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\{M methods of estimation for the parameters of the multivariate normal
distribution based on the sample characteristic function are given. These methods are
shown to have an equivalent bagis in terms of Parzen kernel-like density estimation.
The estimators for the mean vector and covariance matrix are dependent on a
user -specified parameter. Variation of the user-specified parameter produces a
response esurface in the parameter estimates and therefore allows for an informal
sensitivity analysis of the data with respect to a tentative working model. T™he
informal sensitivity analyeis is intricately related to formal testas of fit of the model.
The estimators of mean vector and covariance matrix have desiradble robustness
properties, are easy to compute and use, are relatively efficient at the multivariate
normal, and are useful in identifying potential outliers and inconsistencies in some
statistical assumptions. These methods are directly applicable to structured data such

as suiltivariate experimental designs. Several illustrations are provided.
A
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This paper addresses the general problem of using sample characteristic functions
to construct robust estimators of location and covariance parameters of linear models
with a p-variate Gaussian error structure. We envision the linear models as tentative
working models consisting of an error structure (additive Gaussianty) and a functional
structure (e.g., & linear regression or experimental design model). Our procedures
have also been used successfully on non-linear models but we do not address
non-linear models here. The working model is regarded as a single entity. ot
course, if it is certain that the functional structure is linear and that the error
structure is additive, independent p-variate Gaussian then there would be little interest
in estimators derived from the sample characteristic function because of the ready
availability of maximum likelihood and least squares estimators. But it is precisely
because of uncertainty concerning functional and error structure in almost all practical
situations that alternatives to least squares and maximum likelihocod become interesting.
The working model should undergo a process of criticism (esee Box, 1979, Daniel,
1970, and Paulson and Nicklin, 1983, for discussion) in order to determine the
degree to which the availadble data and the tentative, working model are mutually
consistent. A component of the process of criticisma can be based on robust
estimators: if robust estimators and, say, maximum likelihood estimators “agree” in
the specification of a model {n the sense that if estimators of unknown parameters are
close, then the data and the model may be mutudlly conwistent. Several difficulties
associated with the last sentence need to be highlighted. Pirst, just ag is the case
for tests of fit, a particular robust method may not be sensitive to certain typee of
departure from a working model and thus the use of the word may. Secondly, how can

“agreement” between working model and the data be objectively assessed and how is
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closeness of maximum likelihood and robust estimates to De objectively assessed? Any
formal asscamment of agreement ig tantamount o a2 test of fit of the truth of the
working model. This line of discussion strongly suggests an intimate connection of
testa of fit with robust methods. If an objective assessment is not available, then
robust methods should still be of interest since they generate an informal sensitivity
analywis: different but sensible methods-apart from efficiency considerations regarding
the methods - of extracting information from sample data relative to a given, tentative
model should not lead to materially different summarizations or conclusions if model-
and data are mutually consistent. It is worth noting that in many practical settings
the form of the error structure of a working model may be important only as an
tndication of repeatadility or homogeneity. Gaussianity per se, for example, may be
of little or no interest.

The estimation methods we develop for Gaussian working models are intimately
related to density estimation, but are quite different in spirit from the work of Parszen
(1962), and Watson and Leadbetter (1963). One of the main features of our work is
the development of an objective function from which robust estimators of location and
covariance are jointly determined. The estimation procedures developed herein
compare favorably with those of Maronna (1976), Deviin et al. (1975), Campbell
(1980), Gnanadesikan and Kettenring (1972) and Huber (1981, Chapter 8). The
recent books by Huber (1981), Barnett and Lewis (1978), and Gnanadesikan (1977)
provide excellent reviews and discussions of a major portion of the literature. Some .-:,.

of the univariate counterparts of this paper wers considered by Paulson and Nicklin f{ﬁ
(1903). [
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2. Estimators Based on Minimization of an Objective Punction

In fundamental papers Rosenblatt (1956), Parzen (1962), and Watson and
Leadbetter (1963) considered the problem of estimating a density. While the
approach taken in these papers is nonparameteric, we shall be concerned with density
estimation in a parametric framework. We shall be concerned exclusively in this

section with the problem of estimating the mean vector u and the positive deflnite

covariance matrix D=(cgy;) of the p-variate normal (Gaussian) density
£(x) = £(x3u,D) = 121D| ~Sexp( -y(x-p)"D"2(x-u)), (2.1)

given a random sample xX,, X;,..., Xp, and given that the normal model is the
tentative working model. Punctional structure is incorporated sudeequently. We shall
say that the x; have the distribution Np(u,D) for brevity. We use the expression
sensitivity analysis because obeervational information processed under the aegis of the
working model by different methods should not change the tentative results very much if
the working model and the data are mutually consistent. If they are not mutually
congistent, then substantial differences may result. It is not poesible to give a
completely unambiguicus definition of sensitivity for every type of problem that may be
encountered in practice. The jdgment of the application area must always be
incorporated into the process of assessing sensitivity.

Lot
n
¥n(u) = "t L oxp( 1u™D"%(xy-u)) (2.2)
=3

be a sample characteristic function; note that when u and D are specified
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E(Wn(u)) = W(u) = exp( -yuTu),

i where 12 = -1, u {8 a px1 vector of real numbers, and D°Y represents the unique i
| symmetric square root matrix of D. When u and D are not known, Y,(u) is not a
statistic. However, the parameters 4 and D of (2.1) may be estimated by making
Wa(u) and w(u) match up in some sense. There are many ways in which this may be
done but we present only that which we have found to be most theoretically as well as
practically usetful.

If we define

LR RN

Qn(u,0,m) = IR IWa(u) - Wu)i? exp( -m¥ulu) du (2.3)
P

=[ R(u) R%(u) du =J’ IR(u)IZ du,
“p Rp

where * denotes complex conjugate, R, represents p-dimensional Euclidean space, and

the residual y,(u)-¥(u) weighted by exp(-sm2u’u) is .

n
R(u) = exp( -§(1+m?)ulu) - n* L exp(iuD (x, -u)-ym2ulu). (2.4)
=3

LI U

The expression (2.4) represents a difference of characteristic functions whoee inverse

is

- AR

r(x) = g(x) - ga(x)

where g(x) is the spherical normal distribution with

g(x) = (2m(1+m?)) %P exp(-y(1+m?)°* x'x), (2.5)
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and ga(x) 18 an estimator of g(x) with

n
ga(X) = n'*(zml‘)"”’z oxp( -(2m?)"22]zy), (2.6)
=3

2y = x-D¥(x,y-u).

‘The expression g,(Xx) is unblased for g(x) when the Xy are p-variate Gaussian.

When the x; are not Gaussian, g,(x) can differ substantially from g(x) since each xy
has an influence in the estimate of the population density. Nouuut(z.s)unotm;
usual Parzen kernel density estimator. In fact, g,(x) has both parametric (being
dependent on u and D) and nonparametric features.

By the multidimensional version of Parsevel's theorem (Peller, 1966, Chapter 15)

Qn(4.D,m) = jn IR(u)IZ du = (2m)P jn r3(x) dx. (2.7)
P ]

Estimators for u and D, tentative on the correctness of the model (2.1), are

given by minimizing Q,(4,D,m) over u and D for a specified value of m, O<m<m.

Explicit integration of (2.3) ylelds

-ie-p N N 1
On(u,Dm) = wP fn-im® [ B exp(- gy op
- 2(ytm2)"P E 0@[- —,—1 Q ] + n(1+-¢)"w} (2.8)
y=1 2(1+a?) ) ’ :
Qs = (%5-p)'D"2(x5-p), (2.9)
Qyx = (x5-x)7(2D0)" 2 (% -xy ). (2.10)
S
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”n(,::'n'.) 20, aQn(‘;éDt-) = 0,

we find that the estimators of u and D, ﬁ(n). 5(1:). say, satisfy the implicit

n
K = L wy(m)xy, (2.11)
1=

D = k(m,n)BA"D , (2.12)
where
A= L(xy-u)(xy-u) expl-(4mt+2) 2 (xy-u) D 1(xy-p)1,
B = CL(xXy-%k )(Xy-Xy ) T@xpl-(4m? ) 2(xy-%,)TD"2(xy-x¢ )],
vi(m) = aj(m)/a.(m),
aj(m) = exp(-(4m¥+2) 1(xy-u)'D"4(xy-u)1,

Byx(m) = expl-4(Xy-xy ) (2m3D) " *(xy -y )],
n
a.(m) = L a;(m),
1=1
b.. = ) .
(m) ’i:tE jk(m)

X(m,n) = 5% (1 + E%I y5p+1 .

In (2.12) £f runs over all J and k and L runs over all j, j, k = 1, 2,..., n. A
convenient way of interpreting (2.12) is that, approximately, D is determined in such
a way that the product of one estimate of the covariance matrix, B, say, with the

inverse of another estimate of the covariance matrix, A, say, is apart from constants,
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. . n . .
the identity matrix. Note that u(w) = u = n'*Jnli and (®) = D =
=

n - -
n'*J:l(x, - x)(xy - x)7, the usual method of moments and maximum 1likelihood

estimates for u and D respectively.
An estimator for D based on A in the absence of B may be developed in several

ways. Pirst, the expectation of A is

E(A) = n[uz-l]s(oﬂ) b

2+2m?

so that estimators for 4 and D, say u*(m) and D*(m), are determined by the Joint

implicit equations

¥(p+2)
.‘[24‘2:1 A (2.13)

and (2.11). Alternatively, another set of estimators for u and D based on A in the

absence of B, ji(m) and 6(-). say, can be determined from the implicit equations

(2.11) and
D = 2+2m¢ A 2.14
1+2mf a (m) ° (2.14)

Equation (2.14) arises from determining the constant k which makes
E(C(X(xy-u)(xy-u)7-D} aj(m)) = o.

Maronna (1976) gives further details concerning these methods of construction of
robust estimators for u and D. Paulson (1966) has developed the estimators ji(m)
and D(m) from maximizing a generalized version of the log likelthood.

Estimators for D based on B in the absence of A can be derived in exactly the
SAme way. Note that these estimators need not be paired with an estimator for u.
Pirst, an estimator for D based on B alone, D-(m) say, may be developed from the

implicit relationship
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[144‘8 ¥(o+2)

D = (2(n)(n-1))"* B: (2.15)
\
alternatively, an estimator for D, D¥(m) say, may be developed from the tlmplicit C
| relationship v
|
D= ;_—t:: b_.?n) . (2.16)

We only explicitly use the estimators f&(n),ﬁ(n). a(n),ﬁ(-) and the estimators
(A7), D(A) of section S in this paper as these would be the ones that would be .

normally used in practice. .

3. Numerical Computation of the Estimates Based on Q,(iu,D,m) N

The expressions (2.11) and (2.12) are set out in accordance with a fixed point

computational scheme. The left hand sides are designated as the updated estimates of

- i

4 and D; the right hand sides have current values of u and D substituted wherever

they appear. Por example, an estimate of D would be computed via Dg,; =
k(m,n)BgAjiDy where Ay and By are the fth iterates of A and B, each evaluated at
the #th iterate of u and D. Iteration proceeds until convergence is obtained. A
Newton-Raphson scheme has also been used in place of the fixed point scheme but it
is generally inferior to the fixed point scheme for p » 3. We have had good success
in using @ = n"*C Xy and D = n"iL (xy-A)(Xy-4)" as initial trial values of u and D
in (2.11) and (2.12). This strategy failed only, and irdfrequently at that, when the
x; in question had the character of two or more clusters of data. In this case it is
clear that the tentative Gaussian model is inappropriate in any event. It is difficult

to specify the numerical behavior of the estimation procedure because this behavior
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depends (o such an extent on the sample of x;'s in question, and the values of m, p, ¢
n, and the error tolerance on successive values of Q,(i,D,m). The greater p, the
greater the number of iterations to convergence. PFor p = 1 and 2, m = 1, and

convergence determined by successive values of Q,(u,D,m) bdeing less than .001,

)

convergence to a final solution was attained in fewer than 30 iterations for over ninety

percent of a large number of trial problems of various sample sizes, 10 s n £ 120.

NI LIRS

Exasple 3.1. The twenty triples (2.6, 1.7, 3.4), (2.1, 2.1, 3.4), (1.3,
2.8, 1.7), (2.2, 2.1, 3.0), (1.3, 2.2, 3.6), (1.6, 2.2, 3.7), (3.1, 2.2, 2.4),

(2.8, 1.7, 3.9), (4.0, 1.4, 3.3), (2.6, 1.9, 3.2), (1.5, 2.0, 4.2), (3.9, 1.6,

2 Se T A

2.5), (3.1, 1.7, 3.5), (3.1, 1.9, 3.6), (1.7, 2.1, 3.6), (1.4, 2.2, 4.0),
(3.0, 2.0, 3.8), (2.9, 2.2, 5.5), (2.9, 2.8, 5.9), (2.9, 2.9, 6.5) represent Ryt
the percentage of iron (Pe), sodium (Na), and potassium (K) obtained in a chemical ¢
analysis of twenty geological specimens. These are labeled sequentially as A, B,...,

T. All two way scatierplots of this data given in Pigure 1. Table 1 gives estimates o

\l
of the components of O(m), D(m) D(A) (see Section 5 for defintion of D(A)) for v
n =0 (i.0., maximum likelihood), mZ=2, and A=2.

The maximum likelihood estimators of the variances o,; and the correlations pg,

NI

are drastically different from the estimators (((m), P¢y(m), &;((m), Bys(m), and
Fy1(m), Byj(m) when = = 2. Of particular interest is the value of the estimators of

Pzs- A case for the reasonableness of each of these estimators of p,, can be made

-'—1" g

depending on which observations one is willing to dismiss as being inappropriate to a
Gaussian model. A close examination of Pigure 1 will reinforce this point. ™e

mmwmummmamaumwmmé(-).

KX

D(m), and D¥(m) are effectively clustering the data in the way that each perceives

will retain as much as possidle the working Gaussian model. This clustering implies
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that certain observations are being “filtered out” of the estimator of D by being
heavily downweighted. This aspect of Clustering receives more attention in the
following sections.

This example highlights the fact that different estimators may focus on different
aspects of the data under the aegis of some tentative working model. Accordingly we
see that the parameter estimates are sensitive functions of the estimation procedure or
of, also in this case, a parameter of the estimation procedur¢, m. Having seen such
senwitivity, one must conclude that certain data is not consistent with the working
wmodel, e.g., perhaps they are outliers, or that the working model of independent,
identically distributed Gaussianity is not appropriate for the oeetiing at hand.
Incidentially, the test of fit of Gaussianity of Paulson, Rochan, Hwang, and Puller

(1986) rejects this data as deing Gaussian with p-value < .01.

Tadble 1

Parameter Estimates for Several Values of m?

Pe Na K
Estimator mt o, Ca2 CTss Pi2 Pis Pzs
O(m) 2 1.19 0.166 0.633 -0.770 -0.133 -0.413
(m) 2 0.77%6 0.070 0.229 -0.824 -0.508 0.137
D(m) 2 0.620 0.07S 0.24%5 -0.828 -0.496 0.139
e ® 0.646 0.149 1.23 -0.43% 0.089 0.416
10
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4. Statistical Properties of u(m), O(m)

The simultanecusly determined estimators u(m) and D(m) reduce, as m»m, to the
usual method of moments estimators 4 = N L x;, D = n iL(x,-p)(xy-4)7. The
estimators u(m) and D(m) are affine invariant. D(m) is positive definite with
probability one for m>0 whenever n>p although it may be algorithmically singular. The
estimators u(m) and D(m) are consistent for u and D for m>0 If X,, X,,..., X, i85 &
random sample from Np(u,D). The estimators u,(m), jg(®),..., Hp(m) are jointly
asymptotically normal for m>0 {f x;, X;,..., X5 i8 a random sample from Np(u,D).

Explicit evaluation of 3Q,(u,D,Rm)/3u shows that the estimator u(m) is an
M-estimator for g at the p-variate normal distridbution. However, explicit evaluation
of 3Qn(4,D,m)/3D (and 2.12) shows that D(m) is dependent on pairwise differences
Xy -Xx 90 that 6(1) is not an M-estimator for D (Huber, 1981, pp. 43-44). Plgures
2(a) - (f) provide influence function contours for the estimators u,(1.5), o,,(1.5),
and 0,,(1.5) at the standard bivariate normal distribution for correlation p=0 and
p=.9. In general, for O<m<o the influence functions are dbounded and redescendent to
(matrix-valued, px1 or pxp) zero as the Euclidean norm of the px1l vector argument
of the influence function becomes unbounded. Thus both u(m) and D(m) are
qQualitatively robust estimators for u and D for a fixed value of m. The finite sample
multivariable sensitivity curves (see Barnett and Lewis, 1978, p. 137; Huber, 1981,
PP. 15-16) SC(x;u(m),Ng(4,D)) and SC(x;D(m),Np(s,D)) for u(m) and D(m) at
Np(u,D) are also bounded and redescendent to (matrix-valued, pxi or pxp) zero as
the Euclidean norm of the px1 vector-valued argument x becomes unbounded for nP
and Ocm<m. Therefore, the contours of the sensitivity curves of the estimators u(m),
D(m) are closed and bounded. This closedness property implies (1) that the process

of estimation may be used as a clustering algorithm, and (2) that the process of

11
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estimation may be used to evaluate the results of some clustering algorithms. The
clustering capability associated with estimation of u and D allows for identification of
potential outliers in multivariate normal data.

The asymptotic efficiency of the }-th component of A(m), say Qy(m), relative to

the sample mean is determined to bdbe

2 -§(p+2)
< ] . (4.1)

.ff(n’(l)) = [1 + 1—4'-2_6
where ¢ = (1+2m?)":, The asymptotic efficlency of the j-th component of 6(:). |y
&;y(m), relative to the sample variance is much more difficult to obtain but lengthy

computations and extensive simulation trials suggest that

1c2 -x[ . c? ]-i(oﬂ) .

eff(cyy(m)) > [1 + —_— 3¢ (4.2)

2+4c
These computations also suggest that asymptotic efficiency of the off-diagonal
components of 6(u), say &;x(m), relative to the maximum likelihood estimator of o,
is bounded below by eff(d,;(m)).

S, Modified Squared Error Estimation

The method of section 2 is not directly applicadble to the structured data case,

e.g., the cases of regression models and experimental layout models. Another,
and more extensively applicadle, sample characteristic function-based estimation
procedure for Gaussian models is now dewveloped. If Xx,, X,,..., X, I8 putatively a

random sample from No(u,D), then

12
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E(exp(1uTxy)) = o(u) = exp(iuTu-yu'ou). (5.1)

St

Define the }h residual in u as

LA 53

Ry(u) = exp(iuxy) - &u). (5.2)

T™he sum of moduli squared of the residuals is given by
n - n .
L(u) = L Ry(u)Ry(u) = L [Ry(u)i® . (5.3)
1=3 I=3

The case of the sum of moduli squared of residuals closely parallels the usual sum of
squares of residuls of least squares, the major difference being that L(u) depends
on the ruisance parameter u as well as on the data. Information concerning u and D
in principle may be extracted from L by minimizing L over a sufficiently extensive
fixed grid of nonsero values of u. Any such estimators for 4 and D would then
depend on the number of u-values as well ag the location of these u-values and would
not be affine invariant. This is (00 clumey a state of affairs for practical

applications and so ancther approach is necessary. If we multiply both sides of

oL L
57‘-80. E-o (8.4)

by exp(-au'pu), O<A<w, and integrate over R,, estimators of u and D will satisfy the

implicit matrix valued equations

L2 <au' LY -au’
I" rm exp( -Au'Du) du = 0, J'.’ Y7o exp( -Au'Du) du = 0. (5.5)

These estimators fI(A) and B(A), say, of u and D are dependent on the single

13
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function exp(-AuTDu). Another benefit of multiplying (5.4) by exp(-Au'Du) is to
make the remulting estimators affine invariant. After use of the matrix differentiation
formulas of Dwyer (1967), the integrals in (5.5) may be explicitly evaluated and

rearranged to provide the joint implicit estimating equations for u and D, namely

n
# = L wy(A)xy, (5.6)
1%

n
D = (1420)7% L wy(A)(Xy-u)(Xy )T, (5.7)
1%

where

n
vy(A) = @xp(-3 Q) V.(A) AT

wi(A) = T5(A)/V.(A),

] n 14+271'5(p+2)
wi(A) = exp(-4Qy )gEI(OXP( -4Qy) - ‘2,,,—2;]

Qs = (xy-w)T((1+20)D)"2(%y-n) .
The Joint estimators of u and D determined by (5.6) and (5.7) may be computed by a
fixed point algorithm with [«. = n"iCx; and D = n"*L(x, -;l)(x, -7 supplying the
initial guesses of JI(A), 5(1\). We have not found second order methods to be

necessary in compuung the estimators.
An application of the p-dimensional version of Parseval's theorem (Peller, 1966,

Chapter 13) shows the equivalence of equations (5.35) to

14




¢

i

l':'

22w 1: [, {'“" * o) * (x) - £(x-xp)) ax = 0 (5.9)

5

and o
¥

\l

X

2(21r)9 z: J' [’—“—"2 ® f (x)}(f(:) * £,(x) - £A(X-Xy)) dx = O (5.9) N

"

{

x . R

respectively, where h,(X) * h,(x) represents the convolution of h,(x) with ¢
h(x). Note that S
3

RS

X Y

f(x) * £)\(x) = 12m(14A)DI Y exp( -4(x-u)T((1+A)D)"2(x-4)) -;

and that -3
-

v
£A(x-xy) = 12mAD| ¥ exp( -5(x-x;)T(AD)"(x-x5)) . ‘
The remaining convolutions in (5.8) and (5.9) are given by :2
,,1-

)

x ) x - -
‘:g") * £)(x) = {3‘6 CE(x) * 12mAKI~% exp( -5x"(AK) "‘””x-o .

“"‘) * £(x) = -3- {lznuu)ol"l exp( -5(x-p)T((1+A)D)" *(x-u)} J
The equations (5.8) and (5.9) show that the estimators J(A) and D(A), may be 3
derived, equivalently but less directly than u(m) and D(m), from considerations of

parametric density estimation.

't'.-_.-,'-;-',-‘.
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6. Properties of J(A), D(A)

The estimators jI(A) and B(A) are well-defined for O<A<w. It is clear from

(5.6) that A(A) » n"'[x; as Asm. Explicit evaluation of (5.5) show that J(A) and

D(A) are M-estimators for u and D (Huber, 19681, pp. 43-44). The estimators
are affine invariant. Slight wmodification of the arguments of Bryant and Paulson
(1979) show that (A) and D(A) are consistent for 4 and D when the x; constitute a
random sample from No(u,D). The estimators X, (A), Fz(A),..., Tp(r), &,..(N),
Fia(A)yeees Tip(A)y Z2(N) ey F3p(A)e..., Fpp(A) are Jointly asymptotically
normal and the [I)(A) are asymptotically mutually independent of the ¥,,(A) if the x,
constitute a random sample from No(u,D).

If we define the asymptotic efficiency of J(A) relative to . as the ratio of the

determinant of their covariance matrices, it can be shown that

anu-u‘] yo(p+2)

eff(J(A)) = [z‘m (6.1)

Similarly, the asymptotic effictency of .t.hl estimator ¥, (A) of the kth diagonal

element of D, oy, relative to its maximum likelihood estimator can be shown to be

1 12 [1+2A)9%4
9 [1+2A] [E?ET]
2 T142A] 3P 6+8A+4rT 1+27]10°2 (6.2)
3+2A] (3+20) T ~ [z+2x]

ctf(au( A) =

as A » w.

~-’—
pre
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Selected valuss of these efficiences are given in Table 2.

We have not explicitly

calculated the efficiencies of ¥, ()) relative to its corresponding maximum likelthood By
»”
<
Table 2 .
t
Asymptotic effictencies of JI,(A) (first tabular entry) and ¥,(A) (second tabular 5
entry) for selected values of A and p ';
A
.5 1 2 4 ® ’
'
2 \
.84 .91 .96 .99 1
f
.78 .87 .94 .99 1 :
.79 .80 .95 .98 1 ‘
2
.68 .77 .84 .80 .90
.76 .88 .93 .98 1 N
3 "
.59 .69 .76 .80 .02 i
.70 .82 .92 .97 1 p
4 s
.52 .62 .69 .73 .78 ‘
4
.55 .72 .07 .98 1 2,
8 K4
.66 .56 .63 .67 .69 n
In the case p=1, eff(¥,(2)) tends to unity with increasing A but for p>1, 4
eff(¥,,(A) i3 bounded away from unity. The efficiency eff((¥,,(A)) is monotone '
increasing with A. Thus, the higher the dimensiondlity, the larger the value of A one ;
should use if efficiency is a major consideration in the choice of A for estimation. .
We shall address this issue in detail in section 7. 3
N
.
"
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The nature of S(A) as Mo is determined by an application of L'Hospital’'s

rule. Some elementary manipulations yield the implicit relationship

n - -
L (xy-p)(xg-0)T
D = 1= (6.3)

n - -
yn(p+2)-% L (Xy-p)D (x4 4)
I=s

that the estimator must satisfy asymptotically in A. When p=1 (6.3) may be
rearranged to get the usual moment estimator for D, but for pa2 (6.3) cannot be soO

rearranged. The estimator of D defined by (6.3) does not seem to be otherwise
interesting.

The influence functions for I(A) and B(A) at the p-variate normal are

similar to those of u(m) and D(A). The major difference is that the influence

function IP(x;D(A),Np(u,D)), OcA<m, while being bounded and redescendent, is
not redescendent to zero, but rather to a positive definite matrix constant, as the

Euclidean norm of x becomes arbitrarily large.
7. Choice of A

There are two poegible uses for the procedures we propoee here. (We shall
restrict our attention to the )-procedure although there is a parallel development for
the a-procedures.) The first is to specify a single value of A, poesibly based on
efficiency considerations, and use it as a robust procedure. The choices Azl or A=2
provide high efficiencies and good robustness properties. The second use is the one
for which the procedure was developed and which has proved moet useful in practical

applications. We use the procedure to generate a sensitivity analywis. In a practical

16




exploratory setting we first compute the maximum likelihood estimators and use these
for starting values in the {terative algorithm. Next we take a value of A, & or 2,
and examine the behavior of the estimates. Plnally, we would take A=1 or 4 and
examine the behavior of the estimates. It is not possidble to completely specify the
values of A because the behavior of the estimates depends on the nature and the
extert of the data. The response surface of the parameter values and the final

weights as a function of A are of primary interest. In the process we determine

estimates and final weights ¥ (A) = exp( -§(1+2A) 4(xy -u(xnf‘su)'x(x, “A(X)))
associated with each obeervation. If the estimates are sensitive to this variation in
A, then there may be problems associated with either the data or with the Gaussian
error model or both. It will not always be possible to determine the source of the
problem. The particular obeervation(s) which is (are) the potential cause of the
sensitivity are identified by low values of V’(A) vis-a-vis the whole set of theee
weights. This discussion will de subsequently clarified with an example.

The derivation which led to the estimators given in (5.6)-(5.7) did not require

that A in (5.6) de the same as in (5.7). We could, for example, use A=1 for J

and As2 for D. Purthermore, we need not have restricted ourselves to a scalar
value of A in order to arrive at (5.6) and (5.7). At the expense of greater
algorithmic complexity we could have chosen valuee Ayy corresponding to each Sy in
the covariance matrix D. Because D is symmetric, we take Ay, = Ay;. Let the pxp
matrix L = (142A(;) and the pxp matrix M = (2+2A(;) and let LxD = ((1+2A4y)0y;)
denote the Hadamard product of L with D. Then by arguments similar to those
employed to arrive at (5.6) and (5.7) it may be shown that the more general

ostimators for u and D satisfy the implicit relations
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n
L Xy exp(-y(xy-u) (LaD) " *(xy-k))
1=

us . (7.1)
n

L oxp(-45(xy-u) (LxD)"2(xy-4))
132

n
= . usT “lfw. . -1 ILxDI ¥ -t
LxD { 15‘ exp( ~'y(xy-4) (LxD)"*(xy u))} {n TMXD] (LxD)(MxD)"*(LxD)

n
# L O ou)(xyou) T exp( iy -w) T(ExD) " 2xy -un} (7.2)

242\ i

The identity MxD = [1"'“11

] x (LxD) is useful in computing (7.2). The

estimators of o,y are computed in a component-wise fashion from the final iteration aof
(7.2). These estimators would be of interest when it is desired to treat different

components of the x; differently.
8. Examples

Example 8.1. The basic data for this example are taken from Anderson (19%58).
The first 25 points conwist of the first two (of four) components of this data with five

additional (outlying) obeervations appended. We have chosen A=4, 2, 1, Y for this

illustration. Table 3 summarizes the weights v‘;(A)-oxp( %( X -XyT((1+2a )5)"‘
(xy -1)) associated with each point on the assumption that the data follow a
single nultivariate Gaussian distribution. Table 4 provides the estimates of the means
and covariances as well as the maximum likelihood estimators. With A = + o, al

weights are the same. As A decreases from + ®, the weights become differentiated.
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as A decreases. This indicates that these observations are not consistent with the 1Y
>
remainder of the obssrvetions and the asmmption of a single Gaussian distribution. p
2
Table 3
Sensitivity of Cdeervetional Weights 4
V,(A)(x100) to Variation tn A 2
A &
l‘ t‘ & 2 1 .9 »
Point 2
1 179 148 36 3 s 50 A
2 201 152 33 3¢ 23 16 :
3 188 149 37 41 47 ss pe
'3 1860 149 7 40 “ 49
s 171 142 % s 39 3 \
6 192 182 37 39 [73 48 .
? 190 149 37 39 &1 42 N
(] 109 152 37 40 47 s3 R
L ] 197 159 38 3¢ k1 36 N
10 187 151 37 41 &7 ss -
11 106 149 37 40 4S S0 -
12 174 147 as 37 30 36 .
13 108 152 37 41 46 S0 N
14 198 187 36 3e 42 43 “
15 107 158 3s 36 30 20 b
16 161 130 27 23 17 ° -
17 103 159 % 3% 22 10 e
18 173 149 3s 36 33 27 KX
19 182 146 37 40 48 so
20 168 137 31 30 30 2s -
21 108 152 37 41 46 S0
22 179 147 36 39 45 49
23 176 143 36 30 42 48 =~
24 200 158 34 s 37 36 -
23 187 130 37 41 47 s¢ R
26 200 130 10 6 (V] o o
27 200 138 23 11 o o .
28 168 160 24 13 1 o -
29 198 170 20 22 6 1
20 220 170 23 10 13 6 N
=
’
'
e
.
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Table &

Sensitivity of Parameter Estimates to Variation in A

A
4 2 1 s
My 185.5 105.2 184.9 184.9
™ 150.1 150.3 149.9 149.7
- 148.1 148.9 155.4 136.6
C22 0.2 74.1 65.7 52.3
Pia .52 67 .85 e7

Prom (5.8) or (5.9) we find that estimation of u and D is intimately related to

the estimation of

x - 1 Th-
f(x) * £,(x) = [2m(1+A)DI ] oxp[- m (XJ -u)'D *(x, -u)]

- 0 ~ - 1 r &
Ia(x) = n *’E‘ 12PAD(A )| -8 exp[- ETY (x-x9)" D ’-(A)(x-x, )] .

- - J'.':"

T AR

[

x
The density f(x) * %,(x) may be regarded as a tentatively posited (prior)

l.l 3

distribution and Fr(x as itz estimate, given the x;'S. If the x; are from Ng(u,D),

s -/'c

then f,(x) ¥ Y,r(x), for all reasonable pairs A, A' (A % A', O C A, A' C®. If we

l.l"l
?'.'.-

took A =2 1 and A’ = ,001, Fr(X) and F+(x) would not be similar unless n were large

»

-

since then {,+(x) is approaching a sum of Dirac delta functions. If the Xy are not

x
from Np(u,D) but from h(x), say, then ETa(x) will be an estimator for h(x) =

- L g l*’,:{s

X
fa(x) and Yr(x) can be quite different from f(x) * f,(x). We thus suggest
that the estimators u(A) and O(A) and u(m) and D(m) are robust primarily
because of their intimate relationship to goodness of fit through a parametric density

estimation. Equations (5.9) and (5.9) imply the data is being adaptively screened so

.. oo - e ot LI P TR I I N I SO X | [OOSR S SR R R S S A ENLIT S O ' '1!'!\'\‘\'.“
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as to retain the character of Gaussainty as much as possible and that the parameter &

estimation is really subordinate to density estimation or error reconstruction. X

Pigures 3a, 3b, 3c, depicts what the estimation procedure perceives as A ::E
decreases. Por large A the density estimate T)(x) 18 approximately uniform. At As2 3?
the density estimate contours are smooth except for some slight distortion in the aree 9
of (195,130). At A=1 the probability surface is distorted in the vicinity of the 4
contamination but the distortion i8 not yet pronounced. Compare the estimates of the B,
parameters and the observation weights V,(A). At A=y the distortion has become |

dramatic and indeed separate ‘hills” for the outlying points have formed. Again
compare the estimates and V,(A) for A=y. Since the density estimate perceives the :
outlying observations as not consistent with the remainder of the data and the single )
Gaussian assumption, the reason for the down-weighting of the outlying observations

has become clear. If we let A»0+, the density estimator becomes an average of a set

U I

of Dirac delta functions located at each point.

At A=y, the procedurs has effectively clustered the data with the outlylng 5
ocbeesrvations excluded from the main cluster. Accordingly, as A is varied in this .-"
example, a dramatic change in the estimators implies the existence of clusters of
observations different from the main cluster and not consistent with the prior '.'

f
assumption of independent, identically distributed Gauswianity. The reconstruction of ;’.
= N
the error density becomes increasingly critical with decreasing A. This example <
Bt
reinforces the connection of the robust procedure with goodness of fit. :
B
),

Example 8.2. If (yy, 25), J = 1,2,..., n represents a random sample from -

Ma(u,D), # = (uy,v)’, then the regression of y on z is given by o
N
o~

E(ylz) = u, + 0,,024(2-v) = gy + B2,
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say, and the S's may be computed from the estimates of u and D. The data for this i
example are taken from Andrews and Pregibon (1978) who were concerned with
regression models. The data are presented in Table 5. The least squares or
maximum likelihood estimates are also presented in Table 6. We shall use the L be
matrix version of the modified integrated squared error procedure as discussed in ]
section 7. o
The results concerning the variation in the U (L) as a function of Ay or L are :

given in Table 5. The results concerning parameter estimates as a function of the o

Ayy are given in Table 6.
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Table S

!
W
o
B
¢

Sensitivity U,(0)(x100) to Varitation 1n A,,, A2, Aza

)

(Bays Aige Paa) ""
Yy x  (2,6,8) (1,2,4)  (.5,1,2) b
L]
1 s 1s 100 ' 97 - k
2 1 26 72 48 20 -
3 o3 10 o5 76 s ~
4 ” ? * ” L] N
s 106 18 se 02 7 ~
¢ 07 20 ’% o 72 >
? L X ] 18 ? % e7 i
° 100 11 % 7 ”” <
) 104 . s ”n % ot
10 % 20 ’% ” 70 Y
11 113 7 ”n 70 [ 73 “
12 % ] 1] 2] " >
13 [} 10 os 76 (1] ™
14 84 11 se (3 7
1s 102 11 ” s ” -
16 100 10 % »” ’* -
17 108 12 92 (1) o sL
10 57 42 «0 11 o ~
19 121 17 so 33 19 >d
20 o6 11 92 (1 79 _
21 100 10 ’ 1 )] ] R
\
N
Table ¢ N
\.,
Sensitivity of EStimates to Variation in A,,, A;a2, A, o
(9.0.0) (0.0 o) (2,4,9) (3,2.4) (.%.1.2) ;;;i
uy 16.4 13.4 12.9 12.3 v
v 93.9 %.6 95.3 9s.9
9., 60.1 4s.6 32.7 23.6
@2 -01.2 -49.2 -29.2 -14.9 é
T2 190.2 160.3 143.9 128.1 e
Pia -.76 -.56 -.43 -.27 .

™e parameter eostimates are sensitive functions of L. The points which are most

Y
AR

- -
]

influential or potentially inconsistent vis-a-vis the linear model with a Gaussian error
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structure are determined from observational weights V,(L), i.e., those with low values
of Vy(L). Three points, 2, 18, 19, are especially singled out. Point 18 represents
an extreme point in the s-space and is most influential on the estimate of the slope 2%

B, = 0,,/0,, of the regression line. Point 2 has the second-most extreme value of

z. Point 19 produces an extreme residual. Analogous results obtain if all A¢y = A

Y

.‘:x sl‘. [s

5

and A is varied in order to determine the response of the parameter estimates and the

- -

observational weights to variation in A. Practical experience shows that in many, but

notnn.ca-n.unngm]muvnhnatk(orntdvuma,,)m ;j
")
{'\f
sufficient information concerning the response of the parameter estimates and weights ,’,'::
o
e

’

v,(x) (orv,(t.))ﬁovuuuonlnh(orb)mm“ﬂuﬂx(unxu)m

further decreased, the same trend in response will be continued. In these cases a {
N
robust analyeis will lead to the same conclusions as the sensitivity analysis. In eome :E\.
Sy
L)

cases, & change in trends will be observed as A decreases so that a single robust

|
1

analysis vis-a-vis maximum likelihcod may not give the same indications as a eensitivity

5

analysts.
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Example 0.3. The three dimensional data for this illustration are taken from

L 4

Gnanadesiran (1977, pp. 350-52). The 61 triads of his example 7 were obtained by
adding a spherical Gaussian noise component to each of the coordinates on the surface
of a specified paraboloid. The two-dimensional scatter plots of these data are not
suggestive of the data in three dimensions lying near a curved surface. We determine

the response of the parameter estimates to changes in A. The mean vector estimate at

A= 8 (-3.84, 4£.72, 26.94) while at A=f it 18 (-3.8%3, 4.70, 26.99). The
variance estimates at A=® are (3.01, 2.33, 2.94) while at A=k they are (4.43,
2.76, 3.79); the correlation estimates at A=¢ are (-.51, -.47, .20) while at A=y
they are (-.56¢, -.50, .27). The estimates of the mean are remarkably stable but

the estimated variances and absolute values of the correlation increase with a
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decrease in A. Theee characteristics imply that if the Gaussian distribution model is
not appropriate, the best place to look for difficulties is at the centroid. This is
confirmed by the distribution of the weights VU (A), especially for Ask. PFor example,
for Ask, the largest three weights U;(A), .89, .84, .82, indicate that there are no
observetions near the centroid. This deficiency of observetions near the centroid is
also determinable from A=¢ results, but it is highlighted at the smaller values of A.
The practice of examining the V (A) is similar to that of examining quantile-quantile

plots (Gnanadesikan, 1977, pp. 30-52) since v,(k) iz based on the Quadratic form

(xy -Xr)) b '(A)(x, -X2). The conclusions drawn for this exasple are the

This informal obesrvation of sensitivity of variance and covariance estimates w0

' 7

changes in A can be made formal SO as to provide probadility statements concerning

rd

kYT Ja)
L)

.;;"a',

appropriatenses of the p-variate normal model by defining a test of fit based on the

nonnegative statistic

S(A) = tr(D (A)D) + tx(D(A)D"%))-2p.

YA IR
‘l\\'-'l‘

s $l

i

for A = 1, say. This test statistic will be near zero if Gausstanity is appropriate; it

.

will be large if Gaussianity is not appropriaie. Paulson and Swope (1966) have used S*,'.
o

a statistic similar to S(A) to test for p-variate normality. This example again shows ES
At

the interrelationship of some aspects of robustness and sensitivity analysis with tests .

¢

of fit of models.

I

o e
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9. Multivariate Two-Way Cross Claseification

T™he system of equations (5.3) are readily extended to include multivariate

regression and deeign situations. W¥We indicate how this may be done for the case of a

27
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two-way cross classified design. The arguments are eimilar for other designs and
regreswion problems.

The two-way cross classified model may be written

z(x,") =4 +aytfyg, (9.1)

J’ 1.2..;0... k = 1.3.....5. . = 1.2.000.",“ L ] 1' ml’. “ 'Jk‘ are m h
be p-dimensional Gaussian with covariance matrix D. The quantities u, ay, Sy are

px1l location vectors. Define

®jk(u) = exp(tuT(uray+y) - 4u'Du)) (9.2)
and
e b Mk w' R
he . 9.3
{u) = 151 kEI .!-:1 I®gx(u) - exp(iu'xyxg)l (9.3)

Multiply both sides of each of the following

L L L A
-’IIO.EOO,KIO.E-O. (9.6)

by exp(-Au’bu) and integrate over R, to get

Ia ;% axp( -AuTpu) du = 0 (9.5)
]

for @ = u, g, Bxs Oy, 1 = 1,2,..., 2, kR =21,2,..., b. Explicit evaluation of

(9.5) leads to the system of implicit equations
I’.'. E l", (Xyug-s-ay-Bx) Vyxg(A) = 0,

E)i (Xyxg-p-a3-Bx) Vyeg(A) =0, J =1,2,..., &

5:13 (Xyg-p-ay-Bx) vyug(A) = 0, kR =1,2,..., b,

I’
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T™he rank of this systea of equations is a+b-1. The first of these eqQuations suggeets

the constrainis

? L fﬂj'ynn(h) = ? L % BxVykg(r) = 0 (9.6)

be appended to produce a full rank system. Along with (9.6) we obtain the implicit

equations
LLLx Vip(A) .
uallrlt iy (9.7)
TEpR '
E 1.: (Xyxp B = Byx) Vyug(A)
G, = : S V,u.(k) '] J = 1.2,.... .-1' (’o.)
K
§ % (:,k. B - C,) v’k.(k)
nk = .: E v,k.(k) » k s 1.2.-.-. b'l. (’.,)
)
and
EEL (Xygep -ay 0y )Xy, g oi-ay -8 7wy g(A)
D = (1-2a)-2 LB s , (9.10)
1427
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where
Vikg(A) = @XP(-(1+20)" % (%Xyy g-p-ay -0y )02 (xyu g-s-ay-0yx)). (9.11)

Observations xjsyg which require special consideration are indicated as in section 8,
by low values of V) g(A) vis-a-vis the whole set. A low value of Vy,g()\) may mean

that the particular observation is a potential cutlier. Too many low values will imply
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the model is mis-gpecifisd or that there are indeed a number of potential outliers.
Purthermore, if nyy > 1 and we find that individual cells have low values vyyg(A)
associated with them, then interaction in the table is a distinct possidblity. In this
case we generalize the model to

B(Xyig) = 4 + ay + B + vy .
and proceed accordingly.

This multivariate procedure can be especially useful for exploratory purposes.
Determination of the sensitivity of Uy, g(A) and the parameter estimates to changes in
A will serve to uncover potential problems with the data or the working model
considered as a consistent single entity. The procedure is computationally inexpensive
and easy to use. We have investigated this procedure with respect to tests of
hypotheses concerning the location parameters such as ay and Sy but the distribution

theory seems to be intractadle.

Example 9.1. The data for this example concerning two-way cross classtfications
were taken from Anderson (1958, p. 218) who gives some additional background
concerning these data. The first component of the observation vector is barley yleld
on a given plot in a given year; the second component is barley yield on the same
plot made the following year. The treatments are filve varieties of barley and we fit
the model (9.1) to this data by the method of maximum likelihood and by the modified
integrated squared error method for various values of A with the objective of
performing a sensitivity analywis. The resilts of this analysis are summarized in
Tables 7 and €. We have only given the reeults for A=2 gince the response of the
paraneter estimates and the final weights 0 decCcreases in )\ continues the trend

evidenced in Tables 7 and 8. Tadle 7 indicates that the largest change occurred in
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the parameter a, and the covariance matrix. The correlation increased from .22 to
.37. mammv,.(z)mummmuo. Obeervation (5,3) receives an
especially low weigit while obeervations (1,3), (3,4), (5,4), and, to a lesser
extent, (2,4) also receive low weights. It is likely that the components of (5,3) are
interchanged and should read (97,69) instead of (69,97). These observations have
had the effect of reducing the correlation between the first and second year yields.
We are suggesting that low weights raise the suspicion of potential outliers or other
difficuities with the data and the model (Gaussianity, additivity, etc.), we are not
suggesting, however, that this procedure dDe used as a formal test for outliers.
Incidentally, tets of fit can often be used as or in lUeu of tests for cutliers.

Additional reduction of A say t0 1.5 will produce a somewhat stronger version of
basically the same results. However, when A i8 decreased to unity the procedure
starts to deteriorate in the sense that the singled-out ocbservations above receive
weights near sero and a few of the other originally low weights have been further
reduced. The fust component variance is dramatically reduced. The reason for this
is that the modified squared error aultivariate residuals are bLecoming increasingly
separated so that the empirical density estimator of the lack of fit distribution
perceives multiple distridutions and some of these are quite separated from each
other.

A basic advantage of the modified equared error analywis of variance procedures
is the direct adaptive involvement of the covariance structure in the development of
ostimates of model effects; this direct involvement of covariance structure constderably
enhances our ability to constructively criticize (tentative) analysis of variance and
regresuion models. We thus view the procedures and methods presented here as
complementary and subordinate to, not as replacements for, the aethods of least

squires and maximm likelthood.
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A=2

A=2

Table 7

Maximum Likelihood (ML) and Modified Integrated
Squared Error (A=2) Parameter Estimates

u 8, B B, B¢ Bs
109.1 -6.4 - 7.2 -5.6 18.4 0.8
93.2 -7.0 -12.0 1.7 16.0 2.2
108.0 -5.7 - 7.2 - 3.5 168.6 1.0
92.0 -6.1 -11.2 - 1.6 17.9 4.2
oG o2 a3 a, ay Te
- 6.3 46.5 -17.5 -17.1 -19.1 -20.9
-10.4 23.6 25.0 - 1.4 -22.2 -15.6
- 7.9 45.3 -19.7 16.9 -12.7 -21.4
-10.8 22.3 2%.3 - .1 -25.% -16.1
D D(2)
109.3 .22 101.9 .37
26.7 133.9 42.4 125.5
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Table 8 e
sarley Tield in A Given Year (1st tabular component on left), y,,:
and Yield in Pollowing Year (2nd tabular component on left), hO%
and Pinal Weights V,,(2)(x100) (tabular component on right) : s.'}_.
VARIETIES Ao
1 2 3 4 s .;,:
B3y
o 108 120 110 90 ]
1 01 73 o %0 56 ol L e ?? <
147 142 151 192 146
2 100 % 116 92 312 390 1,566 o8 ¢ i
YN
02 77 78 131 %0 Ted
ACY
Location 3 103 % 1089 317 105 130 % R
120 121 124 141 125 b
6 87 2 ©° %6 7 126 77 76 ©°
99 (1) 69 89 104 589
s 93 0 7 97 12 62 %6 w0 93 :?‘
(AN
07 77 79 102 % I
(3 s *° 67 9 67 9 92 7° s V7 o
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