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o
iﬂ Abstract
e
::. Critical conditions for shear 1localization in thermoviscoplastic
. materials are obtained in closed form for idealized models of simple shearing
he
,;} deformations. The idealizations, which include the neglect of heat
!
jﬁ conduction, inertia, and elasticity, are viewed as quite acceptable for many
;?‘ applications in which shear bands occur. Explicit results obtained for the
}S idealized, but fully nonlinear problem show the roles of strain rate
B
N
:: sensitivity, strain hardening, and initial imperfection on the localization
;,f behavior. Numerical solutions for two steels are shown to exhibit the

principal features reported for torsional Kolsky bar experiments on these

Bl

steels, Mathematically exact critical conditions obtained for the fully

nonlinear problem are compared with critical conditions obtained by means of

A
e

vﬁg linear perturbation analysis. Use of relative changes instead of absolute
i3]

LY

‘~$ changes in the linear perturbation analysis gives better agreement with the
o predictions of the fully nonlinear analysis.
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b 1. Introduction
a; Shear instabilities in the form of shear bands are commonly observed in

metals and polymers subjected to large deformations. The formation of a shear

;: band is often an immediate precursor to rupture of the material. Even when
N rupture does not occur, the development of shear bands generally reduces the
:; performance of the material. Thus, improved understanding of shear band

. formation is critical to the development of improved materials and components
K> made from these materials.

s Shear bands can be divided into two types: those in which thermal
L~
;{ softening plays a negligible role in their formation and those in which
R v
‘@ thermal softening plays a primary role. In the former case the shear bands,
> sometimes called isothermal shear bands, form as a result of strain softening
jj; due, for example, to material damage, to the development of soft textures, or
_(-‘

T to phase transformations. In the latter case the shear bands, often called
| adiabatic shear bands, form as the result of an autocatalytic process: an
s
™ increase in strain rate in a weaker zone causes a local increase in
N
b temperature which in turn, for a thermal softening material, causes a further
; increase in strain rate.
fﬁ In this paper we consider both types of shear bands. We 1limit our
L attention to simple shearing- deformations. Two fundamental questions
" regarding the critical conditions for shear band formation are addressed.

> 1. For a given constitutive law, will shear localization occur for a
e sufficiently large shear?

Xa

bt 2, If so, what is the critical shear ¥©, outside of the shear band, for
'.):.
- which the catastrophic process occurs?

'~
f;ﬁ As background for this study we note that an analysis of the stability of
- homogeneous simple shearing deformations has been presented by CLIFTON (1978)
7
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for quasi-static deformations and BAI (1982) for dynamic deformations, They
used a classical, linear perturbation analysis in which the coefficients in
the linear differential equations for the perturbations were assumed to vary
sufficiently slowly that these variations could be neglected in estimating the
rate of growth or decay of fluctuations from the homogeneous solution. This
procedure determines a critical strain at which fluctuations begin to grow;
however, this initial growth may or may not lead to instability depending on
the neglected effects of the time dependence of the coefficients and the
nonlinearity of the complete system of equations. MOLINARI and CLIFTON (1983)
and MOLINARI (1984, 1985) have presented some analytical solutions of the
fully nonlinear problem under quasi-static and adiabatic (no heat conduction)
conditions. With these solutions available for measuring the reliability of
more simple approaches for determining the onset of instability, MOLINARI
(1985), and FRESSENGEAS and MOLINARI (1987) developed a so-called relative
linear perturbation analysis that accounts, in part, for the non-steadiness of
the homogeneous solution by linearizing in the relative perturbation defined
as the perturbation divided by the corresponding unperturbed quantity., This
approach has been shown to give predictions, as to whether or not shear bands
will form, that are more in agreement with the fully nonlinear theory than are
predictions based on classical -linear perturbation analysis. DAFERMOS and
HSIAO (1983) obtained a priori estimates of the asymptotic behavior of the
solution of the nonlinear problem (including inertia, but not heat conduction)
for the case of a Newtonian fluid with temperature-dependent viscosity.
TZAVARAS (1984) extended these results to the case of non-Newtonian fluids
with temperature-dependent viscosities.

Numerical solutions of the fully nonlinear system of equations have been

presented by several authors: SHAWKI, CLIFTON and MAJDA (1983), SHAWKI
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(1986), WRIGHT and BATRA (1985), MOLINARI (1985). From these solutions one
can conclude that dynamical effects and heat conduction are relatively
unimportant for steel specimens, with lengths of 5-10 mm, subjected to
shearing rates of 103571 as in the torsional Kolsky bar experiments of COSTIN,
CRISMAN, HAWLEY and DUFFY (1979), and HARTLEY (1986). Thus, in this paper we
neglect dynamical effects and heat conduction in order to present an
analytical approach to the fully nonlinear problem of thermoviscoplastic
localization in simple shear, Our aim is to obtain simple analytical formulae
for determining whether or not a shear strain localization instability will
occur and, if so, the critical strain y© at which the localization becomes
catastrophic. The boundary conditions will, in some cases, be general whereas
in others they will be restricted to a constant imposed shear stress or a
constant imposed velocity. Isothermal shear bands are ccnsidered in Section 2

and adiabatic shear bands are considered in Sections 3 and 4.
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,§§ 2. Isothermal problem

po We consider a simple shearing deformation of strain hardening material
- with strain-rate sensitivity. For illustration, we consider the following
}%E constitutive law:

‘.\

ST " (n > o) (1)
.:S where v is the shear stress, y is the shear strain and & is the shear rate,
Sé The function f(y) takes account of the strain hardening. This function is not
e necessarily monotonically increasing in order to account for possible strain
E} softening.

'zg Suppose that, for a constant applied strain rate &, the shear stress T
t’# passes through a maximum. Will strain localization occur? By localization we
,;; mean that in some narrow region, the strain becomes much larger than
‘ g elsewhere. More precisely, we can define two types of localization.

~ Lplocalization

fz If the heterogeneity of the solution is growing so that at time t, a
ig region R (necessarily narrow) exists where y/y > P with 7y representing
‘:; the average deformation and P being a large number, then Lp localization
ﬁ;: of the deformation is said to occur,

j; L.localization

_;i If for every point A.different from B, the ratio yp/yp tends to
iﬁ infinity with increasing time, then L, localization of the deformation at
123 the point B is said to occur,

.; The analysis of localization in this section is performed in two
;&? different ways. First we derive an analytical solution of fhe fully nonlinear
?g problem, Then an absolute and a relative linear perturbation analysis
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are performed and the corresponding predictions are compared with the exact

solution.,

2.1 The nonlinear theory

We consider a slab with a geometrical defect. The width 2(y) is
nonuniform as shown in Figure 1. Using the same approach as HUTCHINSON and
NEALE (1977) for the uniaxial tension of a bar, we get from the equilibrium

equation written at two different points A and B:
2pTp = 23 £(7a) (7a)™ = 2p7p = 23 £(7g) (7)™ . (2)

Taking the power l1/m of each term, we get after integration:

7A 7B

g/ (£()/Mag = 25/™ | (£ /P ag (3)
(o} 0
7lA 7B

where 7§ and y§ are the initial strains at points A and B. If (f(g))l/m’is
integrable at infinity, then the values of the integrals are finite. While
maintaining the equality (3), let yp and y, he increased until the strain
becomes infinite at one of the two points, say B. Then there exists for each
7% a finite strain y, for which Egn., (3) is satisfied. Hence, we have L,
localization of strain if and oﬂly if the function (f(;))l/m is integrable at
infinity.
Let us consider two examples:

(a) £f(£)-0 as (=

Assume that f({) has power law behavior at infinity of the form

f(g) ~ ag"P as ¢-= (4)

‘
g

\..A}_A LL":; :. .'(A\.A\AI‘J('}_‘M .h\“i},‘\m,*.‘)‘.. "‘.A

Lkﬁ
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-] =
_5
‘:ﬁ where a and p are positive constants, Then, from the integrability condition
"4_'.
- (3), the deformation exhibits L, localization if and only if
.
p+m<o0 . (5)
i
T
g This condition illustrates the stabilizing effect of the strain-rate

a ~

sensitivity for m > 0. Even if the material is strain softening (p > 0),

localization will occur only if m is sufficiently small (m < p) (Figure 2c),

¥

P
2 3
"“’- L }

.

If localization does occur, the critical localization strain can be

easily calculated. Let us consider the following function h defined for each

N point M of the slab:
;&f
\)‘ ©
1/m
- R(M) = ty (£(0)M/™ ag. (6)
& 7

Localization of strain will occur at the point B where the function h is a
. minimum. The critical localization strain 7% at a point A is given by the

implicit equation,

A%

o
7A @
/0 [ R eent/mag = alm [ e g (7)
A o] B 0
7A 7B
"4
'-..‘
0
:i: In the particular case where the initial strain y° is uniform the localization
"y
i will occur at the points B where the width 2 is minimum,
ﬂ;: For m - p > 0, L, localization does not occur., Indeed, it is readily
2
-l shown in Appendix A that
A lin  (yp/7a) = (2a/1p)}/(""P) (8)
% L
e
o
ﬂ{} This quantity tends to infinity as m - p - 0%. Then, according to our
2
:w, definition, Lp localization occurs for m - p small enough (Figure 2b).
w.:;;
4 ’ﬁ
2
o
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(b) f(ry-Lasg - =

In the second example, we consider a function f({) for which the limit at
infinity exists
lim f(g) =L>o0, (9)
g-om
Then the result in appendix A combined with Equation (3) shows that:

2

A .
(1a/28) /™ o E@YMar = (LM op) 7 (LR )

j;i £(0)Y/™ agy ij

B
(10)

YB/7A @S 7Yp ~ % .

The shape of the curve yp - yg is shown in Figure 3 for yg > y5. As yp Dpasses
through the strain at which f(yg) is a maximum the ratio 7p/7a increases
strongly. It is then possible that Yp/7p takes on large values, say » P,
Thus, Lp localization may occur just after f(yg) passes through a maximum, As
the deformation continues, the ratio 7B/7n Qdecreases and tends to Yp/Yple =
(22/25)1/™. If (1p/15)1/™ is not large enough, Lp localization does not occur
as y - =, Therefore, Lp localization may occur after the maximum of f(y) is
reached, and disappear for larger deformations.

Strain rate sensitivity has a strong stabilizing effect on the asymptotic

behavior of the solution., For example, consider a 1% geometrical defect:

RB/RA = 0,99

Values of (7p/7p)w = (RA/RB)l/m are given in Table 1 for different values of nm
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Table 1:
Influence of Strain Rate Sensitivity on the

Asymptotic Behavior of Plastic Flow
{(geometrical defect: 1fp/2p = 0.99)

m 0.2 0.1 0.01 0.006 0.001

(Y/7a)»  1.052 1,106 2,732 7.464 2.316 x 104

A value m = 0.01 is sufficient to prevent pronounced localization as y - =,
For small values of m (say m < 0,005) Lp localization occurs as y - «,
These examples illustrate that a maximum in the stress-strain curve does

not lead necessarily to the localization of plastic flow.

2.2 Linear Perturbation Analysis

It is interesting to compare the results of the fully nonlinear theory to
the predictions of a linear stability analysis., For this comparison consider a
block of uniform thickness 2(y) = 2, undergoing homogeneous simple shearing
deformation y,(t). Let sy = 7(y,t) - 7o(t) be the difference between the
shear strain 7y(y,t) for the same block subjected to the same boundary
conditions, but having a fluctuation in strain and strain rate beginning at
some time t,. Using the constitutive law (1) and considering the problem as
quasistatic (5 T = o) we obtain:

57 £'(%o) Yo

—_= - - (9)
8y £ (7o) m

when &y is sufficiently small., Equation (9) shows that, at least initially,

the strain difference &y grows when f'(y) < 0 i,e. when strain softening

occurs, If strain hardening occurs, i,e f'(y) > 0, then the strain difference

=
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N;: 8y decays initially. Because the right side of Equation (9) is independent of
.’.\
;;S the coordinate y, the growth or decay of the strain difference is such that
o the ratio of the strains sy, and sy at points A and B remains constant. Thus,
Al
kf{ Equation (9) provides no information on strain localization,
L
NP From this linear analysis we see that whether small perturbations of a
I,ﬁ homogeneous shearing deformation are expected to grow or decay initially
;Ef. depends only on the sign of f'(y,), the slope of the stress-strain curve at a
YRS
P constant strain 7y,. However, from the nonlinear analysis, we know that
e whether or not localization will occur is not governed by the value of f'(7y,),
iif but by the strain rate sensitivity parameter m and the behavior of f(y) as
:ﬁ y==. The condition f'(y) < 0 is a necessary and sufficient condition for the
!L initial growth of perturbations of a homogeneous deformation whereas f'(y) < 0
4:".
;ﬁ for y greater than some critical value y. is only a necessary condition for
1.\
’: localization to occur. This tendency for the linear perturbation analysis
o based on (9) to predict the growth of small perturbations under relatively
-
-uﬁ weak restrictions on the constitutive equations can be partially offset by
L")
& “\'n
e considering the relative perturbation
2 5y
R ’: A-y = _. . ( 10 )
* N
208 Yo
,*i' The relative perturbation Ay tends to grow more slowly than the absolute
’la perturbation &y and may even decay as the perturbation grows.
i;ﬁ From (9) and (10) we obtain after logarithmic differentiation
I;l: : ) ) :
v a8y &Y Yo Yy £ (7o) Yo
- —F— == — + 1 — (11)
wy 8y 8 Yo m £ (%) Yo
-2
N
~
o

il

& £




Integration of (11) gives

£(70) "/
Ay =K —— (12)
7o

If f(7,) has the behavior (4) for large values of 7or then as y,~= the
relative perturbation Ay becomes unbounded for -p + m < 0 and approaches zero
for -p + m > 0, These conditions are, respectively, the same as the critical
conditions (See example (a) of the previous section) for Lp-localization to
occur or not. This parallellism between predictions of the linear relative
perturbation analysis and the exact results for the nonlinear theory suggests
that linear relative perturbation analysis may be more widely useful in
predicting the stability of deformations than is the commonly used linear
perturbation analysis represented by Equation (9). However, we emphasize that
the localization analysis in the nonlinear theory and the linear relative
perturbation analysis address different problems and there is no a priori
reason to expect that the critical conditions for L,-localization are, in
general, the same as the critical conditions for predicted unbounded growth of

a relative perturbation.
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o 3. Adiabatic Case

A

v We consider next the influence of temperature on localization, As
R discussed in the introduction, the deformation is assumed to be adiabatic and
‘\

‘: quasistatic. We consider the constitutive equation

.

A T=T (7, 7, 98), (13)
-

N

N the equation of equilibrium

k-

" 1(y) T(y,t) = 2(h) T(h,t), (14)
f

> che compatibility equation

o

LS

: . av

) y=_, (15)
3 3y

- and the energy equation

8 30 .

: oC—= BT7. (16)
o at

-

'4 In these equations p is the mass density, C is the heat capacity per unit
“

» mass, 8 is the absolute temperature, v is the particle velocity, and B8 is the
19

:i Taylor-Quinney coefficient which characterizes the fraction of plastic work
-2 that is converted into heat; usually B is taken constant and equal to 0.9.
4

3 Equations (13)-(16) constitute four equations in the four unknowns 7,8,t,Vv.

"4
P In the following, we present a discussion of localization for different
[+ constitutive laws and different boundary conditions. We consider the cases of
[

o
0 constant velocity boundary conditions:

-
3

1

‘.v
LS
~
b
»
)
q
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v(0,t) =0
(17)
v(h,t) = v,
or constant stress boundary conditions
2(h)r(h,t) = 2(0)7(0,t) = const, (18)

3.1 Materials Without Strain-Hardening

An exact solution of the fully nonlinear problem has been presented by
MOLINARI and CLIFTON (1983) for the case in which the material is not strain

hardening and Eqn. (13) has the form

T = pu(8) Y, (19)

In order to obtain this exact solution we write Eqns. (14) and (16) at two

different points A and B. Substitutions of (19) into (14) and use of (16)

to eliminate &A/&B gives

n+l)/m mn+l)/m
TP e/m sy = oM 0p) /0 asg (20)
which, after integration, becomes
(m+1)y/m | B °s
A u(g)/™ ag = gg(m * 1)/m u(p)/™ ag (21)
03 og

where eg and eg are the initial temperatures at points A and B.
From (21) it appears that L, localization of temperature occurs at B if,

and only if, u(e)l/m is integrable at infinity, i.e. if there exists some K >

0 for which
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&
"ﬁ
#
[) 3
l:::t
: w(/M <t -, (22)
Ko K

'j'-j.'. Localization will occur at the point B where the following function, defined
..
'j-"l for each point M of the slab,

LI ©
g M~ gy ¥ 1)/ u(g)t/™ ag (23)
A

o

o o5

>

is a minimum, At localization the temperature 6§ at any point A is given

<
‘:: by

‘“J
& c

) eA ®

> o(m * 1)/m MIIRANE SN ISR w(g)/™ ag (24)
o 0
_.c' eA eg

. It is easy to show that L, temperature localization tends to result in
;:::: strain localization. 1Indeed, from the equilibrium condition (15) and the
)
. constitutive law (19), we have
‘.0 4
2 2p u(8y) 7R = 25 w(8p)7} .
o
o Then, assuming temperature localization, we get
[
[l
1 . 78 , Ip 1(8p)
WY lim 2| lim =+

“

0% 8y ~ oF Ia) o~ 8% | B u(p)

e

'C- since lim c u(6g) = 0 from the integrability condition (22). This L,

ot éa = €3
'-)'
:-ﬁ; localization of the strain rate essentially ensures L, localization of the
"
:'::,' strain although various pathological cases must be excluded in a rigorous
" analysis, We henceforth consider constitutive equations and loading conditions
v
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for which such pathological cases are excluded.

Localization results obtained from the integrability condition (22) are

summarized in Table 2 for several constitutive laws.

Table 2: Localization results for visco-plastic, thermal softening
materials without strain hardening

(m>0, ug >0, a>0)

Constitutive law L, lccalization
Ly T =y, 6V " v+m<o
L, T = pg exp(-ad) Y™ «>0
L, T = sup(a + b8,0) YO b<o
Ly T = g exp(-a/8) 7" never exhibits

L. localization
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3.1.1 Calculation of the critical strain

In this section we obtain explicit results for the critical strain at

-~

\ localization. We illustrate the approach by considering the constitutive law

{-
'Eé L,. Substituting this law in Eqn. (21), we obtain the following expression for
‘”? the temperature at a point B as a function of the temperature at a point A
)
i:% n 1) (1 + m)/m
o 0g = - — log||— exp(-abp/m) + Cy (25)
R s

where

1, J(1 + m)/m (26)
O c, = 0 A (o]

s 1 = exp(-afp/m) - |— exp(—afp/m).
A g

4;:
e From (25), a necessary condition for localization to occur is ¢; < 0
WA
NN since for C; 2 0 the logarithm cannot tend to infinity. Let us identify the
AN
:jt point B as the point where the quantity 2g(™1)/® exp(-«88/m) is a minimun,

Then, if the initial temperature (or the width 2) is non uniferm, C; is

'

Eﬁ: strictly negative.
7) For a thermal softening material, i.e. « > 0, the quantity exp(-afp/m)
o

:kf decreases to zero as 6p -~ =, For some critical temperature eﬁ, the
!
.:ij temperature 6p will become infinite., From (26), this value is

-
1 +m
i e o M 8| m o °
ot 6 =688 - 5 log [1 - [— exp(~a(fg = 63)/m) . (27)
i A
.t If the material is thermal hardening, i.e. « < 0, then the term exp(-a8p/m)
s
;:j grows and, from (25), it is obvious that L, localization is impossible.
" :-I‘\
0;(_
3
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Indeed, for sufficiently large 6,, the difference

(-1-m) /x
o5 - o T [[2])7T]
g
becomes small compared to the absolute temperature, say 8a.
To calculate the critical strain from the critical temperature we

consider first the case in which a constant stress t is applied at the

boundary. Then, from the energy equation (16), & can be calculated as a
function of the strain y

BT

8 =—7y+8°, (28)

eC
The critical strain, 7%, at A is obtained by substituting the critical
temperature eg given by (27) into (28) to obtain

1+nm

pCm ﬂB n

¥§ =-— log |1-]|— exp(-«(88 - 8% )/m)| . (29)
aBT !A

The stabilizing effects of increased strain rate sensitivity (i.e, larger nm)
and decreased thermal softening (i.e. smaller «) are evident in this
expression, The relative importance of geometrical and temperature defects is
evident from (29) which shows that the critical strain 7§ is the same when
(2p/1p) and (eg - eg) belong to the locus of values for which the argument of

the logarithm in (29) is a constant. For small values of

IA"RB
Al = (30a)
ip
and
68 -3
A8 = (30b)
eO

o
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the critical shear strain 7§ is the same for defect amplitudes A6 and a2 that
satisfy
(1 +m) (A
0= — |— |, (31)
x 8, 2
' The critical, nominal strain at which the temperature becomes infinite at
B is obtained from the integration of the critical strain y®(yp) = y§ over
the height of the block. Thus, the critical, nominal strain is

h
1

Ve = - 7°(ya) dya . (32)
o
Numerical integration of (32) is straightforward as long as the thickness
2(yp) varies sufficiently slowly near the point(s) B at which the strain
becomes infinite.

We consider next the calculation of the critical strain for the case of
the velocity boundary conditions (17). An exact solution does not appear to
be possible in this case. However, a good approximate solution can be
obtained for the case of weak strain-rate sensitivity (i.e. m << 1), Such

weak strain rate sensitivity is commonly observed in metals at room

temperature for strain rates up to 103 sec™!, Typical values of m are of the ‘
order of m = 0,01, In order to obtain an approximate solution for small m we

introduce the mean constant strain rate

Yo = V/h (33)

For small values of m we can approximate the stress 1 by

T = po exp(-of) 73 . (34)
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This approximation is discussed in appendix B and a numerical evaluation will
be presented later. Substitution of the approximate stress (34) into the
energy equation (16) leads to
a8 e
pC — = B g exp(-ab) 7R ¥ . (35)
at
This equation can be integrated by separation of the variables 6 and y to give
1 a B g, &g
8(y) =6°+ - log [t + ———— exp(-a8®) v | . (36)
« pC
where 6° is the initial temperature,
With the relationship between 8 and y given by (36), the critical strain,
7%, at A can be obtained by integration of the equilibrium equation (14). Such

integration gives

7a 7B
1
,Al/m exp(-aBp(y)/m) dy = RB/m exp(—abg(y)/m) dy (37)

)
with 65(7) and eg(y) given by (36). At localization, yg becomes infinite and

the critical strain 73 at point A becomes, for m << 1,

-m/(1l-m
. . i/m /(1-m)
c i B 0 0
K = S 1 - — - exp(-«(1-m) (68 - 6})/m) -1} (38)
GBTA ﬂA
where
T = uo ¥} exp(-«6})

is the shear stress at A in an isothermal deformation at the same strain rate,.
If 2 and 8° are both uniform, then Eqn. (38) implies that 7% is infinite and

localization does not occur, The critical strain decreases as (2p/1p)
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decreases and 98 -eg increases. The energy measure, Tg 72, of the critical
strain increases with increasing strain rate sensitivity (i.e. increasing m)
and decreasing thermal softening (i.e. decreasing «). Again, the nominal
critical strain is obtained by the substitution of (38) into (32). Comparison
of (38) and (29) indicates that, for m << 1, the relationship (31) between
equivalent temperature defects A8 and geometric defects a2 holds for velocity
boundary conditions as well as for constant stress boundary conditions.

Further understanding of the dependence of the critical strain 7% on the
defect can be obtained by introducing the defect parameter

g

X =1-|— | exp (-«(63 - 6%)). (39)
A

In terms of x the critical strain, for m << 1, is given by

c pC 1/my=-m
TA T P 1-01-=-x)*"" =11, (38)"
BT

For sufficiently small defects (i.e, 0 < x << m << 1) this expression can be

approximated by

-m

pC X

7% = — | -1 (40a)
aBTR m

or, alternatively,

pC

75 = [-m log x + const.] (40b)
aBTg

where the constant is chosen such that (38) and (40b) give the same value for
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7& for one value of x in the interval of interest. From (40b) it is evident
that the critical strain depends weakly on the defect parameter for
sufficiently small defects. For values of m that are characteristic of steels
(e.g. 0.01 ¢ m ¢ 0.02) the approximate relation (40b) provides a satisfactory
representation of the dependence of 73 on x over three decades of variation of
x for x < 0.2 m,

N Identical calculations can be performed for a power law dependence of the
flow stress on the temperature. Analogous results for the constitutive law

Ly of Table 2 are

. 1+
e o} o)
S c pCoA ) m B m v +m
e g = 1 - | — _ -1 (41a)
BTA ﬂA 9;0\
for constant stress boundary conditions, and
1 vim(1l-v) (1-v)m
vim(1l-v
pCeg ’p 68 n (=) (41b)
7 = — 1 - —_— -— - 1
(1-v)BTY 'p 68

for constant velocity boundary conditions; Eqn. (41b) holds only for m << 1,

3.2 Materials with Strain Hardening

Strain hardening cannot be ignored for most materials. In this section

we derive analytical localization criteria for constitutive laws of the form
T=u(8) (y + )" (42)

where y° is the initial strain. The approach is similar to that used in

Section 3.1.

P M e el
~ .y
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3.2.1 Stress boundary condition

Elinmination of 7y between the constitutive law (42) and the energy
egquaticn (16) leads to

m+1

de Bt -1/m -n/m

- n o)
— 5 — u(e) (ry¥ +7°) . (43)
dt pC

We write (43) at two different points A and B, take account of the equilibrium

equation (14), use (28) to eliminate 7y, and integrate to obtain

m+ 1 GA
- 1/m o eC o n/m
’p K©) | (e6]) —+ ] dt
8% A
A
(44)
ntl ®B n/m
m 1/m o pC o
= g u(t) (¢-88) — + 78 dr .
o BTB

)

Equation (44) is a generalization of (21) to strain hardening materials.
Analysis of (44) analogous to that of (21), shows that L, localization occurs
if and only if the function

1/m pC n/m

8 - u(8) (6 - 8% — +9°
BT

is integrable at infinity. For the constitutive law

T =y 8V (7 + )N (45)

\" - N . ..‘
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L, localization occurs if and only if

v+n+m<o, (46)
The inequality (46) provides a good illustration of the competition between
the stabilizing effects of strain hardening (n > 0) and positive strain rate
sensitivity (m > 0), and the destabilizing effects of thermal softening
(v < 0). The localization criteria (46), obtained by MOLINARI and CLIFTON
(1983), has also been obtained by FRESSENGEAS and MOLINARI (1986) as the
criterion for the initial ogrowth of a fluctuation based on a linear relative

perturbation analysis. The inequality (46) differs from the condition

v+n<o (47)

that must be satisfied for the initial growth of a fluctuation according to
absolute linear perturbation analysis. The difference between the conditions
(46) and (47) 1illustrates the tendency for absolute linear perturbation
analysis to predict growth of fluctuations under some conditions for which the

full nonlinear analysis predicts that localization will not occur.

For the constitutive law
T = eT0(y 4 0 " (48)

a similar analysis shows that L, localization occurs if and only if « > 0
(thermal softening). For this constitutive equation the critical strain 75§ at

A when the strain at point B becomes infinite is obtained by the substitution

of (48) into (44) to obtain, after a change of variable,
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7% @
Kp e™V V/T dv = Ky e™V VR qy (49)
55 78
where
BT oBBT
58 =— (7§ *+7) .78 = — 1}
mp mpC
1+n+nm
- T
Kp = 1

with A replaced by B for yp and Kg. Localization will occur at the point B,

where the quantity on the right side of (49) is a minimunm,

Equation (49) has the same form as that obtained by HUTCHINSON and NEALE
(1977) in the study of the rupture of a viscoplastic bar in tension although
the physical effects being modeled are different - their analysis included

necking, but did not include the thermal softening which is included here,

3,2,2 Velocity boundary conditions

As in section 3.1 we consider constant velocity boundary conditions and
assume that the strain rate sensitivity of the material 1is small
(i.e. m << 1). To calculate the temperature from the energy equation (16) we

replace ¥ by &o =V/h in the constitutive equation (42) and integrate to obtain

) .
1 g8y

B . By ¢ o B I (50)

o u(e) pC (n + 1)

8
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Substitution into (50) of functions pu(6) that model the temperature
dependence of the flow stress gives the required relationship bketween the

terperature 8 and the shear strain y., For p(8) = uleV we obtain

) 1
B uy 3 B
8(y) = 8% | 1+ (1 -v) ° (v + 7°)"*L - (7°)“+1] v (s1)
pC (n + 1)(8%)17V
and for u(8) = uq e"*® we obtain
. - eo
1 a B pg 73 e «
8(y) = 6%+ - log |1+ (7 + 7°)0F1 - (y0) ¥l . (52)
a eC (n + 1)

These equations provide an approximate relationship between the temperature
and the strain at each position as long as the exponent m is sufficiently
srmall for the dependence of the shear stress on strain rate to be represented
by &g, where 70 is the nominal strain rate, instead of by y®, where y is the
local strain rate,

In order to investigate the critical conditions for localization, we

substitute the functions 6(y) obtained from (51) or (52) into the equation

7a

1
/" (8t NY/M (¢ + AV g

(33)

7B

-/ u(eg(e))/m (¢ + 2™ &

[}
[
w
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Ny As before, L, localization occurs if, and only if, the integral on the right
-‘:: side of (53) remains bounded as yg~~. For 6(y) given by Eqn. (51), the
-::: condition for L, localization becomes
.:‘-\.
- v+n+m(1-v) <0 (54)
'{‘-
l X for 0 <m << 1, and v < 1, This condition is slightly more restrictive than
:‘:'{'j the condition (46) obtained for stress boundary conditions, That is, the
N
( .
‘-“1-’ tendency for localization is slightly stronger for stress boundary conditions
o than for velocity boundary conditions in that the localization condition (46)
‘}Z'.'- is satisfied by all v,m, and n which satisfy (54); however, for m << 1, the
::'.: terms involving m in both (46) and (54) are often so small that, effectively,
. the localization conditions (46) and (54) are the same., For 8(y) given by
;:‘-j. Eqn. (52) the condition for L, localization is satisfied for all « > 0
) provided that m, n satisfym >0, n> - 1,
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4, Numerical Example

Dynamic torsion experiments for investigating shear localization have
been performed by HARTLEY et al. (1986) on two different types of steel: CRS
1018 and HRS 1020. At the strain rates (103s™') and temperatures (8° = 300°K)
of these experiments the behavior of these materials can be represented
reasonably well by a constitutive equation of the form (45). Numerical values
of the various parameters in the model are given in Table 3 (SHAWKI (1986)).
The strain y° is taken to have the value 0.01 for both steels. More detailed
fitting of the plastic response of these steels has been presented by

KLEPACZKO (1986).

Table 3 Thermomechanical Properties of CRS 1018 and HRS 1020 Steels

Steel CRS 1018 HRS 1020
Parameter
v - 0.38 - 0.51
n 0.015 0.12
n 0.019 0.0133
P 7800 kg/m® 7800 kg/m
c 500 J/kg° K 500 J/kg° K
My | 3579 x 10°s.I. 7587 x 106 s.I.

Variations 2(y) in the wall thickness of the specimens were not reported
by HARTLEY (1986). Subsequently, DUFFY (1986) has sectioned specimens used in

such experiments to determine the variation in wall thickness, both along the

length of the specimen and around its circumference, For CRS 1018 the wall
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thickness is relatively uniform around the circumference, but strong variation
- up to 10% - occur along the length of the specimen. For the purpose of this
numerical example we take the geometrical factor (sg/fp) in the preceding
analysis to be a parameter that varies from 0.9 to 0.999. In order to relate
the critical strains 73 to the nominal strain y© at localization (see Egn.
(32)), the variation in wall thickness 2, = 2(yp) must be prescribed over the
entire length of the specimen. Based on the general appearance of the
sectioned specimens we take this variation to have the form

2(y) € 2ny

—— =1+ - (cos — - 1) (55)

2p 2 h
where ¢ is a geometrical parameter that is taken to vary from 1071 to 1076 to
give the range of values of 0.9 to 0.999999 for 2p/2;.

Boundary conditions for the dynamic torsion ("torsional Kolsky bar")
experiment are effectively those of imposed constant velocity at the ends of
the specimen, Hence, we use the solution for velocity boundary conditions
given by Egns. (51) and (53). The restriction to m<<1 that is required in
obtaining (51) is well satisfied by the values m = 0,019 for the CRS and
m = 0.0133 for the HRS, Evaluation of y°(ya) from (53) and integration over
the length of the specimen, according to (32) gives the dependence of the
critical strain ¥© on the geométrical imperfection parameter ¢ that is shown
in Figs. 4 and ‘5. For small ¢ the nominal critical strain varies
approximately as log ¢, as predicted for the local critical strain by Egn.
(40b). In each fiqure the insert provides an expanded scale of the region of
primary interest in the interpretation of torsional Kolsky bar experiments,
For one value of ¢ (¢ = 0,02), the strain distribution at localization for CRS

1018 is shown in Fig. 6. The width of the band of intense shear (say, the
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region for which y(y) > 3y(0)) is approximately 20% of the length of the
specimen. Such relatively wide bands are observed in CRS 1018 (HARTLEY et al.
(1985)). The predicted nominal stress-strain curves for the two steels, with
the geometrical imperfection parameter ¢ equal to 0.02, are shown in Figs. 7
and 8; a corresponding curve for ¢ = 0,04 is included in Fig. 8. The
general features of the curves include a slowly rising segment during which
the shearing is quite uniform, a slowly falling segment during which a broad
band of enhanced shearing develops, and a sharply falling segment during which
the shearing becomes intensely localized in a band, These general features are
characteristic of the experimental records obtained in such experiments
(HARTLEY, et al. (1986)). Numerical values for the strain at the peak of the
stress-strain curve and the strain at the beginning of the sharp decline in
stress are comparable to values obtained in experiments, However, the
predicted rate of sharp decline is greater than normally measured. This rate
of decline is affected by the detailed geometry of the initial imperfection
which probably was not modeled adequately by the generic form (55) us.d to
mcdel the imperfection. Other difficulties with comparisons between theory
and experiment in the steeply falling part of the curve include: (i) the
inadequacy of the assumption that the stress obtained using the nominal strain
rate can be used in calculating the local rate of energy dissipation, (ii) the
likelihood that the final 1localization varies so strongly around the
circumference of the specimen that a one-dimensicnal analysis is

inappropriate; and (iii) the lack of constant velocity boundary conditions

when the stress decreases strongly in torsional Kolsky bar experiments,
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5. Conclusion

By assuming the deformation to be adiabatic and quasi-static, and by
neglecting elasticity effects, we have characterized, analytically, the
critical conditions for shear strain localization in simple shear. The
assumed conditions are good approximations for the specimen sizes and strain
rates that are commonly used in torsional Kolsky bar experiments on shear band
formation in steels,

We assume the existence of initial inhomogeneities which are either
georetrical defects or non-uniform fields of initial temperature or strain.
The localization strain is obtained as a function of these defects, the
raterial parameters and the boundary conditions, Two types of boundary
cenditions have been considered:

- constant applied stress

- constant applied velocity;
in the latter case, the analytical results are restricted to materials with
weak strain rate sensitivity.

The results are particularly simple for materials without strain
hardening, 1In this case, explicit expressions are obtained for the dependence
of the critical strain on a defect parameter that characterizes the
gecretrical defect and the nonuniformity of the initial temperature. For
materials with weak strain rate sensitivity the critical strain depends weakly
(essentially logarithmically) on the amplitude of the imperfection for small
imperfections,

Comparis~n of predictions of the theory with experimental results for a
cold-rolled steel cshows good agreement in the qualitative features of the
resporse, Quantitative comparisons require detailed descriptions of the

gecretrical defects of the specimens used in the experiments. Preliminary
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‘,_ff comparisons based on approximate representations of the geometrical
"l imperfections of the specimens suggest that good quantitative agreement may be

obtained once the defects are modeled accurately,
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Appendix A

Consider two piece-wise continuous functions gand h. The function g(x)

is positive and nonintegrable at infinity,i.e. Ig“ g(g) dg = + = , If the
function h(gf) is equivalent to g({) at infinity (i.e. lim h(g)/g(¢) = 1), then
(DIEUDONNE (1968)) T
X X
h(g) dg = g(g) dg , as x - =, (A1)
a a

With the choices h(g) = £(¢)1/™ and g(g) = al/M™ ("P/M ye have, from Eqn. (4),
) (4)

h ~ g. Then Egns. (3) and (Al) imply that for m - p > 0 we have

m m
1}/m al/m — 7a(RP)/R ~gd/m al/m o (m-p)/m (a2)
~p n-p

since, when 7, tends to infinity, yg must also tend to infinity. From (A2) it

follows that

lin  (yp/7a) = (2p/25) Y/ ("P) (A3)
a7
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< During the localization process the local strain rate y will differ from

the nominal strain rate y, = V/h. As a nmeasurement of this difference we
define the ratio

A=/ (B1) |
We want to evaluate the acceptability of the approximation of replacing the

stress

T=ye 8 M (B2)

v

FAR

by the quantity

x ‘l .l !
els
L _4,‘]' A

To = ue®® g (B3)

‘. '04‘I
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a .,
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AN

A

in calculating the heat generated by plastic working, For m = 0,01, the ratio

"~

5 8
‘:"x_'\

T/To = P is bounded by 0.955 ¢ T/7T, ¢ 1.071 for » in the interval (1073,

)

x
'."R

¥

103]. Thus, using the approximate stress 7, leads to a maximum error of 7%

for a variation in strain rate of six orders or magnitude,
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List of Figqures

Figure 1:  Specimen Geometry and Loading Condition.
Figure 2: Localization Phenomena for f(y)~ay P as y-e.
‘2 Figure 3: Localization Phenomena for f(y)~L as y-=,

Figure 4: Dependence of the Nominal Critical Strain on the 1Initial
Irperfection for CRS 1018,

Figure 5: Dependence of the Nominal Critical Strain on the 1Initial
Imperfection for HRS 1020.

Figure 6:  Strain Distribution at Localization for CRS 1018 (¢ = 0.02).

Figure 7: Nominal Stress-Strain Curve for Simple Shear of CRS 1018
(¢ = 0.02).

Figure Nominal Stress-Strain Curves for Simple Shear of HRS 1020,
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