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ABSTRACT

\EgConventional ballistic evaluation of armor plate is based on a critical
impact velocity for penetration. At high hardness levels and/or low temper-

atures, ballistic impact can give rise to extensive plate cracking whether or
not penetration occurs. This report provides preliminary results on a test
procedure to assess the plate cracking sensitivity of high strength steel armor
The procedure involves the introduction of a large flaw or crack

at the center of a plate and then impacting the center of the opposite
face with a soft, blunt-nosed projectile. The impact tests are performed over
a range of temperatures to yield a plate shatter transition temperature. The
PSTT is simply the highest plate temperature at which extensive plate shatter
occurs. The influence of PSTT test parameters and correlation with fracture

toughress are currently being studied.\yg(, WAL it
. N B RO
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INTRODUCTION

The penetration resistance of armor is based on the principle of a critical
projectile impact velocity at which there is a 50 percent probability of penetra-
tion. This velocity, termed the "ballistic limit," is a function of the properties
of the projectile, angle of incidence, as well as the properties of the target,
including its thickness and test temperature. During the actual impact process,
one or several armor defeat mechanisms may be operative; e.g., petalling, plugging,
back spall, and piercing. The criterion for a "complete penetration,' in terms of
armor evaluation, is the existence of a hole created by either the penetrator or
target material on an "aluminum witness plate" placed 15 cm behind the target.
Thus, the ballistic limit does not distinguish between the various armor defeat
mechanisms and, in fact, in the case of back spall, a penetration can be recorded
without ahy penetrator material actually passing through or embedding the target.

At high hardness levels, and, particularly, at low test temperatures, ballistic
impact can give rise to another phenomenon, namely, plate cracking or shattering.
Plate cracking can occur whether or not there is a ballistic penetration (i.e.,
above or below the ballistic limit), and could render the plate useless as a struc-
tural element. In certain acceptance tests, for armor plate which is designed to
stop small arms fire, the plate is in addition required to withstand impact by a
heavier projectile without an extensive cracking (although penetration occurs).
Examples where armor plate is satisfactory ballistically, but fails the acceptance
test, particularly at low temperatures, are not uncommon.

Since the conventional test for ballistic limit does not adequately consider
plate cracking or plate shattering, a program was designed to develop a test which
could directly assess the plate cracking phenomenon. The test was based on the
observation that when cracking or shattering occurs during a conventional test, it
frequently does so in an erratic fashion. For example, in a target impacted
sequentially by three projectiles in three separate areas, cracking could occur
during the third impact, with the crack passing through the first impact area only.
Examination of the cracked plate may show that the origin of cracking occurred not
at the impact point, but at the edge of the plate which had been flame cut.
Obviously, crack initiation at some defect or crack starter would be important in
this instance and that once a crack is initiated, propagation could occur more
easily. An additional important factor is the test temperature, since experience
has shown that plate cracking occurs more readily at low temperatures. In this
manner, any test for plate cracking should be akin to a Charpy test, where a series
of notched test bars are broken over a temperature range to determine a ductile to
brittle transition temperature.

The test selected involved impact of the target plate with a relatively soft,
blunt-nosed projectile 20 mm in diameter, at a velocity just below the ballistic
limit. Under these conditions, there is a considerable transfer of momentum to the
plate, without the complicating effects of penetration. To control the location of
the crack, and to minimize the influence of random flaws, a "crack starter" is
placed on the rear surface of the plate at a location corresponding to the point of
impact on the front face. This crack starter could take various forms. One type
investigated consists of two intersecting welds, with a length of 5 cm, more than
double the diameter of the projectile. Tests carried out on separate plates over a
temperature range would give some indication of the cracking tendency of a given
heat of steel in a given heat treatment. Using the same thickness plate and
velocity of projectile, comparisons can be made of propensity to cracking of
different steels.




Further steps would include attempting to relate the material's shatter resis-
tance to other mechanical properties, such as some measure of fracture toughness.
This could provide a more readily measurable parameter for prediction of cracking
tendency. In addition, by the use of computer calculations, stress distributions
could be determined so as to more adequately consider the variables of plate thick-
ness, projectile size, and velocity.

EXPERIMENTAL PROCEDURES
Plate Shatter Tests

The plate shatter test consists of impacting a hardened steel target, contain-
ing a large preexisting flaw, with a relatively soft projectile. The flaw, acting
as a "crack starter," is provided by two 5-cm long electron beam (EB) welds in the
form of a cross at the center of a 300-mm square plate (Figures 1 and 2). These
welds are located on the rear surface of the target (i.e., opposite the impact
face).

Square plates (300 mm x 300 mm) with the thicknesses of 25, 13, and 6.4 mm
were tested to determine the effect of thickness. A relatively soft projectile
(HRB 78, 1018 steel) of 20-mm diameter and of 64-mm length was fired at a velocity
just below that required for penetration of the target. The use of a soft projectile
produced extensive mushrooming that decreased the possibility of pemetration, but
increased the momentum transfer to the plates. This subjected the plate to some
bulging of the back surface, inducing a tensile stress across the EB weld.

A series of plates of the same material and thickness was tested over a range
of temperatures so that the maximum temperature could be estimated below which
extensive cracking occurs. This temperature, henceforth referred to as the plate
shatter transition temperature (PSTT), can be considered a relative measure of re-
sistance to cracking under ballistic impact. The PSTT test is analogous to the
transition temperature in a Charpy impact test, or to the nil ductility transition
(NDT) temperature test.1>2 Both the PSTT and NDT tests measure a ductile-to-brittle
transition temperature under dynamic loading while employing a weld bead as a crack
initiator. The two tests differ in method and rate of loading, specimen geometry,
and weld bead orientation and geometry. The most important distinction is that the
PSTT test more closely simulates full-scale testing of armor plate.

A metallographic examination of several EB welds was necessary to determine
the precise weld geometry and also the extent to which these welds act as crack
starters. A cross section of a typical weld is presented in Figure 3. By averaging
the measurements of the various welds, it was found that the melted region at the
center of the weld extends approximately 2.0 mm into the thickness, whereas the
heat affected zone extends approximately 3.0 mm into the thickness. The hardness
profile, also shown in Figure 3, indicates that the white etched band of hard un-
tempered martensite lies adjacent to a soft layer of overtempered martensite. A
similar analysis was performed on a welded plate that had been ballistically tested
but which exhibited no visible external cracks at the welds. However, matallographic
examination revealed a hairline crack which propagated along the interface between
the untempered martensite and the overtempered martensite, arresting within the

1. PELLINI, W. S. Principles of Structural Integrity Technology. Office of Naval Research, Arlington, VA, 1976, p. 96-102.
2. American Welding Society. Standard Methods for Mechanical Testing of Welds, ANSI/AWS B4.0-77, Miami, FL, 1979, p. 8.




heat affected zone at the base of the weld 2.5 mm from the back surface. This
indicated that the weld bead did indeed function as an effective crack starter with
a depth of 2.5 mm + 0.5 mm.

Dynamic Toughness Tests

Mode I dynamic fracture toughness tests were performed for each material as a
function of test temperature over the range 21°C to -73°C. Standard Charpy specimens
were machined from the plates and subsequently precracked in fatigue to about 2.5 mm
and dynamically tested in the manner described by Server and Tetelman.3 They dev-
eloped a method for determining the dynamic fracture toughness using precracked
Charpy V notch specimens impacted with an instrumented hammer. Test results include
the peak load and total fracture energy. The dynamic fracture toughness was cal-
culated using the fracture mechanics equation for three-point bending of Charpy
sized specimens."»5

Kig = L.5 Ps(a)1/2 [1.93 - 3.12(a/w) + 14.68(a/w)3 + 25.90(a/w)%]
Bw?

where P = maximum load,

a = effective crack length (approximately 4.6 mm),
w = specimen width,

s = support span = 3,33w, and

B = specimen thickness.

MATERIALS

Two different electroslag remelted alloys were employed in the study; a con-
ventional 4340 steel and a 3% nickel modification of 4340. Chemical compositions
are presented in Table 1. Four slightly different heats of the 3% nickel modified
4340 steel, all with the same heat treatment, were tested to determine the effect
of heat variation (Table 2). Mechanical property data (Table 3) indicated that of
the four heats, two (54A and 53A) had generally superior properties to the other
two (51B and 35). The conventional 4340 steel plates were all made from the same
heat. The austenitizing and tempering temperatures were varied in order to determ—
ine the effect of heat treatment on the PSTT (see Table 2). The selection of heat
treatments allows a distinction between the sharp crack fracture toughness {(Kig)
and Charpy energy. It has been reported that increasing the austenitizing temperature
can markedly increase the sharp crack fracture toughness with only a slight decrease
in the Charpy energy. The mechanical property data substantiate this phenomenon
(Table 3). The tempering temperature was also varied at constant austenitizing
temperature. The higher tempering temperature (above the tempered martensite em-

brittlement range) improves the fracture toughness while lowering the hardness
(Table 3).

3. SERVER, W. L., and TETELMAN, A. S. The Use of Pre-Cracked Charpy Specimens to Determine Dynamic Fracture Toughness in
Engineering Fracture Mechanics, v. 4, 1972, p. 367-375.

4. STRAWLEY, J., and BROWN, W. Plmne Strain Fracture Toughness Testing. ASTM STP 410, 1966.

5. MADISON, R. B, and IRWIN, G. R. Dynamic K, Testing of Structural Steel in Journal of the Structural Division, ASCE, 100,
No. ST 7, Proc. Paper 10653, July 1974, p. 1331-1349.

6. RITCHIE, R. O,, FRANCIS, B., and SERVER, W. L. Evalugtion of Toughness in AISI 4340 Alloy Steel Austenitized at Low and
High Temperatures, Met. Trans. A, v. 7A, 1976, p. 831-838.




RESULTS
Plate Shatter Tests

Each series of ballistic tests resulted in a transition temperature below
which extensive cracking occurred and above which little or no cracking was
observed. Extensive cracking is defined as fracturing the plate into two or more
separate pieces, whereas little cracking is specified as fracture confined to
within the weld area. The error for each PSTIT estimate was determined from the
temperature spread between the warmest plate fractured and the coldest undamaged
plate. The average temperature of these two plates becomes the PSTT. The PSTT
results, along with the number of ballistic tests performed for each series of
plates, are presented in Table 4. 1In two instances (845/175 treatment and heat
number 35), the plate shattered at room temperature resulting in a PSTT greater
than 219C. In a single instance (heat number 53A), no shattering was observed at
its lowest ballistic test temperature for that series resulting in a PSTT less than
-519C. Two tests were performed at the same temperature, -34°C, for heat number
51B. One plate shattered while the other remained intact indicating a PSTT at that
temperature. Extensive additional testing would be required before the normal
"spread” or "error" associated with the PSTT can be determined.

Fractographic analysis was performed on one plate of each heat treatment of
the 2.5-cm thick ESR 4340 steel series of fractured plates (see Figure 4). It was
verified that the EB weld extended 2.5 mm + 0.5 mm into the plate. The plates ex-
hibited multiple fracture origins along the length of the weld bead, proving that
the weld effectively functioned as a preexisting flaw. The crack then propagated
rapidly from the weld to complete failure. The two plates austenitized at 8459C
fractured in a transgranular mode, while the plate austenitized at 1205°C exhibited
an intergranular fracture mode probably due to the larger prior austenite grains.
Examination of the harder plates in Figure 4 (1759°C temper) reveal the early stages
of ballistic plugging failure mechanism due to adiabatic shear.”>8 This band of
localized shear lies beneath the area of impact. A shear band is often observed in
high hardness alloys of low strain-hardening capacity.

Dynamic Toughness Tests

Dynamic fracture toughness as a function of test temperature is presented in
Figures 5 and 6 for each of the conditions in Table 2. For those cases where
sufficient tests were performed, there is a linear relationship between K4 and
test temperature. The PSTT (vertical arrow) is also plotted on the graphs. At
this temperature, a value of the dynamic fracture toughness can be determined,
which is associated with the conditions of the plate shatter test for each of the
different materials (Kyq in Table 4).

A comparison of results given in Tables 3 and 4 shows that, in general, the
PSTT varied inversely with both static and dynamic fracture toughness but showed no

7. ROGERS, H. C. Adiabatic Shearing: A Review. Drexel University Report prepared for the U.S. Army Research Office, 1974.
8. OLSON, G. B, MESCALL, J. F., and AZRIN, M. Adiabatic Deformation and Strain Localization. U.S. Army Materials Technology
Laboratory, AMMRC TR 8248, 1982.




DISCUSSION

Analysis of Tables 3 and 4 suggests several conclusions concerning the PSTT.
There is no direct correlation of the PSTT with either room temperature Charpy
impact energy or HRC hardness. However, the tendency is for heat treatments (ESR
4340 steel) which resulted in higher room temperature Kyq values to also produce
lower and, hence, better PSTT's. This was expected since the metallography and
fractography indicate that the EB weld acts as a sharp crack requiring very little
fracture initiation energy. Therefore, fracture toughness, being a measure of
resistance to crack propagation, better correlates with plate shattering than do
results of Charpy tests which are also a measure of resistance to crack initiation.

Heat treatments significantly affected the PSTT. The 1205°C austenitizing
treatment improved both the fracture toughness and PSTT over the 845°C austeniti-
zing treatment given the same tempering treatment, consistent with toughness results
previously reported.® Correspondingly, for two plates given the same austenitizing
treatment, the one with a 4709C temper exhibited a lower hardness but improved
fracture toughness and PSTT compared with the 175°C temper.

The above analysis is not intended as a basis for substituting fracture tough-—
ness evaluations for the direct approach of shatter sensitivity determinations
using PSTT tests. However, valid correlations between PSTT tests and Kiq tests
using slow bend precracked Charpy specimens would permit establishing shatter
trends when only limited test material is available. The PSTT test is akin to that
of performing hardness, strength, and toughness tests in addition to obtaining the
ballistic limit of armor by actually firing projectiles to measure penetration
velocity.

CONCLUSIONS

Metallographic and fractographic examination of ballistically impacted plates
containing an electron beam weld revealed that crack propagation initiates at the
EB weld. Based on these results, the EB weld is an effective crack starter and,
therefore, for the purpose of the PSTT test, can be considered equivalent to a
preexisting crack.

The PSTT test quantitatively determines a transition temperature below which
extensive cracking occurs and above which little, if any, cracking is observed.
Since the test conditions are not standardized, the test is, therefore, a relative
measure of shatter sensitivity (or resistance).

Variations in heat treatment of high strength steel, even at a constant hard-

ness level, can affect the resistance to shattering. High austenitizing temperatures

significantly improve both fracture toughness and PSTT.

PSTT varied with sharp crack fracture toughness but displayed no correlation
with either Charpy energy or hardness.

[ R — |
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Front Surface

Figure 1. Ballistic impact test on 25-mm ESR 4340 steel armor plate with
an E.B. weld crack starter. Plates austenitized at 1205°C, tempered at 175°C.
Projectile velocity = 850 m/s.




21°C

Rear Surface

Figure 2, Ballistic impact test on 25-mm ESR 4340 stee) armor plate with

an E.B. weld crack starter. Plates austenitized at 1205°C, tempered at 175°C,

Projectile velocity = 850 m/s.
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Figure 3. Photomicrograph of a typical electron beam weld cross section
accompanied by its corresponding hardness traverse
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845/1759C

Figure 4. Photographs of three fracture surfaces of ballistically tested ESR 4340 steel plates. Prior to testing, the
plates were austenitized and tempered as indicated. The electron beam welds are {ocated between the arrows and
extend to a depth of 2.5-mm. The points of impact were centered opposite the weld beads.
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Figure 5. Dynamic fracture toughness as a function of test
temperature for conventional ESR 4340 steel. Heat treatments
are shown: austenitize/temper (°C).
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at 845°C and tempered at 175°C.
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Table 1.

CHEMICAL COMPOSITION

Weight Percent

C Mn Si Cr Mo Ni p S
ESR 4340 0.41 0.71 0.29 0.79 0.28 1.78 0.007 0.003
Heat #54A (3% Ni) 0.31 0.86 0.37 0.84 0.27 3.32 0.011 0.002
Heat #53A (3% Ni) 0.31 0.88 0.36 0.85 0.27 3.37 0.010 0.002
Heat #51B (3% Ni) 0.30 0.88 0.33 0.84 0.27 3.04 0.009 0.002
Heat #35 (3% Ni) 0.34 0.89 0.39 0.85 0.24 2.87 0.009 0.003
Table 2. TEST MATERIALS

ESR 4340 Steel (25 mm Thick)

Austenitize/Temper* Hardness
(oC) (HRC)
845/470 45
845/175 55
1205/ 175 55

Modified ESR 4340 Steel

(3% Nickel)

Austenitize 8450C, Temper 1750C*

Hardness  Thickness
Heat No. {HRC) (mm)
54A 51 13
53A 53 25
518 52 25
35 52 6.4

*Austenitize 1 hour at temperature,
0il quench, temper 2 hours

at temperature.

11




Table 3. ROOM TEMPERATURE PROPERTIES

ESR 4340 Steel

Austenitize/Temper Hardness Klc Kid Charpy Energy
(oc) (HRC) (MPay/m) (MPa/m) (J)
845/470 45 86 72 22
845/175 55 43 33 20
1205/175 55 99 78 15

Modified ESR 4340 Steel (3% Nickel)
Hardness Kic K1d Charpy Energy
Heat No. (HRC) (MPa/R) (MPa/m) (J)
54A 51 81 76 38
53A 53 77 69 34
518 52 53 4] 24
35 52 47 46 24*
*Corrected values from subsize specimens.
Table 4. PLATE SHATTER TRANSITION TEMPERATURE
ESR 4340 Steel

Austenitize/Temper PSTT Projectile Velocity No. of KIc
(oC) (oc) (M/S) Firings:  (MPa/m)
845/470 -7+28 760-855 4 48+18
845/175 >21 760-855 2 >35

1205/175 -4+25 760-855 4 64+15
Modified ESR 4340 Steel (3% Nickel)
PSTT Projectile Velocity No. of Kid*
Heat No.  (0C) (M/S) Firings (MPavm)
54A -5115 490-640 8 46+2
53A <-51 820 2 <45
518 -34 820 3 32
35 >21 215-335 8 >45
*K14 determined at PSTT.
12
o p— S P PR
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