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Preface

Within the past 5-7 years, the ability to model the

supersonic/hypersonic viscous flows using Computational Fluid

i Dynamics (CFD) techniques has advanced considerably. An

algorithm due to Dr. James Thomas of NASA Langley Research

Center, Hampton, Virginia, was used in the current study for

:. °:. performing accurate and efficient flow field calculations

over blunt bodies. For high speed flow, the physics of the

flow can be modeled using the Approximate Navier-Stokes (ANS)

equations. A relaxation type algorithm is developed in the

present work for solving the ANS equations and solutions are

obtained for some model problems.
*p. .*
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Abstract

Thermal deformations induced by aerodynamic heating on -

high speed vehicles are an important concern in design.

Aerodynamic heating may have a significant effect on the

performance of the vehicle, and effective techniques for J,
1%

predicting the heat transfer and flow properties are

required. The accuracy of numerical solutions depend on the

grid used. Usually accurate prediction requires clustering

of grid points near the surface of the body. Using an "

explicit algorithm to solve such problems results in the

requirement for very small time steps in order to satisfy the .

stability bounds. Therefore, many iterations and large

computer times are required to reach the steady state. To

remove the time step restriction, fully implicit methods have

been investigated. Results for high speed flow past a

circular wedge using an implicit flux splitting scheme are

shown. Also viscous blunt body flows are computed, and-

qualitative comparisons with existing experimental data are

given. In an effort to decrease the computational costs

associated with the implicit algorithms for the

Navier-Stokes equations, a relaxation algoritlm is developed

for the Approximate Navier-Stokes (ANS) equations. Results

for Couette flow and supersonic flow over a tlat plate are

obtained using this relaxation algorithm and compared to

analytical and other numer ical solutions.

°* ..*4* .*
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NUMERICAL STUDY OF HIGH SPEED VISCOUS FLOWS

*, .p .j

I Introduction

,... .. .-

The accurate prediction of the flow field and heating

environment about advanced flight vehicles at high altitude

has been the aim of recent research efforts. Previously, the

inviscid flow around such vehicles has been computed by

solving the Euler equations (1-5). In order to account for

viscous effects, the inviscid solutions have been coupled

with matching boundary-layer analysis. However for problems

with very strong interaction between the viscous and inviscid

portions of the flow domain as in the case when the viscous

layer and the shock layer are completely merged, the
* d. .. ' e

classical ways of using the boundary-layer interaction

methodology breaks down. On the otherhand, the full

Navier-Stokes (NS) equations or the Approximate Navier-Stokes

(ANS) equations have shown great promise in predicting the -.

complete inviscid-viscous flow field around shuttle-like

bodies as well as more realistic shuttle body shapes.

Within the last 5-7 years, the ability to model the

supersonic/hypersonic flow over complex geometry

configurations using Computational Fluid Dynamics (CFD)

techniques has advanced considerably. The current work is an

initial stage of developing a computational capability of

modeling the aerothermodynamic environment about advanr:ed

. . . . . .." . .
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flight vehicles in high altitude regimes where ronequilibrium I"Im

chemistry effects are important. The perfect gas assumption

has been used for the present investigation. Different

approaches are available for solving such problems. The NS

formulations lead to a nonlinear system of equations. Using

an explicit algorithm to solve such problems results in the

requirement of very small time-steps in order to satisfy the

stablilty bounds. Therefore, many iterations and large

computer times are required to reach the steady state. To

remove the time-step restriction, fully implicit methods have P%

been investigated. The fully implicit code used in this

study for solving high speed viscous flows is described in

reference (19). The algorithm uses implicit upwind finite

volume flux vector splitting on the inviscid terms and second

order central differencing on the viscous terms. An

attractive feature of upwind flux vector splitting schemes is

that they are naturally dissipative, and artifical viscosity

terms are no longer required to overcome instabilities in

regions of strong gradients. Use of the conservation law

form of the governing equations in this algorithm also allows

shocks to be captured, and eliminates the need to use

shock-fitting techniques to obtain the location and strength

of the shocks in the flow (7:1).

The inviscid flux vectors are split into forward and

backward flux vectors by splitting the eigenvalues of the

Jacobian matrix into positive and negative diagonal .0-P

2
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elgenvalue matrices. These flux vectors are then differenced

using the appropriate upwind or downwind scheme (7:1-2).

The algorithm will be used to compute two hypersonic

viscous flows over blunt bodies using the full NS equations.

Results are obtained first for the blunt body flow

surrounding a circular cylinder which was studied by

Tannehill et. al. (22). The freestream conditions chosen for

these computations are M?=4.6, Rec,=l0000, Pr-0.72,

P -14.93N/mi, T-167K and X-1.4, with a cylinder diameter (D)

of 0.3048 m and a wall temperature of 556K. Comparison with

available experimental and numerical data will be given.

Solutions also are obtained for supersonic viscous flows past

a circular wedge geometry. Qualitative comparisons with

solutions of Bey et. al. (10) using other algorithms will be

given. Bey et. al. used a finite element algorithm to ."

predict the inviscid flow field around the same geometry. .

For high speed flows, the Reynolds number is usually

very large and consequently the thickness of the viscous

layer is very small. For problems of this class, the" . :

solution of the full NS equations is unnecessary and time

consuming. Different levels of approximations for the NS

equations became the debate within the CFD community.. * .% ..

Boundary-Layer equations, are a simplified form of the

NS equations where the pressure gradient normal to the body

surface is neglected. Viscous terms with derivatives in the

direction tangent to the body are also neglected atter an " %

order of magnitude analysis is performed on the NS equations.

3



The order of magnitude analysis is accomplished by assuming

the velocity component normal to the body is small compared

to the velocity component tangent to the body. Although the

BL equations require much less computational effort than the

NS equations, the BL equations are limited to the type of

flows they can physically model accurately. Thus an

intermediate set of governing equations were developed.

Approximate Navier-Stokes equatlons(ANS), are also

simplified NS equations and like the BL equations neglect

viscous terms with derivatives tangent to the body but retain

all other terms. An advantage of retaining terms which were

neglected in the BL equations, is that separated and reverse
S N'

flow regions can now be computed (8:421). The ANS equations

contain all the Euler equation terms, so that the interaction

between the viscous and inviscid regions of the flow are

automatically tak n into account (16:1). The ANS equations

like the BL equations require less computational effort than

the NS equations, and derivatives in the direction tangent to

the body can be approximated using a technique that marches

the solution in the direction tangent to the body.

Upwind relaxation algorithms became an attractive tool

to solve the ANS equations and are used by many researchers .4

(25). In the present effort, an upwind pseudo-time 1 -..

relaxation algorithm that globally sweeps over the flow field .9..

in the direction tangent to the body, is used to calculate

steady state viscous flow solutions. This algorithm is

4

... ... . ....... ,* :.,..,... '. :.. . . . .. ... . .... ' .. .
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similar to the work of Thomas and Walter (25), using a first

order upwind scheme in the direction tangent to the body and

a second order central scheme on all terms in the direction

normal to the body.

The first model problem solved using the developed

algorithm is the Couette flow problem. This problem was

chosen since it has an exact solution. Comparison of the

present results with the exact solution provides a test of

the validity and correctness of the present analysis and

solution procedure. Solutions are then obtained for

supersonic flow over a flat plate and comparison with other

solutions will be given.

5...
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II Analysis

Governing Equations

The time-dependent compressible Navier-Stokes (NS)

equations express the conservation of mass, momentum, and

energy for an ideal gas in the absence of external forces

-. ', (25:1). The momentum equations use Newton's viscosity law,

and the energy equation uses Fourier's conduction law so that
the NS equations can be written in the non-dimensional form

in conservation law form and Cartesian coordinates as follows

continuity:

p.+( P u),+( p v >,r.o (1)

x momentum:

( u )(u+( pua+p- -AM ).+( uv- T-,),=O (2)

y momentum:

"'" (p v).b+(/, uv- L,.,)+(p vo"+p- l-.,),0( 3 )

I,.'

energy:

*(et ),+((et.+p)u-u r.-v T,,,+q, Joe+
S( e,%+p )v-uC3.r-v T-,r+q, )Y=0 (4 )

Zwhere

6
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- - -4,cm/1 RePr( ri-i 1(5 5 )

q - -tcv/[ RePr( -I)(6)

( 2 UM-V, )2.L/3Re (7)

= (uv+v,*)/L/Re (8)

= (2vv,-u, 4 )2//3Re (9)

Re - p cOLb/ L0 (10)

Pr - (11)

C" 'R/(J-1) (12)

1.458X10 4-kg/(ms(K)&az)T-m 3 a/(T +110.4K) (13)

Q'p

the definitions of variables are given in the List of Symbols

and references (8:189) and (8:480-482). The perfect gas

equation is used for closure

p = (-1)pe (14)

T~ Yp/P (15)

p. 7

[ . :% :¢.,',,,'" % %".%% % %% . "",.."." ."'";4.."". :.': "' "->""" .-. :"" ."" -""". .""" .'." 7'



Equations (1,2,3 and 4) can be combined in vector form and

written in the strong conservative form as follows

Qr + (E-E ), + (FL-F,). = 0 (16)

where

Q P p, pv, et (17)

E ipu, pu 2 +p, puv, (et+p)ul" (18)

' ;Ew [Op rwps, r.,y, u Cxjw+vT rv-qw)'r (19)

FL v, puv, pva+p, (e.+p)vlTr (20)

F,= [0, ,.21, Uyy, u -,,+v t'y-q) 1 (21

Equations (1-21) have been nondimensiorialized usinq the

following identities

x=x"/LO ¥= Y/L"

u=u*/co v=v"/c: e=e" /u-

The highest order terms come trom the vis,_ous forces whi.Jh

are second order, but there are tirst oirder c-)nve-tive terms

A%
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that are nonlinear. Thus the NS equations are mathematically , .

classified as elliptic partial differential equations

(18:139-155). Elliptic means the state of every point in the

flow is dependent on the state of every other point in the

flow, which requires solving the whole flow field at the same

time. That means boundary conditions must be described at

every point surrounding the flow domain. Typically for a

flow around an aerodynamic body, zero slip conditions are

specified on the surface of the body and either the heat flux

is specified or the temperature is described along the

surface. The second boundary condition is usually taken at

the far field, where the undisturbed flow conditions are

used. The third boundary condition is applied far downstream

of the body where the flow is weakly elliptic so parabolic

approximations can be used. The last boundary condition is

always described at the inlet of the flow domain which will

be the line of symmetry for axisymmetric configutations.

Coot dinate Transformationi

To make the governing equations usable for a variety of

qeometries, they can be transformed to general coordinates.

The coordinate transformations used on the governing

equations are of the following form

- (x'Y) (23)

9 . .



'77 = '(xy) (24)

where and '7 are defined in the List of Symbols. When the

above transformation is applied to equation (16) the

following equation results

Q'% +E; + F71 0 (25) N

where

J = ((26)

Q= Q/J (27)

iI
E . E-E, )+ F( F-F, ) /J ( 28 )

F' = I77?.(E-E..)+7>,(F-F, ) ]/J (29)

J is the transformation Jacobian. See Appendix A, for "'

details on the transformation of the governing equations into

generalized coordinates.

With the NS equations written in generalized

coordinatei, it is easy to write an algorithm that can
4%

compute solutions for a variety of geometries. The method

described in reference (19) uses a finite-volume method

describing the balance of mass, momentum, and energy over an

a arbitrary control volume. The vectors n/J? Y/Jd 7, and

10%°



'7y/J represent directed areas of cell interfaces in the

and ' directions in computational space. The Jacobian

represents the inverse of the cell volume, and the elements

Pu/J and /v/J are the mass fluxes crossing the cell

interfaces In the and 97 directions. These fluxes are

then split into forward and backward contributions to the

flow crossing the cell interfaces, which allows the algorithm

to accurately resolve seperated and subsonic flow regions

(6:2).

Approximate Navier-Stokes Equations

The Approximate Navier-Stokes (ANS) equations are formed

from the NS equations, by doing an order of magnitude

analysis on the equations after assuming the velocity

component normal to the body is much less than the velocity

component tangent to the body. After doing this order of

00 magnitude analysis, viscous terms with derivatives in the

direction tangent to the body are considered small compared

to the viscous terms with derivatives normal to the body.

Once this is done equation (25) can be written as

Qt+ E" + F" =0 (30)

?

where

9E" ( .E+,F, )/J (31

,11



F" 7?.( E-E"v)+,(Fi-F") ]/J (32)

E",= [0, -"., 7C-".., u r ".. +vr "mw-qM 17 (33)

".F", = [0, r., r-", U -c % v- - ] (34)

= (2'u -U  v9 )2P_/3Re (35)

-YU= ( .U?+-7vi ))U /Re (36)

= (2'7?.v?-'7>u 7 )21U/3Re ( 37)

q'. -/77?.c /[RePr( 7-l)] (38)

q y7c /[RePr( 39)

. It has been demonstrated that these ANS equations are

, applicable to a wide class of problems (25:2).

The main feature of the ANS equations is the fact that

" the highest derivative in the streamwise direction is less by

one than those for NS equations. That means the ANS
•°o

equations are parabolic for the viscous flow region but they

are also hyperbolic for the inviscid flow if it is

supersonic. So the equations are actually a mixed set of

hyperbolic- parablolic equations. That is the reason the

abbreviation ANS was preferred over Parabolized Navier-Stokes

12
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A (PNS) or Partially Parabolized Navier-Stokes (PPNS)

abbreviations. The ANS equations have recently become

famous, because they can predict complex three dimensional,

* steady, supersonic viscous flow fields in an efficient

method. The efficiency for three dimensional solutions came

from the fact that the equations can be solved using a

space-marching finite difference technique as opposed to the

time marching technique normally employed for NS equations.

1 To be able to use the ANS equations, the solution at a

certain plane or location in the streamwise direction has to

be known as opposed to the NS equations. The details of the

*. numerics are shown in Chapter III.

I
.3

::

*. ..
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III Numerical Solution of the Equations

The important aspects concerning the numerical solution

of the governing equations are discussed in this chapter.

The finite difference form of the equations are presented,

S"together with the intializations used for all the variables.

• -The procedure for solving the resulting algbraic simultaneous

equations is described and some details about the

implementation of the boundary conditions are discussed.

Finally, the pertinent numerical details, such as the choice

of suitable time steps, the definition of convergence, etc.,

are presented.

-. Fully Implicit Scheme

After flux splitting the NS equations written in

generalized coordinates, equation (25), is written as follows

Qt + E' + E;- + F; + F = 0 (40)

For details on the flux splitting used in this algorithm

see reference (7:1-9). Equation (40) can be written in a

factored Beam-Warming delta form as follows

-Z~t + ( E + F + F 41)

'7 7

where

14
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.I
.E',.J =[ E'-(Qt+ .z J,Mzj. ./. )-E' Q-2 .J,M-.2.d )] (42)

.( Q A .-Q,-, )/2 (43)

)/2 (44)

The term M represents geometric terms involved in the

transformation to generalized coordinates, evaluated at the

cell-interface locations where the flux values are needed

(7:9). The order of accuracy of the approximation is

governed by the value of the switch second order accuracy

for Ctf=i, firt order for 0 (7:4).'

The terms on the left side of the equality in equation

(41) are solved using first order upwind differencing, which

yields a block tridiagonal system of equations. The solution

of equation (41) is achieved by factorization, first solving

block-tridiagonal equations in the direction and then in

. the I direction (7:9).

The fully implicit algorithm was written assuming no

slip conditions at the body surface, adiabatic wall, zero
"%"

pressure gradient normal to the body (19). To start the

solution using the above algorithm, some initial conditions

"4. must be assumed. Experience gained from this work shows a
".

better initialization can be achieved, it the solution for a

low Mach number, is used to initialize the flow field for a

high Mach number solution. If the final solution Mach number

15 5-,

.'I,
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-1%
is very high, repeated cycles from lower to higher Mach

numbers can be used. The details of this intitialization

will be discussed further in Chaper IV.

The Upwind Relaxation Scheme

When solving equation (30) with subsonic regions in the

flow, the pressure gradient term tangent to the body allows

conditions downstream to affect conditions upstream. In

subsonic flow regions the pressure gradient is elliptic in

nature, which would not allow the solution to be marched in

the streamwise direction. To overcome this difficulty,

Vigneron, Rakich and Tannehill (27) approximated the

.6vhe

streamwise derivative term with a weighting between implicit

and explicit differencing that depends on the local Mach

number. The splitting of the streamwise flux term is given

as follows

E = E+P (45)

I.''

where

E= pu, pua+Wp, puv, (et+p)ul? (46)

P 1 0, 1- W)p, 0, 0JIT (47)

.1.

S= -M.< (48)

"-.16

N~AN#V,~~? ~ .. . .* q ,*. ~ ..



or 
'

w-l >1 (49)

is the splitting coefficient, C7 is a safety factor'tS

(17:7) and M%. is the local streamwise Mach number. In order

to be able to handle arbitrary geometries, the ANS equations

are expressed in general coordinates and ').The..

following coordinate transformation from physical space to 7

computational space, are used

t t (50)

x (51)

= '77x~y)(52)

.
I

such that

( )~ ~,, ) +(54)
~~ '7h' %

(55)9

0 (56)

17 SI a
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This transformation simplifies the (E") flux

vector,equation (31), in generalized coordinates to the

following

E- ( §E .+MPl/J (58)

, and equation (30) is now written as follows

Q~ i+ F" =0 (59)
''1

Equation (59) is a system of nonlinear differential

I equations that must be linearized for the algorithm being

developed to make use of well known techniques for solving
.I

systems of linear differential equations. An implicit

differencing scheme will be used that repeatedly sweeps over

the computational space until steady state is reached. This

algorithm is similar to the work of Thomas et. al. (25),

using first order backward spatial differencing on the (E*)

flux vector, first order forward spatial differencing on the

(P) vector and second order implicit central spatial

differencing on the (E,E.",F,,F.") flux vectors. Using first

order forward spatial differencing on the (P) vector allows

conditions upstream to propagate downstream in regions of

subsonic or reverse flow. The algorithm finds the difference

- in the (Q) vector (AQ) such that

18
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Q,.4.. = QM + \Q- (60)

where n represents the time level of the solution. Steady

state solutions are achieved when !LQ goes to zero.

See Appendix B for details on the linearization and

differencing of equation (59), which yields the following

equation

A I~ij-L+ [ B] LQ.L, + IC1LL -
I .- ,,'vtJ ILAi,-L. j- .E,'J- -. E /J+ " .M..I , -

FL ?. /J+ )?yF /J- . /J (61)

where [A],[B] and [C] are matrices defined in Appendix B,

equation (b20), subscripts i and J are the grid node indices

* for the and ' directions, respectively.

*Viscous Flux Vector Differencing

The viscous flux vectors (F.") contain derivatives with

respect to 7Z, and are being differenced with repect to '7?

Appendix B shows the differencing technique used for these

terms, and the following is sample of this differencing

technique. The second element in the (F ") vector is

differenced as follows

.19
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[4 t/3Re ) j.,-"+( 4A4 /3Re ) , 1 ].5[ 1.,/J l ,j , z

,. [ ( 4 4 / 3 R e )L j + ( 4 At / 3 R e ) , - 1.5 [ ' . / J L , - , L *

[ ( 2A2/3Re ),L, p.-&+( 2/.,/3Re ),L, 1 1.5[ ," ,/.] ,... ,,*

[VA. J-.,-v,, J / '

: [(2)U/3Re)4. +( 2 4/3Re ),.j-.L 1.5[ 7 , /J ]. - , *

v4, J-v . J- 1/ (62)

It should be noted the metrics ( 77 )., ( 77 ) and the

Jacobian are evaluated at j+1/2 and j-1/2, where as the

coefficient of viscosity and Reynolds number are determined

by taking their average values between adjacent grid nodal

points. The metrics and Jacobian are evaluated at half nodal

points.

Three grid nodal points are required to implicitly

difference the viscous terms using this algorithm, which

results in solving a block tridiagonal matrix to get the

solution. The block tridiagonal solver used in this

algorithm was written by Carlson (11).

To make the convergence faster, a variable time step

over the domain is implemented similar to the work of Halim

and Ghia (13). Such techniques are always used to enhance

the convergence if a transient solution is not of interest. %

ea
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IV Results and Discussions

U Application of the algorithms described in Chapter III

to a series of high speed viscous flow problems are shown in

this chapter. The cases studied using the fully implicit

scheme are,

- The blunt body flow

- Supersonic viscous flow past a circular wedge

The cases studied using the relaxation scheme are,

- Couette flow problem

- Supersonic flow over flat plate

. A brief description of each problem will be followed by

the results and discussion of their significance.

*The Blunt Body Flow

The fully implicit algorithm is used to compute the two

dimensional flow fields surrounding a circular cylinder.

tAlthough the present results are two dimensional, qualitative

comparisons still can be made with the Edney experiments (9),

especially near the bow shock where the flow is locally

Ftwo-dimensional.

The freestream conditions for the flow are

Mo=4.6 Re,,=lO000

Pr=0.72 )"=1.4

p C=14.93 N/ms TO =166.7 K

D=O.3048m Tw=555.6 K

The grid shown in Figure 1 was used for this computation

and has 81 grid points in the direction tangent to the body

21



and 71 grid points in the direction normal to the body.

The entire flow field was initialized at the freestream

conditions. It was difficult to get the solution for the

blunt body problem at the freestream Mach number (M,-4.6).

To overcome this difficulty the solution was obtained for a

lower Mach number and stepped-up to its final value over 1100

iterations. The boundary conditions included no slip

velocity at the body surface and no pressure gradient normal

to the body. The code was modified slightly to be able to

solve for constant wall temperature.

Figure 2 shows the distribution of the

nondimensional wall pressure (Pw/Ps.%) compared to the

experimental data of reference (9). Figure 3 shows the

distribution of the nondimensional heat flux (Qv,/Qs%&v) along

with the boundary layer solution of reference (26). Plots of

Mach contours, velocity vectors, density contours and

pressure contours are shown in Figures 4-7.
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The comparison of the wall pressure in figure 2 and the

heat transfer in figure 3 show good agreement between the

, fully implicit algorithm and the available experimental and

numerical data. That gives confidence in the algorithm to

*, study the supersonic flow past the blunt leading edge

geometry of reference (10).

Supersonic Flow Past Circular Wedge

The geometry of this problem consists of a circular

cross section smoothly connected to a five degrees wedge.

The Euler equations for inviscid flow over that geometry was

" solved by Bey et. al. (10) using the finite element approach.

The freestream conditions for the flow are

U Mqo=6.57

=1.38

D=0.75in

The grid used for the initial computation has 81 grid

points in the direction tangent to the body and 71 grid

S"points in the direction normal to the body. The solution for

the initial computation was then used as the initial

condition for the flow over a modified grid. The modified

A grid clustered points near the body surface to improve the

resolution of the viscous layer. The modified grid shown in

Figure 8 has 81 grid points tangent to the body and 62 grid

points normal to the body. The grid points normal to the

body have the following distribution; 32 evenly spaced grid

points in the viscous layer where only 8 grid points had been

30



'X4

used in the unmodified grid and the remaining 30 grid points

b were evenly spaced normal to the body over the rest of the

The entire flow field was intiallized at the freestream

conditions. It was difficult to get the solution for the

circular wedge problem at the freestream Mach number

(Mo=6.57). To overcome this difficulty the solution was

obtained for a lower Mach number and stepped-up to its final

value over 1100 iterations. No slip velocity are forced at

the surface of the body, along with adiabatic wall and no

pressure gradient normal to the body surface. Symmetry

conditions were imposed along the line of symmetry.

Since the available results for this geometry are only

from an inviscid solution, detailed comparison will not be

4.. possible however qualitative preditions can be seen. For

example figure 9 shows the density contours using the present

4 solution compared to those of reference (10).

Mach contours are shown in figure 10, the wall pressure

is shown in figure 11, and the velocity profiles at the grid

location X/R=1 are shown in figures 12 and 13.
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The next set of results are obtained using the

relaxation algorithm developed in the present study.

One Dimensioal Couette Flow
a-b

Couette flow is known as the flow between two infinite

. parallel plates separated by a distance (H). To study this

flow the relaxation algorithm was solved for four pressure

gradients in the direction tangent to the plates. This test

case was run to check the formulation and the numerical

procedures of the algorithm.

The iower plate was held fixed while the upper plate

moved at Mach 0.09. The Reynolds number for this flow is

6.2, and the four pressure gradients analysed such that B-

-2,2,4,7; where B--(Rem)(p)x/[4(M. )] (28:113). To convert B

to correspond to nondimensionalization used in this

* algorithm, B' is defined where B'=4(M)(B).

The computational grid for this test case used 12 grid

points in the direction normal to the plates with y/H=l, and

the grid points in the direction tangent to the plates were'° .

varied between 10,20 and 30 with x/H=l.

, .Initially the entire flow was given the same velocity

S.profile and the desired pressure gradient. No slip velocity

conditions are forced at the upper and lower plates, while

the initial conditions at grid location i=l were not allowed

to change during the computation (i is the grid position

index in the direction tangent to the plate).

" -" After computing the solution for the four pressure

38
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gradients for each of the three different x grid spacings, A.%
the solutions at grid point, y/H-.8 were compared (see figure

14). As the spacing between grid points decreases, the

solution calculated by the algorithm should more closely

approach the exact solution. Figure 14, shows that for the

three x grid spacings chosen the solution agreed exactly with

the analytic solution (DELTA X = 0.0). As a side note,

although the NS equations in general do not have an exact

solution, the exact solution at specific points can be

obtained numerically using the accuracy study as shown in C.""

figure 14.

A comparison between the velocity profiles calculated by

the algorithm and the profiles calculated using the

analytical solution are presented in figure 15.

-M - % P -
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%L

Supersonic Flow Over Flat Plate

The second test problem for the relaxation algorithm is

solving the supersonic flow over a flat plate.

The freestream conditions for the flow are We

Reo/L" = 1.65X10/m

' = lm.

(Too)* = (T.) 221.6 K

Pr = .72

=1.4

The grid used 41 grid points normal to the plate

surface, with a DELTA(y)=.I524XlO-3 m, which produced a

constant grid height of .61Xl0-2 m. The grid used 52 grid

points tangent to the plate surface, with the initial grid

point i=l relating to the x distance of 0.305m from the

leading edge of the plate. The i=52 grid point relating to

the x distance of 0.915m from the leading edge of the plate,

requiring DELTA(x)=O.0122m.

The entire flow field was initiallized with the velocity

and temperature profiles calculated at plate position 0.305m

by a boundary layer code written by Cebeci and Bradshaw (12).

No slip velocity conditions were forced at the plate surface, ..

and the normal velocity component was allowed to propagate

out the top of the grid. The initia' flow conditions at grid ...

location i=l were not allowed to change during the

c:omputat ions.

The tangential velocity and temperature profiles at

42
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plate position 0.915m are compared to the Cebeci boundary

layer solution at the same location (see figure 16 and figure

17). . 4.,,

As seen, relaxation algorithms would allow someone to q.%.- _

take larger step sizes in the streamwise direction compared

to space marching procedures. For example, the same problem

is studied by Huband (14) using a space marching procedure.

The number of points used in the streamwise direction are 612

compared to 51 used in the present study, however the CPU

time taken to get the final solution using the present method

is much larger compared to the space marching procedure.

4F

**%

.,,

.%-..% , .., .. ,

5 6' . 6

. *. ' 5 '-""

. . .... .. . . . . . . . . . . . . . . . . . . . . . . . . ..



© 
: -6 -."

.4. .

b %

L n%

cI) .'N

0 0 0t ':'-.. ,..o

CC

C LU
C0

440.

. ,,%

c z4D

4FC

0 0
N n0

JON S 0CHd)f

Fiue 6 omaiono VlctyPoilsFo lt lt

C .. 4 444



0 1
C p

PrC

Cf) ~ 
C.

0 

C

OCIC

0<,

0 <.

0 < c

<0

<0
<0

<0
<00

A ILLI

-4 -4.~ 
%

455



V Conclusions and Recommendations

The solutions obtained using the implicit Navier-Stokes

algorithm, compared favorably with experimental data. It is

also recommended that this algorithm be modified to solve

real gas problems.

The Approximate Navier-Stokes Algorithm developed in .•

this study also agreed well with analytic solutions and other

numeric solutions. The time required to achieve these 4...
.'.j

solutions could be reduced by updating the Jacobian metrices '

once every five or ten iterations instead of every iteration,

as was done during this study.
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Appendix A: Coordinate Transformation of Governing
Equations

To transform the governing equations into generalized

coordinates the chain rule is used to determine the

derivatives of the general coordiante variables with respect

to the variables in physical space. Let the following

general transforms be used

t -t (al)

= (x,y) (a2)

'I 'I(x~y)(a3)

with

= ( )~(a4)

( ) =( t. +( 7? M (a5)

= )~ ~+(77)() (a6) *.V

The unit area in physical space is related to the unit

area in the general coordinate space by the Jacobian of

transformation (J). J is the determinate of the matrix

formed by the metrics ( ).7 ),( ) and (7),which is

47



0 .' •

written as follows %

J = [ 77v~T~x1(a7)

Applying the transformation to equation (16) yields

Q%/J + .(E-E.) /J + '7(E-E,) /J +

,/,(Fi-F,) /J + m,(F-F,) /J = 0 (a8)

Equation (a8) can be written in strong conservative form

after applying the chain rule to each term

QU/J ( Q/J )v-Q(i/j )t ( a9 ) -.i...

((E-E.. /J [ .(E-E.)/J - E-E ,/ (alO) ,*.- .-.

')7x(E-E) 7 /J = f7(E-E )/JI-(E-E )i7./J ]I (all)

F, -F,(/i -- i F-F- )/J I -F i-F ) M / (a12) "''

7? (F,-F ) /J = [ (F,-F )/J ]-FL-F,)[ '/J 1 (a13) i[[""

and arranging terms with like derivatives as follows

(Q/J )t+1 .( E-E ), 7(3F. I + . E-E )+ v( FL-Fv, 9

%

.

"-.. .'

-Q( l/J )t-( E-E_ )M(~/ (1),/ 7

F i. )1.

The last three terms in equation (a14) are identically

48 . ."
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zero, which can be seen after the following metrics

definitions

= (y) (a15

= -J(x) (al6)

= -J(y) (a17)

I, %

J(x) (al8)

are substituted into these last three terms. Equation (a14) -.

can be written as follows

'. 4 *i %,#'

Q'+ N 0 (a29)

where

'"" .. ..""

*. m e.: .Q, Q/J (a20)

E =  
2 ,(E-E)+ %FL-Fs)I/J (a21)

F ' f- I '7 E - E . )+ 7 ( F L - F , . ) / J ( a 2 2 ) , , .

The shear stress terms and the heat flux terms are

transformed to general coordinates as tollows
"i'.-.':"
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u Ul +(s+ V k/ea23)

=% %

2 ((2 , +2 7?,v 7 )- ~u+7mJuq ) 2(4./3Re (a25)
.

qx= -(1 T+>.T? ]/[RePr(J-1)1 (a26)

q I y / (4 , 7TJ( er IIa27)

where

Re CL (a28)

Pr =cp'"..Lw/k* (a29)

Cp= R/(JX-1) a30)
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Appendix B: Details about the Upwind Relaxation Scheme , ;Vj

Linearization of the ANS Equations

To linearize equation (59) of the text

Qft + Ei +7 0 (bI)

use the following Taylor expansions

4-% 1 . 1.

- E" +A "Eft

=E~r + Z QtEf

Ew" + AQEOq (b2)

where (Q)tcan be written as/Q// , and n denotes the time

level of the calculation. In like manner the linearization

of the other terms are given as

E = E" + LQ-Ea (b3)

= E-- + iQ"E-. (b4)

F = FL '~ + QF(b5)%

F," + LQFa(b6)

* Substituting equations (b2,b3,b4,b5 and b6) into equations

(58 and 32) which are then substituted into equation (bl) %%
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yei iding k

AQ/Lt/J + [LQ .,/J JS + [(Q .E./J i -11

[LQ .. E",../J II +J ,[QQ 1 , FI ,/J I =

- .,EO/J-TME,/J+TmE"v,I/J- Fi?,/J+77+F",,?/J- .P/ (b7)

where only terms containing LO are retained on the left hand

side (LHS) of the equality, and these terms will be

differenced implicitly at the (n+l) time level to produce a

block tridiagonal matrix multiplied by the AQ vector at the ,.

(n) time level. The terms on the right hand side (RHS) of

the equality are all known at the (n) time level.

Finite Difference Equations

N~ .,%
The ANS equations, written in vector form in equation

(b7), are differenced term by term as follows "-.'|

,.:;_-. .AQ/At/j i : t/ jA.,/ , (b8)
JP P%*

' Eo/J 4I, j-.LA Q~i , - 1/2//\ ( blO )...,

- .. .1 .

* ..
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( / , j£ P L. / , j..L )((E". ..) ., j-LLQi, Ji -( E",w 4j, jL i. i

( 3 , j+ /Pi, s-i. )( (E,.,)~., .jAQ,, J-( E'., ).L, j-s AQi, 1/ZI

(bID

Ar

I'-.- - I

=,Q , / 7 /3F i /J), /\Q I = I

(1 F~/ i.jIL L -. (2Lb12)..

P L,4 /*QI

1, ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ,? J+PJA 4,m4 L L j(F,, ,j,~, /L

= / )L (( E*i sE~i-i A (bl4)

',E /J / J.,j l .lEj. /L (b15)

TyF)(Ed/J = (3f " li1

I3 L, J+ p I j.-L X( E"ijE". ±j- J ]22/D

-6



=. / (M/j )1'J(P1.'. j-Pi.J/ j (b19)

where subscript (i) is the grid position index in the(

direction, subscript (J) is the grid position index in the kN

(7)direction and [I) is the identity matrix (15:447-468).

Substituting equations (b8 - b13) into the terms on the left ~

side of the equality and combining terms with identical (i,j)

indices results in

ZLXQsJ-±L +
A~~~ -A.P

II/Lt'J, , i E.0,/J ),L, jlL> P( /j., ii-L2 LJ * J-L

f qJ4 a 2 - -( P 'IP E/27 a +

=LHS (b20)

where [A],(BI and [C) are 4X4 matrices. It should be noted

that term H(~).()~J)-~ ZQ-L,ji was moved to the right

hand side of the equality because its gird index (i-I) is at

a location where AQis known.
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Jacobian Matrices.

Jacobian matrices, are flux vectors differentiated with

respect to the (Q) vector. Before the flux vectors can be %

differentiated with respect to (Q), the flux vectors must be

written in terms of the elements of the (Q) vector. Which is

done as follows

Q [ p, p u, /v, et]" = [Qs, Q:z, Q., Q41" (b21) -7

.'. ."..-

E* (Q2, Qu'/Qa+A)( f-I)(Q4-(QZ'+Q32 )/2Qj , QQ/Q,..

(Q4+( Y-i )(Q Q4 ( 2 +QM )/2QA ) )Q//Q .I' (b22)

P = 0, 1 (lW)( -lX(Q#(Qat2+Qv)/2Qa), 0, 0O1 (b23)

E -" , = 0, -' , '. , u - .. +v T-'. - cl, 1r (b25 ) " '

- . . "%=

4-. m t (Q/QjL )/3Re-2 U ( Q/Q, )/3Re (b26)

m- y >(Qa/Qa )i /Re+ 4 ' ,(Q3/Q )I /Re (b27).- -' .

L,7 1 QI(7,,[Q/Qi )-Qw2+Q32 /2Q,&2 1 /R e Pr (b28)."-

F - [Qz, QaQw/j , Q /Q& +( X-1)(Q4-((+)/2Q)) /2 ,

(Q*+( -I )( Q4-( QS+Q' )/2QL ))Q3/Q, I' (b29)

.'.*-..-
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F"., = 0, u -C I. U 7~v+v -c'yq> Jr (b30 )

4 4(Q,/QN)/3Re-2h4./??II(Qz/Q1, ) 7 /3Re (b31 )

=y XJ->[ Q4/QL )-(Qv+Q3I /2Q3. l/RePr (b32)

with these definitions the Jacobian matrices can be formed as

shown on the following pages.
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= 1 12 13 14 (b33) . ,

21 22 23 24

31 32 33 34 I  . ' % 3LE4 EE4 4 4 4j
where

11 = 0

12 =1]

14 = 0 '['

21 = -Qz-/Q, + (W )(2 )(Q +Qz )/2Q1 2 L

22 = 2Q=/QL - (W)( -1I)Qz/QL

23 = -( (X))( Y-1 )Qs/Q

24 = () )(--1)

31 = -:Q/

32 =Q/Q.

33 =Q/Q-

34 = 0

41 - -Q2/Ql ]{ Q4+( -Y-1 )f Q4-( Q=,M+Q32 )/2Q, ]} +

[Qz/Q, [ ( X -1 )( Q2 +Qm2 )/2Q-- I " "

42 = (i/QL ){Q4+( /-)Q4-(Q2+Q32)/2Q, I - !.:
%- )(QZ/Q, )at.

43 = -( -i )Q3Q2/Q, 1 ,

44 = ( Y)Qa/QI

.- ,.',',

1.- % 'r % '

.- %
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21 22 23 241

31 32 33 3

41 42 43 444

where

1. -~

14 = 0

13 - 0 1)ZQ

14 -

21 - -QaQ2 /Q&2 ~(..)Q+S)2&

22 = Q/QL-(-)Q/

31 - Q=/Q

34 = 0 *

41 = -Qi/Q&{(Q4+( -~1)(Q4-(Qa+Q3s)/2Q& I I

+ Qau/Q& I Y~ ( Q,2+Q322Q,,2

42 1/Q&{ Q4+( f-i )(Q4-( Q 2 .QX 2 )/2Qi I} l

43 X (-1 )Q3QZ/Qa 2 ..

44 = X)Q,/Q,
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I2 - -.

(E1," ) = 12 13 14 (b35) if-

21 22 23 24

[31 32 33 34

41 42 43 44

where

11 = 0 %

12= 0

13 = 0

14 0

21 = -4( ,J- )( )[ Qa/Q 1,2 1/3( Re)

+ 2( A )( )[ QzQ/Q 2 11 /3( Re)

22 = 4( )( x ),[1/QL 11/3( Re )

23 = -2( L )( 7 )x, 1/QL ]1/3( Re ).0%" •
?

24 = 0

31 = )UX Q/, 1 (R
e%'

%'

X (iL)77 )m IQz/Q& 2 17 /(Re)

32 = ( /. )(" ).v[ 1/Qs ]/( Re )

33= (,)( 7 )X [ 1/Q, 11/(Re)

34 0

41 = -4(,LL )( 1 )[Qa 2 /Q. 1,7/3( Re)

-( /L )( 77 ),<1Q3 2 /Q 1  Re)

+2(/. ( 77 )y{( Z/Q/ , )I QS/QL 1,- i .%

+( Qa/Qi )l QZ/Q& a 17 )/3( Re)

--( L x )( 77 )'{ (Q /Q 2 )t Q /Q, *.1V ..,:, , .. ,
+( Q /Q ,L )f Q2/QI2 In )/( Re % -+

+( F. )( ))( 77 ),-T Q4/Q, )+( Q2 2 +Qx )/Q 3 1,)/( Re )( Pr )

.if i.- 1
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42 C ~'7 )xfQ2/Q1
2 11/3( Re)

-2( XL )(7 )Y[Qw/Qs ],1/3(Re)Qs

X(L) rX( 7 ).[ Q=/Q 12 lg/(Re)( Pr)

43 jUXI (/4)7)x [Qa/Q a 1?/Re )

+( 1A X 77 ).y[Q2/Q1 ]1 /(Re )Qj

-2( IX X? )x[( 1/Q, 11/3( Re)

-(~~~) [A.) (7 , Q3/Q , 2 11/ Re )(Pr)

44 1/.)(Y(X) 1 1/Q, 11/(Re X(Pr)d.
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(F i),= 11 12 13 14 (b36)

21 22 23 24

where F3
23 1

24 =0

31 =-(Q=/Qa ) 2 + -Y1 )(Q=z+Q32 )/2Q 12'

32 -(=1)aQ

3 3 2Q~x/Q± - ( 1)Q/Q I

34 r ~-1)

41 = Q3/Q&2 Q4~+( fi)l Q4-( QZ2 +Q3' )/2Qs, I I

+ Q3Q L 1)(Qvx+Q3 :z)/2Q. a]

42 = -Y1 )QzQ 3 /Q&LZ

43 = 1/QA I Q4+( X -1 )f Q4-( Q22+Q3 2 )/2QjL I

-Y (-1)(Q3S/Q1 )z

44 (Y)Qv/Q,
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(F," )ct= 11 12 13 14 (b37 6

21 22 23 24

31 32 33 34

41 42 43 44

where

11 0

12 = 0

13 = 0
%

14 0 -... e%

21 = -(/..L )(7Y ),Qa/Q 2 ]I/( Re)

- ( )( )x[ Qx/Q&2 ]I/( Re)

22 = ( /X )4 1/QL ]q/(Re) .....

23 = ( j) x )4)[1/Q, ]I/(Re )

24 = 0

31 = -4(U )(7 )y(QX/Q&2 11/3(Re)

+ 2( /1 )( 77 )2[ Q2/QL2 11/3( Re ),
32 = -2(LL )( ),[ 1/Q a17 /3( Re) -

33 = C / x( 7 ),[ 1/Q& ]?/3( Re)

34 = 0

41 - -( ) Qp/Q & /( Re

-4( XW )[ Qz'/Q&3 11/3( Re)

-( ,LL)( 27 )X{(Qa/QL 2 ) [ Q3/Q& ]i+(Qzt/Q* )[Q3/QL ]I I

/Re).'8

+( ) ) )X{(Q3/Q&2 )fQZ/Q ]I+(Q3/Qz )[ Qz/QI 7 }

/3( Re)

+( x x T ,[-( Q4/Q, 2 )+( QZ 2 +Q 2 )/Q&3 I Re )( Pr .
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42 - (AX 7 )( )Qz,/Q 1
2 

7 /(Re)

+( ( X7 ). Q,/Q, I7 /(Re )Q L.

-2( / )( T )KQ( 1/Qa 17 /3( Re )Q&

-( XLL )"( 77 )y[ Qz/Q,2 17/( Re )( Pr)

43 -4(): X(7 )~Qx/Qs 2]1/3( Re

+( )( Q )IQ[ l/Q, I?/(Re )Q, ,

-2(/1 )( 1 7 )x[ Q2/Q, &1/3( Re )Q .

-U Xl X() (9 Q3/Q,z ]I/( Re X( Pr) -

44 U X X 1( ) y /Q. 11/( Re )X Pr ).,_.:w

,

z

• . 4z~2

.r .s. "

,%

.. ... , _ * 
% 
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Thermal deformations induced by aerodynamic heating on ii
high speed vehicles are an important concern in design.

. ' tkerodynamic heating may have a significant effect on the
performance of the vehicle, 4-rteffective techniques for
predicting the heat transfer and flow properties are
required. The accuracy of numerical solutions depend on the
grid used. Usually accurate prediction requires clustering i!
of grid points near the surface of the body. Using an
explicit algorithm to solve such problems results in the
requirement for very small time steps 4n-a-det; to satisfy the
stability bounds.) Therefore, many iterations and large
computer times are required to reach the steady state. To

.. remove the time step restriction, fully implicit methods<?av , ,I

_be investigated. Results for high speed flow past a
circular wedge using an implicit flux splitting scheme are
shown. -AlsO~~~.iscous blunt body flows are, /mputedand
qualitative comparisons with existing experimental data are .

given. In an effort to decrease the computational costs
associated with the implicit algorithms for the
Navier-Stokes equations, a relaxationalgorithm is developed
for the Approximate Navier-Stokes' AN8G)equations. Results
for Couette flow and supersonic flow over a flat plate are
obtained using this relaxation algorithm and compared to .*.

analytical and other numerical solutions.
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