
AD"-A179 308 REPORT DOCUMENTATION PAGE

2a. SECURITY CLASSIFICATION AUTHORITY

2b. OECLASSIFICATION/DOWNGRADING SCHEDULE

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

6« NAME OF PERFORMING ORGANIZATION 6b, OFFICE SYMBOL
The Regents of the University] (If ippHctble)
of California

6c. ADDRESS (Oty, Statt, »rd ZIP Code)

Berkeley, California 94720

8a. NAME OF FUNDING/SPONSORING
ORGANIZATION

DARPA

8b. OFFICE SYMBOL
(If applicable)

8c. ADDRESS ^C/fy, State, and ZIP Cod«)
1400 Wilson Blvd.
Arlington, VA 22209

1b. RESTRICTIVE MARKINGS

3 DISTRIBUTION/AVAILABILITY OF REPORT

unlimited

S. MONITORING ORGANIZATION REPORT NUMBER(S)

7a. NAME OF MONITORING ORGANIZATION

SPAWAR

7b. ADDRESS (C/fy, Start, and ZIP Code)

Space and Naval Warfare Systems Command

Washington, DC 20363-5100

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

10 SOURCE OF FUNDING NUMBERS

PROGRAM
ELEMENT NO.

PROJECT
NO.

TASK
NO.

WORK UNIT
ACCESSION NO.

11. TITLE (Include Security Classification)

Optimization of Extended Relational Database Systems

12. PERSONAL AUTHOR(S) Timoleon K. Seliis

13a. TYPE OF REPORT
technical

13b. TIME COVERED
FROM TO

14. C
*

KlEOF P1BOKL Wear. Month, Day) 15. PAGE COUNT

16. SUPPLEMENTARY NOTATION

17.

FIELD

COSATI CODES

GROUP SUB-GROUP

18. SUBJECT TERMS {Continue on reverse if necessary and identify by block number)

!9 ABSTRACT (Continue on reverse if necessary and identify by block number)

Enclosed in paper.

ELECTEÄ
APR 2 IP»711

E
_ *. ■**

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT
H UNCLASSIFIED/UNLIMITED D SAME AS RPT. D DTIC USERS

22a. NAME OF RESPONSIBLE INDIVIDUAL

21. ABSTRACT SECURITY CLASSIFICATION
unclassified

22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL

DD FORM 1473,84 MAR 83 APR edition may be used until exhausted.
All other editions are obsolete.

SECURITY CLASSIFICATION OF THIS PAGE

'

■.vc.t'.v-.'v■.-•.• ••■ .••.-%'.■.■•.-v■.-.••-■■.••.-•.'■ ••.-•.•■.--.■•.'■■■'.■ •.-■-.'■-■ .- .■ :■,■.■■ • ^^•-^/■.•.-•.'.^•."•.•>.':---:-.-:-,v.,:-.''---:-,':-..v

Productivity Engineering in the UNIXf Environment

Optimization of Extended Relational Database Systems

Technical Report

S. L. Graham
Principal Investigator

(415) 642-2059

"The views and conclusions contained in this document are those of the authors and
should not be interpreted as representing the official policies, either expressed or implied,
of the Defense Advanced Research Projects Agency or the U.S. Government."

Contract No. N00039-84-C-0089

August 7, 1984 - August 6, 1987

Arpa Order No. 4871

tUNDC is a trademark of AT&T Bell Laboratories

Accession For

NTIS ORAtI
DTIC TAB
Unannounced
Juatlfloatlon

f
By —
Diitrlbutlon/

Availability Codes^

Avail and/or
Special

87 OH

.K?W?^K7*rÄ?^7U^>^>AXk^^

1 f

» i

OPTIMIZATION OF EXTENDED RELATIONAL DATABASE SYSTEMS

by

Timoleon K. Sell Is

Memorandum No. UCB/ERL M86/58

23 July 1986

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

\i(^:v:\^>>:v:^'Ov^>"">vv>v.^^

Optimization of Extended Relational Database Systems

Copyright © 1080

Timoleon K. Sellis

All Rights Reserred

This research was sponsored by the Navy Electronics Systems Command under contract
NOOO39-84-C.0089.

waxjwomK^i»^^

Opt.-U.tlo. of Ext..-«! a«!»«»"' ***•" *"***

~ , v VMU Computer Science DiTision
phD. TtmoUon K. Sell** ^ ^p^^nt of EECS

A^../7y :.x
'pröf' MieVteHJ/Stowbrnker

Committee Chaira»»

ABSTRACT

c^ „uio.- D-^. M—^- 'DBMS' -" -*"":

of the QUEL query 1»^.. «"»^ 'it,■ "° ,,e' f"l"rM:

.i, tb. repetiti« ««utk.D of comn.«.ds; "d

. the exKOtion of reUtioo Selds m •!»"

stored.

form.o« « ..^ — o- .- ^ " - — B ^' ^
-»;«• \Ve analy« »nd sugg it solu-

U, i.nprove the performance of the proce^n« enpne.

KUm. related to the design of a query result cache (replnce-
tions to the various problems related M>

\:'*S:r.<r''-S'::S'.-.<-/\r %•:•.":■.■:-.-"•/-.•'■/•.- .^•^•/^•^-.<■:'■. K .■'■.■ ■.-. .■ ■ ■ -/■/%•'V-\-;N^/:-A-/:V^VV'-.^V\^O:V^

J
ment policies, invalidation techniques, etc).

Baaed on the above extensions, a relation field may contain more than one QUEL

commands. Accessing such a field triggers the execution of all these commands. We

present a set of tactics that can be used to reduce the cost of processing multiple com-

mands using some interquery analysis. Special cases amenable to different kind of pro-

cessing are also identified and studied.

In the case where all commands stored in a field are retrievals from the database,

sharing of accessed data is possible. We study the optimization of processing a set of

queries in detail, by deriving efficient access plans which take advantage of common

intermediate results. Experimental results are also given in support of the proposed

algorithms. These results show that significant savings (up to 50%) can be achieved

by sharing common data.

VMlöfiCiSSftW^XACtä^ . . •."".>J.",>I'>>-.'^.W-.-'J<

Acknowledgements

The effort put into producing this thesis was a result of continuous encourage-

ment and support by my beloved wife, Marilena. Understanding, patience and strong

belief in me were reflected in her life all these years. More than that, she has offered

me the most valuable gift bridging career and life: our sweet daughter, Stefania. A

new meaning for life and a hope for a better tomorrow. For all these, Marilena

deserves my deepest love and admiration.

My parents gave me the initial directions in life and continued to remain close to

me through joys -nd sorrows. I am deeply grateful for their continuous support and

only hope that I have fulfilled their expectations and added joy to their life. This

thesis is the result of my first major effort in life. In recognition to their support, it is

dedicated to them.

My advisor Prof. Michael Stonebraker deserves my warmest thanks for his con-

tinuous encouragement. During the last three years he has been my major source of

unlimited support. In addition to his ability of giving constructive criticisms on every

aspect of my academic life, he was always there, ready to help as a real friend. 1 have

been very fortunate to benefit from his experience and technical skills and for all these

he deserves my deepest and true gratitude.

Yannis loannidis, my "twin brother", is not just a colleague. He is the person I

• worked with, days and nights, for our undergraduate thesis. The person with whom I

shared, more than a house, all my first experiences with graduate studies at Harvard.

Without his kind willingness to offer me sincere and rigorous criticisms on my research

work, this thesis would not have existed. He is, and will always be, a real friend and I

am truly sorry our parallel journeys will have to be temporarilly interrupted with our

new careers.

In addition to my advisor and r'annis, the whole INGRES group deserves my

wholeheartedly thanks. Prcfessors Eugene Wong and Lawrence Rowe were always

there when I needed their valuable opinion and criticism. Margaret Butler, Eric Han-

son, Brad Rubenstein, Oliver Günther, Toni Guttman, Margie Murphy and many oth-

ers offered me their unlimited support through stimulating discussions on my research

work. Joe Kalash and Jeff Anton were the enlighteners for all my problems with the

INGRES software. My collaboration with Leonard Shapiro was very pleasant espe-

cially because it resulted to my first publication. I am really happy I had the oppor-

tunity to work with all of my colleagues and wish to thank them all for their support.

^^^<^;frm-Ä^^

Ill

Finally I would like to express my thanks to Professors Eugene Lawler and Jack

Silver for their kind interest to serve in my thesis committee and the U.S. Air Force

Office of Scientific Research for supporting this research under the giant number 83-
0254.

Timos Sellis

July 1986

v: . ; v^ i-.: ;.;< ; :<^^

Tsble of Contents

Dedication i

Acknowledgements ii

Table of Contents iv

List of Figures , vi

1. INTRODUCTION 1

1.1. Why Database Management Systems? 2

1.2. Extending Database Systems Using Procedures 5

1.3. Out'ine of Thesis 10

2. QUE1+ : THE LANGUAGE AND HOW TO PROCESS
QUERIES 14

2.1. Introduction 14

2.2. The Query Language QUEL+ 15

2.3. Processing QUEL+ 22

lA. Caching Materialized QUEL Fields 38

2.5. Indexing Results of QUEL Fields 53

2.6. Summary 60

3. OPTIMIZING THE EXECUTION OF QUEL FIELDS 62

3.1. Introduction 62

3.2. What is Optimization? 65

iv

«w&wae^waw^tfMMaa^^

3.3. Compiler Design Techniques 68

3.4. Query Optimization Techniques 73

3.5. Some Special Case Transformations 82

3.6. Summary 89

4. MULTIPLE QUERY OPTIMIZATION 91

4.1. Introduction 91

4.2. Previous Work 94

4.3. Formulation of the Problem 98

4.4. A Hierarchy of Algorithms 103

4.5. Serial Execution 107

4.6. Decomposition Algorithm 114

4.7. Heuristic Algorithm 121

4.8. Some Experimental Results 134

4.9. Summary 143

5. CONCLUSIONS AND FUTURE DIRECTIONS 145

5.1. Summary of Thesis 145

5.2. Future Directions 148

BIBLIOGRAPHY 151

APENDDCA 160

WÄKVuV/AV^iWWWAWtf^^

List of Figures

Figure 2.1: Extended Decomposition Strategy 23

Figure 4.1: Multiple Query Processing Systems Architecture 96

Figure 4.2: Example of an Access Plan 101

Figure 4.3: A Hierarchy of Multiple Query Processing Algorithms 104

Figure 4.4: QG Graph for Queries Q5 and Q6 112

Figure 4.6: QG Graph for Queries Q, and Q2 113

Figure 4.8: Basic Merge Operation 116

Figure 4.7: Initial Global Access Plan 119

Figure 4.8: Global Access Plan after Transformation [l| 119

Figure 4.9: Final Global Access Plan 120

Figure 4.10: Example Search Space for A* Algorithm 126

Figure 4.11: Graph G for Queries Q, and Q2 129

Figure 4.12: Final Graph G' 130

Figure 4.13: Performance Improvement for Jnstructured Relations (Query
Sets 1,2 and 3) 138

Figure 4.14: Performance Improvement for Unstructured Relations (Query
Sets 4,5 and 6) 138

Figure 4.15: Performance Improvement for Unstructured Relations (Query
Set?) 138

ä : ::^:;\N'A^^C^^^

Vll

Figure 4.16: Performance Improvement for Unstructured Relations (All
Query Sets) 138

Figure 4.17: Performance Improvement for Structured Relations (Query
Sets 1,2 and 3) 141

Figure 4.18: Performance Improvement for Structured Relations (Query
Sets 4,5 and 6) 141

Figure 4.19: Performance Improvement for Structured Relations (Query
Set?) 141

Figur« 4.20: Performance Improvement for Structured Relations (All Query
Sets) HI

Figure 4.21: Performance Improvement for Higher Sharing 143

ÖWö&KSOö&ä&tö^^

CHAPTER 1

INTRODUCTION

Traditionally Database Management Systems (DBMS) have been used in business

applications to efficiently store and organize large amounts of data. The main thrust

of database research has focused on designing data structures and algorithms

[WONG76,SELI79] so that operations, common in this environment, can be processed

efficiently. Recently, there has been considerable interest in extending the use of data-

base management systems into new application areas. In particular, relational DBMSs

[CODD70] have been used in support of applications such as text processing

(PAVL83,STON83), computer graphics (LORI79], Computer Aided Design (CAD)

[LORI81,KATZ82,LOR183,GUTT84b|, Artificial Intelligence and Expert Systems

[KERS84,KERS86]. The main difference between the business applications and the

ones mentioned above lies in the type of information that the two types of applications

are using. Business applications are mainly concerned with large volumes of data ,

while Artificial Intelligence or Engineering Applications usually involve a sophisticated

control mechanism that handles relatively smaller amounts of data. Therefore, a sys-

tem of the second type should be able to support storing and handling control infor-

mation in addition to data. Our interest is to investigate the possibility of extending

current relational database management systems to support storing information of

both kinds.

lO-^^J^^XAi^JOU^^^^

1.1. Why Database Management Systems?

Using a data manager with full capabilities offers the advantages of better data

organization, simple user interface, integrity of data in multi-user environments

[BERN79,CARE84] and recovering from hardware or software crashes [GRAY78].

Given these advantages, there have been various attempts to build systems that sup-

port non-traditional database applications over large volumes of data. In general,

there are three different approaches that can be taken

• One can enhance a specific application system (e.g. VLSI design system) with a

specialized data manager

• One can interface a specific application to a general purpose DBMS

• Finally, one can extend a general purpose data manager by enhancing it with

more sophisticated capabilities (e.g. inference, triggers, etc).

The first approach suffers from two major disadvantages. First, considerable

effort must be put into designing end building several modules that DBMSs already

include (data definition and data manipulation facilities, query processing algorithms,

etc). Second, such specialized data managers are very narrow, in the sense that they

cannot be easily modified to support applications other than the ones, for which they

were originally written.

In the second approach there is a clean interface between a specialized applica-

tion program and a general purpose DBMS. The DBMS acts as a server to the appli-

cation program by supplying on demand the data that the latter requires. However,

the major disadvantage of this approach lies in the difficulty to define exactly where

vK:c<i*fö>£^c^.^^^

the two systems must be interfaced. As an example, consider the problem of interfac-

ing PROLOG [CLOC81] with a general purpose DBMS. Although that interface

appears particularly natural, due to the common theoretical foundations of the two

environments, attempts to build such an interface have not been very successful

because of the differences in the way each system retrieves its data

[WARR81,JARK84a,CERI86]. These attempts to interface PROLOG and general pur-

pose DBMSs make significant changes to the PROLOG query processor trying to

improve its performance in an environment where data resides in secondary storage.

[BROD84,ZANI84,SCI084] provide good criticisms of this approach.

Because of the above mentioned difficulties, data managers with extended capa-

bilities have been proposed. In this third approach data manipulation and control

functions are integrated into a single system in a homogeneoua way. As a first exam-

ple, consider previous work in supporting various semantic data models

[MYLO80,SHIP81,ZANI83). In all these proposals several new constructs were intro-

duced (general objects, classes, unnormalized relations, set-valued attributes, etc).

Another similar approach is to design systems based on the object oriented program-

ming paradigm [COPE84,DERR86|. The data manager stores objects that a general

program can then fetch and store. Both of these approaches however suffer from two

major disadvantages. First, due to the incompatibility between the needs of the vari-

ous application environments, it is very hard to incc. pirate all of the above mentioned

constructs in a single data manager. Such a system would be extremely complicated

and, most probably, inefficient. A second disadvantage is that a complete database

management system must be written from scratch. For example, a query optimizer is

I

i

needed to support queries. A transaction management system is needed to support

shared access and to maintain data integrity in case of software or hardware crashes.

Clearly, these modules account for a large fraction of the code that already exists in

current DBMSs.

Looking at a different direction, several researchers have proposed other ways of

extending relational DBMSs. The basic idea is to come up with a simple system that

gives to the user the capability to build on top of a basic set of functions whatever

constructs are required by specific applications. Moreover, it has been assumed that

minimal extensions to the relational model should be attempted. An example of such

an effort has been Deductive Databases (GALL78|. The direction here is to provide

basic support for expert systems applications. In a deductive database System both

deductive aspects of the world (ru/„'«) and asserted information (facts) are stored in

the same system. The framework represented by logic programming [KOWA74] and

typified by the programming language PROLOG, is used as a common example. How-

ever, because of the problems mentioned above, various researchers have been engaged

in designing extensions of DBMSs instead of trying to interface PROLOG or a general

inference engine to a data manager. In [IOAN84,DAYA85,ULLM85,ZANI85] several

designs for database systems enhanced with inference capabilities are proposed, each

being a specific implementation of the above model of rules and facts. In particular,

these systems are distinguished based on the representation they adopt for rules. This

approach has been rather successful, the main reason being that relational database

systems require minimal extensions to support inference.

Giifii^i^ii^GiKfc?^^

Rules have been used in deductive database systems to allow users to incorporate

control information in a form other than the simple operators t'iat the relational

model offers (e.g. selections, joins, etc). In general, control irformation can be

represented procedurally and/or declaratively. A database can be clearly used for the

latter. As a final approach to building extended data managers, the following section

describes the idea of extending DBMSs based on the use of procedures.

1.2. Extending Database Systems Using Procedures

Stonebraker et. al. proposed in (STON84] the idea of storing database commands

in the database as a means for increasing the functionality of the system. Commands

are stored in relation fields and can be accessed as any other field using a slightly

extended query language. Moreover, since these commands can be executed, a new

operation is introduced allowing a user to execute the contents of relation fields. In

that sense, it is suggested that databaae procedures are considered as full fledged data-

base objects. Hence, using this extension of [STON84|, the database can be made the

single source of information, either procedural or declarative. This is the approach we

will take in this investigation also.

To motivate the use of procedures for increasing the functionality of a relational

data manager, we give some examples of possible applications.

• Storing Program« in a Database

In many applications that use data residing in a database there is a need for code

written in the data manipulation language of the DBMS, i.e. database programs.

These programs can be stored in the database and then be executed using the DBMS

x^i^cv' >^>>:->^V-ü-^>:.-'V v--^^^^-^-^-»^-^; -y-:^v-^N>>>>:miöQ^^

query language. For example, in [KUNG84| it was shown how a problem like heuristic

search can be addressed using such an extended database management system. There,

a relation ALGORITHMS(alg.id,alg.type,code) was used, where alg_id is a unique

identifier, a/y.type indicates the general class that the given algorithm belongs to (e.g.

Dynamic Programming, Branch and Bound, etc.) and code is a field used to store the

database procedure that implements the algorithm. Therefore the form of the relation

ALGORITHMS will be

alg.id alg.type code

10 Dynamic Progr code line 1

code line 2

15 Dynamic Progr code line 1

20 Branch and Bound code line 1

••

The syntax of the DBMS allows the user to select and execute an algorithm based on

its alg_id and alg_type. Such a syntax may for example be

execute (ALGORITHMS code) where ALGORITHMS alg.id ■ 15

which will select the Dynamic Programming algorithm with i^-ntifier 15 and will pro-

cess the commands that constitute the body (code).

ö&«^^^«S)Ätf}S^^

• Supporting Rule«

Suppose a relation EJIP (name, salary,ag«), with the obvious meanings for its fields,

and another relation CATEG.EMPS with the following contents

status

wellpaid

emps

underpaid

retrieve (EUP name)

where EUP salary > 60

retrieve (EUP name)

where EUP salary > 60 and EUP age < 30

retrieve (EUP name)

where EUP salary > 65 and EUP age < 40

retrieve (EUP.name)

where EUP salary < 20

are given. This second relation gives a way to categorize employees according to their

salaries or salaries and ages. In some sense it is a set of rules that define when an

employee is wellpaid, underpaid, etc. isking for wellpaid employees would

then be

retrieve (CATEG.EUPS.emps name) where CATEG.EUPS status = ■wellpaid'1

where the reference to CATEG.EUPS emps name will first evaluate the queries stored in

the empa field of CATEG.EUPS and then project the result of this evaluation on the

:5f^;y;'>>^:v:y:v^

name column. More complicated rules can be expressed using the full capabilities of

the query language. In addition, general condition-action rules can be defined, since a

procedure in a relation field may include update operations as well. Actions can be

then implemented through updates to other relations in the database.

• Supporting Complex Objects

Complex objects can also be implemented using database procedures. A query expres-

sion in a relation field simply describes the way components of other relations (i.e.

tuples) are combined to build an instance of a more complex object. As an example,

suppose we have a relation P0INTS(x,y) describing points on the plane. Another

relation LINES (line. id. description) can then be defined, where description is a

field containing expressions of the form

range of POINT,P0INT1 is POINTS

retrieve (POINT x,POINT y.POINTlx.POINTly) where Qualification

Qualification describes how the two points POINT and P0INT1 that define a line

segment are selected from the POINTS relation. A significant advantage of using pro-

cedures for the definition of complex objects is the ability to allow many objects to

share the same subobjects. Hence, a hierarchy of objects can be built and inheritance

is free since it can be naturally achieved through retrievals of data from the same rela-

tions [STON85].

It is clear from the above examples that supporting procedures in a DBMS is of

significant importance. POSTGRES [STON86b], a new relational DBMS under

development at the University of California, Berkeley, will support procedures as full

o:^v-\yxiv;y:v^\v>/:v:vw>':^^ .■■.» 'j \f V 'j

fledged database objects. Among other capabilities, the user of POSTGRES can mani-

pulate data, define rules, specify triggers and alerters, etc., using only the extended

query language that the system provides (POSTQUEL). However, preliminary results

in [STON85] show that there is a serious degradation in performance for non-standard

data retrieval operations. In addition, there is a need in modifying algorithms that

work efficiently in a main memory based system, to algorithms that will work

sufficiently well in a database environment [KUNG84,SELL85]. The purpose of this

investigation is to study these problems and suggest techniques that improve the per-

formance of extended database management systems.

Optimizing the execution of procedures will be a significant part of this work.

Procedures are simply sequences of database commands. However, these commands

do not have necessarily to be processed one at a time. Some interquery optimization

is possible, leading to a more efficient execution. For example, in the special case of

read-only procedures where only retrieval commands are used, savings can be achieved

by means of common data that the queries may access. In the employee example men-

tioned above, determining which employees are wellpaid, requires the execution of all

three queries stored under the emp« field of CATEG.EMPS. When processing these

queries the intermediate result built for answering the second request and containing

the tuples of employees with salaries more than 60K can be used to answer the first

query on employees with salary more than 80K. This way the second look-up of the

EMP relation is avoided.

Some researchers have studied in the past the problem of multiple query (i.e. pro-

cedure) optimization or other related problems. In [GRAN80] and [GRAN81], Grant

riN\v\v\vlV.>^N\VA'^\s\v.\N\v.,-\>\v.vv.\-."-A-.v.v>Vv-_,.,_ . ■ .•'^■-/•J"^-->->yv> W • V V V V v/^V.VJ> v/,^.v.v/.

10

and Minker describe the optimization of sets of queries in the context of deductive

databases. Roussopoulos in [ROUS82a] and (ROUS82b| provides a framework for

interquery analysis based on query graphs [WONG76], in an attempt to find fast view

processing algorithms. More recently, Chakravarthy and Minker [CHAK82,CHAK85]

have suggested an algorithm based on the construction of integrated query graphs.

All of the above proposals assume procedures to be sets of retrieve-only commands.

When updates are allowed, different techniques must be used. We propose such tech-

niques in later chapters of this thesis.

1.3. Outline of Thesis

In the remainder of this report we investigate, analyze and solve problems associ-

ated with extended relational database management systems. Although the discussion

is restricted to the INGRES (STON76] relational DBMS, the ideas are generally appli-

cable to other systems as well.

Chapter 2 begins by describing QUEL-f- [STON85|, an extension to the query

language QUEL used by INGRES. QUEL+ introduces two new features. First, a new

operator that allows repetitive execution of database commands is introduced. This

way, iterative constructs can be embedded in database procedures. The second

feature introduced, is the ability of the system to support procedures by means of

storing query language expressions in relation fields. Chapter 2 then continues with a

detailed discussion on how query processing should be done in light of these exten-

sions. A variation of the original INGRES decomposition algorithm [WONG76J is first

presented. Then various improvements to this algorithm are discussed. These

baiö«M^»2wöKsc9^

11

improvements aim at producing more efficient access plans for some special classes of

queries.

The query processing algorithm deals only with the problem of generating

efficient access plans to process a given query. Other ideas that can improve the per-

formance of a system that supports procedures are also discussed in Chapter 2. First,

we examine the idea of storing results of previously processed procedures in secondary

storage. That idea is called caching of procedure results (STON85]. Using a cache,

the I/O and CPU cost of processing a query can be reduced by preventing multiple

evaluations of the same procedure. Problems associated with cache organizations are

examined in depth. Policies for replacing entries of the cache with newly produced

procedure results along with algorithms that decide if a given result should be cached,

are discussed. However, results of procedures may become invalid when relations used

in the evaluation of a procedure are updated. The problem of checking the validity of

cached entries is also examined. Finally, schemes for efficient searching of the cache

are discussed.

Another means for reducing the execution cost of queries is indexing. Indexes are

used in DBMSs to provide efficient access to relations. When procedures are

evaluated, the fields of the resulting relations can also be indexed. However, at any

given time, it is highly probable that not all procedures stored in a relation have been

evaluated. Therefore, a conventional indexing scheme cannot be used, for it would

assume that all values resulting from the execution of procedures are known. As a

solution to that problem, a new indexing scheme. Partial Indexing, is proposed and

analyzed. A partial index contains information only on results of procedures that have

IÄWöKIW,^^^^^^

12

been materialized in the pa^t. Uses of partial indexes in conventional database sys-

tems are also described.

Chapter 2 deals with the problem of efficiently processing queries that reference

results of procedures. These procedures are simply sequences of database commands.

How to efficient^ process the procedures themselves is also an interesting issue. It was

mentioned in the previous section that some interquery optimization is possible.

Chapters 3 and 4 investigate this problem and propose algorithms for processing mul-

tiple database commands. Chapter 3 examines general database procedures where

update as weil as retrieval operations are possible. Several transformations and

optimization techniques are suggested. Some of them are drawn from the area of com-

piler design where similar problems have been examined in the context of general pro-

gramming languages (e.g. moving loop invariants out of loops). Others are extensions

to conventional query processing or physical database design techniques. Cases where

special transformations are possible are also identified and studied. Although such

transformations are not applicable to all kinds of procedures, they are very important

to several engineering applications [KUNG84).

Chapter 4 studies a special case of procedure optimization, where only retrieval

commands are used. In this case, savings can be achieved by means of common data

that the queries may access. The model that will be assumed for queries is first

described and then an analysis of several algorithms that perform some interquery

analysis and suggest efficient access plans is given. These algorithms differ in the

amount of time one is willing to spend to preprocess a given set of queries. There is a

trade-off between the time required for interquery optimization and the actual cost for

J.>l,"ji'^"*i>"'-l"'i.'«Ll"«V'u.^%^'^*"\'*\>^^'^ iflÄtf i» Ä^^V-NiV^vv-^NV'^'«". v^^yvuv.iNV^.T.uvv. vr.uvjximr»<i,>]j*uvL>-,>k>,.>.^u> LT« U* L>1

13

executing the queries. Such issues are also discussed in depth. We then present some

experimental results that show that multiple query optimization is useful and can

significantly improve the performance of systems that support database procedures.

Finally, in Chapter 5, a summary of our results is given along with some discussion on

important problems for future research.

CHAPTER 2

QUEL+ : THE LANGUAGE AND HOW TO PROCESS QUERIES

2.1. Introduction

This chapter examines the approach of extending a database manager to handle

not only data but control information as well. We will first present the structure of

QUEL+ [STON85], which is an extension to QUEL, the query language designed for

INGRES [STON76]. There are two major extensions made to QÜEL:

a) repetitive execution of commands, and

b) storng query language commands in relation fields

The first extension allows the user to implement iteration using the query language

itself instead of escaping to a general purpose programming language. In EQUEL/C

[ALLM76] for example, the programmer can embed INGRES commands in C

[KERN78] programs and therefore can inplement iteration through the iterative con-

structs of C. The second feature follows the paradigm of LISP [W1LE84] and allows

the uniform treatment of data and control information, or procedures in [STON85],

where the latter is implemented using database commands.

Physical and conceptual modeling, query processing, concurrency control and

crash recovery are some of the well known DBMS problems [ULLM82]. The solutions

to many of these problems can still be us;J in the QUEL+ environment. However,

performance will deteriorate due to the complexity of the new operations. Our goal in

H

^:«\^-\V-.V^,--AV>>.>^/-V>:V:V_V;V?.KV"V^^

» -j ■ j "-..■«,..■•■.■- w w .»■,*.; ^ j * . - ^. w i. J^ w n jg.« sajt am x.n »jn. JLTI ä_I .« .T.*

15

this chapter is to examine ways of improving the performance by providing a. ve

sophisticated optimization tactics. More specifically, we concentrate on the problem of

query processing. Issues that deal with user interfaces, physical and conceptual model-

ing, consistency in a multiple user environment and robustness, are examined in more

detail in {STON86b] in the context of the design of a new DBMS being developed at

the University if California, Berkeley, called POSTGRES.

This chapter is organized as follows. Section 2.2 presents the language QUEL+

and motivates its use with a set of examples. Then, in section 2.3 we study the prob-

lem of query processing by presenting first a simple algorithm and then proposing a

set of possible improvements. Sections 2.4 and 2.5 present ideas on supporting

schemes that improve the performance of the system, like caching and indexing.

Finally, we conclude in section 2.6 by summarizing the discussion of this chapter.

2.2. The Query Language QUEL+

As mentioned above, the major extensions that are introduced to QUEL-I- are the

repetitive execution of standard QUEL commands and storing QUEL commands in

relations fields. [STON85] gives a detailed discussion of the language. We review here

some of the extensions that will serve as the basis of our presentation.

2.2.1. Iterative Execution of QUEL Commands

Iterative execution of commands was first introduced to INGRES by Guttman in

[GüTT84b]. Guttman mainly used the iterative version of the append command in

order to express queries that produce the transitive closure of a binary relation, in his

case, parts explosion in a VLSI design environment.

•'■•v«/"-.-"..-"-■"-''-■■•"•- _"■■---•"-'•--•.-•..'■-• -• • • ■ •"••r-/.y-".---v'..i'--vv-'v-'.''.--".r^.^^-o".-v^--•'-.■ ■ ■ -.'• • • "-o--■._'

16

To motivate the use of iterative execution, we use the following example of a

relation EUP (name,salary.mgr), with the obvious information about employees.

The goal is to perform an update on the EMP relation, so that all employees that even-

tually work for Smith (through the manager hierarchy), change their mgr field to

Smith. For example, given the following EMP relation

name salary mgr

Stones 20K Smith

Jones 10K Stones

Laa 15K Riggs

Felps 10K Jones

it is required that the mgr field values be modified, yielding the following relation

name salary mgr

Stones 20K Smith

Jones 10K Smith

Lam 15K Riggs

Felps 10K Smith

One way this can be achieved, is by repetitively executing the command

range of EMP.EUPl is EMP
replace EMP (mgr = •Smith")

where EMP mgr = EMP1 name
and EMP mgr = "Smith"

until it fails to modify EMP. In QUEL+ we add a * (asterisk) to a standard QUEL

command and introduce r tition with the following semantics

V.V.V.V.V.-. ,v>/.v>^yf,>.>>v >^

17

To proceaa command*, proeeea command repetitively unti'. it has no further
effect on the database

The above semantics do not necessarily imply that the command will be processed by

iterative execution. The work of [GUTT84b] and [IOAN86] shows that iterative exe-

cution of the same operation is not always the most efficient way process transitive

closure commands in a database environment. Using the * extension, we can perform

the above update with the single QUEL+ command

range of EMP.EMPl is EUP
replace* EUP (mgr = ■Smith")

where EUP mgr ■ EUP1 name
and EJi? mgr = ■Smith*

This shorthand notation not only simplifies the user interface but also gives the flexi-

bility to the query optimizer to optimize the loop as a unit instead of a single replace

command.

2.2.2. QUEL as a Datt. Type

It was first proposed in [STON84] that QUEL commands be stored in relation

fields in the same way data is stored in relations. For simplicity, these fields are

thought as variable length strings. In INGRES, relation fields can be accessed indivi-

dually through the dot (.) operator. For example, EMP mgr in the above command

accesses the manager names recorded in EMP. Extending these semantics, it will be

assumed that accessing a relation field containing QUEL commands (QUEL field)

implies the execution of the commands that are stored in the field. In addition to that

accessing mechanism, a new QUEL+ command, called execute, is allowed. The

v«.yvyw^A^vvvyy* „VLV^VVV».^".-/, ■ •-.^ VW\M}VA W .-,-.■ -.•■:-Avvo■uv, ■.-, o.-.-i vi *P -.• -.■ «JI - ■ • •..-, - - ■ • • ■ -.- -.v-.-, v^ o■ •■ o oo^ -.i..^-.i

18

semantics of

execute (Relation fd) where Qualification

where fd is a QUEL field of some relation Relation, is to process the commands

stored in the fd field of those tuples in Relation that satisfy the Qualification.

Through execute, the user can explicitly request the execution of specific commands.

For example, in (KUNG84], an ALGORITHMS relation is defined where specific imple-

mentations of algorithms that solve the shortest path problem are stored in the form

of sequences of QUEL commands (or database procedures). Using execute, a user

can then select and process any of these procedures.

In light of these two extensions, we differentiate for processing reasons between

two types of QUEL fields.

a) collections of retrieve-only commands (queries), or

b) collections of general QUEL commands (i.e. queries and updates)

In the first case the result of processing the queries is a set of relations that the user

has requested while in I ■*■ second case updates may be performed on the database and

no specific result is returned. Processing QUEL fields amounts to evaluating the com-

mands that are stored in these fields. As mentioned in the introduction, we study the

problem of efficiently evaluating the contents of QUEL fields in Chapters 3 and 4.

Here, we will concentrate on the problem of processing QUEL-I- queries.

We motivate the discussion that will follow in the next section on the problem of

processing QUEL-I- queries by using aTa example. Consider, a relation

EUP (name. salary,mgr,hobbies) where name, salary and mgr are conventional

jBBflflafiaomääöflQflcuxyöSMÄ^^

19

fields while hobbies is a field of type QUEL. We use hobbiec to retrieve data on the

various hobbies of employees. Assume also that the following relations exist in the

system

SOFTBALL (name,position,performance)
SOCCER (name.position,goals,performance)
MUSIC (name,instrument.performance)

Adding Jones as an employee can be done now as follows:

append to EMP (name = 'Jones".salary ■ 40K,Bgr = ■Smith',
hobbies = 'retrieve (SOFTBALL position,SOFTBALL performance)

where SOFTBALL name = 'Jones'
retrieve (SOCCER position,SOCCER performance)

where SOCCER name = 'Jones"
)

It is assumed that the corresponding entries for Jones have been already inserted in

SOFTBALL and SOCCER. An instance of the EUP relation after the above insertion of

the above tuple will be

name salary mgr hobbies

Riggs 20 Smith retrieve (SOFTBALL position,SOFTBALL.performance)

where SOFTBALL name = 'Riggs'

Jones 30 Smith retrieve (SOFTBALL.position,SOFTBALL.performance)

where SOHBALL name = 'Jones'

retrieve (SOCCER position,SOCCER performance)

where SOCCER name = 'Jones'

Lam 80 Moore retrieve (MUSIC all)

where MUSIC name = 'Lam'

••

We discuss how fields of type QUEL are accessed and used in queries in the next

^^^^s<<'vt^^^

20

subsection.

2.2.3. Using QUEL Fields in Queries

The QUEL syntax is extended using the multiple dot notation borrowed from

Zaniolo's GEM language [ZAN183IZAN184]. For example, one can retrieve the perfor-

mance of Jones in all his hobbies as follows:

rstneve (EMP hobbies performancs)
where EMP name = 'Jones'

The number of dots that can be used depends on the relation nesting level. With the

use of the multiple dot notation, QUEL+ allows the user to actually "navigate"

through relations using QUEL fields as links between the accessed tuples.

Clearly, the result of evaluating (materializing) a QUEL field is a set of rela-

tions, or in general a set of tuples. These sets are themselves database objects (rela-

tions). It is very natural for a user to be able to use these objects as parts of his/her

queries. For example, one may wish to get all pairs of employees that play in the

same positions and with the same performance in their hobbies. QUEL-I- supports the

most common set operators like set equality, set inequality, union, intersection and

containment as well as database oriented operators like the outer and natural join.

The above query can then be formulated as

range of EMP.EMPl is EMP
retrieve (EMP name,EMP1 name)

where EMP name ^ EMP1 name
and EMP hobbies == EMP1 hobbies

where == is the set equality operator. We briefly discuss here some issues on the

implementation of such operators.

s»»oNfcM8&™&a^^

21

The relation level operators can be implemented in either of two ways. First, one

can write specialized routines. These routines must of course be coded to work

efficiently in a database environment where whole pages are read and written as a

unit. This approach seems to oe rather straightforward, with the only disadvantage

that some (considerable) eßort must be put in writting this code. The second way is

based on the fact that one can use the expressive power of the query language to write

programs that implement the set operators. This approach requires minimal effort

and no substantial extension to the query optimization code, since the only thing that

is needed is the capability to issue queries from within the system itself. It is also

similar to the approach taken in [WONGSS] for extending relational database systems

with new types and operators. To give an example, let us assume that we want to

find out if two QUEL fields evaluate to identical relations. After processing the left

and right hand operands, two relations Rl and R2 respectively will be produced.

Checking if Rl == R2 can be done using the following QUEL query

/• aaaume that it return» 1 if they are equal, null othermiMe •/

retrieve (true=l) where
count (Rl TID) = count (Rl TID where Rl fd.l=R2 fd.l and

Rl £d.2=R2 fd.2 and

Rl fd.n=R2 fd.n)

where it has been assumed that relations Rl and R2 have fields fd,!, fdm2, ...,fd,n

and TID is a unique TUple /Dentifier that is used to augment every tuple in the data-

base. Similarly, one can derive QUEL queries for the rest of the relation level opera-

tors.

*öö«K^^ft^«*MMJöö6i^^

22

After reviewing the structure and semantics of QUEL+, we now examine the problem

of query processing. As mentioned above the analysis is restricted to QUEL fields con-

taining retrieve-only commands.

2.3. Processing QUEL+

This section presents a query processing algorithm that INGRES can use to

evaluate QUEL-(- queries. First, it discusses how the original decomposition algorithm

of Wong and Youssefi [WONG76] was extended to handle queries in relation fields and

the extended relation level operators. An example is also used to illustrate the flow of

the algorithm. Then, some possible improvements are suggested and explained

through examples.

2.3.1. Extended Decomposition

Figure 2.1 shows a diagram of the extended decomposition algorithm as suggested

in [STON85]. The modifications done to the original Wong-Youssefi algorithm can be

summarized as follows

a) All one-variable clauses except those that include a multiple dot reference or a

relation level operator are processed fint. The reason is that clauses involving

extended operators cannot be processed efficiently. For example, none of the fol-

lowing two clauses

EMP hobbies position = ,catclle^,

or

EMP hobbies == «ome_eonstantmrelation

should be processed first because that would imply the materialization of the hob-

23

QUEL+ Query

Extract and process one variable clauses
which do not contain relation level or

multiple dot operators

Apply reduction algorithm

Is the qualification variable free? Yes

No
Yes

Do tuple substitution

Are there relations
to materialize?

No

Materialize a relation Pass to extended OVQP
for relation level

operator evaluation

Figure 2.1: Extended Decomposition Strategy

(OVQP : One Var»a6/e Query Processor)

hies entries of al^employees, which is very expensive. An exception to that is the

case where an index exists on EMPhobbiss position. This case is discussed in

more detail in section 2.5.

b) An extra step is required to check if all QUEL field entries have been material-

ized. Materialization is done by passing the queries found in the QUEL field to a

second INGRES process which in turn returns the result relation(s). The decom-

position algorithm continues processing one-variable clauses and materializing

^^NO^VCVX^^ ■

24

QUEL fields until no more such fields are left unevaluated.

c) In [WONG76) the criterion for selecting a relation to iterate over in the case of

tuple substitution, is the size of the relations. The presence of QUEL fields

makes this criterion ineffective. Not only the number of tuples but the cost for

materializing the corresponding QUEL fields should be considered. The reason is

that during tuple substitution, each tuple variable will be replaced with specific

field values read from the relav>n. In case of QUEL fields these values are the

materialization results. Therefore the criterion for selecting a relation to iterate

over will generally be a function of the size of the relation and the characteristics

of the materialized objects. One of these characteristics which is of major impor-

tance is the ability of the system to keep materialized objects in secondary

storage, i.e. caching. This aspect is treated in more detail in section 2.4.

To illustrate the extended decomposition algorithm, a detailed example is now

presented. Given the EUP relation of the previous section, we are looking for the

names of employees that play as catchers, play is the same positions and with the

same performance with their managers and these managers are well paid. In QUEL+

this is expressed as

range of EMP.EMPl is DIP

retrieve (EUP name)
where EUP hobbies == EUP1 hobbies
and EMP hobbies position = 'catcher'
and EMP mgr = EMP1 nace
and EMPl salary > 70

Following the flow chart of Figure 2.1, we first identify the one-variable clause on

Oy«XKX>,»CKh*öüööJh»^

26

«alary and process it

retrieT« into TEMPI (EMP.name,QG5 hobbies) where EM? salary > 70

The new query is now

retrieve (EM? name)
where EMP hobbies == TEMPI hobbies
and EMP hobbies position = "catcher"
and EMP mgr = TEMPI name

Notice that the other one-variable clause EMP hobbies position = "catcher" is not

processed, since that would require materialization of all hobbies entries in EMP. Con-

tinuing, we find that no reduction is possible. Since there are still variables in the

query, tuple substitution must be performed. Assume that iteration is done over

TEMPI. Then the query becomes

retrieve (EMP name)
where EMP hobbies == QUEL-constant-1
and EMP hobbies position = "catcher"
and EMP mgr = constant-1

QUEL-constant-1 is now a collection of QUEL commands that were stored in the hob-

bies field of TEMPI. Since the -;bove query now has a one-variable clause, we process

that first

retrieve into TEMP (EMP name,EMP hobbies) where EMP mgr = constant-1

changing the query to

retrieve (TEMP name)
where TEMP hobbies == QUEL-constant-1
and TEMP hobbies position = "catcher"

Processing again returns to tuple substitution and variable TEMP is chosen. Substitut-

&.<&' . •."ivivi-.'^v:rv:.M^i.v/v

26

ing the fields for their values we get

retrieve (constajit-2)
where QUEL-constant-2 == QUEL-constant-l
and QUEL-constaiit-2 position = •catcher1

Now the query has no variables and is passed to the materialization module. If

QUEL-constant-2 is chosen the resulting query will be:

retrieve (constant-2)
where TEUP3 == (JUEL-constant-1
and TEMP2 position = "catcher1

As pointed out in [STON85] QUEL-constant-l is not changed to TEMP2 in both

occurrences, the reason being that TEMP2 will be processed separately to check if the

second qualification clause is satisfied. As a result, TEMP2 will be reduced to being

only the tuples with positions'catcher*, which would make impossible to check the

first condition (==) correctly. That is why two variables ranging over the same rela-

tion were introduced. Should we have liked to avoid that, the above original query

could have been expressed with a clause that checked if catcher was contained itiHhe

list of positions an employee plays. That is, use

and EMP bobbies position » ('catcher')

where >> is the containment operator. Then one tuple variable would be enough since

the modified OVQP (One Variable Query Processor) would handle that clause by sim-

ply returning true or falee and not altering TEMP2. Generally, more than one tuple

variables need be introduced if the same QUEL-constant appears in both simple selec-

tion or join clauses that include relation level operators. However, the latter must

have only one level of reference (i.e. one dot). For example.

j.'»'." \N.\>\V\%':^:V:^:-.-v . .^^^»J^'VVV-.:^

27

and EMP Al A2.A3 = constant-Talue
and EMP A4 > constant

will be changed to

and TEUP A2 A3 ■ constant-value

where TEMP is the set of employees with values of A4 higher than constant. Then, in

the next iteration, two different variables will be used to substitute for TEUP A2.

Returning to our example, we sec that the new query now has a one-variable

clause which can be detached and processed. If TEkP2 does not contain ■catcher1,

the query is false and will be terminated. Otherwise, we continue with the query

retrieve (constant-2)

where TEMPS == QUEL-constant-1

Now, there is just one more QUEL field (QUEL-constant-1) to materialize, yielding

retrieve (constant-2)
where TEMPS == TEMP4

This is a variable-free query that must be passed to the one-variable query processor.

This module will process the operator == for the two relations involved and if it

returns true, the value constant-1 can be returned to the user.

The above extended decomposition algorithm delays materializing a QUEL field

until there is nothing else that the conventional query processor can do. Even tuple

substitution must be done first, the reason being that checking a condition that

involves multiple dot references implies a loop over all tuples in the relation. During

that loop QUEL fields are materialized and checked through lower level fields. Gen-

erally, the absence of any information about the contents of relations in QUEL fields

»

28

makes optimization very hard, if not impossible. In the next section we discuss one

possible improvement through saving the results of materializing QUEL fields (cacA-

ing); in this case, the contents of QUEL fields are known and conventional cardinality

estimation methods [SELI79| can be used to estimate the cost of the various processing

strategies. However, before moving to caching we suggest some other possible

improvements that apply directly on the algorithm itself.

2.3.2. Improvements to Extended Decomposition

!n this subsection some possible improvements to the algorithm presented above

are examined. First, we give some rules that can be applied in general; then, some

other special case transformations that can be used are outlined.

The first general rule as, suggested above, is to process one-variable clauses and

do reduction as the initial Wong-Youssefi algorithm proposes [WONG76]. This will

certainly be the best ibing to do independent of the number of relations or QUEL field

materializations that will follow. The problem arises when tuple substitution is neces-

sary. We motivate our proposal using an example.

Let us assume that in the EMP relation the hobbies field produces a relation,

which itself has a field per for mane e that also produces a relation as a result and the

field we are interested in is the location field of that last relation. We also assume the

existence of another relation DEPT (name.mgr, location). The query is

retrieve (EMP name,DEPT name)
where EUP hobbies performance location = DEPT location
and EMP mgr = DEPT mgr

The question that arises here is over which relation to iterate doing tuple substitution.

ivwiwsLWivwWi. . \v\>:y>:v>v>j^7./w.x^^

2S

The main idea behind tuple substitution is to introduce single variable select'gn

clauses as early as possible. Using such clauses relation sizes are reduced and, wnk?

quently, the number of materializations that will be needed is aba lower. For exam-

pie, in the above query tuple substitution should be done over DEPT independently of

the sizes of the two relations. The following analysis supports this decision. ' •*

I DtP I and I DEPT I be the cost of scanning the relations EMP and DEPT respective

For simplicity we will assume here that the cost of processing a one-variable clause

equal to the cost of scanning the relation, while the cost of processing a join hetw.

two relations is equal to the product of the costs of scanning each of th-se relations.

The reason for making such assumption* is to simplify the analysis that follows. We

discuss in the end of the paragraph how general cost functions can be used in tht pres-

ence of indexes or other join algorithms (e.g. merge scan). Also let SEL.E be the per-

centage of ötP tuples that satisfy a constraint EMP mgr=DEPT mgr for the various

departments and SEL.D be the percentage of DEPT tuples that satisfy a constraint

DEPT irgr=constant. Finally, it will be also assumed that the cost of producing

EMP hobbies performance for the various employee tuples is M and S is the average

size of the resulting relation (i.e. S=|EMP hobbies performance I). Based on the

above, we now analyze the cost of processing the above query by tuple substituting

either over EMP or DEPT.

a) Tuple substitute over EMP: For each EMP tuple, process the query

retrieve (constant,DEPT name)

where QUEL-constant performance location = DEPT location
and constant-1 = DEPT mgr

•f

30

Since IDEPTI is the cost of processing the one-variable clause and assuming that

materialization results are kept in secondary storage to avoid re-evaluation of

QUEL fields, the cost of processing each employee tuple will be

IDEPTI ♦ /« cost of doing tue one-variabl« selection */
M * /* cost of materializing the QUEL field «/

S*|DEPT|*SEL.D = /* cost of doing the join */

= |DF1ST|*(1*S*SEL.D) ♦ V

for a total of

IEMPI*IDEPTI*a*S*SEL.D) ♦ |EMP|*M (1)

b) Tuple substitute over DEPT: For each DEPT tuple, process the query

retrieve (EMP name,constant)
where EMP.hobbies performance.location = constant-1
and EMP.mgr = constant-1

Again under the above assumptions, for each department tuple the cost will be

iEMPl ♦ /* cost of doing the one-variable selection */
IEMP|*SEL.E*M ♦ /* cost of materializing the QUEL fields ♦/
|EMP|*SEL,F.«S = /* cost of doing the final one-variable selection */

= |EyP|*(l ♦ SEL.E*(y*S))

and assuming that re-materialization of the same field is never needed, the total

cost will be

|EMP|*|DEPT|*(1*S*SEL.E) ♦ |EMP|*SEL.E*y (2)

Subtracting (2) from (1) we get

DIFF = IEMPl*IDEPTI*S*(SEL.D-SEL.E) ♦ |EkP|*y*(l-SEL.E)

and considering the second factor to be much more significant because of the high

^:^.y^-^2W>::<>:v:v^

31

materialization cost, we may conclude that it is better to tuple substitute over the

relation that will cause the least number of materializations, in our example DEPT

since SEL.E<1. The reason for that is that tuple substitution will create some one-

variable clauses which can then be used to restrict the number of tuples that need to

be considered for materialization of their fields (in the above case that was EMP).

Returning now to the simplistic assumptions made for the cost of processing

one-variable clauses and joins between two relations we can see that the above

analysis still holds. However, the formulas are not that simple any more. In general,

the cost of doing the one-variable selection on a relation R is a function F(|R|) and

the cost of doing a join between two relations Rl and R2 will be J(|R1|,|R2|).

Hence the two corresponding formulas for (1) and (2) will be

lEkP|*F(|DEPT|) ♦ lEyP|*J(|S|,|DEPT|*SEL.D) ♦ |EyP|*M (la)

and

|DEPT|*F(|EMP|) ♦ |DEPTMEyP|*SEL.E*|S| ♦ |EMP|«SEL.E*M (2a)

Evaluating these two formulas and checking their difference will indicate which plan is

preferable. However, if we assume that still the materialization cost U is the primary

factor in the above, DEPT will be the best candidate for tuple substitution.

In general, an algorithm that selects a relation to iterate over, attempts to

minimize the total number of tuple substitutions required, assuming the most expen-

sive processing lies in QUEL field materializations. Such an algorithm would go as fol-

lows. Let V be the set of all non one-variable clauses. Assume also the existence of at

least one clause of the form Äp/rf, = R2.fd2. Such clauses are called simple. Let

:r/v:%^-:vw:-.'v:v-:r.-:v":s::^

32

r5(Ci?1) be the number of tuple substitutions required over Rl for the clause C to be

evaluated. In other words, TSfC.Ä,) is the number of dots in the reference to relation

/?!■ For example, assume that we have the clauses

(Cl) EMP hobbies p«rfonnance location = DEPT location

and

(C2) EkP mgr = DEPT mgr

Clearly, three tuple substitution loops must be executed over EMP in order to make

the first clause effective. Hence, TS(Cl, Dtp) — 3. DEPT can become effective with

only one substitution, i.e. TS(Cl.dEPT) = 1. Considering the second clause, both EMP

and DEPT need only one tuple substitution; therefore, TS(C2.DIP) =» 1 and

TS(C2.dE?T)^ 1.

Next we compute

diff{R) = max TS{C,R)
C€V

for each rt ;on R involved in some clause. Intuitively, these numbers measure the

difficulty of proceaeing the query depending over which relation tuple substitution is

performed. This difficulty is considered to be mainly due to the number of tuple sub-

stitutions required to reach ground relations, i.e. relations with no QUEL fields. Sup-

pose that RM is the relation with the minimum diff value, i.e. the relation such that

d*Jf(RM)<:diff{R), for all R that are involved in simple clauses. We choose to tuple

substitute over the relation RM (in case of ties we favor the smaller relation). For

example, in the example mentioned above, we will have difffEMP)=3 and diff(DEPJ}=l

and we choose to tuple substitute over DEPT due to clause C2. It is straightforward to

•'■- "T- •". -', ^ ^i:vxvt™vc<iA^vtNT^^^^^

33

show with an analysis similar to the one presented for the example that this is the best

tuple substitution strategy.

The above algorithm gives a rigorous way of selecting the relation over which

tuple substitution will be done. In cases where every clause involves at least one rela-

tion accessing a QUEL field, i.e. there are no simple clauses, the above algorithm will

not work. However, these are not of major interest since one way or the other the

entries will all be materialized during tuple substitution. Notice also that in the above

analysis, three basic assumptions have been made. First, computed results were kept

in secondary storage to prevent multiple materializations of the same entries. Second,

the materialization cost K was dominating any other cost in our formulas (1) and (2).

Finally, the costs for processing one-variable and join clauses were very simplistic. In

general, formulas (1) and (2) will have two factors. One is the estimated cost for

doing the join between the two relations EMP and DEPT by tuple substituting over

either of the relations. This factor is determined using conventional cost estimating

techniques [SELI79]. In the general case, the cost M may not dominate all other cost

factors. Then, in order to compare the costs of the two processing strategies, some

estimate for the cost of materializing a given QUEL nJd is needed. This cost can be

calculated using standard techniques, at the time tuples with QUEL fields are inserted.

If for efficiency reasons preprocessing of queries at insertion time is not possible, some

kind of off-line processing can compute the estimated costs and store them along with

the QUEL fields. In any way, the query processor will have two specific estimated

values for the costs of the two strategies derived from formulas similar to (1) and (2).

Comparing these values and selecting the minimum one will suggest the most efficient

tä<y:sl<<<<l<<JK*^

34

processing strategy.

Let us now describe a different technique that can be used to improve the perfor-

mance of the query processor. The basic idea is that when an entry from a QUEL

field is materialized, the query that has to be processed next is known. More

specifically, the structure of the query is known and through that the optimizer can

identify access structures that may be desirable in order to speed up processing. For

example, in the query

retrieve (EMP name,DEPT name)
■here EMP hobbies performance average = 10
and EMP mgr = DEPT mgr
and EMP hobbies leader = DEPT mgr

the algorithm outlined above, will choose to tuple substitute over DEPT, the new query

being

retrieve (EMP name,constant-1)
where EMP hobbies performance average = 10
and EMP mgr = constant-2
and EMP hobbies leader = coastant-2

Finally, after the detachment of the one-variable clause the following query will be

processed

retrieve (TEMP name.constant-1)

where TEMP hobbies performance average = 10

and TEMP hobbies.leader = constant-2

At this point the query processor will start materializing entries from the hobbies field

of TEMP. Let TEMPI be the result of materializing a specific entry of hobbies; then the

type of queries that will have to be processed for each TEMP tuple will be

retrieve (constant-2,constant-1)

C^^^J^^^iC^i^iC^^

35

where TEMPI performance average = 10
and TEMPI leader = constant-2

From that last query one can observe that depending on the size of TEMPI it may be

beneficial to build a secondary index on leader so that the second qualification clause

can be processed efficiently. This structure will be built in the process of producing

TEMPI (on the fly) and no extra time need be spent at the time the query will be

evaluated. Dynamic creation of indexes or imposing other structures on relations (like

sorting) has also been used in conventional query processing [YOUS78,KOOI82]. How-

ever, a difference is that in the QUEL+ environment no significant additional cost

need be spent on creating the index. At the same time a result of a materialization is

produced and stored in a temporary relation, some adequate organization is chosen or

a secondary indexing structure is built.

In the same spirit we describe another optimization technique that can be used to

reduce the cost of processing a query. Clearly, one wants to materialize QUEL fields

and produce results that will be used subsequently in the course of processing a given

query. However, in some cases, not all queries stored in QUEL fields will give relevant

information. For example, consider the relation EMP (name,salary,mgr.hobbies) of

the previous section, and the query

retrieve (EMP.name)

where EMP hobbies instrument = 'violin'

When the various entries in the hobbies field are materialized, only those queries that

involve in their result a field inatrument should be evaluated. In our example, the

queries that retrieve data from the SOFTBALL and SOCCER relations should not be

.,[^y,^v:s,.vv.\-.\%\%K"xv-.:-.'-.)A^yysm>m>j.7^?jG>7^/^^^^

36

evaluated. Checking which queries are useful is not hard. It amounts to simply

checking the target list (projection fields) of each query. Moreover, even if the query

in hobbies retrieves many fields from the MUSIC or any other relation that includes a

field inetrument, the contents of the materialized relations should be restricted to

contain only the information that is absolutely necessary, in this case the inetrument

field. This way the size of the materialized objects is kept as small as possible which is

especially crucial in the case where these objects are kept in secondary storage. We

should also notice here that the same idea exists in conventional query processing as

well. When intermediate relations are built as the result of processing a one-variable

clause or a join, the fields that are projected in sjch a relation are the ones that are

needed either to form the final result of the query or to continue processing the query

[WONG76,SELI79].

The above technique tries to reduce the amount of space required for storing

materialized objects. However, there are some cases where no space at all need be

allocated for materialization. This is the case where a QUEL field contains a single

retrieve or define view command. In this special (but very common case) there is

no need to even produce the result of the command. What we propose to do is to sim-

ply transform the original query in the same way conventional query modification

(STON75] does in view processing and integrity constraint enforcement. For example,

consider the following query

retrieve (EMP hobbies position) where EUP hobbies average < 5

and the hobbies field of the EMP relation contains one of the following QUEL expres-

täC^SXiüI^3fa\MJ^2fr^ ^ WL-.\>. L- \AV . wv. •; -Vo oV'To: ■-< vV-.Tvw-;v-'.^.-r-.-■-.- -■-. -C^-JXI

37

sions

retrieve (SOCCER all) where SOCCER name = con et ant
or

retrieve (SOFTBALL all) where SOFTBALL name = constant

i.e. all employees have at most one hobby. Then the given query can be transformed

to

retrieve (REL position)
where REL average < 5
and REL name = constant

where REL is either SOCCER or SOFTBALL. This transformation not only prevents the

query processor from materializing relations, but it also allows the optimizer to have

more information on the structure of the query, and therefore to process it with a

better access plan. It is possible to generalize this technique to handle multiple state-

ments but only in the case where all queries in the QUEL field are returning data from

exactly the same relation. Then the transformed query will be simply the disjunction

(or in QUEL) of smaller subqueries like the one we us>»d in the above example. Sec-

tion 4 of Chapter 3 discusses this transformation in a diff;rent context.

This concludes our presentation of the extended decomposition algorithm for process-

ing QUEL+ queries. In addition to the basic algorithm, we presented some less gen-

eral tactics that can be used to improve the performance of the query processor. In

the two sections that follow two other issues that are of significant importance to

query processing are discussed, namely caching and indexing of the results of QUEL

fields. »
-

v.
v'

■.'

I
n •i
O

38

2.4. Caching Materialized QUEL Fields

As it was seen in the previous section, materializing sn entry of type QUEL

amounts to executing, possibly several, QUEL queries. Hence, it will be generally very

slow to perform this operation every time a QUEL field is accessed. This section

examines ways to make QUEL+ processing more efficient through the use of a cache.

2.4.1. What is Caching?

We mentioned at several points in the previous section: that one way to avoid

evaluating the same QUEL field entries multiple times, is caching. By caching we

mean computing the values of QUEL fields and storing them in some specifically

assigned area of secondary storage. This computation can be done either at the time

tuples are inserted in relations or the first time they are referenced. We will call the

former preeomputation of QUEL field entries since it occurs before even the content

of the specific field is accessed. However, our focus here is on the latter case which is

more natural. The basic idea is to keep in secondary storage materialized objects that

are frequently used in queries. Under that formulation, the caching problem is con-

ceptually the same with the well known caching problem in operating systems

[MATT70]. Notice also, that the cache can be used not only for materialized QUEL

fields but for generally holding the results of any query issued by the user. These can

be saved because either the same query may be given by a user frequently or they can

be used to answer other queries [FINK82,LARS85,SELL86].

The caching problem introduces several subproblems to be solved. The following

list is the set of issues that will be discussed in this section.

srML^^^SW&frX/^^^^ •, i '.' • V-.W.VLN

39

a) Which query results to cache?

b) What algorithm should be used for the replacement of cache entries?

c) How to cheek the validity of a cached object?

d) How to index the entries of the cache ?

We will assume that the general model of the cache is a limited area in secondary

storage where entries of the form

(Qid,Query.expression,Result)

are stored. Qid is some unique identifier, Query, expression is some canonical

representation for queries, e.g. query graphs [WONG76], and Rest.lt is the relation

resulting after executing the query or set of queries that were found in some QUEL

field and described by the second field (Query.expression). The folio 'iug four sub-

sections give answers to each of the above mentioned questions (a) through (d).

2.4.2. Which Query Results to Cache?

Depending on the information known about the queries, the system can decide

whether a result is worth caching it or not. For a given materialuation result R, this

decision will be generally based on the frequency of references to R, the frequency of

updating the relations used to build R and the costs for computing, storing and using

R. Specifically, the following is the list of parameters ,o the caching problem

}ä^:V^;)VV>>>X^/.V:V:V:V:V:->^^

40

Caching Problem Parameters

CC Size allocated for the cache

n Probability of refererdng result /?,•

«• Probability of updating /?,

Mi Cost of producing ß, (materialisation)

Si Cost of writting fi,- in the cache

'h Cost of using /?,- from tL? cache

\Ri\ Siie of Ri

IN Cost of invalidating a cache entry

Table 2.1: Caching Problem Parameters

C is the number of disk pages allocated for the cache, r,- and u, are the probabilities

of referencing and updating respectively a result i?,-. A/,- is the cost of materializing

the QUEL field that gives the result Ä, while 5,- and C/,- are the costs of writting to

and reading from the cache /?,- respectively. Finally, it will be assumed that invalidat-

ing an object in the cache incurs a cost IN. Given these parameters, we now describe

various alternatives for the problem of selecting which results to cache. Depending on

the amount of storage allocated for the cache, we differentiate between two cases:

Unbounded and Bounded Space.

Unbounded Space

In this case (T =oo and therefore the decision to cache a result /?,-, is local; that is, it

depends only on the values of parameters associated with i?,-. Since each object is

examined individually, it will be u.+r.^l. The criterion is based on comparing the

cost of processing /?, without using the cache with the corresponding cost assuming

\ s. •" ^'. > '•J.fJAV'.ArA>.\1^\^\^^\VA^^

n

that /?, will be cached. Let the two costs be denoted by M7, and C,- respectively. In

the case where no caching is used, the result must be produced at each reference by

materializing the corresponding QUEL field. Hence the total cost will be

NCf = r.- Mi

In the case where caching is used, a result is stored in the cache and is invalidated

each time an update to the database has some effect on it. In order to compute the

cost C,- we will differentiate between the following four cases for the types of two sub-

sequent requests:

a) Read-Update: In this case the result is invalidated because of the update, the con-

tribution to the total cost being

r. u,- IN

b) Read-Read: In this case the result is simply read from the cache with total cost

r, r, Uf

c) Update-Update: The cost here is due to doing only the invalidation of the cached

entry, that is

u, u, IN

d) Update-Read: This is the case where the object must be re-materialized and

stored in the cache. The total cost will be

u, r. (M.+5,)

Hence for the case where the cache is used, the cost of processing will be

:v:v^;^'>:v:v:v: v^-^^^

42

C, - r, u, IN + ri r,- C/.+u, u,- /N + u,- r,- (A/,+5,)

or, since r,+u,»»l,

Ci = u,- /AT + r,. [r,. C/.+u,- (M,+S,)]

Comparing now C, and iVC,- we can identify the cases ^ here * is worth caching result

Ä,-. That happens when ArC,'>C,-. Using the formulas extracted above, we can see

that this is true if

Checking the above condition will determine if the result of i given Ql'EL field

materialization should be kept in the cache.

Bounded Space

This case is more realistic than the previous, in the sense that some limited space on

secondary storage is allocated for caching. Hence, in this case C is some finite

number of disk blocks. In contrast to the criterion used for Unbounded Space, all

objects to be cached must be considered. Let N be the number of results to be

cached. Each object /?,- has reference and update probabilities, r, and u, respectively.

Since many results can now be affected by the same update to a ground relation, it

cannot any more be assumed that r,+u,=l. We will however state the following pro-

perty that holds in this case

r('-.+«.)=i

rfjrt\^*WM\^jfä^ .■':'■■■ . ' ^/ :/%'■. .V'.-:-.-■.•>.:• -

43

The formulas derived above for the case of using the cache are still valid. There is an

additional constraint that must be imposed here, and that has do with space limita-

tions. This restriction indicates that the total space occupied by cached resnHs cannot

be more than <S. Given all these parameters we formulate now the problem of cz a-

ing in the case of Bounded Space.

Let A:IN—{0,1} be an allocation function. A result /?, will be cached if

A(i)=l; if A(i)=0, /?,• will be discarded after it is used. Hence in the lifetime of the

system, result fi,- will contribute

BCi
ci if A{i)=l
NCi if A(i)=0

to the total processing cost. The optimal caching policy will be to cache some of the

N objects so that the total cost is minimal and the space required is less than the

allowed fragment on secondary storage. In other words, we seek a function A such

that

N
£ BCi 's minimal <QI\

subject to the constraint

EMi)\Ri\ < a (C2)

This problem of optimal allocation has been shown to be NP-completo (see [CHAN77|

for a similar problem). However, almost identical constraints have to be satisfied in

the view indexing problem that Roussopoulos examined in the context of improving

the performance of view based queries (ROUS82a,ROUS82b). In (ROUS82a], he

-A>>/v:^0^'y^^^ ..'-.^vkvirva

44

defines a state model to formulate the above allocation problem and then gives an A*

algorithm [RICH83) that finds a near-optimal allocation. We will not go here into the

details of that algorithm; the ret referred to (ROUS82a) for a rigorous and

detailed presentation of the technique.

The output of the A* algorithm identifies which results are worth keeping in the

cache. This allocation will be used throughout the lifetime of the system. Hence, this

approach is meaningful only in the case where all QUEL fields are materialized in

advance and a decision is made on which of them should be cached. However, that

policy may not be the best to use. Periodically the system may re-run the same algo-

rithm and use statistics acquired during the execution of various queries and updates.

Even for objects not cached, the system may keep some statistics and recompute the

allocation function A so that new results can get a chance to be stored in the cache.

In summary, the above two cases shared the fact that the reference and update

probabilities for the various objects were known in advance. In the most general case,

the values of the above parameters are not known and the system must be able to

dynamically adapt its caching behaviour, so that the contents of the cache always

reflect the most frequently used and/or costly results. We will not present here a spe-

cial algorithm for the case where no statistics are available. The following subsection

discusses that issue in the context of the replacement policies that can be used for the

cache.

fcfoe«Öiö9D^^M^m<^^

45

2.4.3. Replacement Algorithm

The problem of selecting a policy for replacing objects in the cache, is abstractly

formulated aa follows:

A state 8 of the cache is the set of objects that are stored in it

</?1,i?2, • • ,Rn> along with some statistical information associated with each

fi,'. We will assume here that this information is

t; The time since /?,• was last referenced
u, Probability of updating R,
Mi Cost of producing /?,■ (materialization)

I fi, I Size of Hi

and that the cost of writting and reading an object from the cache is equal to the

size of that object. Let S and R be the set of all possible states and results to

cache, respectively. Then, a replacement policy P, is a function P.SXR-*S

that, given a state e for the cache and a newly materialized result /?,-, decides

a) if /?,- should be cached, and
b) in case the answer to a) is positive but there is not enough free space
in the cache to accommodate Ä,-, which other result(s) should be discard-
ed to free the space needed.

In operating systems an optimal page buffer replacement policy is one that uses the

whole (past and future) pattern of references to decide on which pages should be

cached (see algorithm OPT in (MATT70]). This algorithm is not practical though,

unless one can predict with high probability the future behaviour of the system. The

closest approximation is the LRU (Least Recently Used) algorithm which selects to dis-

card the object with maximum time since last reference. In the area of database

fofoWWü^^1&W"JM$^ ■■■. ■■ .■.■■■ ■. v-".-'-.••,-;•.-.%'•.■.-.•.■.■.--^■v-.".v.\-.--.,,%,-"/'

46

management systems, the same policy can be used in the design of buffer managers.

DeWitt and Chou give in a recent article [CHOU85] an analysis of these algorithms in

a database environment.

In our caching problem, an object fi,- is cached independently of its parameters,

as long as space can be allocated to store J?, in the cache. If this is not the case, then

some result(s) must be discarded to free the space needed for storing fi,-. There are

generally two approaches one can take

a) We can first try to approximate the parameters of Table 2.1 using the statistics

the system has acquired. The sizes j Ä,- j and the materialization costs M, are

given since the objects have been computed already. The update probability u,-

is also easy to derive, assuming that the probabilities of updating ground rela-

tions are given. For example, the probability of updating the result of a join

between two ground relations is equal to the sum of the probabilities of updating

each of the two relations. What remains to be provided is the probability of

referencing a result as well as the probability of updating the result, in the case

where the frequencies with which ground relations are updated are not known.

For objects already in the cache, these probabilities can be estimated from the

reference patterns already observed. For new results, one can predict the refer-

ence pattern if the query processing algorithm is known. For example, in the

case of processing a join, if it is known that either nested loops or merge scan will

be used, we can predict the way QUEL fields are accessed, and therefore have a

rough estimate for the needed probabilities.

>*1M^S^\VCV:V\N^^^

47

Once these values are known, the A* algorithm of the previous subsection can be

run and give a new allocation for the cache. This will provide the system with a

good cache allocation for a limited time interval. Clearly, because the A* algo-

rithm is very expensive to run, one would not like to decide on a new allocation

each time a new object is materialized. The solution we propose is to run the

algorithm once some threshold is reached. Such a threshold may be a fixed

number of materializations. Another threshold may be the difference between

the values for the statistics used to run the allocation algorithm (i.e. reference

and update probabilities, sizes of results, etc.) and the actual values observed

while the system is running. For instance, if that difference gets above some

prespecified percentage of the original estimates the system may decide to re-run

the A* algorithm.

b) A different approach is to consider the values of given parameters only and try to

approximate the optimal policy with an LRU-like policy. If, for example, we

assume that the materialization cost, the size and the probabilities of referencing

or updating an object are uniformly distributed over all objects, then LRU will

be enough to guarantee a good caching behaviour. The point is that by making

the above assumption the original problem has been reduced to the known page

buffering problem in operating systems. However, in the general case LRU will

not work. In that case, we propose the derivation of some experimental formula

ranA:(Ml',u,,t,, I Ä, I) which would rank objects according to the values of their

associated parameters, given some weights and scaling factors. The lowest

ranked object(s) should be discarded at a point where space is needed. Examples

48

of rank are

(1) ran*(M.,u,-,*ljÄ,|)-M,-

The assumption made here is that objects are very expensive to materialize and

the rest of the parameters are uniformly distributed. Therefore, objects with low

A/,- values should be discarded to free space for objects with high M,- values.

(2) ran*(A/,-,ii.-,«.-,|ß.|)=l
H

In this case objects are expected to be frequently referenced and very rarely

updated. Then a pure LRU algorithm based on the times since last reference is a

good choice.

(3) ron*(Afl-,M|.,|Ä|.|)-i-
«.

If some materialiied results are very frequently updated, it may not be worth

caching them or, for the purposes of a replacement policy, should be discarded to

allow other less frequently updated objects be cached.

(4) rank{Mi,ui,ti,\Ri\)- I Äf I

Small objects should be discarded in case larger ones need be cached.

Trying to generalize rank by combining all four functions we suggest the following

function for rank

ron*(Ml,u,-,<l-, I Ä.-1) - -i-KA/. + u^ | /?• |) + «;3.JL | ß. |
u,- tf

This formula is the simplest one that can be devised and incorporates in an easy way

the effects of the various parameters. The specific format was chosen to agree "with

the formulas derived during the analysis of section 2.4.2. The first factor is based on

S»S»ÄMM5»ÖÜ«^^

49

the fact that updates require materialization of objects as well as storing the results in

the cache. The second part simply introduces the LRU-like behaviour. How to derive

the weights wv w2 and ws is an interesting open problem and should be attacked

through extensive experimentation.

2.4.4. Checking the Validity of Cached Objects

Cached results of materialized QUEL field entries may become invalid when the

relations used to compute these results are modified. Checking the validity of the

cached objects amounts to identifying which results are affected from a given update.

When such a result .R,- is found to be affected, one of two actions can take place

a) One can simply invalidate the corresponding entry of the cache. The next query

that tries to use the result, will find it invalidated and will have to re-evaluate

the associated query. This is the scheme assumed in the analysis of the previous

subsection.

b) One can use the updates performed to the underlying relations and propagate

them to all cached entries affected by these updates. In this case, some algorithm

must be used which, given an update and the query that was used to derive of a

specific result, will provide a set of update operations that will bring the cached

result up to date. Such algorithms are described in various articles where the

same problem is attacked in different contexts

[BUNE79,ADIB80,KUNG84,BLAK86].

vW^\^v.';^<^::<^'^^^^i^i^>w>^vv.;^^^v.v.";>i^^^:^ .•'y/^s^y^^A:^:^^:^^^^:^

50

In our environment however, the second approach suffers from two very serious draw-

backs. First, it is the case that between two references to a specific cached result

many updates to underlying relations may be performed. Clearly, for each of these

updates significant effort will be spent doing propagation of the updates. Another pos-

sibility is to log all updates and propagate them at the time a retrieval i?« performed

(batch update) [ROUS86]. The second drawback is due to the fact that updates may

be propagated to bring up to date entries that may never be used in the future. From

the above discussion, it is clear that a good caching scheme will discard these results

and replace them with others more frequently used which makes any effort to pro-

pagate updates useless.

We take the approach that entries must be brought up to date on demand, that

is, the next time the specific entry is requested in a query. Then the system can either

incrementally propagate the modifications, assuming that we keep the updates in

some kind of a log (ROUS86), or simply re-evaluate the query. That is an optimiza-

tion question and depends on the specific characteristics of the query and the updates.

We will not attempt here to discuss in more detail these algorithms.

The rest of this subsection discuss briefly the problem of detecting which cached

results are affected by a given set of updates. [STON86a| presents a detailed discus-

sion of the problem and the proposed solutions. The two approaches taken there,

Basic Locking and Predicate Indexing, share the same properties with physical and

predicate locking respectively {GRAY78,ESWA76] as used in concurrency control.

Abstractly, a set of tuples is used to produce the result of some query and our goal is

to be able to detect when a given update conßcts with this set. Hence, the similarity

luouGWNflycvfflfflföKÄWway^ -y-^y^^i

51

■with the concurrency control problem.

In Basic Locking all tuples used in processing a given query are marked with a

special kind of marker which contains the identifier Qid of the query. If an index is

used for accessing the data tuples these markers are set on data records and on the

key interval inspected in the index. Index interval locks are required to correctly deal

with insertion of new records (the phantom problem in concurrency control

[ESWA76]). If a new tuple is inserted in one of the relations used to produce the

result of a QUEL field entry, then the collection of markers must be found for the new

tuple. To ascertain what collection of cached entries are affected by the insertion of a

tuple t, one first collects all the markers on t and then determines which of the

corresponding queries are really affected.

In Predicate Indexing »he cache has a specific organization. A data structure is

built allowing efficient search of the cache and detection of entries affected by the

insertion of a specific tuple in one of the underlying relations. In (STON86a], a special

kind of R-tree [GUTT84a] is used for that reason. Using Predicate Indexing implies

no special treatment of insertions to ground relations but a search of the whole R-tree

is required whenever one asks for the cached entries affected by an update.

Perforaance analysis results in [STON86a], show that it is not possible to choose

one implementation to support efficiently any cache based environment. Depending on

the probability of updating ground relations and the number of cached entries that

overlap (in the sense that their read sets share some tuples from ground relations), the

first or the second approach becomes more efficient. Basic Locking seems the most

ÄftMkSOMiiWÖ^h^^

53

This last subsection concludes our presentation on caching results of QUEL fields.

A working version of extended INGRES has a very simplified cache which performed

very well in the experiments of [STONSS). POSTGRES (STON86b| will be supported

by a more sophisticated caching scheme which will use LRU for replacement and Basic

Locking for checking the validity of the entries.

2.6. Indexing Results of QUEL Fields

Imagine a query that is frequently asked and has the following form

retrieve (EMP name) where EUP hobbies average < constant

One would most probably like to build an index on EMP hobbies average in the

same way indexes are built on simple attributes. However, there is a difficulty in

using conventional indexing schemes to index results of QUEL fields. This would

require the materialization of all entries in the QUEL field and, roorcover, mat-'i-idua-

tion must be done when a new tup* With a QUEL iu'sd is inserted, tot exaasple, it c.

new employee tuple is inserted in -he EMP relation the hobbies field must be processed,

the result cached if possible and the index on EMP hobbies average must be updated

with the new values. This indexing scheme suffers from two serious drawbacks. First,

insertion time increases significantly since it is no longer a simple addition of a tuple in

a relation, but the execution of (possibly) many queries as well, the ones stored in

QUEL fields. In particular, in the case of queries involving clauses with multi-dot

expressions, response time may increase drastically. Second, by precomputing QUEL

field entries the-system materializes all objects and therefore spends a lot of time (and

possibly space in the cache) in processing field entries t'jai may be never referenced in

■■:.:."i^vv.^^vivr-.x:. . >ä>»/>:V:V:>:-/;/:;>:.•>;.\>..-,v;^'.v.%/<-^-<-<-^^^/.y-A/V^^;

52

promising because of its ease of implementation, performance in simple environments,

and extensibility to join predicates. Analysis of these schemes and investigation of

other extensions are a topic of future research.

2.4.5. Indexing the Cache

As a final issue in the caching problem we touch briefly .he problem of indexing

the cache. By "indexing" we mean an efficient way to detect if for a given query Q

there is a cached result R that is the answer to Q. The problem therefore is to search

for Query.expression values in the cache which are identical to Q, up to renaming

of tuple variables used. In other words, the expressions are identical once we substi-

tute the tuple variables with the names of relations they range over. Checking for

identical queries is rather straightforward. It involves transforming the query to be

check«c1 into the canonical form that we assumed in subsection 2.4.1 and then a simple

syntactic matching. But, clearly one does not want to compare all entries of the cache

with Q. It is desirable to quickly reject all of the entries that do not relate at all to

the given query. We therefore associate with each entry a signature that contains

high level and easy to check infor/nation about the query. The relations involved and

the fields that appear in the qualification and the target list of the queries are used to

build the signature. If the signatures of a cached entry and the given query match we

can then continue with a more detailed checking, the syntactic comparison of the two

canonical representations. To have quick comparison of the signatures themselves, a

hash table where hashed representations of the signatures are stored can be used.

•>'^:vj--;.\v.'-\v>>:Ar,->-.»v.v:v .:>.•:•.•:■ v^j^x^^^xtfü^K^m^

55

name

Riggs

Jones

Felps

salary

20

mgr

Smith

30

40

Smith

hobbies

retrieve (SOFTBALL.position,SOFTBALL.average)

where SOFTBALL name = •Riggs"

Moore

catcher

pitcher

5

4

Assume also that there is a unique tuple identifier TID associated with each tuple in

the EMP relation, with value 100,101 and 102 for the first, second and third tuple

respectively. These values are stored in the EMP relation but are not visible to the

user. The results of the second and third tuples have been materialized and stored in

the cache. That is indicated in the above relation by representing them with small

relations stored in the hobbies field of EMP. Suppose the query that has caused that

materialization was

retrieve (EMP name)
where EMP salary > 20
and EMP hobbies average < 6

and was processed by scanning EMP and materializing only the hobbies fields of

employees with salary more than 20K. The index on EMP hobbies average was of

,'wjfW,'V', ̂ l^J^^^M^^I^

54

the future.

Another proposal that overcomes the above problems is presented here. The

main idea is to have the index reflect only values that have been seen in the past and

not all possible ones. Through this scheme, it is expected to achieve better perfor-

mance in cases where the same set of queries is frequently asked. We are also willing

to pay some penalty to update the index in the case where the set of queries changes.

Given a field, the structure to be described, contains information OR all values of that

field that appear solely in results of materialized entries. These results do not have to

exist in the cache; they can exist in the index even if the object that included them has

been flushed out of the c ,. In these cases, the index simply shows that some QUEL

fields, even if not curren y materialized, can produce the specific values stored. More-

over, some extra information is associated with the index; information that character-

izes the class of tuples that are indexed. In summary, the indexing scheme proposed is

a partial index in the sense that it indexes only a part of the relation.

Let us use an example o motivate the discussion on partial indexes that follows.

The relation EMP (name,salary,mgr.lobbies) of section 2.2 has an index defined on

EMP hobbies average. The following tuples are currently in QIP

KV7>?/7ii^7>>.'^A^^^

56

no use because no entries were materialized before the above query was executed.

However, after the execution of the query the index was updated to

salary > 20

average TID

4 101

4 102

5 102

8 101

Notice that the above index differs in two ways from conventional indexes. First,

»here may be more than one average values for the same TID value. This cannot be

true in conventional relations because all fields carry a single value (First Normal

Form [ULLM82]). Second, there is a predicate associated with the index (salary >

20). This predicate uses only non-QUEL fields and is a simple way to identify the

kind of tuples indexed by the given index. That predicate is also used to decide if an

index is useful in answering a given query. For example, a future query that includes

a restricf'on on Elff hobbies average and references employees with salaries more

than xK, with a;>20, can use the index to avoid a full scan of EUP. However, for

a; <20 the relation must be scanned and the entries with salary values under 20 will be

materialized. As a side effect, the index table and the corresponding predicate will be

updated.

^«^^:^^^^^^

" . - fc ^ - ■ ,

57

Let us now describe the operation of a partial index. A partial index is a pair

(QUALJNDX), where QUAL is a disjunction of conjunctive one-variable selection

clauses and INDY is a conventional index structure. We will say that a qualification

QUALl covers another qualification QUAL^ if the set of tuples satisfying QUAL^ is a

subset of the set of tuples satisfying QUALx, for any instance of the database. In any

other case we will say that QUALx is not useful to QUALz- When au index is

requested by a user on a field F of a QUEL field result, a pair (QUALJNDX) is allo-

cated with initial values QUAL= false and INDX*=&. Then depending on the opera-

tion performed on the relation, the following actions will take place.

Queries that use Fin an one-variable clause in the qualification:

Let QUAL~ be the part of the qualification of the query that has no references to

QUEL fields an«! is composed only from one-variable clauses on the relation that

the index is built on. Then, if the predicate QUAL which is associated with the

index covers QUAL~, the query processor may consider using the available index

on F for answering the query. If QUAL is not useful to QUAL~, then the query

cannot use the index on F. That index can be used to give only the tuples satis-

fying QUAL while the rest of the requested tuples must be retrieved from the

relation by other means. However, in that case, once the QUEL field entries are

materialized, the values of F are used to update the index and the associated

qualification QUAL is changed to {QUAL y QUAL~).

Queries that do not use F in an one-variable clause in the qualification but

materialize the QUEL field that contains F:

58

In this case we take the steps followed in the second case above where the index

is updated after the materializations are performed.

Ineertion of a new tuple in the indexed relation:

Given a new tuple to be inserted in the indexed relation, we check if this tuple

satisfies QUAL and if so. the corresponding QUEL field is materialized and the

index is updated. Otherwise, the index remains as is. In the former case, we

may materialize entries that show no indication if they will be used in the future.

Although this was one of our arguments against pre-materialization of all entries

in the beginning of the section, there seems to be no easy way to get around that

problem. If the predicate QUAL is satisfied it is required that the F value of the

new tuple be in the index. Another approach, would be to change QUAL to

(QUAL A {not QUAL'), where QUAL~ is a qualification that describes the tuple

inserted and can be built according to the above discussion. This way we avoid

inserting the new values in the index. Although this solution is conceptually

correct, it is very hard to check whether QUAL covers other predicates if nega-

tion is allowed (ROSE80].

Deletion of a tuple from the indexed relation

In case of deleting a tuple with tuple identifier TID, the entries of the index that

contain the same TID value are also deleted. The predicate QUAL can then be

changed to reflect the fact that the specific value is not any more represented in

the index by introducing negative clauses in QUAL. Because of the above men-

tioned efficiency problems, we propose to leave the qualificatiou ^art unchanged

*K^'^m\^>:v>>^^^

59

and simply allow incoming new tuples to be inserted in the index ever in the case

they match deleted values. Hence, the predicate QUAL is only "increasing" by

means of the number of tuples it covers.

Updates to ground relations may also affect the contents of a partial index. In the

case where these updates are affecting results of QUEL fields, changes may have to

occur in the index as well. Using a validation scheme similar to the one of the previ-

ous section, we can check which index entries must be changed after a given update to

a ground relation.

The above are the only actions required to keep an index up to date. Clearly,

the content of the index reflects the dynamics of the system by providing information

only on data frequently asked. In that sense, partial indexing is also some kind of aea-

eion support [KUCK86], witetc <» user starts up a session and depending on the queries

he/she uses, the system may create secondary structures to speed up common opera-

tions. Another comment is that the predicate QUAL associated with the index, may at

some point get extremely complicated because of the number of disjuncts it may con-

tain. At such a point the system may use some statistics to estimate the percentage of

the tuples that have already been indexed. If that is above a predefined threshold (e.g.

80%), the system may select to index all QUEL entries. QUAL is then changed to

"true ' and all incoming new tuples ^ill have to be indexed. We then arrive in the

situation that was discussed in the beginning of the section where all materialized

objects are guaranteed to have an entry in the index table.

-kNl'.'--'- i }h)\Vj1jr^\y\rrj,>yfyfMX*x?*7*iJ

60

Finally, we would like to mention another possible use of partial indexes. Many

times users issue all their queries through specific views that they have defined over

ground relations. Users are not allowed to keep materialized versions of the views in

the system because of its high space cost, but they still would like queries to execute

fast. Indexes on ground relations will be helpful for that. However, these indexes con-

tain more information than what these users need, namely an index only on the result

of the view materialization. A partial index seems like a clean solution to that prob-

lem. The QUAL part will be static since it will be the predicate that defines the view,

but querying and updating will be performed under the guidelines outlined above.

This idea can also be extended to normal relations, since these are special cases of

views. Using partial indexes better performance can be achieved by allowing the index

to keep information only on frequently accessed data.

2.6. Summary

This chapter first presented the language QUEL-I- and its capabilities. Then, an

extended decomposition algorithm based on the INGRES query processing algorithm

was proposed. The extensions made were mainly due to the fact that one new opera-

tion was introduced, namely the materialization of QUEL fields. We showed how a

general algorithm can be used to take under account the fact that materialization is

very expensive and the number of times it is performed should be minimized. Also,

some special case strategies were discussed that aim to reduciug the sizes of material-

ized results.

XMtäWMtätä^ :\'i<tzti*:<; ;<-•:<-^•■■öv<••^A■f:^>:,•:^•>-^^^^■.^>:-;vc■^>:,-i

61

Caching was then proposed as a way to avoid evaluating the queries found in

QUEL fields more than once. Several issues associated with caching were discussed.

Among others, replacement policies, invalidation algorithms and policies that decide

which objects to cache were examined in detail. The discussion shows that caching is

essential in the QUEL+ environment and various solutions to the above problems can

be derived once the cached object characteristics are known. How to compute these

characteristics and how to adapt the system caching policies according to these statis-

tics is a very interesting open problem.

Lastly, a new indexing technique. Partial Indexing, was proposed to provide

efficient access to results of QUEL field materializations. A partial index is a combina-

tion of both a conventional index table and a predicate. Predicates characterize the

set of tuples that can be accessed through the corresponding index tables. We also

described how the system can check if an index is useful in processing a given query

and what are the necessary operations to maintain a partial index when queries and

updates are performed.

£tf>:vc>Mv>^/>>^^

CHAPTER 3

OPTIMIZING THE EXECUTION OF PROCEDURES

3.1. Introduction

The previous chapter introduced the language QUEL+ and suggested some ways

to speed up query processing in the case where the commands stored in QUEL fields

are exclusively queries (or retrieve commands in INGRES). This chapter is con-

cerned with the more general problem of procedure optimization in the QUEL+

environment. To motivate the discussion that follows, we give an example drawn

from [KUNG84].

Suppose that we are given a set of algorithms that can be used to solve the Shor-

test Path (SP) problem on a grid representation of a map. These algorithms find a

sequence of points in the grid starting from a given point S (source) and ending to

another point D (destination) such that the total cost of traveling through these

points is minimal. This set of algorithms will be represented through the use of a rela-

tion

ALGORITHMS (alg.id,alg.type,code)

where alg_id is a unique identifier, alg_type indicates the general class that the given

algorithm belongs to (e.g. Dynamic Programming [LARS78], Branch and Bound

[RICH83], etc.) and code is a field of type QUEL that is used to store the actual set of

database commands (procedure) that implement the algorithm. Therefore the form of

62

. ---■. '.'-.-■'-, 1.«i.^V^. W^k-»«"'ä.WL.»wP,«Mk,'-.^,-".k.^.J».«»fc

the relation ALGORITHMS will be

63

alg.id

15

20

»ig-typ«

10 Djmamic Progr

Dynamic Progr

Branch and Bound

code

code line 1

code line 2

code line 1

code line 1

To give an example of an entry in the code column of the above relation, we will

present a database procedure that solves the Shortest Path problem using an algo-

rithm based on Dynamic Programming. Assume the existence of a relation

FEASIBLE (source,dest,cost) that provides the cost of getting from a node source

to a neighbor node dtst. Another relation STATES (dest,cost,open) is also used to

record the cost of getting from the initial source point S to any already visited point

dtat in the map. The third field open indicates if the corresponding dest node has

been visited in the past. If open=0, the algorithm will avoid visiting that node again.

Baaed on these relations, the following is a database procedure that finds the shortest

path between two points 5 and D of the map.

retrieve into STATES (dest = 5, cost = 0, open = 1)

range of s.t is STATES
range of f is FEASIBLE

^\Si"js.'\.S,^\Vk
,V,L',-WlS\V\N\'."%\'.\''1.":'.V'." •• . .•■ /• V"^.yw» ,-'.»>•,- >> v W* v.V.-^JV. fJJ'ifJ*j-*.v's:-*-^:-r_f-fi*'j' v-'

64

execute*

<

append to STATES (dest = f dest,

cost = f cost*s cost,
open = 2)

where s dest = f source and s open = 1

delete s

where s dest = t dest and s cost > t cost

or s cost > t cost and t dest = D

replace s (open = s open - 1)

where s open > 1

>

The details of the ahove algorithm and its particular implementation are further dis-

cussed in [KUNG84). Suppose that the above is stored as the algorithm with unique

identifier 15. As mentioned in the previous chapter, a user can request the execution

of this specific algorithm, using the QUEL+ command

execute (ALGORITHMS code)
where ALGORITHMS alg.type = "Dynamic Progr '
and ALGORITHMS alg.id = 15

How to pass parameters and other issues that deal with the details of fully supporting

database procedures will not be explored here. In (STON85] and [STON86b], Stone-

braker et at. give an extensive analysis of these problems and suggest solutions.

Our focus here will be the problem of efficiently processing these QUEL fields.

The system may consult the given set of commands and process them in a way that

minimizes the total execution cost. Relational DBMSs were made efficient largely

through the use of sophisticated optimization algorithms ([WONG76,SELI79]). This

chapter suggests extensions to these optimization algorithms for the new extended

query language QUEL+. Although QUEL+ is used as an example, the proposed

^^Dft^:v-:<:^s<«^^^ ■//•vv^^:^, ■:>:>.>?.-.vvi.-.v^

65

principles should be applicable to a wide variety of extended languages.

Given a set of database commands, it is a common practice in conventional

DBMSs to optimize each command separately. To "optimize" a command means to

choose among the various ways of executing the command. For example, there may

be a choice of indexes to use, or a choice of strategies for executing a relational opera-

tor such as the join. We extend these ideas here for the case of multiple command

processing by discussing interquery optimization techniques.

This chapter is a more detailed presentation of the ideas presented in [SELL85]

and is organized as follows: In the next section we define the notion of an optimization

unit. Then, in sections 3.3 and 3.4 various optimization tactics for use by a QUEL+

optimizer are described. Each of these tactics is related to corresponding techniques

from some other area, in particular compiler construction and query optimization.

Section 3.5 presents two new transformations, each of which transforms a sequence of

QUEL+ commands into a single replace command. Finally, concluding the presenta-

tion of this chapter, section 3.6 summarizes the ideas discussed.

3.2. What is Optimization?

Optimization in database systems means to choose among the various ways of

executing a commard. In this section we will examine what optimization will mean

for extended languages like QUEL-K We motivate our definition of optimization by

reviewing some QUEL+ constructs.

The execute command, as presented in the previous chapter, gives recursive

power to QUEL by allowiug the system to execute relation fields. It is very useful in

w&ytä^ywtoßüinji^^

66

its «xecute* form, where the given sequence of QUEL+ commands is executed

repeatedly, until the database does not change. Generally, each new command of

QUEL+ represents a sequence of one or more simple QUEL commands. This is also

true in the other extended database languages mentioned in the introductory chapter.

For example, in Guttman's thesis [GUTT84b], the new construct is the repetitive exe-

cution operator (*) of QUEL+. Also in GEM [ZANISS), processing of a multi-dot

query has been implemented by translating it to QUEL queries [TSUR84|. Since a

command in an extended language typically represents several commands in a classical

database language, this section proposes that a QUEL+ query optimizer operates on a

sequence of commands rather than the traditional approach of optimizing a single

command at a time.

As a first attempt at designing a QUEL+ optimizer, one could merely optimize

each corresponding QUEL command separately, using an existing QUEL optimizer.

For example, a replace« command would be processed by generating one replace

command, optimizing and executing it, and continuing until the execution of the

replace command does not change the database. We use the term optimization unit

to refer to the unit acted on by the optimizer. Thus in QUEL the optimization unit is

a single QUEL command. We propose that for QUEL+ the optimization unit will be

a single QUEL+ command, including even an execute or execute* operation.

Therefore, the optimization unit has been effectively made equal to any sequence of

QUEL+ commands, for any such sequence can be the argument of an execute com-

mand. In fact, if the programmer wishes, he/she can code an entire QUEL+ program

(containing no programming language commands) inside a single execute statement

^>s>sv:v;v; ^vyx^to?^;tttaM^

67

and the optimization unit will then be that entire program. There are at least two

advantages to enlarging the optimization unit:

(a) The optimizer has more information on which to base its decision. For example,

knowing that there will be several consecutive replace commands executed, the

optimizer may elect to build an index which is not worthwhile for only one

replace.

(b) The optimizer has mor? fkxibility to rearrange the order and implementation of

operations. For example, in an execute* which includes a delete command, it

will be useful to perform the delete operations as early as possible, in order to

reduce the size of the relation to be processed.

One possible disadvantage to this approach is the following:

As the size of the opuü'ization unit grows, so does the complexity of the optimi-

zation task. The firs*, comprehensive approach to query optimization [WONG7Q]

proposed qi^ry cuxomposition as a method to avoid searching the exponentially

t;rowiüg space of query processing strategies. However, the most successful query

optimization method has been that of System R [SELI79|, which does perform

essentially an exhaustive search of the strategy space. Even System R's strategy

avoids searching the full strategy space by using some heuristics to prune down

the cost of the decision process [SELI79|. Therefore by allowing the optimization

unit to grow arbitrarily, the cost of searching the strategy space may exceed the

savings in efficiency.

iKy:<K^^2^<:^:y:y:^:^-:.': v: .•.>>:->:V:V:V:V:V\VVJV: .vvv^jCrvv , -.• . •.- •.- ■.- IUIWU v -.- • • KM ^ «id

68

The benefit of these advantages, and the cost of the disadvantages, grows with

the size of the optimization unit. Clearly this size is to a significant extent under the

control of the programmer, who can enlarge it by placing several QUEL+ commands

inside an execute command. Notice also that an optimization unit must be smaller

than or equal to a transaction unit. This is because the optimizer may completely

rearrange the order of execution of commands in an optimization unit. If there was an

end-transaction statement inside the optimization unit, it would have a completely

different meaning after a rearrangement.

Following the above discussion, the remaining sections examine various tech-

niques that can be used by a QUEL+ optimizer. These are general database program

transformations that aim at reducing the execution cost. The classes of optimization

tactics presented in the following sections are each closely related to techniques used in

other contexts, namely compiler design and query optimization.

3.3. Compiler Design Techniques

Optimization techniques in compiler design focus especially on two areas [AH079]

- temporary storage management (space), and

- loop optimization (time)

Suppose a sequence of operations on an employee relation is given; in addition all

qualifications restrict the initial relation to the set of tuples of employees working for

Joe. Then it may be more efficient to create a temporary relation in advance that will

contain only the tuples of those employees. We view this problem as the problem of

temporary storage management. Managing temporary storage in the context of

'>^: ■:;<.>>^:>::>>>:;.^

69

database operations means optimizing the execution of commands by reusing results

(e.g. temporary relations) produced during the execution of other commands. The

major difficulty in solving this problem is caused by the presence of update commands.

Updates prevent the optimizer from making significant predictions on the kind of data

that is accessed during the execution of the commands. The most interesting and

tractable case arises when all commands are retrievals from the database. It is then

possible to even rearrange the order in which retrievals are performed so that access-

ing the same data pages is avoided. Algorithms for this special case are given in

Chapter 4.

The focus of this section will be the second problem, i.e. loop optimization. In

database operations loops are found in two levels, single queries and transitive closure

(*) operations. In the former, repetitive execution is inherent in the commands. For

example, a query involving a join between two relations can be implemented with a

nested loop. On the other hand * operations are explicitly user defined loops.

The case of implicit loops has been studied in the past as the problem of finding

query execution plans that minimize execution time and avoid evaluating the same

expressions many times [BLAS76,EPST79]. This corresponds to identifying loop

invariants in compiler design.

In the context of * operations some new problems arise. The following two sub-

sections examine two of them.

tl/itlfltZ+lJ^tltäVtätftfKfc*^

70

3.3.1. Loop Invariants

An interesting version of the same problem discussed above is the problem of

identifying loop invariants within a set of commands. For example, aggregate compu-

tations that involve relations not updated during the execution of an iteration can be

evaluated outside the loop and be replaced with a constant in the body of the loop.

The following command changes the salaries of employees with age more than the

average employee age and satisfying some other condition Qual.

replace* EMP (salary=new8a/ary)
where EMP age > avg(EMP age)
and Qual

Clearly the average employee age computation can be moved out of the qualification

and be performed only once, turning the single replace« command into the following

two, presumably more efficient, commands (the first one is assumed to be some system

operation)

Set AVG = avg (EMP age)

replace* EMP (salary=ne«;«o/ary)

where EMP age > AVG

and Qual

The above transformation resembles the previous case of intraquery optimization

described in [EPST79] and the gain in execution time is substantial, especially in cases

where the result of the aggregate is involved in join clauses. An algorithm that

transforms the first database procedure to the second one can be very easily derived;

for each aggregate in the loop, it checks if ail relations or relation fields involved are

not updated during an iteration step. If this is the case then the aggregate can be

ütäQMSWMUtftä^

71

computed outside the loop and stored in a variable which tLen replaces every

occurrence of the agp-egate in the body of the procedure.

In general, there will be iterative database programs where invariants are not

easily identified. Then another technique may prove useful.

3.3.2. Incremental Computation

A more careful treatment of aggregates in loops is also possible if after doing the

simple transformation suggested above there are still aggregates to be calculated in

each iteration. In that case, it may be worth incrementally computing those aggie-

gates, i.e. computing them once in advance and then updating them every time the

data involved changes. As an example, suppose a relation

PARTS (pid,typt,supplier,quantity) with the obvious meaning is given, the com-

mand

replace* PARTS' (quantity=PARTS quantity^)
where PARTS type = »pipes1

and PARTS s^ppller■-•Smith,

and PARTS quantity < avg(PARTS quantity where PARTS.type^pipes1)

modifies the PARTS relation according to the following semantics

if the quantity <>/ •one typt of pipe« tÄat Smith Buppliet ia leg»
than the average quantity of pipe» aupplied. repetitively in-
ereaae hi» »upply for that type of pipe» by t

We can then define a "variable" AVG to hold the result of the above aggregate which

computes the average quantity of pipes supplied by the various suppliers. Let also

COUNT be another variable that holds the numj>er of tuples satisfying the qualification

of the aggregate, that is COUNT — I PARTS [type^pipes] j. Then, given a change

NöK^I^^^A:'^

72

that modifies k tuples, the new value for AVG can be computed using the formula

2k
AVG <~ AVG +

COUNT

The number of tuples modified is always available at the end of performing an update.

For example, in INGRES because deferred update is used for crash recovery reasons,

the size of the intermediate relation created to hold the new tuples, is used to compute

COUNT. The new database procedure that is equivalent to the one presented initially

will be

/• /nittali«« the variablec u*ed •/

Set AVG ■■ avg(PARTS quantity where PARTS type^pipes»)
COUNT = I PARTS [type=pipes] I

/• Then repeatedly pro tea» the PARTS relation •/

execute*
<
replace PARTS (quantity=PARTS quantity+2)

where PARTS type = »pipes1

and PARTS supplier^Smith"
and PARTS quantity < AVG

2k
AVG ♦- AVG ♦

COUNT

Similar formulas can be derived for all common aggregates, like MIN, MAX, SUM

and COUNT. This technique will usually result in a more efficient implementation, if

the number of modified tuples is small. Finding the formulas that compute the new

value of an aggregate computation, given the previous value of the aggregate and the

new values for the tuples, might be hard depending on the structure of the command.

However, even if more effort is needed to construct the equivalent database pro-

^i>>*:.s^>:>:HS'c.>>3>iN>i.>!.v:v:sv/v-.- : - .■/£M^:/:t>:K':':'^^^^:sZ'^^*/^<(<f*s*<i

73

cedures, it may pay off at execution time, especially if most of these procedures are

"canned" transactions that are processed frequently. In this case optimization at

eompile time is possible; that is, preprocessing of the database command and deriva-

tion of a semantically equivalent but more efficient procedure is possible at the point

where the transaction is coded rather than the time it is executed.

As a final comment it should be meciioned that the incremental computation of

aggregates is in another sense a way to update cached results. The ideas discussed in

the previous chapter can be therefore used to detect when an aggregate computation is

affected by specific database updates. Similarly, one might also like to pull the whole

subexpression

»here PARTS type = "pipes'1

and PARTS name = ,3lnlth,

out of the loop by building a temporary relation to hold only that data. This is part

of the temporary management problem that was mentioned in the beginning of the

section and is treated in more detail in Chapter 4.

3.4. Query Optimization Techniques

In this section we examine some ideas from query optimization that are useful in

optimizing extended query language constructs. They are categorized as

- early restrictions, and

- combining operations.

74

3.4.1. Early Restrictions

It is usually advantageous to restrict the size of the relations involved in a query

as early as possible in the execution plan. For example, INGRES selects to execute all

one variable selection clauses in the first step of processing a query. In QUEL+,

delete commands can be considered as restrictions since they reduce the size of rela-

tions involved in subsequent commands. Therefore, in a way analogous to one-

variable clause detachment (WONG76), on«: may want to incorporate the effects of

delete commands as early as possible. Unfortunately delete's cannot simply moved

earlier in the sequence without affecting the semantics of the procedure. For example,

in the case of an append followed by a delete, if the second command is processed

first it may remove from the updated relation tuples that are used in the append com-

mand. The absence of these tuples will clearly affect the result. Only in the very sim-

ple cases where the read set of the append command is non-overlapping with the read

set of the delete it is possible to reverse their order. However, a safe modification

would be to introduce the effects of a delete command earlier in the sequence by

enchancing the qualifications of preceding commands. For example, the following

sequence of operations on the relation Off* (name, salary, mgr)

range of EMP.EMPl is EUP

/* make Joe the manager of all employee» •/
append to EUP (name=EkP name,

salary=EMP salary,
mgrs'Joe")

/* but ... nobody can make more than hie/her manager •/
delete EUP

where EMP salary > EMP1 salary
and EMP1 name = EUP.mgr

;>£VWM^^>S>S>M^^

can be changed to

/« append only tuple» of employee» that make lea» than Joe */
append to EUP (nanie=emp name,

salary=emp salary,

mgrs'Joe')

where emp salary < empl salary

and empl name = 'Joe'

/• but ... «till have to delete »ome old tuple» */
delete EUP

where EUP salary > EUP1 salary
and EUP1 name ■ EUP mgr

The savings introduced are due to the fact that new employee tuples inserted and then

immediately deleted by the delete statement, are simply not inserted at all. An

interesting case arises in situations where iterations of the same sequence are pro-

cessed. For example, assume that the above two commands are executed every time a

new super-manager is declared. Then, it is true that before executing the above com-

mands no employee was making more than his/her manager which makes the delete

statement unnecessary. Hence, the single append command

append to EUP (name=emp name.
salary=emp salary.
mgr2''Joe1)

where emp salary < empl salary
and empl name = "Joe*

is equivalent to the initial sequence. Clearly, that one-command program is more

efficient than the original append-delete pair. However, in general, the delete com-

mand must be added at the end to make sure that the old employee-manager pairs

satisfy the restriction on their salaries. In that latter case, the savings achieved are

not obvious. The size of the relation on which the delete command will act upon is

i

I

76

smaller (since the append statement has more restrictive qualification than the origi-

nal one) which will make that command execute faster. In contrast, the append

operation is more expensive to process because of the more complex qualification.

Formally, the above transformation can be expressed as follows. Given the

sequence

range of t,ti,t3,...,tn is T
range of a|>...,«m,r|,...,rj are other releticns

append ((/i=F1(<,«„...,fn,«„...,«n,),

/2==^,2('>'l>--.'n>*I>-"'«m)'

where Q(7AL1(M„ . • • ,tn,*v . . . ,«m)

delete t
where QUAL2(t,tl) . . . ,tn,rvrO

it can be transformed to

append «(/^F^f.t,,...,^,«, em),
f2:saP,^t>tl'—>tn,Bi,...,8m),

fhami!'lt(t,tl,...,tn,»l,...,am))
where QUALl(t,...) and QUAL2(t',t,l,...,t'n,...)

delete t
where QUAL2{t,...)

where

t'j «— the tuple tj where its fields /,• (1< «< *) are changed to F,-(t,...)

and

QUAL2 is the negation of QUAL2

The hard part of the above transformation is the computation of QUAL2. In the case

y^^&/coxi>.^i0s?!j^^ «QDöMöftM </.•:•,-" .• ■■'mxmm

' - - * --..*« ■ • «r- « ^ ^ ■. ■..»". , ITT, j k

77

where QUAL2 is simply a conjunction of one-variable clauses, QUAL2 is the disjunc-

tion of '.fee same one-variable clauses with reversed operators. However, when joins

are allowed, the task of producing QUAL2 becomes very hard. Aggregate functions

must then be used since the query language semantics cannot support negatior in the

same sense with first order logic. Stonebraker's proposal for the implementation of

integrity constraints using query modification (STON75| can be used to construct

QVJ\L2. Finally, a similar transformation can be derived for replace-delete pairs

of commands.

Generally, performing this syntactic rather than semantic transformation, does

not require any specific knowledge about the pair of commands. On the other hand,

the gain in performance is high, especially in cases where the number of tuples

appended and immediately deleted by the next command, is large. Also, as mentioned

above, sometimes the second operation need not be performed at all, i.e. its effects are

totally introduced into the first command. This requires extra information that can

be either derived from the form of the program (e.g. the example mentioned above

about iterative programs) or from the use

3.4.2. Combining Operations

In conventional query optimization one might prefer to execute both a selection

and a join in a relation at tht same time, thus avoiding scanning the same tuples

twice. In the extended environment of QUEL+ one might like, analogously, to com-

bine the execution of multiple commands. In the case of retrieve only commands,

merging is possible and practical in many cases (see the discussion of Chapter 4).

JK'^ " » täXKiltötän&yütäbOaSj^^ . • o v- .o ._ ■■. •-. t. •:,HViMftw

78

Alternatively, consider a sequence of two replace commands. We will show

that there is a single replace operation that produces the same result. This new

command is the composition of the two original replace commands, where composi-

tion in the context of database operations is defined in the same way as with

mathematical functions. An update command like

replace T (Target-list) where Q(T,RvR2,...,Rn)

can be thought as the operation

t *-t(t,RvR2,...,Rn)

on a tuple variable t ranging over T, where

f(«,fil,-,Än)
h («,/?„...,/?„) if Q= true

t if g = false

Here, h is a function that describes how values are assigned to fields of the relation T

according to "Target-list", and i?,, R2,...,Rn are relations not affected by the replace

command.

The transformation we propose is as follows: given a relation T (f \,f 2<---Jk) and

the following two replace commands

range of Mi,*2,-.*n is T
range of «1,...,«rn,rl,...,r(are other relations

(I) replace t (/,—f ,(<,<„...,<„,«„...,»„,),

A^üC-* i, ••■,<„ .«lr--.«m).

/*"B'»(Ml....,<n.«lr..,«m))
where gC/ALl(M„...,«„,«„....,«„,)

(II) replace t (fl^G1(t,tv...,tn,rl,...,rt),
fi=G£t ,t „...^„.r,,...,^),

:%w^&''&A&-^^&^rt^' Z'Ji •:-:■ vv: .^VIN^SV-:^^^

79

fk-Gk{t,t1,...,tn,rl r,))
wh«re QUAL2{t,tl,...,tn,r1,...,rt)

transform it to the following replace command

replace t (fi*-f;i+{f"i-f,
l)*d2.value,

whtTe
[(QUALlitJi tn,3i,...,em) and d^value^l)
or

{QUALl(t,tl,...,tn,8i,...,8m) and </,.t;o/ue=0)
1

and
[(QUAL2it')t'l Oiv,r,) and d2.vatue~l)
or

{QUAL2(t,,t!
v...,t'rK,rl,..,ri) »ad d2.value=0)

where

f'i mm tfi + [/^(t,«!,...,«,,,«^...,«^) - t.fi] * devalue

/". = Gi(t',t'l,...,t'n,sl 8m)

t'j = the tuple tj where its fields /, (1< • < *) are changed to /',

QUALl and QUAL2 are the negations of Qt/ALl and QUAL2 respectively,
and

dl and rf2 are range variables over some dummy relation DUM (value) with a
single field value. This relation contains only two tuples with values 0 and 1
respectively.

What the above transformation proposes is to simply propagate the updates of the

first replace to the qualification of the second one and then merge the two operations

into one, in the same way the composition of two functions is performed.

>:M^>>VJ.>>>/'^VJ>:V'V:V^
«I

80

To give an example, the following two commands

replace EMP (depts'shoe1)
»h?re EUP age < 40 [EyP^-/(EMP)]

replace EMP (salar7=ll*EyP.salary)
where EUP age < 40 [EUP*-;(EUP)l

can be obviously replaced by

replace EMP (dept^shoeV salary=l 1*EUP salary)
where EMP age < 40 tEMP*-y(/(EMP))]

As a harder example where more complex composition takes part, consider

replace EMP (salary=ll*EMP salary)
ihere EMP age < 40 [EMP —/(EMP)]

replace EMP (dept^shoe1)
where EMP salary < 25 [EMP —j (EMP)]

These two will now be replaced by

replace EMP Cdept-EMPdept*(»shoe"-EMP dept)*(/2.t;o/ue,
salary=EMP salary*0 1*EMP salary*«/,.vo/ue)

where
KEMP age < 40 and d^alue*!) or (EMP age > 40 and rf,.t;o/ue=0)]

and
[(IMP salary+0 1*EMP salary*(/,.t;o/uö < 25 and t/j.vo/oesl)
or
(EMP salAry+O 1*EMP salaryfrrfpva/He > 25 and d^value^O)}

[EMP-?(/(EMP))]

Notice that we have geatrally expresset? differences using the standard "-" operator.

It is not difficult to define tikis)per » !or strings also, so that if s is a string

s-s=0
s*0=s
s-0=s
s*l=s

£:^>:>&fr:v*&^^^

81

s*0=0

The importance of the above transformation relies on the fact that the relation

updated is opened and accessed only once; moreover, the query processing engine can

make the new command more efficient than the separate execution of the two initial

commands. The undesirable effect of producing a much more complex qualification is

mainly due to the fact that negation is not handled well in query languages like

QUEL. Due to that, the variables rf, and d2 had to be introduced. The modified

qualification will in many cases require accessing all tuples of the relation unless more

clever processing techniques are used (e.g. techniques that recognize that a tuple will

either satisfy QUAL or QUAL but never both and will therefore avoid searching all

tuples more than once). We can also show with similar transformations that two

append or two delet« aggregate-free commands can be merged to a single append or

delete respectively.

Examining other combinations of update commands it can be seen that there is

no easy (and sometimes there is not at all a) way to combine two different commands

in one. For example, an append followed by a replace cannot be generally -tianred

to a single append or replace. The reason is that an append ^nuo" Se f: -»«sse »

an equivalent replace command since the latter only modifies exL! ag tnples am5

cannot insert new values, and vice versa. Therefore. tJie iäecw T tliei it« ru' c/

the other command cannot be reflected through a single pj» .atk .. lt. raste* wherr th;s

combination is not possible, the di^ussion of the preview subsection ?.Sr»a 5r me ..i

on producing more efficient programs by changing the order m % hi<:h the gjv^ com-

82

mands are executed or modifying the qualifications.

3.5. Some Special Case Transformations

In this section we present two new optimization techniques which extend the

technique of combining operations mentioned above. Each transforms a sequence of

QUEL+ commands to a single replace command. The transformation of several

commands to a single replace* command can yield significant savings. It allows the

optimizer to concentrate its efforts on processing one canonical type of command,

namely replace. Since replace does not change the size of the relation, the optim-

izer need make no estimates about that size. Experimental evidence (KUNG84I a'so

indicates that such a transformation does in fact save significant processing time for a

particular class of problems.

3.5.1. Bounded Problem Space Problems

Consider a QUEL+ command where only one relation, say R, is modified and

this relation is known to be a subset of some other relation 5, where 5 is known

before the execution of tbe given QUEL+ command. It is also known that R remains

a subset of 5 throughout the execution of the given command. We will show that in

this case it is possible to transform the given command to a single replace or, in the

case of execute*, in a single replace* program.

In order to show that this transformation to a single command is possible, we

first note the :esult of the previous section, which shows that any two replace com-

mands can be combined to a single replace. Thus we nee<: only show that any data-

base operation on R can be expressed as a replace command. We do that by

Mfftäüüüßütö^^ ->::<v>->':-->v--:-^-/:<-.-.---:".v.-:%v-:v:---:--':----.-: ■: m ■■::

83

constructing a relation S* which is equal to 5 witb the addition of a new field,

Present, with the following semantics :

• a tuple from 5 that is currently in R will have a 1 in its Preaant field in S*

• a tuple from 5 that is not currently in R will have a 0 in its Preeent field in 5*

We will now show that every database operation on R is equivalent to a replace

command on S* by giving a set of transformations.

Tl, An append command is transformed to a replace command where the tuples

that satisfy the qualification change their Preeent field value to 1. That is

range of rl,rtt...,rm is R
range definitions for other tuple variables

append to fi (/, = valv...,fh mm valh)
where q (r„r,,...,rOT)

becomes

replace « {Present — 1)
where «./, = vo/i
and
and «•/* — valk

and q («1,«2,...,«m,...)
and «i-Present - 1
and
and e-.Present = 1

T2. A delete command is transformed to a replace command where the tuples

that satisfy the qualification change their Present field value to 0.

range of r,rl,ri,...,rm is R
range definitions for other tuple variables

delete r
where q (rl,r2,...,rm)

v->^v^:v:^:v?x\s:*\vv\o> .^^^ •_ ■ i

84

becomes

replace e (Present ■ 0)
where q («,,«2,...,^,....)
and «t-Preaent = 1
and
and »m.Present « 1

T3. Finally, a replace command is transformed to two new replace commands: the

first one corresponds to the deletion of the old tuples while the second one

corresponds to the addition of the new version of the deleted tuples. As was

shown in the previous section, these two commands can be merged to a single

replace.

In all of the above cases the tuple variables », range over 5*. Notice that the basic

idea in the transformations proposed, is the addition in the qualification of the clauses

Si.Present ■■ 1

for all tuple variables r, that range over the given relation R. This clause simply

states that the tuples that should be referenced from S are only those that would nor-

mally be in R, i.e. those that result from append or replace commands (Present =1)

and not those that have been deleted (Present—0). This query modification process

is very similar to the one proposed in (STON86b| in support of data managers that

use optical disks to store the data. There a deletion does not imply the removal of

tuples. Deleted tuples are simply marked as being invalid. It is also clear that in the

case of an append command one need not include all fields in the new qualification.

Only tl^ose fields that constitute a key should be included. The number of such fields

is in most of the cases less than-the total number of fields and the size of S much less

ii^-ööffiöÄfi^»^^

85

than the cartesian product of the domains of the fields of R.

A problem that arises in some cases is that the relation 5 is not known in

advance or it is an extremely large relation. In the first case this transformation sim-

ply cannot be used and other optimization techniques must be used to get a better

version for the database procedure. In the second case it is possible to do the

transformation but not necessarily beneficial because of the size of 5. In such cases

special algorithms may need to be devised. We see an example of this in the next sub-

section.

3.5.2. Dynamic Programrr.ing Problems

The problems discussed in this section share the property that all are some

implementation of the dynamic programming paradigm. A STATES relation, which

contains (in each tuple) the current best value of the cost to be maximized, is built

using the usual dynamic programming method. The example used is the shortest path

problem described in the beginning of this chapter. The same tactic to be presented

here can be used with other standard applications of dynamic programming as well,

like the knapsack problem or the reliability problem.

A complete QUEL-i- program for the shortest path example appears in section

3.1. There, ihe relation FEASIBLE (source,dest,cost) is fixed and the relation

STATES (dest. cost,open) contains at all times the current state of knowledge about

the problem, i.e. the cost of getting from the original source point 5 to any point deet

in the given map. If we were to apply the technique of the previous section, we would

seek a fixed relation S which contains STATES for the lifetime of the algorithm's exe-

KOO6W^>^<--^^C<«'.:<--^.:-^<--.- ;•v■^^^^>;^■;v>>^^v>^.";^^Ä•f:.^^v^■>^•;^^^^v^'^^.•:v^1-:v^^:^v

86

cution. The problem ia that such an S would have to hold a large number of tuples

for each node, namely one tuple for every number less than the current cheapest cost

of getting to that node. We will propose here a way to overcome this problem. The

program that solves the SP problem, like any program using the dynamic program-

ming approach, consists of two phases.

In the first phase the relation STATES is expanded with the introduction of
new nodes, i.e. the ones that can now be reached in the search space
(expanaion phase)

Then in the second phase, nodes with the same dest value are compared and
all but one are deleted according to some criterion, e.g. the cost of getting
from the initial node 5 tc »hat specific node
(optimality phase)

The main loop of the program would be

range of r,r',r,,r2,...,rm is STATES
range definitions for other tuple variables

execute*
<
/* expansion phase */

append to STATES (.dest = val0,
/, — vo/,,

/2 = va/2,

/* = fo/jfc)
where q(r1,r2,...,rm, .)

/• optimality phase <?/
delete r

where r.dest — r'.dest
and tt'(r,r',..-)

>

Moreover the condition w is such that w(r,r',...) and w(r',r,...) cannot be both true

(antisymmetric relation of r and r'). This means that only one tuple with a specific

ÖQÖ&KNKSr>>>^^,-'V^^

87

value of r.dest will remain in the STATES relation after the optimality phase.

Let us now show that the above program can be transformed to a single replace

command. First, we add a field Preeent to the STATES relation and call the new rela-

tion NSTATES. Assume that initially all tuples in the NSTATES relation have their

Present field value equal to 0. As was explained in the previous section an append

command will set the corresponding Present value to 1 while a delete will reset it to

0. Then the first command of the above program will be transformed to

range of »,«',«„«2,...,«,„ is NSTATES
r. ge definitions for other tuple yariables

replace s (/, = vall,...,fk = valk, Present s 1)
where s.dest = i;a/0

and q («„«2,...,«m)
and Si.Present = 1
and ...
and sm.Present = 1

Note that we have used the fact that dest is a key in order to identify the tuple from

NSTATES to be updated. Hence, all restrictions of the form «./,=i/o/, have been elim-

inated.

An attempt to transform the second command using the transformations from

the previous section would fail since in the NSTATES relation there cannot be two

tuples with the same dest value. So the second command should be translated as fol-

lows

if the tuple appended during the expansion phase is the first one appended to
NSTATES for that value of the dest field (i.e. r.Present =0), then do the up-
date,

else do the update only if the new tuple would not be deleted by the second

KvM>(X<14t4^^

88

command, i.e. if w(«,(v{},vl,v2,....vk)y....) is true, which guarantees that this tu-
ple will not be deleted by the delete command.

This interpretation allows us to omit the optimality phase command by only enhanc-

ing the qualification of the replace command that the initial append operation was

transformed to (see similarities with the example presented in section 3.4). The final

one-replace command program will be

replace a (fl = va/, fk = valk, Present = 1)
where e.dest = val0

and q («„«2,...,«m)
and al.Prisent = 1
and
and 8m.Present = 1
and (s.Present = 0 or w(s,{val0,vall,...,valic),))

We should also note here that the command shown above might now be ambigu-

ous. There may be more than one value to be assigned to a single tuple (non-

functional update). This corresponds to the case where man> tuples with the same

dest field value are appended to STATES, due to the existence of multiple paths from 5

to dest. However, this is a general problem of ambiguous updates and in our case is

easy to solve by using the condition w to eliminate tuples with higher cost.

We have shown how the above dynamic programming problem for search spaces

has been reduced to a single replace* program. The difference between the two pro-

grams is that the first one starts with a rather small relation which incrementally

grows as the iterations are executed while the second one starts with the whole prob-

lem space and updates the information recorded about the nodes. What remains to be

examined is how this new version compares in execution time and I/O operations with

the initial version of the algorithm. The result of this comparison depends not only on

>7^?-;v':<^< •<<^:<*;^^

89

the size of the NSTATES relation but also on the fraction of it that will be used in the

program, li has been shown through a series of experiments that Dynamic Program-

ming problems is a class of problems that will gain in performance from this transfor-

mation [KUNG84). The single replace command runs ten times faster than the ini-

tial two command program for a FEASIBLE relation with 100 nodes, almost 100 times

faster for 400 nodes and infinitely faster for more ,han 500 nodes.

3.6. Summary

The problem of optimizing extended query language commands and in particular

sequences of QUEL commands (procedures) was described. Our presentation included

several optimization tactics, some based on similar tactics in other areas and some new

ones.

Moving invariant aggregate computations out of loops and incremental computa-

tion of aggregates were used as examples to illustrate how iterative constructs can be

made more efficient. Another aspect that can be found in compiler design as well,

common subexpression analysis and reusal of common intermediate results, is dis-

cussed in detail in the chapter that follows. The ideas of performing early restrictions

and combining of operations where drawn from conventional query optimization and

abstracted in our environment as merging database commands. Physical database

design techniques [SCHK78] are also applicable in the environment of QUEL+. The

optimizer is given a set of data, namely the given relation?» m:1 their organizf.uon plus

a set of commands, and some information about the frequency of the command» h

then seeks an optimal reorganization (perhaps none) of the physical database. What is

■/v.->\VWC-.-:^VVV-:Sü^ v-:vv:N\si>^^

90

missing in the case of procedures is complete data on the frequency of the commands

but estimation techniques like the ones referenced in [KUNG84] can be devised. Also,

the QUEL+ optimizer must take care not to reorganize the database in a way which

will degrade future performance, e.g. creating an index which will slow down updates

for future commands which do not use that index. The solution to the a,bove problem

is to create temporary secondary structures (indexes) or primary organizations that

will be used during the execution of a repetitive command or a procedure but they will

not persist beyond that.

Finally, some special case transformations that are applicable to database pro-

cedures with a specific structure were discussed. Our new tactics include the some-

what surprising result that any QUEL program satisfying certain criteria is equivalent

to a QUEL program which consists of one replace statement. We have also shown

that a large class of problems, namely those which use the dynamic programming

approach, satisfy these criteria. The transformations presented are useful not only in

this context but in general transaction processing as well, since they are motivated

solely by the need to expand the optimization unit from one database language com-

mand to a sequence of commands. Experimental results have shown that these

transformations require minimal effort to be applied; in return, performance gains are

substantial.

>>y\.^.^y .r^/^X. VV ^^^

m&&M»^$ft&»&^^

CHAPTER 4

MULTIPLE QUERY OPTIMIZATION

4.1. Introduction

The discussion of the previous chapter, suggested a set of transformations and

tactics for optimizing collections of commands in the presence of updates. In this

chapter we examine a special case which gives rise to more elegant and general solu-

tions to the multiple command processing problem. The retrieve-only case where the

set of commands to be evaluated is restricted to retrieve queries only is studied. Such

sets arise in the QUEL+ environment if a procedure stored in a QUEL field is solely

retrieving data from the database.

However, there are many other applications where more than one query are

presented to the system in order to be processed. First, consider a database system

enhanced with inference capabilities (deductive database syetem) [GALL78]. A single

query given to such a system may result to more than one actual queries that will

have to be run over the database. As an example, consider the following relation for

employees

EUP (name.salary,experience,manager,dept.Dame)

Assume also the existence of a set of rules that define when an employee is well paid.

We will express these rules in terms of i" trieve commands.

/• A% employtt xm well paid if he/»he makea more than 4OK */

:

■

■

92

Rule 1: retrieve (EMP all) where EMP salary > 40

/• i« employee ia «ell paid if he/ahe. make» mort than SSK
provided Ke/ahe ha» no more than 5 year» of experience •/

Rule 2: retrieve (EMP all) where EMP salary > 35 and EMP experience <5

/• in employee i» mill paid if he/ahe make» more than SOK
provided he/ahe ha» no more than 3 year» of experience •/

Rule 3: retrieve (EMP all) where EMP salary > 30 and EMP experience < 3

Then a query that asks

I» Mike mell paid?

will have to evaluate all three rules in order to come up with the answer. Because of

the similarities that PROLOG [CLOC81] clauses have with the above type of rules,

our discussion on multiple query processing applies to the optimization of PROLOG

programs as well, assuming that secondary storage is used to hold a PROLOG data-

base of facts. As a second example, consider cases where queries are given to the sys-

tem from various users. Then batching all users' requests is a possible processing stra-

tegy. In particular, queries given within the same time interval r may be considered

to be processed all together (we will see in the following what "all together" means).

Finally, some proposals on processing recursion in database systems

[NAQV84,IOAN86], suggest that a recursive Horn clause should be transformed to a

set of other simpler Horn clauses (recursive and non-recorsive). Therefore, the prob-

lem of multiple query processing arises in that environment as well. However, it is

more complicated because of the presence of recursive queries.

S&ÜMÜ&UMü^

93

Current query processors cannot optimize the execution of more than one queries.

If given a set of queries, the common practice is to process each query separately.

There are generally many possible ways of executing a query {access plane). For

example, there may be a choice of indexes to use, or a choice of strategies for execut-

ing a relational operator such as the join. Access plans are simply sequences of such

simple tasks as relation scans, index scans, etc. The query processor chooses the

cheapest among these plans and then executes it to produce the result of the query. In

the case where more than one query is given at the same time there is another possible

optimization, namely sharing of common operations (or tasks). Examples of such

tasks may be performing the same restriction on the tuples of a relation or performing

the same join between two relations. Taking advantage of these common tasks,

mainly by avoiding redundant pagp accesses, m^y prove to have a considerable effect

on execution time.

The presentation of the multiple query optimization problem is the focus of this

chapter and is organized as follows. Section 4.2 presents an overview of previous work

done in similar problems while Section 4.3 first defines the query model that will be

used throughout this chapter and then presents a formulation for the multiple (or glo-

bal) query optimization problem. Section 4.4 presents our approach to the problem

and introduces through the use of some examples, algorithms that can be used to solve

the multiple query optimization problem. Then, Sections 4.5 through 4.7 present

these algorithms in more detail. Section 4.5 suggests an algorithm which finds a serial

sequence for executing the queries with better performance than any other serial exe-

cution which executes the queries in an arbitrary order. Then, in Section 4.6 we

xx^^^j^x.^y-.N^^ , v-y^yj."»

94

describe an algorithm that goes one step further by allowing the executions of the

queries to interleave, while Section 4.7 proposes a more general heuristic algorithm.

Finally, Section 4.8 presents some experimental results and the last section concludes

the presentation of the multiple query processing problem by summarizing our results.

4.2. Previous Work

Problems similar to the problem of multiple query processing have been exam-

ined in the past in various contexts. Hall (HALL74,HALL76] for example, uses heuris-

tics to identify common subexpressions, especially within a single query. He uses

operator trees to represent the queries and a bottom-up traversal procedure to identify

common parts. In (GRAN80] and [GRANSl] Grant and Minker describe the optimiza-

tion of sets of queries in the context of deductive databases and propose a two stage

optimization procedure. During the first stage ("Preprocessor") the system obtains at

compile time (i.e. at the time the queries are given to the system) information on the

access structures that can be used in order to evaluate the queries. Then, at the

second stage, the "Optimizer" groups queries and executes them separately as groups

instead of one at a time. During that stage common tasks are identified and sharing

of the results of such tasks is used to reduce processing time.

Roussopoulos in [ROUS82a] and [ROUS82b] piw .des a framework for interquery

analysis based on query graphs (WONG76|, in an attempt to find fast access paths for

view processing (view indexing). The objective of his analysis is to identify all possible

ways to produce the result of a view, given other view definitions and ground rela-

tions. Indexes are then built as data structures to support fast processing of views.

:^f^i^^^^^^^^ SCM

95

Other researchers have also recently examined the problem of global query

optimization. Chakravarthy and Minker [CHAK82,CHAK85] propose an algorithm

based on the construction of integrated query graphs. These graphs are extensions of

the query graphs introduced by Wong and YousseB in (WONG76]. Using integrated

query graphs, Chakravarthy and Minker suggest a generalization of the query decom-

position algorithm of [WONG76]; however, this algorithm does not guarantee that the

access plan constructed is the cheapest one possible. Kim in [KIM84] suggests also a

two stage optimization procedure similar to the one in [GRAN81]. The unit of sharing

among queries in Kim's proposal is the relation which is not always the best thing to

assume, except in cases of single relation queries.

The work of [F1NK82| and [LARS85| on the problem of deriving query results

based on the results of other previously executed queries, is also related to the problem

of multiple query optimization. The solutions suggested are useful to our analysis

because they include efficient algorithms to detect common subexpressions among

queries. These subexpressions characterize the data that is shared and accessed by

more than one query. Jarke also discusses in [JARK84b] the problem of common

subexpression isolation. He presents several different formulations of the same prob-

lem under various query language frameworks such as relational algebra, tuple cal-

culus and relational calculus. In the same article he also describes how common

expressions can be detected and used according to their type (e.g. single relation res-

trictions, joins, etc).

The main objective of our approach to multiple query processing is to use exist-

ing query optimizers as much as possible. We would like to avoid making significant

:-: i ■.-■:•■•;■■•■:• ^v;-.-:-.':- : .. ; •; M^A$iMtäWtäi^

96

changes to the query optimizsr; injtead, our goal is to provide a preprocessor that will

reduce the execution cost as much as possible. This preprocessing phase is introduced

as an extra step between the optimizer and the execution modules. However, since not

all relational databasr svftems have br-o desjgued based od liie same query processing

concepts, we will differentiate between two alternative architectures that can be used

for a system with multiple query processing capability. Figure 4.1 illustrates these

two approaches. Architecture 1 can be used with minimal changes to existing optimiz-

QvQir-.ßn

LOCAL

OPTIMIZER

T
PltPfy—fPn

PLAN

MERGER

QvQ2,.;Qn

GLOBAL

OPTIMIZER

Global Access Plan

RUN-TIME

SYSTEM

Global Access Plan

RUN-TIME

SYSTEM

Architecture 1 Architecture 2

Figure 4.1: Multiple Query Processing Systems Architecture

^>^>>>^>y >!.>>-•."v^viv:-. A" ^ä^/^^V^:^;/:^^.^.-/^-.^^.:'.:^^.:^^^^

97

ers. A conventional Local Optimizer generates one {locally) optimal access plan per

query. The Pit i Merger is a component which examines all n access plans and gen-

erates a larger plan, the global access plan, which is in turn processed by the Run-

Time System. In many existing systems queries are compiled and saved in the form

of access plans (see for example System-R [ASTR76] and POSTGRES (STON86b]). It

is then an interesting problem to derive procedures that, given a set of such plans,

identify a sequence in which they must be run in order to reduce the I/O and/or CPU

cost. More sophisticated procedures can also be used for that reason. For example,

Chakravarthy and Minlcer (CHAK85] describe an algorithm to process multiple joins

involving the same relation R by scanning R once and examining several restriction

conditions in parallel. Using such a procedure though implies rewritting the query

processor which, as we argued above, requires a major effort.

On the other hand, there are systems that do not store access plans for future

reusa! (e.g. INGRES [STON76]). To make our framework general enough to capture

these systems as well, we introduce Arcuitecture 2. The set of queries is processed by

a more sophisticated component, the Global Optimizer, which in turn passes the

derived global access plan to the Run-Time System for processing. Architecture 2

therefore is not restricted to using locally optimal plans already stored in the system.

The purpose of the following sections is to exhibit a set of optimization algo-

rithms that can be used fur multiple query optimization either as Plan Mergers or as

Global Optimizers. The algorithms to be presented differ on the complexity of the

Plan Merger and on whether Architecture 1 or 2 is used. The trade offs between the

complexity of the algorithms and the optimality of the global plan produced are also

J&K5toJö)™MSa^^ _; S ÄvffiMÖftfifeö'

98

discussed.

4.3. Formulation of the Problem

We assume that a database D is given as a set of relation« {RiMi, ■ ■ . ,Rm},

each relation defined on a set of attributes (or fields). A set of queries

Q= {Qi'Qto • • ■ >Qn} on D is also given. A simple model for queries is now

described. A aeleetion predicate is a predicate of the form R.A op cone where Ä is a

relation, A a field of R, op6{=,7^,<,<,>,>} and con« some constant. A

join predicate is a predicate of the form R^A =■ R2.B where Ä, and fi2 are relations,

A and B are fields of Rl and i?2 respectively. For simplicity we will assume that the

given queries are conjunctions of selection and join predicates and all attributes are

returned as the result of the query (i.e. we assume no projection on specific fields).

Clearly the above model excludes aggregate computations or functions as well as

predicates of the form R^A op R2.B=*R3.C. Extending a system to support such

predicntes is possible but would require significant increase in its complexity. The res-

triction on conjunctive queries only is not a severe limitation since the result of a dis-

junctive query can be considered of as the union of the results of the disjuncts, i.e.

each disjunct can be thought as a different query. Equijoins are also the only type of

joins allowed among relations. This assumption is made in all the proposals men-

tioned in the previous section and seems quite natural consider'ng the most common

types of queries. Finally, not allowing projections enables us to concentrate on the

problem of using effectively the results of common subexpressions rather than the

problem of detecting if the result of a query can be used to compute the result of

r:^Atävjs*'.\\tä

99

another query. Assuming projection lists, does not increase the complexity of the algo-

rithms that perform multiple query optimization. It only increases the complexity of

the algorithms that detect common subexpressions among queries. The proposals of

[LARS85] and [FINK82] provide such algorithms.

A task is an expression relname *~ expr. relname is s» name of a temporary

relation used to store an intermediate result or the keyword RESULT, indicating that

this task provides the result of the query, expr is a conjunction of either selection

predicates over the same relation or joins between two, possibly restricted, relations.

This latter type covers queries that are processed not by performing the selections first

followed by the join, but in a "pipelining" way. For example, consider the following

query on the relations EMP (name, age, dept.name) and

DEPT (dept.name.num.of.emps)

retrieve (EMP all.DEPT.all)
where EUP age < 40
and DEPT.num.of.emps < 20
and EMP dept_name = DEPT dept_name

One way to process the query is by scanning the relation EMP and having each

employee tuple with qualifying age be checked across the DEPT relation. There is no

need in storing intermediate results for both EMP and DEPT. To be able to include

this kind of processing in our model, the second type of join tasks was introduced. In

the remaining discussion, tasks will be referred to as if they were simply the expr

part, unless otherwise explicitly stated.

Let us define now a partial order on tasks. A task <, implie* task tj ((, =^ <) iff

t,- is a conjunction of selection predicates on attributes A^ An, ..., A^ of some relation

_ _. _■ '^mritor*mx^m*m*zt2*i&w

100

R, tj is a conjunction of selection predicates on the same relation R and oc attributes

■^i» -^2 Ai with /<* and it is the case that for any instance of the relation R the

result of evaluating (,• is a subset of the result of evaluating tj.

A task t, is identical to task tj (t, m tj) iff

a) Selections : t,- =^ (;- and tj =^ t,-

b) Joins : (,• is a conjunction of join predicates Ej.A, — E^Bj, Ei.A2 = E2.B2,...,

EfAk — E^.Bk and tj is a conjunction of join predicates E'l.A1 = E'^B,,

E'iA2 Ä ^'2^2 E'^At - E'j.ß* where each of £„ £;2(E', and E'2 is a con-

junction of selections on a single relation and £", m £"', and E2 m E'2

Based on the above definition for tasks we now define the notion of an access plan.

An access plan for a query Q is a sequence of tasks that produces the result of

answering Q. Formally, an access plan is an acyclic directed graph P = {V,E,L) (V,

E and L being the sets of vertices, edges and vertex labels respectively) defined as fol-

lows :

• For every task t of the plan introduce a vertex v

• If the result of a task f, is used in task (;, introduce an edge t;,—v; between the

vertices v, and Vj that correspond to <, and t; respectively

• The label L(t;,) of vertex t;,- is the processing done by the corresponding task (,

(i.e. relname <— expr)

For example, consider .the following query on the relations

EMP (name,age.dept.name) and DEPT (dept.name.num.of.emps)

.^OCH^:^J^>:W^V-^MW»^^

101

retrieve (EMP all.DEPT all)
where EMP age < 40
and DEFT num.of.emps < 20
and EU? dopt,name = DEPT dept.name

One way to process this query is

TEMPI — EMP age < 40
-■'1IP2 <- DEPT num.of.emps < 20
RESULT *- TEMPI dept.name ■ TEMP2 dept.name

The graph of Figure 4.2 shows the corresponding access plan.

TEMPI —

EMP.age < 40

TEMP2 —

DEPT.num.of.emps < 20

RESULT «-
TEMPI.dept. name=TEMP2.dept. name

Figure 4.2: Example of an Access Plan

Notice that there are generally many possible plans that can be used in order to pro-

cess a query.

Next we define a cost function coat : V—*'E for tasks. In general this cost

depends on both the CPU time and the number of disk page accr -es needed to pro-

cess the given task. However, to simplify the analysis, we will consider only I/O costs.

Including CPU costs would only make the formulas more complex (see for example

!omx>w?jcv:w>?ia»,j.:NK^

102

[SELITQ]). Therefore,

co«t(v,) = the number of page accesses needed to process task f,-

The cost Coat(P) of an access plan P is defined as

Co«t(P)= jreo*t{vi)

We will refer to the minimal cost plans for processing each query Q; individually, as

locally optimal plans. Similarly, we use the term globally optimal plan to refer to an

access plan that provides a way to compute the results of all n queries with minimal

cost. The union of the locally optimal plans is generally different than the globally

optimal plan. Finally, for a given query Q, Be«teost(Q) gives the cost of the (locally)

optimal plan P. Hence, BeateoetiQ) =■ min(Co«<(p)|, where P is the set of all possi-
p€P

ble plans that can be used to evaluate Q.

Let us now consider a syotem that given a set Q of queries it is required to exe-

cute them with minimal cost. According to the above definitions, a global access plan

is simply a directed labeled graph that provides a way to compute the results of al]_n

queries. Based on this formulation, the problem of global query optimization becomes

Given n aete of acceaa plana S^ Sj, ..., Sn, «i S,—{p,,, P|2, ..., Pik,} be-
ing the aet of poaaible plane for proeeaaing <n,

Find a global acceaa plan GP by "merging" u local acceaa plana (one out of
each aet SJ auch that Coat(GP) ia minimal

The Plan Merger or the Global Optimizer of Figure 4.1 performs the "merging"

operation mentioned above. It is the purpose of the following sections to define this

operation and derive algorithms that find GP.

tmfr&v&itätz^ttm^

103

4.4. A Hierarchy of Algorithms

The primary source of redundancy in multiple query processing is accessing the

same data multiple times in different queries. Recognizing all possible cases where the

same data is accessed multiple times requires in general a procedure equivalent to

theorem proving, including retrieving data from the database. Our intention here is

to detect common subexpressions looking only at the logical expressions used in the

descriptions of queries, that is by simply isolating pairs of expressions «i and «2 where

<i ■■► «o- Therefore, detection of sharing is done at a high level using only the

query expressions (qualifications) and without going to the actual data stored in the

database. For example, el may be QIP age < 30 and e2 may be EMP ago < 40.

Then ej =^ e2. However, we do not consider cases where «j may be Off. dept.name

= ■shoe1 and it happens in the specific instance of the database that all employees

under 40 years old are the shoe department. Unless such a rule is explicitly known to

the system in the form of an integrity constraint or functional dependency, it is not

possible to detect that tl=^ t^ without looking at the actual data stored

(JÄRK84a,CHAK84,CHAK86]. Hence, query expressions are considered to be the only

source for detecting common subexpressions. Because several algorithms have been

published in the past on the problem of common subexpression isolation

[ROSE80,F1NK82,LARS85| we will not attempt here to present a similar algorithm. It

is assumed that a procedure which decides, given two expressions Cj and tn, if

«i =^ «2 or «2 ■■"► ei> is available.

Second, as it was stated in the previous section, many systems store in the data-

base optimal local access plans that have been produced in the past (e.g. System-R

iffi^K^ZÖ*^>iM^^

104

[ASTR761 and POSTGRES [STON86b] choose to do so). Because it is not realistic to

expect from the system to store more than one plan for each query, it is assumed that

only locally optimal access plans are stored. Then, if a set of queries is given, there is

no need to generate new plans for those queries that have precomputed plans already

stored in the database. However, for the rest of the queries, optimal plans are pro-

duced and saved for future reusal. When both precomputed and newly generated

plans are available the global access plan is derived.

The various algorithms that can be used for global query optimization are

grouped in a hierarchy shown in Figure 4.3. The reason the algorithms are organized

(AS)

(BS)

(D)

(HA)

ARBITRARY SERIAL EXECUTION

BETTER SERIAL EXECUTION

DECOMPOSITION INTO

SMALLER QUERIES

HEURISTIC ALGORITHM (A*)

Figure 4.3: A Hierarchy of Multiple Query Processing Algorithms

>%>\>"^>"\V'>X>.>>>yj^/V''>y>'^ "^^

105

in such a hierarchy is to indicate the interemiag trade off between the time spent for

optimization and the cost of executing the resulting global access plan. As we descend

the hierarchy, the complexity of the algorithm increases while the access plan cost

decreases. Algorithms AS, BS and D consider only access plans that are locally

optimal. As mentioned above, the locally optimal plan for executing a query Q is

derived by considering Q alone. Algorithm AS (Arbitrary Serial Execution) simply

executes these plans in an arbitrary order. This corresponds to Architecture 1 of Fig-

ure 4.1 with the Plan Merger absent, i.e. no optimization is performed. Algorithm BS

(Better Serial Execution) preprocesses the plans and generates a better order of execu-

tion so that intermediate results (temporaries) are reusable. In this case the Plan

Merger of Figure 4.1 simply rearranges the order in which the plans are processed.

Notice that in both algorithms AS and BS the unit of execution is a whole query, i.e.

the second query is processed after the first one has been totally processed.

Algorithm D (Decomposition) presents a different paradigm. A query is decom-

posed into smaller subqueries which now become the unit of execution. Therefore, a

query is not processed as a whole but rather in small pieces, the results of which are

assembled at various points to produce the result. As an example why D might be a

better algorithm than BS, consider the following database,

EMP (name,age.salary,job,dept.name)

DEPT (dept.name.num.of.emps)
JOB (job,project)

with the obvious meanings for EMP, DEPT and JOB. We also assume that there are no

fast access paths for any of the relations, and that the following queries

umfowywma^^^ : ■ : ; v' i.: -

106

{Qi) retrieve (EMP all.DEPT all)
»here EMP age < 40
and DEPT num.of.eops < 20
and EMP dept.name ■ DEPT dept.name

[Qi) retrieve (EMP all,DEPT all)
where EMP age < 50
and DEPT num.of.emps < 10
and EMP dept_name = DEPT dept.name

are given. If we run either QiOT Q2 first we will be unable to use the intermediate

results from the restrictions on EMP and DEPT effectively. However, the following glo-

bal access plan is more efficient

retrieve into tempEMP (EMP all)
where EMP age < 50

retrieve into tempDEPT (DEPT all)
where DEPT num.of.emps < 20

retrieve (tempEMP all,tempDEPT all)
where tempEMP age < t0
and tempEMP dept.name = tempDEPT dept.name

retrieve (tempEMP all,tempDEPT all)
where tempDEPT num.of.emps < 10
and tempEMP dept.name = tempDEPT dept.name

because it avoids accessing the EMP and DEPT relations more than once. It is drasti-

cally more efficient in the cases where restrictions reduce the sizes of the original rela-

tions significantly. The function of the Plan Merger, in the case of algorithm D, is to

"glue" the plans together in a way that provides better utilization of common tem-

porary (intermediate) results.

Finally, algorithm HA (Heuristic Algorithm) is based on searching among local

(not necessarily optimal) query plans and building a global access plan by choosing one

^WV>>X^V:V\-:V^\H>^^

(

107

local plan per query. Architecture 2 of Figure 4.1 applies to this case. The

effectiveness of algorithm HA is illustrated with the following example. Suppose we

have the queries

{Q3) retrieve UOB all.EMP all.DEPT all)
where E'V? dept.naffle = DEPT dept.name

and JOB job ■ EUP job

(Q4) retrieve (EMP all.DEPT all)

where EMP dept.name = DEPT dept.name

with optimal local plans

(P3) retrieve into TEMPI (JOB all.EMP all)
where JOB job = EMP job
retrieve (TEMPI all.DEPT all)
where TEMPI dept.name = DEPT dept.name

(P4) retrieve (EMP all.DEPT all)
where EMP dept.name = DEPT dept.name

respectively. Notice that Ps and Pi do not share the common subexpression

EMP dept.name=DEPT dept.name. Algorithm HA considers in addition to fj the plan

that processes the join EUPdept.name=DEPT dept.name. It also uses some heuristics

to reduce the number of permutations of plans it has to examine in order to find the

optimal global plan. All the above algorithms are examined in more detail in the fol-

lowing three sections.

4.5. Serial Execution

Algorithms AS and BS of Figure 4.3 are based on some serial execution of the

given queries Qj, Q^,..., Qn. As stated in the previous section we only consider the

locally optimal plans P,, I<«^n. In the first case no restrictions are imposed on the

töst:vAs-'^:C<{o:.:^<f^^

108

order in which the queries are processed; that is what a conventional query processor

would do. In the second case some simple preprocessing is done aiming to better per-

formance.

4.5.1. Arbitrary Serial Execution

In Algorithm AS the sequence in which the queries are run is chosen arbitrarily.

We assume that all queries are processed without taking advantage of any common

tasks that they may share. The global plan GP that is produced is simply the con-

catenation of the locally optimal plans for the queries in an arbitrary way. Therefore,

for any order of processing S - {g,, Qit ■ ■ ■ Q.J, with gu6Q and all ik distinct,

the cost of the global access plan will be

Cost(GP) = JJBeetcostlQiJ

As an example, consider the following queries Qs and Qj

(Qs) retrieve (EMP all.DEPT.all)
*here EMP age < 40
and EMP salary < 10
and EMP dept.name = DEPT dept.naoe

(QB) retrieve (EMP all,DEPT all)
«here EMP age < 40
and EMP dept.name = DEPT dept.name

Assume also that the sizes of the initial relations and temporary results are as follows

size (EMP) = 100 pages

size (DEPT) = 10 pages

size (EMP age<40) = 20 pages
size (EMP[age<40 and salary < 10]) = 10 pages

It is also assumed that the local plans for Qj and Q8 store temporaries for the above

VVA'-.'S:-.:-.•'■,■■■.•:-.:..-:.. .,•:--:■/:•.•:.■:. : • • ; •'•-^,■-:.-\'-.-:-.\-^v:-.••.■ :.-■■ •.•:.-:^v•.%•■-:■.•,•-'.■ -v-.--/

109

restrictions. Then, processing S would require llO+CyflO.lO) page accesses for Qs

and 120+0^(20,10) page accesses for Qt, where C;-(o,6) is the cost of processing a join

between two relations of sizes a and b pages. Hence, the total cost would be

230+C,y(10,10)+C;(20,10) page accesses.

The above algorithm does not consider at all of reusing results that are produced

as intermediate (temporary) relations. A simple extension would be to keep temporary

relations after they are used so that subsequent queries may use them. Better than

that, with some simple preprocessing we can find a serial execution that makes use of

such temporary results. The next subsection presents such an approach.

4.5.2. Better Serial Execution

The goal of algorithm BS is to look at the optimal local plans and derive a serial

execution schedule S that makes use of common subexpressions. Checking if a given

temporary result can be used by another query is done through the procedure pro-

posed in [FINK82].

The first step in deriving the execution schedule S builds a directed graph that

will eventually suggest S using the directed paths of the graph. This kind of graph is

very similar to the precedence graphs used in concurrency control [ULLM82] and it is

used to indicate how the read set of one query is related to the read sets of other

queries. K some query Q, does not share any of its input relations with any other

query, it is put first in the sequence S. These queries are not amenable to any optimi-

zation other than what the locally optimal plan suggests. For the rest of the queries

we define the following directed labeled graph QG(V,E,L), with V being the set of

^M^££^>>:^>>^ : vtämnw>r*m,

110

vertices, E the set of edges and L a set of labels associated with edges

• For each plan P,{V;,£;,-,L,) a node 7, is defined

• A directed edge g,-*gy is introduced i*

a) Proper Implication : There are t;,€V; and Vif-Vj such that
^•(vy)-»- Liivf) and L,^,)^L;(v;)

b) Identical Nodes : There are v.EV; and V/6V} such that
Lj(vj) m L,(t;,) and 1 <j

• Assume that edge ?,—♦qry is introduced because of nodes v,- of P, and t;; of P,

respectively. Then the label of the edge ?,—»e/y is the savings in the cost of exe-

cuting Ly(vy) given the result of L,(t;,). This cost is estimated assuming that one

or more of the rebtioLj used in vy are substituted by the temporary relation that

is created in the task v,-.

Edges of type (a) are introduced to indicate which queries (tail of an edge) can be used

in the evaluation of other queries (head of an edge). The second rule for edge

definition is introduced to break ties between identical expressions in a specified

manner. Algorithm BS then proceeds in the following way :

[l] If multiple edges with the same direction are found between two nodes g,-

and «/y replvre them with a single edge with label the sum of the labels of

the previous edges.

[2] If the resulting graph is acyclic then the execution order S is derived from

the directed paths that are imposed on the graph.

^«»M«s^:v:v:v:-:^^>^^^

Ill

[3] If the resulting graph haa cycles, these are broken by omitting a set of

edges with minimal sum of labels. S is then produced as in [2].

Let QG'iy^'jL) be the resulting graph. The last step of the above algorithm is a well

known NP-complete problem, known as "the feedback arc set problem" (GARE79].

However, in multiple query optimization the graph will have few nodes equal to the

number of queries that access common data and not many cycles. Therefore, this

problem has only minor effect on the performance of the algorithm. A simple analysis

shows that the formula for computing the estimated cost of the global plan imposed

by the sequence S is

Cost(GP)~ JJBetteottiQi)- ^(e)

n
= JJBestcostlQi)— yj n,-eaving8{a)

i—i »ecs

where CS is the set of common subexpressions « found among the queries and used in

the final graph QG', n, is the number of times the result of a common subexpression

« is used in the final sequence and javinj»{$) is the cost that is saved if temporary

results instead of ground relations are used. That cost is defined as follows:

Let i? be a relation and a, and «2 two subexpressions defined on R such that «2

can be processed using the result of «, instead of R. Let also Cff be the cost of

accessing R to evaluate «, and Ct| be the cost of accessing tne result of «! to

evaluate «2- Then

savingsir =
G/i—Clt if «2—^ ai

CR+C,, if »2=«!

¥!&GlHWSi^&b>^^

112

In order to construct graph QG, the above algorithm requires time in the order of

I
JJ \Vi\ , where /:= I F| is the number of vertices of graph QG and V^- are the sets

of vertices for plans P,, 1<I <*. Step [3] is the most expensive step and in the worst

case requires time exponential en the number of the edges.

Let us show with an example how BS works. Suppose that the queries Qs and

Qt of the previous subsection are given. The directed graph constructed is shown in

Figure 4.4.

80
lij \95.

Figure 4.4: QG Graph for Queries Qs and Q,

The edge qt-*qs is introduced because [EMP ag« < 40 and EMP salary < 10] =^

EUP age < 40. Therefore the serial execution will be S=«{QB (55} which uses 80

page accesses less than an arbitrary serial execution which was seen in the previous

section, for a savings of 35%.

To give an example where a cyclic graph QG may occur, consider queries Ql and

<52 of section 3

((?,) retrieve (EMP all,DEFT all)
where EUP age < 40
and DEPT num.of.emps < 20
and EMP dept.name = DEPT dept.name

(Q2) retrieve (EMP all,DEPT all)
where EMP age < 50
and DEPT num.of.emps < 10
and EMP dept.Eame = DEFT dept.name

^V>IV.N\VV.\-.äV\".V.":>V.-.--'. : . w&y&yx&y^mi^bmtirtiZfitw

113

with optimal local plans

{Pi) retri«T« into tenpEMPKEMP all)
where EMP age < 40

retrieve into tempDEPTl(DEFT.all)

where OEPT.nuo.of.eDps < 20

retrieve (teopEUPl all.tempDEPTl all)

where teupEMPl.dept.name = tempDEPTl dept.name

(P2) retrieve into tempEMP2(EMP.all)

where EMP age < 50

retrieve into tempDEPT2(DEPT all)

where DEPT num.of.emps < 10

retrieve (tempEyP2 all,tempDEPT2 all)

where tempEUP2 dept.name = tempDEPT2 dept.name

and sizes of relations and intermediate results

size (EMP) = 100 pages , size (DEPT) = 10 pages

size (tempEMPl) ■ 20 pages , size (tempEMP2) ■ 40 pages

size (tempDEPTl) ■ 3 pages . size (tempDEPT2) = 5 pages

Figure 4.5 shows the QG graph built for these queries. The edge qi--q2 is introduced

because tempDEPT2 can be derived from tempDEPTl, while the edge ?2-*g1 is .atro-

60

Figure 4.5: QG Graph for Queries Q1 and Q2

w^>^Dö^w<^^^^c<•^:<^.:^^^'•^.>■o^>■^:^'"v^^■v<-■^<:<.y:--:<.v^.v v;■•»•,•>:- .v»>.v/.-. ^owwcMcycucuc

114

duced because tempEMPl can be derived from teiapEUP2. The .ycle is broken by

removing the edge gi—»gj for a tota' savings of 60 page accesses.

Although algorithm BS provides better plans than AS it still does not take

advantage of all common subexpressions because of the requirement that queries must

be run in some order and no interleaving is possible. In the next section we present

another approach which takes advantage of all common subexpressions that can be

identified in locally optimal plans.

4.6. Decomposition Algorithm

If query processing is done based on creating tempcrary intermediate relations,

then it is known from existing algorithms (WONG76] that it is beneficial to break the

query down to smaller and simpler subqueries. In the case of global query optimiza-

tion, a similar approach seems promising also. Relaxing the assumption of the previ-

ous section which forced each plan to be processed totally before other plans start

being processed, we will examine here the possibility of interleaving the execution of

various access plans. Algorithm D (Decomposition) takes an approach based exactly

on this idea of interleaved plan execution.

The main idea is to decompose the given queries into smaller subqueries and run

those in some order depending on the various relationships among the queries. Then,

the results of various subqueries are simply assembled to generate the answers to the

original queries. The only restriction imposed is that the partial order defined on the

execution of tasks in a local access plan, must be preserved in the global access plan as

well. As it was the case in the previous algorithms, only locally optimal plans are con-

W^AA^A^>.>^>V>>?\i^^^^

115

sidered. A final assumption made for algorithm D is that temporary intermediate

results are replacing relations used in tasks and this is done without changing the

operations performed in the local plans. That is, the only transformation allowed is

renaming of input relations. This restriction makes the global access plan produced

by D easier to derive. Allowing more complex transformations on query plans in

order to achieve even better utilization of temporary results is also possible and is

described in the context of the heuristic algorithm of the following section.

Algorithm D proceeds as follows. First, as in BS, the queries that possibly over-

lap on some selections and joins are identified by checking the ground database rela-

tions that are used. For all queries Q.EQ that overlap with some other queries, we

consider the corresponding plans P, (local access plans) and define a directed graph

GP{V,E,L) (global access plan) in the following way

• v = u v,-

• E~UEi

• For every v,-6V, L(t;,) — /-,K)

GF is in a sense the union of the local plans. We also define a function /?«« : Q—»F

such that i?e«(Q,)»«v,-, where c,- is the node of plan P,- that provides the result to Q,-.

Based on this graph, the decomposition algorithm performs some simple steps that

introduce the effects of sharing among various tasks. The main idea is to avoid access-

ing the same data pages multiple times. Hence, the transformations that are done on

the graph are based on changing the input relations to subqueries, to previously

VK»ÜÄK!OQWÜÖ00!WSQ/. .->.'.-.V.V.V.v;^/-•/•/.VA/./»y^iV<V^ / .^^'-

■v SHT" Hjn at. nc M. ^ H.JX a n a » . ■■» . « w < * .-»-r j -.tr-j-miJ-*

116

computed temporary relations. Figure 4.6 illustrates the basis of our transformations.

In the following figures nempe and dept are used in place of num.o/.emp« and

dept.name respectively. The temporary relation TEMPI created by subquery SQi can

be further restricted to give the result of subquery SQ2 (SQ2=^SQl). Therefore,

TEMPI can be used as the input to that last subquery, instead of EMP. This is accom-

plished by adding a new edge from the node representing 5(5 j to the corresponding

node for 5^2- Also the relation name in 5(^2 is changed to TEMPI.

Formally algorithm D proceeds as follows. After building the graph GP, the fol-

lowing transformations are performed in the order they are presented

Subquery

SQx

TEMPI «-

EMP.age < 40

Rest of Plan

SQi ,=> SQi

Subquery Subquery

SQ, SQt

TEMP2 ♦-

EMP.age < 30

Rest of Plan Rest of Plan

Subquery

SQi

i-EMPl *- TEMP2 i-

EMP.age < 40 TEMPI.age < 30

i ' ' '

Rest of Plan

Figure 4.6: Basic Merge Operation

SJtöö&M i:^^^ ••: Möfö -x^-^'^«A:« ■: ö .:%>>.: \>^\v:^

117

[1] Proper Impiieation« Let P/fv,) — {v;-I L(t;,) ==^ L(t;y) and

^(v;)¥^ ^K)}- for a given task t;,-, P/(v,) gives the set of tasks Vj,

the results of which can be used by t;,- as inputs instead of other base

relations. Let c,-€P/(v«) be the task such that V f;€P/(t>,),

L(ci)=$>iL(vj) (if more than one such task exists, let c,- be the one

belonging to the plan Pk with the least k). In other words c, is the

strongest condition that can be performed on some input relation(s) so

that the result of this condition can still be used to answer t;,-. Then,

replace the occurrences of base relations used in tasks t;,- with the

corresponding temporary relations TEMPj, found in the tasks

c,=[rEA/PA<—«zprj. This is accomplished by adding an edge c,—»v,- and

changing L(v,) by substituting the relation name involved in the selection

or join to the name of the temporary relation which holds the result in

Hci) (i.e. TEMPk).

[2] Identical Nodes : In the case of nodes that produce identical temporary

relations we use a simple step to compute that temporary relation result

only once and then change relation names to the one selected to hold the

result. First, the equivalence classes C, are determined, each composed of

nodes from V, such that for every t;;-,vfceC,, L(VJ) m L(vk). Select the

vertex Vj belonging to the plan Pj with the least index j as the represen-

tative c,- of class C,-. Then, for each equivalence class C,, remove from

the graph GP all nodes t;;-6C, —{c,} and substitute each edge Vj—'-Vj,

with a new edge c,-—vt. Let L(t;jk)=[rE'AfFik<-ezprAl], for all such vk.

:&^s&tem\-^mb&^^

118

Also let c,=[TEA/P,*—ea:pr,|. Change all occurrences of relation name

TEMPk in vk to lEMP;. Finally, if for some query Qm, v, — Äe«(gm)

and Vj-GC,-, set Rt«{Qm) to c,-. This last step makes sure that identical

final results are never computed more than once.

[3] Recursive Elimination : Because steps [l] and [2] may have introduced

new nodes that are now identical, we apply step (2| repeatedly until it

fails to produce any further reduction to the graph GP. Example of such

a case is a join performed on two relations that are restricted with identi-

cal selection clauses. Step (2) will merge each pair of identical selections

to a single one and then in the next iteration the two join nodes will also

be merged into a single node.

The result of the above transformation is a directed graph GP1 which is guaranteed to

be acyclic if the initial graphs P, are acyclic. This is due to the fact that any transfor-

mation performed on the graph in all cases adds new edges that go always from less to

more restrictive tasks. Therefore a cycle is not possible, for it would introduce a chain

of proper implications of the form v1=^V2=3> ••• =^vl. Finally, using the

directed arcs of GP1 a partial order on the execution of the various tasks can be

imposed. That is the global access plan that algorithm D suggests. The function Ree

also gives the nodes that hold the results for all queries.

To give an example of the algorithm, Figures 4.7, 4.8 and 4.9 show the initial

access plan graphs, the graph GP after transformation [l] and the final global access

plan graph (as a sequence of operations) respectively for the two queries Q l and Qzof

.&ÜJQtfMGiX)Mtfil^^ .' • . •''.'-.--

119

section 3.

TEMPI «—

ET^Pjf* < 40

TOAP2 *—

DEFTnemp« < 20

TEMPI <—

EMPj(e < 60

TEWP2 <—

DEPT.nemp« < 10

RESULT*-
TEXlPl.dept ■■ TEJk<P2.d«i)t

RESULT ♦-
TOHPlxlept «■TEMPS.dept

Figure 4.7: Initial Global Access Plan

•ra^Ri «—

DETT-aem» < 10

RESULTS-
TEMPI dept ■■ TEMRl Aepl

TEMP2 «—

DEFTnemj» < 20

TEMPll ♦—

EMPJC* ^ 40

RESULTS-
TEMPI 1 .dept M TEMP2 Jept

Figure 4.8: Global Access Plan after Transformation [l]

retrieve into TEMPI (EMP all)
where EMP age < 50

retrieve into TEMP2 (DEFV all)
where DEPT num.of.emps < 20

retrieve into TEMPll (TEMPI all)
whore TEMPI age < 40

retrieve into TEMP21 (TEMP2 all)

8^asasB*ffisiö«Mffl^^

120

where TEMP2 num.of.emps < 10

retrieve (TEMPI! all.TaiP2 all)
where TEMPI 1 dept.name ■ TEMP2 dept.name

retrieve (TEMPI all,TEMP21 all)
where TEMPI dept.name ■ TEMP21 dept.name

Figure 4.0: Final Global Access Plan

Estimating the cost of the global plan imposed by the graph Gf*, we have

0081(0?)= gBetteoitiQi) - £ n^savingeie)
»-1 .€C5

where CS is now the set of aW common subexpressions found in the local access plans

and n, and 8avings(a) are defined in the same way as in the previous section. For

example, for the queries Q, and Q2, 0081(0?) = 223 + (7,(20,5) + C;(40,3), where

Oj(a,b) is the cost function for a join between two relations as introduced in the pre-

vious section. This cost represents a savings of 65 page accesses compared to an arbi-

trary serial execution. Concerning the complexity of the algorithm, it can be observed

that steps [l] and [2] of the above ai^orithm require time in the order of /7 I V, I ,
t—i

where k is the number of queries represented by their representative plans in graph

OP and V; is the set of vertices for plans Pt, l<i<k. The number of times N step

(2| is executed aa a result of the recursive elimination of common subgraphs, generally

depends on the size of common subexpressions and in the worst case is the depth of

the longest query plan. The total time required by the algorithm is therefore in the

order of N-/7 IV, I .
i—i

AV^V^'^AV^^V^^

121

We now move on to discuss the most general algorithm that can be used to pro-

cess multiple queries. As mentioned in the beginning of this section, the heuristic algo-

rithm to be described also captures more general transformations than the ones

allowed here (simple relation name change).

4.7. Heuristic Algorithm

As it was illustrated through an example in section 4, merging locally optimal

plans to produce the global access plan is not always the optimal strategy. The main

reason is that there are more than one possible plans to process a query, yet the algo-

rithms presented in the previous sections consider only one of them, i.e. the optimal in

terms of execution time. Using suboptimal plain may prove to be better. Grant and

Minker in [GRAN80] present a Branch and Bound algorithm (RICH83] that uses more

than locally optimal plans. One assumption they make is that queries involve only

equijoins while all selections are of the form R.A=eon9. This section presents a simi-

lar algorithm which is defined as a state space search algorithm (A* [RICH83]) with

better average case performance than the one of [GRAN80]. To simplify the presenta-

tion of the algorithm we will also make here the assumption that all queries have

equality predicates. At the end of the section extensions that can be made to include

more general predicates in queries are discussed.

As shown in Figure 4.1, the Global Optimizer receives as input a set of queries

Q=={Qi'<32> ' " ' <Qn}- Then for each query Q,- a set of possible plans that can be

used to process that query is derived. Let that set be S, = {F,1, P^, ■■■, Atj- For a

given query Q,, S,- contains the optimal plan to process Q, along with all other possi-

SöMWOii^Ätty^^in^^

122

ble plans that share tasks with plans for other queries. For example, for the two

queries (?j and Q^ of section 3, in addition to the plans Pa and P4 presented there the

plan

(PS2) retrieve into TEMPI (EMP.all.DEPT.all)
where EMP dept.name = DEPT dept.name

retrieve (JOB all,TEMPI all)
where JOB job = TEMPI job

should also be considered for query Q3 because it shares the join

EMP dept.naae=DEPT dept.name with P4. Hence, the sets of plans S, and S4 will be

s3 ^{^a.^j} and S^j/'J. Generally, this algorithm considers opti tiding a set of

queries instead of a set of plans, which was the case with algorithms BS and D. Con-

sidering more than one candidate plans per query has the desirable effect of detecting

and using effectively all common subexpressions found among the queries.

This section is organized as follows: in the first subsection a state space is defined

and an A* algorithm that finds the solution by searching that space is described.

Then subsection 4.7.2 presents a preprocessing step that can be applied in order to

improve the average case performance of the algorithm. Finally, the last subsection

discusses the performance of the algorithm and suggests some possible extensions.

4.7.1. The Heuristic Algorithm

In order to present an A* algorithm, one needs to define a state space S, the

way transitions are done between states and the costs of those transitions.

SM^^ÄSI&öhGMM^Ö^^ .■■.'>y^-/^:v?.-?.-?.'?-".v>:^v.v^v;<

123

Definition 1 : A etate s is an n-tuple <Pi,P2> • • • >P»>> where

p^E {NULL} US,-. If Pi ■■ NULL it is assumed that state « suggests no plan

for evaluating query Q,-.

Definition 2 : Let «i~<P\,p%, . . . ,pn> and a function next : S-—2L

with

next(«,) =» min{y I p^NULL} if {; I p;=-=NULL}^0

A transition Tie%,«'>] from state al to «2 exists iff »j has at least one NULL

entry and «2~<9i'72r • • •/9n>> ^h Qi^Pi for I <»* <»i«lt(»i),

»««^(•jCSn^.j and «7y=NULL, for near«(«i)+l <;<n.

Definition 3 : The coat tcostjl) of a transition (=7,(/*,,«2) is defined as

the additional cost needed to process the new plan qm introduced at t

(according to Definition 2), given the (intermediate or final) results of pro-

cessing the plans of «(.

From the above definition it can be seen that the way transitions are defined, the first

NULL entry of a state vector, say at position i, will always be replaced by a plan for

the corresponding query Q,. Finally, we define the initial and final states for the algo-

rithm. The state «0=<NULL,NULL, . . . ,NULL> is the initial state of the algorithm

and the states »/ = <Pi,P2, . . . ,pn> with p^NULL, for all i, are the final states.

The A* algorithm starts from the initial state a0 and finds a final state 8F such

that the cost of getting from «0 t0 8F ls minimal among all paths leading from s0 to

any final state. The cost of such a path is the total cost required for processing all n

a«VM^ÄWQW*KMAM'»^

IH

queries. For brevity it will be assumed that each plan is an unordered aü of tasks

instead of a directed graph. In order for an A* algorithm to have fast convergence, a

heuristic function h is introduced on states [RICH83]. This function is used to prune

down the sire of the search space that will be explored. Such a function Ä: S —Z

WJ>8 introduced in (GRAN80] in the following way : let «=»<Pi,p2,...vpn> be some

state. Then

n .
M'H JJ min [e«f.co«<(/,,>)-J7n<.<<co«t(0]

where t are common tasks found in plans already in s and nt is the number of times

task t appears in these plans. The function tat,co«t is defined on tasks as follows

eoat{t) t8t_coet(t) =
n»

where n? is the number of queries the task t occurs in. The idea behind defining such

a function is that the cost of a task is amortized among the various queries that will

probably make use of it. For a plan p, it is assumed that

t8t_co8t(p)T= V}e8t_eoat(t)

If it is true that ect_eo8t(p)<Co8t[p) then the convergence of the A* algorithm is

guaranteed [RICH83]. Therefore, one significant issue is to define a correct function

t8t_co8t, "correct" meaning that it underestimates the actual cost. Let us give an

example, also drawn from [GRAN80], which will motivate the discussion of the follow-

ing subsection.

t

I
I
r
I
■

125

Two queries Ql and Q2 are given along with their plans : Pn, Pl2, P2l, P^,

P^. We will use *£. to indicate the *-th task of plan P1;-. The table below gives the

costs for the tasks involved in each plan

Plan Task Cost Task Cost Task Cost Total

Pn 'A 40 * 30 5 75

Pi* '/, 35 ^ 20 55

Pit ^ 40 *l 10 ^ 5 55

P22 ^ 10 & 30 & 10 50

P* 'i 30 <l 20 50

and the identical tasks are

Ml "l2l ' Ml "l22 ' f12 Äl23 '

Given the actual task costs and the sets of identical tasks, the estimated costs

(eat.coat) for these tasks are

Task tl
■11 tf Ml 'i'. 'i22 ^ '21 *k l22 'i

Estimated

Cost
20 15 5 35 10 10 5 10 10 30

and the estimated costs for the plans are,

Plan ^11 Pit P21 PZ2 ^23

Coalesced

Cost
40 45 35 35 40

Based on the above numbers and the construction procedure outlined, Figure 4.10

M^>^yM^^-^ivi--> . ^MM^öMüö««*^^^

126

shows the search space S along with the costs of transitions between states and

estimated costs of going from intermediate to final states.

(0)
<Pu,mLL>

75

<NULL,NULL>
.55

<P12,NULL>
(30)

Figure 4.10: Example Search Space for A* Algorithm
(numbers in parentheses show estimated costs)

Tracing the A* algorithm we get

«0 = <NULL,NULL>

«1 - <Pn rNULL>

«2 - <P2l ,NULL>

»f = <Pn ,Pn>

I * expand «täte s0 */

I* expand state sx */

/* expand otate «2 */

/ * the final solution */

yielding <P12.^>23> M the best solution. Notice that with this set of estimators the

algorithm exhaustively searches all possible paths in the state space. It is exactly this

c^:;^^^^^

127

bad behaviour of the algorithm that we will try to improve by examining more closely

the relationships among various tasks. For example, in the case presented above, it is

clear right from the beginning that plan Pn will not be able to share both of its tasks

'n an<^ *u w't'1 P'an9 ^21 ail<* ^22 respectively, since only one of these two latter plans

will be in the final solution (final state). Therefore, the value «»t.co^Fjj) is less than

what could be predicted after looking more carefully at the query plans. It is a known

theorem in the case of A* algorithms, that the higher the estimator values the faster

the convergence [RICH83]. Hence, estimating the cost function better will enable the

algorithm to converge faster to the final solution.

4.7.2. The Modified Algorithm

The goal of this subsection is to describe a preprocessing phase which provides a

way to compute a better cost estimation function. Suppose that n sets of plans

Sj, S2, ..., Sn are ven, with S, = {P,j, P,2, ..., P,*.}. Assume also that the pairs of

tasks tjEPn and tj^P^ such that «,- mtj are known. We then define a directed

graph G (V,E) in the following way

• For each plan F.y that has a task <*■ identical to ta3k(s) used for evaluat-

ing other than the i-th query, introduce a vertex v,-,-

• For each pair t^ePu, ^GPp, of such identical tasks there is an edge

connecting the two vertices {vu—v^) if there is no other plan Pp, with a

task t' such that f s t •' pr pr pq

:-:-■:•-•; ^^v^^^^

128

Given the above definition a unique graph can be built based on a set of plans and a

set of identitiei among tasks. Notice that not all plans are needed to build the graph.

Only those having identical tasks among them are considered. Also, there may be

more than one directed edge (w,;-»vw) going from v^ to vu if there are more than

one pair of identical tasks involved in plans P|;- and P«. In order to reduce the size of

the graph, only one edge v,;-»t;w is recorded for any two vertices Vy and v^ that have

at least one edge between them. No information is lost that way. The number of

identical tasks found between the two plans is of no importance.

The goal of the preprocessing phase is to find plans that are most probably not

sharing their tasks with other plans. The algorithm used is a slightly modified Depth-

First-Search (DFS) algorithm. The difference is that in the course of backing up to

the vertex vi; from which another vertex t>w was reached using the edge v,;->t;w, the

identification (subscript) kl is stored in some set associated with vertex v,;-. Call that

set the Need set of vertex Vy. Then, at the end of the algorithm, delete from G all

vertices that have two or more members k'l' and kl in their Need sets, such that

k'—k. Along with the vertex, its edges (both out- and in-going) are also marked as

OUT. This deletion process is continued by deleting vertice« »hat have at least one

out-going edge marked OUT. The edge and vertex elimination process stops when no

more deletions are possible. Call the final graph G'{V,E') and let S' be the set of

plans Py that have a corresponding vertex t;,;- in G'.

What is achieved through that preprocessing phase, is to reduce considerably the

size of the search space for the A* algorithm. Only plans in S' are considered in order

to derive the eet.eoat values. To give an example of the preprocessing phase along

^ :v-:v:v:v:r/:v:v:v?^.«>>.v> v^^^^

129

with a run of the A* algorithm, we will redo the example of the previous subsection.

We are given again the same two queries and five plans : Pn, P^, P21, Pn< ^23•

The graph of Figure 4.11 gives the graph G for the set of plans given.

■vn v-a)

Figure 4.11: Graph G for Queries Ql and Q2

After the DFS s performed the Need sets for the various vertices, will be

Vertex Need

^n {11,21,22}

"12 {12,23}

"21 {11,21}

"22 {11,22}

"23 {12,23}

From the above table it can be seen tha,.* vertex wu must be eliminated since it can

reach both 21 and 22 through directed paths. After that, the edges (uu-*V2i),

{v2i — vu), (v11—►t;22) and («22""^n) are marked as OUT. This causes vertices t;21

and V22 to be deleted also. Finally, we see that no more vertices can be deleted. The

^WM&S^sS^^

130

remaining graph is shown in Figure 4.12.

121 ("ja

Figure 4.12: Final Graph G'

Finally, S'= {P^Paj}.

Using the result of the preprocessing phase, we next compute the new estimated

costs for tasks and plans. First, based on the cost function cost defined for tasks, the

following function coaleaeed_eoet on tasks t [GRAN80| (which is identical to the esti-

mator used in the previous subsection) is defined

coalesced M«f («) - £2lLiÜ

where n? is the number of queries this task occurs in, and for plans

eoalesced.coet (P.y) == £ coalesced.co«t{t)
'€P(o

Now, given a plan Py and a specific task t*. , let £,, be the set of, other than 1,

queries q that have common tasks with P.y. Also, let n9. be the number of plans Pr

that correspond to query q in Qy. Then, eat,cost is defined as follows

a) If the plan P0 is not in S' and n,^ 1 for at least one query q, then

est.eottiPy) — CoatiPij) - £ m*x\eoaleaeedmeost{M

where tl mt' , for some r and a.

üttäftmüm^^

, »

131

b) If the plan is in S' or it is not in S' but the above condition on n 1- is not true,

then

e»t.co«t(/',;) = coa/e«cerf.co«t(P,y)

Finally, we show how to compute the function /»(«). First, define

add_coat(i) — m\a[t8t,co«t{Pij) - £ ntedt_coat(t)]

where O,- = U Pn, and Pu, is the plan that provides, for a given /, the above minimum
(-1

value in the computation of add_eo8t{l). Also, t are common tasks that belong to

plans already in the state « and n(is the number of times task t appears in these

plans. Then, define

n
A(«)= £; add_co8t(i)

The A* algorithm can then be applied using these new estimators. For example, pro-

cessing the two queries Ql and Q^ given above, the following are the computed

estimated costs for the plans

Plan Pu P.2 P« ^22 ^23

Estimated

Cost
55 45 35 35 40

Tracing the A* algorithm, we see that it explores the following states

«0 = <NULL,NULL> /* expand state «„ */

«i = <Pi2,mLL> I* expand state »1 */

«wy\fl^£toio,;wtfi^^

132

»F— <P\2,P'a> I* the final solution */

yielding again <Pi2,Pn> »■ the optimal solution with cost 85. Notice that if the

commands were executed sequentially it would have costed Co«t(PI3) + CoatiP^) =

105. Therefore, a total savings of 19% was achieved using the global optimization

algorithm. Moreover, compared to the trace of the previous subsection, it can be seen

that exhaustive search is avoided because of the high cost estimates for some paths.

Summarizing, the final algorithm is the following

ALGORITHM HA

[1]. Build graph G and apply the preprocessing DFS algorithm

[2]. For all queries with no representative plan in the initial graph G, find

the originally cheapest plan and put it in the final solution

[3]. Based on the result set S', compute the function cct^eoet

[4]. For the rest of the queries run the A* algorithm described n the previ-

ous subsection

4.7.3. Discussion and Extensions

The global access plan is derived from integrating the local plans found in the

final state 8F returned by the A* algorithm. The integrating process is very similar to

the one described for the decomposition algorithm where local plan graphs are merged

together. Examining the estimated cost of the global access plan, we have

^M&a&^^

133

Co8t{GP)=* £Cost{p)- £ n.eavingsia)
p€tr ieCS

where C5 represents the total number of subexpressions found in the n queries (not

plan« as it was the case in algorithm D) and n, and savings{o) are defined in section

4.5. Regarding the complexity of the algorithm HA we must notice that it is very

hard to analyze the behaviour of an A* algorithm and give a very good estimate on

the time required. In the worst case of course it may require time exponential on the

number of queries but on the average the complexity depends on how close the cost

estimation function is to the actual cost. However, the A* algorithm with the new

estimator function we proposed will not take more steps than the original A* algo-

rithm presented in subsection 4.7.2 (which uses eoaleaced.eoat as its estimator func-

tion). This is based on the fact that for any task t it is true that eat_eo8t{t)>

eoaU8eed,eo8t(t). Therefore with the help of a known theorem [RICH83| our algo-

rithm will give a solution in at^ most the same number of steps as the algorithm of

[GRAN80].

Finally, note that the algorithm described is correct only in the cases where

queries use solely equijoins and equality selection clauses. If arbitrary selection clauses

are used, the A* algorithm presented above will not find the optimal solution. This is

true because the imposed order in which the state vectors are filled (i.e. in ascending

query icdex) may not result to the best utilization of common subexpression results.

As an example, consider two queries Ql and Q?, such that Ql has a more restrictive

selection than Q^. Then clearly, it would be better to consider executing Q2 first since

in that case the result of Q2 can be used to answer Q^ the opposite being impossible.

^>;y^:v:v v?^v?y. ^c^^^

r-

134

This problem with the heuristic algorithm can be easily fixed by changing the transi-

tions to fill not the next available NULL slot in a state «, as it was before done through

the use of next(a), but rather any available (NULL) position of a. This results to

larger fanout for each state and clearly more processing for the A* algorithm. The

heuristic cost function eet.cost is defined similarly with the difference that in addition

to identical tasks, pairs of tasks f, and tj such that ti=^tj and <;=j^<, must be con-

sidered as well.

4.8. Some Experimental Results

We expect that for a large number of applications and query environments global

query optimization will offer substantial improvement to the performance of the sys-

tem. In a series of experiments, the algorithms of the previous sections hare been

simulated using EQUEL/C (RTI84] and the version of INGRES that is commercially

available. The experiments were run over the set of queries that Finkelstein used in

[FINK82]. The database schema used was modeling a world of employees, corpora-

tions and schools that the employees have attended, the relations being Employees,

Corporations and Schools respectively. All eight queries along with a brief descrip-

tion of the data they return are shown in Appendix A. Seven different sets of queries

QSET1-QSET7 where chosen and the queries within each of these sets were processed

a) as independent queries

b) as the Better Serial Execution Algorithm suggests

c) as the Decomposition Alf,jrithm suggests, and finally

3ÖO«KX>M«ööWä«k^^

135

d) aa the Heuristic Algorithm suggests.

Table 4.1 describes some characteristics of the sets QSET1 to QSET7.

Query Set Number of Queries Queries BS D HA

(JSET1 2 a,7> X

QSET2 2 {1.6} X

QSET3 4 {1,2.6.7) X

QSET4 2 {6.7> X

QSET5 4 {2,3,4,6> X X

QSET6 7 {1.2,3,4,5,6,7} X X

QSET7 2 {7.8} X X X

Table 4.1: Query Sets Used in Experiments

The second column indicates the number of queries used in each set while the third

column shows which queries from Appendix A were specifically used. The rest three

columns indicate which algorithms were applicable and gave distinct access plans to

each of the given query sets. The reason that some query sets do not have an entry in

some of these columns is that not all algorithms gave distinct global access plans. For

example, in section 4.5.2 it was shown that if the query graph QG is acyclic, algo-

rithms BS and D will produce identical plans.

The above sets of queries were tested in various settings. First, unstructured

relations were used with their sizes varied according to Table 4.2.

;^£<&^^^^^ ■ • ' ..-'.■

136

Relation Number of tuples

Employees

Corporations

Schools

100 - 10,000

10 - 500

20 (fixtd)

Table 4.2: Sizes of relations

Second, the same experiments were performed with structured relations. Specifically,

the following structures were used

isam secondary index on Employees (experience)
isam primary structure on Corporations (earnings)
hash primary structure on Schools (sname)

Finally, in a another series of experiments the given queries were slightly modified by

changing the constants used in one-variable selection clauses. The goal was to intro-

duce higher sharing among the queries. Higher sharing is achieved when more queries

can take advantage of the same temporary result. As it was indicated in section 4.5.2,

the formula that provided an estimate on the cost savings using a global optimization

algorithm is (for n queries Qx, ..., Qn)

n

ZJBesteostlQi)- JJ nt-savingt{$)
•«-i * ecs

where CS is the set of common temporary results « and n, is the number of queries

using the same temporary result a. Therefore, higher cost reduction is achieved if

more queries can use the same temporary result. By changing the constants in the

W&S^I&fM®^^

137

qualification of the queries it was possible to check how n, affected the cost of process-

ing the global access plans.

The measure used in this performance analysis was

PERCI CcttflO) ^

where Coet^I/O) is the number of I/O's required to process all queries assuming no

global optimization is performed. Costal JO) is the corresponding figure in the case

where a global access plan is constructed according to some of the presented optimiza-

tion algorithms. The analogous CPU measure was also recorded; however, the

numbers were almost the sane and will not be shown. In the following, tLe results of

the experiments are described in detail.

4.8.1. Unstructured Relations

As indicated in Table 4.1, some query sets were processed mm* only one or two

of the algorithms. Because of the similarity of the results the diagrams will be

grouped according to the algorithm used for optimization. Hence, three diagrams are

presented. One for query sets QSET1, QSET2 and QSET3, one for QSET4, QSET5 and

(1SET6 and another for QSET7. The first group was optimized using only BS because

D and HA were not applicable. The second group was optimized using BS and D

while for the last group all three algorithms were used. Figures 4.13, 4.14 and 4.15

illustrate how PERCI varies for the three above mentioned groups according to the

size of the database in the case of »instruct'ired relations. Also, Figure 4.16 g .:• the

overall average improvement in the performance of the system for all query sets.

:-:^'^-/'^--:^-yy: < /.■-.• .■ ■ ■ v%'-'-.■'v-"^-x<-.^^^"v^..^.^/'-.-"v-'--\^^v"'^%-"r-'v-"^\-.'>.-'-.-^"^'^r^i'^'^■"-Äv-r-.-'-.fo

138

801

20

PERCI

10

Query S«U 1,2 ud 3

100 1000 10000

Employees

Figure 4.13

SO»

20'

P£KC/

10

100000
04
100

Queiy SeU 4 J5 md 6

1000 10000

Employe

Figur« 4.14

100000

601

FEÄC/

AllQocySeU

Performance Improvement fi)r Unstructured Relations

The size of the database is represented by the size of the Employees relation. The

reasons for choosing that relation was first that all queries were using Employees

avuviA\Vk^^\VwN\s.\srüw\^v"c«vK:*WL<«.y\ . .■V^J.>**>y>^'-'VV^^V'^^

139

(compared to Corporations or Schools) and second the fact that the diagrams are

similar for tie Corporations relation as well.

Some comments can be made here for these ams. First, it is clear that there

is always a gain in performance by doing global query optimization, i.e. PERCI>0 in

all the above figures. Second, after some size of the relations, PERCI starts to

decrease. This was due to the specific type of queries used. In particular, because of

queries involving joins, the denominator of the formula (F) grows faster than the

numerator. In the given queries, the selection clauses were responsible for the savings

in the numerator. That savings increases with rate proportional to the factor by

which a relation is reduced as a result of performing a restriction on it (i.e. 1—5,

where 5 is the selectivity of the selection clause). On the other hand, if joins are

included in the queries, Coet^I/O) increases with a rate which depends on the cost of

the join operation. It turns out that for small sizes of the relations the latter factor is

less than the former while after some size this relationship is reversed. Hence, the

slight increase followed by a decrease in the values of PERCI indicated in the above

diagrams.

The diagrams also show that there was no significant difference between the

improvements achieved by the BS and D algorithms. In order to have a difference in

the global plans generated by the two algorithms, as discussed in section 4.6, cycles

must occur in the query graph QG. Even in that case though, the difference may not

be significant depending on the sizes of the temporary results. In the experiments ran,

the temporary relations not shared by more than one queries in the global access plan

constructed by BS but shared in the corresponding plan generated by D, were rather

yO^^^^Ä^Wstf^J^^^

140

small. Hence, sharing of these relations contributed only marginally to the perfor-

mance improvement. Finally, for the last query set QSET7, the plan generated by HA

was significantly better than the one generated by BS (or D since these are the same

for QSETT). By allowing the result of the join

•.employer = c cnafflo

to be shared by both queries 7 and 8, significantly better performance was achieved.

4.8.1. Structured Relations

The same set of experiments was run over a structured database. Relations were

indexed as mentioned in the beginning of this section. The reason for doing these

experiments was to check if the overhead of accessing a relation through a secondary

structure might be higher than the overhead of accessing an unstructured intermediate

result. For example, suppose that retrieving the part of a relation that satisfies a sim-

ple one-variable restriction requires 10 page accesses. That includes the cost of search-

ing first the index table and then accessing the data pages. Suppose now that there is

an intermediate result, produced by some other query, that can be used to answer the

same restriction clause. If the size of that intermediate result is less than 10 pages

then it will be more efficient to process the restriction by scanning the unstructured

temporary result than going through the index table.

Figures 4.17, 4.18 and 4.19 illustrate how PERCI varies for the three above men-

tioned groups according to the size of the database in the case of structured relations.

Also, Figure 4.20 gives again the overall average improvement in the performance of

the system for all query sets.

^/^Xkm^^Ofi.^Mj^^

141

so

20

PERCI

10

100

gu«y S*J i^uda

1000 10000

Employees

Figure 4.17

20

PERCI

10

100000
0V-
100

Quay S>u 4,4 md 8

1000

Employ
10000 100000

Fi«ure 4.19

to

40'

SO1

PERCI

20

10

100

QMfySat 7

1000

Employees
10000

»l

40

SO'

PERCI
20

10

100000 100

ADQiMryS«U

HA

1000 10000

Employees

Figure 4.ig Finure 4.20

Performance Improvement for Structured Relations

100000

Comparing the values of PERCI with the corresponding ones of the previous subsec-

tion, some decrease of 10-20% can be observed for all three algorithms depending on

-y/^'-.-'r vvv:v>;v>>.:-^

142

the size of the involved relations. This was expected since using indexes reduces

Co«*,(7/0). However, after some size of Employee, PERCI starts increasing instead

of decreasing, which was the case in the experiments of the previous subsection. This

behaviour is due to the fact mentioned above, i.e. the overhead involved in using an

index to access a relation. Moreover, the above effect is more obvious in cases where

the involved relations are large. Then the size of the secondary indexes is in many

cases significantly larger than the sizes of temporary results. Notice also that for

small sizes of the relation Employee PERCI is decreasing. That was expected because

for small relations temporary results grow faster in size than the index tables. Finally,

notice that the relative performance of the three algorithms is not affected by the

existence of indexes, i.e. HA still performs better than the other two and D provides

better plans than BS.

4.8.2. Higher Sharing

In this last experiment, the given query sets were run over the same database

with a modification in the queries so that higher degree of sharing is possible. That

effect was introduced by changing the restrictions experience > 20 found in queries

2,4,5 and 7 to experience > 10. This way the same temporary result could be used in

the evaluation of more queries, compared to the ones in the experiments of the previ-

ous two subsections. Figure 4.21 illustrates how PERCI varied with the size of the

database in the case of unstructured relations and for the second group of query sets

(i.e. QSET4, QSET5 and QSETß). The rest of the query sets were not affected by this

modification in the selection clauses in the sense that no increase in sL«.-;rg was possi-

Söö«iK9Öi»3ÖÖQöMÜ&X>(aü»^^

143

30

20

PERCI

10

Query Sets 4,5 and 6

100 1000 10000

Employees

100000

Figure 4.21: Performance Improvement for Higher Sharing

ble. Notice that the curve is similar to the one of Figure 4.14. However, because of

the higher degree of sharing among queries an increase of about 10% in the perfor-

mance improvement was observed.

4.0. Summary

This chapter presented a set of algorithms that can be used for multiple query

processing. The main motivation for doing such interquery analysis is the fact that

common intermediate results may be shared among various queries. We showed that

various algorithms can be used for global query optimization. These algorithms were

presented as parts of an algorithm hierarchy; descending the hierarchy more sophisti-

cated algorithms can be used that give better access plans at the expense of increased

complexity of the algorithm itself.

WXfXWM&jir*^^

• w WJB ^.tarm. c ^

144

Some of the algorithms proposed were based simply on the idea of reusing tem-

porary results from the execution of queries, where the processing of each individual

query is based on a locally optimal plan. Using plans instead of queries enabled us to

concentrate on the problem of using efficiently common results rather isolating com-

mon subexpressions. The last (heuristic search) algorithm, is a variation of the algo-

rithm for optimizing a set of relational expressions originally proposed by Grant and

Minker in (GRAN80]. The preprocessing phase added to the algorithm intends to

derive a better cost estimator function used in the A* algorithm.

It is expected that for a large number of applications and query environments

global query optimization will offer substantial improvement to the performance of the

system. In a series of experiments, we have simulated these algorithms and checked

the performance of the resulting global access plans under various database sizes and

physical designs. This enabled us to check the usefulness of these algorithms even in

the presence of fast access paths for relations. The results were very encouraging and

showed a decrease of at least 20-50% in both I/O and CPU time. It should also be

mentioned that the methods proposed do not pose any problems to the concurrency

control and recovery modules. Since the given set of queries is thought as a transac-

tion itself, chaoging the way processing is done has no effect on the system. The tran-

saction boundaries are preserved. In t^rms of concurrent access, it should also be

clear that our transformations do not affect the degree of concurrency. The data that

each query processes is exactly the same as in any arbitrary serial execution of the

queries. Hence, the size of the data sets that each query competes for neither increases

nor decreases.

Ä-Xs^Äv^^^^

CHAPTER 5

CONCLUSIONS AND FUTURE DIRECTIONS

6.1. Summary of Thesis

The goal of this thesis was to develop techniques that can be used to improve the

performance of extended relational database management systems. We summarize the

results of this investigation in this last chapter.

In Chapter 1 we discussed various approaches that can be taken in developing

systems to support non-business applications. Because the volume of data that these

applications handle is constantly increasing, main memory may become insufficient.

Secondary storage is then used and data managers are employed to efficiently store

and access the data. We have argued that extending DBMSs with new features is the

most adequate solution to the problem of supporting large databases used even by

non-business applications. The remaining chapters where then used to propose such

extensions to INGRES and discuss query processing issues.

Chapter 2 started by describing the language QUEL-I- [STON85], an extension to

QUEL. The most interesting new feature introduced to QUEL is allowing queries to

be stored in QUEL fields, thus incorporating procedures as database objects

[STON85]. Then, an extended decomposition algorithm based on the INGRES query

processing algorithm was proposed. The extensions made were mainly due to the fact

that one new operation was introduced, namely the materialization of QUEL fields.

145

^^^^v-^v:^:^^^

146

We showed how a general algorithm can be used to take under account the fact that

materialization is very expensive and the number of times it is performed should be

minimized. To reduce the cost of processing queries, caching was also proposed as a

way to avoid evaluating QUEL fields more than once and several issues associated

with caching weie discussed. Among others, replacement policies, invalidation algo-

rithms and policies that decide which oljects to cache were examined in detail. Our

discussion showed that caching is essential in the QUEL+ environment. We suggested

and analyzed various solutions to the above problems associated with caches. Lastly,

a new indexing technique, Partial Indexing, was proposed. Partial indexes can be used

for efficiently accessing results of QUEL field materializations. The proposed construct

is a combination of both a conventional index table and a predicate, the latter charac-

terizing those tuples that can be accessed through the former. Using partial indexes

the system avoids the overhead of evaluating QUEL field entries before these are actu-

ally referenced in queries.

All the techniques described above were used to ;mprove the performance of an

extended query processor. If a QUEL field is accessed, the procedure stored in it must

be executed. Since all database commands that constitute the body of the procedure

are known, we have argued that some interquery analysis is possible. The objective of

this analysis is to transform a sequence of commands to another sequence that can be

processed more efficiently. In Chapter 3 several such optimization tactics were

presented, some based on similar tactics in other areas (like compiler design or conven-

tional query optimization) and some new ones. The level at which multiple command

optimization was performed ranged from simple syntactic transformations (e.g. moving

>;?JC^.OV>>>>:V"-JCVV>^

147

loop invariants outside the loops) to harder semantic ones (e.g. changing an append

followed by a delete command to a single append). Our new tactics include the

somewhat surprising result that any QUEL program satisfying certain criteria is

equivalent to a QUEL program which consists of one replace statement. We have

also shown that a large class of problems, namely those which use the dynamic pro-

gramming approach, satisfy these criteria. The transformations presented are useful

not only in this context but in general transaction processing as well, since they are

motivated solely by the need to expand the optimization unit from one database com-

mand to a sequence of commands. Our optimization techniques can be also applied as

a preprocessing phase, i.e. given a set of applications and the corresponding database

procedures that implement them, one can apply these techniques to design more

efficient execution patterns. Experimental results [KUNG84] have shown that the gain

in performance is significant.

Finally, in Chapter 4 we restri fed the problem of procedure optimization to the

case where all commands are retrieval: from the database (global query optimization).

This case is of significant interest because it can be used for efficient processing of

queries in a rule based environment. The main motivation for doing interquery

analysis is the fact that common intermediate results may be shared among different

queries. We showed that various algorithms can be used for global query optimiza-

tion. These algorithms were presented in the form of hierarchy; as we descend this

hierarchy more sophisticated algorithms can be used giving better access plans at the

expense of increased complexity of the algorithm itself. Some of the algorithms pro-

posed were based simpl;, on the idea of reusing temporary results from the execution

wöWf^ÄfA-ivüfyxv^^ •■-*•.<./-. x . ■■ -r././-.-.-vv<.. •■--..<;'-.■(>

148

of queries, where the processing of each individual query is based on a locally optimal

plan. The last (heuristic search) algorithm, is a variation of the algorithm for optimiz-

ing a set of relational expressions initially proposed by Grant and Minker in

(GRAN80]. Through a preprocessing phase added to the algorithm we manage to

achieve better average case performance. Finally, in a series of experiments, we simu-

lated the proposed algorithms and checked the performance of the resulting global

access plans under various database sizes and physical designs. Our results were very

encouraging and showed a decrease 20-50% in both I/O and CPU time.

6.2. Future Directions

Relational DBMSs are very efficient in storing and accessing simple data like

those used in business applications. Our results show that even more complex applica-

tions can be handled once the appropriate extensions are introduced. Although, solu-

tions were proposed .o several problems associated with extended relational database

systems, there is still a lot of work that needs to be done in the area.

The most interesting and top priority issue should be the implementation of

applications using QUEL+ and the experimentation and monitoring with a prototype

system. POSTGRES [STON86b] can be used as a testbed for all our proposals. Also,

in many points of our discussion we mentioned various parameters that should be

known for the system to be better "tuned." One needs to collect a lot of statistical

information and modify the algorithms we proposed so that the dynamics of the vari-

ous applications are better reflected. Finally, dynamically adaptive caching schemes

like the ones we proposed in Chapter 2 should be implemented and checked in real

öC"A^>^^V^
N
///:V»>XV'^^>^>^:-

V
/*.- ■>>>>>:-■ ^:^:>:s'-:.'-:.'--v^v:.-<>"v':v:-.-:v':. ■. • > „ . ■ .y/r^^

149

applicatioD environments.

Our work on optimizing the execution of general procedures, was mostly

influenced by examples used in engineering and heuristic search applications. We hope

that future work will investigate the usefulness of our stra- e^ies in other environments

as well, especially in rule based systems and more generally production systems

[FORG79|. Transformations like the one we derived for dynamic programming prob-

lems, although not applicable to all procedures, add to our knowledge on the type of

transformations one should be looking for. Future work in database procedure optimi-

zation should also look for more such special case transformations.

As interesting future research directions in the area of global query optimization

we view the development of efficient algorithms for common subexpression

identification and the extension of the algorithms presented to cover more general

predicates. Also the application of our method in rule-based systems in general-seems

like a very interesting problem for investigation. For example, PROLOG and data-

base systems based on logic [ULLM85] can easily be extended to perform global query

optimization. Finally, some of the techniques that we developed here, can be applied

in processing recursion in database environments (IOAN86]. This is mainly due to the

fact that in evaluating recursive queries one usually processes iteratively similar opera-

tions. These operations often access the same data, for the relations accessed are

always the same. Investigating how our algorithms can be used in this recursive query

processing environment seems to be a very interesting problem for future research.

R^^y^ÄWWMWWW*^^^^

150

In summary, we think that there is a lot of work that can be done in database

query processing and optimization. The introduction of new constructs and extensions

gives rise to new interesting problems, especially if performance must be kept in

sufficiently high levels.

/■.''■.■ < ■'■.•y' A-^ ■/-/■-' y^-/'-^-y-jr'y'^-sy--''yy^^'S^'-^-r'--^-. •.-w'..-r^''.''>-".-..•--■•.■ro<.-'.<■>

4

BIBLIOGRAPHY

[ADIB80] Adiba, M.E. and Lindsay, B.G., 'Database SnapbhoW, Proceedings of

the 6th International Conference on Very Large Data Bases, Montreal,

October 1980.

Aho, A., Ullman, J., Principles of Compiler Design , Addison Wesley Co.,

1979.

(AH079]

(ALLM76]

[ASTR76]

Allman, E. et al, 'EQUEL Reference Manual', University of California,

Technical Report UCB/ERL, Berkeley, CA, 1976.

Astrahan, M. et al, 'System R: A Relational Approach to Database

Management', ACM Transactions on Database Systems, (1) 2, June

1976.

[BERN79| Bernstein, P. and Goodman, N.v 'Approaches to Concurrency Control in

Distributed Data Bate Systems ', Proceedings of the 1979 National Com-

puter Conference, 1979.

(BLAK86] Blakeley, J.A. , Larson, P. and Tompa, F.W., 'Efficiently Updating

Materialized Views', Proceedings of the 1986 ACM-SIGMOD Interna-

tional Conference on the Management of Data, Washington, DC, May

1986.

[BLAS76] Blasgen, M., Eswaran, K., 'On the Evaluation of Queries in a Rela-

tional Data Base System', IBM Research, Technical Report RJ-1745,

San Jose, CA, April 1976.

[BROD84] Brodie, M. and Jarke, M., 'On Integrating Logic Programming and

Databases', in [KERS84j

151

^^KN'^S^^^^^ ■ 'mnnmTmmüßmmwttwwü

152

IBUNE79] Buneman, O.P. and demons, E.K., 'Efficiently Monitoring Relational

Database»', ACM Transactions on Database Systems, (4) 3, September

1979.

[CARE84] Carey, M.J.. Dewitt, D.J. and Graefe, G., 'Meehaniems for Con-

currency Co...rrl and Recovery in Prolog - A Proposal', in (KERS84).

[CERI86| Ceri, S., Gottlob, G. and Wiederhold, G. , 'Interfacing Relational Data-

base« and Prolog Efficiently', in [KERS86].

(CHAK82] Chakravarthy, U.S. and Minker, J., 'Processing Multiple Queries in

Database Systems', in Database Engineering . (1),)983.

[CHAK84] Chakravarthy, U.S., Fishman, D.H. and Minker, J., »5emontic Query

Optimization in Expert Systems and Database Systems', in [KERS84].

[CHAK85] Chakravarthy, U.S. and Minker, J., 'Multiple Query Processing in

Deductive Databases', University of Maryland, Technical Report TR-

1554, College Park, r D, August 1985.

(CHAK86| Chakravarthy, US., Minker, J. and Grant, J. »Semantic Query Optimi-

zation: Additional Constraints and Control Strategies ', in [KERS861.

[CHAN77] Chandy, K.M., 'Models of Distributed Systems ', Proceedings of the 3rd

International Conference on Very Large Data Bases, Tokyo, October

1977.

[CHOU85] Chou, H. and DeWitt, D.J., 'An Evaluation of Buffer Management

Strategies for Relational Database Systems', Proceedings of the 11th

International Conference on Very Large Data Bases, Stockholm, August

1985.

[CLOC81| Clocksin, W. and Mellish, C, Programming in PROLOG . Springer-

Verlag, New York, NY, 1981.

(CODD70] Codd, E., 'A Relational Model for Large Shared Data Banks', Com-

munications of the ACM, (13) 6, 1970.

Ks»o^}fcj&fö»^:>ik^

153

[KOPE84] Copeland, G. and Maier, D., 'Making Smalltalk a Databaae Syatcm*,

Proceedings of »-he 1984 ACM-SIGMOD International Conference on the

Management of Data, Boston, MA, June 1984.

(DAYA85] Dayal, U. and Smith, J.M., 'PROBE: A Knowledge-Oriented Database

Management Syetem', Proceedings of the Islamorada Workshop on

Large Scale Knowledge Base and Reasoning Systems, February 1985.

(DERR86] Derrett, N.P. et al, 'An Object-Oriented Approach to Data Manage-

ment ', Proceedings of the 1986 IEEE Spring Compcon Conference, San

Francisco, CA, March 1986.

[EPST79] Epstein, R., Technique« for rroce8«ing Aggregate« in Relational Data-

ba«e Sy«tem«', University of California, Technical Report

UCB/ERL/M79/8, Berkeley, CA, 1979.

[ESWA76] Eswaran, K.P. et al, The Notion« of Contietency and Predicate Lock«

in a Database Sy«tem', Communications of the ACM, (19) 11, 1976.

[FINK82] Finkelstein, S., 'Common Expression Analysis in Database Applica-

tion« ', Proceedings of the 1982 ACM-SIGMOD International Conference

on the Management of Data, Orlando, FL, June 1982.

[FORG79] Forgy, C, 'On the Efficient Implementation of Production System«',

PhD Thesis, Carnegie-Mellon Univ., Pittsburgh, PA, 1977.

[GALL78] Gallaire, H. and Minker, J., Lrgic and Data Bases , Plenum Press, New

York, 1978.

[GARE79| Garey, M.R. and Johnson, D.S., Computers and Intractability , W.H.

Freeman and Co, San Francisco 1979.

[GRAN80] Grant, J. and Minker, J., 'On Optimizing the Evaluation of a Set of

Expre««ion« ', University of Maryland, Technical Report TR-916, College

Park, MD, July 1980.

[GRAN81] Grant, J. and Minker, J., 'Optimization in Deductive and Conventirml

Relational Database Sy«tem«', in Advances in Data Base Theory , vol.

WSPQeQMraTÜÄKtt^^

154

1, H. Gtillaire, J. Minker and J.-M. Nicolas, Eds., Plenum Press, New

York, 1981.

(GRAY78] Gray, J.N., "Notca on Data Bast Operating Syateme", IBM Research,

Technical Ref)rt RJ-2254, San Jose, CA, August 1978.

[GUTT84aI Guttman, A., 'R-Tree«: A Dynamic Index Structure for Spatial Search-

ing ', Proceedings of the 1984 ACM-SIGMOD International Conference on

the Management of Data, Boston, MA, June 1984.

[GUTT84b] Guttman, A., 'New Features for Relational Database Systems to Sup-

port CAD Applications *, PhD Thesis, University of California, Berkeley,

June 1984.

[HALL74| Hall, P.V., 'Common Subexpression Identification in General Algebraic

Systems', IBM United Kingdom Scientific Centre, Technical Report

UKSC 0060, November 1974.

(HALL76] Hall, P.V., 'Optimization of a Single Relational Expression in a Rela-

tional Data Base Systrn *, IBM Journal of Research and Development,

(20) 3, May 1976.

(IOAN84J loannidis, Y. et al, 'Enhancing INGRES with Deductive Power ', Posi-

tion Paper, in (KERS84].

[IOAN86] loannidis, Y., 'Processing Recursion in Deductive Database Systems ',

PhD Thesis, University of California, Berkeley, July 1986.

(JARK84a] Jarke, M., Clifford, J. and Vassiliou, Y., 'An Optimizing PROLOG

Front-end to a Relational Query System', Proceedings of the 1984

ACM-SIGMOD International Conference on the Management of Data,

Boston, MA, June 1984.

(JARK84b] Jarke, M., 'Common Subexpression Isolation in Multiple Query

Optimization', in Query Processing in Database Systems , W. Kim, D.

Reiner and D. Batory, Eds., Springer-Verlag, New York, 1984.

^>"-:^yc-- .. v\ /:tJ*?>iy^'.i^:s^'/-\K^^^

155

[KATZ82] Katz, R.H., 'A Database Approach for Managing VLSI Dtsign Data ",

Proceedings of the 19th Design Automation Conference, June 1982.

(KERN78| Kernighan, B. and Ritchie, D., The C Programming Language , Prentice-

Hall, Englewood Clifls, NJ, 1978.

[KERS84] Kershberg, L., Editor, Proceedings of the First International Workshop

on Expert Database Systems, Kiawah Isl., SC, October 1984.

[KERS86] Kershberg, L., Editor, Proceedings of the First International Confer-

ence on Expert Database Systems, Charleston, SC, April, 1986.

(KIM84] Kim, W., 'Global Optimization of Relational Queries : A First Step',

in Query Processing in Database Systems , W. Kim, D. Reiner and D.

Batory, Eds., Springer-Verlag, New York, 1984.

[KOOI82] Kooi, R. and Frankfurth, D., 'Query Optimization in INGRES', Data-

base Engineering, (5) 3, September 1982.

(KOWA74| Kowalski, R., "Predicate Logic as a Programming Language", Informa-

tion Processing, North Holland, 1974.

[KUCK86] Kuck, S., Private Communication, University of Illinois, Urbana, IL,

March 1986.

[KUNG84) Kung, R. et al, 'Heuristic Search in Data Base Systems', in [KERS84].

(LARS78] Larson, R.E. and Casti, J.L., Principles of Dynamic Programming, Marcel

Dekker, Inc, New York, 1978.

[LARS85) Larson, P. and Yang, H., 'Computing Queries from Derived Relations',

Proceedings of the 11th International Conference on Very Large Data

Bases, Stockholm, August 1985.

(LORI79] Lorie, R., Casajuana, R. and Becerril, J., 'GSYSR: A Relational Data-

base Interface for Graphics', IBM Research, Technical Report RJ-2511,

San Jose, CA, April 1979.

^^^^^^^^<^^;\''Z'^-^^zt^<:K<:-^;j:y:'-: v; -.>».■. »».>.>■ .-.v "^^,o •,• . ^ . v .- -.

156

(L0RI81) Lorie, R., "Issues in Database for Design Applications', IBM Research,

Technical Report RJ-3176, San Jose, CA, July 1981.

(LORI82I Lorie, R. and Plouffe, W., 'Complex Objects and their Use in Design

Transactions', IBM Research, Technical Report RJ-3706, San Jose, CA,

December 1982.

[LORI83] Lorie, R. and Plouffe, W., 'Relational Databases for Engineering Data ',

IBM Research, Technical Report RJ-3847, Sas Jose, CA, April 1983.

(MATT70] Mattson, R.L. et al, 'Evaluation Techniques for Storage Hierarchies',

IBM Systems Journal, (9) 2, 1970.

[MYLO80] Mylopoulos, J. et al, 'A Language Facility for Designing Database

Intensive Applications ', ACM Transactions on Database Systems, (5) 2,

June 1980.

[NAQV84| Naqvi, S. and Menschen, L., 'On Compiling Queries in Recursive First-

Order Databases', Journal of the ACM, (31) 1, January 1984.

(PAVL83] Pavlovic, G.M., "Using a Relational Data Base System to Store Text',

University of California, Technical Report UCB/ERL/M83/44, Berkeley,

CA, July 1983

(RICH83] Rich, E., Artificial Intelligence . McGraw-Hill, 1983.

[ROSE80] RosenkranU, D.J. and Hunt, H.B., 'Processing Conjunctive Predicates

and Queries', Proceedings of the 6th International Conference on Very

Large Data Bases, Montreal, October 1980.

(ROUS82a| Roussopoulos, N., "Vtew Indexing in Relational Databases ', ACM Tran-

sactions on Database Systems, (7) 2, June 1982.

[ROUS82b] Roussopoulos, N., ITie Logical Access Path Schema of a Database',

IEEE Transa« tiona on Software Engineering, (8) 6, November 1982.

(ROUS86] Roussopoulos, N. and Kang, H., 'Preliminary Design of ADMS±: A

Workstation-Mainframe Integrated Architecture for Database

>.V\/.>Vhj.\j.>V,j,>^>j.>V\jrKj^>^^^ ^\> ■>_» •J.^>'-.>--»J. Mi njiTUA

157

Management System«', University of Maryland, Technical Report, Col-

lege Park, MD, February 1986.

[RTI84] EQUEL/C User's Guide , Version 2.1, Relational Technology, Inc., Berke-

ley, CA, July 1984.

(SCHK78] Schkolnick, M., 'A Survey of Physical Database Design Techniques",

Proceedings of the 4th International Conference on Very Large Data

Bases, 1978.

(SCI084| Sciore, E. et al. Towards an Integrated Database-PROLOG System *, in

[KERS84].

(SELI79] Selinger, P. et al, 'Access Path Selection in a Relational Data Base

System", Proceedings of the 1979 ACM-SIGMOD International Confer-

ence on the Management of Data, Boston, MA, June 1979.

[SELL85] Sellis, T. and Shapiro, L., "Optimization of Extended Database

Languages", Proceedings of the 1985 ACM-SIGMOD International

Conference on the Management of Data, Austin, TX, May 1985.

(SELL86| Sellis, T., "Global Query Optimization", Proceedings of the 1986 ACM-

SIGMOD International Conference on the Management of Data, Washing-

ton, DC, May 1986.

[SHIP81] Shipman, D., The Functional Model and the Data Language Daplex",

ACM Transactions on Database Systems, (6) 1, March 1981.

[STON75] Stonebraker, M., "Implementation of Integrity Constraints and Views

by Query Modification ", Proceedings of the 1975 ACM-SIGMOD Inter-

national Conference on the Management of Data, San Jose, CA, June

1975.

[STON76] Stonebraker, M. et al. The Design and Implementation of INGRES",

ACM Transactions on Database Systems, (1) 3, September 1976.

[STON83] Stonebraker, M. et al, "Document processing in a relational database

fystem* ACM Transactions on Office Information Systems, (1) 2, April

)v:y:v>:y:v:y:yiM<2'^^^ •>-;

158

1983.

[STON84] Stonebraker, M. et al, "Quel a« a Data Type ', Proceedings of the 1984

ACM-SIGMOD International Conference on the Management of Data,

Boston, MA, June 1984.

(STON85] Stonebraker, M. et al, 'Extending a Data Base System with Pro-

cedures » University of California, Technical Report UCB/ERL/M85/59,

Berkeley, CA, July 1985.

[STON86a] Stonebraker, M., Sellis, T. and Hanson, E., "Rule Indexing Implementa-

tions in Database Systems ', in [KERS86].

(STON86b] Stonebraker, M. and Rowe, L., The Design of POSTGRES", Proceed-

ings of the 1986 ACM-SIGMOD International Conference on the Manage-

ment of Data, Washington, DC, May 1986.

[TSUR84] Tsur, S. and Zaniolo, C, 'An Implementation of GEM - Supporting a

Semantic Data Model on a Relational Back End', Proceedings of the

1984 ACM-SIGMOD International Conference on the Management of

Data, Boston, MA, June 1984.

(ULLM82] Ullman, J., Principles of Database Systems , Computer Science Press,

1982.

(ULLM85] Ullman, J., 'Implementation of Logical Query Languages for Data

Bases', Proceedings of the 1985 ACM-SIGMOD International Conference

on the Management of Data, Austin, TX, May 1985.

(WARR81] Warren, D., 'Efficient Processing of Interactive Relational Database

Queries Expressed in Logic', Proceedings of the 7th International

Conference on Very Large Data Bases, Cannes, 1981.

(WILE84] Wilensky, R., The LISP PRIMER , W. Norton, Co, New York, 1984.

[WONG76] Wong, E. and Youssefi K., 'Decomposition: A Strategy for Query Pro-

cessing', ACM Transactions on Database Systems, (1) 3, September

1976.

s7*?&&^&^>?*\-sTs..':Kr&£*?s?s:s\-'* />^^KMM>J^^

159

[WONG85] Wong, E., 'Extended Domain Type» and Specification of Ueer Defined

Operator» ', University of California, Unpublished Manuscript, Berkeley,

CA, February 1985.

[YOUS78] Youssefi, K., 'Query Proce»»ing for a Relational Database Syetem',

PhD Thesis, University of California, Berkeley, 1978.

[ZANI83] Zaniolo, C, "TTie Database Language GEM', Proceedings of the 1983

ACM-SIGMOD International Conference on the Management of Data,

San Jose, CA, May 1983.

[ZANI84) Zaniolo, C, 'PROLOG : A Database Query Language for all Season» ',

in [KERS84).

[ZANI85] Zaniolo, C, The Representation and Deductive Retrieval of Complex

Object«', Proceedings of the 11th International Conference on Very Large

Data Bases, Stockholm, August 1985.

^.V^.-; 7v2-r.V?>?>?^ V.V'A ^ .r .-"\-:\-:\o^^:v^.-:v".v\v>:-^-^.^^>>y^^v>vi>Jv^i>>-N\v..

APPENDIX A

Queries Used in Experiments of Chapter 4

The set of queries used in the experiments of Chapter 4 were the following

Eaployees (name.esplojer.age,experience,salary,education)

Corporations (cnaae.location.earnings,president.business)

Schools (sname,lerel)

range of e is Employees

range of c is Corporations

range of cl is Corporations

range of s is Schools

/• get all employe*» with more than 10 year» experience */

(1) retrieve (e all) where e experience > 10

/♦ get all employee» le»» than 65 year» old with more than iO year»

experience */

(2) retrieve (e all) wher« e experience > 20 and e age < 65

/• get all pair» (employee, corporation), »here the employee

ha» more than 10 year» experience and mork» in a corporation with

earning» more than 5001 and located anywhere but in lanaa» •/

(3) retrieve (e all, c all)

where e experience > 10 and e employer=c cname

and c location ^ 'KANSAS1 and c earnings > 500

160

vjvjv-v.v.vrÄ.v>v> ","v.v.v",'/.-.v ".".v/.".'/:VVVVV.>"A.VJV.V:■..'•■ --.v-.--.-■.-v/,-- /-.-v-^v_v/^ •-•.-•.•■.■-• • w? .>>">>>^>J.>i>j,T
i

161

/• get all pair» (employ**, corporation). »here the employ**

haa mor* than »0 year« experience and morka in a corporation mith

aarninga mor* than SOOi and located anywhere but in Kanaaa •/

(4) retrieve (e all,c all)

«here e experience > 20 and e employer=c cname

and c.location ^ 'KANSAS1 and c.earnings > 300

/• get all pair» (pr*»id*nt. corporation), »here th* preoident

ia Ice« than 65 year« old mith mor* than MO year« experience and th*

corporation i» located in MEW TORI and haa earning» more than SOOI •/

(6) retrieve (e all.c all)

«here e experience > 20 and e age < 65

and e employer=c cname and enaffle=c president

and c location = •NEW YORK" and c earnings > bOO

/• get all pair* (preaident, corporation). mhere the preaident

ia leaa than 00 year* old mith more than SO year* experience and the

corporation ia located in MEW TORI and haa earning* more than SOOI •/

(Ö) retrieve (e all,c all)

«here e experience > 30 and e age < 60

and eemplojersc cname and «name^c president

and c location = "NEW YORK1 and c earnings > 300

/• get all triple* (employee.corporation.achool) mhere the employee

ia leaa than 65 yeara old. haa more than tO yeara experience and hold*

a nniveraity degree working for a corporation located in MEW TORI and

mith earninga more than 5001 */

(7) retrieve (e all,c all.s all)

j&iww(asM&^2y^:»^^

162

where e experience > 20 and e age < 65

and e «mployer=c cname

and c location = "NEW YORK* and c earnings > 500

and e education = s sname and s lerel-'uniT1

/• get all pair» (employee,corporation), where the employee

i» lemm than 65 yeara eld with more than MO year» experience and the

corporation ia located in MEW YORK and haa earning» more than SOOK */

(8) retrieve (e all,c all)

where e experience > 20 and e aga < 65

and e employers cname

and c location = 'NEW YORK1 and c earnings > 300

Q(BQBQPQÖÖMi?Ä?OÖ*?M«^^

