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Preface

The purpose of this study was to find some method of
optimizing the far-field pattern of a phased array with
failed elments. The toplc was generated by Col. Larry
Sanborn, while he was at Space Division, who was concerned
with the survivability of a phased array antenna aboard a
satellite. The problem was further defined by Mr. John
McNamara of the Space Based Radar Branch, Rome Air
Development Center, Rome, New York.

At the beginning of the study, I noped that any
optimization method found would be easily implemented, that
a black box could be built which would have as its imput the
coordimates of the failed element, and as its output the
new, optimized array current amplitude and phase
distribtion. The result of this quest i3 called the direct
method. However, the Jdirect method is not yet ready to be
molded into a black box, for the study done was largely
theoretical. I believe the direct method has strong
potential and sl ould be modified for a practical array.

I would like to thank Dr. Andrew Terzuoli for patiently
answering my questions even when he was incredibly busy
(always), for helping me find either the informétion I
needed tec solve a problem or the experts who might already
have the answer, and for his peréonal dedication; Lt Col

Zdzislaw Lewantowlcz for teaching me all about gradienc
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searches and eigenvalues and for all the time he spent
trying to find the answer on his ownj; Dr. Vittal Pyati and
Maj Glenn Prescott for thelr assistance and intevest; and
Sue for her love, her level of tolerance, and her

encouragements.
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Using a phased array antenna on a system can add
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dimensions of flexibility and control. By varying the phase

B s )

fast gu SR g L P
L Y S NN i i TIPS S it T PRt W

and amplitude of the current exciting each element, the far

g

field antenna pattern can be modified in such a way as to

=

obtain a desired, optimal pattern. The purpose of this

e i

thesis is to develop a rapid compensation method for any
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o element failures by varying the currents exciting the
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remaining elements. Although many methods for optimizing
the pattern of a full array are available, this work is

unique because it develops methods of f{inding -he optimum
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Qk by pattern of an array which contains failed or missing
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e elements. Optimization methods in the literature which were
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;}) investigated include thinned array analysis, adaptive array
O

¥ﬂ @ analysis, eigenvalue methods, null displacement techniques,
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*; and assorted iterative techniques. Another method discussed
2t in this thesis, the direct technique, originated from the
Ez g need for a quick optimization method, especlally when very
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I large arrays are used.
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direct method, a spin off from the eigenvalue method and the
gradient search technique, nas been shown to be relatively
quick and accurate.

Recommendations for future study include the functional
derivation describing the direct optimization method and
includirg more practical aspects of phased arrays in the

propagation model.
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OPTIMIZATION OF THE ANTENNA PATTERN OF

jl A PHASED ARRAY WITH FAILED ELEMENTS

¥

5

*'ﬁ I. INTRODUCTION

tgi: Electrically steered phased array antennas are being
E’l used for applications requiring a feasible, lightweight,
‘i@ high gain antenna. The phased array antenna can scan its
;k;} main beam, reduce its sidelobes and improve its signal to
‘“ noise ratic by varying the amplitude and phase of the

current exciting each of the array's elements. These

s
-
i
AN

capabilities make the phased array antenna ideal for use on
| airgraft, ships, ground sites, and even satellites. A

“% ) phased array on a satellite however, has an unique problem

\.E‘i associated with it. Unce the satellite is space-~borne, the

phased array antenna is not maintainable. If for some

reason an element of the phased array no longer performs its

designed function, the antenna's far field pattern generally

Pt

degrades, i.e., the gain of the antenna decreases, the width

of the main beam widens, and the power of the peak sidelobes

ﬁ increases. These degradations affect the ability of the

phased array antenna to perform its task, which directly

.'.I:. :";“‘f:‘k“ . ‘L_ :- —_~;~ "_ ‘

affects the usefulness of the dependent system. This study
develops a rapid compensation method for any element

ﬁ failure., (or optimizes the far field pattern of an antenna
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with failed elements), thereby extending the effective
usefulness of the phased array antenna and its dependent

systemn.

Background

Designing a phased array antenna for an optimum pattern
i1s an o0ld problem. Techniques from thinne® array analysis
{11,17,18], adaptive array analysis [1,3,18:253-259],
eigenvalue methods [2,15,16], null displacement analysis
[4,7], and assorted iterative techniques [10,13,14] have
been developed and used to design phased array antennas with
patterns optimized according to some desired criteria. The
variables for the design of these arrays include the
position of each element and the amplitude and phase of the.
current exciting each element. ’

Optimizing the pattern of a phased array antenna with
failed elements is a different problem. The study at hand
takes an existing phased array antenna (possibiy designed
using one of the aforementioned techniques) which contains
failed elements and compensates for the failures
(re-optimizes) by varying the amplitude and phase of the
current exciting each of the working elements. The position
of each element is not a variable in this case, however the

soiution does depend on the position of the failed element.

Assumptions

The problem can be further defined by stating the

o
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N
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assumptions made:

ﬁ A&. The antenna is erected in a perfect environment,
Wwith no other bodies to distort the pattern or cause
multipath distortions and no other forces, such as
cosmic rays, to distort the current on the elements.

B. Pattern degradation will be caused by failed
elements only. The elements will fail completely -
o there will not be any stuc phase shifters or
partially working amplifiers.

C. When the elements fall, the mutual c¢oupling will be
as if the element never existed (i.e. matched 1load
vs. parasitic load).

=3
g

The elements will fail in clusters (due to space

: debris crashing into the array), rows (due to power
} supply or computer falure), or randomly (due to
long=-term individual element failures).

The exact position of the failed element 1s known.
This assumption undoubtably pushes the limits of
practicality, however, work is being done to make
this assumption more realistic [6].

g e
Co
=1
»

The phased array will be mounted on a satellite
which will be at an altltude which requires a +/-
0.26 radians (+/- 15°) scan to cover the area of
interest. The area of interest will be called the
field of view (FOV). Thls assumption will ease the
requirement ¢f controlling all the sidelobes and
also allow an interelement spacing of 0.7 of the
wavelength, thereby reducing the effects of mutual
coupling.

=3
.

T&e o

252

3
1

T T L e

XL
¢

Although the work done should be extendable to a
. planar array, this thesis applies the theories to
- linear arrays only.

3 H. The pattern is defined to be optimizea if the
¢ average power in the sidelobes of interest (within

SR, ) the FOV) is minimized and the power in the mainlobe
- 1s maximized (Fig 1).

0 Approach
l.',E, Once the problem is defined, the steps to solving this

i problem are first to search the literature for work which
i
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may be applicable to the problem, then to modify and apply

e et i e -

the work to the problem and finally to determine whether or

not the results are satisfactory.

Literature Search. UWork which has been done and can be

e e T
Z o el

related to this study was found through database searches

(DTIC, Analog), related indicies (Engineering Index, Science

L e T AL

Citation Index), prominent journals (IEEE Antennas and

. -

Propagation), telephone conversations with experienced
experts and meetings.

Apply Knowledge. The knowledge gained from the current

=3

‘J literature was modified and applied to the subject problem.

To begin with, the array was described as a simple linear

o
LT

B array. If the technique under question can be applied to
o the linear array, the technique could then be modified and

applied to a planar array. Much of the analysis was done on

=2

a VAX 11/780 using the MATRIX, software package and other
d ADA software packages writter specifically for this study.

Survey Results. The results were analyzed to determine

e m e T AN RIS P I N P B I 2 A Rl WK R S e 5

1
oy b which technique best satisfied the objectives of the study.

Order of Presentation

FRELS

This thesis is not presented in the tradlitional way.

B
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It does contain an introductory section, a developing
section, and a concluding section, but the developing

section 1is different from the usual. A normal developing
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section of a theoreftical thesis has a chapter on existing
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theory, a chapter on new theory, and a chapter on
application. Because the problem of optimizing the antenna
pattern of a phased array with failed elements was attacked
by surveying several theories, the developing section of
this thesis consists of one chapter divided by the theories,
yet each theory is further divided by a description,

application, and results subsection.
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II. Basic Array Analysis Techniques

4 phased array antenna has many advantages over the
more conventional reflector antenna, the most significant of
which i{s the array's ability to modify its far field pattern
by changing the complex weights of the currents exciting
each of the elements. This chapter briefly describes the
relations bhetween the current amplitude distribution [W(x)]
and the far field pattern [(P(®)], specifically the Fourier
transform and the z transform.

The far field pattern of a phased array antenna is the
sum of the far field pattern of each of its elements. The
phase of the signal received by an element is dependent on
the distance hetween the ~lements and a reference element
and the angle from which the signal is coming. For
instance, Figure 2 shows a three element, linear array. The

amplitude distribution is:

Wn o= W(x) &(x-dj) -1 <=n <= 1,

and the array's far field pattern is:

P(6) = P_jw_jexp(jkd_;siné) + Pgwy

+ Pywqiexp(jkdysing)’

1
= E: Pawnexp (jkd,sing) (1)
ns=1
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Fig 2. Three Element Linear Array

where

w, = aexp(Je,)

is the amplitude and phase of the current exciting the nth

element (wn is also known as the complex weight), kd,sin®
is the relative phase shift (in radians) experienced by the
signal at the nth element, and P, Is the far field pattern

th element. The constant, k (=2w/A\), is known as

of the n
the wave number and converts distance in unit length to
phase angle in radians. Equation 1 is valid regardless of

the inter-element spacing. fHowever, in most array

applications, the elements are spaced by an equal amount
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(d, s nd) - ereating a periodic array. The remainder of

n

this chapter will be concerned with periodic arrays with

* 3
Py

isotropic radiators (Pn = 1) as elements.

et

Ay
R )

—

e

Fourier Transform

For a pericdic array with isotropic radiators as

elements, equation 1 becomes:

." i ool
Ty

e Tx

k)

1

P(u) = E: w, exp(Jjkdnu) (2)
nz-1

¥
Y, R
=5

where u = 383in(@¢) and d is the constant inter-element

separation. Equatlon 2 is recognized as the Fourier series,

S
A
&5

P APLY ST M ,' ,“_','_.:_ :
IR
A o d_A Pl g ol & .

therefore W{(x) and P(u) can be described as a Fourier

“:)-_“
o transform pair. For example, if W(x) is uniformily

>:; distributed (wn = W) over a three element, periodic array,

3,
L ﬁ then:

e’

./ W(x) exp(jkxu) dx

Xz~Q@©
(o] e 0]

= .[ Ww rect(x/Nd) E: §(x=nd) exp(jkxu) dx
X=~-W m= -Q

P(u)

R A o
55
i

(0 0]
= wNd Sa(pNdu/x) # 1/d Z §(u-mir/d)

n ms -
Qo

Wil }: sal (pNa/\)(u-nr/d)] (3)
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E where

Sa(x) = sin(x)/x.
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Fig 3. Fourier Transform of Three Element Linear Array

Figure 3 illustrates the far field pattern which results
from equation 3. Note that the major lobes have a width of
A/Nd and are separated by A/d. The major lobe in the
visible range (-1 < u < 1) is called the main lobe and the
remaining major lobes are called grating lobes. ‘To scan the

pattern to a given angle, u, = sinOo, all that is required

0

is to add kdju, to the phase of each element:

1

P(u-ugy) = §: apexplj(@, + kdnug)lexp(jkdnu).
n=-1

A grating lobe will move into the visible range if the

10

:
5

o

ARG PSSR L eacy

X
“ale

=

23%

atet

r,



inter-element separation is greater than one wavelength or

greater than one-half wavelength with a scan of u +1.

O:

Z Transform

The periodic array can also be analyzed with the z

=

tran<form. Equation 2 can be written as:
1

P(u) = 2: W exp (jkdu)?

Nz =1
Q or letting

3]
1

= exp(jkdu),

F x.‘
o]

T P(z) (4)

1]
X
2]

nz=-1

; -
*TT ez
ms1
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where z_ are the N-1 roots or zeros of egquation 4. The

Z
A Bsass

: m
% zeros can be plotted on a z-plot, a graph with its origin at

o
0 ™ "J‘
ﬁ ?. (G, 0j) and with an abscissa of real numbers and an ordinate Cﬁ
LA N
! of imaginary numbers. For a periodic, three element linear b
! ’
¥ array with uniform distribution, the far field pattern can o
] i
S  be described by: :E
o i
a o
8 P(z) = (z - 0.5+0.866j)(z - 0.5-0.866]). EI
N 4
\ -
\I :t-{
i) . The resulting z-plot is shown in Figure 4, where the circle R
M L
,ﬁ U shown is the unit circle. The far field radiation pattern ha
{
w can be found by first transforming the argument of z to the @
3
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u = arg(z)/kd,
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ﬁ and then by calculating the magnitude of the normalized

-

R P pe—————

L,

radiation pattern as the product of the distance from the

point on the unit circle corresponding to arg(z) to each

s

root, normalized by the value of the product of the
distances from the point corresponding to arg(0) to each

root:
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The visible range is -kd < arg(z) < kd. If the pattern is

WNE

PRGN - L NP S Pt - R s Wit o 1 o ol

¥, O roal

'y scanned, 2z is defined as:

b

4

&g z = expljkd(u-uy)l.

i

4

}ﬁ If an element of a pericdic array has a failed element,
RIS

zé the foregoing Fourier transform and z transform still hold,
%{ the difference is the amplitude distribution. Figure 5

QJ;ﬁ shows the amplitude distributioen, far field pattern and

%Eé z-plet which result if the center element of a three

K

iﬂ element, periodic array is failed. For this simple example,
v

Nyl when a failure occurs the power in the sidelobes increases
P

\{iﬁ' tce the level of the power in the main beam. Typically, the
o power in the sidelobes do increase, but not as dramatically.
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III. Optimization Techniques

This section describes, in a more or less chronological
order, the work analyzed and applied in order to complete
this study. The theory behind each technique is first
described in general, anc¢ *then modified and applied to an
array with failed elanents, and finally tihe results of

applying the theory are stated.

Thinned Array Analysis

A filled array is a periodic¢ srrzy which has its
elements located at all integral cositions of a given
inter-element separation over the entire nperture. Thinned
array anilysis 1is a method of strategically removing and
repositioning elements of a filled array such that the far
field pattern remains satisfactory. The work done in this
area was investigated because an array with failed elements
can be viewed as an accidentally thinned array.

Description. Thinned arrays are usually created using

either a deterministic, statistic, or random method. One
way to build a deterministically thinned array is toc choose
a continuous current distribution function which corresponds
to the desired far field pattern and then sample the
function with the given number o elements in such a way as
to minimize the quantization error [17:212]. For small

numbers of elements and linear arrays, this is a fairly

simple process. For large number of elements or planar

e e e e e e ———— D R W S, BN, A A WK O R X
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arrays, it is more common to use a statistical method.
Furthermore, it has been shown that the arrays designed

using deterministic methods exhibit average properties

Ayt
2.l

-

et LAk

8imilar in character and level to arrays designed using

'."g statistical methods [18:132]. A statistically thinned
‘gg e array, like the deterministicaliy thinned array,; is also
13% designed by first choosing the appropriate current
;j.w distribution function, however, the elements are then
iﬁla positioned according to the probabilities of the normalized
"%% current distribution function [17:219]., For Iinstance, the
 $£ peak of the amplitude distribution, which {s usually in the
;x % center of the aperture, would have a probability of one.
j‘- Therefore, an element would be placed in the center of the
\ﬁé ' array. The probability that an element would be placed on
\‘% the edge of the tapered distribution would be smaller.
..iﬂ ' Statistically thinned arrays are sometimes equated to ﬁ&
' iﬁ randomly thinned arrays [18:140]. However, for this paper, %ﬂ

the difference murt be distinect. A randomly thinned array

JEICSTIE
AP A
oy
LT

Yy is an antenna created by randomly remnving eslements, either

wag intentionally or accidentally (see assumptions), from a
Sy
RS
T XN filled array.
A
*".\'.-'-3 . It is difficult to quantify the effects that thinning
uiwm
=™

an array has on the pattern for the deterministic method.
' §H The other methods can be described with statistics,

therefore the average pattern can be described., Thinning an

s

array decreases the peak power of the main beam (assuming
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additional current is not added to the remaining elements)
and increases the floor of the sidelobes. In other words,

the average powelr pattern can be modeled as:
iP(u)i? = 1Pg(u)i2 (1-1/N) + 1/

where Po(u) is the desired array factor and N is the number
of elements in the statistically thinned array. The first
term on the right hand side of the equation shows the
average reduction in power and the second term shows the
average Increase in the floor of the sidelobes. Further
analysis shows that the probability density function of the

power of the sidelobes reduces to a Rayleigh distribution:
PINIP(u)i] = 2 IF(u)! exp(-N |P(u)i?)

where MiP(u)! 1s the unnormalized amplitude of the complex
radiation pattern of an N element array.

Application. To illustrate the effects of thinning an

array, three patterns are produced from three arrays
designed with different amplitude and spatial tapers. For
comparison purposes, all the patterns are normalized. The
first array (Fig 6) 1s a uniformly distributed, filled,
linear array with 19 elements. The second array (Fig 7) is
similar to the first array except that the amplitude
distiibution is triangular. The final array (Fig 8) is a
thinned array made of 15 equal amplitude elements spatially

tapered such that each element corresponds to equal areas
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5

under the triangular distribution. Note that there is a
practical limlit to the positions the elements can be
placed. For instance, mutual coupling affects and actual
element size dictate the ninimum separation.

Results. At first, it was hoped that a pattern similar
to Figure 8, a pattern with low sidelobes in the FOV, could
be obtained using thinned array analysis. However, thinned
array analysis is used to design phased array antennas and
could not be adapted to determine the necessary compensation
for any element faillures. Thinned array analysis can be
used to determine where elements should be placed in order
to obtaln a desired pattern, but in the given problem, the
position of the elements failed is not a variable.

.The statistics developed to analyze the patterns of
thinned arrays are useful in determining what the pattern
would look llke after element fallures occur, but the goal

of thls study Is to lmprove the pattern.

Adaptive Array Analysis

Adaptive array anaylsis [18:253-269] encompasses the
methods of actively optimizing the pattern of a phased array
antenna based on Iinformation processed from the received
signal., Usually, in this case, a pattern will be optimized
if the signal to no'se ratio is maximized. Therefore,
adaptive arrays arc speclally concerned with nulling out

jammers and other sources of unwanted signals in the

21
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environment. Adaptive arrays alsc have the capability to
compensate for normal variations in an element's position
and complex current welght, which is the reason for
investigating this technique.

Description. Two of the most notable methods for
building adaptive arrays are the nulling tree method and the
least mean square error (LMS) method.

An adaptive array with nulling tree hardware (Fig 9) Eg
has the ability to null out any type of signal, if the 0
direction of the interference is known. To create and scan 5
a null, the control hardware modifies the complex welghts of éf?
one row of the nulling hardware. All the welghts in the row *xf

are the same and each row creates only one null. The
complex radiatlon pattern (P(u)) is the product of the
original pattern (Po(u)) and the patterns created by the

nulling hardware (P1(u), ooy PK(u)) or

P(U) = (Po(U)) (P1(U)) *et (PK(U))
where
N
Py(u) = z wrexp (Jkdgpu),
m=1 '
PK(u) = exp (jkdu) - exp(jkduK),

N = the number of clements,

K = the number of rows of nulling hardware,
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- PR PR
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w, = the complex welght of the element,

the wave number (z2mw/1),

d, = the distance from the center to the element,
i -

,"h u = sin(@Q),

R and

Uy the desired directicn of the null.
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g Fig 9. Adaptive Array with Nulling Tree Hardware [18:259]

A5 stated earlier; the designer must know, or must
‘f ﬁ determine, where to put the null and must track the source
of noise with the null in order to remain effective.

Unlike the nulling tree acaptive array, the adaptive

p—
A
-

L Y=3

array with the LMS hardware (Fig 10) can bhe used to null out

unwanted signals regardless of thelr origin, but only if the
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Fig 10. Adaptive Array with LMS Hardware [3:3)

churacteristics of the desired signal are known. The mean
squared value of the error (e(t)) between the received
signal (s(t)) and the reference signal (R(t)) Is minimized
by varying the complex weights of the array elements. 1If
the reference signal is exactly the transmitted signal, then
the error signal would be jammer noise, background noise,
and other types of interference. Therefore, minimizing the
error signal results in a reduction of the unwanted signals,
a reduction caused by nulls being placed in direction of the
interference.

The clircuitry for the feedback control can be

determined by applying the LMS algorithm to the error
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signal. The error signal is:

ﬁ e(t)

R(t) - s(t)

S ) Srra

=
a

N
R(t) - Z wiyi(t)
ﬁ i=1

whe te Wy is the complex weight of each element and yi(t) is

the received signal. The time-average value of ee(t) is:

AN PSR

N
‘ 2 2
% es(t) = re(t) - ZZ wyyg (EIR(E)
i=z1
N N
\ . * Z Zwiwjyi(t)YJ(t)
\t
: 1=1 j=1
| & !
I
} To minimize the mean square error, the complex weights can
| be varled according to the LMS algorithnm:
|0
L dwy/dt = -k dle?(t)]/dwg
§

| or

‘ dwy/dt = 2ky;(t)e(t) (5)

5%

K Finally, the circuit (Fig 11) is derived from integrating

{ equation 5:

4‘ t [ ¥g)

Lo

‘:. E,‘ Wi = Wig + 2K f yi(tle(t)dt

- [ 9

,} O

'A'i

v . s .

i Application. A 21 element, linear, nulling tree

j'ﬁﬁ adaptive array was designed to determine the applicability
|

of this technique to an array with failed elements. After

A xde VST VRS AT A B

{ LTt A N IR S e e S R G T S e e SR R R B

-
n
Py LY IS YN VY VIR VY SR A LB L NVY 9% WY uv] W W S OV SYY WYN N RGN R g g R W AL mfum




P P

PO

SIGNALS FROM
s OTHER ELEMENTS

——

ARRAY QUTPUT

N Xy (1) i)

w & 5 MULTIPLIER

u  INTEGRATOR

ERROR €(1) /" \*

o ; REFERENCE

SIGNAL

. E‘E R{1)

b — ' ,

1 Fig 11. Feedback Control Circuitry [3:7]

v element #7 was failed (the center element is #0) and the B
ey i
A antenna pattern was modeled (Fig 12), it was evident the Q’“
_J best angle for the null was close to the first sidelobe, but ,{,
N not too c¢lcse to the main beam (0.3 radians). The null N
S AN Y
. ot greatly reduced the sidelobe at this location, but at the m
. I
.*‘J cost of decreased gain. To limit the affect of the null to EE?
Y :

s

the gain, it is necessary to increase the power galn of the

)
’l
o
- -
I

1,

‘;" P
Lty row of nulling hardware. 7To lmprove the pattern even ﬂ“
"a;.';j further, another null could be placed at -0.3 radians. E§
43k :
:2 The LMS algorithm was not applied to an adaptive array KN
P e
, ::& with failed elements. Once again the work done by Compton ﬁ
L1 A
By was used to illustrate the value of the algorithm. Figure b
. i\ 13 shows the pattern of a four element linear adaptive array "ﬁ{j
: }|ﬁ with and without interference. Note that the depth of the ﬁ
g null depends on the power of the interference. Compton also ?
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“ig 12. Array with Failed Element and Null at 0.3 Radians:
a) Amplitude Distribution; b) Far Field Pattern, Original

(~=-) vs Nulled (—)
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. Adaptive Array with Interference [3:105] ' -
BE: '
; : \x . o
- investigated the use of interference for overall pattern 3
\g shaping and concluded that the technique wouldn't work hnh
. -
?%:\% because the interference just caused a sidelobe to move over o
4 L
N8 or caused sidelobes to develop elsewhere [3:117] and b2
-é therefore, just improve a small portion of the pattern while ff
. .
i degrading the overall pattern. ol
. ¢ °
-ﬁ ‘ Results., The adaptive array techniques do have the ol
% potential of modifying an antenna pattern, although the ::n
- A
K? pattern control is rather limited compared to what is R;f
. ‘ AR
’1 E required for the FOV, and therefore cannot be successfully pR
|
B used for this study. The nulling tree adaptive array is
i
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Surther unattractive because of the additional hardware

3 :}H required and because apriori knowledge required of where to
o
§$4 place the null.
S
A
W An optimization method similar to the LMS algorithm

(called the steepest descent gradient) was used in a

q
on

<

following section as an iterative technique. However,

3
.

R 4

reduction of interference will not be the main goal there.

=

Eigenvalue Methods

&=3

Eigenvalue methods are methods which, thru the marvels

iy I
Ky

o
o
o of linear algebra, analytically arrive at a solution which
fﬁ? ﬁ; will maximize or minimize a given function. The advantage
)
“w

of using these methods is they are relatively qguick to come
£o a solution compared to the other techniques investigated.

Description. Two different eigenvalue methods were

ﬁ tried, one by Cheng [2] and the other by Shore [15].

Cheng's eigenvalue method is based on a theorem on the

properties of a function of a matrix vector. The theoren

PR SR LAY
eI :

e
V:’T",(_fl.(

says that given a function:
G = aT*Aa / a'*Ba

where a is an Nx1 column matrix, A and B are both Hermitian,

T. ¢
Lt S
SRS )

L e NxN square matricies, and B is positive definite, then:
~or
N @

~5% 1. The roots (eigenvalues) of the characteristic equation
Iﬂ are real.

R 2. The minimum eigenvalue and maximum eigenvalue
o represent the bounds of G:

b 3
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H

. Ay < G <y
-;g 3. G is maximized when:
7

2 Aa = \ Ba
:

15 or minimized when

:‘ Aa = }\1Ba-

Cheng applied the theorem to maximize the gain of an array:

ARr S
w3

;‘:) G - s(uo’gO) (6)
j‘;j 1/7(4 ) de f s(u,@)du

L 0 -1

R where -

-

o s(u,8) = 1P(u)i?p

S i

P, is the element power pattern (=1 for isotroplc elements),
and the other symbols are as before. Equation 6 can be

written as:

oy

R . v'_". X 4wy
VRIS TN uf%fis‘;‘tL_b

.‘;}

G = WITAW / Wi¥Bw %

. St

o {EE where W is a column vector whose elements are the conplex ;

o weights of the current distribution and A and B are

. Hermitian, square matricies with elements

Apn = expljk(d, - dplul
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and
B = Sa [k(dn - dm)]

mn °

respectively, and B 1s positive definite. To solve for W,

the A matrix is decomposed into
A s ssT* (7)

where S is an N element vector with elements s = exp(-3kd,

u). Finally, the optimum current distribution and the

naximum galin are:
W = BT1S
and

G sT*p-13,

max

Shere's eigenvalue method relies on Lagrangian
multipliers to find the current distribution which gives the
optimized pattern. The objective of Shore's work was to
minimize the power wlthin a spec fied interval of the
antenna pattern with constraints on the weight perturbations
required and the value of the look direction gain. The cost
function, which is the function to be minimized, is modeled

by:

T* m
G = (w-wo) (W-Wo) + u W= CW.

The first term on the right hand side of the equation

<

o
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minimizes the welght perturbations and is the square of the

change in the weights (W = vector of perturbed weights, W

(@)

vector of original weights) scaled by a factor (u;) which
increases or decreases the relative importance of minimizing
the perturbations versus the minimizing the sidelobe

sector. The second term corresponds to the power within the

gidelobe sector which is to be minimized:

ug+e
T*
WEUCW = 1/2e f P (u)! 2 du
u,-e
wherc u, and e are the center and the range of the sidelobe

sector respectively and C Is a Hermitian, Toeplitz matrix

whose elements are:
Cun = expli(d,-dplu,l Sal(d,-dy)e]

By taking the derivative of the cost function with respect
to the complex weight, setting it equal to zero, and solving
for W, the current distribution which corresponds to the

optimum pattern is:

where
A= (I +uC)l,

Shore constrained the cost function not only by minimizing

the welght perturbations, but also by specifying the look

32
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direction gain. The look direction gain is defined as

T
= W
g = S,

where S is as before except u (=u,) is the desired direction
of the main beam. The solution constrained to a given gain
is found by using the method of Lagrangian multipliers and

ls:
W= ADW, - ¢ (8T W, - g)/sT"as )s) (8)

As the relative importance of limiting the welight
perturbations increases ({.e., uq, goes to 0), W converges to

W. and as the relative importance of minimizing the power in

¢)

the sidelobe sector increases (i.e., u, goes to infinity),

W= (c's 7 sT*c-'s) g.

-
Rl - . BUY

[ e . -

Both Cheng's method and Shore's method result in a

stralight forward equaticn to be solved and both can be

o
AP

solved for a general array. A trivial difference between

>
%

the two methods is that Cheng is trying to maximize a

-
P

function whereas Shore is trying to minimize a function.

:é
Application. The functicn which relates to the optimum E%
pattern for this study was alluded to in the assumptions and h
[ 4]

Is: '.‘?-
~Bw Bw Lim g‘i

G = j.}P(U)!sz - S1j':P(u):2du + '[;p(u):2du E

-Lim -Bw Bw e

o

:
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Lim Bw
= f :P(U)}zdu - (1+S1)f !P(u):zdu
=Lim -Bw
N N
»
: z: E: Wp Wy Pmn (9)
n=1 m=1

where s; ls a scale factor which adjusts the relative
importance of maximizing the power in the main lobe versus
minimizing the power in the FOV, Bw is the one sided main
lobe beam width (= sin(1/(0.7N)) ¥ 0.5), Lim is the bouand of
the FOV (= sin(0.26)), H is a Hermitian, Tcepliz matrix (Fig

14) with elements

H = 2Lim Sa[k(dn-dm)Lim] - 2(1+s1)Bw Sa[k(dn-dm)BwJ {10) .

mn

and the remaining variables are as previously described.
The H matrix will replace the A matrix in Cheng's method and
the C matrix in Shore's method.

The difficulty in applying Cheng's method came with the
decomposition (egn 7). In order for the decomposition to
work the H matrix must be separable into the product of a
column matrix and its complex conjugate, but because the H
matrix is the result of summing three different areas of the
far field pattern, it is not separable as Cheng's A matrix
was separated.

Shore's method; however, can be successfully applied.

Figure 15 depicts the amplitude distribution resulting from
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optimizing a 51 element linear array with unity scaling
factor. Figure 16 shows the resulting far field power
pattern compared vo the pattern of an uniform distribution.
Note :hat, as a result of the tapered amplitude
distribution, the sidelobes in the FOV are reduced, but the
width of the main beam i: Increased. If an element is
failed, initially It was believed that the elements'
corvesponding complex weight could be set to zero. After
the equation was applied however, a value was assigned to
the failed element. To correct for this anomoly, the row
and column cof the H matrix corresponding to the failed
element were set equal to zero. This changed the H matrix

into a singular matrix, the inverse of which Iis does not

.exist. Finally, it was realized that the H matrix did not

requires a periodic inter-element separation. Because of
this, the row and column of the H matrix corresponding to
the failed element could simply be removed, reducing the
matrix to an N=1 by N-1 square matrix. After appropriately
reducing the orders of the remaining matricles, the model
{eqn 8) was reapplied. Figures 15 - 20 show the amplitude
distribution and the normalized antenna pattern of a 51
element linear array for five cases: a) optimum
distribution, no fallures; b) optimum distribution, one
failure (near end: #21); ¢) optimum distribution, one

failure (center: #0); d) optimum distribution, two failures

{separated: #5, #-16); e) optimum distribution, ten failures
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TABLE I

Relative Cost Using Eigenvalue Method

Cace Pre-optimized Optimized Uniform
A - 100.00 97.11
B 97.08 97.52 94 .91
C 95.52 96.21 92.27
D 92.22 92.88 89.29
E 33.66 35.49 31.08

(together: #18 - #9). The cost values in Table I are

normalized with respect to the cost of case A and are a

~relative value of "goodness" for the associated case. The

cost is calculated by substituting the optimum distribution
into equation 9 and solving for G.

Results. Shore's eigenvalue method provides a quick
and accurate method of obtaining the optimum current
distribution for an array with failed elements. For each of
the cases, the initial distribution was the uniform
distribution. Table I indicates that the improvement of the
optimum distribution compared to cthe uniform distribution is
more significant than the imprévement of the optimum
distribution compared to the pre-optimum distribution.

Also, the improvement is more significant for failures of
many elements compared to failures of only one or two

elements.
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Null Displacement Technique

Null displacement iz a method of quickly optimizing an
antennra pattern by modifying the positions of the pattern
nulls. This methed is useful because the angular position
of the pattern's nulls plotted on a z-plot is the
z-transforn of the current distribution. Therefore, once
the position of the pattern's nulls have been defined, the
required amplitude and phase of the current exciting each
element can be easily determined by using the inverse
Z-transforam.

Description. The roots (zeros) of the z-~transform of

an array factor can be moved by varying the complex weight
of the currents on each element. The zeros, {f on the unit
circle of the z-plot, represent a null in the antenna
pattern. If the zero is not on the unit c¢ircle, the pattern
dips at the location of the zero, but does anot null (Fig
21). Also, the closer the zeros are to ecach other, the
lower the peak power of the lobe between them. The nulls 4
through 7 exist twice within the visible range (-1 < u { 1,
-1.4q7 < arg(z) < 1.47) of the antenna pattern because of the
0.7 inter-element separation. Therefore, the cost function
(eqn 9) is minimized if the zeros corresponding to the nulls
beside the main beam were held constant and all the othe
zeros were moved into the FOV. Gaushell [7] has shown that
the amplitude distribution which creates a desired pattern

can be determined by first modifing the positions of the
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zeros corresponding to the nulls to be moved and then by
E taking the z~-transform of the resulting polynomial to find

the required complex weights. In other words:

I~ -,

Wy = 27'[E(z) G(z)] (11)

where G(z) 1ls the z-transforu corresponding to original

:ﬂ array coefficients (zj):
&
HRR N
fﬁ G(z) = I I (1_ziz"1)
I iz1
.
{ﬂ % and E(z) is the ratio of the new zero position (y;) to old
<
Aj_ zero positions (zi):
o
WQ N
) . _ _ _
' E 2@ = TT Gz 7 t1ozga™h.
: i=1

P

Application. To apply the null displacement technique

e alaldl

to an array with failed elements, it was postulated that
- equation 11 should include a factor (E (z)) to account for

the difference between the pattern generated by a full array

and the pattern generated a partial array:

. : ..‘I'.l'.l s "2
[ SR A

[$°3

W, = 271 [E(2) E(z) G(z)].

- n

h

.t

EE . .

[« To get an idea of what types of patterns were possible usin
. g g

A

null diesplacement, it was necessary to determine the effects

K>

that amplitude and phase perturbations had on the array

L _)::.s. ﬁ- H
P I T AU U 2o S

o :
« {1

R

{." N T R RS L S RN At I I B P T LSRR R L PRV VE UL PLVV RV VLTS LU KRR VST P LY N eV S s et i
e mal e L S Tt T S M O N e s Ve O LR W e Kl e R e




.

JJ*‘II‘;'.'.'I’L_. e

LA

| P S

0
«

R IV FU R

A

e

kN

t

e i
Lo

(=2

Z5

2

-

P

A
4

. $58

pattern. Thus, the "root migration™ of the array factor was
plotted for several different perturbations. The root
migration was created by plotting the z-plot of the array as
amplitude or phase of the current of a glven element were
varied. The 0's in the plots indicate a zero and the ¥X's in
the plot indicate the position of the zeros as the amplitude
of the current of the given element i3 made 1000 times the
amplitude of the current of the remaining, unperturbed
elements. Tigure 22a shows that as the amplitude of the
current is Increased evenly for a pair of elements (a, = a_n),
the zeros move towards the zZ-plot which would result from an
array of Jjust those two elements. As cxpected, the zeros
move in an even fashion, always as conjugate pairs. If the
current amplitu&e of a pair of elements {3 varied oddly (an

= -a Figure 22b results. This shows that the array

-n’e
pattern will be even symmetric but the main lobe will be
nulled out. Finally, if the current of only one elenment is
varied (Fig 22¢c) the zeros temporarlly travel coff the unit
circle as the current goes from zero to the value equal to
the other currents, and then heads off toward infinity or
zero. With all the zeros at the limits, the antenna pattern
is that of an isotropic radiator.

The behavior of the zeros is not as apparent with phase
perturbatlion as {t is with amplitude perturbations. From

Figure 23 these observations can be made:

1. The further out the phase perturbed elament is, the
greater its effect on the main lobe and near-in side

lobey,
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Ky Fig 22. Zero Travel Due to Amplitude Perturbations of
Selected Elements of an 11 Element Array: a) Even (Elements

-3, 3); b) 0dd (-3, 3) 3
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J 2. The pattern ¢reated by varying the phase of an element
4 on one side of an array will be the flip side of the
w pattern created by varying the phase of the opposing

element on the other side of the array.
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Zercs from an even (@, = 2_,) and single element
-.4 phase perturbation are more constralned to a

r particular angle whereas zeros from an odd phase
perturbation (¢, = @_,) are more constrained to the
unit circle.

- .,,'-
w! 4,+ The zeros have a complex conjugate only when all the
4 - phases are equal. If a zero star's at z=0+1j, its T
: complex conjugate will be at z=z=0-1j. As the pase is 3,
T varied, the zero at 2=0+1j will move towards z=-1+0] ?'
B and the zero at z=z0-1j will move towards z=1+0j or ;
- vice versa. This characteristic may lmprove one side y%
' Ag of the pattern but will disto-t the other side. Iau
: A
ﬁ 5. Zeros traveling due to phase perturbations always “}i
R travel in loops (in other words, 2n rads = 0 rads). I%r
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Fig 23. Zero Travel Due to Phase Perturbations of Selected
Elements of an 11 Element Array: a) Single (-5) :

To further characterize the effects that a failed
element had on the array pattern, the root migration of a

partial array was compared to the root migration of a full

array. The exerclise done for Figure 22a was repeated for an
array with a failled element. A comparlson of Figure 22a
with Figure 24 shows that the full array is more capable of
producing a desired pattern than is the partial array,
indicated by the zeros nearer to the unit cirele and
covering a greater portion of the unit circle. The

consequence of this exerclise is that though the nulls may be
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\H Selected Elements of an 11 Element Array: b) Single (-=1);
' ¢) Single (1)
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placed where desired, this would require a specific
amplitude distribut on - a distribution which may require
the failed elements to carry current. In other words, there
is a one-to-one mapping from the z-plot to the amplitude
distribution through the z~transform.

Results. The null displacement technique may be used
to optimize the pattern of an array by first determining all
possible zero locations and then choosing the amj. itude
distribution which corresponds to the best null positioning
or by first selecting the desired nulls and then with sone
type of iterative program, converge to the best set of
available nulls. Either way, the advantage of this
technique, which 1s its potential speed in arriving at a
sclution, is lost. This technique has an added disad?antage
in that it is difficult to determine whether or not the null
positions selected will actually create the best possible

pattern.

Iterative Techniques

Iterative techniques are those which first approximate
a solution, then compare {he solution with some desired
criteria, and then approximate a new solution to be compared
until the solutlon matches the desired criteria. Of the
iterative techniques investigated; most noteably minimax
optimization, least mean square error optimization, and

steepest descent gradient search optimization, the latter
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appeared to be the most applicable to the given problem.
The gradient search optimization technique can bhe used for
arrays with arbitrary element positions and amplitude
distributions. The technique has the added advantage in
that the desired optimization criteria can be specified
exactly.

Description. The gradient search optimization

technique finds the minimum (or maximum) of a given
function, called the cost function. Once the function is
defined, the gradient, which polnts in the direction of the
function's local steepest ascent (descent), is found by
taking the partial derivative of the function with respect
to the parameters of interest. To converge to the minimum,
the coptimization algorithm determines the initial gradient
from a starting point, steps along the negative gradient
direction, and checks the gradient after cecach step until the
new gradient is orthegonal to the initial gradient. The
algorithm then steps along the new gradient and so or until
the gradient becomes zero, which characterizes a minimum or
maximum. This process i3 shown graphically in Figure 25,
where the ovals are the lines of equal cost, the arrows
point in the negative gradient direction, and the center of
the smallest oval is the minimum cost. To help the
algorithm converge to the perpendicular intersection of two

gradients, the step size 1s determined by:

LI T AN Y Y A AT S A T AV R W T v PR S
T N L VT S T Ol T Wi N A WO S TR

PR o b "RV RF AN SRS - i o la ol Sef o

ol ol i aeb w5 . § S guy giv ol U

A AW W AT

. — e m W =~




L TGN el PR el et 2. % BN s LA WP LT ga s e L F R ARG T RN

pPouleH
uojaeziuyjadpo jusosag 9sadeslg -~ Yodeag juajypedn G2 I1yg i

56

P

MM A A AL A

L
i,
M
1]
.y
Wl
-
'y
a
Ty
"y
¥
- Y
L

gr ] Z o] Liza B AR et x5y iz L o

e o o o ety e s o m %t s - I - Lo . - e . . .
= — e e e A = 5 AP I PR, P L B St T B Ay P L O T - i N L
s g PR S-SR SPE e . . L




Lt raie dailes Lol

PR S,

A A SRR S AN T

T

1

PR
e

k.

Wi

3o
Ll'J
P

P

\,,:
. . l“ ToeT B4 '.- -
AR AL L) B

O W

| S
W1

(S

L

new step = old.step [1 + 0.9 cos(v)]

where v is the angle between the initial gradient vector and
the new gradient vector. Inflection stationary points can
be eliminated algorithmically. Although global optimality
is not guafanteed, experience and intuition help assure that
the minimum reached iz optimal. This is especially true for
problems where the parameter space is tightly constrained by
physical limitations.

Application. The gradient search algorithm was

17 A

programmed with the ADA programming language for a VAX
11/780. The array used was an 101 element linear array.
The cost function which is to be optimized is described in

equation 9. The gradient vectors are:

N
3G/ day = z: 2 a, cos(@,-C,) Hn,
m=1
and N
a G/ 30y = E: -2 ay ap sin(ﬂk-Gm) Hkm
m=1
where an and Gm are the amplitude and phase, respectively,

of the current exciting element m. The optimization
algorithm was initially run on a linear array with no
failures using amplitude only perturbaticons. The resulting

distribution (Fig 26) approached the ideal described by

(G
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. TABLE II
’u Relative Cost Using Gradient Search Technique
g
":'.1 Case Pre-optimized Optimized Uniform
4 " A - 100.00 94 .55
” n B 99.22 99.42 94.08
R c 97.52 98.51 92,47
j‘ D 97.17 93.03 92.02
R R E 76.10 76.79 70.98
A
-
t‘_é
% Dolph [5]). Figure 27 shows the improved pattern versus the
pattern for an array with a uniform distribution. The
' 4 algorithm was run again for an array with falled elements,
.r\ failures similar to those used previously with Shore's
¥ eigenvalue method application. The results are shown in
'i' Figures 256 - 31. Table II displays the relative cost of the
N =mplitude distributions before optimization (i.e., Figure 26
‘,ﬁ with the missing elements), after optimization, and without
4, optimizing (uniform distribution with faziled elements). It
:: is important Lo note that each pattern is normalized.
;Vt Because of the normalization, the maximum current on the
"‘j optimized array can be much greater than the current on the
j uniform array. This may be an improper condition, for if
°E cne element 1s capable of handling a greater current, then
‘:l all elements should be equally capable. After the algorithm
!
" “ ;: 6L
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was modified to constrain the amplitude of the current on
each individual element, the tests were repeated. 1In each
case the algorithm stepped up to the constraint boundary -
in order to minimize the cost function, all elements should
be at their maximum current handling capabilities. Only in
the case of limited total power available should amplitude
tapering (as a form of power management) be used.

Optimizing the antenna pattern using phase only
percurbations has been done by Voges and Butler [13] and
Shore [16). For thls study, the same gradient search
technique was used for phase only optimization as was used
for amplitude only optimization. The result of running
cases a through e with phase only perturbations is that the
cost function was optimized when the phases of all the
elements were the same. The major reason for this is that
the area of interest i1Is relatlvely large and is
even-symmetric, but from the root locus analysis, it was
determined that phase perturbations cause odd symmetric
changes in array patterns. This means that an improvement
on one side of the pattern will cause a degradation on the
cother side of the pattern. If the area'of interest wasn't
so large, optimization may occur ([16] using non-zero phase
shifts.

Results. The gradient search technique can be used to
cptimize a phased array with falled elements. In fact the

solutions derived appear to be similar to the solutions
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R
Y
-'_.':-: obtained with Shore's eigenvalue method. The reason for the
‘!Ji difference is that Shore was interested in minimizing the
_».‘:‘_"-
o amplitude perturbations, whereas the gradient search
*3 cptimization method was run with a constraint on the total
i
1
_"!g current only. This technique did show that if the current
I‘:‘,'j: carrying capabilty of each element is constrained, the
_ '.j optimum distribution would be an uniform distribution, but
: 4 - if the total current available was constrained, the optimunm
sy . .
2 N distribution would approach the Dolph-Chebyshev
-:* .n‘l\
N distribution. This technique also showed that for the case g
_%] of a complete element failure, phase perturbations would not X
T f.; improve the pattern. @
AR
o %
\ Direct Technique - oy
> B
o The direct technique is a methed which quickly arrives (-',1
e A
ERSARN.E at the optimum distribution for a partial array and is a g\:
- v
,1 consequence of the results of the gradient search technique tal
.-fﬁ and Shore's eigenvalue technique. ;_.
_‘_J :_).
] . Description. The direct method originated while trying ol
L B s
to find an even quicker optimization method. When g‘
SN S
S optimizing a very large array, with tens of thousands of t;-_j
SN ' o
- f'?,j 3 elements, the gradient search technique and the eigenvalue W
.‘,_1 b & vy
;: * technique may take a prohibitively long time. Inititally, %
o 7T
y{“ it was assumed that the compensation for failures involved s
.“.: i
.'_:-,: mostly the elements in the proximity of the failure and as a jré
RO v
_ﬂﬁ result, only those elements needed fto be included in the "h
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optimization analysis. To determine the required
conpensation (comp), the difference between the
pre-optimized distribution and the optimized distribution
(Fig 32) for an 101 element array with the center element
failed was determined und is shown in Figure 33a. The
compensation was initially believed to be a Sa function
resulting from the inverse Fourier transform of what would
undoubtably be the optimum pattern, a rect function centered
at u=z0 and with width 2Bw, and zero¢o elsewhere in the FOV.
When this proved incorrect, curve fitting programs were
used. These proved fruitless and after come sleuthing, it
was determined that the compensation is a scaled version of
the center row of the H matrix (Fig 33b). 1In general, a
failed element can be compensated for by simply adding a
scaled version of the corresponding row from the H matrix to

the remaining elements:

wOpt = wflail + C,
Wwhere the elements of C are:

Cp = 8 Hepy with Cf= 0,

where C is a vector corresponding to the required
compensation for each eclement, f iIs the position index of
the failed element, m is the position index of the remaining
elements, and 8 is the scaiing which is proportional to the
original amplitude of the failed element.

Application. The direct method can be applied by first
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determiﬁing the optinmum distribution for a full array, and
then, when a failure occurs; simply calculating the required
compensation using equation 10 (Hmn). The scaling factor
will have to be yre-determined by running the gradient
search program for each case. Once determin:d, it is then
multiplied by the compevsation. The scaled compensation can
then be added to the pre-optimized distribution to arrive at
the optimum distribntion. Figure 34 shcws the difference
ve*ween the amplitude distributions generated by the direct
method and the gradien“ search method.

Results. The direct optimization mecthod is very quick
ani simple to implement. Once tine location of the failed
elepnent is known, the power management system calculates the
compe naation required to re-optimiza the pattern, accesses
the scairg factor frum a table, multiplies the compensation
by tn+~ scaling factor, and then redistributes the available
power accordingly by adding the scaled compensation to the

currents of the remalning elements.
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IV. Conclusions and Recommendations

Using a phased array antenna on a system can add
dimensions of flexibility and control. By varying the phase
and amplitude of the current exciting each element, the far
field antenna pattern can be modified in such a way as to
obtain a desired, optimal pattern. The ontimal pattern for
this study was defined as a pattern with minimal sidelobe
power in a +/- 15° field of view and maximal main lobe power
within a given beam width. Although many methods for
optimizing the pattern of a full array are available, this
work is unique because it shows methods of finding the
optimum pattern of an array which contains failed or missing
elements. Optimizatioﬁ methods in the literature which were
investigated include thinned array analysis, adaptive array
analysis, eigenvalue methods; null displacement techniques,
and assorted iterative techniques. Another method discussed
in this tﬁesis, the direct technique, originated from the
need for a quick optimization method, especially when very

large arrays are used.

Conclusions

Of the optimization methods in the literature, only
Shore's eigenvalue method and the gradient search iterative
technique were sucessfully applied to this problem. Of the

two techniques, Shore's eigenvalue technique is quicker and

more accurate (i.e., absolute convergence to the solution);
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however, the gradient search technique is more flexible
|u (i.e., easier to change or add any constraints). For an

array with many elements neither technique is quick. The

direct method, a spin off from the solutions arrived at trom

'W % the eigenvalue method and the gradient search technique, has

b

been shown to be relatively quick and accurate, The direct
method is based on the fact that the amplitude perturbations
required to compensate for a failed element can be described

o by a single equation (from the H matrix).

PR R S SV

o

Recommen.~tions

There are two types of recommendations for future study

y_u
S5

to be made: the first type involves improving the direct

optimization technique and the second type involves

ke .

%; considering more practical aspects of phased arrays.

‘e onL

{Et& The direct technique was developed through

Si experimentation with computer simulations. It is suggested
5{ that the resulting failure compensation and scaling factor

fiiﬁ can be derived analytically. The equations netted through

such efforts should be flexible enough to include practical

constraints which are necessary for a realistic array.

The first prantical recommendation is that the complete

e alslu_a Al

SR
3 -
w} optimization technique should converge to an amplitude o
,' ‘q ‘.‘. )
o distribution whizh limits the antenna's Q-factcr and Y
>
s RSy
o ' maximizes the antenna's signal to noise ratio. It is well F:;
! '_.1' .',‘: 'Wl i
?Qi. known that the Dolph-Chebyshev distribution, as was found in A
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the study, has an impractically high Q-factor. It has been
suggested [8,9] that a Taylor f distribution provides the
optimum distribution for a practical array. The Taylor #
distribution maintains a low Q-factor and controls the n
sidelobes near the main beam. The second practical
recommendation is to consider more realistic fallures. For
instance, it is possible that the element may fail only
partially -~ that the phase ghifter gets stuck at a certian
phase or that the amplitude merely becomes reduced instead
of belng totally knocked ocut. Also, a failed element may
not beccme a matched leovad, as was assumed for the foregoing
study, but may become a short or open, thereby making mutual
coupling a more significant player in the ppoblém. The
third practical recommendation is that it is necessary to
determine the effect which the final solution has on the
atenna's operational characteristics such as I'requency
tolerance (bandwidth), scanning ability, and power
efficiency. The final recommendation is to apply this work

to a planar array with other than isctropically radiating

elements.
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. | 19. Abstract

# Using a phased array antenna on a system can
add dimensions of flexibility and control. By
'§ varying the phase and amplitude of the current
exciting each element, the far field antenna
pattern can be modified in such a way as to obtain
a desired, optimal pattern. The purpose of this
. thesis is to develop a rapid compensation method
N for any element failures by varying the currents
exciting the remaining elements. Although many
methods for optimizing the pattern of a full array
are avallable, this work is unique because it
develops methods of finding the optimum pattern of
an array which contains failed or missing
elements. OQOptimization methods in the literature
which were investigated include thinned array
- analysis, adaptive array analysis, eigenvalue
S methods, null displacement techniques, and
= assorted iterative techniques. Another method
A discussed in this thesis, the direcc¢ technique,
originated from the need for a quick optimization
method, especlally when very large arrays are
used.

’ Of the optimization methods in the

l literature, only the eigenvalue method and the
fﬂ gradient search iterative technique were

= successfully applied to this problem. The direct
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¢ method, a spin off from the eigenvalue method and
3 the gradient seeprch technique, has been shown to

; be relatively quick and accurate.
4§ Recommendations for future study include the
- functional derivation describing the direct

Wﬂ optimization method and including more practical
-\ aspects of phased arrays in the propagation model.
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