Multiple Strongly Typed Evaluation Phases

DISTRIBUTION STATEMENT A
Approved for public release; Distribution Unlimited
This work introduces the programming language notion of **multiple strongly typed evaluation phases**. In general, a program might be executed through several phases. Each phase requires its own input, and acts as compiletime relative to the next phase, or runtime relative to the previous phase. Thus, each phase is the execution of a program, and may play the role of compiletime or runtime.

(over)
The notion of phases offers a framework for understanding compiled strongly typed languages, and works toward an improved, strongly typed language basis for reusable software. The research shows how types can be manipulated as first-class values, and notions of compiletime and runtime can be unified, without sacrificing strong typing (compiletime type checking) or runtime speed. Type checking and expression evaluation are performed using the same evaluation mechanism.

The apparent conflict of allowing types as first-class values, yet enforcing compiletime type checking, is resolved by the notion of multiple phases: though types may be manipulated as first-class values during one phase, the computed type values become invariants for the next phase.

We demonstrate the notion of phases by defining a sample source language, Phi, which looks like a typed lambda calculus; an object language, IL, which is syntaxically similar to an untyped lambda calculus, but is strongly typed; an associated IL Machine that interprets IL programs; and a translator for converting Phi programs to IL programs. Strong typing is guaranteed in spite of the fact that the Phi translator does no type checking. We also discuss how phases might be used to efficiently perform partial evaluation.

A phase, i, is the execution of an IL program, p_i. The result may be another IL program, p_{i+1}, to be executed in phase $i+1$, or it may be the desired final answer. Phase i acts as compiler for phase $i+1$, doing all type checking necessary to guarantee that program p_{i+1} is free of runtime type errors. During phase i, program p_i can manipulate types as first-class values; in general these computed types will be invariants of the next phase.
Multiple Strongly Typed Evaluation Phases
Acknowledgements

At UCLA, thanks to David Martin for agreeing to be my advisor on this research even before I could fully explain what it was all about, and for following through as he found out. Thanks to Gerald Estrin for running the doctoral seminar that provided a much-needed forum for working out the presentation of these ideas, and for spending much more time than his role would normally warrant reading drafts of this work. And thanks to those students in the doctoral seminar who courteously sat through some rough early presentations of this work and provided valuable feedback.

At USC/ISI, thanks first to Vance Tyree for bringing me to the MOSIS group here at ISI and establishing me in this very supportive and much-appreciated environment. Thanks to George Lewicki for continuing to support me on the MOSIS group as this dissertation was written. Thanks to Sheila Coyazo for her excellent editorial help, and thanks to the others who have made working here at ISI such a pleasure for the past four years.

© Copyright by

David S. Booth

1985

Reprinted by permission
Table of Contents

1. Introduction

1.1. Research Contribution
 1.1.1. Ideas in This Research
 1.1.1.1. An Abstract Data Type for Type-checked Program Fragments
 1.1.1.2. One Machine Acts as Compiler and Runtime Machine
 1.1.1.3. Multiple Strongly Typed Evaluation Phases
 1.1.1.4. The Translator Does No Type Checking
 1.1.1.5. One Machine Does Partial and Full Evaluation
 1.1.1.6. Phase Compilation
 1.1.1.7. An Unusual View of Abstract Data Types

1.2. Background to This Research
 1.2.1. Two Models of Program Evaluation: Interpreted and Compiled
 1.2.1.1. Definition: Runtime Type Errors
 1.2.1.2. Definition: Strong Typing
 1.2.2. The Purposes of Compiling
 1.2.3. Problems with Traditional Compiled Languages
 1.2.3.1. Lack of Programmer Control
 1.2.3.2. Ad Hoc Notions
 1.2.3.3. The Conflict Between "Strong Typing" and "Types as First-Class Values"
 1.2.3.4. Different Mechanisms for Type Checking and Evaluation

1.3. This Research
 1.3.1. Expressing versus Inferring
 1.3.1.1. Advantages of Inference over Expression
 1.3.1.2. Disadvantages of Inference as Opposed to Expression
 1.3.1.3. The Gray Area Between Inference and Expression

1.4. Related Work
 1.4.1. Pebble
 1.4.2. Partial Evaluation
 1.4.2.1. Definition of Partial Evaluation
 1.4.2.2. Uses of Partial Evaluation
 1.4.2.3. Comparing Phases and Partial Evaluation
 1.4.3. Current Work by Gifford, Schooler, et al.

2. Programming Method

2.1. General Programming Method
 2.1.1. Distinct Application and Implementation Languages
 2.1.2. Programs Are Combined
 2.1.3. Programs Are Instantiated

2.2. Specific Programming Method
 2.2.1. ERT: Expression, Required-environment, Type
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.2. Valid ERTs</td>
<td>19</td>
</tr>
<tr>
<td>2.2.3. Interpreting the Specific Programming Method</td>
<td>20</td>
</tr>
<tr>
<td>2.2.4. A Command Interpreter</td>
<td>21</td>
</tr>
<tr>
<td>2.2.5. Environments</td>
<td>21</td>
</tr>
<tr>
<td>2.3. Motivating Example: General Purpose Sorting Function</td>
<td>22</td>
</tr>
<tr>
<td>2.3.1. The Desire for a General-Purpose Sorting Function</td>
<td>22</td>
</tr>
<tr>
<td>2.3.2. A Sorting Function Generator</td>
<td>23</td>
</tr>
<tr>
<td>2.3.3. Explicit Generation vs. Partial Evaluation</td>
<td>23</td>
</tr>
<tr>
<td>2.3.4. Phases Used</td>
<td>23</td>
</tr>
<tr>
<td>2.3.5. Generalizing Further</td>
<td>24</td>
</tr>
<tr>
<td>3. The Conceptual Model of Multiple Phases</td>
<td>26</td>
</tr>
<tr>
<td>3.1. Arriving at Phases by Extending Compiletime</td>
<td>26</td>
</tr>
<tr>
<td>3.1.1. Generalizing Compiletime</td>
<td>28</td>
</tr>
<tr>
<td>3.1.2. Generalizing Pre-compiletime, And So On</td>
<td>28</td>
</tr>
<tr>
<td>3.2. Conceptual Model of Multiple Phases</td>
<td>30</td>
</tr>
<tr>
<td>3.3. Interpreting the Conceptual Model</td>
<td>30</td>
</tr>
<tr>
<td>3.3.1. Properties of the Conceptual Model</td>
<td>30</td>
</tr>
<tr>
<td>3.3.2. Resolving the Conflict Between "Strong Typing" and "Types as First-Class Values"</td>
<td>32</td>
</tr>
<tr>
<td>3.3.3. The Paradox of Strong Typing Without Prior Type Checking</td>
<td>33</td>
</tr>
<tr>
<td>3.3.4. All Expressions Start Out Type ERT</td>
<td>33</td>
</tr>
<tr>
<td>3.4. Assigning Computations to Phases</td>
<td>34</td>
</tr>
<tr>
<td>3.5. How Many Phases Are Required?</td>
<td>34</td>
</tr>
<tr>
<td>4. Static Determination of Phases</td>
<td>36</td>
</tr>
<tr>
<td>4.1. The Static-Phi Language</td>
<td>36</td>
</tr>
<tr>
<td>4.1.1. Conventional Static-Phi Language Constructs</td>
<td>36</td>
</tr>
<tr>
<td>4.1.2. Normal Runtime Phase</td>
<td>37</td>
</tr>
<tr>
<td>4.1.3. Some Unusual Constructs</td>
<td>38</td>
</tr>
<tr>
<td>4.1.4. Examples</td>
<td>39</td>
</tr>
<tr>
<td>4.1.4.1. F Twice</td>
<td>39</td>
</tr>
<tr>
<td>4.1.4.2. Identity Abstraction</td>
<td>39</td>
</tr>
<tr>
<td>4.1.4.3. Identity Application</td>
<td>39</td>
</tr>
<tr>
<td>4.1.4.4. Function Abstraction</td>
<td>39</td>
</tr>
<tr>
<td>4.1.4.5. Function Application</td>
<td>39</td>
</tr>
<tr>
<td>4.1.4.6. Higher Order Function Abstraction</td>
<td>39</td>
</tr>
<tr>
<td>4.1.4.7. Higher Order Function Application</td>
<td>40</td>
</tr>
<tr>
<td>4.1.4.8. Identity-Function Type Abstraction</td>
<td>40</td>
</tr>
<tr>
<td>4.1.4.9. Identity-Function Type Application</td>
<td>40</td>
</tr>
<tr>
<td>4.1.4.10. General Type Abstraction</td>
<td>41</td>
</tr>
<tr>
<td>4.1.4.11. General Type Application</td>
<td>41</td>
</tr>
<tr>
<td>4.1.4.12. Macro Abstraction</td>
<td>41</td>
</tr>
<tr>
<td>4.1.4.13. Macro Application</td>
<td>41</td>
</tr>
<tr>
<td>4.2. The Static-IL Language</td>
<td>42</td>
</tr>
<tr>
<td>4.2.1. Lexical Scoping, ERTs, and Macros</td>
<td>42</td>
</tr>
<tr>
<td>4.2.2. Conventional Lambda Calculus Operations</td>
<td>44</td>
</tr>
<tr>
<td>4.2.3. Some Unusual Operations</td>
<td>44</td>
</tr>
<tr>
<td>4.2.3.1. (deep-const c / n)</td>
<td>45</td>
</tr>
</tbody>
</table>
4.2.3.2. (check-funtype expr_d expr_r n)
4.2.3.3. (check-lambda id expr_d expr_r expr_body)
4.2.3.4. (check-check-lambda id expr_d expr_r expr_body expr_n)
4.2.3.5. (check-apply expr_f expr_r)

4.2.4. Efficiency of Static-IL

4.3. Environments for Static-IL Programs

4.3.1. Static-Phi Program X
4.3.2. Definition: Default ERT
4.3.3. The Purpose of Default ERTs
4.3.4. Fixing the Type of an Identifier
4.3.5. Fixing an Identifier as a Function Type
4.3.6. Fixing an Identifier as a Macro
4.3.7. Fixing the Value of an Identifier
4.3.8. Other Possibilities
4.3.9. What Values to Supply in What Phases

4.4. Examples of Translation and Evaluation

4.4.1. F Twice
4.4.2. Identity Abstraction
4.4.3. Identity Application
4.4.4. Function Abstraction
4.4.5. Function Application
4.4.6. Higher Order Function Abstraction
4.4.7. Higher Order Function Application
4.4.8. Identity-Function Type Abstraction
4.4.9. Identity-Function Type Application
4.4.10. General Type Abstraction
4.4.11. General Type Application
4.4.12. Macro Abstraction
4.4.13. Macro Application

5. Using Phases for Partial Evaluation

5.1. The Dynamic-Phi Language
5.2. The Dynamic-IL Language
5.2.1. Conventional Lambda Calculus Operations
5.2.2. Other Operations
5.2.2.1. (hold t expr)
5.2.2.2. (check-funtype expr_d expr_r)
5.2.2.3. (check-lambda id expr_d expr_r expr_body)
5.2.2.4. (check-check-lambda id expr_d expr_r expr_body expr_n)
5.2.2.5. (check-apply expr_f expr_r)

5.3. Problems in Implementing Check-Lambda
5.3.1. Evaluating the Body Twice
5.3.2. Evaluating with Both Choices at Once
5.3.3. Using an Extra Environment Variable
5.3.4. The Root of the Problem
5.4. A Strongly Typed Phase Compiler
6. Remarks About Other Language Notions

6.1. Abstract Data Types
6.1.1. Four Essential Functions
6.1.2. Type Values: \((tag, value)\) Pairs
6.1.3. Type-of and Tag-of
6.1.4. Implementations of the Four Essential Functions
6.1.5. Defining a New Abstract Data Type

6.2. Dependent Types

6.3. Type Checking Recursive Functions

7. Conclusions and Future Work

7.1. Conclusions

7.2. Subjects for Further Study
7.2.1. Developing a Practical Language Based on Static-Phi and Static-IL
7.2.2. Using Phases for Partial Evaluation
7.2.3. Constructing and Maintaining Environments
7.2.4. Determining the Source of a Bug
7.2.5. Universal Polymorphism
7.2.6. Inferring Types
7.2.7. Recursive Types
7.2.8. ERT Subtypes
7.2.9. Statically Inferred Phases

References

Appendix A. Formal Semantics of Static-Phi and Static-IL
Chapter 1
Introduction

1.1. Research Contribution

This dissertation describes a programming language notion -- *phases* -- and an associated programming method. Its contribution is both practical and academic: it takes a small step toward providing a strongly typed language basis for more reusable software; and it provides a more general, unified view of certain notions in programming languages and methodology, including compiletime and runtime.

This work is not advocating any particular programming language or method. The main intent of this dissertation is to expose the essence of multiple strongly typed evaluation phases, without encumbering the reader with extraneous details or tangential issues. We illustrate the essential ideas by defining some pedagogical languages based on the Lambda Calculus [Barendregt 84]: Phi and IL. As of this writing, two versions of these languages have been implemented and tested.

1.1.1. Ideas in This Research

It is often difficult, in reading research reports, to distill the important ideas being advocated from the mundane details of the particular system described. Outlined below are what the author considers to be the most interesting ideas embodied in this research.

1.1.1.1. An Abstract Data Type for Type-checked Program Fragments

A particular abstract data type (the data type ERT) is defined for constructing and manipulating type-checked programs. This allows program fragments to be securely manipulated as data, and thus allows compiletime operations to be treated in the same manner as runtime operations. The primitive operations implementing this data type ensure that every program constructed in this way is syntactically correct and strongly typed. (Section 2.2.1.)
1.1.2. One Machine Acts as Compiler and Runtime Machine

Notions of compiletime and runtime are unified: compiletime operations are generalized and become a superset of runtime operations. A single abstract machine can do both efficiently. (Section 3.1.2.)

1.1.3. Multiple Strongly Typed Evaluation Phases

Each phase is the execution of a program on the abstract machine. The result of each phase may be the final answer or another type-checked program. Each phase type checks and generates the program for the next phase. Types may be manipulated as first-class values during any phase: they become invariants for the next phase. "Compiletime" and "runtime" thus become relative terms. (Sections 3.2 and 3.3.)

1.1.4. The Translator Does No Type Checking

Given a program in the source language, the translator can produce a strongly typed program in the implementation language without doing any type checking. That is, the translator does no type checking, but the resulting program is guaranteed free of runtime type errors. This fact may at first sound contradictory; it is explained in Section 3.3.3.

1.1.5. One Machine Does Partial and Full Evaluation

A single abstract machine can efficiently do both partial evaluation and full evaluation. (Chapter 5.)

1.1.6. Phase Compilation

Chapter 5 discusses how phases might be used for partial evaluation for a strongly typed language. Partial evaluation is often slow, but it might be made more efficient by using two steps: phase compilation and phase evaluation.

Given a list of the free variables to be given fixed values, a phase compiler would prepare a program for phase evaluation, which will achieve the effect of efficient partial/full evaluation. The program would first be "phase compiled," using a list of the free variables -- and their types -- to be instantiated. Efficient partial/full evaluation would then be performed by executing this "phase compiled" program using phase evaluation. (Section 5.4.)
1.1.1.7. An Unusual View of Abstract Data Types

Since types and code are first-class values, our view of Abstract Data Types (ADTs) is in terms of what primitive functions are necessary in order to support user-defined ADTs. Operationally, one needs these functions in order to convert between the domains of the abstraction and the representation. However, they can be ordinary functions rather than special language constructs. (Section 6.1.)

1.2. Background to This Research

Programming language experts should read the definitions of "runtime type errors" and "strong typing" in Sections 1.2.1.1 and 1.2.1.2, but may otherwise wish to skip to Section 1.3, which describes this research.

1.2.1. Two Models of Program Evaluation: Interpreted and Compiled

Figure 1-1 shows two models of how a source program written in some language L might be evaluated.

In the interpreted case, the program is given directly to an interpreter. A program generally also needs a specified environment, which might include values for the program's input variables and definitions of some standard functions. The interpreter runs the program with the given environment and produces the desired result of the computation -- the final answer, which might be some number, a character string, or a more complex object such as a file.

In the compiled case, the source program is first translated, by a compiler, into an object program in some other language L'; this step is called compiletime. An L' interpreter then runs the object program with the desired environment to produce the final answer: this step is called runtime. The object program may be stored and run repeatedly using different environments or inputs, without re-translating the source program.

This work concerns the compiled, rather than the interpreted, model.
Figure 1–1:
Two Models of Program Evaluation

Interpreted

Compiled
1.2.1.1. Definition: Runtime Type Errors

Suppose the source program contains a mistake, causing the L interpreter (in the interpreted case) or the L' interpreter (in the compiled case) to try to apply some erroneous operation, such as multiplying two character strings. It may be detected by the interpreter, and an error message issued, or it may not be detected, in which case the result of the computation will be garbage. In either case, it is called a runtime type error to distinguish it from any errors that the compiler might issue before the program is executed.

1.2.1.2. Definition: Strong Typing

If the source program contains adequate information about the types of values to be computed, the compiler can ensure that the generated object program will be free of runtime type errors. Strong typing means providing an a priori, or compiletime, guarantee against runtime type errors.

This work concerns only languages providing strong typing.

1.2.2. The Purposes of Compiling

There are two basic advantages to compiling the source program, as opposed to interpreting it directly: type security and efficiency.

Type security Because the source language is strongly typed, the compiler can provide an a priori guarantee that no runtime type errors will occur when the object program is executed on the implementation machine. This provides an assurance that the program is at least partially correct, without executing the program.

Efficiency A compiler can improve a program's runtime efficiency in three ways: by computing constant expressions at compiletime; by selecting optimal object program code, based on values and types known at compiletime; and by translating the program

1 The question sometimes arises: Is division by zero considered a runtime type error? What about an array index out of bounds? Or an attempt to read beyond the end of the input?

Paul Eggert [Eggert 81] has shown that it is possible to define the type system securely enough that such runtime errors are not possible. For example, one can define a type non-zero-integers that includes all integers except zero, and another type possibly-zero-integers that includes all integers. Only values of the type non-zero-integers would be allowed as divisors, and (for example) subtraction of two non-zero-integers would yield a result of type possibly-zero-integers. To convert a value of type possibly-zero-integers to a value of type non-zero-integers, one must use a special case-conforming clause, placing the detection of a zero value under explicit program control. The type system can similarly be defined in such a way that array-index-out-of-bounds and other such errors are not possible. Although many languages that purport to be strongly typed, such as Pascal, allow such loopholes in the type system, this work assumes that the type system is defined securely enough that such runtime errors are not possible.
into a language inherently more efficient for the implementation machine to execute.\(^2\)

1.2.3. Problems with Traditional Compiled Languages

The benefits of compiling are well established, and languages specifically designed to be compiled -- *compiled languages* -- are common. In spite of these advantages, there are some problems with traditional compiled languages.

1.2.3.1. Lack of Programmer Control

Inherently, the compiler must know a great deal about the source program and the types of values being manipulated in order to produce an efficient, type-checked object program. However, the programmer generally does not have access to much of this compiletime information.

For example, in Pascal, there is no way to ask for the size of an array or for the first value of an enumerated type.\(^3\) Certainly the compiler has this information, but the programmer has no way of accessing it.

1.2.3.2. Ad Hoc Notions

It is easy to see similarities between the kinds of operations performed by the compiler at compiletime, and the operations performed under program control at runtime. In spite of the conceptual similarities, compiletime notions tend to be ad hoc. For example, the shortcomings of Pascal mentioned above were addressed in Ada\(^4\) by supplying *attribute* operations, which ask for an array's size or an enumerated type's first value. The Ada Reference Manual [Ada 82] defines 48 such attributes! Some of these attributes are computable at compiletime and some are not.

Type expressions are usually treated very differently from other -- conventional -- expressions, such as numeric expressions. In fact, they usually have different syntactic rules. Consider Pascal. One can define a variable \(x\) to be some user-defined type \(t\):

```pascal
var x: t;  // (t is some user-defined type)
```

Or one can declare \(x\) using an array type expression involving \(t\):

\[\text{This third method of improving efficiency will be ignored when we generalize compiletime to arrive at the notion of phases. However, the idea of translating to a more efficient language is not incompatible with the notion of phases. Instead of executing an Implementation Language program directly, we could first translate it to another more efficiently executed language.} \]

\[\text{An enumerated type is a type for which all values are explicitly listed, for example, type color = (red, green, blue).} \]

\[\text{Ada is a registered trademark of the U.S. Government, Ada Joint Program Office.} \]
var x: array [1..20] of t;

However, one cannot compute an arbitrary function of t:
var x: f(t); { Illegal }

To various extents, some languages, such as Donahue's Extended Lambda Calculus [Donahue 79],
Russell [Boehm 80], EL1 [Wegbreit 74] and Pebble [Burstall 84], do treat types as first-class values; that
is, one may use type variables and write functions and expressions involving types. However, these
languages tend to syntactically separate type expressions from normal expressions, restrict the kinds of
computations allowed on types to ensure that the type values are statically computable, or forego
strong typing and use runtime type checking. Pebble's treatment of types is general and uniform in
these respects, but it does treat one aspect of types differently, as mentioned in Section 1.2.3.4.

1.2.3.3. The Conflict Between "Strong Typing" and "Types as First-Class Values"

The motivation for allowing types as first-class values is clear: the abilities to parameterize by types,
use arbitrary algorithms to construct new types, and make decisions based on types, would support
more reusable software. Similarly, the benefits of strong typing are well established: type security and
efficiency.

Unfortunately, there is an inherent conflict between allowing types as first class values and the desire
for strong typing. Basically, strong typing requires that the type of every expression be known before
runtime. However, allowing types as first-class values means that types may involve arbitrary
expressions, use variables, invoke functions, depend on input, etc.

1.2.3.4. Different Mechanisms for Type Checking and Evaluation

Type checking is similar to program evaluation. The similarity is readily apparent when one
compares a typical language's semantic rules for type checking with its semantic rules for evaluation:
both draw conclusions about an expression's value or type based on the values or types of the
expression's subexpressions, and both follow lexical scoping rules for identifiers.

Nonetheless, strongly typed languages have invariably defined separate mechanisms for type
checking and program evaluation. For example, even in Burstall and Lampson's Pebble [Burstall 84],
though type checking involves evaluation, a different mechanism is used for type checking than for
evaluation. This is shown clearly in Table 6. Section 5.3 of Pebble [Burstall 84], where the type
checking rules are separated from the evaluation rules to form what is essentially a different machine.
The rules are separated to demonstrate the distinction between the act of type checking and the act of
evaluation.) Both sets of rules apply to the same language constructs, but they are applied at different times, depending on whether the program is being type checked or executed.

1.3. This Research

Can types and code be manipulated effectively under programmer control during compiletime, while retaining strong typing? Can compiletime notions such as type checking be unified with runtime notions?

The answer is "Yes." The language notion of multiple strongly typed evaluation phases unifies compiletime and runtime, and allows types and code to be manipulated as first-class values, while retaining strong typing. Types, manipulated as first-class values in one phase, become invariants of the next phase, as explained in Section 3.3.2. Phases might also be used to perform partial evaluation, as discussed in Section 5. The purpose of this work is to explore and introduce the notion of multiple strongly typed evaluation phases.

Our particular approach to type checking was motivated by certain key biases:

- A firm belief in strong typing, that is, in providing an a priori guarantee that a program is free of any possible runtime type errors.

- A desire to unify the notions of compiletime and runtime.

- An orientation toward explicit programmer expression rather than inference performed by the language implementation. These orientations are contrasted in Section 1.3.1.

- A desire to support the general programming method described in Section 2.1.

5The term phases is often used in this work instead of the longer, more descriptive term multiple strongly typed evaluation phases.

6This work was approached a little differently than most doctoral research. Rather than first carefully defining a problem and then seeking a solution, we pursued an interesting idea and developed it to see how it might be useful. This unusual approach is risky, because there is less assurance of a useful outcome, and it places a greater burden on the researcher for scholarly review and integration of related work. Nonetheless, this approach should be encouraged much more. The traditional approach of defining a problem and then seeking a solution is contrary to creativity because every problem definition presupposes a certain view of the world. The most interesting and innovative developments are those that change one's view of the world, making problems irrelevant instead of solving them.
1.3.1. Expressing versus Inferring

Programming languages are designed under two competing orientations: the programmer can express information, or the language implementation can infer the information. The Phi language described in Section 4.1 is strongly oriented toward expressing rather than inferring. This section explains this choice and the differences between the two orientations.

For example, rather than requiring the compiler to infer the type of an expression from its context, in Phi the type is simply computed as any other computation. Another example of this distinction is that type checking polymorphic functions in ML [Gordon 79] involves unification, a process of pattern matching to find the most general type solution. If the same kind of polymorphic functions were offered in a language oriented toward programmer expression, the programmer would have the responsibility of expressing the desired type solution, and the language should provide useful type operations to make this easy. This is like the difference between proof checking and proof discovery.

1.3.1.1. Advantages of Inference over Expression

The main argument for having the compiler infer whatever it can is that it reduces the burden on the programmer. This is a good argument, but it is not prima-facie evidence that compiler inference is preferable to language expressiveness. It does, however, point out that ease of expression is very important. Concise syntactic constructs and libraries of reusable components should be provided to make expression easy.

Another argument for having the compiler infer information is that the inferences are assured correct (assuming that the compiler is correct, and that the programmer understands the inferences). If the programmer is given the responsibility of computing the types of expressions, for example, it is conceivable that the programmer would occasionally make a mistake and compute the wrong type, thus allowing an operation to be applied erroneously. In this case (to ensure strong typing), if the programmer is allowed to compute types arbitrarily, it is clear that the compiler must have some way of verifying that any computed types are in fact legal.

1.3.1.2. Disadvantages of Inference as Opposed to Expression

One disadvantage of relying on the compiler to infer information is that the compiler must be more complex. Thus, compilation may involve such tasks as unification or solving systems of simultaneous equations.
Perhaps the most important disadvantage, though, is that the programmer may want to express things that the compiler is not capable of inferring. This may be viewed as both a theoretical and a practical problem. As a simple example of the theoretical difficulty, suppose that every expression in the language must be guaranteed to halt, and that this is considered part of the expression's type correctness. The halting problem shows that this is theoretically impossible for the compiler to algorithmically determine, however, a compiler could much more easily verify a proof supplied by the programmer. As another example of the theoretical difficulty, Coppo [Coppo 80] asserts that when the type system of ML [Gordon 79] is extended, the question of whether a term possesses a type becomes only "semi-decidable".

The practical difficulty is that the compiler may not be smart enough to allow constructs that the programmer may wish to express. And unfortunately, making the compiler smarter generally makes it more complex.

1.3.1.3. The Gray Area Between Inference and Expression

There is no rigid distinction between inference and expression. For example, under the expressive orientation, a library routine implementing an inference engine could be provided. Or conversely, a language implementation's inference rules could simulate expression evaluation. Language processors generally contain elements of both inference and expression.

The work presented here is based on a strong bias toward expression, tempered with the compiletime checks necessary to ensure that any computed type values are legal. We do not intend to argue that expression is unequivocally better than inference. We are simply pointing out the importance of this orientation with respect to this work.

1.4. Related Work

1.4.1. Pebble

The Pebble language, by Burstall and Lampson [Burstall 84], uniformly allows types, bindings, and declarations as first-class values. Pebble's bindings are name-value pairs: they are essentially environments. Giving explicit access to bindings as first-class values makes it easy to build and access libraries or modules of reusable functions or other values under programmer control. Pebble's declarations are the types of bindings.
For simplicity, and to focus attention only on the notion of phases, in Phi we do not provide bindings and declarations as first-class values, though they would be very interesting to add. The idea fits our general philosophy perfectly.7

Pebble also provides dependent types (see Section 6.2), though our Phi language does not. The need for them in Phi is somewhat reduced by the notion of multiple phases; this is discussed in Section 6.2.

Pebble deals with language ideas, whereas the notion of strongly typed evaluation phases might be more accurately characterized as a language implementation idea. As such, Pebble’s semantic rules have no rigid separation between evaluation stages representing compiletime and runtime. However, Pebble’s type checking and evaluation rules can be separated to provide static type checking. This separation essentially leads to different machines (that are applied to the same program) for doing type checking and evaluation. In contrast, our work provides a single machine that performs both roles of type checking and evaluation, depending on the expressions in the program. To clarify this distinction, in Pebble, whether a program is being type checked or evaluated depends on the set of rules applied—it does not depend on the program itself. Whereas in our work, the syntax of the program determines whether our single type-checking-and-evaluation machine will do type checking or conventional evaluation.

1.4.2. Partial Evaluation

Partial evaluation is variously also known as symbolic evaluation, partial execution, symbolic execution, or mixed computation. Ershov [Ershov 77a] [Ershov 82] has probably been its main proponent.

1.4.2.1. Definition of Partial Evaluation

Partial evaluation reduces one program to another equivalent program in which some parts of the first program have been evaluated or simplified. For example, the expression \(a - b - 2*3 \) might be reduced to the equivalent expression \(a - b - 6 \). Or, if a value of 5 is provided for variable \(b \), expression \(a - b - 2*3 \) might be partially evaluated to \(a - 11 \).

In general, if one or more of a program’s input parameters are constant, the program may be partially evaluated to produce a new, more efficient program by taking advantage of those known constant values.

7 In fact, the first implementation of phases did treat bindings and declarations as first-class values.
1.4.2.2. Uses of Partial Evaluation

Partial evaluation has mainly been used as a flexible mechanism for specializing programs. The purpose has generally been to produce a more efficient resulting program -- part of the computation has been done already. This efficiency motive is one of the two basic reasons for compiling programs as opposed to interpreting them directly. However, the advantage of partial evaluation over compilation is its flexibility -- any subset of a program's free variables (or inputs) can be fixed by supplying particular values for them. Gifford, Schoole, et al. [Schoole 84] are also working on using partial evaluation to perform type checking; this correctness motive is the other basic reason for compiling.

Partial evaluation is also useful in separating notation from data representation. For example, in Pascal, the syntax for accessing data is tied to the representation of the data, making it difficult to change data representations. The programmer must choose between representing some data as a function or in a record, a linked list, or an array, and the syntax for accessing the data reflects this choice:

- `a(b)` Function invocation.
- `a.b` Accessing a component of a record.
- `a*r.b` Accessing through a pointer variable.
- `a[b]` Array subscripting.

Function invocation is the most general case, because any kind of data structure can be hidden inside the function body. Why shouldn't the programmer always hide the data structure inside a function? The answer is the traditional high cost of function invocation. But using partial evaluation, the function call can be avoided by beta-expanding (also called beta-reducing) the function call in-line, thus eliminating the performance justification for using specialized notation. Beta-expanding recursive functions can be a problem in general, but since (at the moment) we are simply discussing the possibility of hiding data structure access inside of function calls, recursive functions are not an issue here.

8 Section 1.2.2 outlines the basic purposes of compiling.

9 Actually, in Pascal, only scalar types can be returned by a function. However, other languages do not have this restriction.

10 Beta expansion or beta reduction replaces a function call with the function's body, having substituted actual parameters for formal parameters in the body. Care must be taken to preserve the properties of lexical scoping. Beta expansion is similar to macro expansion, except that macro expansion does not always guarantee that the properties of lexical scoping are preserved.
1.4.2.3. Comparing Phases and Partial Evaluation

As developed in Chapter 4, phase evaluation differs from partial evaluation in two important ways: (1) a program's various phases are explicitly indicated in the application program, and (2) program fragments can be manipulated as first-class values of an abstract data type (the data type ERT). The latter difference gives a macro-like capability, and the primitive operations that implement the abstract data type ensure that all generated programs are type correct.

The development in Chapter 5 shows how modifying and restricting phases might result in a system that essentially performs partial evaluation. Section 5.4 proposes a "phase compiler" approach that is analogous to the "compiled generation" approach of Beckman, et al. [Beckman 76], but ours applies to strongly typed languages, whereas theirs applied to the untyped language LISP [McCarthy 66]. This approach allows one abstract machine to efficiently perform both "partial" evaluation and "full" evaluation.

If phases were adapted to perform partial evaluation as discussed in Chapter 5, the most important remaining differences between phase evaluation and partial evaluation would be that: (1) phase evaluation syntactically distinguishes between those portions of a program that are being "partially" evaluated and those that are being "fully" evaluated, thus allowing the phase evaluator to perform both "partial" and "full" evaluation efficiently; and (2) under phase evaluation, a program's result type is always known before the program is evaluated.

1.4.3. Current Work by Gifford, Schooler, et al.

Gifford, Schooler, et al. apparently assume a similar general programming method to ours (described in Section 2.1). Their "kernel" language, the Imagine Base Language (IBL), corresponds to our Implementation Language (IL). Their programming method also assumes a partial evaluator, compilers, and interpreters, whereas ours includes a single Implementation Language Machine: our programming method makes explicit the operation of combining programs to form new programs, whereas theirs does not.

Their approach to providing an extensible, yet efficient, language is based on partial evaluation: specially defined forms can be converted to simpler, more efficient forms by partial evaluation. From Schooler [Schooler 84]:

Our proposed methodology is a generalization of the Russell [Boehm 80] and ELI [Wegbreit 74] techniques: all [language] extensions are implemented in the language.
allowing full user access to the extension mechanism. In addition, partial evaluation will be used to optimize the code to the point where using the user-defined extension mechanisms is essentially free in terms of runtime performance.

Gifford, Schooler, et al. also use their "front end" translators to insert assertions into the kernel language (IBL) code, and use the partial evaluator to compute as many of these assertions as possible. Since type checking is handled by inserting assertions about types, they thus provide compiletime type checking where possible and runtime type checking where necessary. Again from Schooler [Schooler 84]:

The code which the partial evaluator acts on will be generated by syntactic transforms from surface language constructs. The generated code will preserve all user-specified side-effects but will also include applicative constructs for type checking, etc.

Finally, since Gifford, Schooler, et al. are using partial evaluation, the comments on partial evaluation given in Section 1.4.2.2 apply to their work as well.
Chapter 2
Programming Method

This chapter discusses an assumed programming method. This programming method is very simple and rudimentary, and is not the focus of the research. It is included only to provide the necessary framework for discussing the main thesis of this work: the notion of phases.

The reader wishing to skim this chapter must be sure not to skip over Section 2.2.1, which defines ERTs, and is essential to subsequent chapters.

2.1. General Programming Method

The general programming method shown in Figure 2-1 illustrates how programs (or program fragments) may be used to create other programs. There are three essential aspects, described in the following sections.

2.1.1. Distinct Application and Implementation Languages

First, the general programming method assumes that humans write source programs (or fragments) in an application language (Phi) that is syntactically convenient for humans, and that these programs are then translated into an implementation language (IL) that is more convenient for mechanical interpretation. This prevents the programmer from directly writing ill-formed programs in the common implementation language. Because all programs in the implementation language are generated and manipulated mechanically, they can be guaranteed to have certain properties: in particular, to be syntactically correct and to be free of possible runtime type errors. (*Runtime type errors* were defined in Section 1.2.1.1.)

This work defines two versions of a simple application language, Phi, and a simple implementation language, IL. A Phi Translator, which translates from Phi to IL, is also defined.
Figure 2–1:
General Programming Method

Phi Application Program 1 → Phi-IL Translator → Implementation Language (IL) Program 1 → Combine → IL Program x

Phi Application Program 2 → Phi-IL Translator → Implementation Language (IL) Program n → Combine → IL Program n.1

...

Phi Application Program n → Phi-IL Translator → Implementation Language (IL) Program n → Combine → IL Program n.m

Instantiate: final answer

...

(more combining and instantiating ...)
2.1.2. Programs Are Combined

Second, the programming method assumes that useful programs in the common implementation language, possibly from libraries, may be combined to form new programs. In this way, various software components could be reused.

The operation of combining IL programs is not defined here. It is assumed to be handled by whatever particular programming method the programmer uses, and is not essential for discussing the notion of phases.11

2.1.3. Programs Are Instantiated

Finally, the programming method assumes that a program can be specialized, instantiated, refined, or evaluated to form various versions or to compute the final answer. An entire tree of versions might be derived. This aspect is consistent with notions of transformational implementation [Cheatham 81], mechanized top-down stepwise refinement, and partial evaluation [Ershov 77a]. It also means that a version might be generated that would gather program performance statistics, and these statistics could be used in automatically instantiating a more efficient version for those data characteristics [Balzer 83].

Instantiation is defined in this work by the semantics of the Implementation Language (IL), that is, by the IL Machine.

2.2. Specific Programming Method

Before describing the notion of phases, let us first discuss the assumed programming method more specifically as it relates to the succeeding description of phases. Figure 2-2 illustrates the specific programming method. It involves application programs written in Phi, a Phi Translator, IL programs in the form of ERTs (defined below), and an IL Machine.

11 Nonetheless the special data type ERT, described in Section 2.2.1, and the example languages Static-Phi and Static-IL, described in Chapter 4, make it easy to manipulate and combine type-checked program fragments with integers under program control. In fact, that is precisely the purpose of the unusual (CHECK) constructs of Static-IL listed in Section 4.2.3: they take type-checked IL programs (in the form of ERTs) and combine them to produce new type-checked IL programs. A combining program would thus take ERT values as input (from the environment) and produce an ERT value. Section 4.3 discusses the environments required by Static-IL programs and shows examples of ERT values.
Figure 2–2: Specific Programming Method

Phi Program

Phi Translator

IL Program (ERT)

Combine

IL Program (ERT)

EXPR

ENV

(Instantiate)

Implementation Language (IL) Machine

final-answer \notin IL Program (ERT)
2.2.1. ERT: Expression, Required-environment, Type

In order to interpret the specific programming method shown in Figure 2-2, we must first define a special data type for representing type-checked program fragments: the data type ERT. An ERT is a triplet having the following components:

Expression An expression in the Implementation Language.

Required-environment A list of each free variable appearing in the Expression component, paired with its type. Each free variable is listed once, with one type, and no other variables are listed.

Type The Expression component will evaluate to a value of this type.

The purpose of ERT triplets is to facilitate manipulating programs (expressions), both in the overall programming method and in the implementation language, while ensuring their integrity. We are not interested in just any conceivable \(\langle e, r, t \rangle \) triplet -- only those that are meaningful, or valid, as defined below.\(^{12}\)

2.2.2. Valid ERTs

An ERT \(\langle e, r, t \rangle \) is valid if expression \(e \), evaluated in an environment that satisfies the required-environment \(r \), is guaranteed to evaluate to a value of type \(t \). By "an environment that satisfies the required-environment" we mean an environment \(env \) such that for each variable-type pair \(\langle v, t \rangle \) listed in required-environment \(r \), variable \(v \) is bound to a value of type \(t \) in \(env \).

Every ERT generated by the Phi Translator or the IL Machine is valid.\(^{12}\)

\(^{12}\) David MacQueen and John Mitchell have aptly pointed out that a valid ERT corresponds closely to the notion of a typing. To quote Reynolds [Reynolds 85]:

"Let \(e \) be an expression, \(\pi \) (often called a type assignment) be a mapping of (at least) the identifiers occurring free in \(e \) into types, and \(o \) be a type. Then

\[\pi \vdash e : o \]

is called a typing, and read "\(e \) has type \(o \) under \(\pi \)."

Note that this interpretation is assuming a particular deduction or evaluation mechanism, represented by the symbol \(\vdash \). It might be more precise to subscript this symbol with the name of the deduction mechanism such as \(\vdash_\pi \). Similar to the corresponding implied deduction mechanism for ERT triplets, which is given by the semantic rules for interpreting expressions in the Implementation Language.

\(^{13}\) To prove this assertion would be quite tedious. The last section of Appendix A includes a brief sketch of how to approach proving it.
2.2.3. Interpreting the Specific Programming Method

First, the programmer writes a Phi program.

Next, the programmer invokes the Phi Translator to translate this program to a valid ERT (i.e. an IL program).

The programmer might next use some method of combining various ERTs to create a new ERT.

Then, the programmer creates an appropriate environment, and evaluates the ERT by invoking the IL Machine on this environment and the Expression component of the ERT. The environment supplies the input, and must include values of the proper types for all free variables in the expression. (That is, the environment must satisfy the Required-environment component of the ERT, as discussed in Section 2.2.1. The command interpreter used to invoke the IL Machine must enforce this, as discussed in Section 2.2.4.)

The Type component of the ERT tells what type of value the IL Machine will produce, assuming no "compiletime" error occurs. (If such an error does occur, one can either think of the IL Machine as returning some special error value distinct from all other legitimate values, or as returning nothing at all, since evaluation is aborted.) If the Type component is ert, the result will be another ERT; otherwise it will be some final answer -- a number, for example. Thus, one knows beforehand whether the result of executing each IL program will be another ERT (another program) or a final answer.

The case when the IL Machine produces another ERT is especially interesting. Since an ERT contains an expression in the Implementation Language, the IL Machine can be viewed as specializing, instantiating, or (possibly) partially evaluating a program, as in the General Programming Method (Section 2.1). But it can also be viewed as compiling a program, though the source and object languages are the same. This is further explained in Chapter 3.

Note that it is trivial to determine whether the result produced by the IL Machine will be a final answer: the Type component of an ERT specifies the type of value that will be produced then the Expression component is evaluated. Thus, if the Type component is anything other than the literal

\[^{14}\] A final answer is defined as any value other than an ERT that is not another program. It might be a number, boolean, string, or other such basic value. Conceptually, a final answer might be an entire file, though in our simple pedagogical languages it will not.
2.2.4. A Command Interpreter

Certain aspects of the programming method shown in Figure 2-2 must be done by the human. For example, the human must write the original Phi program, invoke the Translator on it, combine program fragments (ERTs) as desired, supply the desired environment, and invoke the IL machine on the Expression component of the desired ERT. The simplest method of doing these things is to provide a command interpreter -- most naturally written in the Phi language itself -- and this is what we will assume, though any other more automated method is possible as well. It is the command interpreter's responsibility to ensure that the expression and environment actually given to the IL Machine are syntactically correct, type correct, and compatible. However, the use of ERTs makes this very easy to enforce, especially since every ERT produced by the Phi Translator or the IL Machine is guaranteed to be syntactically correct and type correct, and the Required-environment explicitly lists the identifiers and types of values required in the environment.

2.2.5. Environments

An environment simply provides bindings of identifiers to values. As shown in Figure 2-2, along with each IL program (EXPR), the IL Machine must be given an environment (ENV) that supplies values of the correct type for all free variables in the IL program (EXPR). In our simple model, an IL program's input must be supplied via the environment: that is, the IL program might have a free variable representing the program's input, and the environment would have to supply a value for that free variable, thus providing the program's input.

For example, consider the following trivial program that computes the cosine of a number, x.

(cos x)

The free variable x represents the program's input, and the free variable cos refers to a standard cosine trigonometric function. Thus, the environment for this program must be constructed to include bindings for x (a number), and cos (a function from numbers to numbers). Typically, the binding for cos would come from a standard library, whereas the binding for x would be explicitly provided by the user.
We do not show how environments are generated, but the command interpreter can provide ways of creating, combining, and storing environments, while keeping track of the types of the variables defined in them. Pebble [Burstall 84], for example, uses bindings as first-class values, and provides operations for creating and combining them.

Section 4.3 explains more about the environments required for Static-IL programs. (Static-IL is discussed in Section 4.2.)

2.3. Motivating Example: General Purpose Sorting Function

This section describes a hypothetical example of how general-purpose reusable programs might be created and used. The purpose of this example is to provide a tangible goal to guide the reader's intuition through the rest of this work, where the notion of phases is explained. The reader may wish to skip this section at first, and return to it later as needed.

Bear in mind that the languages discussed in this work are provided for pedagogical purposes only. They would not be practical for real-life applications such as the motivating example described in this section. However, these pedagogical languages should demonstrate the basic semantic notions necessary in a full, usable language that could be practically applied to the example below.

2.3.1. The Desire for a General-Purpose Sorting Function

Consider the problem of providing a truly general-purpose sorting function. Such a function should be able to efficiently handle a wide range of sorting needs, from sorting a small fixed number of items in the computer's primary memory, to sorting thousands of records in primary memory, to sorting millions of records in secondary memory such as disk or tape.\(^{15}\)

Clearly, it is impossible for a single sorting function to fill all of these needs efficiently enough to be generally useful, because there are many different algorithms that are appropriate for different needs. Any single program that tried to meet all needs would be much too large to be practical for the smaller cases.

\(^{15}\) This example comes from another author, but we have been unable to determine whom
2.3.2. A Sorting Function Generator

But consider a sorting function *generator*. This generator could be given input characterizing a particular sorting need, and would produce a sorting function custom-tailored for that application. Input to the generator might include parameters describing the data types to be sorted, where the data are stored, the type of algorithm to be used, or even a characterization of the generated program's expected input data distribution. The generator would use this information to choose the most appropriate algorithm (from some repertoire) and produce the most efficient data structure declarations.

An automatically generated sorting function probably would not be quite as efficient in every case as a sorting function that a programmer could write from scratch. However, it could be good enough in most cases that it would be far more cost-effective to use the automatically generated version than to write a new one. This is a fundamental assumption behind the desire for reusable software.

2.3.3. Explicit Generation vs. Partial Evaluation

The sorting function generator could be written in two ways: it could explicitly manipulate program fragments for the generated program, or it could be written as one big parameterized sorting program that is partially evaluated to produce a small specialized version. Ignoring the lack of strong typing in LISP, the approach of explicit manipulation might correspond to LISP programs that construct other LISP programs as S-expressions. In the partial evaluation approach, the language would have to allow types as first-class values so that data type declarations could be parameterized by input values, and the partial evaluator would manipulate program fragments to produce a specialized version -- the program would not express this manipulation explicitly. Regardless of which approach is taken, the important point here is that the work of producing the specialized or generated sorting program must be separated from the sorting program's execution. For this discussion, we will assume that explicit generation is used.

2.3.4. Phases Used

Let us now clearly distinguish between the act of executing the sorting program generator and the act of executing the generated sorting program. These executions correspond to two acts of instantiation, shown in Figures 2-1 and 2-2, or two *phases*, \(n \) and \(n' \), as described in Chapter 3.

To ensure strong typing, both the sorting program generator and the generated program must be
guaranteed against runtime type errors. In the phase parlance of Chapter 3, if the generator is to be executed in phase n, it can be type checked in phase n-1; if the generated program is to be executed in phase n+1, it can be type checked in phase n.

2.3.5. Generalizing Further

So far we have focused on the application program's need to use a general-purpose function. To generalize the example further, suppose that the sorting program generator also uses some general-purpose mathematical function that also must be specialized before being used. Thus, a math function generator would produce a specialized version of the math function, which would be used in the sorting function generator to produce a specialized sorting function, which would be used in some application program. Again, in the parlance of Chapter 3, the math function generator would be executed in phase n-1 to produce and type check the specialized math function, which would be used by the sorting function generator in phase n. These phases are illustrated in Figure 2-3.

In summary, general-purpose function generators can be used to produce specialized functions, which may themselves be used by other general-purpose function generators.
Figure 2–3: Phases of Sorting Example

Phase 1: Generate and type check specialized math function.

Phase 2: Generate and type check specialized sorting function.

Phase 3: Execute application program.

final-answer
Chapter 3
The Conceptual Model of Multiple Phases

This chapter describes the conceptual model of multiple strongly typed evaluation phases. Proper understanding of the conceptual model is critical in understanding the Phi language, the Phi translator, and the Implementation Language.

3.1. Arriving at Phases by Extending Compiletime

The conceptual model of phases is best understood by presenting the arguments that led to its development. We begin with a simple conceptual view of traditional compiletime and runtime, shown in Figure 3-1.

First, a source program, written in a strongly typed language, is compiled into an object program. This step is Phase 1 -- compiletime. During this phase, the compiler manipulates type values and program code, and as a result produces an intermediate object program that is guaranteed free of runtime type errors.\(^{16}\)

The object program, with a suitable environment, is then executed on an implementation machine. This step is Phase 2 -- runtime. During this phase, basic values such as numbers, character strings, and booleans are manipulated. and the result of the computation is some basic final value such as a number, a character string, a boolean, or, conceptually, a file. The environment defines all identifiers that are not locally declared in the program, that is, it provides bindings for all of the program's free variables.

\(^{16}\) The question of whether there could be type errors in a program's input sometimes arises here. For example, an input operation requiring a number could instead be given some meaningless character string. This problem can be avoided by only providing an input operation that always reads characters and forcing type conversion to be accomplished by ordinary functions under programmer control. Thus, for example, the input sequence "123" would be read as the characters '1', '2', '3' of known type and then converted by the program to the numeric value 123.

For simplicity, the simple pedagogical languages described in this work do not include input or output operations.
Figure 3-1: Traditional Compiletime and Runtime

Phase 1

Source Program

Compiler

Compiletime: type values and code are manipulated. Result is type-checked object program.

Phase 2

Implementation Language Machine

Environment (Input)

Runtime: basic values such as booleans and numbers are manipulated. Result is some basic value such as a boolean or number.

final-answer
3.1.1. Generalizing Compiletime

Let us now view the compiler as *executing* the source program to produce the object program, and allow the programmer to express types as first-class values that are manipulated during compiletime. And to provide really useful expressive power, let us also allow the programmer to express other types of values, for example, numbers and booleans, at compiletime, and to write arbitrary compiletime expressions and functions involving these values.

Now, with values of various kinds (numbers, booleans, and of course types) being manipulated at compiletime, it is conceivable that a so-called "runtime" type error could occur during compiletime. For example, one may mistakenly try to add a number to a type during compiletime. Therefore, we add another phase -- a pre-compiletime phase -- that does the type checking required to ensure that no "runtime" type errors can occur during compiletime.

Our conceptual model, at this point, is shown in Figure 3-2. Phase 1, the pre-compiletime phase, now manipulates type values and program code, and as a result produces a program that is guaranteed not to commit a "runtime" type error when executed during the next phase. Phase 2, compiletime, now manipulates numbers, booleans, type values, and program code, and produces a program that is guaranteed free of runtime type errors. Phase 3, runtime, manipulates numbers and booleans as before, producing a final answer (number, boolean, etc.).

3.1.2. Generalizing Pre-compiletime, And So On . . .

At this point, we can make two observations. First, the pre-compiletime phase is now performing a role completely analogous to the role compiletime had played. Hence, we can apply the same reasoning to generalize pre-compiletime, and add a pre-pre-compiletime phase, and so on, thus potentially allowing an unbounded number of phases. Each phase except the last produces a type-checked program for the next phase.

Second, we observe that the operations performed by the compiler have now become a superset of the operations performed at runtime. Hence we can unify the two so that one Implementation Language (IL) Machine fills both roles. The resulting conceptual model is described in Section 3.2.
Figure 3–2: Pre–Compiletime Phase Added

Source Program

Phase 1
Pre-compiler
Pre-compiletime: types and code are manipulated. Result is type-checked program.

Phase 2
Compiler
ENV₂
Compiletime: basic values (such as booleans and numbers) and type values and code are manipulated. Result is type-checked program.

Phase 3
Implementation Language Machine
ENV₃
Runtime: basic values such as booleans and numbers are manipulated. Result is some basic value.

final-answer
3.2. Conceptual Model of Multiple Phases

Figure 3-3 illustrates how a Phi program is translated and then, in effect, executed through several intermediate phases before producing a final result.

Note the correspondence between Figure 3-3 and the specific programming method illustrated in Figure 2-2. The loop shown in Figure 2-2 is unfolded in Figure 3-3; thus the conceptual model shows several repetitions of the IL Machine -- one for each time it is invoked. Also, for simplicity, the combine action in Figure 2-2 is not shown in Figure 3-3.

3.3. Interpreting the Conceptual Model

A Phi program is first translated to ERT₁. The Expression component of ERT₁ is then executed on the IL Machine in a suitable environment ENV₁ -- this is phase 1 -- to produce ERT₂. The Type component of ERT₁ specifies the type of value that will be produced by phase 1. For the first phase, it is always ERT, indicating that another ERT will be produced. Similarly, the Expression component of ERT₂ is then executed in phase 2 to produce ERT₃, and so on. The Type component of ERT₂ specifies the type of value that will be produced as a result of phase 2, etc. The result of some phase n is considered the final result of the computation because it is not an ERT. That is, the Type component of ERTₙ indicated that the result would be something other than another ERT. Thus, the original Phi program could be viewed as a meta-program because, in effect, it denotes a series of programs ERT₁, ..., ERTₙ.

3.3.1. Properties of the Conceptual Model

The conceptual model has the following important properties:

- Each phase does the type checking necessary to ensure that no runtime type errors are possible during the next phase.

- No runtime type errors are possible during the first phase, either.

- Every ERT produced by the Phi Translator or the IL Machine is valid. Specifically, the Expression component is guaranteed syntactically correct and type correct.

- The type of each subexpression is computed at least one phase before the value of that subexpression is computed. Similarly, the type of the program's result is known before the program is phase evaluated (i.e., it is given as the Type component of an ERT).

17 As defined in Section 2.2.2.
Figure 3-3: Conceptual Model of Multiple Phases

Phi Program

↓

Phi Translator

↓
ERT\(_1\)
ENV\(_1\)

Phase 1

Implementation Language (IL) Machine

↓
ERT\(_2\)
ENV\(_2\)

Phase 2

Implementation Language (IL) Machine

...

...

↓
ERT\(_n\)
ENV\(_n\)

Phase \(n\)

Implementation Language (IL) Machine

↓

final-answer \(\notin\) ERT
Each phase acts as compiletime for the next phase, and as runtime for the previous phase. Thus, the terms "compiletime" and "runtime" are relative. These terms will still be used in the rest of this work -- they are still meaningful terms -- but the reader should recognize that their meanings are relative to other implied runtime or compiletime phases.

The Phi Translator does no type checking -- it will produce a valid ERT, free of possible runtime type errors, for any syntactically legal Phi program. This is explained in Section 3.3.3.

3.3.2. Resolving the Conflict Between "Strong Typing" and "Types as First-Class Values"

Section 1.2.3.3 points out the inherent conflict between strong typing and the desire for types as first-class values. In our model of multiple phases, types are indeed allowed as first-class values, yet every phase is strongly typed. How is the conflict avoided in our model?

In general, types manipulated as first-class values during one phase become invariants of the next phase, in the sense that a type used in a declaration represents an invariant. If an identifier is declared to be some type, that type represents an invariant on the kinds of value that may be bound to that identifier. Similarly, if a function's return value is declared to be a certain type, that type represents an invariant on the kinds of value that the function may return.

In our model it is not possible to use a type, computed as a first-class value, as an invariant of the same phase during which it was computed. Type values computed in one phase have no bearing on the types of the expressions executed during that same phase.\(^\text{18}\) One can compute an arbitrary type value during one phase, but that type value can only be used in declarations pertaining to subsequent phases -- not in the declarations pertaining to that same phase.\(^\text{19}\) For example, in the same phase, one cannot both compute the type used to declare an identifier, \textit{and} bind a value of that type to the identifier. The type of the identifier must be computed during at least one phase \textit{before} the identifier may be bound to a value of that type. Thus, the notion of separate phases prevents any possible circular dependency between an object's type and its value.

\(^{18}\)This property is readily evident in Static-IL, presented in Section 4.2. Expressions in Static-IL are type checked and generated in the form of ERTs, and in doing so, types are computed as first-class values. However, there is no construct in Static-IL for \textit{evaluating} an ERT. That is, there is no provision for invoking the Static-IL Machine from within Static-IL. Hence, there is no way for the type values computed in one phase to have any effect on the types of the identifiers or expressions evaluated during that same phase.

\(^{19}\)Conceivably, the type may even be computed by a recursive function, as mentioned in Section 6.3. though for simplicity, recursive functions are not provided in the Static-Phi and Static-IL languages described in Chapter 4.
3.3.3. The Paradox of Strong Typing Without Prior Type Checking

We mentioned that every phase is strongly typed, and that the IL program for every phase -- except the first -- is type checked by the previous phase. We require that the first phase also be strongly typed, yet we also mentioned that the Phi Translator does no type checking. How can we ensure that the IL program produced by the Phi translator does not contain any runtime type errors if the IL Translator does no type checking? The answer is simple: the translator produces an IL program in which every subexpression evaluates to a value of the same type: type ERT.

This means that the only operations performed during the first phase are manipulations of program fragments. This makes sense when one considers: what if it weren't true. That is, suppose some other operation -- addition of two numbers, say -- could be performed during the first phase. Then, to guarantee that this operation could not involve a runtime type error, there would either have to be another previous phase or the translator would have to do some type checking.

Hence, every variable is type ERT initially, and every IL program produced by the translator evaluates to an ERT (assuming no compiletime errors occur during evaluation). (If a compiletime error does occur during evaluation, the program can either be thought of as returning some special error value, distinct from all other values, or as returning nothing, since the evaluation is aborted.)

3.3.4. All Expressions Start Out Type ERT

If we view the IL programs ERT₁...ERTₙ in Figure 3-3 as representing successive versions of the initial Phi program, then the type of every subexpression or variable in the initial Phi program starts out as ERT, and remains ERT until some phase when it becomes fixed as some basic type, such as a number or a boolean (any type other than ERT). Finally, during the following phase, the expression or variable will have a value of that type (number or boolean).

This one-way progression represents the accumulation of information about the expression or variable. Type ERT means that nothing is known about the expression or variable. Then, during some phase, the type of the expression or variable is known (number or boolean, for example). Finally, during the next phase, the specific value of the expression or variable is computed. This subject is mentioned further in Section 7.2.8.
3.4. Assigning Computations to Phases

Given a source program, we need some way to decide during what phases its various subcomputations should be performed. For example, we require that the type of a function's formal parameter be computed at least one phase before the function can be applied to any actual arguments. There are two basic approaches we can take; the first of these has two variations.

1. Static determination. The phase for each computation is fixed during translation, before the first phase. This approach most closely follows the reasoning presented in Section 3.1, which led to the idea of multiple strongly typed evaluation phases, and this is the approach on which this work was initially based. There are two sub-options possible under this approach:

 a. The source program can *explicitly* indicate which computations are to be performed during each phase. This was the original approach conceived as "multiple strongly typed evaluation phases", and is described in Section 4.

 b. The Phi Translator might *infer* which computations should be performed during each phase. This approach was not pursued in this work. We do not know how difficult this alternative might be, or what problems it might present. It is open for future research, as mentioned in Section 7.2.9.

2. Dynamic determination. The phase for each computation is determined during the various execution phases, and depends on the environments supplied during the previous phases. This would allow phases to achieve the effect of partial evaluation, because the types and values of different free variables could be "fixed" as desired during different phases. The essential distinctions between this kind of phase evaluation and partial evaluation are that, under phases, the same machine would be used to perform "partial" and "full" evaluation. there is a rigid requirement of strong typing in each phase, and the type of result -- either the final answer or another program -- would be known in advance.

 This approach has not been fully explored, but the possibility is discussed in Chapter 5.

3.5. How Many Phases Are Required?

How many phases will be required to execute a given Phi program to a final answer? In general, the answer depends on the program, whether a model of static or dynamic determination of phases is used, and might depend on the environments provided in the various phases.

Any given program will always require some *minimum* number of phases before it can produce a final answer. For the Static-Phi language described in Section 4.1, an algorithm (*Count*, defined in Appendix A) is used to compute this minimum based on the lexical nesting level of emits and evals in
the original Static-Phi program, and, hence, it cannot be infinite for a finite-sized program. For example, the program demonstrated in Section 4.4.3 requires three phases, whereas the program in Section 4.4.9 requires four phases.

What about using more phases than the minimum? When phases are determined statically, there is little flexibility for extra phases, because a given program would expect certain inputs, via the environments, in certain phases. (Section 4.3 discusses environments for Static-Phi.)

If phases were determined dynamically, with each phase performing the function of partial evaluation, then extra phases might freely be used. Partial evaluation is defined to preserve the semantics of the original program, so extra phases should certainly cause no harm, and they may improve the efficiency of later phases by allowing the values of some expressions to be pre-computed. Of course, if there are no more expressions that can be pre-computed, adding an extra phase does nothing useful. As a trivial example, consider the program consisting only of the variable x. If no final value is given for x, x will just partially evaluate to itself. That is, the program will be partially evaluated perfectly well, but no useful work will be done because no further reduction is possible until a final value is supplied for x.

\[\text{20 We do not know if there might be any other reasonable language in which a well-formed program could require an infinite minimum number of phases. We suspect not and the question is not considered here.}\]
Chapter 4
Static Determination of Phases

This chapter informally describes the originally conceived system of multiple phases, in which the phase for a particular subcomputation is explicitly denoted in the source program. That is, the phase for a given subcomputation is determined statically during translation. We demonstrate this approach by defining a source language, Static-Phi, a Static-Phi Translator, and an implementation language, Static-IL. More precise semantic definitions are given in Appendix A.

The reader well-versed in the typed lambda calculus may wish to skim Section 4.1, which describes Static-Phi, noting the special emit and eval constructs, and then turn directly to Section 4.2, which describes Static-IL. Section 4.2.3 is important because it discusses the unusual language constructs in Static-IL. Finally, the reader is strongly urged to read the discussion of the two examples in Sections 4.4.3 and 4.4.9 to gain an appreciation of how phases work.

4.1. The Static-Phi Language

The Static-Phi language is expression oriented, and looks like a simple typed lambda calculus [Barendregt 84] with two extra constructs added. Types are unrestricted first-class values: wherever a type is required, any arbitrary expression that evaluates to a type may be given. There is no modifiable store, or assignment operation. There is one abstraction operator, \(\lambda \), for data abstraction, function abstraction, type abstraction, and code (ERT) abstraction.

4.1.1. Conventional Static-Phi Language Constructs

The Static-Phi language includes the following basic forms:

| constant | A literal constant, for example, a number 1234, a truth value false, or a type constant number, bool, ert, or type. Type constant type refers to the type of types: ert is the type of ERTs, described in Section 2.2.1. |
| id | An identifier (variable). An identifier always evaluates to the value bound to it in the environment. |
\[
\lambda \text{id}: \text{expr}_d \rightarrow \text{expr}_r \cdot \text{expr}_\text{body}
\]

For creating an unnamed function abstraction. \(\text{Expr}_d\) and \(\text{expr}_r\) are arbitrary expressions that must evaluate to types; they declare the types of the domain and range of the function, that is, \(\text{expr}_d\) is the type of the formal parameter \(\text{id}\), and \(\text{expr}_r\) is the type of the function’s return value. \(\text{Expr}_\text{body}\) is the body of the function. Because we require “compiletime” type checking (that is, one phase before “runtime”), the formal parameter type will be evaluated one phase before the function value (closure) is created. That is, if the function is to be applied in phase \(i\), the type of the formal parameter will be computed in phase \(i-1\).

\((\text{expr}_r \ \text{expr}_x)\)

Function application. \(\text{Expr}_r\) is an arbitrary expression that must evaluate to a function; \(\text{expr}_x\) will evaluate to the actual argument. The type of the actual argument must match the declared type of the formal parameter for the function; this is checked during the phase before the function is applied. The function application always occurs during the same phase that the actual function value is created, regardless of any nesting inside emits or evals (described below).

\((\text{funtype} \ \text{expr}_d \ \text{expr}_r)\)

Standard function for constructing the types of functions. The subexpressions are evaluated (they evaluate to types) and paired to represent the types of the domain and range of a function. \(\text{Expr}_d\) is the domain type; \(\text{expr}_r\) is the range type. Of course, both subexpressions must be type type; this is checked one phase before the function type is to be constructed and returned.

4.1.2. Normal Runtime Phase

Normal runtime phase refers to the phase in which a particular operation is actually performed (as opposed, say, to the phase in which the operation is type checked). Within a single program the normal runtime phase will be different for different instances of different operations. For example, the type expression for a function’s formal parameter might use an operation that is also used in the body of the function. Used in the formal parameter type expression, the operation’s normal runtime phase will be one phase sooner than for the instance of the operation that appears in the body of the function. “Normal runtime phase” is usually used as a comparative term, to contrast the different phases when two operations are performed.

By altering the normal runtime phase of an operation, one can cause the operation to be performed during some phase earlier or later than it would otherwise be performed. Basically, if an operation is used to compute a type that will be used to type check a subsequent phase, then one would want the normal runtime phase of the operation to be one phase earlier than it otherwise would be. Or, if an operation is used to explicitly generate some code (an ERT) that is to be executed in a later phase (as with macro expansion), then one would also want the normal runtime phase of the operation to be one
phase earlier than it otherwise would be. On the other hand, if the operation in question were a part of
the generated code, one would want its normal runtime phase to be one phase later; that is, the normal
runtime phase of the operations that are doing the generation should be one phase earlier than the
normal runtime phase of the operations in the generated code.

The normal runtime phase of a construct is altered in three ways: by being inside an emit (discussed
below), by being inside an eval (also below), or by being in a function abstraction's range or domain
type expression. The normal runtime phase for a function abstraction's range or domain type
expression is implicitly one phase earlier than the normal runtime phase for the function, since the
function must be type checked during the phase before it is applied. Emit and eval are used to
explicitly change the normal runtime phase of an expression: eval makes the normal runtime phase
one phase earlier, while emit makes it one phase later. These are discussed below in Section 4.1.3, and
are more precisely defined in the formal semantics given in Appendix A.

4.1.3. Some Unusual Constructs

In addition to the familiar constructs outlined in Section 4.1.1, Static-Phi also includes the following
unusual forms.

(eval expr) The normal runtime phase of expr is one phase earlier than in the surrounding
context. Note that the domain and range type expressions in the \lambda construct expr_\lambda
and expr_\\lambda are effectively inside an implicit eval because the types need to be
computed one phase before the function value (closure) is created.

(emit expr) The normal runtime phase of expr is one phase later than in the surrounding
context.

Note that our eval is very different from the LISP EVAL. Our emit and eval forms are only used
during translation. They are not executable notions, and there are no Static-IL syntactic forms that
correspond to them.

Note also that emit and eval cancel each other out, in a manner analogous to the LISP back-quote
("\") and comma ("\") macro constructs. Thus, (emit (eval expr)), (eval (emit expr)), and expr are
entirely equivalent in Static-Phi.
4.1.4. Examples

This section shows some simple examples of Static-Phi programs. Section 4.4 shows how each of these examples would be translated to Static-IL programs and appear in various phases. The explanations of the identity function examples in Sections 4.4.3 and 4.4.9 give the flavor of what the various phases do. We begin here with trivial examples and work up to more interesting cases.

4.1.4.1. F Twice

\((f (f \, x))\)

Some function \(f\) is applied twice to an argument \(x\).

4.1.4.2. Identity Abstraction

\(\lambda \, x : \text{number} \rightarrow \text{number} \cdot x\)

An unnamed identity function that takes a number and returns that same number.

4.1.4.3. Identity Application

\((\lambda \, x : \text{number} \rightarrow \text{number} \cdot x \quad 5)\)

The identity function from the previous example is applied to the number 5. The final result will be 5.

4.1.4.4. Function Abstraction

\(\lambda \, x : \text{number} \rightarrow \text{number} \cdot (\text{succ} \, (\text{succ} \, x))\)

If \(\text{succ}\) is the successor function on numbers, defined in the environment, this is an unnamed function that adds 2 to its argument.

4.1.4.5. Function Application

\((\lambda \, x : \text{number} \rightarrow \text{number} \cdot (\text{succ} \, (\text{succ} \, x)) \quad 5)\)

The function from the previous example is applied to 5. The final result will be 7.

4.1.4.6. Higher Order Function Abstraction

\(\lambda \, f : (\text{funtype number number}) \rightarrow \text{number} \cdot (f \, (f \, x))\)

This function takes another function as an argument and applies it twice to some free variable \(x\). The actual parameter must be a function from numbers to numbers.
4.1.4.7. Higher Order Function Application

\[(\lambda f : (\text{funtype number number}) \rightarrow \text{number} \cdot (f (f \, x)) \rightarrow \text{g})\]

The higher order function from the previous example is applied to g, which must be a function from numbers to numbers. Thus, function g is applied twice to the free variable x. The program is equivalent to:

\[(g (g \, x))\]

4.1.4.8. Identity-Function Type Abstraction

\[\lambda t : \text{type} \rightarrow \text{ert} \cdot (\text{emit } \lambda x : t \rightarrow t \cdot x)\]

This function takes a type t and returns code (an ERT) that will become an identity function in the next phase. The generated identity function will be specialized for type t, and may only be applied to values of type t.

There are two function abstractions in this example: the outer function abstracts the type variable t in one phase, and the inner function abstracts the variable x in the next phase. Note the emit surrounding the inner function abstraction. The emit informs the Static-Phi Translator that the inner function abstraction is to be created one phase later than the outer function abstraction. This is required because the outer function abstraction is manipulating a type value that will be used in type checking the inner function. Hence, during the phase when the outer function is created and applied, the inner function is just treated as code (an ERT), and is type checked. The outer function is acting like a macro in returning the code (an ERT) instead of returning a function value (or closure).

The outer function cannot both compute the type t as a first-class value and return the inner function as a function value (closure) during the same phase. Because, to enforce strong typing, the inner function must be type checked during the phase before it is used as a function value. Therefore, if the emit were omitted, a compiletime error would occur when the inner function was being type checked.

4.1.4.9. Identity-Function Type Application

\[(\lambda t : \text{type} \rightarrow \text{ert} \cdot (\text{emit } \lambda x : t \rightarrow t \cdot x) \rightarrow \text{number})\]

The identity-function generator of the previous example is applied to type number to generate an identity function from numbers to numbers.

40
4.1.4.10. General Type Abstraction

\[\lambda t : \text{type} \rightarrow \text{ert} . (\text{emit} \lambda f : (\text{funttype } t \ t) \rightarrow t \ . (f (f x))) \]

This function takes a type \(t \) and returns code (an ERT) that will become a function in the next phase. The generated function will take any function from \(t \) to \(t \) and apply it twice to the free variable \(x \).

This example demonstrates how types may be manipulated as first-class values during one phase, yet become invariants of the next phase. The outer \(\lambda \) creates a function that takes (and could manipulate) a type as a first-class value. However, it returns code (an ERT) that has been type checked using this type. This returned code happens to be the code for a function abstraction. (Incidentally, free variable \(x \) is also type checked when the ERT for the function is generated and type checked.) Section 4.4.10 shows how this example would appear in various phases.

4.1.4.11. General Type Application

\[(\lambda t : \text{type} \rightarrow \text{ert} . (\text{emit} \lambda f : (\text{funttype } t \ t) \rightarrow t \ . (f (f x))) \text{ number}) \]

The ERT-returning function of the previous example is applied to type \text{number}.

4.1.4.12. Macro Abstraction

\[\lambda m : \text{ert} \rightarrow \text{ert} . (m (m x)) \]

This function takes some code \(m \) (an ERT) and returns code that applies \(m \) twice to some free variable \(x \).

Note that the formal parameter \(m \) and the function’s return type are both \text{ert}, indicating that this function will take code (an ERT) as its argument and return code (an ERT) as its result. This function manipulates code, much like a macro.

4.1.4.13. Macro Application

\[(\lambda m : \text{ert} \rightarrow \text{ert} . (m (m x)))
 (\text{emit} \lambda y : \text{number} \rightarrow \text{number} . (\text{succ} (\text{succ} y))) \]

The macro of the previous example is applied to code which will become a function to add 2 to its argument. Note that the actual argument is surrounded by an \text{emit} so that the (macro) function of the previous example will operate on it as code (an ERT) rather than as a function value (or closure). Thus, the outer function treats the inner function as code during one phase, and the inner function becomes a function value (closure) during the next phase. If the \text{emit} were omitted, the outer function could operate on the inner function only as a function value (closure), not as code. Section 4.4.13
shows the IL code that results from translating and executing this example through the necessary
phases.

4.2. The Static-IL Language

As shown in the conceptual model (Figure 3-3), a Phi program is not executed directly, but is first
translated into a corresponding Static-IL program. The translator is defined in Appendix A. though
examples of translation are given in Section 4.4. This section describes the Static-IL language, which
includes some unusual language constructs for creating and combining type-checked program
fragments in the form of ERTs.

Syntactically, Static-IL looks like an untyped lambda calculus. In fact Static-IL is typed, though type
declarations are not explicit. Under the programming method shown in Figure 2-2, the Static-IL
Machine is given only Static-IL expressions that are guaranteed free of runtime type errors or unbound
variables, and it generates Static-IL expressions only within valid ERTs. Since a valid ERT triplet
includes a list of all the Static-IL expression’s free variables and their types, and the type of the
expression, Static-IL expressions should be regarded as typed. We speak of Static-IL expressions as
being well typed in the same sense that one would speak of the object code for a compiled Pascal
program as being well typed, even though the type information from the source program is stripped
out after being checked, when the object code is generated.

4.2.1. Lexical Scoping, ERTs, and Macros

Static-IL expressions are lexically scoped. Nonetheless, if ERTs are explicitly manipulated by the
programmer, just as with conventional macros, it is possible to generate new expressions in which free
variables have become “captured” by local declarations. Note that this is possible only in program
fragments (ERTs) that are explicitly being constructed as first-class data objects. When an expression
is executed, that expression is absolutely lexically (or statically) scoped, and no such anomalies are
possible.

21 A valid ERT was defined in Section 2.2.2

22 John Mitchel and David MacQueen have pointed out that it may be better to regard the implementation language as
comprising of the entire ERT triplet (rather than just the Expression component). Since the R (Required-environment) and T
(Type) components of the ERT triplet contain the type information for the E (Expression) component.
The examples below illustrate how, in constructing an expression by manipulating ERTs as first-class values, a variable can appear to become "captured", as with macros. In the following Static-Phi program, \(x\) will evaluate to the ERT representing the outer \(z\), thus causing the outer \(z\) to be placed into the scope of the inner \(z\).

\[
\lambda z : \text{number} \to (\text{funtype} \text{number} \text{number}) . \\
(\text{eval} \\
(\lambda x : \text{ert} \to \text{ert} . \\
(\text{emit} \lambda z : \text{number} \to \text{number} . x) \\
\ z) \\
) \\
\)

For example, the following Static-Phi program (which simply supplies actual parameters for the functions in the preceding program),

\[
(\lambda z : \text{number} \to (\text{funtype} \text{number} \text{number}) . \\
(\text{eval} \\
(\lambda x : \text{ert} \to \text{ert} . \\
(\text{emit} \lambda z : \text{number} \to \text{number} . x) \\
\ z) \\
5) \\
10)
\]

will be phase evaluated to produce the following Static-IL program,

\[
(\text{apply} \ (\text{apply} \ (\lambda z \ (\lambda z \ z)) \ \text{quote} \ 5) \ \text{quote} \ 10))
\]

which evaluates to 10.

The behavior illustrated above is quite intentional -- it was not an oversight -- though it is different than one might naively expect. The explicit intent here is to manipulate program fragments (ERTs) to construct new programs with new semantics. This behavior is useful for program-writing programs, and is analogous to the behavior of conventional macros. Also, bear in mind that under no circumstances can this behavior cause a runtime type error. Any attempt to cause a type mismatch in the constructed code will be detected as a compiletime error, one phase before the constructed code can be executed.
4.2.2. Conventional Lambda Calculus Operations

The following Static-IL primitives look and function exactly like the basic operations of an untyped lambda calculus, written in the style of LISP:

- **\(ev \)**: Any quoted expressible value. The value \(ev \) is simply returned, unevaluated. In Static-IL, constants appear as explicitly quoted values.

- **\(id \)**: An identifier. Its value is simply retrieved from the environment.

- **\(\lambda \text{id} \text{expr} \)**: Function abstraction. \(\text{id} \) is the formal parameter, \(\text{expr} \) is the function body. A lambda abstraction evaluates to a closure, consisting of the current environment, the formal parameter, and the function body.

- **\(\text{apply expr_f expr_r} \)**: Function application. \(\text{expr_f} \) evaluates to a function closure; \(\text{expr_r} \) is evaluated and becomes the actual argument. The function application has already been type checked during the previous phase.

- **\(\text{funtype expr_d expr_r} \)**: This operation is used to generate the type of a function. Subexpressions \(\text{expr_d} \) and \(\text{expr_r} \) are simply evaluated in the current environment; they evaluate to types. These types, \(\text{type_d} \) and \(\text{type_r} \), are used as the domain and range types of the function type that is returned.

 The returned function type is represented as a pair, tagged with the word `fun`: \(<\text{fun type_d type_r}>\). For example, \(<\text{fun number number}>\) represents the type of a function that takes a number and returns a number.

- **\(\text{inc expr} \)**: Increment. This operation returns the value of the expression plus one. There is no corresponding operation in Static-Phi. \(\text{inc} \) is only included in Static-IL to make the examples in Sections 4.1.4 and 4.4 more interesting. (In the examples of Section 4.4, \(\text{inc} \) is used to implement the \(\text{succ} \) function, which is assumed to be supplied in the environment.)

These operations are not discussed further here.

4.2.3. Some Unusual Operations

The purpose of the conventional Static-IL operations listed above is to do conventional computations -- to manipulate basic values as in a lambda calculus. The only perceptible difference is that types are also manipulated along with other basic values.

In contrast, the rest of Static-IL's primitive operations do not look so conventional. Their ultimate
purpose is to produce type-checked program fragments (ERTs). That is, the ultimate purpose of the operations listed below is to type check and generate the conventional operations listed above. All of the Static-IL constructs discussed below return ERTs as their result. Several of them involve a parameter n, which is a constant, determined during translation, that indicates how many phases to wait before generating one of the conventional operations. The Static-Phi translator uses the emits and evals to determine during what phase each of the various conventional operations should occur, and generates the Static-IL program with the corresponding ns. The examples in Section 4.4, and in particular the two examples in Sections 4.4.3 and 4.4.9, demonstrate what happens in successive phases, how these language constructs work, and the purpose of these n parameters.

4.2.3.1. (deep-const C i n)

This construct always returns an ERT. Its purpose is to generate a type-checked quoted constant in the proper phase, i.e. a Static-IL program of the form $\text{ev. } C$ is any constant value, i is its type, and n is the number of phases to wait before the constant is needed. `deep-const' can be thought of as deeply quoting the constant. (Constants are not assumed to be self-quoting.)

The operation `deep-const' is evaluated as follows. If $n > 0$, the ERT $\langle\text{deep-const } C, i, n-1\rangle$, C, i, ert is returned; otherwise, (when $n = 0$), the ERT $\langle C, i, \text{rt} \rangle$ is returned. The idea is that each time `deep-const' is evaluated, it basically just decrements n, returning the same kind of ERT until n reaches 0. When n reaches 0, then an ERT containing the quoted constant and its type is returned.23

4.2.3.2. (check-funtype $expr_d$ $expr_r$ n)

`check-funtype` always returns an ERT. It is used to generate an ERT containing a `funtype` expression as its Expression component, when n is 0.

Both $expr_d$ and $expr_r$ will evaluate to ERTs: call them $\langle e_d, t_d, l_d \rangle$ and $\langle e_r, t_r, l_r \rangle$.

Let us first consider the case when the number n is 0, in which case a `funtype` ERT will be returned. Both t_d and t_r must be the type constant `type`, indicating that e_r and e_d will evaluate to types during the next phase. (It is a "compiletime" error if either t_d or t_r are not `type`.)

23Note that the constant's type is hidden until the phase before the constant is used, even though the type is determined syntactically by the original Static-Phi program. This means that if one type of constant is written where some other type is required, the type mismatch will not be discovered until the phase before the value of the constant would have been used, even though it certainly would be better to report the error as early as possible. This issue is mentioned further in Section 7.2.8.
components \(e_d \) and \(e_r \) are used to build the Expression component of the ERT that check-funtype will return. For example, if \(e_d \) and \(e_r \) are 'number and 'number, check-funtype will return an ERT with the expression component (funtype 'number 'number).

Similarly, the resulting ERT's Required-environment is formed by combining the Required-environments \(r_d \) and \(r_r \). This means that the free variables of the resulting expression include the free variables of both of its subexpressions \(e_d \) and \(e_r \). However, the Required-environments must be consistent: if a variable appears in both, it must have the same type, otherwise it is a "compiletime" error.

Finally, the Type component of the resulting ERT will be type -- funtype always returns a type.

If \(n > 0 \), then this is not the right phase to generate a funtype expression; instead, another check-funtype expression will be generated, and \(n \) will be decremented, as for deep-const. In this case, both \(t_d \) and \(t_r \) must be the type constant ert, indicating that \(e_r \) and \(e_d \) will evaluate to ERTs during the next phase. The resulting ERT will be constructed in a manner similar to the case when a funtype expression is generated, except that the Type component of the resulting ERT will be ert instead of type.

4.2.3.3. (check-lambda id exprd exprr exprbody)

The check-lambda construct is analogous to the check-funtype construct: it is used to generate a lambda Static-IL expression, and it always returns an ERT. However, check-lambda differs from check-funtype in two important ways: it has a bound variable, \(id \); and two of its subexpressions, \(expr_d \) and \(expr_r \), evaluate to types, while the other, \(expr_{body} \), evaluates to an ERT.

The check-lambda construct is evaluated as follows. First, the type expressions \(expr_d \) and \(expr_r \) are evaluated in the current environment: call the resulting types \(t_d \) and \(t_r \).

Next, an ERT \(\langle id, \langle id, t_d \rangle, t_d \rangle \) is formed for the bound variable and its type. The Expression component is simply the formal parameter: the Type component is the function's domain type (the type of the formal parameter); and the Required-environment lists only the formal parameter. This ERT will be used in type checking the body of the function.

Now the body expression \(expr_{body} \) is evaluated in an environment augmented by the binding of \(id \) to the ERT \(\langle id, \langle id, t_d \rangle, t_d \rangle \), and the result is a (type-checked) ERT \(\langle expr_{body}, body, body \rangle \). To verify that the
function body really does return the declared type, the Static-IL Machine must have \(t_{\text{body}} = \ell \); it is a "compiletime" error if they are not equal.\(^{24}\)

Because Static-Phi allows the programmer to write functions on ERTs -- like macros -- it is possible that the body expression references a variable that has the same name as the formal parameter, \(id \), but a different type. (This is discussed and illustrated in Section 4.2.1.) Therefore, to ensure that any free instances of \(id \) in the body really are the declared type, \(id \) is looked up in the required-environment \(r_{\text{body}} \) to verify that its type is \(t \).

Finally, the Static-IL Machine constructs the ERT that is returned by \texttt{check-lambda}. The Expression component is \((\text{lambda } id e_{\text{body}})\). The Required-environment component is just the required-environment from the body \(r_{\text{body}} \), with the formal parameter, \(id \), removed.\(^{25}\) The Type component is \(\langle \text{fun } t, \ell \rangle \).

4.2.3.4. (**check-check-lambda** \(id \ \text{expr}_d \ \text{expr}_e \ \text{expr}_{\text{body}} \ n \))

This construct is used to generate a \texttt{check-lambda} IL expression. Subexpressions \(\text{expr}_d, \text{expr}_e, \) and \(\text{expr}_{\text{body}} \) all evaluate to ERTs; an ERT is always returned. \texttt{check-check-lambda} is analogous to \texttt{check-funtype} in that it waits for the phase when \(n = 0 \) before generating and returning a \texttt{check-lambda} expression. For other phases when \(n > 0 \), it just decrements \(n \) and returns another \texttt{check-check-lambda} expression in the resulting ERT.

Recall that the purpose of the \texttt{check-lambda} construct is to generate type-checked \texttt{lambda} expressions. Similarly, \texttt{check-check-lambda} is provided for generating type-checked \texttt{check-lambda} expressions. Remember that every expression must be guaranteed type correct during the phase before it is executed. But notice that two of the arguments to \texttt{check-lambda} are assumed to evaluate to types. \texttt{Check-check-lambda} does the type checking necessary to guarantee that those two arguments will indeed evaluate to types.

At this point, the question usually arises as to whether further \texttt{check-check-check-} or

\(^{24}\) Most languages would not actually require these types to be identical, but would instead require only that \(t_{\text{body}} \) be a type that is coercible to \(\ell \). Such gratuitous type conversions do not make a language fundamentally more powerful when the programmer could just as well explicitly call standard type-conversion functions as needed. Coercions are simply provided for convenience.

\(^{25}\) The formal parameter \(id \) is a free variable in the function body, but looking from outside at the entire lambda expression it is bound by the lambda.
check-check-check-check-lambda constructs might be needed. Fortunately, they are not, and the reason is that for check-check-lambda, all evaluated arguments evaluate to ERTs, and the Static-Phi Translator ensures that every expression will initially evaluate to an ERT. That is, the purpose of check-check-lambda is to ensure that all of check-lambda's evaluated arguments will indeed be the expected types, and it is required because two of check-lambda's arguments must be type expressions. But all of check-check-lambda's evaluated arguments must be ERTs. And since the Static-Phi Translator only generates expressions that are guaranteed to evaluate to ERTs, no further check-check-check-lambda is needed to ensure that the evaluated arguments to check-check-lambda will be ERTs.

Check-check-lambda is evaluated as follows. Subexpressions $expr_d$ and $expr_r$ are evaluated to ERTs. If $n > 0$, their type components must be ort; otherwise (when $n = 0$), their type components must be $type$. Next, an ERT is constructed from the formal parameter, id, for use in type checking the body. This is similar to check-lambda, except that the type of id is always ort. As with check-lambda, the body expression $expr_{body}$ is evaluated to an ERT in an environment augmented by this binding. If this ERT's required-environment lists the formal parameter id, its type should be ort. Finally, the return ERT is constructed from the Expression and Required-environment components of the ERTs obtained from evaluating check-check-lambda's subexpressions. If $n > 0$, n is decremented and another check-check-lambda is generated for the Expression component; otherwise (when $n = 0$), a check-lambda is generated for the Expression component. In either case, the Type component is ort.

The Required-environment component is generated by combining the subexpressions' required environments, with the formal parameter removed. However, the Static-IL Machine must first ensure that these required-environments are compatible: any identifier listed in any of the required-environments must be listed with the same type in each of the subexpressions' required-environments.

4.2.3.5. (check-apply $expr_f$ $expr_s$)

This construct is used to generate an apply Static-IL expression. Subexpressions $expr_f$ and $expr_s$ both evaluate to ERTs: an ERT is returned.

This construct is different from the others in that the Static-Phi Translator does not determine, in advance, the phase in which a function application will actually occur. Instead, the check-apply operation monitors the Type component from its first argument to see when it will become a function rather than an ERT. If it will be a function, the function's domain type is checked against the type of the actual parameter; otherwise, another check-apply is generated.
check-apply is evaluated as follows. First, subexpressions $expr_f$ and $expr_x$ are evaluated to ERTs $\langle e_f, r_f, l_f \rangle$ and $\langle e_x, r_x, l_x \rangle$. If l_f is a fun type, $\langle \text{fun } l_d, l_r \rangle$, then l_d must equal l_x, and an apply ERT is returned with Type component l_r. Otherwise, l_f must be ort (it is a "compiletime" error if it is not), and another check-apply ERT is returned with Type component ort. In either case, the Required-environment component of the resulting ERT is formed by combining r_f and r_x, which must be consistent. Finally, it is a compiletime error if l_f is ort but l_x is not ort, because this means that the function argument would evaluate to some final basic value (such as a number or boolean) in the next phase, whereas the function expression will evaluate to another ERT.

4.2.4. Efficiency of Static-IL

Given that the Static-IL language includes both compiletime and runtime operations, how efficiently can it be processed? Must it be less efficient than a conventional lambda calculus? Might it be more efficient? Without focusing on the details of any specific implementation, we can make some general observations about Static-IL's inherent efficiency. Since the Static-IL Machine is used both for compiletime and runtime, let us examine these roles separately.

On one hand, when the Static-IL Machine is playing the role of runtime, the operations performed are just the simple operations listed in Section 4.2.2. These are in fact identical to the operations of a conventional untyped lambda calculus, and hence can be just as efficiently processed.

On the other hand, when the Static-IL Machine is playing the role of compiletime, it may be more efficient than a conventional compiler because it can use the basic operations of the runtime machine directly instead of simulating them. For example, constant expressions are evaluated directly at compiletime by our single Static-IL Machine, whereas a conventional compiler must evaluate them by simulating the action of the runtime machine.

Hence, the Static-IL Machine can be just as efficient at performing runtime operations as a conventional runtime machine, and may be more efficient at performing compiletime operations than a conventional compiler.
4.3. Environments for Static-IL Programs

As discussed in Section 2.2.5, environments supply bindings of identifiers to values, for all of a program's free variables. In our simple model, the environment provides the input for a Static-IL program, and a separate environment must be provided for each phase used. This section provides some insight into the purpose of these environments.

4.3.1. Static-Phi Program X

Let us begin by considering a Static-Phi program consisting of only the single identifier, \(x \). This Static-Phi program will be translated to the ERT \(<x, <x, \text{ert}>, \text{ert}>\). The Expression component is simply \(x \); the Required-environment component is \(<x, \text{ert}>\), meaning that the only free variable in the expression is \(x \) and its type is \(\text{ert} \); and the Type component is \(\text{ert} \), because the expression \(x \) will evaluate to an ERT.

In order to evaluate the Expression component \(x \) we must provide an environment that satisfies the Required-environment. In this case, the environment must include a value of type \(\text{ert} \) for \(x \). As mentioned in Section 3.3.4, every identifier starts out as type \(\text{ert} \), that is, during the first phase, every identifier must be bound to an ERT. Let us consider some of the possible ERT values that we might provide for \(x \).

Suppose we supplied the ERT value \(<x, <x, \text{ert}>, \text{ert}>\) as the value of \(x \) in the environment. Then, in the first phase, the expression \(x \) would simply evaluate to this value -- \(<x, <x, \text{ert}>, \text{ert}>\). But this is precisely the ERT that resulted from translating the original Static-Phi program! In effect, \(x \) has simply evaluated to itself. This is known as the default ERT for \(x \).

4.3.2. Definition: Default ERT

For any identifier \(id \), the ERT \(<id, <id, \text{ert}>, \text{ert}>\) is called the default ERT for this identifier.

\footnote{\textit{Example}: is defined in Section 2.2.1}
4.3.3. The Purpose of Default ERTs

Default ERTs are used to pass identifiers through some number of phases before fixing their types. (Fixing an identifier's type is discussed below in Section 4.3.4.) They are called "default" ERTs because a command interpreter would normally provide a default ERT binding for each identifier of type \texttt{ert} that was not to be fixed to some other type.

4.3.4. Fixing the Type of an Identifier

Suppose that we supply a slightly different ERT value for \texttt{x} in the environment: \langle x, \langle x, \texttt{number} \rangle, \texttt{number} \rangle. This looks similar to the default ERT, but the type of \texttt{x} is given as \texttt{number} in the Required-environment, and Expression's result type is then \texttt{number} also. If we supply this ERT as the value for \texttt{x} in the environment, then, of course, \texttt{x} evaluates to this ERT -- \langle x, \langle x, \texttt{number} \rangle, \texttt{number} \rangle. In this case, even though the Expression component is again \texttt{x}, the type of \texttt{x} is now given as \texttt{number}, that is, \texttt{x} must be bound to a \texttt{number} in the next phase. Whereas the default ERT simply caused \texttt{x} to evaluate to itself, this ERT fixes the type of \texttt{x} to be type \texttt{number}.

4.3.5. Fixing an Identifier as a Function Type

The last example fixed \texttt{x} as type \texttt{number}. We could just as well fix it to be some function type. For example, if we provided the following ERT value for \texttt{x} in the environment,

\langle x, \langle x, \texttt{(fun number number)} \rangle, \texttt{(fun number number)} \rangle

then in the next phase, \texttt{x} must be bound to some function from \texttt{numbers} to \texttt{numbers}.

4.3.6. Fixing an Identifier as a Macro

We have just showed how the type of \texttt{x} could be fixed as a function from \texttt{numbers} to \texttt{numbers}. If we instead fixed the type of \texttt{x} as a function from ERTs to ERTs, by supplying the following ERT value for \texttt{x} in the environment,

\langle x, \langle x, \texttt{(fun ert ert)} \rangle, \texttt{(fun ert ert)} \rangle

then \texttt{x} would act as a macro in the next phase. That is, in the next phase, \texttt{x} would be bound to some function that takes code (an ERT) and produces code (an ERT) as its result.
4.3.7. Fixing the Value of an Identifier

In the last three examples, \(x \) was bound to an ERT that fixed the type of \(x \) for the next phase, requiring \(x \) to be bound to some \texttt{number} or a function during the next phase. Thus, the type of \(x \) was fixed for the next phase, but the value of \(x \) was not fixed for the next phase. Suppose we had instead bound \(x \) to the ERT \(<\text{float}, \text{number}> \). In this case, not only is the type fixed for the next phase, but the value is a constant: \(5 \). Since the Expression component of this ERT has no free variables, the identifier \(x \) does not even appear in the Required-environment.

4.3.8. Other Possibilities

Of course, these are not the only interesting ERT values that might be bound to \(x \). For example, suppose the ERT \(<y, \text{.ert}, \text{.rt}> \) were provided as the value of \(x \). This ERT is identical to the default ERT for \(x \) except that it uses the identifier \(y \) instead. This, in effect, renames \(x \) to \(y \) for the next phase.

So far we have discussed some of the ERTs that might be supplied in the environment as values of a Static-IL program's free variables. Of course, free variables of other types, such as \texttt{number} or \((\text{for number number}) \), would have to be bound to values of those types in the environment.

4.3.9. What Values to Supply in What Phases

Since a different environment is supplied for each phase, the question arises as to what each of these environments should include. Of course, the Required-environment specifies the types of the values that must be provided in the environment, but it does not tell the purposes of these values. In particular, there were several different kinds of ERT values discussed above that might be used for an identifier of type \texttt{ert}. How do we know which is appropriate?

The answer depends on the program and the programmer's intent. Every program will be expecting certain kinds of input via the environment in certain phases. Information on the kind of input expected in each phase (other than its type) must be provided as external documentation. In the same way that the purposes of any conventional program's inputs must be documented.

There is, however, a pattern to the types of the free variables that one would generally expect to see in various phases. Since every identifier starts out type \texttt{ert} (as mentioned in Section 3.3.4) the default ERT would initially be used for that identifier. Then, during some phase the type of this identifier will
be fixed to some basic (non-ERT) type, as described above, and finally during the next phase the identifier will have a value of that basic type. Thus, pertinent documentation on this identifier should specify during what phase its type should be fixed.

The examples in Section 4.1.4 help provide an understanding of how various phases are used and what happens in each phase.

4.4. Examples of Translation and Evaluation

This section shows examples of translating all of the Static-Phi programs shown in Section 4.1.4 to Static-IL programs, and executing the resulting Static-IL programs through phases. The most straightforward and informative examples with which to begin are the two that involve creating and applying an identity function in Sections 4.4.3 and 4.4.9. The Static-Phi Translator and Static-IL Machine are formally defined in Appendix A.

In the examples below, ERT values $\langle e, r, t \rangle$ are displayed in a LISP-like form:

(e r t)

Similarly, environments are displayed as LISP-like lists. Each element of the environment lists an identifier-value binding, which is in turn displayed as a LISP-like list. For example:

\[
\begin{align*}
(id_1, \text{value}_1) \\
(id_2, \text{value}_2) \\
\vdots \\
(id_n, \text{value}_n)
\end{align*}
\]

Finally, Required-environments are also displayed as LISP-like lists. Each element of the Required-environment lists an identifier-type pair, which is in turn displayed as a LISP-like list. For example:

\[
\begin{align*}
(id_1, \text{type}_1) \\
(id_2, \text{type}_2) \\
\vdots \\
(id_n, \text{type}_n)
\end{align*}
\]
4.4.1. F Twice

This example is complicated by the need for a (non-empty) environment. Therefore, the reader is advised to first study the example of Section 4.4.3, Identity Application, which involves no free variables.

\[(f(f(x)))\]
4.4.2. Identity Abstraction

See the example of Identity Application in Section 4.4.3.

\[\lambda x : \text{number} \rightarrow \text{number}. x \]

Result of Translation

\[
\begin{align*}
\text{(check-check-lambda} & \quad \text{Expression} \\
x & \quad x \\
\text{(deep-const number type 0}) & \\
\text{(deep-const number type 0}) & \\
x & \quad 0 \\
) & \\
() & : \text{Required-environment} \\
\text{ert} & : \text{Type} \\
\end{align*}
\]

Environment for Phase 1

\[
\begin{align*}
() & \\
\end{align*}
\]

Result of Phase 1

\[
\begin{align*}
\text{(check-lambda} x \ '\text{number 'number x}) & : \text{Expression} \\
() & : \text{Required-environment} \\
\text{ert} & : \text{Type} \\
\end{align*}
\]

Environment for Phase 2

\[
\begin{align*}
() & \\
\end{align*}
\]

Result of Phase 2

\[
\begin{align*}
\text{(lambda} x \ x) & : \text{Expression} \\
() & : \text{Required-environment} \\
\text{fun number number}; & : \text{Type} \\
\end{align*}
\]

Environment for Phase 3

\[
\begin{align*}
() & \\
\end{align*}
\]

Result of Phase 3

\[
\begin{align*}
\text{closure} x \ x (); & \\
\end{align*}
\]
4.4.3. Identity Application

This is the best of these examples to study first.

The correspondence between the Static-Phi program and the ERT that results from translation (shown below) is as follows. To dispense with the easy parts first, the Required-environment component of the ERT is empty, because there are no free variables, and the Type component is ert, indicating that the result of the first phase will be an ERT, as it always is. In the Expression component, the function application of the original Static-Phi program has been translated to a check-apply Static-IL construct. The λ abstraction was translated to a check-check-lambda, using the formal parameter name; the type constants number and number were translated to deep-const forms, listing the number of phases to wait as 0; and the identifier, x, supplied as the function body, was simply translated to itself, x. The generated check-check-lambda lists the number of phases to wait as 0. Finally, the constant 5 that was given as the actual argument was translated to another deep-const form, listing the number of phases to wait as 1. Note that the deep-consts generated for the number type constants have one fewer phases to wait than the deep-const generated for the function's actual argument 5. This is because the type values will be needed to type check the function application one phases earlier than the function is applied to the constant 5.

The progression through phases is as follows. During the first phase, the types of the function's type expressions (number and number) are checked to ensure that they really are type expressions and not, say, numeric expressions. Upon doing this check, the check-check-lambda produces a check-lambda. During the second phase, these type expressions will be evaluated to the type values number and number and these types will be used to generate a type-checked lambda. In turn, the check-apply verifies that the type of the actual argument matches the function's declared formal parameter type, and generates an apply form. Finally, in the third phase, the function is applied to the constant 5 to produce a result of 5.

The original Static-Phi program and the progression through phases are shown below. Compare this example with the example in Section 4.4.9.
\begin{verbatim}
;----------------------- Static-Phi Program -----------------------
(
 \lambda x: number \to number. x 5)

;----------------------- Result of Translation -----------------------
(
 (check-apply
 (check-check-lambda
 x
 (deep-const number type 0)
 (deep-const number type 0)
 x
 0
)
 (deep-const 5 number 1)
)
 ()
)

;----------------------- Environment for Phase 1 -----------------------
()

;----------------------- Result of Phase 1 -----------------------
(
 (check-apply
 (check-lambda x 'number 'number x)
 (deep-const 5 number 0)
)
 ()
)

;----------------------- Environment for Phase 2 -----------------------
()

;----------------------- Result of Phase 2 -----------------------
(
 (apply (lambda x x) '5)
 ()
)

;----------------------- Environment for Phase 3 -----------------------
()
\end{verbatim}
4.4.4. Function Abstraction

\[\lambda x : \text{number} \rightarrow \text{number} . \ (\text{succ} \ (\text{succ} \ x)) \]

Result of Translation

\[
(\text{check-check-lambda} \ x \ . \ \text{txpression} \\
(\text{deep-const} \ \text{number} \ \text{type} \ 0) \\
(\text{deep-ccnst} \ \text{number} \ \text{type} \ 0) \\
(\text{check-apply} \ \text{succ} \ (\text{check-apply} \ \text{succ} \ x)) \ 0
)
\]

\[
(\text{succ} \ \text{ert}) \ . \ \text{Req-env} \\
\text{ert} \ . \ \text{Type}
\]

Environment for Phase 1

\[
(\text{succ} \ (\text{succ} \ ((\text{succ} \ \text{ert})) \ \text{ert}))
\]

Result of Phase 1

\[
(\text{check-lambda} \ x \ . \ \text{number} \ \text{number} \ . \ \text{Expression} \\
(\text{check-apply} \ \text{succ} \ (\text{check-apply} \ \text{succ} \ x))
)
\]

\[
(\text{succ} \ \text{ert}) \ . \ \text{Req-env} \\
\text{ert} \ . \ \text{Type}
\]

Environment for Phase 2

\[
(\text{succ} \ (\text{succ} \ ((\text{succ} \ \text{fun} \ \text{number} \ \text{number}))) \ (\text{fun} \ \text{number} \ \text{number})))
\]

Result of Phase 2

\[
(\text{lambda} \ x \ . \ \text{apply} \ \text{succ} \ (\text{apply} \ \text{succ} \ x)) \ . \ \text{Expression} \\
(\text{succ} \ ((\text{fun} \ \text{number} \ \text{number}))) \ . \ \text{Req-env} \\
(\text{fun} \ \text{number} \ \text{number}) \ . \ \text{Type}
\]
4.4.5. Function Application

\(\lambda x: \text{number} \to \text{number} . (\text{succ} (\text{succ} x)) \ 5 \)

Environment for Phase 1

\[
(\text{succ} (\text{succ} ((\text{succ} \text{ert})) \text{ert}))
\]

Result of Translation

\[
(\text{check-apply} \ \text{Expression}
 (\text{check-check-lambda}
 x
 (\text{deep-const} \text{number} \text{type} 0)
 (\text{deep-const} \text{number} \text{type} 0)
 (\text{check-apply} \text{succ} (\text{check-apply} \text{succ} x))
 0
)
 (\text{deep-const} 5 \text{number} 1)
)

((\text{succ} \text{ert}))
\]

Enviro nm e n t fo r Phase 1

\[
(\text{succ} (\text{succ} ((\text{succ} \text{ert})) \text{ert}))
\]
Result of Phase 1

```lisp
(check-apply : Expression
  (check-lambda
    x
    'number
    'number
    (check-apply succ (check-apply succ x)))
  (deep-const 5 number 0)
  ((succ ert)) : Req-env
  ert : Type)
```

Environment for Phase 2

```lisp
(succ (succ ((succ (fun number number))) (fun number number)))
```

Result of Phase 2

```lisp
(apply (lambda x (apply succ (apply succ x))) '5) : Expression
  ((succ (fun number number))) : Req-env
  number : Type
```

Environment for Phase 3

```lisp
(succ (closure z (incr z))))
```

Result of Phase 3

```lisp
7
```
4.4.6. Higher Order Function Abstraction

\(\lambda f : (\text{fun} \text{type } \text{number} \text{ number}) \rightarrow \text{number} \cdot (f (f x)) \)

:--------------------- Result of Translation :---------------------

\[
\begin{align*}
& (\text{check-check-lambda} f \\
& \quad (\text{check-funtype} \\
& \quad \quad (\text{deep-const } \text{number type } 0) \\
& \quad \quad (\text{deep-const } \text{number type } 0) \\
& \quad \quad 0) \\
& \quad (\text{deep-const } \text{number type } 0) \\
& \quad (\text{check-apply } f (\text{check-apply } f x)) \\
& \quad 0 \\
& ((x \text{ ert})) : \text{ Req-env} \\
& \text{ ert} : \text{ Type}
\end{align*}
\]

:--------------------- Environment for Phase 1 :---------------------

\[
\begin{align*}
& (x \quad (x ((x \text{ ert})) \text{ ert}))
\end{align*}
\]

:--------------------- Result of Phase 1 :---------------------

\[
\begin{align*}
& (\text{check-lambda} f \\
& \quad (\text{fun} \text{type } \text{number } \text{number}) \\
& \quad \text{number} \\
& \quad (\text{check-apply } f (\text{check-apply } f x)) \\
& ((x \text{ ert})) : \text{ Req-env} \\
& \text{ ert}
\end{align*}
\]

:--------------------- Environment for Phase 2 :---------------------

\[
\begin{align*}
& (x \quad (x ((x \text{ number})) \text{ number}))
\end{align*}
\]
4.4.7. Higher Order Function Application

\[(\lambda f: (\text{funtype number number}) \rightarrow \text{number}. (f(f)) \ g)\]
---------- Result of Phase 1 ---------------------
{
 (check-apply
 (check-lambda
 f
 (funtype 'number 'number)
 'number
 (check-apply f (check-apply f x))
)
 g
 ((x ert) (g ert)) ; Req-env
 ert ; Type
}

---------- Environment for Phase 2 ---------------------
{
 (x (x (x number)) number))
 (g (g ((g (fun number number))) (fun number number)))
}

---------- Result of Phase 2 ---------------------
{
 (apply (lambda f (apply f (apply f x))) g) ; Expression
 ((x number) (g (fun number number))) ; Req-env
 number ; Type
}

---------- Environment for Phase 3 ---------------------
{
 (x 5)
 (g (closure z (incr z) ()))
}

---------- Result of Phase 3 ---------------------
4.4.8. Identity-Function Type Abstraction

\[
\lambda t : \text{type} \to \text{ert}. (\text{emit} \lambda x : t \to t. x)
\]

------------- Result of Translation -------------

\[
\begin{align*}
&\text{(check-check-lambda} \\
&\quad \text{t} \\
&\quad (\text{deep-const type type } 0) \\
&\quad (\text{deep-const er}t \text{ type } 0) \\
&\quad (\text{check-check-lambda} x \ t \ t \ x 1) \\
&\quad 0 \\
&\text{)} \\
&\text{)} \\
&\text{ert} \\
&\text{)} \\
&\text{Type}
\end{align*}
\]

------------- Environment for Phase 1 -------------

\[
\]

------------- Result of Phase 1 -------------

\[
\begin{align*}
&\text{(check-lambda} t \ ' \text{type'} \ ' \text{ert} \\
&\quad \text{Expression} \\
&\quad (\text{check-check-lambda} x \ t \ t \ x 0) \\
&\quad 0 \\
&\text{)} \\
&\text{)} \\
&\text{ert} \\
&\text{)} \\
&\text{Type}
\end{align*}
\]

------------- Environment for Phase 2 -------------

\[
\]

------------- Result of Phase 2 -------------

\[
\begin{align*}
&\text{lambda} t \ (\text{check-lambda} x \ t \ t \ x) \text{)} \\
&\text{Expression} \\
&\text{)} \\
&\text{ert} \\
&\text{)} \\
&\text{Type}
\end{align*}
\]

------------- Environment for Phase 2 -------------

\[
\]

------------- Result of Phase 3 -------------

\[
\text{(closure} t \ (\text{check-lambda} x \ t \ t \ x) \text{)}()
\]
4.4.9. Identity-Function Type Application

This example requires one more phase than the example of Section 4.4.3. If we view what happens in the various phases in terms of the original Static-Phi program, phase 1 checks the types of the type expressions in the outer λ abstraction; phase 2 type checks the outer λ abstraction and its application, and the types of the type expressions in the inner λ abstraction; phase 3 applies the outer function to the actual argument and produces an ERT for a type-checked identity function on numbers; and during phase 4 this identity function becomes an actual function value, or closure, that could have been applied to a numeric argument.

--------------------- Static-Phi Program ---------------------

(λ t : type → ert. (emit λ x : t → t. t) number)

--------------------- Result of Translation ---------------------

(check-apply : Expression
 (check-check-lambda
 t
 (deep-const type type 0)
 (deep-const ert type 0)
 (check-check-lambda x t t x 1)
 0
)
 (deep-const number type 1)
)
 () . Req-env
 ert . Type
)

--------------------- Environment for Phase 1 ---------------------

()
(check-apply
 (check-lambda
 t
 'type
 'ert
 (check-check-lambda x t t x 0)
)
 (deep-const number type 0)
)
)

--- Result of Phase 2 ---

(apply (lambda t (check-lambda x t t x)) 'number) : Expression
()

--- Result of Phase 3 ---

(lambda x x) : Expression
()

(fun number number) : Type

--- Result of Phase 4 ---

(closure x x ())
4.4.10. General Type Abstraction

\(\lambda t : \text{type} \rightarrow \text{ert} . (\text{emit } \lambda f : (\text{funtype } t t) \rightarrow t . (f (f x))) \)

:---------------------- Result of Translation ----------------------

\[
\begin{align*}
(& \text{(check-check-lambda : Expression}} \\
& \begin{cases}
& \text{t} \\
& \text{(deep-const type type 0)} \\
& \text{(deep-const ert type 0)} \\
& \text{(check-check-lambda}} \\
& \begin{cases}
& \text{f} \\
& \text{(check-funtype t t 1)} \\
& \text{t} \\
& \text{(check-apply f (check-apply f x))} \\
& 1 \\
& 0 \\
& ((x ert)) \\
& \text{ert} \\
& \text{type}
\end{cases}
\end{cases}
\end{align*}
\]

:---------------------- Environment for Phase 1 ----------------------

\[
\begin{align*}
& \begin{cases}
& \text{(x (x ((x ert)) ert))} \\
& \text{ert} \\
& \text{type}
\end{cases}
\end{align*}
\]

:---------------------- Result of Phase 1 ----------------------

\[
\begin{align*}
(& \text{(check-lambda : Expression}} \\
& \begin{cases}
& \text{t} \\
& \text{type} \\
& \text{ert} \\
& \text{(check-check-lambda}} \\
& \begin{cases}
& \text{f} \\
& \text{(check-funtype t t 0)} \\
& \text{t} \\
& \text{(check-apply f (check-apply f x))} \\
& 0 \\
& ((x ert)) \\
& \text{ert} \\
& \text{type}
\end{cases}
\end{cases}
\end{align*}
\]
--- Environment for Phase 2 ---

(ven (ven (ven)) (ven))

--- Result of Phase 2 ---

(lambda
 t
 (check-lambda
 f
 (funype t t)
 t
 (check-apply f (check-apply f x)))
)

((ven))

(fun type (ven))

--- Environment for Phase 3 ---

(ven (ven (ven)) (ven))

--- Result of Phase 3 ---

(closure
 t
 (check-lambda f (funype t t) t
 (check-apply f (check-apply f x)))
)

((ven (ven (ven)) (ven)))

--- Environment for Phase 3 ---

(ven (ven (ven)) (ven))

--- Result of Phase 3 ---

(closure
 t
 (check-lambda f (funype t t) t
 (check-apply f (check-apply f x)))
)

((ven (ven (ven)) (ven)))
4.4.11. General Type Application

\[(\lambda t : \text{type} \rightarrow \text{ert}. (\text{emit } \lambda f : (\text{funtype } t \rightarrow t. (f(fx))) \rightarrow \text{number}) \]

:------------------------ Result of Translation ------------------------
(check-apply
 (check-check-lambda
 t
 (deep-const type type 0)
 (deep-const ert type 0)
 (check-check-lambda
 f
 (check-funtype t t 1)
 t
 (check-apply f (check-apply f x))
 1
)
 0
)
 (deep-const number type 1)
))
((x ert)) : Req-env
ert : Type

:------------------------ Environment for Phase 1 ------------------------
((x (x ((x ert)) ert)))
Result of Phase 1

\[
(\text{check-apply})
\]
\[
(\text{check-lambda})
\]
\[
t
\]
\[
\text{type}
\]
\[
\text{art}
\]
\[
(\text{check-check-lambda})
\]
\[
f
\]
\[
(\text{check-funtype})
\]
\[
t
\]
\[
(\text{check-apply})
\]
\[
(\text{check-apply})
\]
\[
0
\]
\[
(\text{deep-const number type 0})
\]
\[
(\{x \text{ art}\})
\]
\[
\{x \text{ art}\}
\]
\[
\{\text{Req-env art Type}\}
\]

Environment for Phase 2

\[
(\text{apply})
\]
\[
(\text{lambda})
\]
\[
t
\]
\[
(\text{check-lambda})
\]
\[
f
\]
\[
(\text{funtype})
\]
\[
t
\]
\[
(\text{check-apply})
\]
\[
0
\]
\[
(\text{number})
\]
\[
(\{x \text{ art}\})
\]
\[
\{x \text{ art}\}
\]
\[
\{\text{Req-env art Type}\}
\]

Environment for Phase 3

\[
(\text{apply})
\]
\[
(\text{lambda})
\]
\[
t
\]
\[
(\text{check-lambda})
\]
\[
f
\]
\[
(\text{funtype})
\]
\[
t
\]
\[
(\text{check-apply})
\]
\[
0
\]
\[
(\text{number})
\]
\[
(\{x \text{ number}\})
\]
\[
\{x \text{ number}\}
\]
\[
\{\text{Req-env number Type}\}
\]

Result of Phase 3

(lambda f (apply f (apply f x)))
((x number))
(func (fun number number) number)

Environment for Phase 4

(x 5)

Result of Phase 4

(closure f (apply f (apply f x)) ((x 5)))

4.4.12. Macro Abstraction

\(\lambda m : \text{ert} \rightarrow \text{ert} \cdot (m (m x)) \)

Result of Translation

(check-check-lambda m
 (deep-const ert type 0)
 (deep-const ert type 0)
 (check-apply m (check-apply m x))
 0
)
((x ert))
ert
type

Environment for Phase 1

(x (x ((x ert)) ert))

Result of Phase 1

(check-lambda m 'ert 'ert
 (check-apply m (check-apply m x))
)
((x ert))
ert
type
Environment for Phase 2

(x (x ((x ert)) ert))

Result of Phase 2

(lambda m (check-apply m (check-apply m x)) : Expression
 ((x ert)) : Req-env
 (fun ert ert) : Type)

Environment for Phase 3

(x (x ((x ert)) ert))

Result of Phase 3

closure
 m
 (check-apply m (check-apply m x))
 ((x (x ((x ert)) ert)))
4.4.13. Macro Application

\(\lambda m : \text{ert} \to \text{ert}. (m (m x)) \)

\(\text{emit} \lambda y : \text{number} \to \text{number}. (\text{succ} (\text{succ} y)) \)

--- Result of Translation ---

{
 (check-apply
 (check-check-lambda
 m
 (deep-const \text{ert} \text{type} 0)
 (deep-const \text{ert} \text{type} 0)
 (check-apply m (check-apply m x))
 0
)
)
 (check-check-lambda
 y
 (deep-const \text{number} \text{type} 1)
 (deep-const \text{number} \text{type} 1)
 (check-apply \text{succ} (check-apply \text{succ} y))
 1
)
)
((x \text{ert}) (\text{succ} \text{ert}))
\text{ert}
\text{ert}
\text{Rreq-env}
\text{Type}

--- Environment for Phase 1 ---

{
 (\text{succ} (\text{succ} ((\text{succ} \text{ert}) \text{ert}))
 (x
 (x ((x \text{ert}) \text{ert}))
)

Result of Phase 1

\[
\begin{align*}
& (\text{check-apply} \quad \text{Expression} \\
& (\text{check-lambda} \\
& \quad \text{m} \\
& \quad \text{ert} \\
& \quad \text{ert} \\
& \quad (\text{check-apply m} (\text{check-apply m} \ x)) \\
&) \\
& (\text{check-check-lambda} \quad y \\
& \quad (\text{deep-const number type 0}) \\
& \quad (\text{deep-const number type 0}) \\
& \quad (\text{check-apply succ} (\text{check-apply succ} \ y)) \\
& \quad 0 \\
&) \\
& ((x \ \text{ert}) \ (\text{succ \ ert})) \quad : \text{Reg-env} \\
& \quad \text{ert} \quad : \text{Type} \\
\end{align*}
\]

Environment for Phase 2

\[
\begin{align*}
& (\text{apply} \quad \text{Expression} \\
& (\text{lambda m} (\text{check-apply m} (\text{check-apply m} \ x))) \\
& (\text{check-lambda} \quad y \\
& \quad \text{number} \\
& \quad \text{number} \\
& \quad (\text{check-apply succ} (\text{check-apply succ} \ y)) \\
&) \\
& ((x \ \text{ert}) \ (\text{succ \ ert})) \quad : \text{Reg-env} \\
& \quad \text{ert} \quad : \text{Type} \\
\end{align*}
\]

Result of Phase 2

\[
\begin{align*}
& (\text{apply} \quad \text{Expression} \\
& (\text{lambda m} (\text{check-apply m} (\text{check-apply m} \ x))) \\
& (\text{check-lambda} \quad y \\
& \quad \text{number} \\
& \quad \text{number} \\
& \quad (\text{check-apply succ} (\text{check-apply succ} \ y)) \\
&) \\
& ((x \ \text{ert}) \ (\text{succ \ ert})) \quad : \text{Reg-env} \\
& \quad \text{ert} \quad : \text{Type} \\
\end{align*}
\]

Environment for Phase 3

\[
\begin{align*}
& (x \ ((x \ \text{number})) \ \text{number}) \\
& /\text{succ} \ (\text{succ} ((\text{succ} \ \text{fun} \ \text{number} \ \text{number})) \ (\text{fun} \ \text{number} \ \text{number})) \\
\end{align*}
\]
Result of Phase 3

(apply expression
 (lambda y (apply succ (apply succ y)))
 (apply (lambda y (apply succ (apply succ y))) x))

((succ (fun number number)) (x number)) : Req-env
number : Type

Environment for Phase 4

(x 5)
(succ (closure z (incr z) ()))

Result of Phase 4

9
Chapter 5
Using Phases for Partial Evaluation

This chapter describes how phases might be used to perform partial evaluation. In this approach, the phase for a particular subcomputation is not denoted in the source program or determined when the program is translated, but is determined dynamically by the environment supplied for each phase. This approach has not been fully explored, and is open for future research, but we demonstrate how it might proceed by describing a source language, Dynamic-Phi, and the beginnings of an implementation language, Dynamic-IL. There is no formal semantics given for these languages, since they are not fully developed.

5.1. The Dynamic-Phi Language

The Dynamic-Phi language is identical to the Static-Phi language described in Section 4.1, except it does not provide the emit and eval constructs or the type constant ert; hence Dynamic-Phi is not discussed further here. Instead of allowing the programmer to explicitly manipulate ERTs under program control, the system uses ERT values transparently, to represent the results of a partial evaluation.

5.2. The Dynamic-IL Language

As with the Static-IL language, Dynamic-IL looks like an untyped lambda calculus because type declarations are not explicit, but in fact it is strongly typed. In fact, almost all of the constructs of Static-IL and Dynamic-IL look similar, though the semantics of constructs that manipulate ERT values are necessarily different, as discussed in Section 5.2.2.
5.2.1. Conventional Lambda Calculus Operations

Dynamic-IL has the following simple operations that look like a conventional lambda calculus written in the LISP [McCarthy 66] style. These function exactly the same as in Static-IL. They are:

- **ev** Any quoted expressible value.
- **id** An identifier.

- `(lambda id expr)` Function abstraction.

- `(apply expr, expr)` Function application.

- `(funtype expr, expr)` The type of a function. As with Static-IL, the returned function type is represented as a pair, tagged with the word `fun`: `<fun type_t, type_p>`.

These operations are not discussed further here.

5.2.2. Other Operations

All but one of the other operations look similar to operations in Static-IL, except that the operations below lack the `n` parameter, and hence their the semantics are somewhat different. In Static-IL, the `n` parameter specified how many phases to wait before generating one of the conventional operations, and this was determined statically, during translation. But in Dynamic-IL, the determination of when to generate one of the conventional operations is done dynamically by each of the operations listed below. Compared with Static-IL, Dynamic-IL is missing one operation, `deep-const`, and contains one new operation, `hold`. `deep-const` is unnecessary because there is no `a priori` determination of when a constant will be needed; `hold` is now used to pass a value computed in one phase to the next phase.

5.2.2.1. **(hold i expr)**

`hold` always returns an ERT. The argument `i` may be any value of type `type` -- it is not an expression -- and `expr` is an expression that evaluates to a value of that type. `hold` simply evaluates expression `expr` to some value `ev`, and returns the ERT `<ev, i>`. Thus, even though `expr` is evaluated during this phase, its value is not used until the next phase.

`hold` is typically used to synchronize two values that are needed by an operation. Each of the check-operations must detect this and generate `holds` as needed. For example, the `funtype` operation has two
subexpressions that must evaluate to types. During the phases before the subexpressions evaluate to types, they will evaluate to ERTs. What if one of the subexpressions is ready to evaluate to a type during some phase, but the other is still going to evaluate to an ERT, and will not evaluate to a type until the following phase? In that case, the subexpression that is ready to evaluate to a type can be evaluated, and the hold operation can be used to pass the resulting type value on to the next phase, when the other subexpression will also evaluate to a type. Thus check-funtype can force both subexpressions to return ERTs during one phase, and during the next phase, the funtype operation will have both type values as needed. Section 5.2.2.2 explains specifically how this works for the check-funtype operation. Other check-operations work analogously.

5.2.2.2. (check-funtype expr_r expr_r)

Check-funtype always returns an ERT: it is used to generate a funtype ERT. However, unlike in Static-IL, check-funtype will not necessarily generate a funtype expression during this phase. If its arguments will not be ready to be fully evaluated to types during the next phase (that is, if its arguments are still going to evaluate to ERTs), another check-funtype expression is generated. This is similar to the way check-apply in Static-IL generates an apply if the function arguments will be ready in the next phase, and a check-apply if not.

check-funtype is evaluated as follows. Both subexpressions expr_r and expr_r are evaluated to ERTs, call them \(\langle e_d, r_d, t_d \rangle \) and \(\langle e_r, r_r, t_r \rangle \). If both \(t_d \) and \(t_r \) are type, a funtype expression is generated, as in Static-IL. If both \(t_d \) and \(t_r \) are ERT, the returned ERT will contain a check-funtype expression: the Expression component will be \(\langle \text{check-funtype} e_d, e_r \rangle \); the Required-environment component will be the combination of \(r_d \) and \(r_r \), which must be consistent (as defined in Section 4.2.3.2); and the Type component will be \(t_r \).

Note that for a funtype expression to be generated, both \(t_d \) and \(t_r \) must be type, indicating that \(e_d \) and \(e_r \) will evaluate to types. Since every expression starts out (after translation) evaluating to an ERT, in effect \(t_d \) and \(t_r \) will start out as ERT and will become type during some later phase. But what if one of the check-funtype's subexpressions is ready to evaluate to a type before the other is ready? That is, what if either \(t_d \) or \(t_r \) is type, but the other is ERT?

In this case, we can simply allow the type value to be computed during the next phase, but use a hold expression to pass the result on to the next phase, to be ready during the phase when the other subexpression is also ready to evaluate to a type. Thus, a check-funtype is generated as before, but a hold is inserted to pass the type value to a subsequent phase as a constant. For example, if \(t_d \) is type and \(t_r \) is ERT, the resulting Expression component will be \(\text{check-funtype} (\text{hold type} t_d; e_r) \).
It is a "compiletime" error if either t_d or t_r is not type or ert.

5.2.2.3. (check-lambda $id expr_d expr_r expr_body$)

Analogous to check-funtype, check-lambda is used to generate a lambda but should generate another check-lambda if the body expression will not be ready during the next phase (that is, if the body expression evaluates to an ERT whose Type component is ert). If another check-lambda is generated, the type expressions will simply be the quoted type values that were computed during this phase.

The implementation of check-lambda is not as straightforward as it may at first seem: its discussion is postponed to Section 5.3.

5.2.2.4. (check-check-lambda $id expr_d expr_r expr_body$)

This construct is handled straightforwardly in a manner analogous to check-funtype above. After evaluating $expr_d$ and $expr_r$, an ERT binding (with Type component ert) is created for the formal parameter, and the body expression $expr_body$ is executed in an environment augmented by this binding. If both $expr_d$ and $expr_r$ have evaluated to ERTs whose Type component is type, a check-lambda will be generated. Otherwise another check-check-lambda should be generated. with hold used as necessary.

5.2.2.5. (check-apply $expr_f expr_r$)

This construct is evaluated as in Static-IL, except that hold may be inserted as needed if either the function or the argument is ready before the other (that is, if one will still be an ERT when the other will be a function or non-ERT value during the next phase).

5.3. Problems in Implementing Check-Lambda

Before discussing these issues, it should first be noted that there are several ways of partially evaluating function calls. Beckman et al. [Beckman '6] provide a good outline of the various methods. We will restrict our attention to the simplest choice.

Suppose we have the following lambda abstraction in Dynamic-Phi, which has free variable f:

$$\lambda x : \text{number} \rightarrow \text{number}. (f x)$$
And consider the corresponding Dynamic-IL program:

\[
\text{let } f = \text{number}
\]

\[
(\text{check-lambda } x \text{ number number (check-apply } f \ x))
\]

where \(f \) is type \(\text{ort} \).

Now, our goal here is to come up with a method of implementing the \text{check-lambda} operation. As a general outline, it should proceed according to the following steps:

1. Evaluate the two \text{type} subexpressions. In this example, they are \(\text{number} \) and \(\text{number} \), and they simply evaluate to the type values \(\text{number} \) and \(\text{number} \).

2. Decide on a suitable ERT binding for the formal parameter, and add this binding to the environment. In our example, we must bind \(x \) to the proper ERT, and add this binding to the environment. (An ERT binding for \(x \) will already be in the environment.)

3. Evaluate the body expression to an ERT in this new environment. In our example, we must evaluate the \text{check-apply} to an ERT.

4. Using the ERT that resulted from evaluating the body expression, construct and return either a \text{lambda} ERT, if the body is ready to be evaluated to some basic non-ERT value in the next phase; or a \text{check-lambda}, if the body must evaluate to another ERT in the next phase.

Thus, in our example, the result of step 3 will either be an \text{apply} ERT (if the body is ready to evaluate to a \text{number}), such as the following (call this \(\text{eriA} \)):

\[
\text{eriA}
\]

\[
(\text{apply } f \ x)
\]

\[
((f \ (\text{fun number number})))
\]

\[
\text{Required-environment}
\]

\[
\text{Type}
\]

\[
\text{eriB}
\]

\[
(\text{check-apply } f \ x)
\]

\[
(f \ \text{ert})
\]

\[
\text{Required-environment}
\]

\[
\text{Type}
\]

The \text{Type} component of \(\text{eriA} \) indicates that it is ready to evaluate to a \text{number}, whereas the \text{Type} component of \(\text{eriB} \) indicates that it will evaluate to another ERT.
Finally, the result of evaluating the check-lambda (i.e. the result of step 4) should either be a lambda ERT, such as the following (call this erl):

```
( ; erl
  (lambda x (apply f x)) ; Expression
  ((f (fun number number))) ; Required-environment
  (fun number number) ; Type
)
```

or it should be a check-lambda ERT, such as the following (call this erl2):

```
( ; erl2
  (check-lambda x (check-apply f x)) ; Expression
  ((f erl)) ; Required-environment
  erl ; Type
)
```

That is, the result of step 4 should be erl if the result of step 3 is erlA, whereas it should be erl2 if the result of step 3 is erlB. That much is straightforward. The difficulty is this: What ERT binding should we provide for x in step 2?

If the result of step 3 will be erlA, then we should supply a binding of x to the ERT (x (x number; number) in step 2, since x the function can be applied to a number in the next phase, and hence x will be bound to a number in the next phase. This binding, in effect, declares x to be type number in the next phase.

On the other hand, if the result of step 3 will be erlB, then we should supply a binding of x to the ERT (x, (x, erl), erl) in step 2, since another check-apply will be evaluated in the next phase, and hence x must be bound to another erl in the next phase. This binding, in effect, declares x to be type erl in the next phase.

Here is the dilemma. Since the result of evaluating the body in step 3 will in general depend on factors other than just the binding of x (in this case it also depends on the binding of f from outside), we cannot generally know which binding for x to use in step 2 until we know the result of step 3.

In our example, two potential values for f that would cause different results would be the ERT:

```
( ; f
  ((f (fun number number))) ; Expression
  ((f (fun number number))) ; Required-environment
  (fun number number) ; Type
)
```

```
and the ERT:

\[
\begin{array}{l}
(f \\
(f	ext{ert}))
\end{array}
\]

5.3.1. Evaluating the Body Twice

One way to deal with this dilemma might be to first assume that the \texttt{check-lambda}'s body expression will evaluate to an ERT that will be ready to be "fully" evaluated during the next phase; that is, first assume that step 3 will evaluate to an ERT such as \texttt{errA}, in which the Type component is not \texttt{ert}. Thus, we would initially bind \texttt{x} to the ERT \texttt{<x,<x,number>,number>}. If the Type component of the result of step 3 turns out to be a basic (no-ERT) type, such as \texttt{errA}, then all is well, and the result of \texttt{check-lambda} should be a \texttt{lambda} ERT, such as \texttt{errI}. However, if the Type component turns out to be \texttt{ert}, such as in \texttt{errB}, then we bind \texttt{x} to the ERT \texttt{<x,<x,ert>,ert>} and re-evaluate the body as in step 3 again.

5.3.2. Evaluating with Both Choices at Once

A more efficient solution might be to have the execution of \texttt{expr\_body} generate the two ERTs under both assumptions. But what happens when functions are nested? Must \texttt{4}, \texttt{8}, etc., ERTs be generated? When can the choices be eliminated?

5.3.3. Using an Extra Environment Variable

Since the difficulty seems to be in deciding which binding to use for the formal parameter, another possibility might be for the Dynamic-IL Machine to use an extra environment variable while a \texttt{check-lambda} body is being executed, indicating the names of any identifiers that are bound as formal parameters. Those identifiers could then be treated specially by the Dynamic-IL Machine. This might allow the body to be evaluated in one pass. But notice, then, that the machine would essentially be playing the role of two distinct machines, depending on whether this extra environment variable were set.
5.3.4. The Root of the Problem

The root of the problem is that we are asking the Dynamic-IL Machine to do two kinds of things during the same phase: to partially and fully evaluate certain subexpressions, and to compile certain subexpressions for future partial or full evaluation. Section 5.4 proposes another solution.

5.4. A Strongly Typed Phase Compiler

A better approach to the problems of implementing check-lambda in Dynamic-IL might be to evaluate programs in two distinct passes: call the first pass phase compilation and the second pass phase evaluation. As before, phase evaluation would perform both partial and full evaluation, filling the roles of traditional compiletime and runtime.

During phase compilation every expression would be treated symbolically: none of the subexpressions would evaluate to a final (constant) value and no type checking would be done. The purpose of phase compilation would be to decide which subexpressions can be fully evaluated and which should be partially evaluated. The resulting program will have these decisions syntactically built into it (as with lambda, check-lambda, etc.), ready for phase evaluation. To make these decisions, the phase compiler must know which of the program's free variables are to be given final (constant) values during phase evaluation.

Phase evaluation could then fully evaluate some subexpressions and partially evaluate others. The result of the phase evaluation would either be some final constant or another program (ERT), but its type would be known beforehand. The key to this approach is that the type of every expression is known before phase evaluation. Thus, those expressions being fully evaluated can be evaluated just as efficiently as on a conventional (i.e. fully evaluating) abstract machine, even though the phase evaluation machine is also performing partial evaluation for a strongly typed language.

This approach, for strongly typed languages, is analogous to the "compiled generation" approach used by Beckman et al. [Beckman 76] in partially evaluating LISP programs.
Chapter 6
Remarks About Other Language Notions

This section discusses some miscellaneous language notions, and shows how phases are relevant to them or vice-versa.

6.1. Abstract Data Types

This section discusses one possible approach to providing Abstract Data Types (ADTs) under a model of phases. The purpose of this section is to demonstrate some of the usefulness of manipulating ERTs under a model of phases. The ERT data type makes it easy to talk clearly and sensibly about compiletime notions such as enforcing the information hiding needed to implement ADTs.

Our notion of ADTs is intended to be ordinary -- corresponding basically to Ada packages, for example -- but our view of implementing ADTs is somewhat unusual, and is motivated by the fact that we treat types and code (ERTs) as first-class values. That is, we intend to provide the same basic functionality of traditional ADTs, but we take an unusual view of what is required and how to provide it. In effect, this discussion treats ADTs from a compiler's point of view, since phases fill the role of traditional compile-time.

We consider a newly defined ADT to be essentially a unique type and a set of operations that are privileged to operate on values of that type. As in Ada, we assume that an ADT has no separate functional or behavioral specification; its intended behavior is defined only by its implementation. The programmer defines a new ADT in terms of other types and operations, thus supplying an implementation for it. The implementation should be hidden from the user; this information hiding should be enforced by the language.

Since in a strongly typed language, this information hiding must be enforced by the compiler, and there need not be anything special about the runtime code, ADTs are essentially compiletime notions. Under a model of phases, a phase fills the role of compiletime, manipulating both types and code (ERTs) as first-class values. Therefore, to understand the following discussion, it is best to think of
ADTs in terms of what a compiler must do to enforce the required information hiding. To focus only
on the essential elements, we do not address scoping rules or other extraneous issues such as providing
separate declarations of ADT headers and bodies, as is allowed in Ada.

6.1.1. Four Essential Functions

Let us personify the portion of the program that implements the ADT as the implementor, and the
portion of the program that uses the ADT as the user. To employ the canonical example, we might
define an ADT called stack, offering only push and pop functions for accessing values of type stack,
and use an array to implement the stack. The compiler, then, must ensure that the implemen-
tation of type stack as an array is hidden from the user, but is available to the stack implementor.

The stack implementor, then, must be privileged to perform two essential acts: to create a value of
the ADT from a value of the implementing type, for example, creating a stack value from an
array value: and to view a value of the ADT as a value of the implementing type. for example viewing a
stack value as an array. Less obviously, though, in a language in which types are first-class values, the
implementor of the stack ADT must also be privileged to perform two additional essential acts: to
create the type value stack from the implementing type value array: and to view the type value stack as
the type value array.

All four of these privileged acts are compiletime sleights of hand -- they are functions involving
types that are computed at compiletime. Recall that during "compiletime" (a relative term: type and
ert values are manipulated, and that in our model a phase fills the role of traditional compiletime.
Thus, to create a stack ADT, we need the following four functions.

abs-stack: ert → ert

For creating values of type stack from values of type array. Note that this function
takes an ERT value and returns an ERT value -- it does not take an array value and
return a stack value. Rather, it takes an expression (an ERT) that will evaluate to an

---

27 Usually a stack would be implemented by a pair consisting of an array and an integer with the integer representing a
pointer to the current stack top. This detail is irrelevant here and we are ignoring it for the sake of simplicity.

28 Pascal's ord function is probably the best known example of a "compiletime sleight of hand." For any scalar type, the ord
function returns an integer representing the argument's the ordinal value. Ord is almost universally implemented in the computer
simply by viewing the binary representation of its argument as a value of a different type. For example in a Pascal system in
which the ASCII character set is used, the value of ord('X') would be 88. That is, the binary value 1011000 is simply
interpreted as representing an integer (88) instead of representing the ASCII character 'X'. Because the binary representations
of these values are the same, the compiler does not emit any code to implement the ord function. Although the compiler would
view the expression 'X' as producing a value of type char and the expression ord('X') as producing a value of type integer
the code generated for these two expressions would be absolutely identical.
array value, and returns an expression (an ERT) that will evaluate to a stack value. Only the Type component of the argument ERT and the result ERT will differ.

imp-stack: ert → ert
For viewing values of type stack as values of type array. Again, this function takes an expression (an ERT) that will evaluate to a stack and returns an expression that will evaluate to an array.

type-abs-stack: type → type
For creating a stack type value from an array type value. Note that this is a function that takes a type and returns a type. The type value that is supplied as the actual parameter must be an array type value; a stack type value will be returned.

type-imp-stack: type → type
For viewing stack type values as array type values. Note that this is a function that takes a type and returns a type. The type value that is supplied as the actual parameter must be a stack type value; an array type value will be returned.

6.1.2. Type Values: \textit{(tag, value)} Pairs

Let us now assume that type values are represented as \textit{(tag, value)} pairs.

The \textit{tag} component is a symbol identifying the type; for example, it might be the symbol \texttt{array} representing any array type. It is the same for every array type.

The \textit{value} component holds other information about that particular type; for example, it might include information about the array's element type and size (if the size is a part of the type, as it is in Pascal, for example). The \textit{value} component will generally be different for different array types. For programmer-defined ADTs, it will always be a type.

6.1.3. Type-of and Tag-of

The representations of types and erts should also be hidden. To determine the Type component of an ERT or the Tag component of a type, two functions \texttt{type-of} and \texttt{tag-of} can be provided:

\texttt{type-of: ert → type}

\texttt{tag-of: type → symbol}

If the representations of ERTs and types were simple, these functions would be defined simply.
6.1.4. Implementations of the Four Essential Functions

The four essential functions for a stack ADT can be roughly defined as follows. Bear in mind that types `type` and `ert` should also be ADTs, and the programmer would not have indiscriminate access to their representations. However, for expository purposes, the functions defined below show the representations of `types` as pairs and `erts` as triplets. (Error, below, represents a "compiletime" error condition indicating that the programmer tried to use one of these stack functions to convert between something other than a stack and an array.)

\[
\begin{align*}
\text{abs-stack} & \text{ (e.r..t.v..)} \text{ if } t \text{ is } \text{array} \\
& \text{ then } (e.r..'stack..t.v..) \text{ -- Save the implementing type.} \\
& \text{ else error} \\
\text{imp-stack} & \text{ (e.r..t.v..)} \text{ if } t \text{ is } \text{stack} \\
& \text{ then } (e.r..v) \text{ -- Restore the implementing type} \\
& \text{ else error} \\
\text{type-abs-stack} & \text{ (t.v..)} \text{ if } t \text{ is } \text{array} \\
& \text{ then } (\text{'stack..t.v..}) \text{ -- Save the implementing type.} \\
& \text{ else error} \\
\text{type-imp-stack} & \text{ (e.r..t.v..)} \text{ if } t \text{ is } \text{stack} \\
& \text{ then } v \text{ -- Restore the implementing type.} \\
& \text{ else error}
\end{align*}
\]

The relationships between these four functions are illustrated in Figure 6-1.

6.1.5. Defining a New Abstract Data Type

To allow a new abstract data type to be defined, the language needs to supply a function that will create and return the four functions described above, with a new uniquely generated `tag` embedded in them. The new `tag` should also be returned, to allow the programmer to test for this new type without incurring an error.
Figure 6-1:
Implementing Abstract Data Types

Abstraction          Implementation

< stack, <array, v> >          < array, v >

Types
(represented as <tag, value> )

ERTs
(<e, r, t>)

< e, r, <stack, <array, v>> >          < e, r, <array, v> >
6.2. Dependent Types

Dependent types, for example, of Pebble [Burstall 84], are compound types in which the type of one element depends on the value of another element. For example, in Pebble a dependent type is used to express the type of a polymorphic pair-swapping function:

\[(t1: \text{type} \times t2: \text{type}) \rightarrow (t1 \times t2 \rightarrow t2 \times t1)\]

The symbol "\(\rightarrow\)" is similar to "\(\to\)" except that bound variables appear on the left and may be used on the right to refer to their values. This polymorphic swapping function is actually a function that returns a function: it is first given the types of the elements to swap, and the result is then a swapping function, specific to those types, that may be applied to an actual pair of elements. It swaps and returns the first and second elements of the pair. Thus, for example, if we wish to swap \([\text{int}, \text{bool}]\) pairs, returning \([\text{bool}, \text{int}]\) pairs, instantiating \(\text{swap}\) for these types would yield a function value of type \(\text{int} \times \text{bool} \rightarrow \text{bool} \times \text{int}\):

\(\text{swap}[\text{int, bool}]: \text{int} \times \text{bool} \rightarrow \text{bool} \times \text{int}\)

Dependent types seem to have arisen mainly from the desire to assign sensible types to all expressions, yet also be able to parameterize something by a type, such as a polymorphic function; manipulate type-tagged values at runtime; and define recursive types.

Phi does not offer dependent types, but some of the same functionality could be obtained in other ways, as described below.

In Static-Phi, arbitrary type expressions can be evaluated at compiletime and polymorphic functions or data structures can be instantiated to particular types. In Pebble [Burstall 84], one is unable to talk about a function's actual parameter without dealing with the parameter's runtime value. But in Static-Phi, a function's actual parameter is an ERT value during the phase before the function is applied, so the Type component can meaningfully be extracted and used at that time. This also means that a polymorphic function need not have an extra explicit type parameter.

Dependent types also allow type-tagged values to be manipulated at runtime, and this may be a desirable capability to provide. This can be accomplished by providing a type \(\text{any}\) -- a variable of type \(\text{any}\) could hold a value of any other type, tagged with the value's type. A case conformity clause can be used to query the variable's current type and access its value while retaining strong typing. (This is
essentially the way Algol-68 [Lindsey 71] provides union types.) Note that the current work of Gifford. Schooler, et al. [Schooler 84] takes a very attractive approach to this: where possible, they do type checking before runtime; if a type cannot be determined before runtime, dynamic type checking is used.

Recursive types are discussed in Section 7.2.7.

6.3. Type Checking Recursive Functions

The question usually arises: "Is there any special difficulty in type checking recursive functions?" Not when the function's parameter and return types are declared. In fact, the type checking is very similar to the non-recursive case, even when types are allowed as first-class values.

The idea of a recursive function is that the function's name can be used inside the function body. The only impact this has on type checking is that the function's type must be known inside the body. This is easy to arrange, because the function's type is known from parameter and return type declarations.

Compare the type checking required for a non-recursive let construct versus a recursive letrec construct. The two constructs would be:

```
let id : expr_type = expr_value in expr_body
```

```
letrec id : expr_type = expr_value in expr_body
```

In each case, `expr_type` gives the type of the bound variable `id`. Call this type `t`. The only difference in type checking the two constructs is that in type checking `expr_value` for letrec, `id` is known to be type `t` rather than whatever type it may have been declared to be in the surrounding scope. This is true even if the function happens to construct a type value.29

---

29 As mentioned in Section 3.3.2, the type that is constructed can be used as an invariant of the next phase (i.e., it can be used in a declaration pertaining to the next phase), but it cannot be used as an invariant of the phase during which it is computed.
Chapter 7
Conclusions and Future Work

7.1. Conclusions

This work has addressed the basic question of whether types and code can be manipulated as first-class values while retaining strong typing. We demonstrated how this can be done by introducing the notion of multiple strongly typed evaluation phases. In the simplest case, two phases correspond to the traditional notions of compiletime and runtime, though a single machine is used for both. In general, multiple phases may be used, and each phase acts as compiletime relative to the next phase, or runtime relative to the previous phase. Types that are freely manipulated as first-class values during one phase become invariants of the next phase, thus guaranteeing that the next phase is strongly typed.

One benefit of allowing types and code to be manipulated as first-class values under the model of phases is that the same abstract machine can be used to both compile and run the program. This means that all of the features that are available in the language at runtime are also available at compiletime. The features only need to be implemented once in the single machine, and they are thus guaranteed to have the same semantics at compiletime and runtime. Thus, for example, constant expressions can be evaluated at compiletime using the same efficient evaluation mechanism as is used at runtime, whereas, in general, a conventional compiler must simulate the action of the runtime machine in evaluating constant expressions. The single machine is therefore inherently "efficient" in two respects: (1) for runtime operations, it can have the same efficiency as a conventional machine in evaluating untyped lambda calculus expressions, even though it has the additional capability of performing compiletime operations; and (2) for compiletime operations it can be much more efficient than a conventional compiler, because compiletime tasks that can already be performed at runtime, such as evaluating constant expressions, are executed directly rather than being simulated.

The special abstract data type ERT is essential to constructing and manipulating code fragments as first-class values, while capturing all information necessary to ensure that any code generated in this manner will be strongly typed. The ERT data type makes it possible to use the same abstract machine to do the compiletime operations of type checking and code generation, as well as conventional
runtime operations. The ERT data type also makes it easy to talk sensibly about compiletime notions such as asking for the type of an expression, or dealing with the type conversions involved in implementing abstract data types.

The notion of phases, with its ERT data type and uniform treatment of compiletime and runtime, gives insight into the semantic processing that occurs during compiletime and runtime. It also gives insight into how to efficiently implement compiletime notions such as type checking, using runtime machinery, and how to efficiently provide runtime notions at compiletime.

We believe that the notions of strong typing, types as first-class values, and partial or phase evaluation complement each other handsomely in providing a language basis for writing more reusable, correct, and efficient software: "reusable" because types can be manipulated as first-class values, and because of the ability to construct new strongly-typed programs with phases or specialize programs with partial evaluation; "correct" because of strong typing; and "efficient" because of the ability to perform much of the computation before runtime.

The following sections outline some suggested future work.

7.2. Subjects for Further Study

7.2.1. Developing a Practical Language Based on Static-Phi and Static-IL

The particular model of phases embodied in the Static-Phi and Static-IL languages of Chapter 4 are based on typed and untyped versions of the lambda calculus, and were presented as purely pedagogical languages. It would be reasonably straightforward to expand these into useful real-life functional languages with a full complement of data types and operators.

7.2.2. Using Phases for Partial Evaluation

This was discussed in Chapter 5.
7.2.3. Constructing and Maintaining Environments

More work is needed on how to effectively generate and manipulate the environment required for each phase. This comes in the larger context of programming methodology.

7.2.4. Determining the Source of a Bug

Suppose a bug is discovered. Where did it originate? During what phase? To some extent, the difficulty of determining the origin of a bug becomes inherently more difficult with more reusable software, in the following sense. When a program is constructed from several pieces of different origins, it may be more difficult to know which piece of the program is at fault when a bug is discovered. On the other hand, if a standard set of reusable software components are provided, they can be very thoroughly debugged. Overall, we do not know whether multiple phases will make debugging significantly more or less difficult.

7.2.5. Universal Polymorphism

A function is polymorphic if different parameter types may be used in different invocations. Burstall and Lampson [Burstall 84] distinguish between two kinds of polymorphism (attributing the distinction to C. Strachey [Strachey 67]):

Ad hoc [or Generic] polymorphism
The code executed depends on the type of the argument, e.g., 'print 3' involves different code from 'print "nonsense"'.

Universal [or Parametric] polymorphism
The same code is executed regardless of the type of the argument, since the different types of data have uniform representation, e.g. reverse(1,2,3,4) and reverse(true,false,false).

Ad hoc polymorphism is the natural form of polymorphism under phases. Universal polymorphism seems to require something additional. The basic difficulty is that, in type checking the call of a universally polymorphic function, such as reverse (above), different result types should be returned for calls using different actual parameter types, even though the same function will be called at runtime. Furthermore, a mechanism for type checking the function body once, independent of call types, should be provided.

ML [Gordon 79] uses unification in type checking polymorphic functions. Unification involves
having the language processor perform substantial computations involving types. This approach might be used here, although it would seem to be somewhat contrary to the underlying philosophy of having types of expressions simply computed rather than inferred by a more complex language processor. It would be most attractive to use an approach that takes advantage of a language's existing ability to explicitly manipulate types as first-class values, as the Static-Phi language does, rather than adding type inference machinery to the language processor. We do not know how best to do this.

7.2.6. Inferring Types

As explained in Section 1.3.1, this work was motivated by a bias toward expressing rather than inferring. However, much notable work on data types, such as ML [Gordon 79] has involved type inference. It would be good to explore the relationship between type inference systems and our model of multiple phases, which is based on types being computed directly. Maybe a hybrid would be feasible.

7.2.7. Recursive Types

A recursive type is a type defined in terms of itself. Recursive types are most often used in defining lists, sequences, or trees of unbounded size. The problem of representing recursive types is similar to the problem of representing recursive function values or any other infinite structure. The basic problem is how to represent the infinite structure in finite space and time while providing convenient mechanisms for manipulating and comparing values of the infinite structure. There are several ways recursive types might be implemented in Phi.

One way to represent recursive types might be to use a circular data structure to represent the type.

Another approach to representing recursive types might be to use abstraction to delay the evaluation of a recursive type. Consider the following hypothetical type definition:

```
letrec r = (list-of r)
in ...
```

The list-of operation is intended to return a list type for any given element type. The hypothetical example above is intended to define a type r that is recursively a list of elements of type r. Some example values of this type might be the empty list [ ], or the list containing two empty lists [ [ ] ].

---

30 Reynolds [Reynolds 85], for example, uses a special retype operation, which is a kind of abstraction mechanism, for expressing recursive types.
Clearly, some kind of delay mechanism is needed to avoid going into an infinite loop in trying to evaluate (list-of t) in the example above. Function abstraction generally provides a kind of quoting that delays evaluation of the function body until the function is invoked, rather than evaluating the body when the function value (closure) is created.

Now compare the following:

\[ \forall t, \text{element-type-of (list-of } t) = t \]

\[ \forall t, \text{apply (lambda () } t () = t \]

The list-of operation creates a list type where the elements must be type t, and element-type-of returns a list type's element type. Note that these operations deal with \textit{type} values -- they do not create or examine \textit{list} values. Lambda (with an empty formal parameter list, in this case) creates a function abstraction, and apply applies the function abstraction (to an empty actual parameter list, in this case), as in LISP [McCarthy 66]. The operation list-of is analogous to function abstraction, and the operation element-type-of is analogous to function application.

The example above showed that there is an analogy between function abstraction and the kind of delay mechanism needed to allow recursive type definitions. Could function abstraction be used to implement recursive types? Certain type operations, such as list-of, might act as function abstractions, and one of these would have to enclose each appearance of the type name being recursively defined. (Note that this corresponds to the Algol-68 or Pascal rules for defining recursive types, in which an intervening reference or pointer type must be used in any recursive type definition.) Other type operations, such as element-type-of, would act as function application, forcing the element type of the list to be computed, just as function application causes the function body to be evaluated.

This approach has not been worked out for Phi. We do not know if it would be feasible or practical.

\footnote{Z. Ingerson's \textit{Thunk}, used to implement call-by-name parameter passing in Algol 60, is the classic example of a delay mechanism [Pratt 75]. Lazy evaluation [Henderson 80] is another technique.}
7.2.8. ERT Subtypes

One unsatisfactory aspect of ERT triplets \(<e, r, t>\) is that if the type component is ert (indicating that the expression will evaluate to an ERT in the next phase), there is no further information about what type of value might be computed in the following phase. In fact, the Static-IL construct `deep-const` hides the types of constants until the phase before the constant will be used, thus preventing any compiletime type errors regarding that constant from being detected earlier. It would certainly be better to detect all errors as early as possible.

One way to support earlier error detection might be to introduce subtypes of the ert type that provide some information about an expression’s final type, if known. Consider the following Static-Phi program.

\[
\lambda x : t_1 \to t_2 \cdot (g x)
\]

Recall from Section 3.3.4 that every subexpression starts out being type ert; thus the \(\lambda\) expression above will initially be considered type ert. But regardless of what types \(t_1\) and \(t_2\) turn out to be, it is syntactically obvious that the above expression will eventually evaluate to some kind of function value. Hence, it might be useful to initially consider the expression to be a type that is a subtype of ert, such as "ert of fun", which carries more information than the simple ert type carries. Similarly, if \(t_1\) and \(t_2\) happen to be type constants such, as number, an even more specific subtype might be returned, such as "ert of <fun number number>", which represents the type of an expression that will become a function from numbers to numbers in some future phase.

We do not know whether ERT subtypes will provide the right practical mechanism for early error detection, or whether some other approach would be better.

7.2.9. Statically Inferred Phases

In Static-Phi, phases are assigned statically by the Translator, based on emit and eval constructs explicitly embedded in the Static-Phi program. To ease the programmer's burden, it might be possible to have the Phi Translator automatically determine which subcomputations should be performed during which phases, without requiring the programmer to designate them explicitly.
References


[Demers 79] Demers, A., and Donahue, J.

Revised Report on Russell.

[Demers 80] Demers, A., and Donahue, J.

The Russell Semantics: An Exercise in Abstract Data Types.
Technical Report TR80-431, Computer Science Department, Cornell University, 1980.

[Donahue 79] Donahue, J.

On the Semantics of "Data Type".


Detecting Software Errors Before Execution.

[Ershov 77a] Ershov, A. P.

On the Partial Computation Principle.

[Ershov 77b] Ershov, A. P., and Grushetsky, V. V.

An Implementation-Oriented Method for Describing Algorithmic Languages.

[Ershov 77c] Ershov, A. P., and Itkin, V. E.

Correctness of Mixed Computation in Algol-Like Programs.

[Ershov 78] Ershov, A. P.

On the Essence of Compilation.

[Ershov 82] Ershov, A. P.


[Flon 82a] Flon, L., and Cooprider, L. W.

Metaprogramming: Prospects for the Practical Reuse of Software.

[Flon 82b] Flon, L., and Raeder, G.

Metaprogramming: Language and Examples.

[Futamura 71] Futamura, Y.


[Henderson 80] Henderson, P.  
*Functional Programming: Application and Implementation*.  

[Lindsey 71] Lindsey, C. H. and van der Meulen, S. G.  
*Informal Introduction to Algol 68*.  

[Lindsey 83] Lindsey, C. H.  
Elsa: An Extensible Programming System.  

*LISP 1.5 Programmer's Manual*.  

[Milner 78] Milner, R.  
A Theory of Type Polymorphism.  

[Pratt 75] Pratt, T. W.  
*Programming Languages: Design and Implementation*.  

[Reynolds 85] Reynolds, J. C.  
Three Approaches to Type Structure.  

[Schooler 84] Schooler, R.  
*Partial Evaluation as a Means of Language Extensibility*.  

[Strachey 67] Strachey, C.  
Fundamental Concepts in Programming Languages.  

[Wegbreit 74] Wegbreit, B.  
The Treatment of Data Types in EML.  
On the Unification of Data and Program Abstraction in Ada.
Appendix A:
Formal Semantics of Static-Phi and Static-IL

Introduction
This section gives a semantics for phase evaluation of Static-Phi expressions. The semantics of a Static-Phi expression are given by two sets of semantic equations: one set of equations corresponds to translating the Static-Phi expression into a Static-IL expression (in the Expression component of an ERT); the other set corresponds to evaluating a Static-IL expression. This is therefore an operational semantics, though we write it in a denotational style using continuations.

Static-Phi Syntax Domains

id ∈ ID  -- Identifiers.
b ∈ BOOLEAN  -- Booleans.
n ∈ NUMBER  -- Numbers.
t ∈ BTYPE  -- Basic type constants.
e ∈ EXPR  -- Static-Phi expressions. A program is an EXPR.

Static-Phi Syntax Equations

ID = . . .  -- Identifiers.
BOOLEAN= true, false  -- Booleans.
NUMBER= 0, 1, 2, ...  -- Numbers.
BTYPE= boolean, number, type, ort  -- Basic (non-function) type constants.

EXPR = ID  -- Identifier
  + BOOLEAN  -- Boolean constant
  + NUMBER  -- Number constant
  + BTYPE  -- Basic (non-function) type constant
  + (funtype EXPR EXPR )  -- For expressing the types of functions
  + (emit EXPR )  -- Normal runtime phase is one phase later
  + (eval EXPR )  -- Normal runtime phase is one phase earlier
  + λ ID : EXPR → EXPR . EXPR  -- Abstraction, with parameter, return types
  + ( EXPR EXPR )  -- Function application

Static-IL (Semantic) Domains

These domains are best interpreted as semantic domains, though they are sometimes used as though they were syntactic domains. The reason for this is to avoid having to deal with the cumbersome
detail of two parallel domains -- one syntactic and one semantic -- and a trivial semantic correspondence between them.

\[
\begin{align*}
\text{id} \in \text{ID} & \quad \text{-- Identifiers. Same domain as in Static-Phi.} \\
\text{b} \in \text{BOOLEAN} & \quad \text{-- Booleans. Same domain as in Static-Phi.} \\
\text{m,n} \in \text{NUMBER} & \quad \text{-- Numbers. Same domain as in Static-Phi.} \\
\text{t} \in \text{TYPE} & \quad \text{-- Types. Includes both basic types and function types.} \\
\text{r} \in \text{RENV} & \quad \text{-- Required-environment. Lists identifiers and their types.} \\
\text{e} \in \text{EXPR} & \quad \text{-- Static-IL expressions. A program is an EXPR.} \\
\text{ert} \in \text{ERT} & \quad \text{-- Triplet \(<e, r, t>\): \(e\) is an expression, \(r\) is a list of identifier-type pairs, and \(t\) is a type. We deal only with a restricted set of ERT triplets, for which \(r\) lists all free variables and their types in \(e\), and \(e\) is guaranteed to evaluate to a value of type \(t\) (or some error condition).} \\
\text{env} \in \text{ENV} & \quad \text{-- Environments} \\
\text{v} \in \text{EV} & \quad \text{-- Expressible values.} \\
\text{k} \in \text{ECONT} & \quad \text{-- Expression continuations.} \\
\text{err} \in \text{ERROR} & \quad \text{-- "Compiletime" errors of various kinds.}
\end{align*}
\]

**Static-IL Domain Equations**

\[
\begin{align*}
\text{ID} & = \text{ID} \quad \text{-- Identifiers from Static-IL.} \\
\text{BOOLEAN} & = \text{BOOLEAN} \quad \text{-- Booleans from Static-IL.} \\
\text{NUMBER} & = \text{NUMBER} \quad \text{-- Numbers from Static-IL.} \\
\text{FTYPE} & = (\text{fun}) \times \text{TYPE} \times \text{TYPE} \quad \text{-- Function type: domain, range.} \\
\text{TYPE} & = \text{BTYPE} \\
& \quad + \text{FTYPE} \quad \text{-- Basic types,} \\
\text{RENV} & = (\langle\rangle) \\
& \quad + (\text{id} \times \text{TYPE}) \times \text{RENV} \quad \text{-- Required-environment. (Identifier, type pairs.) Note that required-environments are represented slightly differently in this appendix than in the body of this work.}
\end{align*}
\]
EXPR = ID          -- Static-IL expressions.
    + (quote EV )
    + (incr EXPR )
    + (check-funtype EXPR EXPR NUMBER )
    + (funtype EXPR EXPR )
    + (check-check-lambda ID EXPR EXPR EXPR NUMBER )
    + (check-lambda ID EXPR EXPR EXPR )
    + (lambda ID EXPR )
    + (check-apply EXPR EXPR )
    + (apply EXPR EXPR )
    + (deep-const EV TYPE NUMBER )

ERT = EXPR x RENV x TYPE        -- ERT triplet. Free variables of EXPR are
                                    listed in RENV with their types. EXPR
                                    evaluates to a value of type TYPE.

CLOSURE = ID x EXPR x ENV        -- Function closures

EV = BOOLEAN           -- Expressible values
    + NUMBER
    + TYPE
    + ERT
    + CLOSURE

ENV = ID → EV        -- An environment is a function from
                        identifiers to expressible values. Note that
                        environments are represented slightly
                        differently in this appendix than in the
                        body of this work.

ECONT = EV → { EV + ERROR }        -- An expression continuation.

ERROR = { error-non-type, -- "Compiletime" errors possible.
            error-non-function,
            error-inconsistent-req-envs,
            error-type-mismatch,
            error-different-type-used-in-body,
            error-ert-expected,
            error-non-ert,
            error-body-is-not-ert,
            error-body-and-range-types-differ,
            error-arg-ready-before-function }

Meta-Language Notation

The translation rules and semantic equations will use a meta-language including if, where, let and
maximum constructs. They are written in this font. Comments on a line are preceded by "--".
Tuples are written, for example, as "<a, b>". Function application is written, for example, as "(f
x)". The continuation-style operator ";;" also denotes function application, but it is right associative
and binds weakly. Thus, "f; g; x" means "(f (g x))". The body of a lambda abstraction "λ x. ..." extends as far to the right as possible.

We use the operators "+" and "-" to concatenate two Required-environments, and to remove all occurrences of an identifier from a Required-environment. We use the notation env[v/id] to denote the environment env augmented by the binding of v to id. (Remember that a "Required-environment" is not the same as an "environment"!) More formally, we can recursively define these operations:

\[ r_1 + r_2 \triangleq \begin{cases} r_1 & \text{if } r_1 = < > \\ r_2 & \text{else} \end{cases} \]

\[ r \rightarrow \text{id} \triangleq \begin{cases} r & \text{if } r = < > \\ \text{id} & \text{else} \end{cases} \]

\[ \text{env[v/id]} \triangleq \lambda \text{id1 if id1 = id then v else env(id1)} \]

(Note that the equality "-" used here between identifiers is true iff the two identifiers are same identifier -- it has nothing to do with the values of those identifiers.)

**Translating from Static-Phi to Static-IL**

A Static-Phi expression is not evaluated directly. Instead, it is first translated to a corresponding Static-IL expression (contained in an ERT), which is in turn evaluated through one or more phases.

The function \textit{Trans-count} is applied to the Static-Phi program and produces the Static-IL translation by calling auxiliary functions \textit{Trans} and \textit{Count}. These functions have the following types:

\textit{Trans-count}: \textit{EXPR} \rightarrow \textit{ERT} \%
\textit{Count}: \textit{EXPR} \times \text{NUMBER} \rightarrow \text{NUMBER} \%
\textit{Trans}: \textit{EXPR} \times \text{NUMBER} \rightarrow \textit{ERT} \%

The TYPE component of the ERT that \textit{Trans} or \textit{Trans-count} returns will always be \texttt{ort}, the EXPR component will be the Static-IL expression corresponding to \textit{EXPR}, and the RENV component will list all the free variables appearing in that \textit{EXPR} component. Each variable is initially type \texttt{ort}. \textit{Trans-count} is simply defined as follows:

\textit{Trans-count}[ e ] = \textit{Trans}[ e . \textit{Count}[ e . 0 ] ] \%

Function \textit{Count} is used to count the depth of the minimum number of phases required, and \textit{Trans} does the real translation work. These functions are defined below.
Auxiliary Function "Count"

Function Count actually counts a depth, which may be positive or negative, rather than the number of phases required. The parameter n represents the current normal runtime phase -- the number of phases before some arbitrary phase 0. Thus, a more positive n indicates an earlier phase, and a less positive (or negative) n indicates a later phase. Thus, this numbering is the opposite from phase numbering used in previous chapters of this work. The reason for this is that in translation and phase evaluation the emphasis is on the number of phases required, rather than the number of phases that have already been performed. The following rules define Count.

Count[ id, n ] = n

An identifier does not need any extra type checking phases.

Count[ b, n ] = n+1
Count[ m, n ] = n+1
Count[ t, n ] = n+1

Constants need only one extra phase for type checking.

Count[ (funtype e1 e2), n ] =
    Maximum{ n+1, Count[e1,n], Count[e2,n] }

The funtype construct itself needs one extra phase for type checking, but the subexpressions may need more, so we take the maximum.

Count[ λ id : e1 → e2 . e3, n ] =
    Maximum{ n+2, Count[e1,n+1], Count[e2,n+1], Count[e3,n] }

The λ construct requires two extra phases: one to type check the function itself, and one to check the types of the domain and return type expressions. Of course, the subexpressions may need more, so, as with funtype, we take the maximum. Also note that subexpressions e1 and e2 are implicitly inside an eval; hence the "n+1"s.

Count[ (e1 e2), n ] =
    Maximum{ n+1, Count[e1,n], Count[e2,n] }

Function application itself needs one extra phase for type checking, but the subexpressions may need more, so again we take the maximum.

Count[ (emit e), n ] = Count[ e, n-1 ]

The emit construct is not a runtime notion at all. The number of phases required just depends on the subexpression, but note that its normal runtime phase will one phase later. Trans will take that into account during translation, so we anticipate it here by subtracting one from the current depth.
\( \text{Count}(\text{eval } e, n) = \text{Count}(e, n+1) \)

The inverse of emit.

**Translation Rules**

\( \text{Trans}(\text{id, n}) = <\text{id}, <<\text{id}, \text{ort}>, \text{ort}> \) -- Identifiers

Each identifier is initially type \text{ort}. The EXPR component is simply the identifier, hence the required-environment only lists this one identifier of type \text{ort} as the free variables appearing in it.

\( \text{Trans}(\text{b, n}) = <\text{e}, <>, \text{ort}> \) -- Boolean constants

where \( e \in \text{EXPR} = (\text{deep-const } b \text{ boolean } n-1) \)

A constant is translated to an ERT in which the EXPR component is a deep-const expression. There are no free variables in it; hence the required-environment component of the returned ERT is empty.

\( \text{Trans}(\text{m, n}) = <\text{e}, <>, \text{ort}> \) -- Number constants

where \( e \in \text{EXPR} = (\text{deep-const } m \text{ number } n-1) \)

Similar to boolean constants.

\( \text{Trans}(\text{t, n}) = <\text{e}, <>, \text{ort}> \) -- Basic type constants

where \( e \in \text{EXPR} = (\text{deep-const } t \text{ type } n-1) \)

Similar to boolean constants.

\( \text{Trans}(\text{(funtype e1 e2), n}) = \) -- Types of functions

let \( <\text{e1}', r1, \text{ort}> \in \text{ERT} = \text{Trans}(\text{e1}, n) \),

\(<\text{e2}', r2, \text{ort}> \in \text{ERT} = \text{Trans}(\text{e2}, n) \)

in \( <(\text{check-funtype e1' e2' } n-1), (r1 + r2), \text{ort}> \)

The subexpressions are translated to ERT’s, and their RENV (required-environment) and EXPR components are combined to form the resulting ERT. The expression components simply become the subexpressions of a check-funtype expression -- they will evaluate to ERTs in the first evaluation phase. The required-environments are simply concatenated because the free variables of the whole check-funtype expression are simply the free variables of the subexpressions \( e1' \) and \( e2' \). All variables are type \text{ort} in the first phase.

\( \text{Trans}(\lambda \text{id} : e1 \rightarrow e2 . e3, n) = \) -- Abstraction

let \( <\text{e1}', r1, \text{ort}> \in \text{ERT} = \text{Trans}(\text{e1}, n-1) \),

\(<\text{e2}', r2, \text{ort}> \in \text{ERT} = \text{Trans}(\text{e2}, n-1) \),

\(<\text{e3}', r3, \text{ort}> \in \text{ERT} = \text{Trans}(\text{e3}, n) \)

in \( <(\text{check-check-lambda } \text{id} \text{ e1' e2' e3'} n-2),

(r1 + (r2 + (r3 - \text{id}))), \text{ort}> \)
The subexpressions are translated to ERTs, then combined to form the resulting ERT. Subexpressions \( e_1 \) and \( e_2 \), which give the function's domain and range types, are inside an implied `eval`; hence they are translated so that the function's domain and range types will be computed one phase before the function value (closure) is computed. The `EXPR` component of the resulting ERT simply uses the original bound variable, \( \text{id} \), and the `EXPR` components from translating the subexpressions to form the `check-check-lambda` expression. The `required-environments` are combined, but since \( \text{id} \) is a locally bound variable inside the body expression \( e_3' \), it is removed from \( r_3 \) before being combined with \( r_1 \) and \( r_2 \). However, \( \text{id} \) is not locally bound in \( e_1' \) or \( e_2' \) (i.e. \( e_1' \) and \( e_2' \) are in an outer scope) so it is not removed from \( r_1 \) or \( r_2 \).

\[
\text{Trans}[(e_1, e_2), n] = \quad --\text{Function application}
\begin{align*}
\text{let} & \quad <e_1', r_1, \text{ert} > \in\text{ERT} = \text{Trans}[e_1, n] . \\
& \quad <e_2', r_2, \text{ert} > \in\text{ERT} = \text{Trans}[e_2, n] \\
\text{in} & \quad <(\text{check-apply } e_1', e_2'), (r_1 + r_2), \text{ert} >
\end{align*}
\]

The subexpressions are translated and combined to form the resulting `check-apply` ERT.

**Phase Evaluation**

We now define a function, \( \text{Pheval} \), that evaluates a Static-IL expression relative to some environment \( \text{env} \). \( \text{Pheval} \) has the following type:

\[
\text{Pheval} : \text{EXPR} \rightarrow \text{ENV} \rightarrow \text{ECONT} \rightarrow [\text{EV} + \text{ERROR}] , \quad \text{or equivalently:}
\text{Pheval} : \text{EXPR} \rightarrow \text{ENV} \rightarrow [\text{EV} \rightarrow [\text{EV} + \text{ERROR}]] \rightarrow [\text{EV} + \text{ERROR}] .
\]

The environment \( \text{env} \) is a function, with the following type:

\[
\text{env} \in \text{ENV} = \text{ID} \rightarrow \text{EV}
\]

\( \text{Pheval} \) uses two auxiliary functions: \( \text{Funtype?} \) and \( \text{Consistent?} \). \( \text{Funtype?} \) is used on \( \text{TYPEs} \). It is \text{true} for functional types, i.e. types of the form \( <\text{fun } t_1, t_2> \), for some types \( t_1 \) and \( t_2 \). It is not defined here, but has the following type:

\[
\text{Funtype?} : \text{TYPE} \rightarrow \text{BOOLEAN}
\]

Auxiliary function \( \text{Consistent?} \) checks whether the types of identifiers in two required-environments are consistent. In other words, for each identifier and type \( <\text{id}, t> \) in the first required-environment, \( \text{Consistent?} \) checks every identifier-type pair \( <\text{id}', t'> \) in the second required-environment, and returns \text{false} if two identifiers \( \text{id} \) and \( \text{id}' \) match but their types \( t \) and \( t' \) differ. Otherwise it returns \text{true}. \( \text{Consistent?} \) has the following type:

\[
\text{Consistent?} : \text{RENV} \times \text{RENV} \rightarrow \text{BOOLEAN}
\]

Formally, \( \text{Consistent?} \) can be recursively defined as follows.
\[\text{Consistent}(r_1, r_2) \triangleq\]
\[
\begin{cases}
\text{true} & \text{if } r_1 = <r_1> \text{ or } r_2 = <r_2> \\
\text{false} & \text{else}
\end{cases}
\]

\[\text{let }<\text{id1}, t_1>, r_1' > \epsilon \text{ RENV } = r_1, \]
\[<\text{id2}, t_2>, r_2' > \epsilon \text{ RENV } = r_2\]
\[\text{in } \]
\[\text{if } \text{id1} = \text{id1} \text{ and } t_1 \neq t_2\]
\[\text{then false}\]
\[\text{else } \text{Consistent}(r_1', r_2) \text{ and } \text{Consistent}(r_1, r_2')\]

**Phase Evaluation Semantic Rules**

\[\text{Pheval[ id ]}(\text{env})(k) = k(\text{env}(\text{id})) \quad \text{-- Identifier}\]

The value of the identifier is simply retrieved from the environment. For at least the first phase after translation, the identifier is guaranteed to evaluate to an ERT. In a subsequent phase, it may evaluate to a value of some other type.

\[\text{Pheval[ quote v ]}(\text{env})(k) = k(v) \quad \text{-- Quoted value}\]

A quoted value is simply returned as is. Quoted values may be of various types.

\[\text{Pheval[ incr e ]}(\text{env})(k) =\]
\[\text{Pheval[ e ]}(\text{env}); \quad \lambda v \in \text{EV} . k(v+1) \quad \text{-- Increment (add 1)}\]

The subexpression is evaluated (it will be a number), and the resulting value plus one is passed on to the continuation.

\[\text{Pheval[ check-funtype e1 e2 n ]}(\text{env})(k) =\]
\[\text{Pheval[ e1 ]}(\text{env}); \quad \lambda < e_1', r_1, t_1 > \epsilon \text{ ERT } . \text{Pheval[ e2 ]}(\text{env}); \quad \lambda < e_2', t_2, t_2 > \epsilon \text{ ERT } . \]
\[\text{if } \text{Consistent}(r_1, r_2) \]
\[\text{then if } n > 0 \]
\[\text{then if } t_1 = \text{ert} \text{ and } t_2 = \text{ert} \]
\[\text{then } k(\langle \text{check-funtype } e_1' e_2' n-1, r_1+r_2, \text{ert} \rangle) \]
\[\text{else error-ert-expected} \quad \text{-- Needed an ERT.}\]
\[\text{else if } t_1 = \text{type} \text{ and } t_2 = \text{type} \]
\[\text{then } k(\langle \text{funtype } e_1' e_2', r_1+r_2, \text{type} \rangle ) \]
\[\text{else else error-non-type} \quad \text{-- Needed type.}\]
\[\text{else error-inconsistent-req-envs}\]

Excluding errors, \text{check-funtype} always evaluates to an ERT, passing it on to the expression continuation. The purpose of \text{check-funtype} is to generate a \text{funtype} expression whose subexpressions are guaranteed to evaluate to \text{TYPE}'s. In contrast with \text{funtype}, the subexpressions of \text{check-funtype} evaluate to ERTs.

Subexpressions \(e_1\) and \(e_2\) are first evaluated; they evaluate to intermediate ERTs. These intermediate ERTs will be combined to form the resulting ERT, whose expression component will either be a \text{check-funtype} or a \text{funtype} \text{EXPR}. The required-environment components of the

108
intermediate ERTs must be consistent, since they will be concatenated to form the required-environment of the resulting ERT. The phase depth \( n \) determines whether a \texttt{check-funtype} or a \texttt{funtype} expression is to be generated. If \( n > 0 \), we still have one or more phases to go before we should generate a \texttt{check-funtype} expression, so the subexpressions must evaluate to ERTs; otherwise (when \( n = 0 \)), we must generate a \texttt{funtype} expression, and its subexpressions must evaluate to TYPEs.

\[
\text{Pheval}(\text{funtype } \texttt{el} \ \texttt{e2}) = \text{ --Function type} \\
\text{Pheval}(\texttt{el1}) = \lambda \texttt{t1} \in \text{TYPE} . \text{Pheval}(\texttt{e2}) \\
\text{Pheval}(\texttt{el2}) = \lambda \texttt{t2} \in \text{TYPE} . \texttt{k}(<\text{fun} \texttt{t1}, \texttt{t2}>) \quad \text{-- t1 is domain; t2 is range.}
\]

Excluding errors, \texttt{funtype} always evaluates to a TYPE. In contrast with \texttt{check-funtype}, \texttt{funtype}'s subexpressions both evaluate to TYPEs. The final result will be a function type, containing the types of the function's domain and range, obtained from evaluating subexpressions \texttt{el} and \texttt{e2}.

\[
\text{Pheval}(\text{check-check-lambda } \texttt{id} \ \texttt{el} \ \texttt{e2} \ \texttt{e3} \ n) = \\
\text{Pheval}(\texttt{el1}) \quad \text{--Needed ERT} \\
\text{Pheval}(\texttt{e21}) = \lambda <\texttt{e1'}, \texttt{t1}> \in \text{ERT} . \text{Pheval}(\texttt{e2}) \\
\text{Pheval}(\texttt{e31}) = \lambda <\texttt{e2'}, \texttt{r2}, \texttt{t2}> \in \text{ERT} . \text{Pheval}(\texttt{e3}) \texttt{(env}[<\text{id},<<\text{id},\text{ert}>,<>],\text{ert}<\text{id}>)] \\
\text{Pheval}(\texttt{e32}) = \lambda <\texttt{e3'}, \texttt{r3}, \texttt{t3}> \in \text{ERT} . \\
\text{if Consistent?}(\texttt{r1}, \texttt{r2}) \\
\text{then if Consistent?}(<<\text{id},\text{ert}>,<>],\texttt{r3}) \texttt{and Consistent?}(\texttt{r1}+\texttt{r2}+(\texttt{r3}-\texttt{id})) \\
\text{then if t3 = \texttt{ert}} \\
\text{then if n > 0} \\
\text{then if t1 = \texttt{ort} and t2 = \texttt{ort}} \\
\text{then let e=(check-check-lambda } \texttt{id} \ \texttt{el'} \ \texttt{e2'} \ \texttt{e3'} \ n-1) \\
\text{in k(<e, (r1+r2+(r3-id)). ort>)} \\
\text{else error-non-ort} \quad \text{--Needed ERT} \\
\text{else if t1 = type and t2 = type} \\
\text{then let e=(check-lambda } \texttt{id} \ \texttt{el'} \ \texttt{e2'} \ \texttt{e3'}) \\
\text{in k(<e, (r1+r2+(r3-id)). ort>)} \\
\text{else else error-non-type} \\
\text{-- Not a type expr} \\
\text{else error-body-is-not-ort} \quad \text{-- Body should be ERT} \\
\text{else error-different-type-used-in-body} \\
\text{-- Clash of used/expected types} \\
\text{else error-inconsistent-req-envs}
\]

Excluding errors, \texttt{check-check-lambda} always evaluates to an ERT and passes it on to the expression continuation. The purpose of \texttt{check-check-lambda} is to generate a \texttt{check-lambda} whose first two subexpressions are guaranteed to evaluate to values of type \text{TYPE}. In contrast to \texttt{check-lambda}, all of \texttt{check-check-lambda}'s subexpressions evaluate to ERT's.

Bound variable \texttt{id} is local to subexpression \texttt{el3} (\texttt{el3} is in a new scope), and will be bound to an ERT within \texttt{el3}, whereas subexpressions \texttt{el1} and \texttt{el2} are considered to be in some outer scope. We first evaluate \texttt{el1} and \texttt{el2} in the outer environment, and then evaluate \texttt{el3} in an environment in which the bound variable \texttt{id} is bound to the following ERT: \texttt{<id,<id,ert>,<>].ort>}. The expression
component is simply the identifier, and it will evaluate to an ERT; hence the type component is ERT. and the only free variable listed in the required-environment component is the identifier itself. In effect, this declares instances of id already appearing in the body to be type ERT. (New instances may be introduced, however, when subexpressions evaluate to ERTs, as with macro expansion.)

The first Consistent? test ensures that any variables used in the domain and range subexpressions are the same types. The second and third Consistent? tests ensure that the body expects the formal parameter to be type ERT and that any other free variables appearing in the body have the same types as they do in the domain and range subexpressions. These tests are necessary because subexpressions that evaluate to ERT’s can introduce new references to bound variables.

If the phase depth \( n > 0 \), we have to generate another \texttt{check-check-lambda}, in which case the domain and range subexpressions must again evaluate to ERTs; otherwise, we generate a \texttt{check-lambda} and the domain and range subexpressions must evaluate to TYPEs.

\[
\text{Pheval}(\text{check-lambda } id \: e1 \: e2 \: e3 \:)(\text{env})(k) = -- e1, e2 will be TYPEs
\]
\[
\text{Pheval}(\: e1 \:)(\text{env});
\]
\[
\lambda t1 \in \text{TYPE} \cdot \text{Pheval}(\: e2 \:)(\text{env});
\]
\[
\lambda t2 \in \text{TYPE} \cdot \text{Pheval}(\: e3 \:)(\text{env}[\; <t1,<<id.t1>>,<>>,id> / id ]);\]
\[
\lambda <t3, r3, e3' > \in \text{ERT} \cdot
\]
\[
\quad \text{if Consistent}(\; <<id.t1>>,<>>,id>, r3 \;)
\]
\[
\quad \text{then if } t2 = t3
\]
\[
\quad \quad \text{then } k(\; <(\text{lambda } id \cdot e3' ), r3 - id, \text{<fun t1 t2 >>} \;)
\]
\[
\quad \quad \text{else error-body-and-range-types-differ}
\]
\[
\quad \text{else error-different-type-used-in-body}
\]
\[
\quad -- id has different type \quad \text{body}
\]

Excluding errors, \texttt{check-lambda} always evaluates to an ERT. Its purpose is to generate a \texttt{lambda} expression whose body expects the formal parameter to be the type declared for it.

Type subexpressions \( e1 \) and \( e2 \) are evaluated to types \( t1 \) and \( t2 \), then body subexpression \( e3 \) is evaluated to an ERT in an environment that includes a binding of the formal parameter \( id \) to the ERT \( <t,<id.t>>,<>>,id> \). In effect, this declares existing instances of \( id \) in the body to be type \( t \). The Consistent? test is used to verify that a new instance of the formal parameter with a different type has not been injected into the body expression (as can happen with macro expansion). Finally, the body type must agree with the function’s declared range type.

\[
\text{Pheval}(\; (\text{lambda } id \cdot e \:)(\text{env})(k) = k(\; <id, e, env > \;)
\]

This is a function abstraction. To implement lexical scoping, a closure of the bound variable, expression body, and current environment is created and returned.
Pheval\[(\text{check-apply } e1\ e2)\](env)(k) = -- e1 and e2 will be ERTs
Pheval\[ e1\](env):
\[\langle e1\rangle \in \text{ERT} \rightarrow \text{Pheval}\[ e2\](env):
\[\langle e2\rangle \in \text{ERT} \]
if Consistent?( r1, r2 )
then let fun t11, t12 \rangle \in \text{FTYPE} = t1 -- Domain, range
in
if t11 = t2
then k( \langle \text{apply } e1\ e2\rangle, r1+r2, t12 \rangle )
else error-type-mismatch -- Formal-actual type mismatch
else if t1 = e1
then if t2 = e2
then k( \langle \text{check-apply } e1\ e2\rangle, r1+r2, e2 \rangle )
else error-arg-ready-before-function
else error-non-function -- Not function or ERT
else error-inconsistent-req-envs

Excluding errors, \text{check-apply} will always evaluate to an ERT. Its purpose is to generate an apply expression that has been type checked to guarantee that the first argument will evaluate to a function, and the second argument will evaluate to the type declared for the function's formal parameter. In contrast with apply, the subexpressions of \text{check-apply} both evaluate to ERTs.

Subexpressions e1 and e2 are evaluated to ERTs, and the required-environments of these ERTs, must be consistent; they are checked as in previous cases. If t1 is a function type, the function subexpression e1 will evaluate to a function to be applied to the actual parameter in the next phase; hence the type of the actual parameter must match the function's declared formal parameter type, and an apply ERT will be generated. Otherwise, t1 should be e1, indicating that the function subexpression will again evaluate to an ERT during the next phase. In this case, t2 should also be e1 (indicating that the argument subexpression will also evaluate to an ERT), and another \text{check-apply} will be generated. At this point, it is an error if t2 isn't e1, since this means that the argument is ready to evaluate to some fixed, non-ERT value before the function expression is ready to evaluate to a function value.

Pheval\[(\text{apply } e1\ e2)\](env)(k) = -- Function application
Pheval\[ e1\](env):
\[\langle e1\rangle \in \text{CLOSURE} \rightarrow \text{Pheval}\[ e2\](env):
\[\langle e2\rangle \in \text{EV} \rightarrow \text{Pheval}\[ e1\](env'[v/id])(k)

Normal function application. Subexpression e1 is guaranteed to evaluate to a function closure, and e2 evaluates to the actual parameter, the type of which is guaranteed to be the domain type of the function.

Proving That No Runtime Type Errors Are Possible

This section briefly sketches how to approach proving the assertion that runtime type errors are not possible in Static-IL. The more specific assertion is that every ERT generated by this system is valid. (This will be clarified below.) Overall, the proof is by induction on the number of phases
used to produce the ERT. The basis is zero phases, when the ERT is produced directly by the Translator. Both the base case and the induction step are, in turn, proved using structural induction on the original Static-Phi program or the Static-IL Expression component of the ERT.

First off, we must define what we mean by "runtime type error" in order to show that such errors are not possible. The easiest way to do this is probably to add an explicit type tag to the values that are manipulated by Static-IL programs, and then to define runtime type errors in terms of these type tags.

Next we must specifically define what it means for an environment to satisfy a Required-environment. The environment must supply bindings of the proper types for all of the identifiers listed in the Required-environment.

Now, we really want to prove that every ERT produced by this system is "valid", so we must define "valid". Basically, an ERT <e,r,t> is valid if, in an environment that satisfies the Required-environment r, e is guaranteed to evaluate to a value of type t (or to some compile-time error value) without incurring any runtime type errors.

With the proper definitions in order, the proof would proceed by induction on the number of phases used to produce the ERT.

Basis. The basis is when zero phases were used to produce the ERT, that is, we must first show that the translator always produces a valid ERT. This part would be done using structural induction on the original Static-Phi program. The most important thing to note in this part is that the result of the Count function used in translation is completely irrelevant to the proof. The n parameter used by several of the Static-IL constructs to determine how many phases to wait, has no bearing on the type correctness of the system.

Inductive hypotheses. Next, we consider any valid ERT <e,r,t>, and any environment env that satisfies the required environment r. Thus, the basic inductive hypothesis is that <e,r,t> is valid and that the environment env satisfies the Required-environment r. But furthermore, we must construct the right hypothesis on the environment to ensure that no Trojan horse runtime type errors can sneak in through the environment. Every ERT value that comes from the environment must be valid, and every function that comes from the environment must be assured to execute without runtime type errors.

Induction. We must now prove that if t=ert then Pheval[e](env) (av v) is either a valid ERT or one of the compile-time error values. This would proceed by structural induction on e.
END
4-87
DTIC