
R-t9520 SOFTE NOOERNIZRTXIN(U) AIR MmCOLL NA2IELL W@ iL 1/1
R C NANLON MAY 06 aU-ARC-S-

LOCLRIFIEED F/02 L

mhmmhhmhhhml
mhshmhhhhhmhhI
li7M

r

Woo

~TL3 6 L
liiII _____

11"12.4 111111 .-

s 4...

is.
- a..

ft .*.)

,'..-.;ft-.
r Ii'i . *.".. ,5.

AIR WAR COLLEGE

4RESEARCH REPORT
0(C~No. AU-AWC-86-088

00 1

N J

00 SOFTWARE MODERNIZATION

By LT COL ROBERT C. HANLON

DTIC

LE L, E CT

____ ____MAR_ R2 7I -'

i j i

BIC

AIR UNIVERSITY ESE-;-,L., ,,RINUTION.

LIN~i~t ... D .

UNITED STATES AIR FORCE U , NL I
MXE A

"e ,"e' ',,, ,= X .r,-.. . ".-,'.'.,......" '. , .'.. : ,',',', .. ,'.','..,'..,'. ;,.-.;,,'. . ".""""""" ""'"'' .s% ,).."- .".",': -"-''".-'"--''."." "'","-" """. "" - '" -""..m" .I-.", " '".. ... '

AIR WAR COLLEGE
AIR UNIVERSITY

SOFTW ARE MODERN IZAT ION

by

Robert C. Hanlon
Lieutenant Colonel. USAF

A RESEARCH REPORT SUBM ITrED TO THE FACULTY

IN
,.

FULFILLMENT OF THE RESEARCH ,* _.

REQUIREMENT

Research Advisor: Colonel Richard 1). Clark

MAXWELL AIR FORCE BASE, ALABAMA

May 1986

.......... '.......... " ---.. ".77 / .,

I
DISCLA IMER-ABSTA INER

This research report represents the views of the author and
does not necessarily reflect the official opinion or the Air War College

or the Department or the Air Force.

This document is the property or the United States government

and is not to be reproduced in whole or in part without permission of

the Commandant. Air War College. Maxwell Air Force Base, Alabama.

,,~~~ . Z-"-

D1

.'

r., A 2

.,. .

I. "'

AIR WAR COILEGE RESEARCH REPORT ABSTRACT

T IT.E . Software Modernization

AUTHOR: Robert C. Hanlon. Lieutenant Colonel, USAF

The dependence of the United States on qualitative superiority

to maintain deterrence has increased emphasis on software for flex-

iblc and responsive support of mission critical and general-purpose

applications. However, responsiveness and integrity of software

systems is being jeopardized by the labor--intensiveness of software

programming and growing shortage of qualified software program-

mers relative to expanding demand.

Although the software problem is generally recognized and

initiatives have been started to improve the situation, progress has

failed to reverse the trend. Technological solutions offer potential to

reverse this situation. However. near-term gains are limited by

attitudes and approaches toward software modernization. Changes

are needed to minimize near-term problems and accelerate achieve

ncit of' long term benefits. The most critical near term action is the

establishment of progressive and demanding policies on software

modernization.

Factors which make software programming labor-intensive and

which impact on software modernization are presented along with

some ongoing efforts to reduce this labor-intensiveness and provide

for software modernization. Recommendations on areas requiring

additional emphasis to address this critical problem are suggested.

iii p. • ,-.

-°. o**,

BIOGRAPHICAL SKETCH

Lieutenant Colonel Robert C. Hanlon received a B.S. in engineer-

ing from Case-Western Reserve University, Cleveland, Ohio. After

graduation in 1968. he attended Officer Training School, Lackland

AFB, Texas, and was commissioned in 1969. After attending the

communications electronics officer course at Keesler AFB. Mississippi.

he was an operations staff officer at HQ Air Force Communications

Service. Scott AFB. Illinois, and Richards-Gebaur AFB. Missouri. In

1973, while at Richards-Gebaur AFB, Colonel Hanlon earned an M.S.

in eiectrlcal engineering from the University of Kansas After serving

as the Chief of Operations. 2129 Communications Squadron. Ching

Chuan Kang AB. Taiwan, he was assigned as Chief of Logistics Inspec-

tion. HQ Tactical Communications Area, Langley AFB, Virginia. At

Langley AFB. he also served as Chief of Maintenance. 1913 Communi

cations Squadron. He then had an AFIT assignment to the University

of Illinois to obtain a Ph.D. in electrical engineering. In 1980, Colonel

Hanlon went to the Command and Control Technical Center, Defense

Communications Agency, and also served in the HQ and the National

Communications System. Prior to attendance at Air War College. he

was with HQ USAF, Directorate of Command. Control, and Telecommu

nications. and the Assistant Chief of Staff for Information Systems

Colonel Hanlon is married to the former Sharon Ann Evans of Euclid.

Ohio. They have one daughter. Kelly Elizabeth Lieutenant Colonel

Hanlon is a graduate of the Air War College. class of 1986

IV

1.4

&.

TABLE OF CONTENTS

CHAPTER PAGE

D ISCL A IM ER -A BST A IN ER ... ft

A B S T R A C T .. ill

BIOGRAPI[CAL SKETCH ... iv

LIST OF ILLUSTRATIONS vii

L IS T O F T A B L ES ..v.................... V iii

9.
(

IIN TRO D U CT IO N ... I

II THE M ODERNIZATION PROBLEM ... 6
S ta n d a r d s 6
Portability 8
Automated Support Tools 8
Documentation 10
Softw are A rchitectures .. 12
N on Technical Factors 1. 3

III ON(;OIN(G MJPR0A(:ItES 14
Solttware l'echnology r')r Adaptable. ,.

Re liab le Sy ste m s 14 AL A
Ada Program ming Language 15 MAN I

En d U ser Com putin g 16
Data Base M anagem ent System s .. 1 8

IV RECOMMENDATIONS ... 21
People Efriciency Over Machine Efficiency 2................ 2!
!-,,\ er and Better Trained People 24
Interoperability and Networking 26 % #-
Policy Approach 27

% % .

.." '%-
:,. ,':

". e".":'"... . ''e . "£,". "d";,,.. , .€ e .,,, .. ".- . .' ..r.. .,' " " ;'..' .. ".'" " °

V CONCLUSION 29

LIST OF REFERENCES.. 30

G L O S S A R Y 32

- I

41

LIST OF ILLUSTRATIONS

Figure 1 Trends in Software Supply and Demand 5

*%

S'N

; % \,

p"%

,% %j.-
.k Ic

LIST OF TABLES

Table I Automated Support Tools.......................1 0

K

'I.

* 1~

K

L.

I
Viii

.5

.5

U
-S

.5
~ .~,* .~,. . . - * -* *~ .- *.-** U ft S.

CHAPTER I

INTRODUCTION .,'

The military strat.egy of the United States (US), particularly the

element of deterrence, depends heavily on maintaining qualitative

superiority over its potential adversaries. Qualitative superiority .

compensates for real or perceived quantitative shortcomings in US -

forces. This dependence on qualitative superiority is reflected in

heavy use of advanced technology in most--if not all--major US

weapon systems, and is seen in extensive use of programmable

digital computers. ,.. ,

'Computers embedded in mission critical military systems are
integral to [US! strategic and tactical capabilities.... The military
power of the United States is inextricably tied to the program-
mable digital computer.' (l:viii)

The functioning of a programmable digital computer is defined

and controlled by its software. "Software is the embodiment of sys-

tern 'intelligence'." (l:viii) More specifically, software is that ele-

ment of the overall system consisting of three necessary compo-

ncnts (21

* computer program code - the instructions to the ma-

chine, both as written (i.e., source code), and as translated and used

by the machine (i.e., object code);

* data - information stored in the machine and used to

provide an input to augment, control, or modify the instructions to ,...

the machine; and

7~7

I ' . o ,"-

* *.* -'o

-. V , - . r - T . ; . ", ,, , . '.

e documentation - information used throughout the life

cycle (development, operation, and maintenance) of the software

subsystem to understand and control the form, substance, and use of

the software.

The critical importance of software to a system extends beyond

its functional role. The cost, reliability, and time required to teld

new systems and applications are increasingly determined by soft-

ware rather than hardware considerations. The cost of software to

the Department of Defense (DoD) is estimated to be four to eight

billion dollars ($4,000,000,000- $8,000,000,000) per year. (3:78) Of

importance beyond this large aggregate sum, software costs of a

major system can exceed 80 percent of the total system cost. This

percentage has risen systematically from 20 percent and continues to

grow. (2:29) As a major--and even dominant--element of a system,

the software is frequently on the critical path for system develop-

ment, and has often been late, or over budget, or both. (l:ix)

This cost and criticality of software in US weapon systems

raises the question: why is this reliance on software tolerated--much

less allowed to expand? The fundamental reason is to support

change. Software is 'soft' because it can be easily changed Conse-

quently, the system can be "easily" changed. Further, despite the

magnitude of the cost figures cited above, software changes are less
U

costly to make than the corresponding physical system changes The Z

United States Air Force IIISAF) experience with the F-I II aircraft

program highlights this

2

U:

• ...-. . . _. j. .. . ,_ ...0. . .. •-.. .,. ,,.., ..,. = ., ,,*. . ' * a' . .. _ . -%. - ' .- , .

Similar avionics capabilities were implemented in analog
electronic hardware on the F-1Il A/E and in software on the
F-I II D/F. A number of changes were tracked through both
systems. The savings in dollars and deployment lead-time in the
digital F- I 11 D/F are striking. Hardware changes cost fifty times
,s much as software changes and took three times as long to
make [emphasis added] (1:3)

Although the extent of the role of software in systems func-

tionality continues to expand, the greatest portion of effort and cost

spent on software occurs after its development, during the software

maintenance phase. Software maintenance can account for 70 per-

cent of the total system costs and 40 to 95 percent of the overall

personnel effort. (2:3) This would clearly be grossly excessive if

software maintenance consisted solely of the correction of errors that

went undetected during its development and testing. In fact, only

about 18 percent of the software maintenance effort is directed

toward correcting errors. The majority (82 percent) of the software

maintenance effort encompasses changes to the software resulting

from altered or additional requirements specifications. (2:30) -

This high proportion of software maintenance costs reflects the

fact that change is an inherent characteristic of all software. Such

changes are required to improve performance, extend functionality,

adapt to processing environment changes, and accommodate chang-

ing user needs To the extent that such changes are justifiable on a

cost versus-benefit basis to meet minimum -essential, validated re-

quirements, there is no basic problem with such a high percentage of ~' ">b3

system costs being expended for software maintenance. However, _"._

3 '
.

TV -:W V 71

there are Insufficient qualified software programming specialists

available to support these burgeoning requirements. This can be

seen dramatically in Figure 1 which shows the growing shortages of'

qualified personnel. Consequently, demands for support of existing

systems impact upon the ability to develop new systems, to include

modernization of existing software. "And unless radical new meth-

ods are found, maintenance will go even higher in its demands and

will very nearly stifle further development." (~229)

Although the software problem is generally recognized and

initiatives have been started to improve the situation, progress has

failed to reverse the trend. Technological approaches offer signifi

cant potential to reverse this situation. However, near-term gains

are limited by existing attitudes and approaches toward software

modernization. Fundamental changes are needed to minimize near-

term problems and accelerate the achievement of long-term benefits

The most critical near term step in reversing the negative trends is

the establishment of progressive and demanding policies on software

modernization.

Chapter 11 outlines some of the factors which make softwareli

programming so labor-intensive and which impact on software mod~

ernization. Chapter III then looks at some of the ongoing efforts to

reduce this labor -intensiveness and provide for software moderniza-

lion. Chapter IV offers some recommendations on areas requiring

additional emphasis to address this critical problem.

'p,

00

E-
CA

~~ %.

00 l.d

000

Jo,,

CHAPTER 11

THE MODERNIZATION PROBLEM

Alt hough recognized since the 1 960s, the software crisis con-

tinues to be the bottleneck in technological advancement.' k2:vill

This bottleneck is due primarily to the labor-intensive nature of soft

ware programming This labor intensiveness arises from, among

other factors, the lack or inadequacy of.

" Computer programming language standards,

" Software portability,

" Automated support to programmers,

" Documentation of software, and

" Software architectures for applications

The impact of these factors is felt throughout the software life

cycle. The first effect is on software development, however, the

impact carries through to the maintenance phase and establishes the

basis of subsequent software modernization problems, There are

also non-technical factors which impact heavily on modernization

efforts.

Although the software problem is generally recognized, prog-

ress has failed to reverse the overall trend. This chapter will looXk at

some factors contributing to this problem. and Chapter III will look

at some ongoing efforts to address these factors

Standards. There arc literally hundreds of different software

languages and dialects in use A study conducted in 1979 indicated

6

there were more than 450 languages used in the DoD. (4:209) These

different languages limit software from being readily moved

("ported") from one system to another for reuse. They also generate

excessive training requirements and limit flexibility in applying per-

sonnet resources.

Originally, software languages were machine -specific. That is,

machines or product lines tended to use unique languages. To

address this problem, standard high-order languages (e.g., COBOL,

FORTRAN, JOVIAL) were developed. These languages are intended to

be more like natural languages and machine -independent (i.e., porta-

ble between different makes of machines). Languages are often

developed for specific classes of applications (e.g., business, scientific,

military command and control). Generally, even "standard" lan-

guages are not portable between different machines.

"The differences between various versions of the same language
are serious impediments to software portability. Dialect differ-
ences are still considerable in two major languages that were orig-
inally standardized in the 1970s: COBOL and FORTRAN." (5:19)

Some language implementations are subsets (i.e., partial implementa-

tions) and others are proprietary supersets (i.e., unique extensions Lo

the language). This latter case is particularly troublesome since "'... a

good marketing strategy was to include nonstandard features in the

hope that users Would use them and thus get locked into the manu-

facturers' hardware.'' (5.7) The most critical step in achieving soft-

ware portability is to develop and implement a standard language.

7

Portability. Unless software can be directly ported from one

machine to another, common applications and routines must be at

least partially recoded for the various machines. Depending on the

software's complexity, this may demand significant time and effort.

This wastes critically short manpower and is prone to inducing errors

in the software. At best, identifying and correcting these errors are

time-consuming; at worst, errors may go undetected until the soft-

ware is in operational use.

These problems are compounded every time a change is to be

made in the software, as it must be propagated through the various

implementations. And, as previously pointed out, change is an inher-

ent quality of all software.

Automated Support Tools. One of the key methods of reducing

the labor -intensiveness of programming is the use of automated

support tools. Large software programs are complex systems with

many interactive parts. Design and implementation of large software

systems require the concurrent eV~ L of one or more teams of

programmers. Further, during development, the elements of' the

overall program exist in different forms and at varying levels of

abstraction (e.g., concept, top-level design, detailed design, source

code, object code). This complexity tends to give rise to program-

ming errors.

Almost all errors which occur during software development

and maintenance are human errors. In fact, most programming tasks

are inherently error-prone if executed by people. (6:183) This Is

8
''-S

because there is virtually no tolerance for error. Consequently, the

work requires extreme concentration and constant. painstaking at-

tention to detail. These traits are hard to sustain for long periods of

tI me.

While most errors are found during development and mainte-

nance and are remedied without operational impact, they still result

in considerable amount of rework. This severely limits the program-

mer productivity which can be achieved.

Clearly, to enhance programmer productivity, it is desirable to

automate these error-prone tasks to the maximum extent practica

ble. For even modestly-sized software activities, the costs of auto-

mated support tools are rapidly amortized through increased produc-

tivity. In addition, they help preclude or eliminate errors which

would otherwise go undetected until after the system were opera-

tional. This provides higher quality In operational software and

second-order productivity improvements by avoiding some of' the

maintenance activity which would subsequently be required once

the software were in operational use- .4

Table I lists some of the automated support tools which are

avalable. It isbyn he scope of this paper to explain the specific

functions of each tool, however, they can provide critical support and

productivity enhancements throughout the software life cycle.-

Automated support tools Is another area where lack of stand-

ardization has caused problems The command languages used to

control thewe tools, as well as the I urctionality which they prov.ide,

F-

has tended to be machine- or product line-dependent. As in the case

of multiple programming languages, this results in additional and

costly training requirements and limits the ability to move program-

mers between systems. Further, limited resources are available for

automated support tools. Consequently, full complements of auto-

mated tools for multiple systems may not be affordable. For com-

puters with a relatively small commercial base, the full range of tools

may not even be developed-

Table 1. Automated Support Tools'

Assemblers Interpreters
Code Generators Linkers
Cornmand Language Processor Loaders
Compilers Prettyprinter
Configuration Control Tools Runtime Support Libraries
Data Base Management System Set dUse Static Analyzer
Diagnostics Stub Generator
Emulators and Simulators Symbolic Dynamic Debugger
File Administration Tools Text Editor
File Comparator Text Formatter
Frequency Analyzer Timing Analyzer

(~6:T able 8 -1;7:Fig 2 1., 8 Tab le 2)

Documentation. Accurate and detailed documentation of a

program throughout its life cycle Is essential. The ability to efficient-

ly develop and maintain a software system is dependent first andU

foremost on the programmer s understanding of the system s f

purpose, structure, and methodology. This can be a very difficult

10

task. If any appreciable time has elapsed since initial development,

even one of the program's original programmers typically has

difficulty in fully understanding and working with even modestly-

sized programs.

Modern programming languages are structured to encourage,

and in some situations force, programming techniques which provide

a degree of self documentation. Further, many of the automated

support tools mentioned above are specifically Intended to facilitate

documentation and configuration control of software. However, there

are two serious problems.

First, many operational software systems were developed using

older, less structured programming languages and without benefit of

the newer, more powerful automated support tools. Since approxi-

mately two-thirds of all software activity is maintenance, these

older, less efficient languages tend to be self-perpetuating. (5: 18)

Second, as software changes in an operational environment.

both its logical structure and documentation tend to deteriorate. Of-

ten this is caused by pressure to restore a system to operation or

provide urgently needed additional capability as fast as possible.

Quick becomes the enemy of clean. These operational patches occa-

sionally inject new errors, which are themselves hastily pAtched.

Biecause most software has not been designed to tolerate change
and software engineers have not been taught to anticipate and
prepare for chanige, software quality deteriorates as a negative
side-effect of change, especially during the maintenance phase
(2 viii)

% 44
4i.P - .

Software Architectures. One of the primary means of reducing

software manpower demands is to reuse existing software. However.

seidom does software for one application exactly match the validated

requirements for another application. This limitation can he mini

mized by cutting and pasting modules from existing software and

reusing these modules or packages. The use of structured program-

ming, top-down design, and step wise refinement significantly en-

hances this capabilhtv Under this methodology, programs are built

of discrete modules In the ideal situation, each module becomes a

black box." To implement its function, a module accepts an input

and transforms the input to produce an output (data or action). The

mechanics of this transformation are invisible to elements of the

program outside of the module. All that is seen is the functional

behavior of the module and its input and output interface character

istics For the various modules to work together, it is necessary to

specifv exactly their interfaces, that is, each modules input and

output characteristics The functional allocation and interface specif

ications constitute the malor portion of the top level design and

establish an architecture for the overall software program

It two programs perform essentially the same function but

have different architectures, the functional allocation and interface

characteristics of their component modules will be different Even

slight differences will make use of one programs modules in the

other impossible without some rework The level of effort required

bv this rework may be significant Consequently standardized

1 .1

, - . .- .° . - . , , , . .

IX :V .. '.p,'.Z .,. '.2.'..:.;.:. .. :..:" .' :.'..'..,' .- ,.,,. % .,"-"-. -'. -"'" % -",.-. ," "" -'-": .:,.:" , .- " " "' '." "

architectures for various applications are necessary to enhance

sharing of software modules. Unfortunately, this has not been -.

accomplished generally. However, much work has been done along % %

this line for the software which implements data communications

protocols for packet switching networks. (9:Annex C)

Non-Technical Factors. While the factors outlined above signif-

icantly contribute to the software modernization problem, there are

many non technical, managerial factors which are also significant

(17 1-2)

* Attitude - emphasis is on development of new applica-

Ii()n rather than modernization of existing applications

* Historic precedent - inclination to continue use of in-

h()use development capabilities rather than purchase modern corn-

mercial software.

* Difficulty of technology transition - cost, training re-

quirements, and resistance to change contribute to short-term "opti-

mization'over longer-term benefits.~

Uncertainty - competing and rapidly changing technolo-

gies raise tears of selecting a 'wrong or immature technology.

o Lack of life cycle costing - long-term impact of software

modernization is difficult to quantify and substantiate.

These technical and non-technical factors must be dealt with to

insure that mission support can be provided and sustained The next

chnapter addresses some of the major ongoing approaches to modern- . ,-.

ize existing and future software systems

13

*. ... * **-* *...4... %. %

CHAPT iR III

ONGOING APPROACHES

In the previous chapter some of the factors which make soft-

ware programming labor-intensive and which impact on soflare

modernization were outlined 'his chapter looks at some ongoing

efforts to reduce this labor-intensiveness and provide for software

modernization.

Software Technology for Adaptable Reliable Systems (STARS).

The STARS program was initiated to improve the United States

ability to "exploit the advantages of computer technology through

software. (I viii; It is intended to rapidly improve the state of

practice," that is, advance both the technology base and the level of

technology in daily use. The program's efforts are directed across

the spectrum of acquisition, management, development, and support

of computer software used for military systems. The goal of the

STARS program is to improve software productivity while achieving

greater system reliability and adaptability The programs oblect'ves

are as follows: (I.x-xi)

" Improve the personnel resource by.
- increasing the level of expertise.
- expanding the base of expertise available to DoD

" Improve the power uf tools by:
- improving project management tools,
- improving application-independent technical tools,
- improving application specific t(x)ls,

" Increase the use of tools by.
- improving business practices.

1.

,..'. ,5". '='.''=',, ,'..',, .'.,'.'..'.''..,. '..' . .. ,.'..'."".,,'., .,....,,... . . .•.... ,. ,.........

. .'

- improving usability,

- increasing the level of integration,

- increasing the level of automation.

The STARS program also initiated efforts to establish a , ,

Software Engineering Institute (SEL). However, the SEI was
2 -.

subsequently established at Carnegie Mellon University. Pittsburgh,

Pennsylvania. as a separate program. The SEI is to translate technol

ogy base improvements from research and development (R&D) -

activities to operational applications. To assist in this effort, the SEI

will maintain a state-of-the-art software environment testbed.

Ada Proaramminl Lanizuaize'- As pointed out in Chapter It. the

proliferation of programming languages results in excessive costs n ,

software development, maintenance, and training hinders software

modernization and makes it difficult to move programmers from one

project to another. Many of these languages and dialects and their

ass,,ciated support environments (e.g., compilers) have not been

formally or thoroughly tested and proven Their use involves a

degree oF technical risk. (4209) These risks are of particular con- .

cern in DoD applications where software can affect weapon systems

performance, safety of flight, information security, etc

In 1975. the DoD initiated an effort to develop a state of the

art high-order programming language and support environment

This language was to be machine-independent lie truly r(ortahle-

and tightly controlled to preclude implementations of either subsets

Ada is a trademark ()f the lIS l)epartment (f Defense
15"

. .• . •

. ,.. . ..-......°...,.,...,;...

or supersets of the language. The resulting language. Ada. is to be

the single standard programming language for embedded computers

and other mission-critical applications. (10:1) It will be used when

developing standard software systems for both mission-critical and

non- mission-critical, general-purpose information processing appli-

cations (i.e., automatic data processing or ADP). However, some

specialized languages will continue to be used indefinitely in applica-

tions where Ada cannot meet validated technical or performance

requirements

In addition to providing a standard, portable, state-of-the art,

high-order programming language, the Ada program has a formal

validation process for Ada compilers This validation process is par-

tlially enforced by controlling the use of the name Ada" The)oD

obtained a copyright on the name to insure that it is only used lor

DoD validated compilers Ada will also have a standard program-

ming support environment (i e, portable automated software tools 1

Some estimates have indicated that Ada has the potential to

save the DoD several million dollars per year by lowering training

costs, increasing programmer pr(oducii ity, and enabling substantial

reuse of standard code modules I 7/)

End-_ser Comptjin_ As pointed (ot in the Introduction and

shown in Figure 1 software demand far exceeds the supply of quali

fied software programmers As unt ,,()rable as this protection n:

some experts have projected an even more unlavorahle supply to

demand ratio, with demand exceeding supply by a factor of lour by

103

1990 However, this is not just a problem for the future, software

design centers are already hopelessly overtasked with years of

backlog." (11-17-18)

There are a few technology trends which can help to alleviate

this problem: ,. -.

" Rapidly falling hardware costs,

" Proliferation of relatively inexpensive but powerful mini-

and micro-computers, and

* Powerful commercial fourth-generation programs which

provide nonprocedural "user-friendly interfaces

These trends are supporting the decentralization of information

processing into functional workareas (e.g., operations, administration,

personnel, logistics). This decentralization is driven by two related

factors. The backlog of development work has made the software -

design centers and information systems facilities unresponsive to all

but the highest priority work. In "self defense; functional area

managers have had to look to their own support through the applica- .

tion ol small computers. On the other hand, the information systems

pi 'oessionals have had to encourage this movement to alleviate some

, the excessive demand on their resources.

For relatively straightforward 'business-like applications (e g, .-.

w(ord processing, spreadsheet analysis, business graphics, small data

base applications, terminal communications), commercial software -.

packages can provide superb and efficient capabilities (albeit. with

widelv varying quality, levels of sophistication, and ease of use)

17

-. -• .
I 7 ' " "''?

These packages can meet many of the end-user requirements with

little development or maintenance. However, these applications are

not at the core of many functional areas.

End-user computing has the potential to provide additional

assistance in addressing the real functional area automation require-

ments. One of the major time factors and problem areas with devel-

oping application software is in first developing an adequate under-

standing of the application to be automated. Statements of require-

ments are noted for their ambiguity, lack of adequate detail, and

continually evolving nature during the development process. Profes-

sional programmers often embark on a development without any

experience in the functional area which they are to help automate.

This requires a learning curve just to reach a point where the proper

questions can be asked of the functional area users. With end user

computing, the functional experts can interact directly with the pro-

gram throughout the development. This can reduce the development

time and produce a higher quality output. It should at least produce

what the end-users need, as opposed to what they said they needed.

Data Base Management Systems (DBMSs). In looking at the

portability of software between systems, the portability of the asso-

ciated data must be addressed. The importance of this Issue Is

reflected in the fact that a large proportion of the computer resourc

es of a typical data processing installation is spent in sorting and

merging data. Some estimates place this usage as high as 25 percent

of the total resources. (5 10)

18

.:.)) 1: ; ; ; ,k".v._ * __,_%_'.. - ", ' . -. ".-. -. -, i. " .

'p

The problem of portability of data is compounded by such

factors as the use of different nonnumeric collating sequences by N

some compilers. In addition, an efficient data storage scheme for one ,

DBMS might be disastrous for another. (5:10)

There are several interrelated approaches to address this

problem:

* Relational DBMSs (R-DBMSs)

" Data base machines

" Standardized DBMS query languages

Relational -DBMSs provide very flexible data structures which

are easier to use. This provides for lower development and mainte- .".
%"

nance costs for application programs which make use of the DBMS.

However, this flexibility comes at the cost of either reduced speed

performance (responsiveness) for given computing power (process-

ing and memory capacity) or, alternatively, a requirement for in-

crea;ed power for a given performance level. A highly effective

method of providing the extra computing power is to off-load the

data management functions to a dedicated procesor optimized to per

D)rm this function, i.e, a data base machine. However, to achieve the

lull benefits of these capabilities. it is necessary to standardize the

application programs interface to the DBMS (in this case, the

R-)lBMS) This is the function and purpose of a standardized query

language such as the Structured Query Language 12 Atchs 2 3 i

To) address these issues,

".. ,*

..-,.-

i."%:

-- 1W 7 r -M ,. ,aMx -TF. ' Mp% nU U 3 =S -WI * IV IT, f ItI TR V V r L'LUrT LS'nutw~c . L SV %

the Air Force is working with the Navy and the Army to establish
a joint requirements contract for a data base machine. The
contract will include high level specifications (including relational
model [an R-DBMS] and Structured Query Language (SQL)
interface) (12:1)

Further, the Air Force is working towards the adoption of SQL

as the Air Force standard language for use with R-DBMSs. (12:2)

As seen throughout this chapter, STARS, Ada, end-user

computing, modern DBMSs, and other ongoing efforts are attacking

many of the fundamental problems. However, additonal emphasis is

needed in other areas to effectively address software modernization

Chapter IV will identify some of these other approaches.

20I

Ok

.-. ~ ~ ~ *... . .*. i -- .;~-.:.& ~. K**.2..~..~ * *~ * * a

CHAPTER IV

RECOMMENDATIONS

Chapter III identified several ongoing efforts to reduce the

labor-intensiveness of software programming and to provide for

software modernization. However, these are primarily long-term ef-

forts and must be supported by more fundamental changes in atti-

tude and approach toward dealing with software modernization.

This chapter will address some complementary actions which can be

instituted for both near- and long-term enhancements.

People Efficiency Over Machine Efficiency. Initially, computers

(ie, hardware) were very expensive, had relatively limited power,

and were not widely available. As a result., all aspects of computing ,

were oriented towards maximizing the efficient use of the computer

hardware system. Even as the cost of hardware fell and computing

power and availability increase;, computer applications expanded as

rapidly Processing power and time remained a critical limiting

factor This relationship still exists today in some areas: for example,

the continual pressure for ever more powerful-

* Supercomputers for applications which are computation-

a.k k-inplex, and

* Small microprocessors for real time applications which

ar weight and space limited

However, there is a fundamental change progressively taking

place--the critical limiting factor is increasingly software and, more

21 a-'-"

..

specifically, qualified software programmers. Over the last decade

hardware costs have decreased by two orders of magnitude (factor of

100) while programmer productivity has only increased by an order

of magnitude (factor of ten). (2:3)

With this shift in relative importance from hardware to soft

ware, a corresponding change in attitude toward system acquisition

is required For example, the Air Force Phase IV program is a ,dp1/.11

repiacernit program for the standard base level computer systenms

kUNIVAC 1050-11 and Burroughs 3500/3700/4700) The strategy

for the Phase IV program was k 13.14)

" To rigidly control the software functional baseline o[the
standard base-level applications as of 1980:

* To replace obsolete UNIVAC and Burroughs hardware
with the new Phase IV environment,*

" To convert the software functional baseline to run within
the Phase IV environment and appl., l1mied upddles w.v
necessarv. [emphasis addedi

" To do all this without loss of functLonal capability or Je
gradation of response time

While this conservative strategy minimized system conversion

rtlsk, it failed to adequately address software modernization In par

ticular. it failed to recognize that modern software tools are resource-

intensive (memory and processing power) and to analyze the life cy-

cle impact of continuing the functional baseline versus a strategy

designed to maximize user and programmer productivity Such an

analysis must address opportunity costs associated with dwindling

software deveiopment capahil ties unless significant productivity

enhancements are made The required producti\it\ enhancements

• , ,-.- .. -.. -.,.. , -.-,-.: -.-..-...- . % .. %.% .,2,.2,,,..

can only be achieved if there is a fundamental change in future

system designs corresponding to a change in strategy from machine

efficiency to people efficiency.

Further, with the shift toward end-user computing, there must

be a radical change in the method and demands of the man-machine

interface (this user interface includes the interface to the operating

system, application programs, a'nd hardware). End-users are func-

tional experts, not computer experts. To the extent that they must

become computer experts to make effective use of their decentral

ized automated support, their efforts are diverted away from their

functional work. This has the potential to offset much of the prod uc-

tivity gains which the automated support was intended to provide

Consequently, the user interface must be intuitive and conform

to the users' conceptual model for the application, not a computer

systems designer's model of the application. (14:3) While advances

such as application- specific fourth generation languages (e g., ad-

vanced relational data bases, powerful and flexible spreadsheet ap- 1

plications) provide significant help along this line, much remains to

be done-particular lv in terms of the technology fielded vice what is

available. Techniques such as event-driven operating systems and

applications (vice rigid sequential and procedural designs). visually-

oriented and voice input and output, extensive input edits, and the

ability to interactively handle and resolve contextual ambiguities, are

required to reduce the demands on the users. Progress has heen

made in many of these areas, however, most of the systems provided

23

to the end-users fail to make adequate use of these technologies. In

part, this is because systems tend to be specified by information

systems specialist who by -irtue of their technical training and expe

rience find the existing interfaces logical and quite useable, e',cn

"friendly However, this tolerance for these interfacer is extremely

costly in demands on end-users who typically lack the necessary

training and experience.

Although end-users have typically been able to make effective

use--although sometimes quite limited--of currently fielded sys-

tems, this is due in part to the relatively limited application of these

systems and extensive use of local "gurus who have a strong person-

al interest in the computer systems However, as more and more of

the workload shifts to the end-users, this will become a progressive-

1,v greater problem Further, the likelihood of adequately sustaining

this method of support under the stress ot combat is low The time

and personal expertise available under stress could fall off precipi-

tously

Fewer and Better Trained__Peopl e The growing shortage of

qualilied software programmers relative to the increasing demand

requires a more capital intensive approach to meet validated mission

requirements While in principle, the laws of suppl and demand

would indicate that sufficient supply 'of personnel) could continue to

he met at progressively greater costs, there is a more fundamental
co()nstraintI The military services are limited b()th economicall\ and

bV la, on their military and civilian pers(,nnel strengths In fact

24

- * *. '.* 5 . %.%,* * ***. *,..',.q*.. " "**

"I

prolected manpower shortfalls across the Five Year Defense Plan

(FYIP) threaten the ability of the Air Force to man new weapon sys

tems as they are deployed." (1 1:1) Clearly, such direct combat mis-

sions have a higher priority for personnel resources, and mission

support areas must find ways of sustaining, and even expanding,

support within or below current personnel levels.

While ongoing efforts to increase the use of commercial soft--

ware, contracted services, and end-user computing will help address

this problem, more must be done Higher levels of investment in au- N

tomated support environments must be made. These investments

will be cost-effective from a cost-avoidance standpoint, but will

probably not result in large personnel reductions on their own, par-

ticularly in the near-term. However, the issue is increasingly becom-

ing one of adequate mission support vice cost-effectiveness.

Further, to make rull use of. and thereby derive the full benefit

(4, automated support environments, significant additional training is

required to update the technical knowledge of in place personnel

'I i , skill levels of the human resources have been identified as the

mo)st important single influence on software productivity (1:531

his additional training is required both for in house development,

a.s well as to adequately specify, contract for, and monitor contractor

ser.ices

As the presure to reduce personnel increases, programmer

prOdUctivity must become a critical performance factor The limited

allo)rdahility () in house personnel will necessitate increased efforts

2S

to identify Individuals with high productiw it potenal and to

eliminate others during their prob itionary periods This will result

in additional turnover higher training demands. and signidh.aitl

stress on supervisory personnel to make and enlorce these lUdg

ments on individual performance and potential In ,,rder for the u

pcr\ s()rv personnel to accurately make these determinations, they

also will need additi)nal technical training t() maintain know ledge)t'

state of the practice and state (A the art methods and technologes

Interoperabi!lty and N ctworkin I he Ada programming Ian

guage offers significant potential to reduce perso)nnel requirements

through the reuse of so)tt.are modules and packages However

there are several practical limitations to extensive software reuse

Some (the major lact()rs are the level of awareness of the availabtl

itv of a given s(oft', are module and a rapid means for obtaining tho.

module when rquired

(.llrrel procedures ()I the Ilederal Inl r mat ion lesourc's Man

a4emnt kvgulation (FlRMR :() 1 .3) I 0 14 require submission o l ah

stracts for C()mmon use programs and systems to the Federal ',At

\),are Exchange Center for publication in the hedt'Vial Sol'uur- F4

chn ,e (-:iafle I' I III Ho)we er this document is published inlre

quentlv lannualls) and does not provide lor rapid responsive dis

semination of programs which appear uselul What is required is an

(in line catalog with networked access and a means () rapidl% tele

communicating pr(Nram nmiodules IroS m ,ine cmputi installation to

an)ther

._,,.

%U

Whie the Ada program addresses establishment of support

program libraries (1618), general availability of program modules

from program library requires functional interoperability of comput-

er systems on a wide-scale basis and extensive networking. The

Delense Data Network (DDN) offers the means of networking the

res.()urces, however, full recognition of the necessity for wide-scale

interoperab Lity has not been achieved. Interoperability is a basic

requirement which transcends the immediate operational require-

ment which may not directly necessitate full interoperability. Until

wide-scale functional interoperability is achieved, effective software

reuse will be unnecessarily limited.

PolicyApproach. The recommended changes outlined above

require basic changes in attitude and approach in addressing soft-

ware modernization issues The inertia inherent in people and or-

ganizations which results from resource constraints, communications

barriers, fear of change, etc., opposes efforts to effect the required %

changes Firm pt)licy must be established to guide and motivate or-

ganizational direction

Policy must frequently precede an organization's capability to

Iectively implement the policy. Policy should be prescriptive rath

er than descriptive--guiding rather than documenting the organiza-

tlio s direction This. is an essential element ol leading

be effective, the policy muISt also) he enforced The basic

prohlem is that ii the policy is t()() lar ahead ()l the (irganization s

ability to implement it. then exceptions to the policy will dominate

27 * ,%- *.
%. "1

-. - - .. N° , * .O°o, , % ," , . " '-. "o'," . ' °": : : -;''° ? ' '

and the policy will be meaningless However, unless significant pres-

sure is applied to conform to a progressive policy, reasons to post

pone its implementation become an easy route to a oid the manage

ment problems associated with making required changes

The growing problems with software modernization necessitate

that a progressive policy be established and enforced The short-

term impacts must be faced because the long term costs ol failing to

act would be nothing short ()A tailing to support mission require

ments.

J.

.5

.5

i
o.

%-

CHAPTER V

CONCLUS ION

The dependence of the United States on qualitative superiority

to maintain deterrence has placed increased emphasis on software

for flexible and responsive support of mission-critical and general

purpose applications However, the responsiveness and integrity of

software systems is being jeopardized by the labor-intensiveness of

software programming and the growing shortage of qualified soft- .

ware programmers relative to the expanding demand.

Although the software problem is generally recognized and

numerous initiatives have been started to improve the situation.

progress has failed to reverse the overall trend. The technological

approaches to improve the productivity of software programmers,

enable reuse of software packages, and accelerate technology trans i-

tion and integration into the state-of-the-practice, offer significant

l()n4 term potential to reverse this situation. However, near-term

gains are limited by existing attitudes and approaches toward soft

\,.ire modernization. Fundamental changes are urgently needed to

minimize near term problems and accelerate the achievement of.-

lhng term benefits

The most critical near term step in reversing the negative

trnds is the establishment of progressive and demanding policies on

s(41Mware modernizat)n This is essential t) cintinued s r pp'Sr ol .

str, ge ic and tactical capabilities.

2 ()

S'%
. ' N ~ ~ * . % ' ~ r-. * -..-.

N- - - N

LIST OF REFERENCES

I oftw are Technologv for Adaptable. Reliable S*vsiems o7.R'INS,
Program t'ragegy Washington, I)C Department of Defense, 15 M:irch
1983

2 M'lcClure, Carma 1 .lana ',ng .vare /21vlopmc1 nd .I/sn
tenanc&-e New York Van Nostrand Reinhold Co. 1981

3 Inlurmalgin Technolog' -'&P r(iti-cal 1t'ends and Issues VW ash
ington, DC I'S Congress. Office of Technology Assessment. OTA (IT
268, February 1995.

4 Elson, Benjamin M Software Update Aids Defense Program.
A vit&wu Week & Spdce Te-hn0oliv March 14. 1983. pp.209-22 1.

5 Wolberg.. ohnR. Gm n 'ers/on 'f Computer qo/are E"igewood
Cliffs, NJ: Prentice Hall, 1983.

6 D~unn, Rubert and Ullman, Richard Qualitv As.surance for L'<m
put1r.%o/!uaie' New York Mc(;raw Hill. 1982

7 Saib. Sabina Add An ln'roduct-&/u New York Holt, Rin'hart
and Winston 19 5

Wolf, Martin I et al The Ada Language System I- uI'm
puter lune 198 1, pl 27 35

9 41r F-)r(r In/lrmation .st'.viems .rcihiecure Volume /. (11'f-

v'ew Washington, DC lleadquarterf 1niled States Air Force. 8 Ma' ' -
1985

10 Interim If)l) Policy tin (C)mptiter Programming Languages
Memorandum, USDR&t" to Secretaries of the Military Departments ei U
al, !(1line I98i

%I.

..: <; 4t .; :.; ."..-.,'....,v..... .,.'..%v..v..'v

I I Report on Dta Ntwiegis tanage'nwen n7.(/ Md.apo U 'er Impact,

lolume I Executive .ummary Washington, DC Air Force Manage-
ment Analysis Group. I September 1984

12. Database Machine Requirements Contract and Standardization
nn Structured Query Language (SQL' Letter, Headquarters United
States Air Force/SIT, to all Major Command/SI et al., 18 June 1995

3 Interim Report on Air Forcr Base Le vel A utomation 49 nvron.
ment. Washington, DC National Academy Press, January 1986.

I IS ime, Max E and Coombs, Michael .1 (ed) .esigning fo" buman- "':
'onpuwc- mmin unmcatwn London Academic Press, 1983

15 Fe/eral.%olhwwre EvchanA'e catal(g Washington, IX: National
Technical Information Service, PB8S5 90400 1, 1985

16 Stenning, Vic et al. The Ada Environment. A Perspective
IE L iw-'puter June 1981 pp. 17 2 6.

'7 Softwarc Modernization. Headquarters United States Air Force!
SITl staff paper, undated (c. 1985)

2 '

-3 ,,1%

• p ."

= Ron 1 %4 . 7.7u---'a---v R--W WW 4-7 ikw -,_ T-Z _T

GLOSS ART

AB Air Base

Ada Department of Defense standard high-order computer
programming language. Named in honor of Augusta Xda
Byron, Countess of Lovelace (1815-51), the first computer
programmer (ANS[/MIl. STI) 18ISA 1983)

ADP Automatic Data Processing

AFB Air Force Base

AFIT Air Force Institute of Technology

ANSI American National Standards Institute

BASIC A high-order programming language intended for use by
minimally trained personnel to do relatively simple
programs. (Beginners' All-purpose Symbolic Instruction
Code)

B S. Bachelor of Science (degree)

Burroughs Standard Air Force base level computer prior to Phase I V
3500/ capital replacement program.

3700/
4700

COBOL A high-order programming language for business appli-
cations. (COmmon Business Oriented L.anguage)

DBMS Data Base Management System

DDN Defense Data Network

Doi) Department of Defense

32

, , .*..%* . .: .r,., ,1 *. -' t .. '&*.* * : . % ¢ ¢ * , , .* . Q ' ' -

F 1 I 1 Long-range interdiction fighter aircraft

FIRMR Federal Information Resources Management Regulation

FORTRAN A high-order programming language for technical and
scientific applications (FORmula TRANslator)

FSEC Federal Software Exchange Center, 5285 Port Royal Road,
Springfield, VA 22161. (703) 487 4848.

FY Fiscal Year (I October - 30 September)

IIQ Headquarters

IEEE Institute or Electrical and Electronics Engineers %ON,

JOVIAL A high-order programming language for command and
control applications. (Jule's Own Version of International
Algorithmic Language)

M IL-STD Military Standard

Mission- An application exempted from the Brooks Act by 10 U.S.C
Critical 2315, the Warner Amendment to the FY 1982 Defense

Authorization Act. (10: 1,

M S Master of Science (degree)

Phase IV Program for capital replacement of standard Air Force
base level computers (UNIVAC 1050-11 and Burroughs
3500/3700/4700) with Sperry 1100/60 computers

Ph 1) Doctor of Philosophy (degree J 4''

R&D Research and Development

R DlikiS Relational -Data Base Managemcnt System

% ."%-

33

?'P: * : : . :..;** * -._. _ .-•,-,44 %.b

SEI Software Engineering Institute (Carnegie Mellon Univer-
sity, Pittsburgh, Pennsylvania)

SI Assistant Chief of' Staff for Information Systems (HQ
LISAF), or

Deputy Chief of Staff for Information Systems (Major
Command).

SIT Architecture and Technolgy Directorate, Assistant Chief of
Staff for Information Systems (HQ USAF)

SITT Technology and Security Division, Assistant Chief of Staff

for Information Systems (HQ USAF)

SQL Structured Query Language

STARS Software Technology for Adaptable, Reliable Systems

UNIVAC Air Force Standard Base Supply System computer prior to
1050-11 Phase IV capital replacement program.

US United States (also written U.S.)

USAF United States Air Force

U.S.C. United States Code

USDR&E Under Secretary of Defense for Research and Engineering

3.

34

.5 .** --- !

4000

I atI I
-a6

