


Software Engineering Institute
Technical Report

ESD-TR-86-2013

CMUA/SEI-W6TR-4

December 1986

Specifying Functional and Timing Behavior
for Real-Time Applications

M.R. Barbacci
J.M. Wing

Approved for public release. Distribution unlimited.

Carnegie Mellon University Pitburgh, Pennsylvania 15213

This research is carried out jointly by ft Softwe Engineering Institule, a Federally Funded Research and Development
Cnter, sponsored by the Department of Defense, and by fth Deparmen t of Computer Science, sponsored by te

Defense Advanced Reseairch Projcts Agency (DOD), ARPA Order No. 4976, monitored by fte Air Force Avionics
Laboratory Under Contract F33615-84-K.1520. Additional support for J.M. Wing was provided In part by Owe National
Science Foundation under grant DM048519254.



U

I

This technical report was prepared for the

SEI Joint Program Office
ESD/XRS
Hanscom AFB, MA 01731

The Ideas and findings in this report should not be construed as an official DoD position.
It is published in the Interest of scientific and technical information exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

Karl H. Shingler
SEI Joint Program Office "".

-II
"3

!i
~ '







II

I I Problem Context
MWny omputaCon-In ve, real-time appications require ficient concurrent execution of multiple tiks

devoted to specf pieces of to ac,,on. Typic tasks Indud sensd cleci, obte
recogniion, and global path planning, In applications such as robotics and vehicular conrl. Since, the
speed and toughput required of each task may vary, lhese applications can best exploit a computing
eironment consisting of multiple special and general purpose processors ta we logically, tough not
necessarly physically, loosely connected. We cal this environment a 1heftogeneous macdine.

During execution time, proceses, which ae instancs of tasks, run on possibly separate processors, and
communicate with each other by sending messages of different types. Since the patterns of
communication can vary over ime, and the speed of the individual processors can vary over a wide
range, additional hardware resources, in t form of switching networks and data buffers ae required in
the physical heterogeneous machine. Logically, que are used to buffer data; processes dequeue data
on queues attached to input ports and enqueue data from queues attached to output ports.

The applcation developer Is responsible for prescribing a way to manae all of these resources. We call
fth prescription a Ask-eeW/ app/icdaon daa'i~tion. It describes th tasks to be executed, the assignment

of processes to procesos. the data paths between the processors, and te intrmediate queues
required to store the data as it moves from source to destination processes. A task-lovel descripion
language is a notation in which to wrib these application descriptions.

We are using the rm "dscription language" rather thmn "progranu ng uage to emphasize tat a
task-level application descriplion is not translated into object code in some kind of executable "machine
lnguage." Rather, It is to be understood as a description of the structure and behavior of a logical
mne, that will be synthesized into resource allocation and schieduling directives. These directives are
to be inerpreted by a combinaion of software, firmware, and hardware in a heegmmeous machine.

We have an initial design of such a description language [11, a compiler for t, and a simulator tha takes
task descriptions as Input. A task description (see Figure 1) contains information about four aspects of a
task: (1) its interface to other tasks (ports) and to the scheduler (signals), (2) its Axctional and timing
behavior, (3) its attributes, and (4) its internal structure, thereby allowing for hierarchical task
descriptions. Reference [I] contains a more complete explanation of these and other features of the
language. In this paper we focus on only one aspect: te Information appearing in the behavior part of a
task description.

2 Contributions
Formal spedficalions have been used successfully for specifying the functional behavior of software
systems, e.g., individual program modules and abstract data types. These specifications have
traditionally been used to verify a program's correctness ("is the right answer computed?"). Often,
however, one Is interested In not only the functional correctness of a system but also other properties,
such as reliability, performance, security, and real-time behavior. Less work has focused on formally
specifying these other properties of software systems, let alone their interactions with each other.

To our Wwiedge no work has addressed the formal integration of the formal specification of functional
and timing behavior of software. The main contribution of this paper Is exactly this integration of
functional and timing spectficatons as embodied In our task description language.
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Figure 1: A I emplate for Task Descriptions

We combine two separate formalisms: an axiomatic specification language, Larch [11. 12], used to
specify functional behavior, and an event expression language used to specify timing behavior. Both we
mapped to the same underlying logic, typed first-order predicate logic, so that their combination has a
formal semantics.

Two significant aspects of our work are as follows:
" Since the formal semantics is relatively simple (first-order logic), not only can people easily

understand our specifications but the specifications themselves can easily be subiet to
machine analysis. 3

" We build upon previous well defined and isolated pieces of research and combine them in a
meaningful way. Their combination Is applied in a context (heterogeneous machines) that
belf is of growing interest to those involved in parallel architectures and languages.

3 Introduction to Larch q
Before we describe the functional and timing specifications of a task, we give a brief introduction to
Larch'.

Larch uses a two-tiered approach to specifying program modules: a trait defines state-independent
properties, and an interface specification defines state-dependent properties of a program. A trait is
written in the Larch Shared Language (LSL), and it provides the assertion language used to express and
define the meaning of the predicates of an interlace specification.

For a program module, such as a procedure, a Larch interface specification is written In a Larch Interface
Language (LIL) and contains predicates about the states before and after the execution of the procedure.
The Larch Interface Language to be used Is specific to the programming language In which the procedure
is written (e.g., C, CommonUsp, Ada, etc.). For this paper we will use a relatively simple interface
language, such as would be defined for an Algol-like language.

'We are keeping this in~roduction to Lardi very sotThe reader is encouraged to consult the apprapdate references in the
bbWioaply.

I

~. - -w ~.rP-------------



3

orals: tWilt
hitroduasa

Emty: -

ZAaat: - 4 0
1~7u: a -+ 230Slft: 2 -4 bool

ooatne Q sota
a geneated by t Emty, zaawrt

for N q-0,0,al:~~tl a)
Vlz~t(Zfezt ~ N *) I y(q) thena @I iVzat(q)

mast(zas-t(q, a)) -If :Leftty(q) then Emty elma Xnset(Mast(q), .)
1~(t bty) - ezue
Is.mty(maeft (q, e)) = fals
1s~(ty, 6) M false
laza(Zamect(q, 0), 61) - (a M *I) I GiO~(q, 01)

a. A Trait for Queue Values

Ruqus - amtlon (q: queue, a: elsment)
ensures q..- Znaezt (q, s)

Deqau - operation (q: qmeue) zetucse (a: elaenst)
requires -Lamty (q)

*ensures q..- Rest (q) A e - FLtst (q)

b. Interfaces for Queue Operations

Figure 2: A Larch Two-Tiered Specification for Queues

* Figure 2 depicts a Larch (two-tiered) specification of queues with Enqueue and Dequeue operations. The
*top part of the specification (Figure 2.a) is atrat writtenhILSL used to describe values of queues. A trait

Is akin to an algebraic specification (see Section 7 on Related Work). A set of operators and their
signatures following Introduces defines a vocabulary of terms to denote values of a type. For example,
Empty and Insert(Empty, 5) denote two different queue values. The set of equations following the

* constrains clause defines a meaning for the terms; more precisel, an equivalence relation on the terms,
* and hence on the values they denote. For example, from the above trait, one could prove that

First(Rest(insert(Inser(Empty, 5), 6))) - 6.

The bottom part of the specification (Figure 2.b) contains two Interfaces written In our "geneic" Larch
interface language. They describe the functional behavior of two queue operations, Enqueue and
Dequeue (queue operation names are used to write timning expressions, which are described later in this
paper). A requires Is a pre-condition on the state of an operation's input data that must be true upon
operation Invocation; an ensures Is a post-condition on the state of an operation's Input and output data
that Is guaranteed to be true upon operation termination. An ornitted predicate Is taken to be true. The
specification for Dequeue states that Dequeue must be called with a non-empty queue and that it
modifies the original queue by removing Its first elemnent and returning It.

. . ... . ------- ......
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4 Behavioral Information
The behavioral Infomnation in a task description Is divided into two parts: a functional specification and a
timing specification I the next two subsections we describe Informally the syntax and meaning of these
two specificatlons. Section 5 gives the formal meaning, and In particular, the meaning of the combination
of functional and timing specifications.

4.1 Functional Specifications

4.1.1 Syntax and Meaning 6
The functional information of a task description (see Figure 1) describes the behavior of the task in terms
of predicates about the data in the queues, before and after each execution of the task. It consists of a
requires clause and an ensures clause, together constituting a simple Larch interface specification. LSL

is used as the assertion language in the predicates of these clauses.

A requires dause states what is required to be true of the data coming through the input ports; an
ensures clause states what Is guaranteed to be true of the data going out through the output ports. If
one were to view each cycle of a task as one execution of a procedure, the requires and ensures are
exactly the pre- and post-conditions on the functionality of that cycle.

A task implementation must satisfy the predicates, R and E, of the requires and ensures clauses. A task
implementation is simply a program written in some programming language, e.g., C, CommonL-sp, or
Ada. Using Hoare-Iike notation, an implementation, Prog, satisfies the (functional) specification if:

(R) Prog (E)

It Is up to the task implementor to show that a task implementation satisfies the functional specification as
given by the requires and ensures clauses. This verification can be done formally - standard

verification techniques can be used ((13, 14]) and some mechanical tools are available to aid this
process ([9, 19, 22, 211). We defer to Section 5.2 for the definition of the meaning of the predicates in
the presence of tirming information.

4.1.2 Example
Consider a matrix multiplication task (Figure 3) that takes Input matrices from two queues and outputs the
result matrix on an output queue. The data traveling through these ports are of type matrix. Matrix values

are specified using LSL just as for queue values, so "rows," "cols" and "" would be defined in a trait
about matrix values. The requires clause states that the task implementor may assume that the number
of rows of the matrix entering through the port inl, equals the number of columns of the matrix entering

through in2. The ensures clause states that the result of multiplying the two input matrices is output

through the output port.

4.2 Timing Specifications

4.2.1 Syntax and Meaning
The timing information describes the behavior of the task In terms of the operations that it performs on the
queues attached to Its input and output ports; this is the behavior of the task seen from the outside.

n
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task m itipLy

3 1n, La2: In watriz;
Gati: out matrix;

belavier
requir. ROW.(liLrt(Lal)) aole (pist (iIL2))
ensures Zamert(etl, First(151) * First(152))

end mltiply

Figure 3: The Functionality of a Matrix Muliplicatlon Task

The simplest timing expression Is the name of a queue operation, e.g., Enqueue or Dequeue, on a queue
attached to a specific port, e.g., In. The duration of a queue operation or the delay between two
operations Is described by a time window. Time windows are denoted by a pair of time values [(rmn,Tmax]
defining the boundaries of the Interval. The time window associated with a queue operation describes the
minimum and maximum time needed to pedorm the operation. Intervals of time between queue
operations are denoted by a Delay "operation" whose time window describes the minimum and max;mum
time consumed by the process In between queue operations.

A composite timing expression denotes the sequential andlor concurrent execution of operations on
queues. Sequential composition is denoted by a space between operations; parallel composition is
denoted by a "1l" between operations. For example,

loop (nl.Dequeue[1O0,15 I1 in2.Dequeue) delayr.30 outl.Enqueue

is a sequential timing expression that specifies two parallel Dequeue operations on the queues attached
to the input ports in1 and in2 followed, after some delay, by an Enqueue on the queue attached to the
output port outi. The Delay lasts some undetermined amount of time less than 30 seconds. The
Dequeue operation on port in1 takes between 10 and 15 seconds to complete. The other two operations
take some implementation dependent default time to complete. The keyword loop denotes a cyclic or
repeating task.

An optional guard in a timing expression specifies:
1. the number of times the task is to be executed: "repeat integer -> expression," or

2. during what time Interval the task Is allowed to start: "during timewindow -> expression," or

3. the earliest allowable start time: "after timevalue => expression," or

4. the latest allowable start time "before timevalue a> expression," or

5. a predicate on the state of the input queues or the current time which must be true before
the task is allowed to start: 'When predicate -> expression."

In our examples, we will often drop the name of the queue operation and use just the name of the port
(i.e., "inl" instead of "nl.Dequeue"). Since this paper introduces only two queue operations: Enqueue
and Dequeue, and given that the former applies only to input queues and the other applies only to output
queues, no confusion should occur as to which operation Is Implied.

%,
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4.2.2 Example
Consider a matrix multiplication task (Figure 4) that takes input matrices from two queues and outputs the
resul matrix on an output queue. The timing clause states that the task does not start executing until
both Input queues contain data. Once that condition is satisfied, the task wil remove Its input data from
both input queues concurrently (the Dequeue operations), will operate on the data for between 10 and 15
seconds (this "computation" time is lumped together under the delay operation), and finally will enqueue
some output In the output queue. Notice another use of LSL in our specifications: the when condition
places a constraint on the state of the queues (not on the state of the data In the queues). We use the
tralt from Section 3 to define the assertion language for predicates in a when guard.

task waltiply

in", in2: in zmitzz;.
outl: out matri ;

behavior
requires raws( .. t(nll) - cols(rist(Ln2))
ensure o r.t(outl, ViJst(inl) * Vizst(in2))
timing when (-Li±mpty(.n,) and -iauwty(n2)) ->

((nl.. quee II £n2.Doquue) dalay[lO,13] outl.,nquoue)end ,-,ltiply

Figure 4: The Timing of a Matrix Multiplication Task

5 Formal Meaning of Functional and Timing Specifications
We use Jahanian and Mok's Real-Time Logic (RTL) [15] to give meaning to our tining expressions.
Furthermore, we use their logic to give meaning to the combination of our functional and timing
specifications. We use four of their notational conventions:

Syntax Meaning %
TA The start of an operation ("action" in RTL's terminology).

SA The end of an operation.

@(E, i) The time of the P occurrence of event E, where events in our context are the start of
an operation or the end of an operation. @ is an occurrence function that captures
the notion of real-time.

P(tl, t2) The interval of time during which the predicate P holds. P holds before or at t1, from
tl to t2, and at or after t2. If tl and t2 are identical, then P holds at an interval around
t1. For brevity, we will use P(t) when tl ,t2 (i.e., "P holds around time t").

5.1 Assigning Meaning to Timing Specifications
In this section we describe the meaning of our timing specifications in terms of RTL logic. In the following
discussion, we assume E, El, and E2 are arbitrary timing expressions; A, Al, and A2 are operations; tl
and 2 are times (absolute or relative); al and a2 are absolute times; rl and r2 are relative times; and W
is a predicate of a when guard.

To simplify the exposition, we Introduce a simple rewrite rule: Any timing expression of the form "repeat
n .> E" can be rewritten as a sequence of n occurrences of the unguarded expression E ("E E E ... E").
Thus, the only guards we need to consider are before, after, during, and when.

N-°C

Z
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We also Introduce the following axioms:
1. For any queue operation A, and for some implementation defined duration T, the following

axiom expresses the duration of A:

V I [ @(Ai) - @(tA,i) - T

2. For any queue operation Afti ,t2], with a duration defined by the time window ItI t21, the
following axiom expresses the duration of A:

V I [ t 1! @(IA^,I) - @(1A,i) <5 t2 1
3. For any sequence of queue operations, Al ... An, the following axiom relates the start and

end times of the sequence to the start and end times of the individual operations:

V i [@(TA, I) - @(TAl, i) A @(I-A, i) - @( An, i)]
4. For any parallel queue operations, Al II ...11 An, the following axiom relates the start and

end times of the composition to the start and end times of the individual operations:

V i [@(TA, i) - min(@(TA1, i), .... @(TAn, i)) A @( IA, i) - max(@( LA1, i), ..., @( IAn, i))]

5. The last two axioms state that cycles in a repeating task do not overlap. Thus, we cannot
have an input operation finish after any of the output operations and we cannot have an
output operation start before any input operation starts:

V i [ max(@( out1,i),@( L out2,i) .... @( Loutj,i)) > max(@( in,i),@(Iin 2,i) .... @(inK,i))

V i[ min(@(Tout1 ,i),@(Tout2,i),...,@(Toutj,i)) > min(@(Tinl,i),@(Tin2,i) ,..,@(inK,i)) I

where J and K are the number of output and input queues, respectively.

We assign a meaning to timing expressions by introducing a function, t (Table 1 .a), which maps timing
expressions to Boolean values,

Mt : Timing Expression -+ Boolean.

We use an auxiliary function, op (Table 1 .b), which maps timing expressions to operations,

op: Timing Expression -+ Operation.

pop is needed because "start time" and "end time" are meaningful only for queue operations.

As an example of how to interpret the formalism intuitively, consider the entries for the during guard in
Table l.a. They specify a time window during which the operation is allowed to start. The first value is
the earliest start time allowed and must be an absolute time value. The second value is the latest start
time allowed and can be an absolute time value or a time value relative to the former. The meaning of the

Cguarded expression is the conjunction of the meaning of the expression proper and a predicate stating
the restriction on starting times.

5.2 Assigning Meaning to the Combined Specifications
Given a task description of the form:

task taskname

behavior
requires Req;
ensures Ens;
timing E;

end taskname;
VIP



Tina Expiression MK(Expression)

(Eli) Mt(E)

El ... En Mt((El E2) ...En) if
El I...IIEn A Mt(EilIEJ) for all i j J

El E2 Mt(El) A Mt(E2) A V i[ @(1op(El),i) < @(Top(E2),i) ]

El 11 E2 MK(E1 ) AMt(E2) A
Vi [ @(Top(E1), I) < @(Iop(E2),i) A @(Top(E2),i) < @($op(E2),i) I

when W => El M(El) A V I [W(@(top(E1), i) I

before al => El M(E1) A V I[ @(Top(E1), il) : al

after al -> El M(E1) A V I[ @(TopE1), 1) > al

during [al, a2] > El M(E1) A V I al 5 @(Top(E1), i) <a2]

during [al, r2 -> El M(E1) A VI [ a @(top(El), I) al + r2]

A[rI, r21 V I[ @(tA, 1) + rl <5 @(IA, Q) r. @(tA, Q) + r2 ]

A[*, r1] V I[ @(IA, Q):< @(I"A, 1) + rl] i

AIM, ] V I @(TA, Q + rl < @(IA. i)]i

A true

a. Mapping from Timing Expressions to Booleans

Timing Expression op(Expression)

loop El op(E1)

El ... En op(E1) ... op(En)

El I1... II En op(E) II II op(En) •

G -> El op(E1) for all guards G (when, before, during, and after).

A[tl, 2] A

A A

b. Mapping From Timing Expressions to Operations

Table 1: Assigning Meaning to Timing Expressions .*4

'N.
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w Wmeaning tIn predicates of the functonal specification as reiatd to tIme (i.e., at what times are
thes prdcaa t hod?)via fuctin K ~ mps rombehaiorl seciicaion toBoolean values:3 Predicate x iming Expression -4 Boolean

Timiuna Exyosl M(Predicale, Exorehhlon)

SReq E VYI Req(@(T*pE). I)AM1 (E)J
Eris E V I Ens(@(1qp(E),l)A K(E)J

The function M* Is precisely the link between the functional and liming specifications. This Ink is
camcteiz abOWe purely In terms of first-order logic.

6 Examples
Figure 5 shows our multiply task with functionial and iming Information together. The figure shows two
different multiply tasks, specified to have the same functionality but with different tiin behavior. The
timing expression in Figure 5.a states that the multiply task first checks tha the Input queues are non-
empty, and NI so perform two parallel Deo"eu operations followed by an Enqueue operation. The timing
expression In Figure 5.b states that the inputs come in sequentially instead of in parallel.

tAsk mltiply
ports

ial, ±32: in matrix
Outi: out matrix

behavior
requires ow. (Firat (ial)) = ols (?±3ut (Sa))I ensures znsart(outi, riret (ial) * Pirat (La))
timing when (-i±3tty(za) and -La~y(ia2)) m>

((ial.~qu 11 i ±2.Deq&u*u) dalay(1O,151 outl.Umaww.)

a Parallel Input

task mltiply

in a: In matrix

out: out) matrix ut ~qia.
behavior

ensures In.zt (outi, rizat (Sal) * Vrzut (Sal))
timing when Lspt(alan ~T")

(Lal.Dequeue W eu"dalay[lO,3.1ot.au"

b. Serial Input
Figure 5: Matrix Multiplicationi Task

To further Illustrate the richness of our specification language and to show the benefits of cleanly
~ " separatng the functional from the timing Information, we wrie three alternatv descriptions for a task built

Into our library. This task, deal, has one input port and a number of outpt ports. Data dequeued from the
Input pout is enqueued to one of the output ports, but this can be Implemented in a numnber of ways, as
illustrated in Figure 6, below2.

lAasue OW seoni), Ihleii), and fotiih(inl) as abbrevimhor for RUw("in~l)). , (sRsm))
P~r.ftet(Ree(RU~in))). rspe~ve~. ar denedin ie trait for queues.
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The first example (Figure 6.a) states that we alternate the dequeuelng of Input and enqueuelng of output
and ensures that first (second) output queue will see the first (second) item removed from the input
queue. The second example (Figure 6.b) states that we dequeue all Input before the output operations -

sIt, which themselves take place concurrently. it allows for the first dequeued data item to be enqueued
on either of the output queues, but ensures that the second dequeued item will not be enqueued to the
same as the first. The third example (Figure 6.c) states that input data are dequeued and grouped in
pairs before enqueueing them Into the output ports. The first pair is enqueued to the first output queue;
the second pair, to the second.

taok da
ports

Lai: in insagz;
out, out2: Out ustrlz;

behavior
ensures Zaset(otl, VIrzt(Lal)) a Znaazwt(ut2, eooed(l..))

I"in loop (Lal outli a t2)

a Aterating Input and Output

task deal
ports

Lal: in imatrz;
anti, out2: Out matz;

behavior
enur (Zaezt(outl, h.tt(tal)) A Zaact(out2, .. ooad(Lal))] I

[Zast(out2, fzt(Lal)) A Znae't(outl, seood(lal))]
timing loop (Ll Lai (outi II cut2))

b. Concurrent Output

task deal
ports

ala: in -mtrLz;
autI, aut2: Out &at zz;

behavior
en*uro (Zaaezt(OUt, lzr-t(Lal)) S IZezt(outl, saoad(,al)))] • "-. G

[laezt (out2, thid(Lal)) • mart (out2, cuzth (Lnl))]
timing loop (i Lal ail Lal (otl II cut2) (outl II out2)) ,

. Grouping Data

Figure 6: Deal Task

7 Related Work
The axiomatic approach to specifying a program's functional behavior has its origins in Hoare's earty work
on verification 1131 and later work on proofs of correctness of implementations of abstract data types [141.
where first-order predicate logic pre- and post-conditions are used for the specification of each operation
of the type. The algebraic approach, which defines data types to be heterogeneous algebras [21, uses
axioms to specify properties of programs and abstract data types, but the axioms ae restricted to
equations. Much work has been done on algebraic specifications for abstract data types
[8,7, 10,27,3.6,25. 16]; we use more recent work on Larch speciflcations[11, 12 for program

modules. None of this work addresses the formal specification of timing behavior of systems.

P
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Operational approaches, such bat ased on Timed Petri-not models [20, 23], are more commonly
used for specifying behavior of real-time systems. Timed Petri-nets can be roughly characterized by

whether "operation" time Is assigned to the fsitions, as In the original model by Ramchandani [20, or
is assigned to the places, as in Sifakis' model 1231. In addition, both deterministic and stochastic timing
are allowed, giving origin to a variety of models for specifying or evaluating performance requirements.
This has been llustrated In recent work by Coolahan 141 (places, deterministic), Smith [24] (transitions,
deterministic), Wong [261 (places, stochastic), and Zuberek [281 (transitions, stochastic). In contrast, our
work takes a more axiomatic than operational approach to specifying timing behavior.

Specification and verification of timing requirements for real-time systems Include recent work by
Dasarthy 151, and by Lee, Gehlot, and Zwarlco [17, 29. This work as well as that by Jahanian and Mok,
whose real-time logic we borrow, all focus on timing properties and not on functional behavior. Either
states are left uninterpreted or predicates on states are simplistic, e.g., boolean modes as in Jahanian
and Mok's work. in contrast, since we have a formal means of specifying the functional behavior of tasks
and the data on which they operate, we have a more expressive specification language with a richer
semantics.

8 Summary
r Our approach to specifying the functional and timing behavior of real-time applications for a

heterogeneous machine has the following characteristics:
* It takes advantage of two well defined, though Isolated, pieces of previous work.

k 9 There is a clean separation of concerns between the two specifications.
" The semantics of both specifications as well as their combination are simple.

In our language design, we strove to separate the functional specification from the timing specification so
that a task's functionality could be understood independent of its timing behavior. This separation of
concerns gives us the usual advantages of modularity. Different timing specifications can be attached to
the same functional specification. Task implementors can focus on satisfying functionality first, timing
second. Task validation can be performed separately. For example, one could use formal verification for
functionality and simulation for timing.

Since the semantics can be given in terms of first-order predicate logic, our specifications are amenable
to machine manipulation and analysis. The algebraic style of Larch traits can be analyzed by rewrite-rule
tools, e.g., Reve [18]; the two-state predicates of Larch interfaces and thus, task predicates, can be
analyzed by verification systems that support first-order reasoning, e.g., Gypsy, HDM, and FDM
[9, 21, 221; formulae in real-time logic can be mechanically transformed into equivalent formulae in
Presburger arithmetic. However, though many of these tools are available, much work Is needed to
Integrate them so our specifications could be machine checked and analyzed.

6%
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