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1. INTRODUCTION
Let X = {X(¢) : ¢t 2 0} be a real-valued (measurable) stochaQtic pro-
cess representing the output of a simulation. (To incorporate output
sequences Xn into our framework, we set X(t) = x[tl’ where [t] 1is the
greatest integer less than or equal to t.) The process X 1is said to

possess a steady-state if there exists a finite constant r such that

)

(1.1) r(e) = ft X(s)ds =» ¢
0
as t * » where = denotes weak convergence. The problem of consistent-
ly estimating and producing confidence intervals for the parameter r 1is
known, in the simulation literature, as the steady-state simulation prob-
lem,

The limit theorem (l.l!) suggests that r(t) can be used to consis-
tently estimate r. It turns out that one can frequently establish that
the output process X 1in fact satisfies a somewhat stronger relation,

namely, there exist finite constants r and o such that

RY

(1.2) 20e(t) -~ ©) = o N(0,1) .

Suppose now that one can construct an estimator s(t) such that
(1.3) s(t) => ¢

as t * @, Then, (1.2) and (1.3) together imply that if o > 0, then the

interval
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(1.4) [e(e) = 2(8) 25, e(o) + 2(8) K5
t t

is an asymptotic 100(1-86)% confidence interval for r, provided that 2z(§)

is chosen to solve the equation P{N(O,I).S z(8)} = 1 - &/2.

The above discussion suggests that in the presence of an output pro-
cess satisfying (1.2) with o > 0, the steady-state simulation problem is,
in principle, solved, once an estimator s(t) for o has been constructed
Thus, the determination of an estimator s(t) for o can be viewed as the
fundamental problem of steady-state simulation output analvsis. (It
should, however, be noted that certain output analysis methods employ a
different approach, which does not require explicit estimation of o; the
methods of batch means (see pp. 85-89 of BRATLEY, FOX, and SCHRAGE (1983)
for a description) and standardized time series (SCHRUBEN (1983)) fall into
this category).

As a consequence of the above observation, a great deal of attention
has been focused on the construction of such estimators for o. In some
sense, all currently available estimation methods make use of the fact that

if X 1s well-behaved and approximately stationary, then (1.2) suggests

that
lim ECeCr(t) - £))2 = a%EN(0,1)2
too
(1.5) f.e., 2 | EX (O)x (t)dt = o
0 [ c
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where Xc(t) 2 X(t) - r. Spectral procedures (see pp. 95-98 of [3]) use
kernel estimators to estimate the left-hand side of (l.5), whereas autore-
gressive methods (see pp. 98-101 of {3]) fit an autoregressive process to
X, compute the analog of (1.5) for the fitted process, and use that quan—

tity as an estimator of (1.5) for X. As for the regenerative method (see

c Y pp. 89-94 of [3]), it, loosely speaking, uses the special structure of a

::F regenerative process to “"truncate” the integral on the left-hand side of
M

~ﬂ (1.5) at a regeneration time, threby simplifying the estimation problem.

In this paper, we propose a new method for consistently estimating o

3’

s;; which does not make any explicit use of relationship (1.5). Our estimators
'%:E are based on known limit theorems about the increments of Brownian motion;
;:g the constant O appears as 3 scaling constant in these limit theorems. We
éé% then use strong approximation methods to translate the resulting estimator
%ii; for ¢ from the Brownian motion back to the original output process X;

o8

' the resulting estimator for ¢ depends only on the observed values of X,
fi: and not the Brownian motion.

N
2;% In some respects, our method is similar to that of SCHRUBEN (1983),.
::;A The method of standarized time series depends on the fact that ¢ appears
Eﬁ§ as a scaling constant when one weakly approximates the original process by

3? a Brownian motion; ¢ 1s not estimated but 1s instead "cancelled” out. Bv

.
i:? contrast our method involves strong approximation results and gives rise to
;:ﬁ strongly consistent estimators for o. As proved in GLYNN and IGLEHART
;:E (1985), consistent estimation of O enjoys certain asvmptotic advantages
0
- over standardized time series. LW
"% In Section 2, we introduce our estimators s(t) for oO; our basic _
’ 3 hypothesis on X 1is that a suitable strong approximation by Brownian {q
s §
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motion is possible. Section 3 is devoted to discussion of processes X
which satisfy the strong approximation hypothesis. 1In Section 4, the rate
of convergence of s(t) to o 1s studied, and compared to that available
via the regenerative method. Our main contribution here is to suggest that
entirely new methods for estimating ¢ may be worth exploring. Further
comparison of these new methods with the old methods should be carried out

via numerical examples.

2. A NEW CLASS OF ESTIMATORS FOR <
t
Let §= {s(t): t > 0}, where S(t) = £ X(s)ds. Throughout this

section, we shall assume that:

(2.1) cthere exists a probability space supporting a process S$* and a
standard Brownian motion such that:
(1) the distribution of § equals that of S*

1/2-A

(11) s*(t) - rt = oB(t) + O(t ) a.s. for some constants r,

o,and A (0<AC1/2,0>0) as t + =,

We shall refer to (2.1) as our strong approximation assumption; it says
that a process S*, possessing precisely the same distribution as §, can
be a.s. well approximated by a Brownian motion. Note that under (2.1)

(11),

1/2 1/2

(2.2) t °(s*(t) - rt) -t '“o B(t) *+ 0 a.s.

as t * ®», By (2.1) (1), it follows that (2.2) also holds with S taking

the role of S*; this shows that (2.1) automatically implies (1.2).

G AR O IR O Vit !,. (O _lh ‘:.‘.- “ ' ’-'-' 'ai ' E ' ‘ ’ Ei ‘ N I ' ] TQ\MQI‘;)“S&%M&




Q ' For 0 < p < 1, let
o

sl(t) = sup S(u + t?) - r(e)eP - s(w)
Ve Qgpgp-tp (2t * (1 - p) * log t:)l/2

i (2.3) THEOREM. If p is chosen so that p + 2A > |, 0 < p < 1, then

sl(t) + 0 a3a.8. as t * =,

& PROOF. CSORGO and REVESZ (1979a) showed that

(2.4) lim sup B(u + tP) = B(uw)
e

e 0cu<e-tP (2tP ¢ (1 = p) * log )}

/2 =1 a.s.

A Let S:(t) = S*(t) - rt. By (2.1) (i1), S:(t) = oB(t) + 0(:1/2-}‘) a.s.

&, so it follows that

\:f (2.5) sup loB(u + tP) - oB(u) - S:(u +tP) - S:(u)’
‘ 0<uce-tP

st (1/2-A

it = ) a.s.

Relations (2.4) and (2.5), together with the condition 2p + A > 1, imply

that

* Py _ g%
it (2.6) lim sup Sc(u +t) Sc(u)
t”

= J a.8.

QSqSt-tp (2tP * (1 - p) log t)172

o if.e., lim sup S*(u + tp) - reP - S*(u) = 0 a.s.

et B kuce-eP (2tP ¢ (1 - p) log 0!/2

g Furthermore, the law of the iterated logarithm for Brownian motion

! implies that
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-— B(t)
2.7) lim =1
tre (2t log log t)lfi

38

Applying the strong approximation (2.1) (ii) to (2.7), we find that

(2.8) r*(t) - r

,O((_S__S_1° 22 :)1/2) a.s.

where r*(t) = S*(t)/t. Since (log log l:)I/2 . t(p-l) + 0, it follows from

(2.6) and (2.8) that

Py _ ¢Ppa -
(2.9) lim  sup S*(u;t ) - trx(t) S:g;) = g a.s.
tre Qﬁﬂﬁt'tp (2t" ¢ (1-p) °* log t)

But S has the same distribution as S*, so the theorem follows immedi-

ately from (2.9).

We can further define the following estimators:

S(u+tp) - r(t)tp = S(u)

s,(t) = sup
’ ocuce-tP | (2EP * (1-p) * log 0l/2
- S(MV) - r(t)v - S(U)
8,(¢) sup sup o s
Kuce-tP  ocweeP  (2F (1-p) * log t)
S{u+v) - -
s,(t) = sup sup (: ) = r(t)v S(u%7i
ocuct-tP  ocuceP | (2T * (1-p) ° log t)
;I-‘ == Kv<
n'
:l. Ss(t) - inf sup s(utv) = r(t)v - S(u)
& P p a(t)
i 0Kuct=t® K<t
3
2
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where
a(t) = (8 * (1-p) * log t/n2cP)l/2
(2.10) THEOREM. If p 1is chosen so that p+ 2M > 1, 0 < p < 1, then

Si(t) *+ 0 a.s. as t*=, 2<1<5,

The proof of this theorem follows exactly as for Theorem 2.4; the key
is to have available an analog to (2.4) for Brownian motion, for each of
the estimators si(t), 2<1<5. For si(:). 2 i< 4, we refer to CSARGO
and REVESZ (1979a); for ss(t), the result can be found in C86R66 and

REVESZ (1979b).

3. STRONG APPROXIMATION OF STOCHASTIC PROCESSES

We now proceed to discuss conditions under which Assumption 2.1 holds.

SETTING l: Let Y = {Y(t) : t > O} be a (possibly) delayed regenerative
process with regeneration times 0 < T(0) < T(1) < *** If f 1is a real-
valued function defined on the state space of Y, set X(t) = f(Y(t)). Let

(k) = T(k) -~ T(k-1) for k > 1, and assume that Y {is positive recurrent

s
»*

in the sense that Et(l) < ®, Suppose further that there exists 0 < § < 2

o

2
A

such that
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T(1) N
W -
3 (3.1) W E(J 1) 1s)?* < - -
v ‘r ..
‘ (0) poE
O ol
. (1) P2 (o A
. )
X ) T(n) i~
K>, (111) EZ°(1) > 0, where 2Z(n) = | (X(s) - u) ds and
' T(n-1) e
ﬁ L
I.{
§ T(1) o
0 vz E(J X(s) ds)/ET(1) . 0
‘. T(O) (-—-f
) 805
K Then, (2.1) is satisfied with r = p, 62 = EZZ(I)/Et(l), and A satis- : 1,
L, w
& fying 0 < A < 8/(4 + 28); see pp. 117-122 of PHILIPP and STOUT (1975) for o
L ~
D FRYL
»$ a proof in the case where Y 1is a countable state irreducible Markov chain qﬂg
;: =

(their argument easily adapts to the more general regenerative setting

described above). Qﬁ

.{
SETTING 2: Let X = {xn :n > 0} be a strictly stationary sequence of
. r.v.'s for which there exists 0 < 8§ < 1 such that E|X0|2+6 < ®», Sup~ '::\
7 — ‘~."
e
y pose, in addition, that X is ¢é-mixing (see Section 20 of BILLINGSLEY g
I P
(1968) for a discussion) with mixing coefficients satisfying '
(‘l MUN
< SN TCO LIRS x
- i
N . o
X H ‘
P (3.2) a =2 é EX_(0)X (s)ds > 0 &
5 ok
! DS
R (the integral (3.2) converges absolutely), then (2.1) is satisfied with ijé
A T,
'
r = EX(0), 02 = a, and A satisfying 0 < A < 8/(24 + 128) ((if XO is 0;,
'R ) )
$‘ bounded a.s., then A can be chosen to be 1/12). This result can be in
¢ W
)
N found on pp. 26-38 of [11]. (For a version of this result in the case when .5::
l“ " +
v z:_l #(n)}/2 ¢ =, see BERKES and PHILIPP (1979).) Al
:: r..
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Further strong approximation theorems are also available for lacunary he
trigonometric series, martingale processes, Gaussian sequences,and strongly Q:E
mixing processes; see [l1] for a complete description of such results. %
Thus, the assumption (2.1) is satisfied by a large class of stochastic pro- ::»
cesses exhibiting weak time dependencies. }
o"
.
We should also comment that the convergence rates (i.e., the size of ="
a}"
A) quoted above for regenerative processes and ¢-mixing sequences can -
.':'.
probably be improved. For example, much better results are available for :-:::
sequences of independent and identically distributed (i.i.d) r.v.'s., 1In -
Gh
particular, it is reasonable to expect that results for regenerative ;::
o
processes can be obtained for A arbitrarily close to 1/2. » 5
JUg
X
SETTING 3: let X = {Xn :n > 0} be a sequence of non-degenerate A
f.i.d.r.v.'s with Elxolp <= for p> 2. Then, (2.1) is satisfied with >
2’
” . 4
r = EXO, 02 = var(xo), and A = ] - |/p; see KOMLOS, MAJOR, and TUSNADY e
(1975,1976) and MAJOR (1976) for proofs. _\..
R
4, COMPARISON OF CONVERGENCE RATES
It has been shown by REVESZ (1980) that 1f 0 < p < 1, then -
%
'
L e} "\
P ’ p "» '
lim (log t) sup > Blute”) B(u) 77 = g | =0 a.s. }f';
tre O_(_u_(_t-tp (2e" * (1-p) * log t) &
1 s
= +8
lim (log (:)2 sup sup > B(utv) - B(u) 75 = o =0 a.s. :.::
2] OSuSt-tp O<v5tp (2e" ¢ (1-p) * log ¢t) ‘
. '::1
for & = 0; it is further indicated in CSORGO and STEINEBACH (1981) that -
RS
for & > 0, the above lim sup's are infinite. :‘:
"
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'
W
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Using the strong approximation (2.1), it follows that

Tim (log t)(1/2)+6

si(t) -~-ocl=0 a.s.

tre

for 8§ = 0 (i = 1,3), whereas divergence occurs if 6 > 0. Thus, the rate
of convergence of si(t) (1 = 1,3) to o 1is, roughly speaking, of order
(log t)-l/z.

It is instructive to compare this rate of convergence to that avail-
able when 0 1is estimated via the regenerative method of simulation (we
choose this method as a basis for comparison, since we can do the conver-
gence rate analysis easily in this setting).

Let Y be a regenerative process with regeneration times 0 < T(0)
< T(1) < *¢¢; get X(t) = £(Y(t)), where f 1s a real-valued function

defined on the state space of Y. Put T(-1) = 0 and let N(t) =

max {k 2 -1 : Tk £ t}. The basic regenerative estimator for ¢ 1is given

by
0; N(t) KO
s(t) = N(t)
L) v, - e e Y2 vy > 1,
t i i Z
i=}]
T(1)
where Vi = | X(s)ds and T, = T(1) - T(i-1).
T(i-1)
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. T(1) 4
sl (4.2) THEOREM. If E(J (1X(s) | + 1)ds)” < =,
T(i-1)

iwm [/ t Is(t) - o | = 8172 a.s., J
tro 2 log log t !

-q
_..—

-~

- -
i)

2 S B

-

AT B0

'.

where

4o« Fr, ]

s ",

A = z2 - 021 , and
n n n

y
]
ey =S

2 Ezltl/Et1 .

-

Recall that for regenerative processes, r = EVl/Et1 and c2 =

Tean

EZf/Etl, so that Zn and An are mean-zero r.v.'s; we will need this

1

fact in our proof of Theorem 4.2. Also, we remark that Theorem 4,2 is a

A

statement of the law of the iterated logarithm for the estimator s(t).

RCA T S IS B 1
-,

>

PROOF (of Theorem 4.2): On the event {(N(t) > 1}, observe that if v(t) =

.
= g

sz(t), then

e

PR

)
(r)
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<n - . ' o
. . U . , ' v 1% 1% uie DO O (h ’
XA o AR AN AR MITHA RO MR O O S e D DT e R DSOS A ARNOODOO TR T D0

(4.3) v(t) - o -%

! N§t)
+ 2(r - r(t)) ‘T L Zifi

N(t)
+ (r - r(t))2 “% § 12

a1 *
1 N§t)
- = (A, - Az))
t o 1 i
Tt 1 N(t)
-2 (X(s) - r)ds * =, ) Z, 7
T(N(t)) t i=1
N(t) EZ, T
+ 2 (r - z(e)) * (% E Zif1 - EL l)
i=] 1

N(t)
+(r-r(t))2'% ) rf.
i=1

But s(t) = g(v(t)) where g(x) = xl/z, so by Taylor's theorem, we have

s(t) = o + g'(v(t)) (v(t) - 02)

where £(t) lies between v(t) and 02 and g'(x) = l/(le/Z). Since v(t)
2

~* 0° a.s., it follows that g'(Z(t)) * 1/(20) a.s. Thus, to prove the

theorem, it suffices to show that

— t
(4.4) lim \/ W

tre

v(t) - ot | - 2051/2 a.s.

12
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By the Hartman-Wintner law of the iterated logarithm and the fact that

N(t) + @ a.s., we have that

N(t)

- N(t) 1 1/2 1/2
lim « I a, ~Az)) | = 208"/ °(ET)) a.s.
¢ 2 log log N(t) N(t) {=1 i i 1

But N(t)/t » l/Eti a.s. as t * ® so

. N(t)
- t 1 1/2
@ TE Vgt 1), 4 |- e

)
[ e i=]

(4.6) Tl —t @y » &7 iy
4.,6) lim ——s—— | (r - r(t)) * (= z,t, - ' < ® a.s., and
tre log log t t {=1 i1 Etl
N(t)

(4.7) Tim —_— (r - r(t))2 . Cl § 12) ' ¢ ® a,s.

cre log log t t =1 i
Furthermore,

t T(k)
J |X(s) - r| ds nax (J jX(s) lds + |r| Tk) .
T(N(t)) 1<kEN(t)+1  T(k-1)

Our moment hypothesis allows one to apply the Borel-Cantelli lemma to

obtain

T(k) 1
( IX(s) |ds + |r] Tk) / k
T(k-1)

/4 + 0 a.s.
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e as k * ®; this shows that

g ! (jr(k) )
) . max IX(s)lds + |r] t. ) » 0 a.s.
g e LN+ TCeD) k

a}’ and t * ®, Hence

= (0 a.s.

) _ t N(t)
R (s.8) Tm /4| ] (x(s) - 0)ds + L % 2,7,
B tre T(N(t)) t° 1=l

as t*», Coambining (4.5), (4.6), (4.7), and (4.8), we see that the decom-

M position (4.3) yields (4.4).

e
N Roughly speaking, Theorem 4.2 says that s(t) converges to o at

rate (log log t/t)l/z. By comparison with the previously obtained con-

AR 2

vergence rate for si(t) (i=1,3), this is much faster. This does not

-
LA IAS

necessarily, however, imply that the estimators si(t) for o will behave

worse than the regenerative estimator for purposes of confidence interval

oo
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generation.
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