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Absract

To methods oa eutluatin for Vhe parameters of the multivarlate normal

distribution based an the ample charcteristic function are given. These methods are

OWN to have an equivalet basis In term of Parson kernel-Ue density estimation.

The etmators for the Mea vector and Covarlance maIx are dependent on a

user-specified parameter. variation of the user-specifled parameter produces a

respo~ns M-ace In the parameter estimates and therefore allov for an Lmormal

sensitivity analysis of the data with respect to a tentative %ortoing model. The

Informal sensitivity analysis is Intricately related to formal tI of fit af the model.

The estimators of mea vector and covarance, matrix have desirable robustne

properties, are easy to comput and use, are relatively efficient at the nitiartee-

normal, and are useftl in identifying potential outliers and inconistencie in some

statistical asimptions. Thes methds are directly applicable to strucured data such

as mAdtivariate exprmental designs. Several illutration are provided.
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:l. 1ntaduction

TW paper addresses the general problem Of ufng inmple characteristic fanctlon

to constzuct robiu estimators of location and covarlance parametrg of Ungar models

with a p-varfa-e Gausa error structm. w*o envision the linear model s t entUve

wvorlng models conssting at an error stiucture (additive Guwshfty) and a anwcUonal

structure (*.a., a lnear regresmion or experimental design model). Our procedures

have &lSO been usned wcelyOn non -linear models but we do not addres

nan-lnear models here. The workin model Is regarded as a single eity. Of

Course, If it ts certain that the Aactnal Vzuae Is Unar and a th eror

sOrucAre is additive, independent p-variat Gausslan then there would be Utile iterest

in eUmatorm derived from the sample characteristic axwtion because o th road

availabtUty of madm likelihood and least squares estimators. But it is precisely

because of certainty concerning fuctional and error strucr In almost all practcal

SIUMtiM that alternatives to least squares and maidmum lUklhod become InAeresting.

The working model should ndero a process at criticism (wee Box, 197,. Dadl,

1970, and Paulson and micrlin, 1903, for dUocuslson) in order to detrmine the

degree to which the available dat and the tentative, workting model are muiuUy

coiwistent. A Compon of the prcess of critictsm can be based an robst

estimators, If robust stimators and, may, maximum tlkehood estimators "agree" In

the s i a model in the ense thwat if estimatore of unknown parameters are

clse, then the data and the model my be mutally Consistent. several dfflc ltes

asociated with the las sentence need to be highlishbed. First, Jmt as is the case

for tse Of fit, a Particular robust method may not be sensitive to certain types of

departure from a working mdel and am the UNe Of the Word maY. Secondly, how can

"agreement" beoee workM model and the data be objecUv*ly assessed and how is
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closenem of mawmum likelihood and robust eOtimates to be objectively assesed? Any

formal amnwiment of agreement Is tantamount to a test of fit of the truth of the

working model. his line of discussion strongly Suggest an intimate connection of

tesd of fit with robust methods. i an objecttve asement 1i not available, then

robust methods should still be of Interest since they generate an informal etivity

analysi s diMerent but serWible methods-apart from efficiency Considerations regarding

the methods - of extracting information from sample data relative to a given, tentative

model should not lead to materially dtfferent mmaztions or conclusions if modei-

and data are mtually consistent. It Is worth noting that In many practical setting

the form of the error structure of a working model may be important only ae an

Indication of repeatability or homogenetty. Giwlsanity per se, for example, may be

of lUte or no interest.

The estimation methods we develop for Ganusian working models are intimately

related to density estimation, but are quite different In spirit from the work of Parsen

(1962), and Watson and Leadbetter (1963). One ot the main feaiures ot our work Is

the development of an objective function from which robust estimators of location and

covarlance are jointly determined. The estimation procedures developed herein

compare favorably with thoee of Naronna (1976), DevlIn et a. (1975), CampbeU

(.990), Gnanadeslkan and Ketteruring (1972) and Buber (1961, Chapter I). The

recent books by Huber (1951), Barnett and Uers (1973), and Gnanadeslkan (1977)

provide excellent reviews and discussions of a major portion of the literature. Some

of the univarlate counterparts of Uis paper were considered by Paulson and Nicklin

(1953).
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2. Estimators Based On Kinl atlcAn of an Objective Function

tn oAnmental papers Roenblatt (1956), Parmn (1942), and watson and

Leamdxer (193) considered the problem o estimating a density. while the

a oach taken In these papers s oaraeteric, we shall be concerned with density

estimation In a parametWc framework. We shall be concerned exclusively in this

section with the problem of estimating the mean vector j& and the positive definite

covariance matrizx D,(0jr) of the p-variate normal (GauMian) denity

f(x) - f(x/&,D) 12nDl'%ejp( -(X-.)TD'&(Z-10)), (2.1)

given a random Srmple z, z ,..., Xn , and given that the normal model in Uh

tentative working model. Functional struckare is Incorporated ely. We al

my that the x have the distribution Np(,D) for brevity. go ue the expreeio

switivity analysis because observational tra9oration proceseed uider the aegis of the

working model by diferent methods hMd not change the tentative remtw very much If

the working model and the data are mutually conutent. If they are not makally

cons-itnt, then subetantlal differences may relvt. It ti not poseible to give a

completely uwambig LOU definition of sensitivity for every type of problem that may be

encountered In practice. The Judgment of the application area must always be

Incorporated into the procm of assesng sensitivity.

Let
hh

n
*n(u) - n' L 1 e2cp(iuTD'i(xj-/&)) (2.2)

JWL

be a sample characteristic function; note that when jL and D are specifted

3..



K(*n(U)) - %(u) " eXF(-%uu),

where 18 - -1, u In a pxI vector of real rnumbers, and D'5 represenw the unique

symmetric square root matrix of D. When jL and D are not known, W.(u) in not a

statistic. However, the parameters jA and D of (2.1) may be estimated by making

Wn(u) and qo(u) match up In some sense. There are many way. In which this may be

done but we present only that which we have found to be most theoretically as well as

practically useful.

If we define

Qn(AD-m) S) IWn(u) - Wu)lz exp( -mZuru) du (2.3)J'p

= fRcu) R'(u) du - f R(u)2 du.

where * denotes complex conjugate, Rp represent. p-dimensional Euclidean space, and

the residwal *n(u)-*(u) weighted by exp(-bamuru) in

R(u) = exp(-t(.t+na)uru) - n "L exp(LurD* ( -)-MZU rU). (2.4)
J U3.

The expression (2.4) represents a difference of characteristic functions whose nvere

is

r(x) s 8(x) - In(z)

where S(x) is the spherical normal distribution with

&(x) a (21r(L+ma))-%P exp(-I(I+mZ)' xTx), (2.5)

%I .o
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and gn(z) in an estimator of g(x) with

8n(z) fn'( 2 lua) P £ ex(-(2m) Lzjzj), (2.6)

The *xPrQnMIon gn(X) 1s unblased for g(x) when the z, are p-variate Gaulssan.

When the zj are not Gaussian, Sn(X) can differ mbtantaty from g(z) since each zj

has an Influence In the etimat* at the population density. Note that (2.6) Is not the

umal Paruen kernel density estimator. Th fact, gn(z) has both parametric (being

depede on ja and D) and fpeametr€ features.

By the muld onmi version of ParseV'E theorem (Feller, 1966 , Chapter 15)

Q0(JLDta) a fR, IR(u)Iz du z (21r)P fRP r(x) dz. (2.7)

estmators for jL and D, tentative on the correctness of the model (2.1), are

given by minimizing Qn(,D,m) over /A and D for a specified value of m, 0<m<.cm

Explicit integration of (2.3) yields

nn),,M rSP Julm ka ep. l

2(]i4*)-P r *'p 2(1 +2m 1 %I * l n(1+uz)'%P , (2.6)

Q " (xl-/jl)lD(xj-/), (2.9)

Q ak (zj-Zk)T(2DO)'(X l - Z ) (2.10)

S
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@Qn(;Lota) a o, a~n(;LDm) a O,I

we find that the estimators o )L and D, I(M), D(m), my, stlsfy the impLicit

equaUoni

Cs " wv(m)x 1 , (2.11)

D a k(m,n)BALD , (2.12)

where

A (x, -I)(xj -M)r.xpC -(4ma+2)-L(xj -MA)rD-L(Xj _)L)],

M .. ( -xk )(xj -Xk) TexpC -(GA)-.(Xzj -x T D(x,x-),

vj(m) a aj(m)/a.(m),

aj(a) = *XpC-(4W+2)'L(xj-M)rD'D(xj-i)2,

bjk(m) 0 eXpC-%I(X-I k )T(2m' D)1 ( - xk)],

n
a.(=) =,_~a1 (m),

b..(m) , r r bjk(M),j A k '. ,

1 1k(mn) = , (1 + )SP,1

In (2.12) rna over aU j and kand run over aU J, k 1, 2,... n. A

convenient way of interpreting (2.12) in that, approximately, D is determined in mch

a way that the product of one estimate of the covarliance matrix, 5, say, with the

inverse of another estimate of the covartance matrix, A, say, in apart from constants.

A*"*', * , *' ' , ,' ' * \' <_ ', .V ,_"*- . '-'., w v-. f,- . '.. '-.- ,- .- f " .. . . . % .. % " ." .. ." . . . .' .' .' ." .



n
the identity matrix. note that it(w) -L E~ £xj and D(w) - D

n j=l

n-L C (xj - x)(Z1 - z) T, the usual intd of momnts and maximum likelihood
JL

estimates for 1t and D respectively.

An estimator for D based on A in the absence of B may be developed in several

ways. First, the eXpectation Of A is

I(A) w n~ 1 ] D5+8

so that estImators for it and D, MY 10(m) and D'(m), are determined by the joift

Implicit equations

D r nI2+9u& 1 (P+Z) A(2. 13)

and (2.* 11). Alternatively, another set of estimators for it and D based on A tn the

absence of 3, fA(m) and 6(m), my, can be determined from the implicit equations

(2. 11) and

2+2 AD = 1 - (2.14):e1+2M' a(m)

Equation (2 .14) arises from determining the Constant ki Which Makes

EP(r(k(xj-it)(Xj-t) T -D) aj(m)) o .

Karonna (1976) gives burther details concerning these methods of Construction of

robust estimators for gt and D. Paulson (1966) Nas developed the estimators Al(m)

and 6(nm) from Maximizing a generalized version of the log likelihood.

Estimators for D based on 5 in the absence of A can be derived in exactly the

sme way. Note that these estimators need not be paired with an estimator for 1L.

rtk, an estimator for D based on a alone,* D - (in) my, may be developed from the

Implicit relationship

7



rf.+m'l u( p+a )
D a (2(nl(n-1))' -- (2.15

alterrtuidvely, an estimator for D, D+(m) Say, may be developed from the implicit

relationship

14.68 3
D - b () (2.16)

w only explicitly use the eftimmtor e(m),D(m), A(,),D(m) and the estimators

(5), D(A) of section S in this paper an theme would be the ones that would be

normally use In practice.

3. Numerical Computation of the Estimate Based on Qn(M&,D,U)

The exprmeeonr (2.11) and (2.12) are set out in accordance with a fized point

computational scheme. The left hand sides are deslgnated as the updated estimates of

g and D the right hand sddes have current values of A and D mbstibtuted wherevet

they appear. For example, an estimate of D would be computed via D1 +1  "

k(m,n)BgAj 1 Dj where Al and B3 are the Ith iterates of A and 3, each evaluated at

the ith iterate of g and D. Zteration proceeds until convergence is obtained. A

Newton-Raphson scheme has also been used in place of the fixed point scheme but it

Is generally inferior to the fixed point scheme for p & 3. we have had good success

in using A - n-IC Xj and D a n'C (xj-A)(x,-A) T as initial trial values of ;L and D

in (2.11) and (2.12). This strategy failed only, and infrequently at that, when the

xj in question had the character of two or more clusters of data. Zn this case it is

clear that the tentative Gaussian model is inappropriate in any event. It is difficult

to specify the numerical behavior of the estimation procedure because this behavior

0



-Ame to such an e"tent on the MMaple Of zX1 5 In qustCn, and the Values CC S, p.

n, and the eOr tMOVrac On SUCCOemive valUes Of QnOjLD,m). The greater p, the

greater the nmer of Ikerations to convergence. For p - I and 2, a - 1, and

convergence determined by successive values of Qn( j&,t) being les tha .001,

conrvergenc to a final solution was attained In fewer than 30 iterations for over ninety

percent of a large nmber of trial polblems of varica SaMPle sI e, 10 a n a 120.

ExWle 3. 1. The bweity triples (2.6, 1.7, 3.4), (2.1, 2.1, 3.4), (1.3,

2.0, 1.7), (2.2, 2.1, 3.0), (1.3, 2.2, 3.6), (1.6, 2.2, 3.7), (3.1, 2.2, 2.4),

(2.0, 1.7, 3.0), (4.0, 1.4, 3.3), (2.6, 1.9, 3.2), (1.5, 2.0, 4.2), (3.9, 1.6,

2.5), (3.1, 1.7, 3.5), (3.1, 1.9, 3.6), (1.7, 2.1, 3.6), (1.4., 2.2, 4.0),

(3.0, 2.0, 3.9), (2.9, 2.2, 5.5), (2.9, 2.6, 5.9), (2.9, 2.9, 6.5) represent

the percentage at Iran (fe), sodium (Ua), and potamus (K) obtained In a chemical

analysis of twety geological spec ImeW. These are labeled sequeutally as A, 3..

T. All two way scatterptota of ti data given In Figure 1.* Table 1 gives estimates

of the compnents of 6(m). 6(m) S(A) (aee Section 5 for def Intion of B(A)) for

m - 4.s (i. e., maxlmi likeolhood) , **=2, anid A=2.

The inadaunm LIkeliood Stimators of the variances a and the correlations Pi

are drastically different from the estimators ,(an) t(a). ~i(a), (0 ,And

(a) , 1%(a) when a,' a 2. Of particular interest Is the value at the estimators at

pasa. A case for the reasonableness of each of these estimators at P&3 can be made

depeniding on which obervations one In willing to dismiss an being inappropriate to a

Gaussian model. A Clem exmminatIon of Figure I will reinforce thi point. The

maxtaum likeLihood estimato La not critical at the data In any sense while 6(ma),

6(ma), and D+( m) are effectively cluokerlng the dafta in the way that each perceives

will retain Wmuch as possible the wor~lng Caulanm model. This clutrng imlie
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that certain observations are being Ofiltered out" at the estimator at D by being

heavily do'swelghted. This aspect at clustering receives more attention in the

following sectiao.

This example highlights the fact that different estimators may focus on different

aspects of the data wUder the aegis of mome tentative working model. Accordingly we

me that the parameter estimates are seinitive functions of the estimation procedure or

at, also In this case, a parameter of the estimation procedure, a. Naving seen such

newivity, one must conclude that certain data IS not cowistent with the woting

model, e.g., perhaps they are outliers, or that the working model of independet,

Identically distributed Gausanity Is not appropriate for the tMting at hand.

Incidential ly, the test of fit of Gaussianity of Pauson, Roohan, Ewang, and Fuller

(1956) re3ects this data as being Gaumian with p-value < .01.

Table 1

Parameter Estimates for Several Values of ma

Fe Na x

Et Imator ma rLL Cr. 633 P&Z PLS Pas

A

D(m) 2 1.19 0.166 0.633 -0.770 -0.133 -0..13

f(m) 2 0.776 0.070 0.229 -0.824 -0.506 0.137

5(m) 2 0.828 0.075 0.245 -0.026 -0.496 0.139

0. ."644 0.149 1.23 -0.435 0.069 0.416

10
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I. Statistical Properties of (m), 6(m)

Thes aneusy determined estimators (m) and 6(m) reduce, as m, to the

usual method of moment estimators j = n" ), 0 - n'L(j--L)(xj-M')T . The

estimators M(m) and 6(m) are atone invariant. 6(m) Is positive definite with

probability oe for m>O whenever n>p although it may be algorithmically singular. The

estimators M(=) and 6(m) are consistent for JA and D for m>0 If x3, zz,..., xn In a

random sample from gNCM,D). The estimators AmL(), MaCEm) .... Mp4(U) are jointlyr
'4'

awympotica11y normal for m>O If x1 , xz,..., xn In a random sample from Yp (AD).

Mulict evaluation of *Qn(CM,D,m)/8, shows that the estimator ,(,) is an

N-e*tImator for M at the p-variate normal distribution. Kowever, expUct evaluation

Of @Q(M,0,a)/80 (and 2.12) -how that D(m) Is dependent on paIzwlse differences %

xj-X k so that 6(m) to not an N-estlmator for D (Ruber, 1901, pp. 43-"). Piures

2(a) - (f) provide lrdluenc* function contours for the estimators z( 1.5), a(I.S),

and Lz(1.5) at the standard bivarlate normal dstribution for correlation p=o and

p=.9. M general, for O<ucm the lizluence functions are bounded and redeecendtnt to

(matrix-valued, pxl or pxp) zero as the Euclidean norm of the pxl vector argument r

of the influence function becomes unbounded. Thus both M(m) and 6(m) are

qualitatively robust estimators for jL and D for a fized value of m. The finite sample"

multivarlable sensitivity curves (see Barnett and rewls, 1973, p. 137; Huber, 1991,

pp. 13-16) SC(x;M(m),N,(C,D)) and SC(xZ;(m),N,(M,D)) for (C) and 6 (m) at

Np(,D) are also bounded and redeecendent to (matri.-valued, pxl or pxp) zero an

the Euclidean norm of the pxl vector-valued argument x becomes unbounded for n>p

and O<mww. Therefore, the contours of the sensitivity curves of the estimators (MC),

6(m) are closed and bounded. This closednes property implies (1) that the process

of estimation may be used an a clustering algorithm, and (2) that the process at

11 ..
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h
estUaaton may be used to evaluate the results of some Clustering algorithms. The

clustering capability associated with estimation of ;L and D allows for identification of

potential outliers in IAtivarlate normal data.

The asymptotic efficiency of the J-th component of ACm), my Aj(m}, relative to

the mlple mean In determined to be

Ir + CA -W5 &efff(Aj(ml) 1 + 2c,(,. )=

where c = (1+2m8)" ,. The asymptotic efficency of the J-th component of D(m), my

Sjj(m), relative to the sample variance I much more difflcult to obtain but lengthy

computations and extensive simulation trials Iuggeft that

eff( lJJW) • 1 1 + 1 E 1 (4.2)

m Iomdd efo ym jj(m)) . 3C

2+4c 1 +2ci '

*NThese computations also suggest that asymptotic efficiency of the off-diagona

Components Of 6(m), say &jk~(M), relative to the mazimAm likelihood estimator Of Cr~

In bounded below by ef(..'))

S. Modified Squared Error Estimation

4.' "j

The method of section 2 is not directly appLicable to the strucbred data case, v

e. S., the cases of regression models and experimental layout models. Another,

and more extensively applicable, sample charactersUc fUnction-based estimation

procedure for Gausian models is now developed. r.f x&, x, ... X" Is putatively a

random mple from N,(MD). then

12 
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Z(3( tUTx1 ) U O(U) = 03p (5.1)iUTU)

Deflne the iiO resdal to u as

R3(U) a eq(tUZ1 ) O(U).(.)

The SU Of 1MOd.AU squared of the reuiASI3 to given by

n n
L~u) a E R1(u)R'j(i) - r. IR3(u)I 8 (53

IML W

The Cam ath " ui of modull squared at reiuals~ closely parallels the usual -us of

squares of reu1Ialu of leas0 squares, the major difference being that L(u) depend

an the nuisance, parameter u as well asoan the data. Udorstin Concerning I& and D

In principlo way be extracted from L by minimizing L over a Amfcienkly *zbmens

flated gid of nonsero, values of u. AnY such estimators for j& and D would then

depend on the nmbr of u -values as well an the location of heeu -values and would

rot be affine Invauiant. This Is too ciurny a state of affairs for practical

applecadons and so &aothr approach is necessary. If we multiply both sides of

-30,0 (5.4)

by ezCp( -AUTDu), OCAcs, and Integrate over Restimators of 1L and D will satisfy the

'lWUcit matrix valued eqpstions

fJ *MX (AuTDu) du 0, 039eP( -AUTDU) dU -0. (5.5)

These estimators I(x) and D(A), way, of 1& and D are dependent on the single



ution exp( -AuTou). Anothr benefit of -ltiplying (s.1) by exp(-AuTOu) is to

make the remilttng estimators aftnne invariant. After uSe of the matrix differentiation

forMUlas Of DWeYr (19%7), the Integrals in (5.5) may be explUcitly evaluated and

rearranged to provtde the Joint implicit etimatlng equations for ji and D, namely

A t (5 6)

o ( +2A)- W ( )(X I z-IA)(Xj -)A) . (5.7)
J=,

VJMx = p ,x:-1 Qj) V.(A) =: Evj(A),

vWj(A) =v~)v()

and

n
w; wlp(- A,)r 5 x(-w

jui

S.'

Tejoint esti~matorsl of 1A and D determined by (5.6) and (S. 7 ) may be computed by a

fixed point algorithm with •n' xz, and s 'Ex-)x-) upplying the

Initial ueevo of j1(A), B(A). we have not found second order mehods to be

resmiury in compuungl the estimators.

Ant a~plplition of the@ p-dtmoruronal version of ParnevalL's Uhoortm (Ftller, 1966,

Chapter 15 ) e Vh equivalence of equtiorns (5 .S) to

Jol
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h

2(2 )P J f(z) (f(Z) fA(x) - fA(Xlzj')) dx U 0 (5.6)

and

n. Of(z) X
2(__Pr f - __)(fX * fACEZ) fj(X-xJ) dx a0(5)

respectively, where hL(x) * h,(z) represents the convolution of h,(z) with

ha(x). Note that
z.(

.4.

f(x) * f(xZ) - 12rl(l+,\)DI"% e.p( X-/,IT(ll A)D)L(z-gt))

and that

f (X-xj )- 12wADI -% eX( -%(xZj)(AD)-L(z-zJ))

The remaining coanvoluton in (5.6) and (5.9) are given by

Of(x) X r. ( -%ep KTAX-L jI.

OD f0(x - a z) 1 21rAKV

and

f(-) 12(1+A)DI"% exp(-(x-MlT((4.)D)(z-A)}.

The equations (5.0) and (5.9) show that the estimators ;(A) and D(A), may be '

derived, equivalently but le directly than M( ) and 6(1), from consideratios of

parametric density emtion.

l-S
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6. Properties of J7(x), D(A)

The estimators (A) and 5(A) are well-defined for O<A<m. It is clear from

(5.6) that A(A) * n'LCxj as A-. Explicit evaluation of (5.5) show that ;(A) and

D(A) are N-estimators for ;L and 0 (Euber, 1961, pp. 43-",). The estimators

are agln Invariant. Slight modfication of the arguments at Bryant and PauLson

(1979) show that (A) and 1(A) are consistent for JL and D when the x, costitute a

random sampLe from Np(g,D). The estimators ( Iz(A)),, (A),

Lz(A),....., 3pp(A) are Jointly asympeotically

norml and the 9j(A) are asymptoiay nubally Independent of the ?jk(A) Ifthe

contitte a random sample from Np( L,D).

If we define the awymptotic efficiency o ;Z( ) relative to an the ratio of the

determinant of their covarlance matrices, it can be shown that

r3,sAO.,AA l p( p -)
effC (A)) - 44.0 A4,4AJ .(6. 1)

Similarly, the asymptoiC effec y Of the esiator V kk(A) Of the kth diagonal

element of D, akk, relative to its -ma m Likelihood estimator can be shown to be

[ I a12]+
• f(3,,,,( ) 9- 6 a+ x (6.2)

13+2A J (3+2A), 12+2AJ

9 a

16
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Selected v""ue at %hmg efcincs are given In Table 2. We have not expUctly

caLCUated the ocMencls Ot Vjk(A) relativO to it@ corroNPndUf mAlmm likeUlhood

es taor.

Table 2

S

ASYmptotic effIciencies ot ;j(A) (first Ut ar entry) and Vj(A) (eond tabular -
entry) for selected values of A and p

A

.5 1 2 4

. 78 .07 .94 .90 1 "

. 79 .98 .95 .98 1

2

.68 .77 .9 .89 .90

.76 .85 .93 .99 1

. 59 .69 .76 .90 .02

.70 .2 .92 .97 1

.52 .62 .69 .73 .7S

.55 .72 .07 .95 1

3

.56 .56 .63 .67 .69

Inth cas P-1 Of(Vkk(,\)) tentrds to untly with incresing A tm for p>I, *

Ol (Vkk(A ) tol bounded:I away from uity. Th 41 l - eln - O1f((Vkk(A)) Ui EmonoMtone .d

Increasing with \. Thus, the igher the dtmetwoonallty, the larger the value of A

h u ue If offictency to a major consideration in the choice of A for esimton."

We shl adrs thi Isu in dal in secton 7."

1,

176.5 6 .67"6
.51

In te cse -i, ff(kk()) tndsto nit wit inreaing bu fo p1

"f(kkA e onedaa fo niy heefiiny f(°ff())i ontn
[ ; ,, : .... r.e-...-. wit A --.- .. ,..-. the. highr the. ...e.n --io.-a.i.... e .ar-e th value-.... A' .one-....,



The nature of B(A) as Ae i determined by an application of L'Bospital's

rule. Some elementary mmiulator, yield the implicit relationship

r (Cj
thatJ=the (6.3)%jn(P+ 2)- i" x-)'~j

that the estimator must satisfy asymptotically in A. When psi (6.3) may be

rearranged to get the usal moment estimator for 0, but for p&2 (6.3) cannot be so

rearranged. The estimator of D defined by (6.3) does not mm to be othervime

interesting.

The influence functions for A(A) and B(A) at the p-variate nozml are

similar to uoe of A(m) and D(A). The ma3or difference in that the influence

function tA(X;D(A),op(MD)), O<A<m, while being bounded and redescendent, is

not redescendent to zero, but rather to a positive definite matzrx constant, as the p,

eucldean norm of x becomes arbitrarily large.

7. Choice of A

There are two possible uses for the procedures we propose here. (We ahaU

restrict our attention to the A-procedure although there in a parallel development for

the a-procedure.) The first Is to specify a single value of \, possibly based on

efficiency considerations, and use it as a robust procedure. The choices A 1 or A 2

provide high efficiencies and good robustnes properties. The second use is the one

for which the procedure was developed and which has proved most use" In practical

appUcations. We us the procedure to generate a sensitivity analywss. In a practical

'A *

.5 .)



explorry setting we first compute the maximum likelihood estimators and use the

for starting values In the iterative algorithm. Next w. take & value of A, 4 or 2,

and examine the behavior of the siMates. Pinaly, we would take -I or I and

examine the behavior of the Ostites. 17. t not possible to completely specify the

values of A because the behavior of the estimates depends on the nature and the -

extent of the data. The response surface of the parameter values and the final

weighta a tmctln of A are of primary interest. Mn the process we determine

estimates and final weights V1 (A) - e2(-I.(i+2A)'(-I(A))lA)'L(xI-1I(A))) [

asociated with each observation. If the estimates are sensitIve to this variation In

A, then there may be problem asmciated with either the data or with the Gaumsan %

error model or both. It wiU not always be possible to determine the =ouce of the

problem. The particutr obeervation(s) which is (are) the potential cause of the

sensitivity are identified by low values of V (A) vis-a-vis the whole set of thee

weights. Thin discusion will be mbsequently clarified with an example.

The derivation which led to the estimators liven In (5.6)-(5.7) did not require

that A In (5.6) be the sme as in (5.7). We could, for example, use A- for .

and An2 for D. Purthermore, we need not have restricted ourselves to a ecalar

value of A In order to arrive at (5.6) and (5. 7). At the expense of greater

algorithmic complexity we could have chosen value i corresponding to each aij In

the covarlance matrix D. Because D is symmetric, we take Al1 = Aj 1 . ,et the pxp

matrix L - (1+2Atj) and the pxp matrix N a (2+2Aij) and let L D = ((1 2A 1t 3 )oj)

denote the Hadamard product of E. with D. Then by arguments similar to those

employed to arrive at (5.6) and (5.7) it may be shown that the more general

estimators for ji and D satiMy the impLicit relaUons %

19 %'



C x1 039P( I (XJ -IL)(LxD)-L(ZS -9)) 71jai 7. L)
ft

£ eX*( - (Xj -s)r(LD)-L(Xj -1)

and

L~ I(,STLXn(J.S) I LxD I -

{,Io IMXDI(L ) (U

+ 1: (X,-,l(X,-,A)T *Xp(-%(s-)T(LxD)'L(Z1 -)) . (7.2)

The identity (tD - 2+2Aj J x (LxD) in useful in compu tIng (7.2). The

estlmatrs of CrIj are computed In a component-wise fashion from the final iteration of

(7.2). Thes estimators would be of Interest when' it Is desired to treat different

components of the 3c, differently.

8. Examples

Example 8.1. The basic data for this example are taken from Anderson (1958).

The first 25 points consist of the first two (of four) components of this data with five

additional (outlying) observations appended. We have chosen A-L, 2, 1, .for this

illustration. Table 3 sumarizes the weights v7(,k)-*xp(-'(z I . )r(( 1+2e))-

(x3 -;a)) associated vith each point on the assumption that the data follow a

single multivartate Gaussian distribution. Table i, provides the estimates of the means

and eovarlances as weU as the maxtmum likelihood estimators. With A 2 + O, ae

weights are the same. As A decreases from + w, the weights become differentiated.

20
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"W s asl1 obeegvsdow are rendered dlmUncUve by their d1Uirimh" wia* Vj) (A)

- A%6. IM Indcatgow t thee ObeOer eMr w e rnot conmegtI with tmw

remaminder at w obseavat and the asmmpdm of a "L* Gamian dWUtrUAcn.

Tble 3

SawltIViiY of (ObetMr~flSL Wei"
Vj(A)(xlOO) to Varlatlan In A

A
Z& Na 4 2 1 .5

Point
1 179 1"5 34 39 45 so
2 201 152 33 36 23 is
3 16e 149 37 4.1 47 SO
4 16s 149 37 40 4 49
5 171 142 34 35 39 39
6 192 152 37 39 A N8
7 190 149 37 39 41 42
8 169 152 37 40 47 53
9 197 159 35 36 39 36

10 167 151 37 4l 17 s
11 166 148 37 40 4s 5o

12 174 147 35 37 36 36
13 15 152 37 41 4s 5o
1L 195 157 36 3 42 43
1 187 156 35 36 30 20

16 161 130 27 23 17 0

17 163 1s 34 34 22 10
1 173 148 35 36 33 27
19 182 14 37 40 45 so
20 165 137 31 30 30 25
21 15 152 37 41 4 so
22 176 147 36 39 45 49
23 176 143 36 36 42 45
24 200 156 34 35 37 36
25 187 1S0 37 41 47 Si
26 200 130 16 6 0 0

27 200 135 23 11 0 0
26 163 160 24 13 1 0
29 195 170 28 22 6 2.
30 220 170 23 1 13 6

21



Table 4

Senitivity of Parameter Estimates to Variation in A

A

4 2 .

165.5 185.2 134.9 134.9
JAR 150.1 150.3 149.9 149.7

14.,, 1. 1 1".. o 15.4 136.6

6',2 O0.2 74.1 65.7 52.3

PL2 .52 .67 .65 .17

From (5.6) or (5.9) we find estimaton of Aj and D iu intimately related to

the estimation of

f(i) f f(x) 121r(1AD.l % exp I- 2(1+A) (xJ iS"TD '(Xj -))

by

jA(Z) a n " L  12ws( A)l e - (x-z) D'L(A)(X-Xj).

The density f(x) * '%(x) may be regarded as a tentatively posited (prior)

distribution and 1AK(x as Its esimate, given the xj'. rf the K3 are from N,(;L,D),

then I\(x) T NA'(z), for all reasonable pairs A, A* (A a M, 0 < A, A' < a. If we

took A a 1 and A' a .001, 1A(X) and 1\'(x) would not be Similar unless n were large

since then 1,*(x) is approachng a sum of Dirac delta functions. If the zj are not

from tfp(M,D) but from h(x), say, then jK(x) will be an estimator for h(x)

x
fA(z) and 1AK(x) can be quite different from f(x) fA(x). we thus suggest

that the estimators ;(A) and D(A) and ;(m) and D(m) are robust primarily

becaume of their Intimate relaUonship to goodness of fit through a parametric densityII

estimation. Equations (5.6) and (5.9) imply the data is being adaptively screened so

22
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as to retain the character at Gausminty as much as poMI"le and that the parameter

tstimatin in reafll maboedinate to desity etimation or error re utruction.

nlures 3a, 3b, 3c, depicts what the estimation p cedure perceives as A

dece s. For large A the density estimate IT(x) Is aprxmately untiform. At A=2

the degity estimate contours are moo=h except for some sligh disoction In the area

at (195,130). At A-1 the probability OArfaCe in distorted In the vicinity of the

-cmiminidon but the distortion Is not yet pronounced. Compare the estimates at the

parameters and the observation weights Vj(A). At A=ms the distortion has becom

dramatic and indeed separate htlls for the outlying points have formed. Again

Compare the estimates and Vj(A) for AWS. Since the denity estimate percetves the

outlying observations as not consistent with the remainder of the data and the single

Gmlan asumpton, the reason for the don-weghting of the outlying observatiow

has become cler. rf we let A*O+, the density estimator becomes an average of a set

of Dilc delta AmnctIons located at each point.

At Awls, the procedure has effectively clustered the data with the outlying

observatons excluded from the main cluster. Accordingly, as A Is varied in this

example, a dramatic change In the estimators implies the existence at clusters at
p

observations different from the main cluster and not consistent with the prior

1 0Aon of independent, identically distributed Gaumianity. The recontzuction at

the error density becoms increasingly critical with decreasing A. This example

reinforces the counection at the robust procedure with goodness of fit.

Cxmle 0.2. If (y3 , xj), 3 = 1,2,..., n represents a random sample from

( (Al,v)y, then the regression of y on z ts given by

E(ylz) = A 4 COjai(z-V) = o z,

23
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my, and the I my be computed from the eutiAte of 1& and D. The da for thi

eixmple are tabs. ftom Andrew and Pregiban (1976) who ere concerned with

regreamd models. The data are preeented In Table S. The leat euaare or

mazi Ukelhood egtimates are also preseted In Table 4. We shaU use the L

matrix version of the modified integrated squared error procedure as dlsomed in '0"

section 7.

The remus concerning the variation In tUw V (L) as a &mnction of A~ or L are

given In T Lble S. The results Concerning parameter estiates aM a fuanctin of theU

A I are given in Table 6.

.0

:41
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Table 5.4

SOuVlvit7 Vj(L)(xLOO) to VSI~ion In Al., Ala, Aas

(A&&, ALS, As)

y 3 (2.4,68) (1,2,4) (.51,2)

1 95 1 100 99 97
2 71 26 72 46 20
3 02 10 05 76 ,5
A 91 9 94 93 66
5 106 1s s6 o2 74
* 67 20 94 69 72
7 93 1 99 946 87
a 100 11 96 97 9?
9 104 6 95 91 64

10 94 20 94 91 76
11 113 7 81 70 54
12 94 9 99 97 96
13 62 10 so 74
14 64 11 so 61 71
15 102 11 97 935 9
16 100 10 96 97 96
17 106 12 92 69 4
1 57 42 40 11 0
19 121 17 so 33 19
20 6 11 92 6 79
21 100 10 96 97 96

Table 4

Selttvity ad Zv.mnme to varlaUta in AL1 , A1 8 , A&&

(0.0.) (W.M.0) (2.4,M) (1,.4) J..1.2)
ALL I&. I 13. 4 12.6 12.3
v 93.9 94.6 95.3 95.9
OL L  60.1 5.6 32.7 23.6
aLa -1L. 2 -49.2 -29.2 -14.6
aL 190.2 168.3 143.9 125.1

PLat -.74 -.56 -. 43 -.27

The parameter eutimatee are serwltlve fmctlos at T. The pomW %lcth awe mat .e 
,

U'duleuWd or potentially Uncowtn vW-a-vis the lnoe model with a Gaumnian error

"5 "4
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samcw*ar ame deteairnd from obegtiaU= weighe V (), I.e.*, thoe With low values

of qj(L). 'Tne poinis, 2, Is, it, are especially singled =A. Point 10 represents

an extreme point In the u-space and tosmoft Unfuential on the estimate at the slope

As a rLsla/ tof the regression ine. PoWn 2 has the econd-most extreme value at

x. Point 19 produces an ext*rme resldual. AMOGo reuls obtan It all A1  a A

and A Is varied In order to detetMe the redPOnMW of the parameter estimates and tWe

obsetwa -' weights to varliaion In A. Practical experience - that In many, IP

not all, case, taking Ymt a single value at A (or set of va es ) provides

snlcrA informatlon concening the res e of the parameter estimae and weigM.

Vj(A) (or VI(L)) to variation In A (or L) In the ese that if A (the All) weom # •

Aurg decreased, the amie trend In respoi will be contUwaed. n thee came a

robL analysis Will lad to the me conclumeow aw the senultvlty analysis. En ome

cames, a chan. In trend wiU be observed es A decrses so that a single roust

anali vi-a-vi maxom likelihood my not give the m indicatio as a seutivity

E.ILAam S.3. The three dimenwtonal data for this illustration are twken from

, an~eslkan (1977, pp. 50-52). The 61 triads of his example 7 were obtained by

adding a spherical Gmusan noise comipoent to each of the coordinates an the mrface'

of a specified paraboloid. The two -dimeusional scatter plots of ths data are not

maggesetive of the data In three dbmeuhlone lying near a curved surface. we determin

the respoe of the parameter estimatew to changes in A. The mean vector estimate at

A- IS (-3.54, 4.72, 26.94) While at A t' it Is (-3.53, 4.70, 26.95). The

variance estimM at A" are (3.81, 2.33, 2.94) while at hmx they are (1.43,

2.76, 3.79)1; th correlation estimates at A-S are (-.51, -. 47, .20) while at A-

they are (-.54, -. SO, .27). The estimatee of the mean arte remarkably stable but

the estied vri&nc and aMolut values of the correlation Increase with a
oPS.

-.'.
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tores In A. Trhes WSIcSeOtIUc imply that It theGaan d itrLbutUon mo l to

no% apppltA, a*s bet place to look for dl ilaidUO Is at the Centrod. This ts

=nbnod b 5 dt zike at fO wsIh9 V(A), epecIALLy for A-i. ror *xmmpt*0

for Aat, the argee tNree veti VI(A), .89, ."l, .62, Indicate that there are no

eu€ns near the cmnroid. This defilency of obeosuvtio near the centroild Is

also d minabLe tom A= reubs, bu it t highlighted at the niller vhake at A.

The pM ice at examinng the V (A) Is simlar to that a e'1mm~ing qumntie-qumlle

P1010 (Gawdn-11, 1977, pp. 50-52) since Vj(A) IN basd an the qadrat farm

(zj -j4A)) 5 tfA)(x 3 -ACA). The -onclusions dam for this exml* are the .

This Udormal obeai of ensitivity af variance and cvarlance embe to
p.

dimigee In A can be we formal so as to provid probabil"y Maieont wwcrmm

- -ini of the p-varat normal model by defining a ban of fit bused an tim

'

5() t(L( +D tz(D(A)D-L))-2p.%

for A a 1, My.* This tet utatistl Will be near nerlo If GaMftity Is appropriate ItI

will be large if Gaamnity In not appropriate. Pmau~n and Swaps (1986) have used

a statistic similar to S(A) to tef for p-vartate normality. This exampl again shown

Owe lnteffelatioai of sm aspect at robunknes and sensitivity analysis with te

of fit ON models.

9. Kultvailate 'To-Way Cram Clawliftcatin

The system at equatIons (5.5) are readily extended to Include mlUvarMme

regresion and design sibuations. we indicate how this may be done for the case of a
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%~*



A
wo-way cras clasied deusn. The argumens are similar for other designs and

regr.o WOlim.

The wo-way cram clammfled model may be written

E(Zjka) U + aj + k , (9.1)

* a t,2,...,a, k - 1,2, ..... a 1,2 . 1, where the XJkQ ae asmed to

be p-d1ms.onmal Gman with covarlance matrlz D. The 9antltles ;L, a, O are

pxl location vectors. Denlne

*Jk(U) * 62(IU(L4G+D,) - Uuup 9.) .A

and

U b ljk Tf4.u) - -r£E, I*jk(U) - *XF(IuTzJk1)I8 (9.3)
Jul ftu 1.

Iltiply both sidem of each of the following

i-o, *0, !T., .0,

by e3P( -AuTDu) and Integrate ovr R9 to get

f exp(-AuTO) du - 0 (9.5)

for 0 1 &, aj, k, D, 5 a 1,2,..., a, k a 1,2,..., b. Explicit evaluation of

(9.5) leads to the system of impllctt equations

k£rf (xk#-M-aj-Ak) Vjt(A) U 0,

Sk

j(ZJki-W-aJ-k) Vlka(A) -o, =- ,2,..., a.

(XJk*i-aJ-A) VjkA(A) = 0, k 1,2..., b.

Li -4.0s



Te rai* of this Into of eqio s I a4-1. The ftzet of th ei egiqtions &="W

Cr. £jJJkE(A%) U r £ £DiVJii(A) a 0 (*

be appended to produce a 0U rank uyeu. Along with (9.6) w obtain the implcit

r.r X~k 1 VJICaA)

k A

kI I

0k-Vj5 , k U 1.2,..., a-1, (9.9)

and

D (-A)N k I (9.10)

r. f±.A VI kPAl)i

VJk C ) e-( k1+2 )" L ( J k I (al k " ( a "9.1)

oee z i requPre e coMderaSm are a a I e 6,

by low values at VJ(klIA) viz-&-via the whole mt. A low volue at Vjkl(h) nM ySUI

that thO pezticutf observation In a potential outlier. Too many low values AU mply

-,,,.-. ,.I..; . K... : . ... ..% f ,--., %,.,.., .......,....t-.. ....-. , . •



tat th model asUon of a single Gausia parent may not be werranted or that

the model ts fut-seciftd or tha there are Indeed a =Wmer of Potential outliers.

PuwUore * if njk > I and we find tM IndilVIdal ClU have low valUes Vjka(A)

associated with them, then interaction In the table In a distinct pobLty. In thin

cas we generallse the model to

B(Xjkl) + 4j 4. 1 + Yk"

and proceed accordingly.

This multivartats procedure can be especialy unefil for eploratory purpoes.

Determination of the sensitivity Of Vjkf(A) and th parameter estimates to changes In

A will serve to uncover potential problem with the data or the worn model

couadersd as a consistent single entity. The procedure Is compatonally Inexpenve.

and easy to use. We have Investigated this procedure with respect to ts at

ypotheses conce ring the location parameters such as aj and Ok WAt MW dlsrlb:atu

theocy sms to be Intractable.

Example 9.1. The data for this example concerning wo-ay croe clafcations

were taken from Anderson (1959, p. 212) who gives Some additional background

concerning these data. The first component otMe observation vector is barley yield

on a given plot in a given year; the scond component Is barley yield on tW ear

plot made the following year. The treatments are five varieties of barley and we fit

Me model (9. 1) to this data by the method CC mdmum likelihood and by the modifled

ntesgrated squared error method for vailow values of A with the objective of

performing a sensitivity analysis. The results at this analysis are summarized In

Tablee 7 and 9. We have only given tW results for A-2 since the repowe of th

perametex estmates and he final weights to decreases in A contlwes the trend

VeCd in Tables 7 and 8. Table 7 Indicates that the largest change occurred in
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the parameter as and the coverimee aitrix. The correlation Increased from .22 to

.37. The gW"1 "4105 Vjk(2) are given In Table . observation (5,3) receive an

epciaLly low i W o - (1,3), (3,), (, ), and, to a lessr U.-

*WAt, (2,4) also receive low weights. t Ia Uklely that the compns o (5,3) are

Im and shd read (97,69) inad ot (69,97). Thefs obseavatlonS have

had the effect of reducing the correlation bPaakw the first and oecond yea yields.

W r e muggesting tht low wiht raise the mitclcn of potental outlier or ot r

d ajjltie with the data and the model €Gusanty, additivity, .. ), we are not

umggesting, however, tha thisM procedure be ued am & formal te for outliers. .5-..

Zncidentally, tate of fit ca oten be ed as or In lieu of tees for ositlUe.

AddHitonul redjction a A may to 1.S will produce a somewhat stronger version at

basically the me resuls. Eowover, when A ts decreased to unity Me procedure

Marts to deteriorate In the senm that the minglsd-o1A above receive 5.-

wei ght near azfo and a few at the othm originally low vetght hav been arther

reduced.* The first comp i l - variance to dramatically reduced. The resn for this

In that MW moded squared error mlivariats residuals ar becoming incresingly

Fepe Ie so tM th empirical dmftY esitMor of the lae o ftt distribution

omer.....Pereiesmultiple diutributios and some at these are quite separated from ach

."
other.

A basic advantage ot the modnd squared error analysisato variane procedurs

ts the direct adaptive navolveusgt at the covartance structure in the development at

stlWU e at model effecte; this direct involvement at covariance structure considerably

entancee our ability to coMtructively criticize (tentative) analysis o variance and

regrgglcn models. We thus view the proceduree and methods prem d here as

complementary and subordinate to, not as replacements for, th methoids cc least

inr and maimum lIUelhood. %

,'p,
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Table 7

NaiK iI LeiLhood (MG) and Nodffled rntegrated
Squared Error (An2) Paramter Exttmatee

109.1 -6.4 - 7.2 -5.6 16.4 0.6
93.2 -7.0 -12.8 1.7 16.0 2.2

100.6 -5.7 - 7.2 - 3.5 16.6 1.0A2 92.6 -6.1 -11.2 - 1.6 17.9 4.2

a az as a4  as as
S.

- 6.3 46.5 -17.5 -17.1 -19.1 -20.9M,
-10.4 23.6 25.6 - 1.4 -22.2 -15.6 5,

- 7.9 45.3 -19.7 16.9 -12.7 -21.4-10.6 22.3 25.3 - .1 -25.5 -16.1

5%

D 5(2)
109.3 .22 101.9 .37
26.7 133.9 42.4 125.5

5-

.4.

.4
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I.16

Uarle7 Tield In A QIVIS Tm, (189 taular" COMPOnMA On le9t),
ad TIeld in oLlOawing Yewr (2nd tla c-oma - o1 n left), "

ad Fina Wet" Yjft(2)(X100) (t0abua COMPOn~t an rIght)

VARZZTZZS

1 2 345

I6f17 106 a 120 56 110 as 96 9
61 62 so 87 34

2 147 90 14 2 151 00 192 66 1" a
100 116 112 146 106

62 77 76 131 90%
Iccation 3 103 94 106 9 117 93 140 37 130 9

1 J20 V 121 Go 124 98 1417 125 6
9962 96 ±L26 76

99 9 69 69 104
5 GG93 so97 97 12 626 so 93

95 94 96X6
67 779 79 102 9
66G 9 67 99 67 94 92 98 94 8 0

ThO WOR Of A.*S. PBMMla WOO sippOrked bY U * S. AMY~ Rsearch 09MMc Cotract
DAA029 -I1-K -0110.
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