were processed 

a) as independent queries 

b) as the Better Serial Execution Algorithm suggests 

c) as the Decomposition Alf,jrithm suggests, and finally 
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d)  aa the Heuristic Algorithm suggests. 

Table 4.1 describes some characteristics of the sets QSET1 to QSET7. 

Query Set Number of Queries Queries BS D HA 

(JSET1 2 a,7> X 

QSET2 2 {1.6} X 

QSET3 4 {1,2.6.7) X 

QSET4 2 {6.7> X 

QSET5 4 {2,3,4,6> X X 

QSET6 7 {1.2,3,4,5,6,7} X X 

QSET7 2 {7.8} X X X 

Table 4.1: Query Sets Used in Experiments 

The second column indicates the number of queries used in each set while the third 

column shows which queries from Appendix A were specifically used. The rest three 

columns indicate which algorithms were applicable and gave distinct access plans to 

each of the given query sets. The reason that some query sets do not have an entry in 

some of these columns is that not all algorithms gave distinct global access plans. For 

example, in section 4.5.2 it was shown that if the query graph QG is acyclic, algo- 

rithms BS and D will produce identical plans. 

The above sets of queries were tested in various settings.   First, unstructured 

relations were used with their sizes varied according to Table 4.2. 
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Relation Number of tuples 

Employees 

Corporations 

Schools 

100 - 10,000 

10 - 500 

20 (fixtd) 

Table 4.2: Sizes of relations 

Second, the same experiments were performed with structured relations.  Specifically, 

the following structures were used 

isam secondary index on Employees (experience) 
isam primary structure on Corporations (earnings) 
hash primary structure on Schools (sname) 

Finally, in a another series of experiments the given queries were slightly modified by 

changing the constants used in one-variable selection clauses. The goal was to intro- 

duce higher sharing among the queries. Higher sharing is achieved when more queries 

can take advantage of the same temporary result. As it was indicated in section 4.5.2, 

the formula that provided an estimate on the cost savings using a global optimization 

algorithm is (for n queries Qx, ..., Qn) 

n 

ZJBesteostlQi)- JJ nt-savingt{$) 
•«-i * ecs 

where CS is the set of common temporary results « and n, is the number of queries 

using the same temporary result a. Therefore, higher cost reduction is achieved if 

more queries can use the same temporary result.   By changing the constants in the 
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qualification of the queries it was possible to check how n, affected the cost of process- 

ing the global access plans. 

The measure used in this performance analysis was 

PERCI CcttflO)  ^ 

where Coet^I/O) is the number of I/O's required to process all queries assuming no 

global optimization is performed. Costal JO) is the corresponding figure in the case 

where a global access plan is constructed according to some of the presented optimiza- 

tion algorithms. The analogous CPU measure was also recorded; however, the 

numbers were almost the sane and will not be shown. In the following, tLe results of 

the experiments are described in detail. 

4.8.1.   Unstructured Relations 

As indicated in Table 4.1, some query sets were processed mm* only one or two 

of the algorithms. Because of the similarity of the results the diagrams will be 

grouped according to the algorithm used for optimization. Hence, three diagrams are 

presented. One for query sets QSET1, QSET2 and QSET3, one for QSET4, QSET5 and 

(1SET6 and another for QSET7. The first group was optimized using only BS because 

D and HA were not applicable. The second group was optimized using BS and D 

while for the last group all three algorithms were used. Figures 4.13, 4.14 and 4.15 

illustrate how PERCI varies for the three above mentioned groups according to the 

size of the database in the case of »instruct'ired relations. Also, Figure 4.16 g .:• the 

overall average improvement in the performance of the system for all query sets. 
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The size of the database is represented by the size of the  Employees relation.   The 

reasons for choosing that relation was first that all queries were using  Employees 

avuviA\Vk^^\VwN\s.\srüw\^v"c«vK:*WL<«.y\ .   .■V^J.>*\*>y>^'-'VV^^V'^^ 



139 

(compared to Corporations or Schools) and second the fact that the diagrams are 

similar for tie Corporations relation as well. 

Some comments can be made here for these ams.  First, it is clear that there 

is always a gain in performance by doing global query optimization, i.e. PERCI>0 in 

all the above figures. Second, after some size of the relations, PERCI starts to 

decrease. This was due to the specific type of queries used. In particular, because of 

queries involving joins, the denominator of the formula (F) grows faster than the 

numerator. In the given queries, the selection clauses were responsible for the savings 

in the numerator. That savings increases with rate proportional to the factor by 

which a relation is reduced as a result of performing a restriction on it (i.e. 1—5, 

where 5 is the selectivity of the selection clause). On the other hand, if joins are 

included in the queries, Coet^I/O) increases with a rate which depends on the cost of 

the join operation. It turns out that for small sizes of the relations the latter factor is 

less than the former while after some size this relationship is reversed. Hence, the 

slight increase followed by a decrease in the values of PERCI indicated in the above 

diagrams. 

The diagrams also show that there was no significant difference between the 

improvements achieved by the BS and D algorithms. In order to have a difference in 

the global plans generated by the two algorithms, as discussed in section 4.6, cycles 

must occur in the query graph QG. Even in that case though, the difference may not 

be significant depending on the sizes of the temporary results. In the experiments ran, 

the temporary relations not shared by more than one queries in the global access plan 

constructed by BS but shared in the corresponding plan generated by D, were rather 
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small. Hence, sharing of these relations contributed only marginally to the perfor- 

mance improvement. Finally, for the last query set QSET7, the plan generated by HA 

was significantly better than the one generated by BS (or D since these are the same 

for QSETT).  By allowing the result of the join 

•.employer = c cnafflo 

to be shared by both queries 7 and 8, significantly better performance was achieved. 

4.8.1.  Structured Relations 

The same set of experiments was run over a structured database. Relations were 

indexed as mentioned in the beginning of this section. The reason for doing these 

experiments was to check if the overhead of accessing a relation through a secondary 

structure might be higher than the overhead of accessing an unstructured intermediate 

result. For example, suppose that retrieving the part of a relation that satisfies a sim- 

ple one-variable restriction requires 10 page accesses. That includes the cost of search- 

ing first the index table and then accessing the data pages. Suppose now that there is 

an intermediate result, produced by some other query, that can be used to answer the 

same restriction clause. If the size of that intermediate result is less than 10 pages 

then it will be more efficient to process the restriction by scanning the unstructured 

temporary result than going through the index table. 

Figures 4.17, 4.18 and 4.19 illustrate how PERCI varies for the three above men- 

tioned groups according to the size of the database in the case of structured relations. 

Also, Figure 4.20 gives again the overall average improvement in the performance of 

the system for all query sets. 
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Comparing the values of PERCI with the corresponding ones of the previous subsec- 

tion, some decrease of 10-20% can be observed for all three algorithms depending on 

-y/^'-.-'r vvv:v>;v>>.:-^ 



142 

the size of the involved relations. This was expected since using indexes reduces 

Co«*,(7/0). However, after some size of Employee, PERCI starts increasing instead 

of decreasing, which was the case in the experiments of the previous subsection. This 

behaviour is due to the fact mentioned above, i.e. the overhead involved in using an 

index to access a relation. Moreover, the above effect is more obvious in cases where 

the involved relations are large. Then the size of the secondary indexes is in many 

cases significantly larger than the sizes of temporary results. Notice also that for 

small sizes of the relation Employee PERCI is decreasing. That was expected because 

for small relations temporary results grow faster in size than the index tables. Finally, 

notice that the relative performance of the three algorithms is not affected by the 

existence of indexes, i.e. HA still performs better than the other two and D provides 

better plans than BS. 

4.8.2.   Higher Sharing 

In this last experiment, the given query sets were run over the same database 

with a modification in the queries so that higher degree of sharing is possible. That 

effect was introduced by changing the restrictions experience > 20 found in queries 

2,4,5 and 7 to experience > 10. This way the same temporary result could be used in 

the evaluation of more queries, compared to the ones in the experiments of the previ- 

ous two subsections. Figure 4.21 illustrates how PERCI varied with the size of the 

database in the case of unstructured relations and for the second group of query sets 

(i.e. QSET4, QSET5 and QSETß). The rest of the query sets were not affected by this 

modification in the selection clauses in the sense that no increase in sL«.-;rg was possi- 
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Figure 4.21: Performance Improvement for Higher Sharing 

ble. Notice that the curve is similar to the one of Figure 4.14. However, because of 

the higher degree of sharing among queries an increase of about 10% in the perfor- 

mance improvement was observed. 

4.0.  Summary 

This chapter presented a set of algorithms that can be used for multiple query 

processing. The main motivation for doing such interquery analysis is the fact that 

common intermediate results may be shared among various queries. We showed that 

various algorithms can be used for global query optimization. These algorithms were 

presented as parts of an algorithm hierarchy; descending the hierarchy more sophisti- 

cated algorithms can be used that give better access plans at the expense of increased 

complexity of the algorithm itself. 
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Some of the algorithms proposed were based simply on the idea of reusing tem- 

porary results from the execution of queries, where the processing of each individual 

query is based on a locally optimal plan. Using plans instead of queries enabled us to 

concentrate on the problem of using efficiently common results rather isolating com- 

mon subexpressions. The last (heuristic search) algorithm, is a variation of the algo- 

rithm for optimizing a set of relational expressions originally proposed by Grant and 

Minker in (GRAN80]. The preprocessing phase added to the algorithm intends to 

derive a better cost estimator function used in the A* algorithm. 

It is expected that for a large number of applications and query environments 

global query optimization will offer substantial improvement to the performance of the 

system.   In a series of experiments, we have simulated these algorithms and checked 

the performance of the resulting global access plans under various database sizes and 

physical designs.  This enabled us to check the usefulness of these algorithms even in 

the presence of fast access paths for relations.  The results were very encouraging and 

showed a decrease of at least 20-50% in both I/O and CPU time.   It should also be 

mentioned that the methods proposed do not pose any problems to the concurrency 

control and recovery modules.   Since the given set of queries is thought as a transac- 

tion itself, chaoging the way processing is done has no effect on the system.  The tran- 

saction boundaries are preserved.   In t^rms of concurrent access, it should also be 

clear that our transformations do not affect the degree of concurrency.  The data that 

each query processes is exactly the same as in any arbitrary serial execution of the 

queries.  Hence, the size of the data sets that each query competes for neither increases 

nor decreases. 
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CHAPTER  5 

CONCLUSIONS AND FUTURE DIRECTIONS 

6.1.   Summary of Thesis 

The goal of this thesis was to develop techniques that can be used to improve the 

performance of extended relational database management systems. We summarize the 

results of this investigation in this last chapter. 

In Chapter 1 we discussed various approaches that can be taken in developing 

systems to support non-business applications. Because the volume of data that these 

applications handle is constantly increasing, main memory may become insufficient. 

Secondary storage is then used and data managers are employed to efficiently store 

and access the data. We have argued that extending DBMSs with new features is the 

most adequate solution to the problem of supporting large databases used even by 

non-business applications. The remaining chapters where then used to propose such 

extensions to INGRES and discuss query processing issues. 

Chapter 2 started by describing the language QUEL-I- [STON85], an extension to 

QUEL. The most interesting new feature introduced to QUEL is allowing queries to 

be stored in QUEL fields, thus incorporating procedures as database objects 

[STON85]. Then, an extended decomposition algorithm based on the INGRES query 

processing algorithm was proposed. The extensions made were mainly due to the fact 

that one new operation was introduced, namely the materialization of QUEL fields. 

145 
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We showed how a general algorithm can be used to take under account the fact that 

materialization is very expensive and the number of times it is performed should be 

minimized.   To reduce the cost of processing queries, caching was also proposed as a 

way to avoid evaluating QUEL fields more than once and several issues associated 

with caching weie discussed.   Among others, replacement policies, invalidation algo- 

rithms and policies that decide which oljects to cache were examined in detail.   Our 

discussion showed that caching is essential in the QUEL+ environment.  We suggested 

and analyzed various solutions to the above problems associated with caches.   Lastly, 

a new indexing technique, Partial Indexing, was proposed.  Partial indexes can be used 

for efficiently accessing results of QUEL field materializations.  The proposed construct 

is a combination of both a conventional index table and a predicate, the latter charac- 

terizing those tuples that can be accessed through the former.   Using partial indexes 

the system avoids the overhead of evaluating QUEL field entries before these are actu- 

ally referenced in queries. 

All the techniques described above were used to ;mprove the performance of an 

extended query processor. If a QUEL field is accessed, the procedure stored in it must 

be executed. Since all database commands that constitute the body of the procedure 

are known, we have argued that some interquery analysis is possible. The objective of 

this analysis is to transform a sequence of commands to another sequence that can be 

processed more efficiently. In Chapter 3 several such optimization tactics were 

presented, some based on similar tactics in other areas (like compiler design or conven- 

tional query optimization) and some new ones. The level at which multiple command 

optimization was performed ranged from simple syntactic transformations (e.g. moving 
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loop invariants outside the loops) to harder semantic ones (e.g. changing an append 

followed by a delete command to a single append). Our new tactics include the 

somewhat surprising result that any QUEL program satisfying certain criteria is 

equivalent to a QUEL program which consists of one replace statement. We have 

also shown that a large class of problems, namely those which use the dynamic pro- 

gramming approach, satisfy these criteria. The transformations presented are useful 

not only in this context but in general transaction processing as well, since they are 

motivated solely by the need to expand the optimization unit from one database com- 

mand to a sequence of commands. Our optimization techniques can be also applied as 

a preprocessing phase, i.e. given a set of applications and the corresponding database 

procedures that implement them, one can apply these techniques to design more 

efficient execution patterns. Experimental results [KUNG84] have shown that the gain 

in performance is significant. 

Finally, in Chapter 4 we restri fed the problem of procedure optimization to the 

case where all commands are retrieval: from the database (global query optimization). 

This case is of significant interest because it can be used for efficient processing of 

queries in a rule based environment. The main motivation for doing interquery 

analysis is the fact that common intermediate results may be shared among different 

queries. We showed that various algorithms can be used for global query optimiza- 

tion. These algorithms were presented in the form of hierarchy; as we descend this 

hierarchy more sophisticated algorithms can be used giving better access plans at the 

expense of increased complexity of the algorithm itself. Some of the algorithms pro- 

posed were based simpl;, on the idea of reusing temporary results from the execution 
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of queries, where the processing of each individual query is based on a locally optimal 

plan. The last (heuristic search) algorithm, is a variation of the algorithm for optimiz- 

ing a set of relational expressions initially proposed by Grant and Minker in 

(GRAN80]. Through a preprocessing phase added to the algorithm we manage to 

achieve better average case performance. Finally, in a series of experiments, we simu- 

lated the proposed algorithms and checked the performance of the resulting global 

access plans under various database sizes and physical designs. Our results were very 

encouraging and showed a decrease 20-50% in both I/O and CPU time. 

6.2.   Future Directions 

Relational DBMSs are very efficient in storing and accessing simple data like 

those used in business applications. Our results show that even more complex applica- 

tions can be handled once the appropriate extensions are introduced. Although, solu- 

tions were proposed .o several problems associated with extended relational database 

systems, there is still a lot of work that needs to be done in the area. 

The most interesting and top priority issue should be the implementation of 

applications using QUEL+ and the experimentation and monitoring with a prototype 

system. POSTGRES [STON86b] can be used as a testbed for all our proposals. Also, 

in many points of our discussion we mentioned various parameters that should be 

known for the system to be better "tuned." One needs to collect a lot of statistical 

information and modify the algorithms we proposed so that the dynamics of the vari- 

ous applications are better reflected. Finally, dynamically adaptive caching schemes 

like the ones we proposed in Chapter 2 should be implemented and checked in real 
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applicatioD environments. 

Our work on optimizing the execution of general procedures, was mostly 

influenced by examples used in engineering and heuristic search applications. We hope 

that future work will investigate the usefulness of our stra- e^ies in other environments 

as well, especially in rule based systems and more generally production systems 

[FORG79|. Transformations like the one we derived for dynamic programming prob- 

lems, although not applicable to all procedures, add to our knowledge on the type of 

transformations one should be looking for. Future work in database procedure optimi- 

zation should also look for more such special case transformations. 

As interesting future research directions in the area of global query optimization 

we view the development of efficient algorithms for common subexpression 

identification and the extension of the algorithms presented to cover more general 

predicates. Also the application of our method in rule-based systems in general-seems 

like a very interesting problem for investigation. For example, PROLOG and data- 

base systems based on logic [ULLM85] can easily be extended to perform global query 

optimization. Finally, some of the techniques that we developed here, can be applied 

in processing recursion in database environments (IOAN86]. This is mainly due to the 

fact that in evaluating recursive queries one usually processes iteratively similar opera- 

tions. These operations often access the same data, for the relations accessed are 

always the same. Investigating how our algorithms can be used in this recursive query 

processing environment seems to be a very interesting problem for future research. 
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In summary, we think that there is a lot of work that can be done in database 

query processing and optimization. The introduction of new constructs and extensions 

gives rise to new interesting problems, especially if performance must be kept in 

sufficiently high levels. 
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APPENDIX A 

Queries Used in Experiments of Chapter 4 

The set of queries used in the experiments of Chapter 4 were the following 

Eaployees (name.esplojer.age,experience,salary,education) 

Corporations (cnaae.location.earnings,president.business) 

Schools (sname,lerel) 

range of e is Employees 

range of c is Corporations 

range of cl is Corporations 

range of s is Schools 

/• get all employe*» with more than 10 year» experience  */ 

(1) retrieve (e all) where e experience > 10 

/♦ get all employee» le»» than 65 year» old with more than iO year» 

experience */ 

(2) retrieve (e all) wher« e experience > 20 and e age < 65 

/• get all pair»  (employee, corporation),  »here the employee 

ha» more than 10 year» experience and mork» in a corporation with 

earning» more than 5001 and  located anywhere but  in lanaa»  •/ 

(3) retrieve (e all, c all) 

where e experience > 10 and e employer=c cname 

and c location ^ 'KANSAS1 and c earnings > 500 
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/• get all pair»  (employ**, corporation).   »here  the employ** 

haa mor*  than »0  year« experience and morka in a corporation mith 

aarninga mor* than SOOi and  located anywhere but in Kanaaa •/ 

(4)  retrieve (e all,c all) 

«here e experience > 20 and e employer=c cname 

and c.location ^ 'KANSAS1 and c.earnings > 300 

/• get  all pair»  (pr*»id*nt. corporation),   »here th* preoident 

ia  Ice« than 65  year« old mith mor* than MO  year« experience and th* 

corporation i»  located in MEW TORI and haa earning» more than SOOI •/ 

(6)  retrieve (e all.c all) 

«here e experience > 20 and e age < 65 

and e employer=c cname and enaffle=c president 

and c location = •NEW YORK" and c earnings > bOO 

/• get all pair*  (preaident, corporation).   mhere the preaident 

ia  leaa than 00 year* old mith more than SO year* experience and the 

corporation ia  located in MEW TORI and haa earning* more  than SOOI •/ 

(Ö)  retrieve (e all,c all) 

«here e experience > 30 and e age < 60 

and eemplojersc cname and «name^c president 

and c location = "NEW YORK1 and c earnings > 300 

/• get all triple*  (employee.corporation.achool) mhere the employee 

ia  leaa than 65 yeara old.   haa more than tO yeara experience and hold* 

a nniveraity degree working for a corporation  located in MEW TORI and 

mith earninga more than 5001 */ 

(7)  retrieve (e all,c all.s all) 
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where e experience > 20 and e age < 65 

and e «mployer=c cname 

and c location = "NEW YORK* and c earnings > 500 

and e education = s sname and s lerel-'uniT1 

/• get all pair»  (employee,corporation),   where the employee 

i»   lemm  than 65 yeara eld with more than MO year» experience  and the 

corporation ia  located in MEW YORK and haa earning» more than SOOK */ 

(8)  retrieve (e all,c all) 

where e experience > 20 and e aga < 65 

and e employers cname 

and c location = 'NEW YORK1 and c earnings > 300 
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