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The purpose of this"‘-‘.\investtgation was to design and implement a
graphics based envirounent\\c(wﬂﬂe of supporting the rapid prototyping of
pictorial cockpit displays. *ttenﬂon was focused on the interactive
construction of pictorial type cockpit displays from libraries of cockpit
displays and symbology.

implementation was based on an object-oriented programming
paradigm. This approach provided a natural and consistent means of

mapping abstract design specifications into functional software.
Implementation was supported by an object-oriented extension to the 'C”
programming language.
Aithough this investigation addressed a specific application, the
% resulting graphic environment is applicable to other areas requiring the
g rapid prototyping of pictoral displays.
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A GRAPHICS ENVIRONMENT SUPPORTING THE RAPID PROTOTYPING OF
PICTORIAL COCKPIT DISPLAYS

L. Introduction

The demand for cockpit displays has currently surpassed the
capabilities for generating them. An ever-increasing time lag between
requirements definition and implementation has developed. Cockpit display
generation can take from weeks to years to implement adding to
development cost and reducing research effectiveness (AFWAL AC/CSRL
Technical Program Plan, 1985] Two major factors have contributed to the
current cockpit display shortage. They are the lack of automated design
tools and the lack of a reusable software base for cockpit display
development.

Currently, cockpit display design is a tedious, manual process. Tools to
support rapid prototyping of generic cockpit displays are almost
non-existant. The few tools that do exist are usually taflored to a specific
display type (e.g. Head Up Displays) [Adams, 1985] severely restricting their
applicability to other display types. Software bases suffer from similar
limitiations. They either don't exist, must be generated manually, are
tailored to a specific cockpit display type, or are so device dependent that
portability is impossible.

Introduction |
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Figure 1. Heads Up Display.

;) This thesis proposed a partial solutfon to this problem by:
0 1) developing a set of automated design tools capable of supporting the
rapid prototyping of muitiple cockpit display types, and

2) establishing a reusable on-line software base to aid cockpit display
construction,

These solutions were realized in a highly integrated, interactive
graphics environment. This environment provided a dynamic medium for the
rapid prototyping of muitiple display types by providing the capability of
constructing cockpit layouts and cockpit symbology from an on-line
software base of cockpit layouts and cockpit symbology. Layouts were

- constructed, in a building block fashion, by selecting existing cockpit
layouts and/or cockpit symbology from a software base and pasting them on
a representation of an actual cockpit display. Figure 1 illustrates a Heads
Up Display (HUD) constructed via this methodology. Individual cockpit pa
@ symbols are constructed in a similar manner from a set of graphic .g'

. Introduction 2
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primitives The ability to construct both cockpit layouts and cockpit
symbology on-line makes this environment a feasible solution for the
cockpit design/research problem.

Eackground

Cucrent  Mathodolagy Currently, the design and implementation of a
cockpit layout design is a long and tedious process. It requires many steps,
each performed manually by different experts. These steps are:

- Design Layout and Analysis

- Design Transiation to Software

- Integration with Aircraft Simulation Models

- Testing and Evaluation

Design layout and analysis is the act of capturing the designer's

ideas on paper. Cockpit layouts are assembled in a building block fashion
from pre-defined sets of cockpit components. Components are selected and
positioned on the layout. New components are created and saved as
requirements dictate. The final layout can be viewed as a collection of
cockpit components spatially arranged to satisfy a design requirement.

When the layout is complete, it is transferred to software and
simulation experts for transiation into computer code. Each component may
be realized with an associated subroutine or procedure. It is the
responsibility of the software and simulation experts to create source code
files, composed of the various procedures, into a single application for
testing. New components, with no associated code, will require individual
design, coding, and testing before they are integrated into the final
application.

Introduction 3




The amount of time and code required during this phase depends
directly on the complexity of the layout. Layouts that are slight
modifications to existing ones, require a minimal amount of software to be
generated. A new layout with new components will require extensive time
and software resources. In either case, design translation is an expensive
and time consuming activity. it requires extensive debugging and testing of
each individual component and system testing of the final design.

After the design has been transiated to code, it is integrated with
various aircreft simulation models for testing. This step can also be very
time consuming and resource expensive. The resuit of this step is a
complete software simulation of the cockpit design constrained by the
specific aircraft characteristics, ready for testing by the designer and the
intended user. _

The final software product is-then installed within a simulation
cockpit for testing. It is at this stage that the user and designer can
actually ‘fly’ the design. If testing reveals that modifications to the current
layout are necessary, the layout is re-cycled through the process outlined
above. Although redesign is usually not as an extensive development effort
8s the original design, it still consumes a considerable amount of time and

support resources.

Problems . Four major problems exist with current methodology; they
are as follows:
= Tedious (manual) Process
- Time Consuming
- Non-Responsive
- Device Dependent

Introduction 4
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0 One of the main problems with the current methodology 18 that
virtually all steps are performed manually. Design layout, analysis, and any
requirod corrections are manually performed on paper. Design transiation is
performed by software and simulation experts who manually write, debug,
and test the code. The resuiting code is then manually integrated with
aireraft simulation models for dynamic testing.

Not only is the current design process tedious, it is also time
consuming. Depending on the complexity of the design, implementation
(from design conception to testing and evaluation) can take from weeks to
years to complete. By the time the design is implemented, the designer is
pursuing other layout schemes or the current layout {8 no longer pertinent.

The drudgery of the manual process, coupled with an ever-increasing

0 time delay between idea conception and implementation, fosters a design
process that is non-responsive to the designer's needs. The current process
does not provide the designer with an effecive or efficient means of
evaluating and modifying the design in a continuous, and timely, faghion. The
designer becomes as outside participant in the design process once the
design transiation beging. Not until the test and evaluation phase can the
designer interject inputs to the design process. Then, all errors or
modifications identified result in the software being turned over to
software and simulation experts for re-work. This can entail lengthy
modification, testing, and debugging before the software is returned to the
designer. Simple changes can take weeks to implement. The ability to fine
tune designs becomes almost impossible due to the time and resource
expenses involved.

introduction 5
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Another factor contributing to the non-responsive, inflexible nature of
the current design process ig the software dependencies on specific
hardware devices. Due to the heterogeneous nature of the hardware
erwironment, much of the software written to implement cockpit displays is
device dependent. Rehosting- a design (i.e. the software) often entails a
duplicate development effort. The original software may require a complete
re-design to function on the new hardware. Even a minimal rehosting effort
will require extensive testing and debugging of the new software in its new
hardware environment to ensure compiiance with original requirements.

DESIGNS. Research to provide an alternative to the current
methodology was undertaken and reported in the 1985 Air Force Institute of
Technology (AFIT) thesis entitled “A Display Environment Supporting the
Interactive Generation of alphaNumerics and Symbology with DESIGS on the
Future® (referred to as DESIGNS). DESIGNS had two goals: 1) to demonstrate
the feasibility of using a graphics based environment for the generation and
editing of display formats and 2) the automatic generation of source code
from the display format for a targeted graphics device [Adams, 1985:50].

To accomplish these goals, an initial system was implemented to
develop and modify HUD formats. The designer could interactively lay out
HUDs from pre-defined sets of HUD symbols. Code was automatically
generated from a layout by linking together source code associated with
each HUD symbol in the display. The source code and the symbols were
maintained in on-line libraries. Manual intervention was confined to the
layout process.

DESIGNS significantly reduced the time required for static HUD
implementation from weeks/months to an average of 30 minutes. The 30
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minutes included actusl HUD layout activity and subsequent software

. generation [Adams, 1986] It should be emphasized that ail HUD layouts
were constructed from pre-existing symbol sets. Dynamic inclusion of new
symbols was not directly supported by DESIGNS. The designer was still
dependent on software experts to manually integrate new symbols into the
DESIGNS environment.

AC/CSRL. . Using DESIGNS as a baseline for developmant, the Air Force
wright Aeronautical Laboratories, Flight Dynamic Laboratory (AFWAL/FIGR,
FIGD) initiated research directed toward implementing an Advanced
Cockpit/Crew Station Research Laboratory (AC/CSRL). The goal of the
AC/CSRL 18 to automate the entire cockpit design process, with the main
objective of keeping the designer as the focal point of all aspects of the

0 design process. Currently the AC/CSRL {s in definition phase;
implementation is not expected until the 1990's.
ALC/CSRL s expected to support the following
- interactive design and modification of cockpit layouts,
- automatic generation of source code from the design,
- automatic linkage to aircraft simulation models, and

- one day turnaround time to prepare completely new cockpit
arrangements for testing [AFWAL AC/CSRL Technical Program
Plan, 1985)

Unlike DESIGNS, which only supported the development of HUD-type
displays, the AC/CSRL will support a variety of displays, from simple
alphanumerics to complex pictorial type displays. In addition, the AC/CSRL
will also support dynamic creation and iIntegration of new cockpit

@ symbology into the design environment.

Introduction

OSEIE A AP R M LSOO R RO RN i

AL AL A AN i Yy 8 e G N TRy

ot ¢ . . . i) 1 v
umwg-w;»dm.—mmmmﬁ“ﬂd« m-ﬁ -..-.nqhh -oa-.... -.—n-a..- -...u .l A oSy Surkin By Bus 1§ g Gurt s & oty Prading -N -.--p-.-h -l.u.h.m-:..h‘.
— . T T T e e T ety o Mt e i ettt i by e v b Aot et




Automated Design to Code Graphics
Layout _Trensiation Computer
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Linkegs to
& Aircraft Simuletion
Fine Tuning Modets
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Computer
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Simulation Evd
Cockpit

Figure 2. AC/CSRL Concept.

To accomplish this, the AC/CSRL will rely heavily on a flexible
graphical interface and on on-line libraries of cockpit symbelogy and
associated source code. Displays will be constructed in a building block
fashion, by selecting cockpit symbols from the libraries and placing them on
a repesentation of an actual cockpit display. Source code will then be
automatically generated and combined with aircraft simulation packages to
produce a full mission scenario. The designer, in effect, will be able to
construct a design layout, generate the corresponding code, and dynamically
test the design within the same environment. The design process will no
longer be dependent upon software and simulation experts, thus improving
turnaround time and reducing costs. Figure 2 conceptually depicts the
AC/CSRL concept with its associated components.

At a procedural level the AC/CSRL will not drastically alter the nature
of the design process. The same procedures performed in the current manual
design process will also be performed via the AC/CSRL. However, the
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degree of manue! intetvention is significantly different between the two.
The current process is almost antirely manual. Few, if any, of the steps are
automated. In contrast, the goal of the AC/CSRL s to automate the entire
process.

Design layout and analysis will be supported interactively via a
flexible graphics interface, known as the Automated Layout Center (ALC).
The ALC ia the focal point of all cockpit design activity. All cockpit layout
design as well as cockpit symbology construction is handled through the
ALC. It provides the designer with a window into the AC/CSRL environment.

Testing will be significantly enhanced. Complete simulation senarios
will be generated for the designer and intended user o test (f.e. 'fly") and
evaluate. Redesign will be supported in a more timely manner. It should be
possible to incorporate modifications and retest a redesign within the stme
day, as opposed to weeks in the current process. This should significantly
improve productivity and promote experimentation of alternative display
representations.

Problem Statement

The aoal af this thesis ressarch was to demonstrate, in part, the
feagibilily of the AC/CSRL concept by designing and implementing a
prototype of the Automated Layout Center. The prototype ALC focused on
the rapid prototyping of pictorfal type cockpit displays via the use of
on-line libraries of cockpit layouts and cockpit symbology. In addition to
addressing a rapid prototyping capability, this thesis also presented a
candidate user interface for the ALC.

introduction 9



The implementation of the prototype ALC was based on an
object-oriented paradigm. An object-oriented approach was chosen because
it providod a framework that was a “direct and natural correspondence
between the world (La the design process ) ad 1ts model (le 2 virtum
cockpit display)” Borgida et al., 1985:685) (italic phrases:added by author).

To suppport such an implementation, an object-oriented extension of the ‘C' :33
programming language was implemented. These extensions were modeled b
after the Smalltalk environment [Soldberg and Robson, 19831 i
The objective of this thesis was to design and implement a prototype i
ALC supporting the rapid prototyping of cockpit displays. The results from
this effort were to be used as guidelines for future AC/CSRL related .
projects. Since this was a rather zmbitious project, the following s
constraints were placed on this research effort.
Breath of !mplementation The prototype ALC design consisted of
four functicnal areas; 1) the user interface, 2) the Layout Editor, 3) the :
Symbu! Editor, and 4) the LiSrarian. The usar interface provided the dynamic -
medium through which all user Interactions aed ySisin responses were
handled. The Layou: Editor, a graphics editor, supported the dynamic
prototyping of cockpit layouts. The Symbol Editor, another graphics editor, "
supported the creation and modification of cockyit symbology. The Librarian 'é:
provided an archival mechanism used to store and retrieve cockpit layouts e
and cockpit symbols. t
Introduction 10 ,
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Due to time constraints and for demonstation purpose, only the user
o interface and Layout Editor were implemented The exclusion of the Syn'bol
Editor and Librarian did not significantly distract from the goal of
demonstrating the feasibility of the ALC concept. However, for
completeness and future implementation, the requirements definition and

design of all four functional areas are presented in this thesis.

Display _Dimensiopality The AC/CSRL is expected to support the
creation of both two and three dimenaional cockpit display representations.

The prototype ALC supported only the design and representation of two

dimensional cockpit displays. Three: dimensional cockpit display

representation will be an essential component of future d"D'IYS} however,

i including this capability within this thesis would only serve to distract

' @ o™ the fundamental charactaristics of the ALC that needed to be
addressed first. The ALC prototype design does not explicitly rule out the

! inclusion of three dimensional capabilities, but on the other hand, it does
not explicitly address it efther.

Code Generation The AC/CSRL will automatically generate source
code from the cockpit designs created on the ALC. Code generation is not
addressed in this thesis. The prototype ALC only supports the creation and
modification of cockpit layout formats; it does not generate source code
from said layouts.

Innt _Davices. This thesis cannot address the merits of which input
., device(s) siould ba used to fnterface with the prototype ALC. Although the
’ '@‘ AC/CSRL will st *~t many devices, time constraints and the lack of

Introduction [
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available input devices for interfacing prohibit consideration in this thesis.
As such, the primary means of interaction will be via a mouse. Tha keyboard
i8 used for retrieval of textual information only (i.e. filenames, labels, etc.).

Iransportability . A key requirement of the AC/CSRL is device
independence. Device independence will allow re-targeting of the AC/CSRL
designs on different graphic devices. This is not attainable for the prr *;type
ALC due to the unavailability of appropriate systems.

Aithough the design is device independent, the implementation is
targeted to a Raster Technologies Model One/25 graphics system. As such,
some sections of the code will be device dependent. These sections have
been identified and isolated as much as possible.

Sequeoce of Presentation

The second and third chapters of this thesis present the system
requirements and overall system design. Chapter 2 addresses system
requirements related to three general areas; hardware, software, and the
user interface for the prototype ALC. Chapter 3 maps the system
requirements into four functional areas that comprise the ALC prototype's
design, namely; the user interface, Layout Editor, Object Editor, and the
Librarian.

The fourth, fifth, and sixth chapters describe in detail the design of the
four functional area defined in Chapter 3. Chapter 4 addresses the design of
the user interface, discussing what design considerations were followed
and the actual interactive components that comprise the user interface.
Chapter 5 discusses the similarities and differences between the Layout

Introduction 12
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Editor and the Symbol Editor. Chapter 6 provides insight into the design of
the prototype ALCs archival mechanism, the Librarian.

Chapter 7 deals with the actual implementation of the ALC prototype.
implementation is approach from three viewpoints. The first view is a
description of the actual host hardware for the ALC prototype. This (s
followed by a description of the object-oriented environment used In
implementing the ALC prototype software. And finally, a descrription of the
ALC prototype implementation is presented. Chapter 8 concludes the
written thesis with conclusions regarding the success of this research
effort and recommendations for the future.

The appendices of this thesis provide information relative to the
software and hardware environments in which the prototype ALC was
hosted. Specifically, Appendix A addresses the design approach followed in
the conceptualization of the software. This is followed in Appendix B with
a basic overview of the object-oriented concepts that were used to modal
the implementation of the prototype ALC software. Appendix C provides a
detailed discussion of the object-oriented extensions to the 'C' language
that were implemented to support the prototype ALC implementation.
Appendix D outlines the graphic capabilities (i.e. clagses) that are currently
supported by the object-oriented implementation. Appendices E and F
describe the operational characteristics of the Raster Technologies Model
One/25 and associated device drivers.
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1i. Reguirements

There are three primary areas of requirements for the ALC prototype
that this chapter will define. They are the hardware, software, and the user
interface areas. Hardware requirements encompass the actual hardware
needed to support the prototype ALC. The software requirements section
describes the functional requirements and provides guidelines for software
development. User Interface requirements bind the hardware and software
requirements together. A detailed description of each requirement category
IS presented In the following sections,

Hardware

Although no hardware s being cesigned, and the target host has already
been identified, it Is still worth mentioning, in general terms, the hardware
requirements needed to support the ALC prototype. Thig section provides
general guidelines to follow If the ALC prototype Is re-hosted at some
future time.

There are four general areas that the hardware discussion should
address. These areas are display technology, input devices, output devices,
and processing and storage capabilities [Rose, 1 982:25).

Display Technology Three basic types of display technclogies could
be used for the ALC prototype: vector, storage tube, and raster. Each

technology uses a technique known as ‘phosphorescence’ to illuminate an
image on the display screen. This process involves the use of an electron
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beam to excite a phosphor-coated display screen  The phosphor when

@ excited, jumps to a higher, unstable energy state. When the beam is
removed, the phosphor retuns to its original stable state releasing the
excess energy as light. Images are drawn by directing an electron beam on
the phosphor-coated screen in the desired shape or pattern. The method
used to direct the electron beam constitutes the major distinction between
the three technologies.

Vector (or often refered to as stroke, or calligraphic) displays display
images by directly tracing the image on the display screen with the electron
beam. This method is extemely fast and straightforward. However, because
the illuminated phosphor fades at a exponential rate, the image must be
continuously retraced (or refreshed) for the image to remain on the screen
[Foley and Van Dam,1982:106] As more and more images are drawn, an

@ annoying flicker in the display presentation may develop.

Storage tube displays circumvent the flicker problem by tracing the
image on a fine mesh grid mounted immediately behind the phosphor coated
screen. (mages traced on the grid are transferred directly on to the
phospher. The grid acts as a storage medium, saving the image once it is
traced. This allows the image to be drawn only once, eliminating the flicker
problem caused by the need to refresh the screen constantly. However,
since the image 18 swored on the grid and continuously displayed, it becomes
almost impossible to make selective erasures from the screen. In order to
erase a single image, the entire display must be erased and the modified
image redrawn.

Raster displays differ fundamentaily in the way images are drawn.
Unlike the refresh and storage tube displays, the image is not directly

m traced on the screen. Rather it is written into a storage area know as a
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‘frame buffer’. A frame buffer is a matrix of bits, each corresponding to a
unique address point (or pixel) on the screen. Each entry in the matrix
stores the brightness and/or color value for its corresponding screen pixel.
An image is displayed by processing the matrix, row by row, using the
contents of each entry to control the electron beam intensity. The image is
thus displayed row by row, starting at the top of the screen and finishing at
the bottom. |

Raster displays overcome the problems of screen flicker and erasure
problems associated with vector and storage tube displays. The electron
beam is not required to bounce around the screen tracing an image but rather
follows a predefined pattern (row by row) with in a predefined time span
(30 to 60 times a second). This allows a display composed of many images
to be drawn at the same rate as a display containing just a few images. The
frame buffer provides a means of doing selective erasures without the
entire screen having to be erased and redrawn

The choice of which technology to use often depends on the intended
application. For applications that require only static displays and minimal
user interaction; all three technologies could be used For dynamic, user
intensive application, such as the ALC prototype, a vector or raster display
would be warranted. Table | provides a summary of the capabilities of the
three display technologies (Dudley, 1982:38].

Input Devices The ALC prototype requires, as a minimum, an input
device capable of performing the following two functions, 1) cursor
tracking, and 2) object selection. A number of input devices could satisfy
this requirement. The most commonly used devices are, the tablet or
digitizer, touchpanel, joystick, mouse, and trackball. The choice of which
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TABLE |

Display Technology Summary
Rester  Storage Tube  Uector
Resolution low to high high very high
Drawing type :er:I‘l':t'lc line line
Motion dynamic static dynamic
green on mono or
Color millions green 4 to 8 colors
interactiveness high low very high
Use ':“:'"'."g::“ dumb | stand-alone
st:gd-olol'w terminal | system

device 18 used will most likely depend on availability of the input device.
Table || summarizes software development cost factors, input type, and
special considerations related to these devices [Ohison, 1979:285).

OQutput Devices The ALC prototype does not require an output device
other than the display screen. If hardcopies are desired, a plotter or film
recorder could be used.

Processing and Storage. The central processing unit (CPU) is the
heart of a graphics system. Regardless of whether the graphics system is a
stand-alone or remote terminal, the computational processing capabilites of
the CPU will directly influence the type of graphic applications that can be
implemented and expected to execute within a reasonable amount of time.
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TABLE Il ,
input Device Summary

Software | Input | siderations
Device Dev. Cost Type Special Con

indirect Somsa Units are not

Tablet Medium suitable for online
Graphical | |nteractive use.

Direct 6ross resolution, makes
touchponel | Low Tactile | detall work impossible.
Joystick Low Indirect | Large veriety,

Tactile | fits most applications.

indirect
Mouse Low Tactile Relative Positioning,

: Inffirct
Slewing capabiiities.
Trackball | Low Tactile g cap

Computationally intensive applications such as 3-dimensional modeling and
ray tracing require significant processing power, as opposed to simple line
chart applications. The choice of which CPU to use should be weighed
against the computational aspect of the application. The ALC prototype does
not require an exceptionally powerful CPU. Most 16-bit microprocessors
available on the market today would suffice.

Storage, both internal (memory) and external (secondary), also
influence the speed at which an application can execute. Applications
constrained by limited main memory or hampered by slow peripherals, often
spend a significant amount of time waiting for segments of the application
to be swapped to and from memory or waiting on data transmission from the
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TABLE 11l
@ Prototype ALC's Hardware Requirements. -
$i ;
i Requirement Implementation ’
X Display Technolgy Refresh or Raster
Cursor Tracking
Input Device and
Object Selection .
i Output Device Optional
e Processing 16 bit micro (minimum)
e Storage M main memory, 10M disk £

@ peripheral device. instead of performing useful work, the application

“ becomes ‘1/0 bound’. To prevent this from occuring with the ALC prototype, ;3
b the host system should have at least 1 megabyte of main memory and, at a }
) y minimum, a 10 megabyte hard disk. Table 11| provides a summary of the ALC
o prototype hardware requirements. :
B g
o software 3
i Software requirements for the ALC prototype can be classified into
o two areas, 1) software development requirements, and 2) implementation 3
e y
-;_:;Z; requirements. Software development requirements apply directly to the #
R software development activity. They serve as guidelines to ensure that the g
R &0 software is developed in a consistent and standard way. They are general in :
S 3
“ Requirements 19 d
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nature, and shouid be applied to all software development effrts regardless
of the application. Implementation requirements, on the other hand, are
application specific. Thay categorially state the functions that the software
must perform. They address ‘what’ should be implemented, not ‘how".

Software Develooment Reauirements The principles listed here,
are general software requirements that should be adhered to in the design

and development of the actual software. These principles should be applied
at all levels of the development effort.

Portability (device/host independence) The prototype ALC should
be designed with host independence in mind. Since this is a prototype, it

might be desirable to re-host this system on different workstations. As
such, the software should be developed with no specific host in mind.
Portions of the software that are dependent on the hardware should be
{solated as much as possible and clearly identified.

HModularity The software should be designed in a modular manner.
Modularity provides a method of isolating the functions of the software into
weli-defined units. These units range in complexity from procedure to
library packages [Fairley, 1985:1451 Some of the benefits modularity
provides are: ease of implementation, maintenance, debugging, and
complexity management [Shooman, 1983:110}

Simplicity. The software should be written so it is easy to read
and understand. All software modules should contain only one entry and one
exit point. They should conform to a consistent programming style and
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should not attempt to hide the logic of the function under clever coding

‘ [Fairiey, 1985:209-214) It should be self-evident what a module does.
Following such conventions makes the software easier to read, to
understand, and to modify.

Efficiency Efficiency refers to the ability of the software to
operate under the current set of available resources. There are two main
facets of efficiency: time and space [Booch, 1983:25). Time efficiency
pertains to the ability of the software and hardware to operate within a
specified time constraint. The only time constraints imposed on this project
are to provide a flicker-free display and response to user commands in a
reasonable time. The systom ghould wait on the user, not vice versa,

Space efficiency implies that the scftware should reside and execute
‘ within the current available memory. it should not be a requirement of this
research to acquire additional hardware of any type.

Extansibility. To accommodate future modifications, the software
should be designed with generality in mind. In other words, the software
should provide a framework (harmness) in which new capabilities (modules)
can be ‘plugged in' [Clemons and Greenfield, 1985:40] This will allow the

system to expand as user requirements change and advanced features are
added.

Table |V summarizes of the software development requirements.

impiementatton Requirements  Implementation requirements
describe what the user wants the software to do. They are application
specific and need to be clearly identified before the design or
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TABLE IV

0 Software Development Requirements.
Requirement
P
Portability Host independent
'hy
o Isolate the functions of the
Modularity software into well defined units
! Simplicity Easy to read and learn
Efficlency Operate with current set of
avallable resources
,?ag", Entensibility Easy to add-on new capabilities
".l."::
B implementation begins. There are five basic functions that the ALC
) prototype must support: 3
o - Graphical Interaction, 2
3 ~ Direct Manipulation, f
" - Iterative Deveiopment, Y
o - Experimentation, and
- Evolutionary Design.
_;' Graphica) Interaction: The process of designing a cockpit display
& is a spatfally orlented activity. It relies heavily on graphical images to
represent cockpit and real-world objects. As such, the prototype ALC
.' % should exploit the use of graphics as a medium for the computer-human
~‘.;;5:
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interaction. The use of graphics, as a medium for interaction, provides
certain distinct advantages over the use of text as a medium ([Raeder,
1985:12] which are particularly relevant to the ALC prototype and related
AC/CSRL efforts. These advantages are discussed in the following
paragraphs.

The use of graphics as a medium of interaction permits instant random
access (viewing) to any part of the display screen. The user can focus
attention on a specific aspect of the display or can ‘back-off' to grasp the
overall structure. The user is not forced to follow 3 linear search pattern,
but can switch from object to object, view to view, in a random fashion.

Text, on the other hand, forces the user to view information
sequentially (usually top to bottom, left to right). It becomes difficult to
grasp the information content of text displays. Headlines, bold type, and
paragraphs provide some reltef, but the process still remains sequential in
nature.

Graphics provide multiple levels of dimensionality to the intormation
being displayed. Information can be portrayed in two or three din.ansions
and the physical attributes of the information (i.e. shape, color, si~e, etc)
can also be modified. Text, on the other hand, is a one-dimensional #*ring of
characters.

Graphic mediums algo capitalize upon the inherent image proc. <:ing
capabilities of the human sensory system. The mind, a kind of biologic:i
image processor, is extremely adept at accessing and processing visua:
information. We tend to conceptualize things as pictures, not words. As the
saying goes, ‘A picture is worth a thousand words'.

The use of graphics as the main means of interaction directly
influences the designer's perception of cockpit display creation. The process

Requirements 23

T ] = WAy A Ay

pSaiutn b tyerima iy eyl N R lema T e Sy Blgyears Lo b b iy 41



of creating a cockpit display is very similar to computer programming.

0 Instead of using a textual-based language such as Pascal or Ada to develop
an application, the designer uses a graphics-based language to build
(program) a display. The immediate details of syntax and control structure
are transparent to the designer. The designer deals directly with the
semantics of the language, understanding the whole verses individual parts
or commands.

Dirsct Manioulation An important aspect of graphical interaction
is the ability to manipulate objects directly on the screen (Shneiderman,
1983:57]. Direct manipulation refers to the ability of the user to modify the
characteristics of an object (i.e. shaps, size, color, position, etc.) via some
action. The user is not required to use an intermediate form (e.g. commands
@ issued from the keyboard) to initiate an action. The user can use some form
of a pointing device to select the object and then directly manipulate its
form. Direct manipulation of cockpit objects is @ key requirement of this
system [AFWAL AC/CSRL Technical Program Plan, 1885]

iterative Development The process of developing cockpit
displays is best implemented via an iterative process. An iterative process
allows the user to evaluate and modify the design on a continuous basis
[Shooman, 1983: 36). This process should provide the flexibility to support
the following required activities [AFWAL AC/CSRL Technical Program Plan,

i
1985} |

- implementation of new designs, :

- implementation of design changes, |
« the fine-tuning of designs 1
f
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- creation and modification of cockpit symbology, and
® - the rapid generation of aiternative displays.

Experimentation The system should be supportive of
experimentation. It should allow the designer to experiment with possible

‘; design layouts without commitment. In other words, actions performed by

g the designer should be ‘undo-able’ (Harsiem, 1984:104] The ability to ‘undo’
a design decision allows the designer to explore alternative design
representations without committing expensive and time consuming
software and personnel resources.

A major problem plaguing the current design process i3 the inabtlity to
experiment with cockpit representations ‘on-the-fly’. The designer is not
afforded the luxury of making minor modifications to a cockpit layout

0 without incurring additional time and resources to the already expensive
‘ design effort. This often leads to acceptance of the first design, simply
because the costs associsted with redesign (experimentation) are too
prohibitive.

- we
P T

Evolutionary Design “Contrary to the i{dea that a computer is
. exciting because a programmer can create something from seemingly
i nothing, our users were showr: that a computer is exciting because it can be
B a vast storehouse of already existing ideas (models) that can be retrieved
and modified for the user's personal needs. Programming should be viewed
and enjoyed as an evolutionary rather than a revolutionay act® [Goldberg arid

~ Ross, 1981:354] The idea of an evolutionary design philosophy is very
applicable and appealing for the design of cockpit displays. The designer
' % creates the display in a building block fashion from sets of pre-existing
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_ TABLE V
e Prototype ALC Functional Software Requirements.

4~:l§|
b
Requirement
g Graphical Interaction Use of graphics us. tent
6raphical objects directly
Oirect Manipulation manipulated by the user.
'1;;;,' ' .Eveluation and modificetion
Interative Development |  of the design on a continuous
ks basis.
'f';,;; Experimentation Design without commitment
{v _ Evolutionary Design ::.rltds displays from esisting
':};E; cockpit objects. The ‘vast storehouse’ of objects aiready exists, the
7':‘.‘_:';' designer simply assembles the objects to form the design,
R In order to support an evolutionary mode of operation, the prototype
il ALC should provide the capabiiity to save and retrieve cockpit displays and
‘:‘{#
E;-:;E cockpit symbology. The symbology should consist of sets of standard cockpit
fc“{' instruments, specialized cockpit objects, and user defined objects. The user
o should algo be able to add, modify, and delete cockpit symbols interactively.
oy
'3‘ The functional requirements of the ALC prototype software are
ok summarized in Table V.
e G
KN
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The user interface has been touted as being “the sing'e most important

‘* consideration in designing any computer system® [Singh, 1983:35) It E§§°
2 functions as a communication channel between the user aid the system. The i
success or faflure of a system often depends on the users' acceptance of the .
interface. It thus becomes imperative that the user interface be viewed as .
an aid by the user rather than a hinderence [Singh, 1983:551 To accomplish __
| this objective several fundamental requirements have been levied on the ”‘
user interface. These requirements are described in the following i
"‘- paragraphs .
Ease of Une The user interface should be easy to use. The prototype
" @ ALC is expected to be used by a variety of users with differing backgrounds. _ &2
8 It thus becomes essential that the user interface Is not tailored towards e
any specific group of users. The user Interface should not require expertise },
' in computer programming or computer graphics to use. %m
Minimal Memorization To ensure ease of use, the user Interface | E;,:
should minimize the commands the user must remember. Commands should 'iy
be easy to understand and be displayed for user selection. Help and memory g"
i alds should also be avallable. g
Easy to Learn The user should not have to spend hours learning to use ’f:
, the system before becoming productive. A good criteria to use to measure :,e:.
the ease of which a user can learn to use a system is known as the
% % '10-minute’ rule [Rubinstein and Hersh,19848]. This rule states that it 3
‘3 Requirements 27 ;
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should not take the user longer than 10 minutes to become familar and
proficent with the system. If it does, the user interface should be
re-evaluated.

Anply. Exparience Experience. acquired In one area of the system

| should be applicable to other contexts. The user should not have to re-learn

how to use the system every time he switches applications.

Composition All cockpit display composition should be handled by
the user interface and performed on the screen Instead of performing the
design layout on paper then transiating it onto a screen, composing it on the
screen first will provide a direct mapping from design to implementation.
The designer bullds the actual display instead of a blueprint of it.

Eeadback Feedback informs the user what the system is doing
Feedback should be immediate, and where appropriate, visual,

aupportive of the design process The user interface should
interact with the user via a problem space that {s familiar to the user. In

the case of the prototype ALC, the problem space is a cockpit display. The
user interface should allow the user to manipulate a representation of the
cockpit display as if it were an actual cockpit display. The user should
work directly on the task (design process) without the user interface
distracting from the process [Shneiderman, 1983: 63]). The user interface
should be transparent to the user. No distinction between the screen and an
actual cockpit display should exist.
The user interface requirements are summarized {n Table VI.
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TABLE VI
m User Interface Requirements.

Regquirement

Ease of Use Does not require enpert users

Minimal Memorization Minimize command recall

TR K

Easy to Learn 10 Minute Rule
Knowledge gain in one area
Apply Experience should apply to others
N 1
Al display construction ‘
Composition performed on the screen
; Feedback immaediate and Visual !
N N
F . Conducive to the ALC display viewed as an
% Design Process actual cockpit display
summary

This chapter has presented the functional requirements for the ALC
prototype. These requirements were divided into three areas, hardware,
software, and the user interface. Hardware requirements pertain to the
characteristics of the host system to support the ALC prototype. Four areas
were specifically addressed, namely; display technology, input devices,
output devices, and processing and storage capabilities.

£ A9 &

Software requirements addressed the need to follow sound software
enginesring principles in the design of the software. Specific functional
requirements of the ALC prototype were also outlined. User interface

Requirements 29

'
p vty by By By SR e o gy o A Sy Ry o A, A U B T P Py /By B T P, Wy iy By Wy U Ry Uy i Sy By S W Ty T Wy S By W U e B Py i Wy Py g By By g W W 'i‘-"u"-'\)’-"u"'-"."‘-“.‘.‘.'f




requirements were presented separately from the functional software
requirements to emphasize their importance to the ALC prototype effort.
Several key requirements were.outlined. The remaining chapters of this
thesis apply the requirements defined in this chapter to the design and
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111, System Deaign

The function of the ALC prototype is to provide an environment that
supports the creation and modification of cockpit layout designs. The
requirements for this environment were presented in Chapter 2. This
chapter provides a system level design of the ALC based on those
requirements. The design spproach used is fiic. - .cribed, followed by a
system design based on that approach.

Rezign Approach

This thesis employed the concepts associated with object-oriented
design (00D) as the primary philasophy driving the design of the prototype
ALC software. This particular design methology was chosen because it
provides a direct means of mapping the problem space onto a representation
of the program space (i.e. the implementation) ([Booch, 1983:401 The
designer can define and manipulate representations of entities (i.e. objects)
in the program space as though they were in the problem space. A
one-to-one mapping is maintained between the problem space and the
implementation. The reader should refer to Appendix A for a further
discuesion of 00D and its relation to more traditional design methodologies.

Object-oriented design starts by restating the problem in terms of its
requirements. This is then followed by a conceptual implemention in which
object and associated operations are identified. Objects being the actual
entities that populate the problem space and operations being the actions
that manipulate the objects. Once identified, the objects and corresponding
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operations are then implemented (i.e. mapped to a software realization).
These_implommtation details are not addressed in the design process, but
rather discussed in Chapter 7.

As stated previously, the ALC prototype is intended to be a highly
interactive graphics system capable of supporting the creation and
modification of cockpit layout designs. To accomplish this goal, several
operational requirements were levied on the prototype ALC. These
requirements addressed the need of the prototype ALC to support:

- auser interface that is supportive of the design process,
- the dynamic creation and modification of cockpit layouts,
- the dynamic creation and modification of cockpit symbology, and

- an archival mechanism for storage and retrieval of cockpit
layouts and symbology for future use.

These requirements can be realized as four separate but interrelated
functional components: 1) the user interface, 2) Layout Editor, 3) Symbol
Editor, and 4) a Librarian. The specific functions that each of these
components perform will be addressed in later chapters ( 4, 5, and 6). This
chapter serves to identify these four major functional components and
briefly to describe their interaction.

The interaction among these components is best viewed by using a
layered approach. Figure 3. {llustrates the interrelationship of these
components based on this approach. Each layer represents the relative
degree of interaction among the components. Only those components that
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User Interface
User

_Layout Editor

Symbol Editor

lerjﬂpn

Figuwe 3. Prototype ALC System Structure.

~ Share a common bomduy ‘con lnteract dmctly ‘with each other. A
doacrlptlon of each layer follows.

The most visible layer of the structure is the user interface. This is
the only layer with which the user directly interacts. All user requests
and/or system responses are conveyed through this layer. The user
interface maintains a consistent and familiar boundary between the user
and the other layers.

The next layer in the structure contains the Layout and Symbol editors.
The Layout Editor supports the creation and modification of cockpit layout
designs while the Symbo) Editor supports the creation and modification of
individual cockpit symbols. Both editors are directly accessible from the
user interface and both can directly access the Librarian.

The last layer, the Librarian, serves as a repository for all cockpit
layout designs and cockpit symbology. The Librarian can only be accessed by
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one of the two editors. The user cannot directly access the Librarian
| . without invoking an editor first. This prevents the user from unwittingly
corrupting the cockpit iayouts or synibology.
The detailed design considerations for each layer will be presented in
the following.chapters. ‘

The design of the prototype ALC software is based on an
object-oriented design (O0D) approach. Basically 00D involves,
- defining the problem, |
- {dentifying the objects in the problem domain, and
: - identifying the operations on those objects.
® This approach was then used to derive a system level design of the ALC
prototype. Four system components (objects) were identified They were
the user interface, Layout Editor, Symbo! Editor, and the Librarian. The
interrelationship of these components was {illustrated. The following
chapters (4, 5, and 6) apply this design method to each of the system
components fidentified, providing detailed design considerations for the
prototype ALC software.

|
|
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1V, User Interface

The most visible aspect of the ALC prototype is the user interface
(Figure 4). It is the medium through which all user actions and system
responses are handled. The style in which the interaction is conducted can
directly influence the user perception and acceptance of the system. It thus
becomes imperative that the user interface is based on ideas or concepts
that enhance the design process. The user interface should be viewed as an
aid rather than a hindrance. The discussion of the design of the prototype
ALC user interface is divided into two sections. The first section describes
key design considerations that were used during the interface design phase.
The second section presents the realization of these considerations
embodied in the actual user interface components.

Deaign Criteria

Traditionally, computer systems were designed to give the user the
utmost amount of computer power. Little, If any, attention was given to
user interface {ssues. As a resuit, users were often overwheimed with
complex and terse commands. Initial user productivity suffered due to the
level of training required to become proficient in system use. Procedures
and concepts learned in one section of the system seldom carried over to
others (Harsiem,1984:105). Users were often confronted with systems that
were cumbersome, frustrating, and difficult to use [Bertino, 1983:38).
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User Interface

Layout Editor

“$ymbol-Editor

Librarian

Figure 4 User interface Layer.

Recent trends in system development, most noticeably the Xerox Star
[Smith et. al, 1982] and Apple Lisa and Macintosh [Apple Computer Inc.,
1985), have shifted the attention given to the user interface issues to the
forefront of the design process. The user interface is no longer considered
an ‘add-on’ component, but viewed as the single element that binds the
system and the user into a cohesive whole.

To ensure a useful interface, several design considerations were
followed. These design considerations were:

= Familiar User’'s Conceptual Model
- Supportive Dialogue Mode

- Visual Fidelity

- Consistency

Eamiliac User’s Conceptual Model A user's conceptual model
defines the set of concepts that explain the behavior of the system [Smith
et. al., 1982:248] Specifically the conceptual model:
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(1) defines the general form of the sat of capabilities
perceived by the user.

(2) gives the philosophy behind the system, ideally in 2
manner that the user is both familiar with and
comfortable with.

(3) develops, in the user's mind, a framework of the
gystem which the user should be able to associate
with and which he/she can learn, comprehend and use
to interpret the system's behavior. [Bertino,198S: 38-39)

Newman and Sproull have likened the conceptual model to that of a
grammar for 8 foreign language. Their premise being, like a foreign
grammar that defines the rules of communication, the conceptual model
defines the way the user will parceive the interaction with the system.

Fluent communication is achieved only when the model or the grammar

becomes second nature. The mode! is not parceived s a guiding influence
but rather as being ‘ingtalled in the mind of the user [Newman and Sproull,
1979: 448} |

The development of the conceptual model can significantly influence
the design of the user interface. There are two basic approaches to the
development of conceptual models, innovation and emulation [Bertino, 1985:
39]. Innovation modais exploit new types of representational possibilities
in the user interface. Thay introduce new ways of thinking about situations
and new procedures for dealing with them. Emulation models, on the other
hand, emulate the current activities employed by the user in an existing
system. Familiar concepts, knowledge, and procedures are incorporated into
the user interface. This usually makes the model more intuitive and easier
to learn.
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The AL prototype takes an emulation approach to the development of
m its conceptual moul. Emulating the current design process, the conceptual
model incorporates as its central theme the idea of constructing cockpit
layouts in @ building block fashion. The building blocks -re pre-defined sets
of cockpit components that actually represent those being used i1n the design
process. The procedures used and the cockpit components remain familtar to
the user. The user is not required to develop a new mindset to interact
effectively with the user interface.

A convenient way of representing such a model is via the use of an
object-oriented paradigm. The model is viewed as a set of objects (cockpit
components) and a set of operations (selection and placement) that
manipulate the objects and its environment (cockpit layout) [Newman and
Sproull, 1979:448; Hearn and Baker, 1986:330). Modsls based on such a

@ paradigm provide an effective means of representing the problem space. As
Cox points out:

Objects are natural metaphors for model building in that
each is a capsule of state and behavior, a virtual machine that
can be used as a computer-based executable instance of a
- corresponding entity in the user's problem domain. This
potential for close correspondence between computer and
problem domain can be useful iIn building inexpensive,
understandable systems [Cox, 1984:57]

Such models allow the user to interact directly with the objects of

interest without concern for the actual object implementation [Arora et. al,,

1985:465]. The user is not forced to interact with the system in computer

terms (thus avoiding detailed procedural specifications) [Foley and McMath,

.m 1986: 16] but rather interacts at the display level, where ideas and concepts

- A e AR e e s . T § LT
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can be formalized and tried [Glinert and Tanimoto, 1984:11) The objects
and associated permissible actions become the interface [Arora et. al,
1985:465] The distinction between de: gn and implementation fades.

The perceived ability to interact directly with the objects lends itself
naturally to the cockpit design process. Objects, in this case, manifest
-hemselves as cockpit entities. Operations are provided that allow direct
spatial manipulation of individual cockpit entities and direct spatfal and
structural manipulation of individual cockpit entity attributes. The actual
implementation of each cockpit entity is hidden from the designer, only the
entities behavior is observable.

Accepting an object-oriented viewpoint allows the designer to
visualize the interface as a virtual cockpit display. Virtual in the sense that
a multitude of cockpit display types, consisting of many cockpit entities,
can be created via the same interface and methodology. The methodology
simply being the selection and placement of cockpit entities on the cockpit
display. Such a model provides the designer a familiar and workable
environment for cockpit display generation.

Suvportive Dialogue Mode There are two basic dialogue modes:
user-initiated and system-initiated [Singh et. al.,,1983:56]. The choice of

which dialogue mode to use depends on the intended audience and the type of
interaction desired.

User-initiated dialogues require the user to fssue commands in order to
accomplish a task. The user is responsible for memorizing command syntax
and issuing commands at the appropriate time and in proper sequence. Little
if any prompting is performed by the interface. This mode of dialogue
provides the greatest degree of flexibility but places an extra burden
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(command memorization) on the user. It is best suited for expert users of a
system [Hearn and Baker, 1986:333]

System-initiated dialogues require almost no memorization. They
display all relevant information pertaining to the task at hand and prompt
the user for command selection. They are best suited for novice users [Hearn
and Baker, 1986:333] since they guide the user through the command
selection and sequencing. This type of dialogue relies on recognition of
commands rather than recall.

A system-initiated dialogue was chosen as the dialogue method for the
prototype ALC user interface. System-initiated dialogues are better suited
than user-initiated dialogues for the user interface requirements identified
in Chapter 2. Specifically, a system-initiated dialogue approach satisfies
the requirements for ease of use, minimal memorization, and ease of
learning.

System-initiated dialogues tend to be more novice-oriented than
user-initiated dialogues [Hearn and Baker, 1986:333] They assume little, If
any, prior technical expertise on the part of the user, lending themselves
naturally for use by a large audience. A prime requirement of the ALC is
that it be usable by a variety of users, with different technical backgrounds.
It is essential that the user interface is not tailored toward any specific
group.

System-initiated dialogues minimize the amount of memorization
required by the user. All objects and commands of interest are displayed
and available for selection. The user is not required to remember command
syntax or command sequencing. Relieving the user of this burden directly
impacts the quality of the thinking (i.e. design) process.
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Studies have shown that “conscious thought deals with concepts in
short-term memory and the capacity of short-term memory is limited"
[Smith et. al.,1982:260]. By displaying available commands, short-term
memory is relieved of the burden of command recall and syntax formulation,
Thinking becomes easier and more productive as the user is permitted to
concentrate on the creative aspects of the design process without being
burdened by the dialogue [Smith et. al., 1982:260]1 The dialogue becomes a
mechanical device for issuing actions without impacting the conscious
thought (design) process [Bertino, 198S: SO1.

Learning is also eased by system-initiated dialogues. Learning in this
context, refers to the time it takes a user to become proficient in a
system's use, in order to perform productive work. This is not to imply that
the users needs to be proficient in all aspects of system use; they seldom
are [Rubinstein and Hersh, 1984:8]. But rather, the user needs to know only
the subset of the system that directly influences the task at hand. The time

it takes to learn these capabilities should be minimial. A general rule of

thumb, known as the ‘10 minute’ rule, attempts to limit this learning time
to ten minutes. If it takes longer than ten minutes, the interface should
probably be re-evaluated and perhaps redesigned.

System-initiated dialogues provide a viable means of satisfying the ten
minute constraint. Information needed to converse with the interface is
always displayed, relieving the user of the burden of command syntax recatl.
The user can experiment with commands and options immediately without
worrying about command syntax or key-in errors. Attention is focused on
system understanding instead of being divided among tasks. A semantic
understanding of the system (concepts and functionality) is gained rather
than a syntactic (detail) [Shneiderman, 1983:65).
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System-initiated dialogues also aid in regaining proficiency in a
gystem after an extended absence. It i3 desirable to have the user 'up to
speed’ as soon as possible. Since the user has already developed a semantic
understanding of the system and its commands, the time required to become
proficient will usually be less than if the system were based on a
user-initiated dialogue. The reason being, syntactic knowledge is “volatile
in memory and 1s easily forgotten if not frequently used” [Shneiderman,
1983:65]. Semantic knowledge tends to be more system independent and
once “acquired through general explanstion, analogy, and example, is easily
anchored in familisr concepts and is therefore stable in memory"
[Shneiderman, 1983:65) The stability of semantic knowledge allows a user
to regain proficiency faster and retain it longer.

Visual Fidelity Visual fidelity or "What You See is What You Get’
refers to the ability of representing a rendition of the actual output on the
display screen [Smith et. al,, 1982:264] In this application area the display
screen is the computer digplay that the user sees, and the output is an
actual cockpit display that the pilot sees.

Visual fidelity provides the user with a means of directly interacting
with the problem space; seemingly by-passing the user Interface
[Shneidermanm, 1983:63] "The user operates directly on the data in a form
convenient to him (/e cockpit abjects), not one imposed by the computer
(le code)" |Harslem, 1984:103] (italic phrases added by author). Cockpit
layouts are composed directly on the display screen and mapped directly to
the target cockpit display. The user's view of the display screen and the
cockpit display are inseparable.
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| Congistency Consistency in the user interface allows the user to !
@ interact with various parts of the system without having to change the
method of interaction. The user learns one method of interaction as opposed
to several. A consistent interface reduces the amount of re-learning that
user must perform while switching between applications ([Harslem,
1984:105] It allows the skills, procedures, and concepts acquired in one
section of the system to be applied equally to other sections [Marcus,
1984:24)

The prototype ALC promotes consistency by providing a single user
interface for all sections of the system. Commands are generic in nature,
thus allowing for a small set of commands to be used throughout. The
extraneous application-specific semantics of a command are stripped away
allowing the user to deal directly with its underlying meaning [Smith et. al,,

@ . 1982: 268). The actual physical interaction (object positioning and
selection, command selection) is performed via a mouse. The keyboard is
used exclusively for textual input only.

Table VIl summarizes the design considerations which guided the
design of the prototype ALC user interface.

|

Based on the design considerations discussed above and the user
interface requirements presented in Chapter 2, the user interface design of
the prototype ALC can be satisfied by providing five components, the
keyboard, a mouse, windows, command bottons, and menus. A description of
each component and its associated functions follow.
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Table Vi
User Interface Design Criteria

Criteria

Emulation-Mode, models

Conceptual Model the current design process

Dislogue Mode System-initiated

Visuel Fidelity ‘Ibhat You See Is What
You Get'

Consistency Single User Inte:face

Generic Commands

Keyboard The keyboard 18 an input-only device used exclusively for
textual input. Special characters, control character sequences, or command
sequences are ignored by the user interface. The user interface only
recognizes input from the keyboard when a request is made for textual data.

touge. A mouse is used as the primary physical means of interacting
with the interface. The mouse serves as an extension (prosthesis) of the
user, allowing the user to point to a location on the screen and make a
selection.

Most mice available today support a number ¢! huttons for object
sejection. Often an application wiil assign different functions to these
buttons. The prototype ALC user interface treats all buitons oh a mouse as
a single pick device. No matter which button is pressed, the result is a
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simple pick/selection action. Restricting the function of the buttons aids in
0 the portability of the interface and prevents the user from making a mistake
(i.e. pressing the wrong button).

Window Windows are rectangular regions on the display screen which
serve as the focal point for user interaction. The user interface supports
three types of windows, applications, option, and dialogue.

Application windows provide a medium for viewing and manipulating
objects. All objects (cockpit displays and symbols) that the user can
manipulate are displayed within application windows.

Option windows display representations of objects that are available
for selection. An active option is indicated by highlighting the option
selected

Dialogue windows serve a multi-purpose role. First, they provide a
standard means of requesting additional informatfon pertinent to the
execution of a command (i.e. prompting for file name on a "SAVE' ). Second,
they serve as a means of confirming the intention of the user (i.e. queries to
insure the user reaily wants to delete a file). Lastly, the dialogue window
is used to inform the user of any error conditions.

Application and option windows are classified as ‘modeless’ windows, ‘
meaning that their presence does not require a response by the user. The |
user is free to interact with these windows as he chooses. On the other |
hand, the dialogue window is known as a ‘modal’ window. This window, when
displayed requires the next user response to be directed toward it. The user
is forced into a response mode. The user must satisfy the window prompt
before futher processing can take place. The mouse and the keyboard are
dedicated to the dialogue window.

&
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Command Buttong Command buttons act as screen function keys. They
serve as 3 means of issuing commands to the system. Only those commands
that are pertinent to the current processing are displayed.

Many Menus serve as another medium for command invocation. Menus
consist of logically related commands, herein refered to as menu items.

The user interface supports what are known as °‘pop-up' menus, The
term pop-up comes from the way these menus are activated. initially, the
user only 3ees a menu title on the screen. If a title is selected, the menu
items associated with that title ‘pop-up’ underneath it. The cursor can then
be moved over the desired item for selection. When a selection is made or
the cursor is moved outside the menu region, the menu disappears.

Pop-up menus force the user into a response mode only when they are
activated. At which time, the interface directs all user actions toward
menu selention. The user is required to make a selection or cancel the menu
activation by moving the cursor outside the menu region. All other user
actions are ignored when a menu is activated Otherwise, pop-up menus
impose no restrictions on user actions.

SUMMary

The user interface has often been considered the “most difficult and
the least understood part of interactive systems" [Singh et. al.,1983:55]
This chapter has presented the user interface in two parts. The first part
described the design considerations that were adhered to in conceptual
design of the interface. The second part described the actual components
that constitute the physical structure of the interface.
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Y. Editors

The ALC prototype incorporates two distinct, yet similar, graphic
editors to enhance the design process (Figure 5). The Layout Editor, directly
supports the creation and modification of cockpit displays. The second
editor, the Symbol Editor, supports the creation and modification of
individual cockpit symbols. The editors sre similar in the methodologies
they employ, but differ on the view of the design process they present to the
designer. The Layout Editor allows the designer to view and manipulate a
design as a collection of spatially arranged cockpit symbols, while the
Symbol editor allows the designer to view and manipulate the internals of
individual cockpit symbols. The similarities and differences of these two
editors are presented in this chapter.

Editor Similarities

Currently, cockpit display construction starts with the design and
analysis of the cockpit layout on paper. When complete, the design is
transferred to software experts for transiation into code. Depending on the
complexity of the design and the amount of new code needed to be generated,
the designer may not realize the implementation of the design for weeks or
months after submission. To make matters worse, modifications to the
implemented design could entall further delays. This process is very time
consuming and programmer-intensive. The designer's productivity is at the
mercy of the software development process.
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Layout Editor

- Symhol Editor

Librarlan

FigweS. EditorLayer.
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To combat this problem, the ALC prototypc incorporates two types of
editors, the Layout Editor and the Symbol Editor. Both editors are graphics
based and object-oriented in nature. Their function is to make the design
and analysis phase a more productive and enjoyable task by supporting the
bulk of the design activity in a responsive, interactive graphics
environment. The goals of these editors are to free the designer from the
tedium of designing cockpit displays on paper and reduce the need for
software experts for design implementation. To accomplish this, the editors
promote the interactive design of cockpit displays and symbology from
pre-defined classes of cockpit symbols. The Layout Editor supports the
design of cockpit displays, while the Symbol Editor supports cockpit

) symbology construction.

Editor Design 48

3 g A AR 4 N ' . . LA . N Y RS ] o oa Yk o Ty L e MDA M A
e e s tRA—E At e A e et et R et 18t e T o St artint Sotd ol et et s ety e St i e S S et e M il ot w e el ot it v -l et o e Pt s Wt il ottt il -9 pthe B o dy wd n G




. Although both editors perform different tasks, there are four common
® requirements that both must support:

: - Graphic Interaction,

- Iterative Development,

- Evolutionary Design,

- Exparimentation.

e mmmum The process of designing a cockpit display s a
spatially oriented activity. It relies heavily on the use of graphic images for .
representing cockpit and real-world objects. Both editors exploit the use of
C graphics as the main medium of (Interaction. All editing is performed on

‘ ' y‘aphtc OM.'ﬂOS versus the use Of “XWI' Inmmatlm. The editors work
" ~ directly in the mode most natural to the design process, gruphics.

|

) \tsrative Development Iterstive development is @ process by which
! designs are continuously evaluated and modified to satisfy design
‘ requirements. Both editors take on an active role in supporting this
requirement. Both editors agsist the user by providing the facility for
creating new designs, modifying existing designs, and supporting the rapid
generation of alternative designs.

The primary function of both editors is the creation of new cockpit
designs. Designs are created by selecting and arranging (inserting)
pre-defined objects on the display screen to satisly a design requirement.
Besides inserting objects, both editors also support object deletion and
repositioning. Final designs, or work in progress, can be saved for future use
or discarded.
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In addition to creating new designs, the editors also support the

0 capability of modifying existing designs or generating alternative
representations of existing designs. Modifying a design usually involves the

inserting or deleting objects from a layout, then saving the result. This in

affect destroys the original design. Creating an alternative design
representation is a non~destructive editing procedure. The original design

serves as a template from which objects can be added or deleted The

modified original is saved as a different design, leaving the original design

-

-
. intact. _
Evolutionary Design The premise behind an evolutionary design
@ approach is to eliminate the practice of ‘reinventing the wheel' every time a S‘N
design fs created. To accomplish this, the ALC prototype promotes the :
28 creation of designs from pre-existing sets of cockpit symbols. Designs can

X ® then be constructed in a building block fashion from these symbols. The 3
editors directly support this methodology by allowing the user to manipulate
) these symbols as discrete entities; they can be selected, positioned, and :l
. deleted from the display. The user never deals with anything conceptually !
o simpler than an object. &
) T
Experimentation Both editors actively support experimentation. They :
(, provide the designer with the capability of experimenting with different
" design layouts without committing the work to a final design. To support w
o experimentation, both editors allow the user to undo the last operation ‘E;g:
performed, erase the entire design, and restore the design to its original Ezfi
o form. R
e ® A
il'{.: :P,f
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Option
Rrea
Work Area

‘Commend Area

© Figue 6. Genaric Editor Layout.

The similarities of the two editors are best delineated by fdentifying the
functionai areas that comprise each editor. This is conveniently done by
ustrating the generic display form common to both editors (Figure 6). The
display consists of three functional areas; the option area, the work ares,
and the command area, ,

The option area of the display, maintains a list the objects that are
cu'renuy' available for selection. The objects are pictorially displayed in
miniature form. The process of object selection is identical for both editors,

Objects are selected by positioning the cursor over the desired object
and pressing a mouse button. The selected object is ‘made active’ and is
highlighted to indicate selection. The next time the cursor is within ti: work
srea and a mouse button pressed, the selected object will be drawn. The
selected object remains active until another object is selected or the work
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area is cleared. This allows the user to add multiple images of the selected
object on to the work area without having to reselect the object each time.

The second functional area of the display is the work area. This area
serves as the designer's chalkboard. Designs are constructed and displayed
within this reglion. Within this area the user can perform three basic
functions; object insertion, object deletion, and object repositioning. The
process of insertion 18 unique to the editor used and will be cover in detail in
later sections. Deletion and repositioning, however, are identical to both
editors and will be addressed here.

Deletion 18 the process of removing an object from the work area.
Objects are removed in a manner analogous to option selection. First the
object is selected, then the ‘Trash' button is selected This cause the
selected object to be removed from the work area and the work area to be
redrawn, - |

Repositioning 1s also similar to option selaction. First the object is
selected within the work area, then the cursor is repositioned and a mouse
selection 18 made. The selected object is erased from its original location
and redrawn at the new. If the new location is outside the work area the
object remains in its original location.

To aid in the deletion and repositioning process, an extent box is drawn
around the selected object. The extent box serves to identify exactly which
object is selected. This is helpful when multiple objects overiay each other,
or are positioned in close proximity to each other. The user is not left
guessing which object was actually selected, but can directly determine by
visual inspection. Besides identifying an object, the extent box also tracks
the cursor while inside the work area. This provides the user with 3 spatial
reference for repositioning.
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The third area of the editor dispiays is the command section ANl
commands that effect the editor are listed here. Comimands are displayed as
command buttons. The user selects a command by positioning the cursor over
the desired button and pressing a mouse button. The odptors interpret the
selection and perform the desired action.

There. are several Commands that are identical to both editors. These
commands are listed below with an accompanying description. Commands
unique to an editor will be presented under that editor’s description.

New:

Old:

Save:

Resets the editor by clearing the current design. If the current
design fs not saved prior to Issuing this command, the editor
prompts to save it. '

Retrieves an existing design. If the current design is not saved
prior to issuing this command, the editor prompts to save it.

Saves the current design. If this is a new design the user Is
prompted for a title, otherwise the design is saved under its
original title.

SaveAs: Saves the current display under a different title.

Undo:

Clear:

Revent:

Quit:

Undoes the last operation performed in the work area.

Clears the work area and de-activates the currently selected
object. _

Restores the current design to its original content. If the
current design is new then this command has no effect.

Terminates the editing session and exits the user from the
environment.

Although the editors are similar in many respects, there are important
differences that distiguish the two editors. These differences are
presented in the following sections.
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trash

info | |setup| | flle edit quit

Figure 7. Typical Layout Editor Format.

The Layout Editor serves as the sole means of creating and modifying

cockpit layout designs. Layouts are constructed in-a building block fashion
from sets of predefined cockpit components or symbols. The user simply
‘ ge’ects the desired component, from an avatlsble option )ist, and places it
3 on the cockpit layout. A typical format of the Layout Editor is provided in
Figue 7. The functional capabilities unique to the Layout Editor are
| discussed in the following paragraphs.
The option area of the Layout Editor differs from the Symbol Editor in
| one major respect; namely, the types of objects displayed for selection.
Because the Layout Editor is intended to be used to create a multitude of
different cockpit layouts, the objects available for selection will vary with
the design being constructed.
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The Layout Editor handles object tnsertion differently than the Symbol
Editor. Basically, object insertion is based on a technique known as
‘dragging’. Dragging is an interactive technique for dynamically moving an
object under cursor control. Objects selected in the option area are
‘dragged’ into the work area, positioned, then inserted by pressing a mouse
button. To ald the user in object placement, an extent box, defining the
object's size, is drawn around the cursor. The extent box tracks the cursor
as it is moved around inside the work area. When the object is inserted,
the extent box is removed.

The Layout Editor supports two unique commands; namely,

Info:  Displays a narrative of the selected object. This command is
ignored by the editor if there is no object selected.

Set Up: Provides a means of accessing the cockpit symbology libraries.
The user is provided with the options to select new classes of
symbols, remove current classes from the display, or invoke the
Symbol Editor to modify a cockpit symbol,

symbol Editor

The Symbol Editor provides the user with a means of creating and
modifying cockpit symbology. Symbols are created in a manner analogous to
cockpit layouts, except the range of options to ctoose from is limited and
each object has its own uhiquo method for being inserted into the work area.
Figure 8 fllustrates the display format for the Symbol Editor.

Unlike the Layout Editor, whose options are interchangable sets of
cockpit components, the Symbol Editor maintains a single set of options.
This set consists of six graphic primitives: point, line, rectangle, circle,
polygon, and text. All cockpit symbols are constructed from this set.
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trash

setup| | file edit quit ||return

Figure 8. Typical Symbo! Editor Layout.

The method of inserting (placing) objects in the work area aiso differs
. between the two editors. In the Layout Editor, object placement is
“ determined with a single mouse selection. This works for all objects.
Object placement in the Symbol Editor is a bit more complicated. Each
graphic primitive (object), Because of its unique geometric form, requires a
different placement method. For example, points are positioned in the work
area with a single mouse selection, where as, 1ines, rectangles, circles, and
polygons, require muitiple insertion points to be defined. The methods for
inserting these primitives will be presented next.
Defining muitiple points for primitives Is accomplished using a
‘rubberband’ technique. Basically, rubberbanding involves defining a starting
point for an object, followed by moving the cursor to define other points.
As the cursor Is moved, the object Is streched between the initial point and i
the cursor's current position. This dynamically aiters the shape of the
@' object providing the user with immediate feedback about the object's shape.
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@‘ Using this technique, procedures for adding lines, rectangles, circles, and
polygons can be defined.

Lines, rectanglies, and circles are added to the work area by defining
two points that bind the primitive to the work area. In the case of the line
primitive, the first point defines the starting point while the second point
defines the end of the line. The rectangle primitive uses the first point to
defines its lower left hand corner. The upper right hand corner is then
defined by the second point. The circle primitive uses the first point to
define its origin, and the second point to define its radius.

Polygons differ from the other primitives, in that they require multiple
points to define their shapes. Polygons are drawn by specifying a series of
connected line. Each line forms an edge to the polygon. The user needs only

@ to specify the starting endpoint once, afterwards the endpoint from the
previous line is used as the new starting endpoint. Polygon drawing is
terminated when the user selects a point outside the work area or another
option is selected.

Text is the only primitive that requires the use of two input devices,
mouse and keyboard. The mouse is used to select the start point in the work
area where the text is to be inserted. The keyboard is then used to enter the
actual text. The insertion point must be selected before the text is entered,
otherwise the interface will ignore any text input.

The Symbol Editor has one command unique to its processing which is:

o Return : Transfers control back to the Layout Editor.

't
)
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Two graphic editors, the Layout Editor and the Symbol Editor, are used
to support the design process. The Layout Editor supports the creation and
modification of cockpit layout displays, where as the Symbol Editor
supports the creation and modification of cockpit symbology. | |

Both editors have in common several functional similarities; such s,
graphical interaction, iterative development, evolutionary design, and
experimentation. The editors differ at the level of design abstraction at
which they are employed. The Layout Editor is used at the highast level of
design abstraction, i.e. cockpit layout editing. The Symbol Editor at the
lowest level, i.e. cockpit symbology editing. Together they provide the
design tools needed to construct cockpit layout designs in a dynamic,
interactive mode.
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‘YL Librarian Design

To make the prototype ALC a truly functional and supportive
environment for the design of cockpit layouts, a facility for storing and
retrieving cockpit layouts and.cockpit symbology s needed. Such a facility
-would-eliminate ‘the-practice of ‘re-inventing the wheel' every time a new
design is requested. The designer would have available, on-line, a means of
accessing existing cockpit layouts and symbology from which the new
design could take root. The prototype ALC supports such a facility, namely,
the Librarian (Figure 9). The Librarian is an on-line, archival mechanism.
Both cockpit layouts and cockpit symbology are supported. This chapter
describes the design of the Librerian in terms of how layouts and symbols
are stored, how they are retrieved, and problems relating to consistency.

Object Storage

-~

All objects for the ALC prototype are stored in libraries. The Librarian
maintains two separate libraries; namely, the Layout Library and the Symbo)
Library. As the names imply, the Layout Library is used for the archival of
cockpit layout designs, and the Symbol Library archives all the cockpit
symbols used in the system.

Libraries are subdivided into classes. Classes are logical groupings of
objects. Objects are assigned classes based on their type. Partitioning
libraries into classes reduces the overall complexity of the library,
allowing for efficient and rapid access of individual objects.
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The Layout Library is partitioned into classes based on cockpit display
types. Figure 10 illustrates a typical Layout Library partitioned into three
Classes, Aircraft, HUD, and Threat. Each class in a Layout Library contains
the actual cockpit layout displays associated with a particular class type.
For example, the class HUD contains three HUD layouts.

The Symbol Library s very similar in structure to the Layout Library. it
too is partitioned into classes, but the partitioning is based on symbol type,
not layout type. Each class in the Symbol Library s further partitioned into
relations. Relstions are groupings of similar, yet different cockpit
components. They are similar in that they are classified under the same
class, but differ in content. A relation's content is composed of individual
symbols defined in the class's symbol families. Symbol families are the
fundamental symbol groupings in the library. Each family contains
permutations of a single symbol type. For example, the family Flight Path
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‘Marker contains different representations of a flight path marker. The

representations differ, but they symbolize the same thing. Figure 11
illustrates a typical symbol library.

The symbol 1ibrary shown in Figure 11 is partitioned into three Classes;
Aircrart, HUD, and Threat. These classes should not be confused with the
classes defined In Figure 10. Although they have the same names, they are
not the same. The classes in Figure 10 represent logical groupings of
cockpit layouts, where as, the classes in Figure 11 represent the logical
groupings of cockpit symbols found on different types of layout displays.
For example, the symbo! class HUD contains symbols relating to the
construction of HUD type displays. It would not contain symbols such as
aircraft silhouettes or armaments. These symbols would most likely be
contained within the Aircraft class.
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Figure 11. Typical Symbol Library.

Each class in the Symbol Library, is in turn, partitioned into relations.
The class HUD contains three relstions, HR-1, HR-2, and HR-3. Each relation
is composed of symbols defined in the HUD class symbol families. These
families, listed left to right in Figure 11 are, Fiight Path Marker, Pitch
Ladder, Missile Aim, and Aircraft Reference. These families of symbols
define all the HUD symbols currently available for use in HUD layout
D construction.
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Batrieval

Cockpit layouts and symbology are retrieved from the libraries by the

~ Layout Editor and the Symbol Editor, repectively. The Layout Editor allows

the user to access both layout designs and symbol relations. Symbol
relations are mapped directly onto the Layout Editors display as option
windows. The Layout Editor has the capability of modifying the Ilayout
design only. It camnot directly modify the contents of the option window
(i.e. symbol relation). Additions or modifications to a symbol in the option
window can only be performed via the Symbol Editor.

The Symbol Editor can directly access symbol relations or families.
All modifications to relations are based on the content of the individual
families. in order to add a symbol to a relation that symbo) must first be
definad within a family. Modifications to symbols are also performaed at the
family level. Deletions are possible at both levels. Deleting a symbol from
a relation simply removes it from that relation. Deleting a symbol from a
family removes the symbol from the system.

Conaistency

Besides being abie to store and retrieve cockpit 1ayouts ana symbolcqy,
the Librarian is also tasked with the responsibility of maintaining
congistency between the two libraries. Inconsistencies between the two
libraries has the possibility of developing when ever a cockpit symbol s
modified or deleted. For example, if a symbol is deleted from a symbol
family, its removal has the possibility of effecting all relations that use
the symbol and all cockpit layouts that use the relation. The effect of
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removing a single symbol results in a propagation of changes throughout the
entire system. If the Librarian does not support active consistency
checking, the integrity of the both lbraries cannot be guaranteed

i

The I.Ibl‘ﬂ‘i.\ is Ll on-llm. l'ChWIl mochmtsm that supports the

* storage and retrieval of cockpit layout designs and cockpit symbology.
~ Layouts and symbology are stored in separate libraries. These libraries are
~ partitoned, based on layout md'ny'mbol type into logical groupings called

classes. Each class within a library contains the actual cockplt object (i.e
layout or symbol).

All clagses are accessed via one of thc two editors smpomd by the

ALC prototype. The Layout Editor allows direct access to cockpit layouts
and indirect access to symbol relations (option window). The Symbo! Editor
provides a means of adding, deleting, and modifying cockpit symbology.
Changes to cockpit symbols has the potential of creating inconsistencies
between the two libraries. [t thus becomes critical that some type of
active consistency checking is performed by the Librarian to ensure layout
and symbol integrity.
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implementation is the process of mapping an abstract representation of
a problem (i.e. design) into a concrete, functional model. Three areas of the

ALC prototype design were implemented in this thesis, namely; hardware,

environmental, and the application itself. Hardware implementation deals
with defining the actual graphics system on which the ALC prototype is
hosted. Environmental implementation deals with the programming
environment in which the ALC prototype is to function, For this thesis effort
an object-oriented environment was chosen Finally, application
implementation i& the actual implementation of the ALC prototype itself.
Each implementation phase will be discussed in detail in the following
sections. '

Hardware

The ALC prototype is implemented on a Raster Technologies Model
One/25 graphics system. This system was chosen for its high resolution
display, interactive capabilities, and full availability for this thesis effort.
The description of this system {3 divided into five areas, display
technology, input devices, output devices, storage and processing, and
software drivers. The first four areas correspond to the hardware
requirements quidelines provided in Chapter 2. The actual components that
comprise these areas are {llustrated in Figure 12. A description of the
software drivers needed to make all the hardware components work is also
provided.
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Figure 12. ALC Prototype Hardware Configuration.

Display Technology The Raster Technologies Model One/2S
employs the use of a high resolution raster display. The Model One/25

supports two levels of resolution, 512 x 512 and 1024 X 1024 pixels. In
addition, the Model One/25 is capable of displaying over 16 million colors in
the 512 x 512 mode. The high resolution and color capabilities of this
display make it an excellent choice for hosting the ALC prototype.

input Devices The Model One/25 currently supports two input
devices, an alphanumeric terminal and a graphics tablet with a mouse. The
alphanumeric terminal is not used as an input device. It ig used primarily to
issue system commands to the Model One/25 and to perform system
initialization (See Appendix A). Inputs from the alphanumeric terminal are
ignored by the ALC prototype software.
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The graphics tablet with mouse was used exclusively as an input device
for the ALC prototype. All user actions (such as cursor movement and
selection) are conveyed to the software through the mouse. The particular
mouse used supports 16 different function buttons. All but one button
(button 0) is used as simple pick devices. Button O is dedicated to providing
the cursor with the current mouse position (this is a hardware quirk of the
Model One/25). Selecting this button has no effect on processing. The other
buttons when pushed, function as simple pick devices, causing a selection
event to be registered in the system event queue. This allows the
application software to query the event queue and process any pending
events.

Qutput Devices The Model One/25 currently does not support output
devices other than the display screen.

Processing and Storage The processing capabilities of the system
are divided between two systems, an independent host computer and the
Model One/25 display processor. All application software is developed,
stored, and executed on the host computer, while ail graphic operations are
performed on the Mode! One/25. The host computer performs the actual
computational tasks required of the application, passing off the graphic and
interactive tasks to the Model One/25. The Model One/25 serves as an
intelligent graphics terminal, interpreting and performing graphic
commands sent to it by the host computer.

The host computer was a VAX |1/785, operating under BSD UNIX versfon
42. Communication between the VAX and the Mode! One/25 was conducted
over a 9600 baud channel, routed through a local area network. The channel
bandwidth seemed sufficient when the VAX was not heavily used. However,
interactive response times were degraded as VAX usage increased.
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Device Drivers A problem often associated with hardware
configurations as described above, is the lack of relisble device drivers to
communicate with the graphics hardware. This thesis was not without such
a problem. Device drivers are the actual software modules that allow a host
system to interact directly with a plece of graphic hardware. They function
85 Interpreters by transiating host commands Into commands
understandable by the graphics hanrdware, The device drivers implemented
in this thesis, transiate graphic commands issued by the application
software into ASCII character strings representing the hexidecimal value of
a Mode] One/2S operator. This string was then sent over the network to the
Model One/25 where it was interpreted and the appropriate task performed.
Appendix F provides a detailed description of the device drivers that were
implemented.

Object-Oriented Syatem

This section describes the graphical object-oriented environment that
was developed and implemented as part of this thesis effort to support the
implementation of the ALC prototype. This environment was based on
object-oriented concepts derived from such systems as Smalitalk [Goldberg
and Robson,1983], Traits [Curry and Ayers,1984], Object Oriented
Pre-Compiler (OOPC) [Cox,1983), and IconMaker [Kramer,1984]. The intent of
this environment was not to develop a ‘production quality' product, but
rather a test-bed in which object-oriented concepts could be applied to the
ALC prototype effort. With this in mind, this section will proceed in the
following direction, first object-oriented concepts will be discussed in
general terms to familiarize the reader. Next, the applicability of
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object-oriented concepts to graphic systerns will be presented, followed by
a description of the actual environment that was implemented.

Object-Oriented Concepts The distinction betwesn traditional
programming environments and object-oriented environments deals with the

way .the environment's computational model 1s defined. A computational
mode! describes how the various entities in an environment interact to
perform a computational task. in both environments the tasks or goals are
identical; the difference lies in the definition of the entities that inhabit
the environment and their method of interaction.

Traditional programming environments are based on an
operator/operand model [Cox,52:1984). This model views the computational
process as being operations performed on opsrands. The environment is
divided into two distinct sets of entities, operators (procedures) and
operands (data). Operators are c« 1sidered active entities in the environment
that manipulate the passive data items passed to them. Operands are
passive in nature, and are only changed by an operator.

Interaction between these entities is usually supported by some type of
direct invocation mechanism (i.e. subroutine or procedure call). Operators
are directly invoked to manipulate a set of operands. The invocation process
in effect establishes ‘how’ something should be done. This usually places
restrictions on the type of operand that an operator can manipulate. This, in
turn, can populate the environment with sets of operators that conceptually
perform the same operation on different data types.

An alternative to the operator/operand model is the message/operand
model. This mode! forms the basis for object-oriented environments.
Unlike the operator/operand model, where data and procedures are viewed as
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~ separate entities, the message/operand model merges the two into a single

entity referred to as an object. The object serves as the focal point for all
computations. Since objects combine the properties of operands and
operators, they are capable of being manipulated as well as being the

~ manipulator [Robson, 1981:76).

Objects interact via a message passing paradigm. A message is 3
request from one object to another to perform one of its operations. The
key word in this description is ‘request’. The receiver of the message
determines ‘how’ it will handle the message, not the sender. The sender can
only request ‘what’ should be doi.., it has no control over ‘how'. invocation
is performed indirectly as opposed to more traditional direct invocation

methods. Message passing has a direct impact on the number of operators

needed to parform similar tasks. Ingtead of using a set of different
messages (i.e. operators) to invoke a similar operation in a set of different
objects (i.e. operands), message passing permits identical messages can be
sent to all objects invoking a behavior unique to that object. The
environment becomes more compact and consistent, since a single method is
used to invoke computations instead of a set of methods.

The reader should refer to Appendix B for a detailed discussion of
terminology and characteristics associated with object-oriented systems.

Graphic Systems The use of object-oriented concepts is not new to
graphic systems. Perhaps the earliest system to employ a subset of these
ideas was Sketchpad [Sutheriand,1980). Sketchpad was one of the first
systems to provide true interactive capabilities. Its similarity to
object-oriented systems of today is found in Sketchpad's definition and
creation of graphics entities (objects).
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Sketchpad presented two views of objects. The first, and most
intuitive, was that of a graphic entity. This entity took form on the display
screen and was capable of being manipulated via interactive means.
Sketchpad supported basic geometric objects such as lines, circles, and
points.

The second view was actually an implementation abstraction of the
first. At the implementation level, objects were quantified as being sets of
variables and constraints. Variables defined the objects form, while the
constraints modified the form to satisfy a given design or geometric
requirement. The association of data and methods (constraints) for
modifying that data ts very similar to concepts found in most
object-oriented systems today. | _

Besides a similar object definition, Sketchpad also employed an
‘instantiation' technique to create objects. Objects were ingtances of a
‘master picture'. A master picture was an original description of a specific
object. Objects were instantiated by duplicating the master picture, then
modifing the variables to describe the new object (instance). This is very
similar to the class concept.

Sketchpad greatly influenced the interactive nature of graphic systems.
However, the object-oriented concepts it fostered did not gain wide
acceptance. This may have been due the interactive capabilities
overshadowing these ideas, or perhaps the object-oriented model itself
was not complete enough [Rentsch,1982:S5). In either case, the
object-oriented concepts that did survive were confined to the portrayal
of graphic images on the screen, defining graphic images in terms of
variables, and duplicating images via instantiation.
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The majority of the graphic systems in use today (GKS, CORE, PHIGS,
etc) have been implemented within traditional programming enviroments.
FORTRAN, because of its early use, seems prevalent as the implementation :
choice, however 'C' [Denny,1986) and Ada [Hanson, 1986) bindings have also ‘
become available. These systems embrace only the object-oriented ‘
concepts promoted by Sketchpad and Iittle more. The idea of combining data -
with procedures is still not implemented.

It hasn't been sirce the development of true object-oriented systems,
such as Smalitalk, that graphic systems have finally embraced the concepts T
associated with object-orfented systems.  Several object-oriented
graphical implementations are described in current literature [Goldberg and
Recbson,1983], Iwisskirchen,1986), [Lubinski and Hutzel,1984], and
[Reiss, 1986].

P

upport Environment The graphical object-oriented environment
implemented as part of this thesis, provides a flexible, yet consistent
framework for defining a wide range of graphic metaphors. This section
describes these metaphors without providing the detailed implementation
concerns. The reader shouid refer to Appendix C for implementation details.

Currently three views of graphics programming are supported. They are
primitive, user interface, and application views. The primitive view
provides the foundation of the system. it supports the essential, inseparable
graphic constructs that allows other views to be built. The user interface
provides *he interactive mechanism for the environment. It is through this
level that the user can directly manipulote the system. The application
view ties together both the primitive and user interface views to satisfy a
) @ user's requirement. It is the most dynamic portion of the environment, 5
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allowing muitiple applications to be constructed from primitive and user ‘
interface components. |
Each view provtdeé a different level of development abstraction, yet ‘
they are handled by environment in the same, consistent manner. The user is
never forced to jump abstraction levels when developing software. This
allows the user to mix abstraction levels freely without being burdened
with the implementation details. A consistent abstraction is maintained by
making all components in the environment objects. All components of the
environment are accessed via a consistent message passing schema,
regardless of the abstraction level they represent.
Primitive View. Primitives form the basic foundation of all graphic
environments. They are the simplest objects in the environment serving as
butlding blocks for more complex objects.
Currently six classes of primitives are supported; namely, Circle, Line,
" Point, Polygon, Rectangle, and Text. Each class defines a unique geometric
figure and methods that are unique to its form. All graphic images
displayed on the screen are combinations of one or more of these objects.
All primitive classes inherit their attributes from a Graphics Primitive
class. This class glves each primitive, characteristics common to all
graphic objects. Specifically, the Graphics Primitive class provides the
following attributes:
Cx,Cy: Center location of the object.
color: Defines the objects color.
solid fll: Indicates if the object is solid or not.
draw mode: Indicates how the object is drawn on the screen.
area: The objects area on the screen (in pixel units).
extent: Defines the objects rectangular extent.
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In addition to the classes defined above, a composite class is also

0 supported. The class, Composite, provides instances that are composed of

instances of other primitive classes. In other words, the Composite class

i provides the capability of constructing complex graphic images from simple

) graphic primitives, yet the resulting graphic image is treated s a single

entity. For example, one could instantiate an object call Aircraft. Aircraft

o would refer to a single entity, but in actuality Aircraft is a composite of

more general parts (i.e. objects) such as Fuselage, Wing, Tail, etc. Together
all the parts define an aircraft.

Composite objects may also contain other composite objects. For
example, the object ‘Wing' could actually be a composite object consisting
o of more simpler objects such as Aileron and Flap. Together these simple
objects define Wing, which in turn is used in the definition of Aircraft. This

@ nesting of composite objects is very similar to graphic structures
e implemented in graphic modeling environments such as PHIGS [Abi~Ezzi and
i‘ Bunshaft, 1986). The reader should refer to Appendix D for a detailed
o description of the composite and graphic primitive classes.

J

. User Interface Currently, there are seven user interface classes
.*, supported by the environment. These classes are Command, Cursor, Dialogue
o Window, Display Window, Option Window, and Pop-Up Menu. Each class
o provides a unique way of allowing the user to interface to the environement.
Kt A functional description of each class follows.

::1

j‘ Command: Supports the display and selection of commands
N via a command button.

; Cursor Handles the form and visibility of the cursor.

4% ﬁ{ Dialogue Window: Provides a consistent means of querying the user.
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_ Display Window: Provides -an interactive medium for display and
manipulation of primitve and composite objects.

Mouse: Handles all mouse functions, such as, tracking and
event queuing.

Option Window:  Provides a standard way of presenting objects
for selection.
Pop-Up Menu: Dysnmic medium for command selection.
A detafled description of each user interface class is provided in
Appendix D.

Aoplication The final area supported by the environment is the
application. An application is the actus! task or requirement that the user

is attempting to satisfy. Applications are supported by assembling together
various components from the primitive and user interface classes. These
classes should support all the components needed to-build sn application. If
they don't, a new class should be constructed, rather than implementing the
capability within the application itself. This will not only expand the
number of classes available for application development, but will also
provide consistency within the environment. Software development
becomes the process of creating classes instead of programs.

Applications are viewed as master objects controlling the interaction
of subordinate objects. They do not impart any new capabilities to the
environment, rather they simply rearrange existing capabilities (Classes) to
perform new tasks. This is similar to a ‘tinker-toy' set. The components of
the set constitute the environment; how they are put together determines
the application. This same metaphor can also be applied to the cockpit
design process.
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The environmant was originally intended to support three applications,
Layout Editor, Symbol Editor, and the Librarian. But because of its generic
nature, it should be possible to support a muititude of different
applications.

The ALC prototype consists of four separate but interrelated
components, namely; the user interface, Layout Editor, Symbol Editor, and
the Librarfan. Implementation of all four commnts was beyond the scope

-of this thosis effort. As such, a concerted effort was mado to domonstratc__
the fuslbility of the ALC concept by implementing the user interface and

Layout Editor.

it was falt that the exclusion of the Symbol Editor and the Librarian
would not significantly impact the primary goal of the ALC prototype, which
was to demonstrate the feasibility of interactive cockpit display
generation. Those capabilities supported by the Symbol Editor and Librarian
(1.e. symbol construction and archival) could be initially emulated within the
Layout Editor, with the understanding that a complete implementation of the
ALC prototype would entail a detailed implementation of the Symbol Editor
and Librarian. With this in mind, the remainder of this chapter will focus on
presenting the implementation of the user interface and the Layout Editor.

User Interface The user interface was implemented more as a part

of the support environment than as a part of the ALC prototype itself. The
functions and capabilities of the user interface tend to be more generic in
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nature than application specific. The user interface is more of a kernel’
than a stand-alone spplication.

Layout Editor The purpose of the Layout Editor is to support the
creaticn and subsequent modification of cockpit layout designs. The Layout
Editor currently supports three cockpit layout types, aircraft ordnance
loading, basic HUD design, and threat situation displays. These types were
chosen bacause they represent a diverse range of possibie applications to be
supported by the ALC. The Layout Editor is currently limited to three layout
types due to the lack of librarfan support. Because the Librarian is not
implemented, it became necesswry for the Layout Editor to emulate a
primitive librarian system. The primitive library is intended only for
demonstration purposes, it is not intended to be a fully functional iibrary.
When the Librarian Is finally implemented and integrated with the Layout
Editor, the Layout Editor should be able to support an unlimited number of
cockpit layout types.

Besides supporting only a limited number of layout types, the number of
symbols defined for each type is also limited. Each symbol assoctated with
a type must be hardcoded to that type. If the user wishes to add, delete, or
modify a symbol, an off-line change to the software definition of the
symbol is required. Again, this is directly related to the lack of a symbol
editor. Once a symbol editor is implemented, it should be possible to modify
a cockpit symbol while on-1ine, for any of the layout types in the library.

Although the Layout Editor suffers from the direct lack of support of
the Symbol Editor and Librarian, the minimal capabilities these components
provide, are emulated within the Layout Editor. The Layout Editor presents a
complete picture, in and of {tself, even without the implementation of the
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Figure 13. Example of an Aircraft Ordmm Loading Layout.

Symbol Editor and Librarian. The Layout Editor is best fllustrated by

examples of the actual layout types suppported.
Alrcraft Ordnance Loading The first layout type supported by the
Layout Editor provides the designer with the capability of configuring
different types of aircraft with different types of ordnance. Currently two
types of symbol classes compose this layout type; namely, aircraft
siihouettes and missiles. The aircraft siinoustte Class currently contains
the figures of three aircraft; F-4, F-15, and the F-16. The missile class is
composed of four different types; Harm, Maverick, Sidewinder, and Sparrow.
With these two symbol classes, the designer can construct aircraft
loading displays similar to Figure 13. Figure 13 fllustrates an F-15
configured with four Sparrow and one Maverick missile.
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Fim 14. Example of a Simple HUD Liyout

e HUD Design. The Layout Editor currently Supports a primitive HUD
design capability, Only a single symbol class is provided for component
selection. This class contains the following symbols; rlight path marker,

| angle of attack error indicator (aca), aircraft reference symbol, inertial
X landing system (i1s) bars, missile aiming rectile, and pitch ladder. Figure
: 14 shows a possible HUD created from this class. The HUD in Figure 14
contains a flignt path marker, aoa error indicator, aircrart reference
symbol, and pitch ladder. When the Symbo! Editor and Librarian are
implemented, 1t should be possible to have individuai symbol classes for
each of the symbols shown in the current class. This would provide the
designer with an interactive means of experimenting with different HUD
representations.
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Figure 15. Example of a Threat Situation Layout.

Threat Situation The last type of layout supported by the Layout
Editor is the threat situation layout. Threat situation provides the pilot
0 with a ‘birds eye’ view of the ground threats for a particular region. From
such a display the pllot can quickly identify potential hazards and plan
evasive actions.
_ The threat situation layout supports three symbol classes; terrain,
l surface to air missiles (SAM), and anti-aircraft (AA). The terrain class
provides a single map for selection. The SAM class represents threats as
circles. The size of the circle displayed depends upon the threat range of
the SAM selected. Inscribed within each threat circle is a number indicating
the SAM type. The same representation holds for AA, except AA threats are
represented as octagons.
Figure 15. Illustrates an example of a threat situation display. This
display contains two SAM sites and one AA site.
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it should be reemphasized that the current limitation of three layout
types is solely a result of not implementing the Symbo! Editor and Librarian,
More 1ayout types could have been added to the Layout Editor, but is was felt
that the current layout types justly demonstrate the Layout Editors
capabilities.

Summary

This chapter has presented the implementation of the ALC prototype.
The prototype was implemented in three phases; hardware, support
environment, and the actual application.

Hardware implementation desit with defining the hardware

environment that the ALC prototype was hosted on. It is currently supported
by a Raster Technologies Model One/25 graphics processor,

A graphical object-oriented environment was implemented as a part of
this thesis to provide a flexible foundation for the actusl implementation.
Object-oriented concepts, derived primarily from Smalitalk, shaped that
implementation.

Implementation of the ALC prototype was originally targeted to include
the user interface, Layout Editor, Symbol Editor, and the Librarian. Such and
effort was soon discovered to be beyond the scope of a single thesis.
Because of this, a functional subset of the ALC prototype was chosen for
implementation. This subset, consisting of the user interface and Layout
Editor, encompasses the essence of the ALC prototype effort by providing
the capability for constructing cockpit 'ayout designs. The Layout Editor
currently supports three type of layovits; aircraft ordnance loading, simple
HUD, and threat situation. Examples of these layouts were given. The
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Layout Editor is capable of supporting other layouts, but it was felt that
‘ ~ these selected layout types were diverse enough to demonstrate the generic
editing capabilities of the Layout Editor without adding additional layout

types.
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Yill. Conclusions and Recommendations
Conclugions

This thesis has been a preliminary attempt to define (quantify) a
possible ALC representation for the AC/CSRL. It has focused on the rapid
prototyping of pictorial type cockpit dlspléys via the use of existing cockpit
layouts and symbology. This research has resulted in the design and
implementation of a highly interactive, graphics based environment known
as the ALC prototype.

The ALC prototype was designed to support four major AC/CSRL ALC
requirements; namely,

1. user supportiveness,

2. interactive creation and modification of cockpit layouts,

3. Interactive creation and modification of cockpit symbology, and

4. storage and retrieval of cockpit layouts and symbology.
Due to limited time and resources, the current ALC prototype
implementation only supports the first two requirements; user
supportiveness and cockpit layout generation. However, this
implementation has shown to be sufficient to demonstrate the central
theme of the AC/CSRL ALC concept; namely, the interactive support of
cockpit display generation. Implementation of the remaining requirements
would greatly ennance the capabilities of the ALC prototype and would
provide a sultable framework for demonstrating a broad range of design and
1mplementat|on issues associated the AC/CSRL ALC effort.
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This thesis has demonstrated the concepts proposed by the AC/CSRL

‘ effort are feasible and can be implemented using todays technology. What

this thesis did not demonstrate, nor did it attempt to, was what the final it

ALC representation should be. Rather, this thesis proposed a candidate ALC
representation based on several key ALC requirements.

Aside from demonstrating the ALC concept from the user's viewpoint,
this thesis also addressed the use of object-oriented concepts in the design
and implementation of the ALC prototype software. A consistent
object-oriented metaphor was applied to all levels of the ALC effort. At the
user level, all interactions were viewed as the manipulation of cockpit
‘objects’. The software design was based on an object-oriented design "
methodology, and the actual software itself was implemented in an
object-oriented fashion. This approach provided a consistent framework

° from the application down to the implementation; this is seldom attainable .
with more traditional approaches. '

In addition to providing a consistent metaphor, an cbject-oriented

implementation supporting multiple inheritance, proved a viable means of ﬁ
rapidly generating software. Classes, once fully implemented and tested, 3
served as the foundation for building other classas. Building new classes )

upon the functional capabilities of existing classes reduced the need for q
T extensive software development and testing. i
** Although this thesis addressed a spocific application, the rapid :
R prototyping of pictorial cockpit displays, the graphics environment that
,o supports the prototype ALC was developed as generic as possible. It should
be possible to extend the ideas and concepts embodied in this environment ’:’

to other areas requiring the rapid prototyping of pictorial displays.

N
0 s
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Recommendations

Recommendations are divided into two areas; short term and long term.
Short term recommendations suggest ways for immediately enhancing the
capability of the ALC prototype. Long term recommendations are
enhancements or issues identified as part of this thesis effort that could
impact directly the AC/CSRL development effort.

ahort Term The most immediate short term enhancement that could
be applied to the existing ALC prototype implementation would be the
implementation and integration of the Symbol Editor and Librarian with the
Layout Editor. Currently, the Layout Editor must emulate specific
capabilities originally intended to be supported by the Symbol Editor and
Librarian (i.e. cockpit symbol construction and layout retrieval). The
emulation is primitive and detracts from the original intention of the
Layout Editor, namely; cockpit layout construction. By implementing the
Symbol Editor and Librarian, the ALC prototype would truly be a supportive
environment.

The ALC prototype could also be enhanced by rehosting the software on
a dedicated graphics workstation. Currently, the ALC prototype software is
hosted on a Raster Technologies Model One/25S graphics processor connected
to a time-shared VAX 11/785. In this configuration, the Mode! One/25
serves as an intelligent graphics terminal, while the VAX 11/78S performs
the majority of the computational tasks. User interaction is often hampered
by this set up. Besides being constrained by a relatively slow (9600 baud)
communtcation channel, the VAX is sometimes heavily utilized by other
applications resulting in intermittent bursts of high user response followed
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by no response at all. This hit and miss rasponse mode significantly
4 ‘etracts from the interactive capabilities of the ALC prototype. A
W dedicated graphics workstation should eliminate this problem providing the

ier with a more reponsive system.

Display representations could also be enhanced by providing a thr:e
(imensional extension. Currently only two dimensional design
epresentations are supported. A three dimenstonal extension would
broaden the scope of possible design representations that could be
"upported by such an environment.

;:a As more and more military software systems are being implemente * in
Efﬁif" Ada, it might be warranted to translate the current implementation to Ada
«‘.’: to provide a better integration with other software packages. Although Ada
&:“:"«'; Joftware can be designed using an object-oriented approach [Booch, 1986},
B the object-oriented nature of the design is lost in implementation. Ada
:'ECE foes not directly support an object-oriented implementation schema such as
:f:: Smalltalk, or the environment implemented in this thesis. Recent efforts to
'i')"; ~rovide an object~oriented framework in Ada has met with some degree of
::., success, yet a complete object-oriented implementation of Ada looks
EEEE'. « Jubtful (Braaten and Hanson,1986]. As such, some of the object oriented
e nature of the ALC prototype implementations will have to be compromised
‘lﬁz for an Ada implementation,

:*‘ Long Term. The long term recommendations presented here pertain
§§E§ more to the AC/CSRL project as a whole, rathar toan indivicial
:EE'; enhancements to the ALC prototype. The recommen:izi.ions identified during
fa"E L.ils thesis effort should be considered as possible requirements for the
;% g AC/CSRL's ALC.
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O When testing the layout capability of the Layout Editor, it was often

a0
oa? et

,f;‘:{g:- el noticed that different layouts could be constructed in which the layout
‘w representation could not be matched by its corresponding implementation in
e the real world. For example, the aircraft ordnance loading layout (Figure 13)
”’ allows aircraft to be configured with different type of missiles. In a real
s aircraft cockpit, this display type would actually represent the aircrafts’
B current ordnance status. As such, there is fixed physical limit to the
R amount and type of ordnance that a specific aircraft can deploy. The ALC

implemented as part of the AC/CSRL should provide some means of
determining 1f a cockpit layout is valid. Design verification could be
achieved by integrating a knowledge base with the graphics editor used.
Another feature not implemented as part of the ALC prototype, which
should be incorporated in the AC/CSRLS' ALC, is the capability to describe
Py object behavior. It is not enough just to be able to describe an object's
e form, the designer should also be able to, from the ALC, describe an object's
behavior. The definition of an objects behavior could include spatial
contraints (i.e. vertical or horizontal movement) and identification of which
responses from the intended environment invoke a repiy from the object.
From such definitions, it should be possible to generate application
software to dynamically model the layout. Related work in this area is
o currently being conducted by [Foley and McMath,1986]) and [Hollan et.
al., 1984).
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Appendix A: Design Methodologies

Software design can be viewed as a decomposition process guided by an
abstraction criteria. The decomposition process divides the originai problem
space into a series of smaller, simpler problem spaces while abstraction
guides the process by imposing restrictions on how the problem space is
divided. The choice of the abstraction criteria directly impacts the
structure of the final design.

Traditionally two forms of abstraction criteria have been applied to
the decomposition process: functional (process-driven) and data-structure
(data-driven). Functional decomposition techniques have been popularized by
practices known as top-down design, Structured Design [Constantire and
Yourdon,1979), and step-wise refinement IWirth,'|97ll. These techniques
approach decomposition based on an algorithmic or functional view of the
problem domain [Booch, 1986:21 1], Large, complex problems are divided into
a series of smaller more managable subproblems. These subproblems are
solved or further decomposed into a series of even smaller subproblems.
Decompositon is repeated until the entire problem is stated in terms of
smaller, solvable subprobiems. The subproblems solutions are then combined
to solve the original problem.

The program structure derived from functiona: decomposition embodies
a hierarchical refinement of functional detail. Each level of the hierarchy
expresses an abstract definition of system functionality. The top most level
defines ‘'what' the system should do. Succeeding levels refine this definition
until the most fundamental operations are defined. Each fundamental
operation specifies 'how' a particular function in the system performs. By
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combining these operations under a hierarchical nuiwork of control flow a
hierarchical program structure of functional components is created.

A second approach to software design decomposes the problem space
based on a data-structure abstraction. Methods developed by Jackson
[Jackson, 1983] and Warnier [Warnier,1977] are the most popular. These
methodologies subscribe to the idea that the “structure of a software
system should refliect the structure of the data processed by that system®
[Sommerville, 1985:69] Instead of decomposing the problem space based on
how the system functions (i.e. functional decomposition), the problem space
is decomposed based on an analysis of the input and output of the system
data. This decomposition results in a hierarchical definition of the data
structures that reflect the data processed by the system. The program
structure is formated by transforming the hierarchy of data structures into
a hierarchy of corresponding program units that process the data.

Traditional software design methodologies provide for the formulation
of problem domain representations (designs) based on either a functional or
data-structure viewpoint. Functional decomposition techniques have
concentrated on defining the operations in the problem domain with little
regard to the data structures needed. On the other hand, data-structure
decomposition techniques have taken just the opposite approach. The
data-structures are defined first; functions are defined as an afterthought
to use the structures. Program structures generated by these techniques
seldom portray a clear and direct representation of the problem domain. The
program structure ends up representing a set of operators (functions) or a
set of operands (data) [Cox,1984:58). A synthesis of function and data is
absent. This causes the program structure to be a transformation of the
problem domain rather than a direct mapping of it. The program structure
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becomes "removed from the problem space” [Booch, 1983:40).

o @ An alternative to the more traditional software design methodologies

(1.e. functional and data-structure) is based on an object-oriented approach.
| v Object-Oriented Design (0OD) is a software design technique in which

0 “decomposition is based upon the concept of an object” [Booch,1986:211]

" Objects encapsulate both the state (data-structure) and behavior (function)

e of entities in the problem domain [Cox,198457) A synthesis of

g data-structure and functionality is achieved.

The idea of combining data and function as a single decompasition

criteria is rooted in the principle of ‘information hiding' [Parnas,1572)

b Information hiding conceals the internal processing details of individual

- levels of the program structure from each other. Each level has access only

5 to information that is pertinent to its processing needs. Access to

’:‘.Ef?- - . information from other levels is prohibited. Each level encapsulates its own

» ® data structure and operations. Levels communication through well-defined

i:: interfaces. Knowledge about a levels' internal processing details are hidden

- from the calling level, only the interface syntax is visible.

g The value of 00D arises from information hiding. Objects are abstract

‘ entities containing both state (data) and behavior (operations). Every object

! hides its internal detatls from other objects and communicates via message

0 passing (well-defined interfaces). Objects provide an abstraction medium

g for consolidating the ideas of information hidiiy; -“~ogram structures that

bz were once transformations of the probi -~ domaiin (iv. 2ets of operands or E

{,«; sets of operators) are now composed of o.'ects (operands and cporators). S
' }; Decomposition is viewed as an identification pr..«us. Objects are identified

R in the problem domain and mapped directly into the p. oy am etruct:ry, E

:EE%;';; s Functionality and data-structure are no longer viewed as Separate %
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attributes of the problem domain. “As a result, the designer is not forced to
restate his problem in computer-domain terms, where everything must be
either an operator or an operand™ [Cox,198458]), but rather defines the
destign in terms that exist in the problem domain.

Basically, 00D can be generalized in the following four steps:

1) Definition, examination of the problem domain,
2) |dentification of the objects in the problem domain,
3) ldentification of operations performed on the objects, and
4) implementation of the objects.
[Booch,1986:213; Buzzard et. al.,1985:11; Cox, 198458]

The first step, problem definition, Is common to all design
methodologles. Its goal is to define a complete and understandable
description of the problem domain.

The second and third steps in the 00D process involve the identification
of objects and associated operations. The procedure for.:dolng this seems
more of an art than a science. Depending on the complexity of the problem
domain, the task of object and operation identification may be intuitively
obvious or seemingly impossible.

Attempts to formalize the identification process have been popularized
by methods proposed by Abbott [Abbott, 1983] and Booch [Booch, 1983). Their
strategy is based on identifying objects and associated operations by
extracting noun and verb constructs from a netural language description of
the problem. Objects are associated with noun, pronouns, and noun clauses,
w'hile operations are associated with verbs, verb phrases, and predicates
[EVE, : 985: 2-6,2-9). Proponents of the strategy claimed to have used this
technique successfully for small to medium sized (up to 30,000 lines of
code) prograins [EVB,1985:1-21 Yat skepticism remains about the
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applicability of such a method for large complex programs and whether a
@ natural language description can produce a clear and concise enough
~description of the problem domain for this technique to be used

E [Sommerville,1985: 94].

: “The final step, implementation, performs the actual mapping of the

- design into software. The degree to which the software retains its

object-orfented structure depends directly on the language used for

; implementation.
! B

:
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This appendix provides an iIntroduction to the characteristics and
terminology associated with object-oriented systems. This appendix is not '
intended to be a tutorial on the subject, but rather a consolidation of terms
and characteristics found throughout this thesis. Specifically, this
appendix addresses three main concepts associated with object-oriented
systems; namely, class, message passing, and inheritance.

clagges )

@ Objects are the sole inhabitants of an object-oriented environment.
They encapsulate the properties of data (operands) and procedures
(operators) into a cohesive whole. The data, or /nslance var/ab/és define
the Instrinsic properties of the object. For example, a line object may
contain instance variables that describe its form as two end points,
starting_end_point and terminating_end_point. The instance variables
defined for an object are only known to that object.

Objects also contain procedures or methods. They are the sole means {
of manipulating an object’s instance variables. Only those methods defined ‘
for an object can manipulate that object's instance variables. Methods

o e e S s oy e e e e e

A

defined in other objects are forbidden from directly modifying instance E

variables of different objects. E

% Objects are implemented as Instances of c/assés. Classes serve as a h
¥ ‘Dlueprint’ for constructing all objects in the system. All objects are an i
;

;
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instance of a single class; however, classes can have multiple instances (1.e. "

& objects). For example, the class Rectangle defines all the information
' necessary for creating a rectangle. Instances of the class Rectangle would
define a set of different size rectangles. Each rectangle has in common the

property of ‘rectangleness’, yet they differ in their presentation (i.e. 8122).
Classes capture the ‘gestalt-ness’ of the instances.

Classes consist of class variables and storage for the instance :i

methods. Class variables differ from instance variables, in that, class 2

variables are shared by all the instances of the class. In contrast, each ;

instance maintains its own instance variables and has exclusive access to e"

them. &

Besides class variables, each class maintains the actual ,g,

implementation of the instance methods. In principle, every instance of a ”’*3

@ ~ class could maintain a personal copy of the methods; however, this strategy &

is wasteful (memory) and serves no useful purpose. By confining the actual ﬁg»

implementation of the methods to the class definition, memory v

requirements are minimized since all instances share the same methods. &

Viewed In this way, a class can be thought of as collections of objects that oy
have the same operations in common [Curry and Ayers, 1984:520] ;:.'f: '

g

Message Pagsing

Objects communicate via a message passing paradigm. Instead of '-

o directly invoking a procedure (operator) to perform an operation on an ,3;}:
object, one sends a message to that object. The recelving object determines 35
o how to handle the message. The receiver has three options available to it; ‘_':E
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1) it can invoke one o/ its methods to implement the message,
2) it can ignore the message, or

J) it can pass the message on to another object.
In either case, the sender has no control over ‘how' or ‘who' finally
l processes the message. The sender blindly trusts that the receiver will do
. ‘the right thing' [Rentsch,1982:54]. The messages that an ob jeét responds to
defines the object's interface to the rest of the system.
The principle that makes message passing possible is binding. Binding
fs the act of translating the application software into actual machine
addresses for execution. There are two basic forms of binding, static and

X dynamic [Aho and Uliman,1979:37] Static binding is usually performed at
o compile time. The software is bound to actual machine address prior to
;,vi‘ execution. This method is very effirient, binding all functions/procedures to
it @ a specific data type.. It becomes impossible to use a procedure to
:& manipulate integers on one line then use that same procedure to manipulate
{:;3 strings on the next line. The procedure must be explicitly defined with an
; appropriate data type and used with that data type consistently throughout
o the software. On the other hand, dynamic binding delays the type checking
2;3‘ until run time. It becomes the responsibility of the software environment
':f‘?: to determine how to handle muiltiple data types, making it possible for a
-‘: procedure to manipulate different data types.

Object-oriented systems use some form of dynamic binding to support
message passing. Messages are sent to objects to elicit a desired action.
$§ Since the message content is not checked ‘intil run-time, multiple objects
::nss can be sent the same message. It then becomes the responsibility of the
& receiving object to determine how to interpret the message. For example,
':gtc m the message ‘draw’ would elicit a different response from a Line object than
i
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it would from a Circle object. Both objects would interpret the message
and perform the appropriate draw response. The meaning and syntax of the
message is the same for both, but the means in which the message is
implemented 1{s dependent updn the object that receives it. The
repongibility of implementing the message rests squarely with the
recelving object.

Inher{tance

Object-oriented systems also support a concept known as inheritance.
Inheritance is a means of creating specializations of existing classes. The
new class, known as the swc/ass, inherits all the class varifables, instance
variables, and methods of the existing class, or syoerc/ass The subclass is
distinguished from its superclasss by unique class variables, instance
variables, and methods. Methods defined in the subclass may override the
methods inherited by the éuperclass or can be used to enhance the
superclass methods. [Pascoe, 1986:142)

There are two basic forms of inheritance, hierarchical and muitiple
[Stefik and Bobrow, 1986:46-49). Hierarchical inheritance is the simplest of
the two. It restricts the number of classes that a subclass may inherit to
one. Each subclass in the hierarchical scheme has only one superclass. This
results in an inheritence structure similar to a tree in which each node is
the decendent of only one previous node. Multiple inheritance, one the other
hand, allov/s multiple classes to be inherited by a single subclass. This
results ' 2 tre2 structure in which a node can be descendant from one or
more other nudes. Figure 16 illustrates this difference.
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Figure 16. Example nf Hierarchical and Multiple Inheritance.

when viewing Inheritance diagrams, It is important to understand
which direction the inheritance follows. Upon initia! inspection, one would
assume that class A, would inherit characteristics from both B and C. In
inheritance diagrams, such as Figure 16, this is just the opposite. It is
classes B and C that inherit characteristics from A. In the hierarchical
example, each class inherits characteristics from only one other class. In
the multiple inheritance example, class F inherits characteristics from
both B and C.

The choice of which Inheritance mechanism 1s used will often depend
on the class structure of the application. For applications where classes
are mostly independent of each other, a hierarchical inheritance structure
could suffice. However, in applications, where classes are highly
interrelated, the use of a multiple inheritance structure is warranted.
Multiple inheritance structures provide an extra level of flexibility not
usually associated with strict'y hierarchical structures, Since classes in a

= I
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muitiple inheritance structure can finherit muitiple classes, adding new
classes is simply a maiter of establishing new inheritance iinks to the
existing structure. Adding new classes to a hierarc!..cal stucture could
entail a readjustment of e entire structure.




O Anpendix C: An Object-Oriented Extension of the 'C' Language

This appendix describes an object-oriented extension of the 'C’
language that was implemented as part of this thesis. It differs from
previous object-oriented extensions of 'C’, [Stroustrup, 1983] and {Ccx, 1983),
in that it does not require the code to be pre-compiled. All extensions are
implemented in standard 'C. This should make this implementation
transportable to other ‘C’ systems.

Three primary extensions were added, namely; class type, message
passing, and multiple inheritance. The modeis for these extensions were the
Smalitalk language [Goldberg and Robson,1983] and Traits [Curry and

Ayers,1984). A description of these extensions is provided in the following
Q sections.

The class concept is im;lemented as a data structure consisting of
three interrelated components; object, class, and method table. Each
component is implemented with an identical ‘C’ structure (Figure 17). Each

node in the structure consists of six fields. The first field, type, identifies
the component for which the node is being used. The second field, ptr_type,
-:':.: provides a generic means of assigning the different components to the node.
- Field three, super, supports the concept of inheritence by serving as a link
%{r,i':i to other class nodes. The fourth field, path, is used to link the different

components together. The fifth and sixth fields, next and back, are used by
:-;;.:'é; @ the system to construct component lists of object and class types.

s
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struct node
type { int t
nt type;
ptr-type node_ptr_type *ptr_type;
super super_link_type *super;
path node..type *path;
node_type *next;
nent node_type  *back;
back }:

typedef strcut node node_type;

Figure 17. Generic Node Structure.

Qbject Node: An object node represents an actual instance of a class.
Multipie object nodes can be instantiated for a single class. Each object
node instantiated shares all the class variables and methods def ined for the
class. However, the instance variables associated with an object node are
private to that node.

Objects are Instantiated dynamically at run-time. The application
program will typically send a message to & class requesting the creation of
an object. The class, in turn, will Invoke the appropriate class method to
allocate storage from the memory heap for the object. The new object Is
then linked to the class node. A handle, or pointer, is returned to the
application icentifying the new object. Objects can also be deleted from the
system in opposite manner by nulling its pointers and deallocating its
storage from memory.
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0 Class Node: Class nodes are the foundation of the data structure. All
object nodes are linked to class nodes. There exists a many to one mapping

e between object nodes and class node. Only one class node is associated
with an object nodes. Class nodes provide the common channel for all

method invocation. -
All classes are instantiated are run-time by the function setup().
Setup() allocates storage for each class node and assigns global pointers for

each class. These pointers are used by applications to identify the class in
;';_;7':1 which they want an instance. Setup() should be the first function called by

i the application and it should be called only once.

°u Method Table Node: The method table node provides access to the 5
;;5 methods associated with a class. Methods are maintained in a linked list ‘S
@ structure. Each node in the list contains a selector; to identify the method, 2
parameter count, and the actual machine address of the 'C' function that
(( implements the method. Figure 18 1llustrates the linked list structure of
) the method table. The method table node and list structure is instantiated 3

. a automatically when the class node is instantiated. %
‘ The inter-relationship of object, class, and method table nodes 'f:;_
fllustrated in Figure 19 represents the system structure containing a single b
‘;\I class. As more classes are added, the system structure takes on the form of '
* a tree (Figure 20) where each node in the tree represents the structure as
_: presented in Figure 19. The branches in the tree form the inheritance chain W
u between classes. All inheritance in the tree terminates in a single node or Ei
class. This class is commonly refered to as Object. The class Object is the :3,
_. @ only class in the system that does not have a superclass. ~:
|

S
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type
ptrotype  |ee—P /
super \ .
path .
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Figure 18. Method Table Structure.

i
N object closs method table

) type type p| type
KR ptr_type ptr_type ptr_type
e super super super
K path path - path :
e next nent next
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poK Figure 19. Interrelationship Between Nodes.
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Figure 20. Structure of Muitiple Classes.

@  tiessage Passing

All objects interact via message passing. Essentially, message passing
is a form of indirect function invocation. Instead of directly invoking a
function, as is done in Ada or Pascal, a message is sent to an object for
processing. The receiving object then determines how the message 1s
handled, not the sender.

Message passing Is performed via two 'C’ functions, msg() and
broadcast..to_super{). Msg() is the primary way of sending messages to an
object. Msg() supports message passing directly to a different object or
allows a message to be sent to itself. Broadcast_to_super() ailows a
message to be sent immediately to the objects superclass by bypassing the

0 object’s methods.




Both procedures employ the same parameter passing order or protocol.
The protocol of each function consists of a receiver, the message (or
selector), and any parameters associated with the message. The receiver is
the object in which the message is intended for. The receiver may be a
different object than the sender or the sender may send itself a message. In
either case, the message must always be addressed to an object. The
system currently performs little errror checking. Any attempt to send a
message to a non-existent object will most likely cause the application to
crash.

The selector is the actual message text, character string, that
indicates which method should be invoked by the receiving object. Each
message can have up to five associated parameters. These parameters can
be any of the following data types : char, int, float, and node_type.

Examples of message passing follows:

msg( circle,"setRadius"®,20);

This example illustrates a message being sent to the aobject ‘circle’.
The sending object has requested that ‘circle’ change its radius to 20. If the
message had been:

msg( circle,"Radius",20);

Circle woula have ignored it and retained it original radius value since
‘circle’ does not understand what "Radius® means. It thus becomes very
important to send the correct format of the message to the object to ensure
that the desired action is performed.
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Msg() also has the capability of returning a response from an object. In
such cases, the sender must know beforehand the format of the reply, for
example, if sender requests the circle radius:

radius = (int) msg( circle,"getRadtus”);

The sender must know in advance that the result will be of 'int' type. The
sender should not expect something different. More complex formats can
also be returned from msg(), for example:

new_circle = (node_type *) msg(circle,"clone”);

returns a pointer to a copy of the original ‘circle’ object.
Broadcast._to_super() does not provide a reply capability. Thus it should
only be used for messages that generate no response.

Huiltiole Inheritance

Having described how message passing is performed on the conceptual
level, it is now worthwhile to investigate how message passing is handled
by the system Whe:: 20 object receives a message, it scans its method
table comparing the selector passed to it against selectors stored in the
method table. If a match is made, the 'C’ function associated with that entry
is invoked. If no match is found, the object has one of two options. It can
simply ignore the message and return control back to the sender, or it can
pass the message on to its superclass.

-




An ocbject can ignore a message only if it has no superclass to pass the
message on to. Since the class Object is the only class with no superciass,
it is the only class the is allowed to ignore a message.

Passing the message on to an objects superclass, cause the superclass
to search its method table. If no match is found, the message is passed on to
the superclasses’ superclass, or the original receiving objects
super-superclass. This recursive procedure continues until a match is found
or until Object receives the message. |f Object can match the message in its
method table, the function is invoked, otherwise the message is ignored and
control is return to the sending object.

The ability of an object to pass on a message to a superciass is the
basis for inheritance. When a message is processed by the superciass, the
original instance is said to inherit that supperclass’'s method. Even though
the method that implemented the message is not defined in the objects
method table, it can be use& as if it were. When an object only inherits
methods from a single superclass, inheritance is viewed as hierarchical. All
classes in the inheritance chain, inherit the methods of only one superclass,

- and that superclass fnherit methods from only one super-superclass, so on

and so on until the Object class is reached.

Multiple inheritance allows a .lacs to inherit methods from multiple
superclasses. The supwiclasses can then inherit methnds from multipie
superciasses, so on and so on, until all inheritance terminates with the
Object class.

A muitiple inheritance schema was chosen for this imy.'ementation. To
support multiple inheritance a precedence list was established for each
object (the field 'super' in the object node points to this list). This list
keeps track of all the superclasses associated with an object. when a
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message is sent to an object, the object's method table is searched. If does
not contain the method, the method tabie of the first superclass in the
precedence 11st is searched. If the search fails, the method table of the first
superciass in the current superclass precedence list is searched. This
continues until the Object class is reached. The class Object is represented
by a precendence list that points to NULL. When a NULL is encountered,
control is return to the previous superclass and the next class in the
precedence list is searched. This continues until a match is found in one of
the superclass's method table or until the calling object is returned control.

This may seem a bit complicated at first, but as more and more classes
are added to the gystem, the power and elegance of this schema to absorb
them without modifications to the software structure becomes evident.
New classes are simply assigned pointers to the superclasses in which they
wish to establish an inheritance with. All methods associated with the
superclass are made accessible to the new class. This provides a high
degree of software reusability among the classes.
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@ Aogendix D: Class Descriotions

This appendix describes the interface for all currently implemented
classes. Figure 21 illustrates the inheritance relationship among these
classes. These classes are divided into three categories; 1) graphic
primitives, 2) user interface, and 3) miscellaneous. The graphic primitives
are classes that describe basic graphic entities such as rectangle, circle,
and polygon. The user interface consists of classes that support the ALC
prototype user interface. The miscelianeous classes provide support for the
other two class categories.

Classes are described in terms of variables and methods. Specifically,

@ each ciass provides the following information:

1. Class Name

2. Superclass: The superciass(s) identify those classes that are
inherited by the current class. All class variable, instance
variables, class methods, and instance methods defined for a
superclass are inherited by the current class.

3. Class Variables: Defines those variables that are unique to the
class and shared by all instances of that class.

4, Class Methoda: The methods (operations) that are uniquely defined
for the class. The 'C’ interface for each method is provide.

S. Instance Variables: Defines those variables that are private to
each instance.

@ 6. Instance Methods: The methods that are available to an instance.
: The ‘C’ interface of each method is provided.

Appendix D 108

B0k PO M W ol A 0T, 020 g 0 00 0% 0% 00 g 87 $Ta T e AT B o
O ittt e

y \ ?* Y --5'3.-0“\" N 0 )
N N s B e W e e




o DY a ey v B 0T B 5

aunjonus sjueiuayuy 1z asnbiyg

AV e R X A XKD e ™™

Raimdanmlarietai

4y AT 4

(/)
X
¥ -."9

30
1)

puswIwo) R zm
a8j34y) mm :
ucbhjog w,u
uopdp T enpund &
| - \.l 2des wu
mepuyn abunyray wu
mopuym 3
uopdg o
ajisodwio) / m ,“
___3iqo
MoputMm ~= 3811 sydeay 1811 xun
fiojdsio :
s may
nuIW $ydesgy
umog-jind
SSNOW o
x
°
c
anboeg 10810) W




Graphic Primitives
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) Class: circle >
: Super Class: graphic primitive ¥

oA
5yt i,

26 3]
OU M

LN . i*
Y Class Variables: none e
)

i

,

new
function: Instantiates a circle object.

- circle = (node_type *) msg( circle—class,"new” ) -
Instance Variables: 8
o radius : defines the radius of the circle. ‘
o
ek clone
. @ function: Answers with a clone of an existing object.

x object_clone = (node_type *) msg( circle,"clone” ) %
setCircle :
B : function: Defines where the circle is, and its' size. '

2 mag( circle,"setCircle”,Ix),ly)Iradius] ) 2
f’;-‘t ;‘9
= setRadlus "
i function: Defines the size of the circle. <

. msg( circle,"setRadius",[radius] ) v/
e scaleBy
e function: Scales the circle in both the x and y directions. oy
msg( circle, scaleBy",[factor] ) .
I draw ‘
e function: Draws the circle. R
msg( circle,"draw" ) "

1 B :

¥ %
%
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internals
O function: Prints the circles’ instance variables.
msg( circle,"internals® )
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‘ Clags: graphic.primitive
Super Class: object

Class Variables: none K
Class Methods: | ;
new

e function: instantiates a graphic primitive object.

primitive = (node_type *) msg( graphic_primitive_class,"new" ) -
Instance Variables:
ex,cy @ center point of graphics primitive
- color  : color of graphic primitive |
i solidFill : flag indication whether primitive should be solid filled e
o drawtode: determise how the image is drawn on the screen :
(i.e. normal or XOR)

‘ 0 area  : area of graphic primitive in pixels
o extent : the graphic primitives extent on the screen. The extent
e is defined as a rectangluar region.

J I
: clone :
N function: creates aclone of an existing object. Caller is returned -
e a handle to a new object. '

: clone-object = (node—type ®*) msg( primitive,“clone" ) \i
setColor :
e function: sets the color of the graphic primitive. "
R msg( primitive, setColor", [COLOR) )

l‘ setSolidFill
function: sets whether a graphic object is displayed solid filled. w
kN msg( primitive,"setSol{dF 11", [TRUE or FALSE]) &
g B i
Py 3
;'; A ::
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' setExtent
0 function: sets the rectangular extent of the graphic primitive. The
area of the graphic primitive is automatically updated.
.\ msg( primitive,“setExtent” [left], [bottom), [right), [top] )
setDrawiMode
function: Sets the drawing mode for the object.
msg( primitive,setDrawiMode”,(mode) )

getColor
function: Answers with the primitives color.
color = (int) msg( primitive,"getColor” )

getSolidFill
funciton: Answers with the primitives solid fill status.

711l = (int) msg( primitive,"getSoildFill")

getExtent
.rj;;:;f.' funciton: Answers with the primitives extent.
2 * extent = (extent_type *) msg( primitive,"getExtent”)
" getDrawMode
ot function: Answers wih the primitives drawing mode.
o mode = (int) msg( primitive,“getDrawiMode” )
s getArea
J;i:,‘j‘ function: Answers with the primitives’ area.
s area = (int) msg( primitive,"getArea® )
" getCenterPoint
e function: Answers with the primitives center point.
e point = (point_type *) msg( primitive,"getCenterPoint” )
bl containsPoint
function: Answers whether the primitive contains a specific
S point ( TRUE or FALSE ).
"t reply = (int) msg( primitive,”containsPoint",[x], (y))
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moveTo
. function: Moves (centers) the primitive aver a specific point.
- msg( primitive,“moveTo",(x},ly] )

showExtent
function: Displays the primitives’ extent.
msg( primitive,"showExtent” )

hideExtant
function: Erases the primitives extent.
msg( primitive,"hideExtent" )

| internails

function: prints the instance varfables of the primitive,
msg( primitive,internals" )




0 Clang: line
Super Class: graphic primitive
Clans Vaciables: none
new
function: Instantiates a line object.
line = (node_type *) msg( line_class,"new" )
Instance Variables:

startx,start_y : the starting end point of the line.
end.x, end.y : the end point on the line.

Instance Methods:
clone

‘ function: Answers with a clone of an existing object.
object_clone = (node_type *) msg( line,"clone" )

~ setLine

f function: Defines the end paints of the line.
" msg( 1ine,"setLine" [start _x),[start_y),lend_x],fendy] )
scaleBy

function: Scales the line in both the x and y directions.
msg( line,"scaleBy" (factor] )

draw
function: Draws the line.
msg( line,"draw" )

internals
function: Prints the lines' instance variables.
msg( line,"internais® )
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Class: polygon
Super Class: graphic primitive
Class Variables: none

new
function: Instantiates a polygon object.
poly = (node_type *) msg( poly_class,“new" )

B inatance Variables | :
num_of_points : Number of points that define the polygon. :
Instance Methods: | i

clone
0 function: Answers with a clone of an existing object.
object_clone = (node_type *) msg( poly,“clone”)

addToPoly
function: Adds a point to the polygon .
’ msg( poly,"addToPoly",Ixl,ly]) :

scaleBy
function: Scales the polygon in both the x and y directions.

msg( poly,"scaleBy",x],fy]

i draw 4

o function: Draws the polygon. 3

Y ms“ poly‘-mw- ) [
internals

function: Prints the polygons’ instance variables.
R msg( poly,”internals” )
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‘ Clasg: rectangle
Super Clagss: graphic primitive
Class Variables: none

new
function: Instantiates a rectangle object.
rect = (node._type *) msglrect_class,'new" )

instance Variables:

left,bottom : lower left hand corner of the rectangle.
right, top  : upper right hand corner of the rectagle.

instance Fethods:

| ‘ clone
| function: Answers withaclone v . . .xisting object.
object_clone = (node.type *) msg( rect,’clone” )

setRect
function: Set the dimensions of the rectangle.
msgl rect,"setRect" [left] [bottom],{right],(top)] )

scaleBy
function: Scales the rectangle in both the x and y directions.
msg( rect,"scaleBy",[factor] )

draw
function: Draws the rectangle.
msg( rect,"draw" )

internals

function: Prints the rectangle’s instance variables.
msg( rect,”internals® )
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. Clags: text

Super Class: graphic_primitive B
Class Methods:
new |
function: instantiates a text object o
text = (node_type *) msg( text_class, new") -
Instance Varisbles: 2
length :  Text length in pixels. '
height :  Text height in pixels.
size : Font size.
g font : Style of font.
text_string : Actual character string.
. 0 Instance Methods: | g
; clone %
e function: Creates aclone of an existing ob ject. Answers with a
handle of the new object. =3
p clone_object = (node—type *) msg( text,"clone" ) -
, setText A
function: Defines text as a string of characters. Sy
msg( text,"setText", [ string]) e
getTextSize "3
' function: Answers with the current size of text. kit
size = (int) msg( text,"getTextSize" ) X
scaleBy b
function: Scales the text object in both the x and y directions. e
msg( text,"scaleBy", [factor] ) .
| ®
: :E‘:'.;
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startwriteAt
‘ function: Defines the location where the lower left hand corner
of the text should begin.
msg( text,"startWriteAt",[x], ly])

draw
function: Draws the text string.
msg( text,"draw" )

internals
N function: Prints the instance variables of the text object.
s msg( text,"internals” )
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Clagsg: commands
Suner Class: window

text
Claas Vaciables: none
Class Methods:

new
function: Instantiates a command object.
command = (node_type *) msg( command_class,"new" )

Instance Varisbles:
command.num : command id.
Ingtance Methods:

gsetCommand
funciton: Defines the command box.
msg( command,setCommand",[command text string),lcommand id] )

getCommand
function: Answers with the command id.
id = (int} msg( command,“getCommand” )

moveTo
function: Moves (centers) a command over a specific point.
msg( command,"moveTo",[x], [y])

draw
function: Draws a command box.
msy( command, draw" )
iniernals

function: Prints the command objects’ instance variables.
msg( command,“internals” )
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Clasg: cursor

Super Clasg: object

Clags Varjables: none
new-

function: instantiates a cursor object.
cursor = (node_type *) msg( cursor_class,’new")

instance Variable Names:
Xy : location of cursor
color :  color of cursor bounding box
status : status of cursor ON or OFF

left,bottom : lower left hand corner of cursor bounding box
right,top : upper right hand corner of cursor bounding box

Instance tethods:

setColor
function: sets the color of the cursor’'s bounding box.
msg( cursor,"setColor”, [ COLOR ] )

setCursor
function: define the cursors’ bounding box.
msg( cursor,’setCursor”, [an_object] )

updateCursor
function: updates the cursors' position and apperance.
msg( cursor,"updateCursor” )

turnOn

function: turns the cursor on. Display the bounding box.
msg( cursor,"turnOn® )
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turnoff
function: turns the cursor off. No bounding box is displayed.
msg( cursor,”turnOff” )

internals
function: prints the instance variables of the cursor object.
msg( cursor,”internals® )
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0 Class: dialogue
Super Clags: window

text list
graphic list

Class vVariables: none
Llass Methoda:

new -
function: Instantiates a dialogue object.
dialogue = (node_type *) msg(dialogue.class, new")

Instance Variables: none
Instance Methods:
appendText

a function: Adds textual information to the dialogue.
msg( dialogue,“appendText”, [text string), (font size] )

| appendCommand
function: Adds command boxes to the dialogue.
msg( dialogue,”appendCommand®,[command text),{command id],{x),ly}D

moveTo
function: Moves (centers) the dialogue object over a specific point.
msg( dialogue,"moveTo",(x], ly])

draw
function: Draws the dialogue box.
msg( dialogue,draw” )

engageinDialogue
function: Activates a dialogue box.
msg( dialogue,“engagelnDialogue” )
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internals
‘ function: Prints the dialogues’ instance variables.
msg( dialogue,“internals” )

1

0 e
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Class: display window

auper Clags: window
e graphic list

B Class.Variahles: none

new
function: Instantiates a display window object.
dis_window = (node_type %) msg( display..window.class, new" )

R Instance Variables: none
Instance Methods:
update

function: Draws all the objects contained in the window.
‘ msg( dis_window,"update” )

B internals
Lt function: Prints the display window's instance variables.
msg( dis_window,"internals" )
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Class: mouse
Super Class: object
Class Variables:

XY : location of mouse.
button : active buttonon mouse.

Class Methods:

track
function: Answers with the mouses’ current location.
reply = (mouse_event_type *) msg( mouse.class,track" )

waitForEvent

function: waits until a button is pushed. Answers with the mouses'
location and button number:.

reply = (mouse..event_type *) msg( mouse-class,"waitForEvent")

getMouse
function: Answers with the mouse's current location and button
number if a button has been pushed, else button number is
returned as zero.
reply = (mouse_svent_type *) msg{mouse_class,“getMouse" )

cleartiouse
function: Resets the mouse and clears any queued events.
msg( mouse_class, clearMouse” )

Instance Variables: none
Instance Methods: none
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. Class: option
Super Class: window
Class Yarishies: none
Class Methods:

new
function: Instantiates an option object.
option = (nade-.type %) msg( option_class,"new"” )

Instance Varigbles: none

Instance Methods:
) hiLite
DS function: Changes the appearence of an option,
e msg( option,“hiLite", [ON or OFF] )
' setOption
: function: Associates an object with the option.
: msg( option,“setOption”,[object] )
getOption
’ function: Answers with a handle to the associated object.
X object_handle = (node_type *) msg( option,"getOption™)
3 draw
function: Draws the option.
- msg( option,“draw" )
) internals
function: Prints the options instance variables.
: msg( option,”internals® )
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‘ Llass: option window

Super Clags: window .
graphic list i

Class Methods:
new
function: Instr.tiates a option window object.
opt_window = (node_type *) msg( option.window._class,"new" )

Instance Varisbles:

left,bottom : bottom left hand corner of option window.
right, top : top right hand corner of option window.
delta.x : -displacement of the window along the x-axis.
delta_y : displacement of the window along the y-axis.

B Arr——

defineOptionWindow
function: Defines the size of each individual window. ) -
msg( opt_window, defineOptionWindow",[ieft],[bottom],[right],[top]) a2
addTo
function: Adds an option to the option window. i
msg( opt_window,"addTo" foption] ) v
moveTo
function: Moves (centers) the first option over a specific point. e
All other options in the window are relative to this point. =
msg( opt_window,”moveTo" [x],ly] )
clear ;;::::
function: Resets the option window. el
” msg( opt_window,"clear" ) '
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update

function: Answers with the selected option. The appearence of the
. , opt window is modified to reflect the selection.

selection = (node_type *) msg( opt_window, update",[x],ly] )

T draw

- function: Draws the option window.
msgt opt-window, draw" ) -~

internals

: function: Prints the option window's instance variables.
msg( opt_window,"internals” )
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0 Class: pull down menu

Super Clags: window
graphic list

Class Variables: none
Class Methods:

new
function: Instantiates a pull doen menu object.
meny = (node..type %) msg(pulldown_menu_class,’new" )

Instance Variables: none
instance Hathods:

appendMenultem
function: Adds a menu item to the menu.

. msgl menu,“appendMenultem”,[item text), [item id])

- moveTo
function: Def ines (centers) where first menu item is drawn.
msg( menu,"moveTo"Ix}ly]) ;

draw
function: Draws the pull down menu. |
msg( menu,"draw”) |

engageinDiailogue
function: Maintains the cursor within the menu.

msg( menu, engageinDialogue” )

internals
function: Prints the menus' instance variables.
msgl meny,”internals” )
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. Class: window
auper Clags: rectangle
| Class Variables: none
V

new
function: Instantiates a window object.
window = (node_type ®*) msg( window..class, new")

instance Variables:
backgroundcalor : color of the windows' background

Instance Methods:

| setBackgroundColor
| ‘ function: Sets the windows' background color.
| msg( window,"setBackgroundColor®,[color] )

getBackgroundColor
function: Answers with the windows' background color.
color = (int) msg{window, getBackgroundColor” )

setWindow
function: Defines the window size.
msg( window,"setWindow", (left],[bottom],(right],(top] )

function: Clears the window with the windows' background color.
msg( window,"clear” )

erase
funciton: Clears the windows contents and frame with background
color.
msg( window, erase")
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e 0 function: Bounds ali drawings inside the window.
msg( window,“clip” )

e internals s
o function: Prints the windows' instance variables. o

1
o - o 0
K msg( window,"internals” ) Nl
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Class: graphics

Super Class: object
Clags Variables: none
Class Methods:

startUp :
function: Initializes the graphics environment.
msg( graphics.class,“startUp” )

shutDown
function: Exits from the graphics environment.
msg( graphics.class,"shutDown" )

setScresnMode
function: Sets the way images are drawn on the screen
(1.e. Normal, XOR, AND).
msg( graphics.class,"setScreentode”,[mode] )

setOutputMode
funciton: Sets the mode In which output is sent to the display

processeor (i.e. graphics or alphanumeric).
msg( graphics_class, setOutputMode”,Imode)] )

drawPoint
function: Draws a point In the graphics environment.
msg( graphics_class,"drawPoint",[x],lyl.lcolor] )

drawRect
function: Draws a rectangle in the graphics environment.
msg( graphics.class,"drawRect" [left],[bottom],[right],[top),{color] )

drawCircle

function: Draws a circle in the graphics environment.
msg( graphics_class,"drawCircle”,(x),lyl,lcolor] )
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drawPolygon
‘ function: Draws a polygon in the graphics environment.
msg( graphics_class,"drawPolygon® [poly_object))

drawText
function: Write a text string in the graphics environment.
msg( graphics.class,“drawText",[x],[yl[size] Icolor] )

solidFill 3
function: Enables or disables solid filling of shapes. |
msg( graphics_class,"solidFill"[flagl)

flushEvents
function: Removes all events from the event queue.
msg( graphice_class,"flushEvent® )

showCrossHairs
function: Display the cursor crosshairs.
msg( graphics.class,"showCrossHairs")

'0 hideCrossHairs

function: Hides the cursor crosshairs.
msg( graphics..class,"hideCrossHairs")

Instance Variables: none
Instance Methods: none

T A e RSO S ST
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® Class: graphic list
Super Class: link list
Clags Variables: none
Class Methods:

new ,

g function: Instantiates a graphic list object.
: g-list = (node.-type *) msg( graphic_list_class,"new")

2 Inatance Variables: none
Instance Methods:

" whoOwnsPoint
B function: Angwers with the object that containg the point,
A owner = (node_.type-*) msg( g-list,"whoOwnsPaint" [x},ly] )

_ 0 insertByArea

function: Adds an object to the list according to the object's area
’ (acsending order).

msg( g-list,"insertByArea” [object] )

0 internais

B function: Prints the instance variables of all the objects in the 1ist.

msg( g-list,"internals” )
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® Clagg: lnk list :.}l*"

Super Class: object
o oy’
Clans Variables; none i
new | s

function: instantiates a lipk list object.

list = (node..type *) msg( list_class, new" ) —

Inatance Variables: o

% ~ member-count : number of @lemants in the list.
' head : first element in the list. X
¥ - tall : last element in the Iist. v
Inatance Methods: o

0 isEmpty »

; function: Angwer whether the list contains any elements. e
0 reply = (BOOLEAN) msg( 11st,"iSEmpty* ) o
) getCount |
; function: Answers with the number of elements in the list. N
. count = (int) msg( Iist,"getCount” ) 3
: addTo Y
function: Appends an object to the list. iy

msg( 1st,"addTo", [an_object] ) R
AddToFront i
- function: Adds an abject to the front of the list. b
¥ msg( list,"addToFront",[an_object] ) it
| insertBefore o
function: Inserts an object into the 1ist before a specific location. .

; @ msg( list,"insertBefore”, [location), [an_ozject]) R
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getObject
| function: Answers with the n't object from the list.
. object = (node_type *) msg( list,"getObject”, [n] )

JeleteObject
function: Removes an object from the list.
msg( list,"deleteObject”, [anobject])

freeOb jects ,
funciton: Deletes all objects from the-list.
msg( list,"free0bjects” ) |
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. Class: text list
" super Clags: link list
Class Yarizbles: none

new:
function: Instantiates atext list object. -
t_list = (node.type %) msg( text_list_class,"new" )

Instance Variables: none
Instance Methods:

startWriteAt |
function: Defines the starting location to begin writing the first
text object in the list. The remaining text object will
: ‘ | begin at the same x cordinate but will be offset in the
| | y direction.
msg( t.list,"startWriteAt,[x]ly]) -

internals
function: Prints the instance variables of all the text objects fn the
list.
msg( t_list,"internals® )
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Appendix E: Hardware initialization

The Raster Technologies Model One/25 graphic processor can be

configured to communicate with a number of different:host computers. it is

essential that a proper configuration be established with the host computer
to ensure meaningful communication.

The VAX 11/78S requires that all data sent between It and the Model
One/25 be formated as 7 bits, even parity. It Is critical that the Model
One/25 be configured for 7 bits, even parity communication before any
attempt is made to run the ALC protoype software. If not configured
properly, all data sent to the Model One/25 will be ignored. The following
steps outline a procedure for configuring the Model One/2S to handle 7 bit,
even parity data. ’

atep 1 ‘Cold Boot' the Mode! One/25.

This Is performed by pressing the ‘cold boot' button located on the
right-iand rear corner of the Model One/25 processor. This action will
cause the Model One/25 to boot with 1ts current configuration.

Siep 2: Enter ‘graphics mode'.

From the alphanumeric terminal connected to the Model One/25 enter a
<CTRL D> or <CTRL E>. The system should respond with a exclamation point
(). The exclamation point Indicates that the Model One/25 IS in ‘graphics
mode'.
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o TABLE VIII

Communication Configuration for the Model One/25 and the VAX 11/785

PORT RTS CTS STOP BITS HIN HOUT CTAL PARITY BAUD

ALPHASIO OFF OFF ON OFF ON NONE 9600
MOUEMSI0 OFF OFF ON OFF OFF NONE 1200
GRINSIO  OFF OFF OFF OFF OFF NONE 1200
TABLETSIO OFF OFF OFF OFF OFF NONE 1200
KEYBSIO  OFF OFF ON OFF ON NONE 300
HOSTSIO  OFF OFF OFF ON ON EVEN 9600

IEEE port : mode = off address = 0000

N = NN =N
CV--I-- B V-

Host mode Is HEHRSC!I

ROM sequence number is 001

Special Characters :

EntGr Break Woarm Kill BS ACK Abort Debug HON HOFF
0 0005 0010 o00tB 0040 0008 0007 0015 0018 00110013

Step J: Display the current configuration.
Type discfg at the prompt.
i discfg <«CR>
The current Model One/25 configuration shouid be disnlayed. Check this
configuration against the configuration shown in Table Viil. If the HOSTSIO, i
Host Mode, and Special characters are the same, then the Model One/25 is
correctly configured. Skip the remaining steps in this procedure by typing:
i quit <«CR>
otherwise, proceed with the following steps.

| = et g
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. 3tep 4 Set Special Characters. |
| ‘ If the special characters are correct proceed to step S, otherwise enter -
the following at the prompt:
| spchar 0,1,5 <«CR>
lspchar 5,1,7 <CR R
This will set the ‘enter graphics’ character to a <CTRL E> and the
‘acknowledge’ character to a <«CTRL 6.

Step S: Set HOSTSIO Line.
_'Iie:i; If the HOSTSIO line is correct proceed to step 6, otherwise enter the
. following at the prompt:
| syscfqg serial hostsio rts off cts off stop 2 bits 7 "

o parity e baud 9600 xin off xout on ctrl on <CR>
‘ 0 The system should respond with:
o are you sure?
Answer:
yes <CR> I

The Model One/25 will perform a ‘warm boot’, exiting you from the
‘graphics mode’. Reenter ‘graphics mode’ by typing <CTRL E>. At the prompt
type discfg and verify that the HOSTSIO line that was entered is correct. If %
it is incorrect, repeat this step, otherwise continue.

- Step 6 Set Host Mode.

Ty If the host mode is correct (i.e. HEXASCII), proceed to step 7, otherwise 3
set the host mode by typing: ¥
. ‘ | syscfg host hostsio ascii <CR» N
0
l.‘-
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| The system should respond with:
| ‘ are you sure?
Answer:
yes <CR>
Again the Model One/25 will perform a ‘warm boot’. Reenter ‘graphics
mode’ with a <CTRL E>. Type discfq, verify the results, and repeat this step
if necessary.

, Step 7; Saving the Configuration.
,‘f;._;{, To save this configuration to the Model One/25s’ non-volatile memory,
| type:
| savefg <CR>
ol The system should respond with:
® are you sure?
Answer:
yes <«CR .
At this point the correct configuration has been saved. Communication ﬁ
. between the VAX 11/78S and the Mode! One/25 graphic processor is now
possible.
Since all configuration data is stored in non-volatile memory, this ¢
configuration should remain until the configuration is physically modified
| again. Performing a ‘cold boot’ or powering down the Model One/25 will not ,-
- change this configuration.

WARNING, WARNING, WARNING:
0 Configuration changes should not be attempted while the Model One/25 -
is connected (logged on) to the VAX 11/785. Configuration changes at this 3
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. time will usually cause the Model One/25 to lock up. There ig no definite
way of ‘unlock’ the Model One/25. Sometimes the system will remain idle
for hours before it will respond.
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Appendix F: Device Drivers

The functions implemented in this device driver package represent just
a small set of available functions needed to fully exploit the-capabilities-of
the Raster Technologies Model One/25-graphic system.

All modules implemented in this package were written in 'C’. They
perform no error checking on operand vajues. They are, however,
~yntactically identical to graphic routines defined in the Raster
1 -chnologies Programming Guide [Raster Technologies, 1983).

The internal processing of the modules were modeled after an earlier
Pascal implementation [Suzuki,1983). Bascially, they convert an interger
value (operator or operand) into @ hexidecimal ascii string representation.
This string i3 then sent to the Model One/25 via the ‘putchar’ command. The
model One/25 interprets the string and performs the desired operation. For
example, the opcode to clear the display screen is 135 This value is
converted to a ascii string of ‘87 and sent to the Model One/25, interpreted
and the screen cleared. All modules defined in this package function
similarly.

A listing of the implemented modules follows, accompanied by a brief
explanation. The reader should refer to the Raster Technologies
Programming Guide for complete description of these modules and other
commands supported!, .’ * Model One/25.

ack() : sends an acknow ledgment (octal 07) to the Model One/25
after an read.

alpha_mode() : puts the Model One/25 into an alpha_numerics mode.
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buttbi(i,m) : assigns a macro, m, with a particular mouse button,i.

’ circle(r) : draws a circle of radius r at the current point.

,l,‘..' clear() : Clears the display screen with the current color. ,
cload(r,xy) : loads coordinate register, r, with x,y.
cmove(d,s) : coples the contents of coordinate register, s, into

coordinate register d
cororg(x,y) : sets the coordinate origin register to x.y.
drwabs(x,y) : draws a line from the current point to x.y.
flush() : empties the event queue.

. graphmode() : puts the Model One/25 into graphics mode.
macdef(n)  : begins the ntP macro definitin. ko
. ‘ macend()  : ends a macro definition. .
’ macera(n)  : clears the nth macro definition. f’gl

moddis(flag) : changes the displays address mode. B
flag=0 : S12x512

g =1 : 1024x 1024
movabs(x,y) : changes current point to x,y. 5

pixfunimode) : sets the way in which images are drawn on the screen.

mode = 0 : normai i

I =4 : XOR .

, =5: OR =

" =6 : AND ;‘;3

x point() : displays the current point. o
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prmfil(flag) : sets the primitive to be filled or unfilled,

. flag=0 : unfilled
=1 : filled

. readbu(flag,ctir,button,x,y) : returns the function button and cursor
S location.
readcr(r,x,y) : returns the values x,y from the register r.
rectan(x,y) : draws a rectangle with the lower left hand corner at the
current point and the upper right hand corner a x,y.
scrorg(x,y)  : sets the screen coordinate register to x,y.
texti(string) : draws a text string starting at the current point.
textc(s,a)  : specifies size (s) and angle (a) of next text draw.
value(r,g,b) : changes the current pixel color.
0 | 0 <= r,g,b ¢= 255
, “ window(x1,y1,x2,y2) : defines the clipping window.
xhair{n,flag) : enables crosshair n.
s flag=0 : disable
2 = | : enable
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The purpose of this inveatigation was to design and ‘vy .ent a \
graphics based enviromment capable of supporting the rapid sototyping ;

~of pdetorial cockpit displays., Attention was focused on the interactive |

construotion of pletorial type cockpit displays from libraries of
cockpit displays and symbology.

Implenentation was based on an object=oriented programming:
paradige, This approach provided a natural and consistent means of
napping ‘abstract design epecifications :into funetionsl software.
Inplementation wvas. supported by an object-oriented extension to the ®(C!
prograsming language,

Although this investigation addressed a specific application, the
resulting grephic enviromment is applicable to other areas requiring the

rapid prototyping of piectorial displays.
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