/1

SOFTHARE MODERNIZATIONCU) AIR NAR COLL MAXMELL AFB AL

R C HANLON MRY 86 AU-ANC-86-088

AO-A178 328

-]
w
-
=]
w
&
§

o
.‘ >

A
]
]

.".n o
y

G
Al "[‘
. Al

_
l‘."’%“!'l
doate
‘u",“..l
-':' .“,’t“—‘

'?%

'
¥

L)

\

o
\'

N k1
o
L LA \\

o
hl

R

L

A

)
»

R
'l

{00

g e

]

RIS RN

v

-

}
j

K
&
=
I
28 »

I

14

I
2 s

|

}i‘

"

v
-
i -4

=
¥ ¥

AD-A178 528

N,

Tewam o
P2 y
- ot g b

AIR WAR COLLEGE
RESEARCH REPORT

No. AU-AWC-86-088

. PORA
XL

vy SARE,

-~

v &

SOFTWARE MODERNIZATION

By LT COL ROBERT C. HANLON 2

AIR UNIVERSITY
UNITED STATES AIR FORCE
MAXWELL AIR FORCE BASE, ALABAMA

A RN T AT T T e e
N/ ..JL«’ AP N AN ARG N A, 2

§ PRSI S R AR Y A AL RN

................................
AR APRTIK R P -~ RISy

..... .
UL NN .

P e o
';1:..#}?'_:}: ,‘:..J

E 4

AIR WAR COLLEGE
AIR UNIVERSITY

% |

oI
AW
Ny A n

A |5

I,

SOFTW ARE MODERNIZATION

oL L S,
| D27 LT

()

NS

-~

b3
Ll AA

s

by w2

Robert C. Hanlon q(‘,:' :
Lieutenant Colonel. USAF o

A RESEARCH REPORT SUBMITTED TO THE FACULTY R
IN
FULFILLMENT OF THE RESEARCH e

REQUIREMENT

Research Advisor: Colonel Richard D. Clark

MAXWELL AIR FORCE BASE, ALABAMA

May 1986

DISCLAIMER-ABSTAINER
This research report represents the views of the author and
does not necessarily reflect the official opinion of the Air War College

or the Department of the Air Force.

This document is the property of the United States government
and is not to be reproduced in whole or in part without permission of

the Commandant, Air War College. Maxwell Air Force Base, Alabama.

' Annession BT

)
E J?f —i\
!

i

———

o

T e

e s
<
|
1.

i

AT A AR

T T T g O P R NS SR P e
S RTINS LAY 4 '-,‘1,‘- '."'-/\"'v . o tpte® X

AIR WAR COLLEGE RESEARCH REPORT ABSTRACT
TITLE: Software Modernization
AUTHOR: Robert C. Hanlon, Lieutenant Colonel, USAF

The dependence of the United States on qualitative superiority
to maintain deterrence has increased emphasis on software for flex-
iblc and responsive support of mission-critical and general-purpose
applications. However, responsiveness and integrity of software
systems is being jeopardized by the labor-intensiveness of software
programming and growing shortage of qualified software program-
mers relative to expanding demand.

Although the software problem is generally recognized and
initiatives have been started to improve the situation, progress has
failed to reverse the trend. Technological solutions offer potential to
reverse this situation. However. near-term gains are limited by
attitudes and approaches toward software modernization. Changes
are needed to minimize near-term problems and accelerate achieve-
ment of long term benefits. The most critical near -term action is the
establishment of progressive and demanding policies on sofiware
maodernization.

Factors which make software programming labor-intensive and
which impact on software modernization are presented along with
some ongoing efforts to reduce this labor-intensiveness and provide
for software modernization. Recommendations on arcas requiring
additional emphasis to address this critical problcm are suggested.

154

Baatir afar b Aeap Bl 20 &g A O

BIOGRAPHICAL SKETCH

Lieutenant Colonel Robert C. Hanlon received a B.S. in engineer -

ing from Case-Western Reserve University, Cleveland, Ohio. After
graduation in 1968, he attended Officer Training School, Lackland
AFB. Texas, and was commissioned in 1969. After attending the
communications-electronics officer course at Keesler AFB. Mississippi.
he was an operations staff officer at HQ Air Force Communications
Service. Scott AFB. lilinois, and Richards-Gebaur AFB. Missouri. In
1973, while at Richards-Gebaur AFB, Colonel Hanlon earned an M S.
in e.ectrical engineering from the University of Kansas After serving
as the Chief of Operations, 2129 Communications Squadron. Ching
Chuan kang AB. Taiwan. he was assigned as Chiefl of Logistics Inspec-
tion. HQ Tactical Communications Area, Langley AFB, Virginia. At
Langley AFB. he also served as Chief of Maintenance, 1913 Communi
cations Squadron. He then had an AFIT assignment to the University
of lllinois to obtain a Ph.D. in electrical engineering. In 1980, Colonel
Hanlon went to the Command and Control Technical Center. Defense
Communications Agency. and also served in the HQ and the National
Communications System. Prior to attendance at Air War College. he
was with HQ USAF. Directorate of Command. Control, and Telecommu
nications, and the Assistant Chief of Staff for Information Systems
Colonel Hanlon is married to the former Sharon Ann Evans of Euclid.
Ohio. They have one daughter. Kelly Elizabeth Licutenant Colonel

Hanlon is a graduate of the Air War College. class of 1986

v

e I L e M N

<o

RAAATE MMENE IR IAA

TABLE OF CONTENTS

CHAPTER PAGE
DISCLAIMER-ABSTAINER .. oo 1t

ABST RACT L e 111
BIOGRAPHICAL SKETCH ... e v

LIST OF ILLUST RATIONS e e Vil

LIST OF TABLES ..o e Viit

I INTRODUCT ION oo e 1
Il THE MODERNIZATION PROBLEM ... 6
StaNAardsS e 6
Portability ... 8
Automated Support TOOIS ... 8
Documentation USSP SRRSO UP S 10

Software ArchiteClures . . . e 12

Non Technical Factors . . 13

11 ONGOING APPROACHES . L e 14

Sotftware Technology for Adaptable.

Reliable Systems OO SURPOO 14

Ada Programming Language 15

End User Computing16

Data Base Management Systems SRR 18

v RECOMMENDATIONS 21
People Efficiency Over Machine Efficiency ... 21

Fewer and Better Trained People 24
Interoperability and Networking 26

Policv Approach . 27

v

heae ey, ey At e AP B e
kf‘.'fs',' FCICACFNON ACNLA S SO S 2T A LS RO CODMERA YA

rx.-._—-, e L e’ Ao e S i BEAN o N b el o aed e A el s Sad SeAanmded 2bg und s S0 aed- Bl a4 0° A 8- S-Rapn i pal g LS Bt g Al ookt st NIl B o R i o R .

b

v CONCLUSITON e e e 29

LIST OF REFERENCES ... e 50

GLOSSARY o et - 32

P W O WO Y YW U P T TR TN R IR WYY Y ST N TN Y TN N A RN R W RS

LIST OF ILLUSTRATIONS

Figure 1 Trends in Software Supply and Demand

Iﬁ
>,

&
2.4

P)

Vi S

._ﬁ

o

L L
p)

AR

SRR ARSI FLTS PR TS N SR R

m Bar mar Bt e Arv Mie aus Bes e aa £a i Bee Ak Sw Ank S i Bad Aus Bk St St St B ok Da Bt Seiiiid aiat huk gt e Db S buv hal fiat et gt gyt ot ot le St aliadas o

LIST OF TABLES
! Table 1 Automated Support TOOIS ... oo 10

e
*e
‘%

-

Vit

AR EAXRAS

RN A4
ate’d

. v -
a

Al

[N

o e
a

/.

-u ‘1'. .
ot
g
"&
PR
AR
.)
q }
e
CHAPTER | NONON S
RGN
A A
INTRODUCTION ;;.;5_:::
The military stra‘egy of the United States (US), particularly the -
-.,s.,:.'
element of deterrence, depends heavily on maintaining qualitative q'_'{;:'j.
e -..J_
superiority over its potential adversaries. Qualitative superiority ;;:Ef,:.ﬁ
Ceel
compensates for real or perceived quantitative shortcomings in US “',
X o,
- ".. 4
forces. This dependence on qualitative superiority is reflected in ;ﬁ:-,%"
KNPt At
heavy use of advanced technology in most--if not all--major US :Z;';.::;
l'-‘:‘.‘.,l
weapon systems, and is seen in extensive use of programmable e
RN
digital computers. N
;.';"f“'"'
at .
“Computers embedded in mission critical military systems are 1:;?;::.
integral to [US] strategic and tactical capabilities... The muitary)
power of the United States is inextricably tied to the program- e
mable digital computer.” (1:viii) N
CA.-:\I_:I
The functioning of a programmable digital computer is defined l-:_}';.'g',-}'
ST
and controlled by its software. "Software is the embodiment of sys- .
AN
. . o P Py ...:' A,
tem ‘intelligence’” (1:viii) More specifically, software s that ele- '\-,:{'-j-.-;:
R,
ment of the overall system consisting of three necessary compo- e
g)
nents: (2:310) :
RSN
e computer program code — the instructions to the ma- AT
-.‘_\:_\:.\
chine, both as written (i.e., source code), and as translated and used -:.{_S_-. ‘
a
by the machine (i.e.. object code); %
e data — imformation stored in the machine and used to \:\4_3
RSN
- . . N -..l '. '.
provide an input to augment, control, or modify the instructions to ,.:f.;_'\‘-;..‘
the machine; and -
AN
AT
I 'EL;ZZ:::EE
.y;::.-]

e documentation -~ information used throughout the life
cycle (development, operation, and maintenance) of the software
subsystem to understand and control the form, substance, and use of
the software.

The critical importance of software to a system extends beyond
its functional role. The cost, reliability, and time required to field
new systems and applications are increasingly deter mined by soft-
ware rather than hardware considerations. The cost of software to
the Department of Defense {(DoD) is estimated to be four to eight
billion dollars ($4,000,000,000— $8,000,000.000) per year. (3:78) Of
importance beyond this large aggregate sum, software costs of a
major system can exceed 80 percentl of the total system cost. This
percentage has risen systematically from 20 percent and continues to
grow. {2:29) As a major--and even dominant--element of a system,
the software is frequently on the critical path for system develop-
ment, and has often been late, or over budget, or both. (1:ix)

This cost and criticality of software in US weapon systems
raises the question: why 1s this reliance on software tolerated--much

less allowed to expand” The fundamental reason 1s to support

- T Piai ek adh sl b tob Al il alesshe’ b Rk A RA IS S -ieb Sl St Aol
— S W VTV WO WU WOV W WY W W W W TR C Y O I Y ST AT Y . A DR afak sy S8y 300 A Rl B

F o & T

change. Software 18 'soft’ because i1t can be "easilv’ changed Conse- !a
quently, the system can be “easily” changed. Further, despite the 7
_ . , ! N
magnitude of the cost figures cited above. software changes are less ~
|

costlv to make than the corresponding physical system changes The 1
. ~ iy -~ ~ N \'
Umted States Air Force (USAF) cxperience with the F-111 awrcraft -
program highlights this i
2 x

>

|

‘_J

N e e e S A T L N L L

- * . C- - .o
A AN

T T e e A e T et L et e e N L .._\'_'.'_\'_\:.'.:_-.' AR S,
ih'?;}i_i\;m:.ﬁbﬁhx‘)_;h‘\ PR TR LV R A RO I C WL L SR GRS, 28 O WA G, SN 2R v S o

Sumilar avionics capabilities were implemented in analog
electronic hardware on the F-111 A/E and in software on the
F-111 D/F. A number of changes were tracked through both
systems. The savings in dollars and deployment lead-time in the
digital F-111 D/F are striking. Aardware changes cost (ifly lrmes
as much as sofiwdare changes and ook lhAree rimes as fong [0
make [emphasis added] (1:3)

Although the extent of the role of software in systems’ func-
tionality continues to expand, the greatest portion of effort and cost
spent on software occurs after its development, during the software
maintenance phase. Software maintenance can account for 70 per-
cent of the total system costs and 40 to 95 percent of the overall
personnel effort. (2:3) This would clearly be grossly excessive iof
software maintenance consisted solely of the correction of errors that
went undetected during its development and testing. In fact, only
about 18 percent of the software maintenance effort is directed
toward correcting errors. The majority (82 percent) of the software
maintenance effort encompasses changes to the software resulting
from altered or additional requirements specifications. (2:30)

This high proportion of software maintenance costs reflects the
fact that change is an inherent characteristic of all software. Such
changes are required to improve performance, extend funcuionalily,
adapt to processing environment changes, and accommodate chang-
ing user needs To the extent that such changes are justifiable on a
cost versus-benefit basis to meet minimum-essential, validated re-
quirements, there ts no basic problem with such a high percentage of

system costs being expended for software maintenance. However,

. . .- o el - . R B - T
L .

o e te

»

.

DO
»

)

LI NY S

»

AR
r . v

"
s

. -~
. :'.{ .f

RN AAY FfY
XXX YA

4
[g

s
o
s

’l
/

»

A
AR
("'

WA

.
.
o

A

L
P}
y

P
, r * .
* E]
DX

ﬁ(ﬁ 'v."i
.
b2

v,

B e g AR ¢ A8 Bk i e A b o B A - P i S A AL B S e A A S SR A SR SO AL il S IS WAL PR]

LR PR 1 P . it a® ta et
e T A N T e AT T T e T AN T T e
o~ .".\ '.:(_"L' '_". '.L“. A '.;'.\"g;"-_ ._':_g_' IR A L L.'.Lf__' L’L{LrL‘IL’L‘-L.-LJJA(J -

there are insufficient qualified software programming specialists
available to support these burgeoning requirements. This can be
seen dramatically in Figure | which shows the growing shortages of
qualified personnel. Consequently, demands for support of existing
systems impact upon the ability to develop new systems. to include
modernization of existing software. "And unless radical new meth-
ods are found, maintenance will go even higher 1n its demands and
will very nearly stifle further development.” (2:29)

Although the software problem is generally recognized and
inttiatives have been started to improve the situation, progress has
failed 1o reverse the trend. Technological approaches offer signifi:
cant polential to reverse this situation. However, near-term gains
are limited by existing attitudes and approaches toward software
modernization. Fundamental changes are needed to minimize near-
term problems and accelerate the achievement of long-term benefits
The most critical near term step in reversing the negative trends 1s
the establishment of progressive and demanding policies on software
modernization.

Chapter Il outlines some of the factors which make software
programming so labor-intensive and which impact on software mod-
ernization. Chapter 1l then looks at some of the ongoing efforts to
reduce this labor-intensiveness and provide for software moderniza-
tion. Chapter |V offers some recommendations on areas requiring

additional emphasis to address this critical problem.

U SN

O T, -
.“‘.“ 2 .":‘1." .] .

'-.{ . -.’;"s,\"\"ﬁ':‘-'t

a4
‘e

PO ATAS WIS RN

ANVINAT ANV A'lddNS DAV LI0S NT SANTY.L 1 H4:.1914

0661 8861 9861 r8e61l 86l Osol

A A - e d e i T:

"
_
. . IR/ 3%) T
; lJuuossad TR
! (3K/%Y) T - Ny L
: U T LUNE N \SUONpW oI,
;
]
m

|2UuCs1ad
alen1joy i
0861 1wajealnby

A

oy hl o o

,4:’-
rr
At

7/

e
v

OO0
ele
)

Sy

e - it i e L m -

11-1 B14:1) ABoenig weaBosd SYV IS 23:nog

09 S0 2ue 1 an S 2 o mha Son A fos Avh Aan bk 0 i ReAn RO o A4 -th 8- L 20k Sk S i A et Sl Al e i Rt o o e fian Bob e St o bt dind T Loa™ olin - " adii f."W'JI'."'."..""'-".\

CHAPTER II
THE MODERNIZATION PROBLEM
"Although recognized since the 1960s, the software crisis con-
tinues to be the bottleneck in technological advancement.” (2:vu!
This bottleneck is due primarily to the labor-intensive nature of soft
ware programming This labor intensiveness arises from, among
other factors, the lack or inadequacy of.
e Computer programming language standards,
e Software portability,
e Automated support to programmers,
e Documentation of software, and
e Software architectures for applications
The impact of these factors is felt throughout the software life
cvcle. The first effect is on software development, however, the
impact carrics through to the maintenance phase and establishes the

basis of subsequent software modernization problems. There are

-

also non-technical factors which impact heavily on modernization

Fa

-'q‘

efforts. }
_ 4 N

Although the software problem is generally recognized, prog- ¢ ‘:.

N,

ress has failed to reverse the overall trend This chapter will look at X
some factors contributing to this problem. and Chapter 111 will look 'ﬁ
|

at some ongoing efforts to address these factors "E
o

Standards There are literally hundreds of ditfferent software :,'.S

A

languages and dialects in use A study conducted in 1978 indicated ﬁ
6 =

A

."

.

b

b [N

.
.
L]

NN
S:ES
]
there were more than 450 languages used in the DoD. (4:209) These :.!;_::57_.:
different languages limit software from being readily moved ::;:E:f',:::‘
("ported’) from one system to another for reuse. They also generate .3:::5:':1;5
excessive training requirements and limit flexibility in applying per - .. ,
sonnel resources. : y
Originally, software languages were machine-specific. That is, *:
machines or product lines tended to use unique languages. To -
address this problem, standard high-order languages (e.g., COBOL, E'f-"*
FORTRAN, JOVIAL) were developed. These languages are intended to :::5*

be more like natural languages and machine-independent (i.e., porta-
ble between different makes of machines). Languages are often o
developed for specific classes of applications (e.g., business, scientific,

military command and control). Generally, even “standard” lan-

4
Y 4

s
{A M
A.

guages are not portable between different machines.

L
ANy
A
R4

LY
LR
AN
’

>
.
-
.
»
.
»

BEAS

“The differences between various versions of the same language
are serious impediments to software portability. Dialect differ-
ences are still considerable in two major languages that were orig -
inally standardized in the 1970s: COBOL and FORTRAN." (5:19)

{
'\l

n.'h &
PO

&
K A4
AT

S
N
e

Some language implementations are subsets (ie., partial implementa-
tions) and others are proprietary supersets (i.e., unique extensions Lo
the language). This latter case is particularly troublesome since ".. a
good marketing strategy was to include nonstandard features in the
hope that users would use them and thus get locked into the manu-
facturers hardware.” (5:7) The most critical step in achieving soft-

ware portability is to develop and implement a standard language.
(5.6}

AT A]
AL NS
N

SIS,
X
t"s’ bR
o PN

o’ .
o
ool
»

L .-
v v g

g R .~ B S S N i S N .
P T T O 0 g TGy T TS P RV IR AP A N AL I AL LR L ST L SR WO LY
ﬁ(\&(\fﬁf«%ﬁ&ﬁﬁfﬁ%ﬁ'&f{.\. - . A5 ORIV SN L SR

:,'
b

=
\‘:ﬁ’-\- ‘:‘J:‘.’.\hﬁ-\h_‘-.s- - and 0 o

R

Portability. Unless software can be directly ported from one
machine to another, common applications and routines must be at s
least partially recoded for the various machines. Depending on the
software’'s complexity, this may demand significant time and effort.
This wastes critically short manpower and is prone to inducing errors
in the software. At best, identifying and correcting these errors are

time-consuming; at worst, errors may go undetected until the soft-

.fffll."'

ware 1s in operational use. N
These problems are compounded every time a change is to be

made in the software, as it must be propagated through the various

o ok JE IR P

implementations. And, as previously pointed out, change is an inher-

s

ent quality of all software.

o

R

Automated Support Tools. One of the key methods of reducing

»

(]

the labor-intensiveness of programming is the use of automated

support tools. Large software programs are complex systems with

2w W u

many interactive parts. Design and implementation of large software

*

systems require the concurrent ef” L of one or more teams of

programmers. Further, during development, the elements of the

AR

overall program exist in different forms and at varying levels of

abstraction (eg., concept, top-level design. detailed design, source

v ¥ o =gy
w7 s

code, object code). This complexity tends to give rise to program-

14
o’

ming errors.

Yy v
s

Almost all errors which occur during software development

and maintenance are human errors. In fact, most programming tasks o
vy

are inherently error-prone if executed by people. (6:183) This is -
8 -

._:J

L‘J

d

'

7

|

—‘w

N

I~

because there is virtually no tolerance for error. Consequently, the
work requires extreme concentration and constant, painstaking at-
tention to detail. These traits are hard to sustain for long periods of
time.

While most errors are found during development and mainte-
nance and are remedied without operational impact, they still result
in considerable amount of rework. This severely limits the program-
mer productivity which can be achieved.

Clearly, lo'enhance programmer productivity, it is desirable to
automate these error-prone tasks to the maximum extent practica:
ble. For even modestly-sized software activities, the costs of auto-
mated support tools are rapidly amortized through increased produc-

| tivity. In addition, they help preclude or eliminate errors Wwhich
would otherwise go undetected until after the system were opera-
tional. This provides higher quality in operational software and
' second-order productivity improvements by avoiding some of the
maintenance activity which would subsequently be required once
the software were in operational use.
Table 1 lists some of the automated support tools which are
) available. It is beyond the scope of this paper to explain the specific
functions of each too!; however, they can provide critical support and
productivity enhancements throughout the software life cycle.
Automated support tools 18 another area where lack of stand-

ardization has caused problems The command languages used (o

control these tools, as well as the tunctionality which they provide,

LY
.'l.o'
[
s
L)

9

N NN
l'
)

PR S
[y

(‘\
‘
$.

':":,:
g

N N N N S N St
t?.p}.-_‘;_'.-:'.-}a:.r_‘ BRI DI AT ST T RPAT I TSI I

has tended to be machine- or product line-dependent. As in the case

of multiple programming languages, this results in additional and
costly training requirements and limits the ability to move program-
mers between systems. Further, limited resources are available for
automated support tools. Consequently, full complements of auto-
mated tools for multiple systems may not be affordable. For com-
puters with a refatively small commercial base, the full range of tools

may not even be developed.

Table 1. Automated Support Tools’

Assemblers Interpreters

Code Generators Linkers

Command Language Processor Loaders

Compilers Prettyprinter
Configuration Control Tools Runtime Support Libraries
Data Base Management System Set-Use Static Analyzer
Diagnostics Stub Generator

Emulators and Simulators Symbolic Dynamic Debugger
File Administration Tools Text Editor

File Comparator Text Formatter

Frequency Analyzer Timing Analyzer

* {6:Table 8-1: 7-Fig 21 1. 8 Table 2)

Documentation. Accurate and detailed documentation of a

program throughout its life cycle is essential. The ability to efficient-
iy develop and maintain a software system is dependent first and
foremost on the programmer s understanding of the system's

purpose, structure, and methodology. This can be a very difficult

10

AT S

Bl IR s s 22 AR

task. If any appreciable time has elapsed since initial development,
even one of the program’'s original programmers typically has EEE
difficulty in fully understanding and working with even modestly- 1' !
sized programs. .-‘:.f'.:

Modern programming languages are structured to encourage, ,EE:"
and in some situations force, programming techniques which provide ;ZE""
a degree of sell documentation. Further, many of the automated ,’.A
support tools mentioned above are specifically intended to facilitate E:'-"::’_;
documentation and configuration control of software. However, there :\ZEE
are two serious problems. ' _

First, many operational software systems were developed using ;‘;\:
older. less structured programming languages and without benefit of f.:i
the newer, more powerful automated support tools. Since approxi- .
mately two-thirds of all software activity ts maintenance, these :;:?
older, less efficient languages tend to be self-perpetuating. (5:18) S;::?

Second, as software changes i1n an operational environment,
both its logical structure and documentation tend to detertorate. Of -
ten this 1S caused by pressure to restore a system to operation or

| provide urgently needed additional capability as fast as possible.
Quick becomes the enemy of clean. These operational patches occa-

r sionallv inject new errors, which are themselves hastily patched.

Because most software has not been designed Lo tolerale change
and software engineers have not been taught to anticipate and
prepare for change, software quality deteriorates 4s a negatve

side-effect of change, especially during the maintenance phase
(2 vin)

1

|

“ - " N - - . . ’ . A4
A S S T N R R R . R f',-'.f_"" S e e

oyt ':'.':\-':'_fi-..\i\':' ':I.S.:": '.:V' ‘1 - d PPN bt ‘A,A'L Lty o 'J.{A'.'_l"“ '—L. A BRI

AR AR

Software Architectures. One of the primary means of reducing

software manpower demands is to reuse existing software. However.
seidom does software for one application exactly match the vahdated
requirements for another application. This limitation can be mini
mized bv cuttuing and pasting’ modules from existing software and
reusing these modules or packages. The use of structured program-
ming. top-down design, and step wise refinement significantly en-
hances this capability. Under this methodologv, programs are built
of discrete modules. In the ideal situation, each module becomes a
black box.” To implement its function, a module accepts an input
and transforms the input to produce an output (data or action). The
mechanics of this transformation are invisible to elements of the
program outside of the module All that 1s seen 1s the functional
behavior of the module and its input and output interface character
1stics For the various modules 1o work together, it 1s necessary (o
specifv exactly their interfaces, that s, each modules input and
oulput characteristics. The functional allocation and interface specif
ications constitute the major portion of the top level design and
establish an architecture for the overall software program

[t two programs perform essentially the same function bul
have duferent architectures, the functional allocation and interface
characteristics of their component modules will be different Even
shight differences will make use of one programs modules in the
other impossible without some rework The level of effort required

by this rework mayv be significant Consequently standardized

l\
..

' 4
RSN

Y
.
>4
-
-
o
K
MR et IR W wd e e e et e e e e sl '.'. PR
-\... . \ IR A Y
\..2_\:}\'.&\‘\4 v ‘. ‘-" -\:&'.e' \A‘J}J\L'J\J\.L.J~J"A}LA_ 4:‘ o '\J\A\‘l AT IS B Y '44'_. "t A 4"-- AW

architectures for various applications are necessary (0 enhance
sharing of software modules. Unfortunately, this has not been
accomplished generally. However, much work has been done along
this line for the software which implements data communications
protocols for packet switching networks. (9:Annex C)

Non-Technical Factors. While the factors outlined above signif-
icantly contribute to the software modernization problem, there are
many non technical, managerial factors which are also significant:
(17 1-2)

e Attitude — emphasis is on development of new applica-
bions rather than modernization of ¢xisting applications

e Historic precedent — inclination to continue use of in-
house development capabilities rather than purchase modern com-
mercial software.

o Difficulty of technology transition — cost, training re-
quirements, and resistance to change contribute to short-term "opti-
mization over longer-term benefits.

e [incertainty — competing and rapidly changing technolo-
gles raise tears of selecting a 'wrong or immature technology.

o lack of life cycle costing — long-term impact of software
modernization s difficult to quantify and substantiate.

These technical and non-technical factors must be dealt with to
insure that mission support can be provided and sustained The next
chapter address<es some of the major ongoing approaches to modern-

ize existing and future software systems

13

M

‘cn.l'. »

o SIS
P

'."-J'-'-\a

A
ol

<
L] "‘
oo

4
}\'.

o

5

L
vadyy

P

£

>l'$|
LAY

Ty

N

e

¥

320 e Win Bedh B S-S i e S A N Nat bar Aol b A N AR i MUt g

CHAPTIR 111
ONGOING APPROACHES

In the previous chapter some of the factors which make soft-
ware programming labor-intensive and which impact on software
modernization were outlined. This chapter looks at some ongoing
efforts to reduce this labor-intensiveness and provide for software
modernization.

Software Technology for Adaptable, Reliable Systems (STARS).

The STARS program was initiated to improve the United States
ability to “exploit the advantages of computer technology through
software.” (1viii: [t 1s intended to rapidly improve the 'state of
practice,” that is, advance both the technology base and the level of
technology in daily use. The program's efforts are directed across
the spectrum of acquisition, management, development, and support
of computer software used for military systems. The goal of the
STARS program is to improve software productivity while achieving
greater system reliability and adaptability. The program's object:ves

are as follows: (1:x-xi)

e I[mprove the personnel resource by. s

— increasing the level of expertise, NN

— expanding the base of expertise available to Dol - \i

| e [mprove the power uf tools by: -
| — improving project management tools, 71
| - 1mproving application-independent technical tools,
| — improving application specific tools, e
e Increase the use of tools by: XN

\ — improving business practices. "
& 14 S
~4

| L::j.
‘, ?°d
' u
.. :i

N A e e et e i T N e N N e

— improving usability,
— increasing the level of integration,
— 1increasing the level of automation.

The STARS program also initiated efforts to establish a
Software Engineering Institute (SEI). However, the SEI was
subsequently established at Carnegie Mellon University. Pittsburgh,
Pennsylvania. as a separate program. The SEI is to translate technol
ogy base improvements from research and development (R&D)
activities to operational applications. To assist in this effort, the SEI
will maintain a state-of-the-art software environment testbed.

Ada Programming [.anguage’- As pointed out in Chapter II. the
proliferation of programming [anguages results in excessive costs in
software development. maintenance, and training; hinders software
modernization: and makes it difficult to move programmers from one
project to another. Many of these languages and dialects and their
associated support environments f(eg., compilers) have not been
formally or thoroughly tested and proven Their usc involves a
degree of technical risk. (4:209) These risks are of particular con-
cern in DoD applications where soitware can affect weapon systems
performance, safety of flight, information security. etc

In 19795, the DoD initiated an effort to develop a state of the
art high-order programming langudge and support environment
This lunguage was to be machine-independent 1 e truly portable!

and tightly controlled to preclude implementations of cither subsets

. . . R
‘ . Y
. LN L
. . « .
PR
N “ e
.)
RN Sl
L R T

e e
. . %
Ada s a trademark of the US Department of Defensc AR
- ‘.. .--
-‘. \ .
S
) .‘_-.'_\:
L §
r-_ 3 rd
N
AT A TN T T T e MR R TR R O e T T ."-."-."-."\"\"\i\"-.i_;‘-;."-i\ ;*-:.';".\ ‘s
AL AP I B I S R IR ST I S It SIS S Do S MG N, R I By T Dk, D S, B] Sl A At A A 2 A A a

or supersets of the language. The resulting language. Ada, is to be

the single standard programming language for embedded computers
and other mission-critical applications. (10:1) [t will be used when
developing standard software systems for both mission-critical and
non-mission-critical. general-purpose information processing applt-
cations (ie.. automatic data processing or ADP). However. some
specialized languages will continue to be used indefinitelv 1in applica-
tions where Ada cannot meel validated technical or performance
requirements

in addition to providing a standard, portable, state-of-the art,
high-order programming language, the Ada program has a formal
validation process for Ada compilers. This validation process 1s par-
tially enforced by controlling the use of the name "Ada” The DoD
obtained a copyright on the name to insure that it 1s only used lor
DoD validated compilers Ada will also have a standard program-
ming support environment (e . portable automated software tools!

Some estimates have indicated that Ada has the potential to
save the DoD several million dollars per year by lowering training
Costs ancreasing programmer productivity . and enabling substantial
reuse of standard code modules 35 7R}

End-User Compuling. As pointed out in the Introduction and
shown in Figure | software demand far exceeds the supply of qual
fied software programmers As unfavorable as this projection s
some experts have projected an even more untavorable supply to

demand ratio. with demand exceeding supply by a factor of tour by

"

1 G
P B S S I e e e e A e S e e e e e
A AR N N R L R L LA G S SO SR L LS SATA S, A A, ST T P VA A AT

-
0y

<
-
]

[}
x|
‘l

LRI N

o |

.

VA sy

o ARARRAAAS |

o

1990 However, this 18 not just a problem for the future, software
design centers are already “hopelessly overtasked with vyears of
backlog.” (11:17-18)

There are a few technology trends which can help to alleviate
this problem:

e Rapidly falling hardware costs,

e Proliferation of relatively inexpensive but powerful mini-
and micro-computers, and

e Powerful commercial fourth-generation programs which
provide nonprocedural "user-friendly interfaces.

These trends are supporting the decentralization of information
processing into functional workareas (e g.. operations, administration,
personnel, logistics). This decentralization 1s driven by two related
factors. The backlog of development work has made the software
design centers and 1information systems facilities unresponsive to all
but the highest priority work. In “self defense, functional area
managers have had 1o look to their own support through the applica-
tion of small computers. On the other hand. the information systems
protessionals have had to encourage this movement to alleviate some
ol the excessive demand on their resources.

For relatively straightforward "business-like applications (e g .
word processing, spreadsheet analvsis, business graphics. small data
base applications, terminal communications), commercial software
packages can provide superb and cfficient capabilities talbeit, with

widely varying quality. levels of sophistication. and ease of use)

N

. .
TN e,
o tatasnaratavalas

CAbs AR i b & o' 8l A8 B Sl Wl Sl Bl R N DL N

'}‘

N

“ .'.'- 4"

.
~

‘
4

A
N ,'{',t.
. »

-
l
.,

]

sl
&L

N

LA
55 %

N-‘I .n A '\ ‘s ,.‘
¢
8

A AN

,\?\

-———
EEPTS
“ et et
RN
c .
L

.‘,"(‘.-‘ e .‘-.‘.:f‘.’l B

aia Yy oAt

These packages can meet many of the end-user requirements with

little development or maintenance. However, these applications are ¢

not at the core of many funcuonal areas. P!
End-user computing has the potential to provide additional

assistance in addressing the real functional area automation require- S

ments. One of the major time factors and problem areas with devel-

oping application software i1s in first developing an adequate under-

standing of the application to be automated. Statements of require- "
ments are noted for their ambiguity, lack of adequate detail, and :
continually evolving nature during the development process. Profes-
sional programmers often embark on a development without any :
experience in the functional area which they are to help automate. _
This requires a learning curve just to reach a point where the proper ;
guestions can be asked of the functional area users. With end user
computing, the functional experts can interact directly with the pro- ;
gram throughout the development. This can reduce the development
time and produce a higher quality output. It should at least produce ‘
what the end-users need, as opposed to what they said they needed. __
Data Base Management Systems (DBMSs). In looking at the N
portability of software between systems, the portability of the asso- \
ciated data must be addressed. The importance of this i1ssue is ::'
reflected in the fact that a large proportion of the computer resourc Y
es of a typical data processing installaton is spent in sorting and .
merging data. Some estimates place this usage as high as 25 percent
of the total resources. (5:10) ‘
18 R

T

M I Te T -
o _.“J\:A.’..\ -\-" ‘-- '. Y

e A a Ak Ak S -a M L han Jen o e hie canBidn i Adiben e Jiia i iin dhion e CITESTETERRT R ST RAETR R T T kA,

S
.“\' :
<)
The problem of portability of data is compounded by such .
factors as the use of different nonnumeric collating sequences by EE;;
some compilers. In addition. an efficient data storage scheme for one E;':
DBMS might be "disastrous for another. (5:10)) A,
There are several interrelated approaches to address this égﬁ
' problem: &Eé
e Relational DBMSs (R-DBMSs) .:
e Data base machines :‘{E‘f}!
e Standardized DBMS query languages g"{ A
Relational -DBMSs provide very flexible data structures which k
are easier to use. This provides for lower development and mainte- E'.:-_S;
nance costs for application programs which make use of the DBMS. E}E
However, this flexibility comes at the cost of either reduced speed A' "
performance (responsiveness) for given computing power (process- :*_Eg
ing and memory capacity) or, alternatively, a requirement for in- EE%
creased power for a given performance level. A highly effective .‘
mcthod of providing the extra computing power s to off-load the ,:;2:}-(
data management functions to a dedicated procesor optimized to per :‘;Z:f
form this function, 1.e, a data base machine. However, to achieve the ;."_,\
. iull benefits of these capabilities, 1t 1s necessary to standardize the ’:E
s apphication programs interface to the DBMS (in this case, the PN

R-DBMS) This is the function and purpose of a standardized query
language such as the Structured Querv L.anguage (12 Atchs 2 3}

To address these 1ssues,

19

o " o ‘.. .*t" .‘

-
L] -
.

»

......
o

the Air Force 1s working with the Navy and the Army to establish ’
a joint requirements contract for a data base machine. The
contract will include high level specifications (including relational ;s

mode! {an R-DBMS] and Structured Query language (SOL) :
interface). (12:1) '

Further. the Air Force is working towards the adoption of SQL
as the Air Force standard tanguage for use with R-DBMSs. (12:2:

As seen throughout this chapter., STARS, Ada, end-user . "
computing, modern DBMSs, and other ongoing efforts are attacking
many of the fundamental problems. However, additonal emphasis is
needed in other areas to effectively address software modernization

Chapter 1V will identify some of these other approaches. -

-

- -y -

S A

l-ﬁ.' .l .l

’

20

LA XA

.0_’»‘“-.‘.1 b AP

A AT A R T
:&'.A.'.g‘.\'-\° : ‘.;“L..‘_'.LI: e e AN,

L SRR
Pl T LR

CHAPTER IV
RECOMMENDATIONS

Chapter III identified several ongoing efforts to reduce the
labor-intensiveness of software programming and to provide for
software modernization. However, these are primarily long-term ef -
forts and must be supported by more fundamental changes in atti-
tude and approach toward dealing with software aodernization.
This chapter will address some complementary actions which can be
instituted for both near- and long-term enhancements.

People Efficiency Over Machine Efficiency. Initially, computers

(ie . hardware) were very expensive, had relatively limited power,
and were not widely available. As a result, all aspects of computing
were oriented towards maximizing the efficient use of the computer
hardware system. Even as the cost of hardware fell and computing
power and availability increaseu, computer applications expanded as
rapidly Processing power and time remained a critical limiting
factor This relationship still exists today in some areas: for example,
the continual pressure for ever more powerful:

e Supercomputers for applications which are computation-
a.ly complex, and

e Smail microprocessors for real time applications which
are weight and space limited

However. there is a fundamental change progressively taking

place——the critical inmiting factor is increasingly software and, more

21

o e e e e T S e AN T T L e el e e g
NS

L i o an Bt A dn gt vaxlertrx-v_-s-"inlwu—w‘ﬂ'G‘v"'t---'-l"m“'-"u

oot
Pﬁ

Ll '
v :‘;‘;‘;‘I*)

e b At b2 N
e et Ak 2eb Bk BN 2 g & 4 2 o &4 S ad 2 e b2 d et Sd Ba S dran A ATt AL TR A A) 2t Seinc i Yo Rt he e ADRARCEAL Dol ARl 2 SN Seng

specifically, qualified software programmers. Over the last decade
hardware costs have decreased by two orders of magnitude (factor of
100} while programmer productivily has only increased by an order
of magnitude (factor of ten). (2:3)

With this shift in relative importance {rom hardware to soft
ware, a corresponding change i1n attitude toward system acquisition
1s required For example, the Air Force Phase [V program is a o4/
replacement program for the standard base level computer systems
tUNIVAC 1050-11 and Burroughs 3500/3700/4700) The strategy

for the Phase IV program was (13:14)

e To rigidly control the software functional baseline of the
standard base-level applications as of 1980;

e To replace obsolete UNIVAC and Burroughs hardware
with the new Phase [V environment;

e To convert the software functional baseline to run within
the Phase IV environment and apply /Zmited vpdalies as
necessary . [emphasis added]

e To do all this without loss of functional capability or Jde
gradation of response time

While this conservative strategy minimized system conversion
risk. it failed to adequately address softwvare modernization. In par
ticular. 1t failed to recognize that modern software tools are resource-
intensive {memory and processing power! and to analyze the life c¢v-
cle impact of continuing the tunctiondl baseline versus a strategy
designed to maximize user and programmer productivily. Such an
analvsis must address opportunity costs associated with dwindling
software development capabilities unless significant productivity

enhancements are made The required productivity enhancements

I\
2 s

q
N2
AN

AT A T AT AT .
DR NP Tt et e A"
AR S N P a

L R

can only be achieved if there is a fundamental change in future

system designs corresponding to a change in strategy from machine
efficiency to people efficiency.

Further, with the shift toward end-user computing, there must
be a radical change in the method and demands of the man-machine
interface (this user interface includes the interface to the operating
system, application programs, and hardware). End-users are func-
tional experts, not computer experts. To the extent that they must
become computer experts to make effective use of their decentral
ized automated support, their etforts are diverted away from their
functional work. This has the potential to offset much of the produc-
tivity gains which the automated support was intended to provide

Consequently, the user interface must be intuitive and conform
to the users’ conceptual model for the application, not a computer
svstems designer’'s model of the application (14:3) While advances
such as application-specific fourth generation languages (eg.. ad-
vanced relational data bases, powerful and flexible spreadsheet ap-
phications) provide significant help along this line, much remains (o
be done——particularly 1in terms of the technology lielded vice what s
available. Techniques such as event-driven operating systems and
applications (vice rigid sequential and procedural designs). visuallyv-
oriented and voice input and outpul, extensive inpul edits, and the
ability to interactively handle and resolve contextual ambiguities, are
required to reduce the demands on the users. Progress has been

made in many of these areas, however, most of the systems provided

23

L . "\'-$ ".\)\I'.'.

DR S AR IR TS I R LN : A Te g™ ‘.'3',‘-_,v..-'. FAEADA
X ‘11:‘..-_‘.\:'[;?\:(;(:&'_;(._'; PRSPV SOV CE R SIRAAIY

o ooyt

.
b

B B YN

r"\l- L ma e aa an o ad e oafu e ende b el Bdn e Sa Sin Ak Lo st A Lh Sascte e Adaibe bAsChe A3

1o the end-users fail to make adequate use of these technologies. In

part, this 1s because systems tend to be specified by information
svstems specialist who by virtue of their technical training and expe
rience find the existing intertaces logical and quite useable. evcen
‘friendly " However. this tolerance for these interfaces 1s extremely
costlv in demands on end-users who typically lack the necessary
training and experience.

Although end-users have typically been able to make effective
use——although sometimes quite lhimited——of currently fielded sys-
tems, this 1s due in part to the relatively limited application of these
svstems and extensive use of local ‘gurus” who have a strong person-
al interest 1n the computer svstems. However, as more and more of
the workload shifts to the end-users, this will become a progressive-
Iy greater problem Further the likelihood of adequately sustaining
this method of support under the stress of combat 1s low The time
and personal expertise available under stress could fall off precipi-

tously

Fewer and Better Trained People The growing shortage of
qualilied software programmers relative to the increasing demand
requires a more capital-intensive approach to meet vahidated mission
requirements While 1in principle. the laws of supply and demand
would indicate that sufficient supply tof personnel) could continue to
be met at progressively greater costs. there 1s a more fundamental
constraint The military services are himited both economically and

by law on their military and civilian personnel strengths In tact

“projected manpower shortfalls across the Five Year Defense Plan
(FYDP) threaten the ability of the Air Force t0 man new weapon sys-
tems as they are deployed.” (11:1) Clearly, such direct combat mis-
sions have a higher priority for personnel resources; and mission
support areas must find ways of sustaining, and even expanding,
support within or below current personnel levels.

While ongoing efforts to increase the use of commercial soft-
ware, contracted services, and end-user computing will help address
this problem, more must be done Higher levels of investment in au-
tomated support environments must be made. These investments
will be cost effective from a cost-avoidance standpoint, but will
probably not result in large personnel reductions on their own, par-
ticularly in the near-term. However, the issue is increasingly becom-
ing one of adequate mission support vice cost-effectiveness.

Further, to make {ull use of, and thereby derive the full benefit
of. automated support environments, signtficant additional training is
reguired to update the technical knowledge of 1n place personnel
The skull levels of the human resources have been identified as the
most important single influence on software productivity ~ {(1:531
i his additional training 1s required both for in house development,
as well as. to adequately specifv. contract for. and monitor contractor
Services

A& the pressure to reduce personnel incredases. programmer
productivily must become a critical performance factor The limited

altordability of 1in house personnel will necessitate increased etforts

25

|1~ rRARAAS

A
) .

A& s

oo N

{l.f..l' "rs(ﬂ.‘ -

!

N\ 7

X

- v
S ;..A'l-'fv‘l

AAAS

K

PR 4

y S ‘ LY L T S L T L N e e e S e
Jwgkﬂxﬂkﬁnﬂgklgkhdx;&@ié:ﬁiﬁhﬁ‘dﬂjiﬁch&. e e e N N

to adentify individuals with high productivity potential and to
ehiminate others during their probuonary periods This will result
in additional turnover higher training demands. and significant
stress on supervisory personnel (o make and enforce these judg
ments on individual performance and potential In order tor the su
pervasory personnel to accurately make these determinations. they
also will need additional technmical tramning to maimntain knowledge ot
state of the practice and state ol the art methods and technolog:es

Interoperabiity and Networking The Ada programming lan
guage offers significant potential to reduce personnel requirements
through the reuse of software modules and packages However
there are several practical mitations to extensive software reuse
Some of the major tactors are the level of awareness of the availab:l
1mv of a wiven software module and a rapid means for obtaming the
module when required

current procedures ol the Federal Intormation Resources Man
agement Regulation (FIRMK 201 31 0141 require submission o ab
stracts for common use programs and svstems to the Federal Sait
ware Exchange Center for publication in the Federal/ Software £
chanwe Catalog (1St However this document s published infre
quentiv lannually ! and does not provide tor rapid responsive dis
semination of programs which appear useful What 1t required s an
on hine catalog with networked access and a means ol rapidly tele
communicating program modules from one computer installation to

another

M
Ll

.

PR AAANR

.."’-(4-{"

AAAASS

¥ AR §

PQ 'l,l'-,-’-’

¥

y I
s
l' [

R

2y

'izf

P A

red

‘o

¥

While the Ada program addresses establishment of support
program libraries (16 18), general availability of program modules
from program library requires functional interoperability of comput-
er systems on a wide-scale basis and extensive networking. The
Detense Data Network (DDN) offers the means of networking the
resources, however, full recognition of the necessity for wide-scaie
interoperability has not been achieved. Interoperability 1s a basic
requirement which transcends the immediate operational require-
ment which may not directly necessitate full interoperability. Until
wide- scale functional interoperability 1s achieved, effective software
reuse will be unnecessarily limited.

Policy _Approach. The recommended changes outlined above
require basic changes in attitude and approach in addressing soft-
ware modernization issues. The inertia inherent in people and or-
ganizations which results trom resource constraints, communications
barrmers, tear of change, etc., opposes efforts to effect the required
changes Firm policy must be established to guide and motivate or -
Ranizational direction

Policy must frequently precede an organization's capability to
cifectivelv implement the policy. Policy should be prescriptive rath-
er than descriptive—~—guiding rather than documenting the organiza-
bon s direction This s an essential element ol leading

0 be ctfecuve. the policy must also be entorced The basic
problem as that 1 the policy 15 too far dhead of the organization s

abhility to implement 1t then exceptions to the policy will dominate

27

- e L S P e A L e 2P G AR aek s aeic S sRecafas iy N hataiin ini e it et i S ettt it >R TETRT
|
\

and the policy will be meaningless However, unless significant pres-
sure 18 applied to conform to a progressive policy. reasons 10 post
pone 1ts implementation become an easy route to 2void the manage
ment problems associated with making required changes

The growing problems with software modernization necessitate
that a progressive policv be established and e¢nforced The short-
lerm 1mpacts must be faced because the long term costs ot faihng to

act would be nothing short ol tailing to support mission require

ments.

A R A

.

-
.
.
.
.
’
'3

e
L

>
-
hY
&
K
"
L)

[N
.l
5
h]

NN RO

T

|
ic';-:';il'.-:

CHAPTER V
CONCLUSION

The dependence of the United States on qualitative superiority
to mamntain deterrence has placed increased emphasis on software
for flexible and responsive support of mission-critical and general:
purpose applications. However, the responsiveness and integrity of
soltware systems is being jeopardized by the labor-intensiveness of
software programming and the growing shortage of qualified soft-
ware programmers relative to the expanding demand.

Although the software problem 1s generally recognized and
numerous nitiatives have been started to improve the situation,
progress has failed to reverse the overall trend. The technological
approaches to ymprove the productivity of software programmercs,
enable reuse of software packages, and accelerate technologyv transi-
Lon and integration into the state-of-the-practice, offer significant
long term potential to reverse this situation. However, near-term
gdins are himited by existing attitudes and approaches toward soft
ware modernization. Fundamental changes are urgently needed to
minimize near lerm problems and accelerate the achievement of
long term beneflits

The most critical near-term step in reversing the negauve
trends s the establishment of progressive and demanding policies on
software modernization This 1s essential to continued support of US

strategic and tactical capabilities.

Wl Y. q‘iw“"mmmwwmmfmv"rﬂ' "R TI»RTTARY TLFLFLFL N UYSYR VERES "}i

e
'A.'- Lt
LR
RCRE SRS
PR
P
S

o
700
IRt
et

F

]
=
¥

P AN
a e e

‘0

.

A s
ajale e,
P .

o
P
el

»
’

e s 2
R
:’?I_ PO RS

)
0
’

20 L
-.‘.:.__-..
FALN
P
A
b s
- '.- -I
.t -\ -'
._' LY}
S
- . P T e ™ s v 2 e
AL U A e S T R T T T T I L N N e el lete
~ ,\.:\':\':\{\J_\'.'-"‘-{\{\)J.'_\.'_\':.'_\.'.\"\"_\'.\t\'.&'_\'_h" L S S SR O, L A S SN LSy v s aYava

T EF T T E T E T T E T TR Y VTR T I T T T YT TR T ATY Y TE Y RV E R TR T VN VR TN LN ERERIAER TR TNTNTNTRE TN LTS s S SRS S e S S

LIST OF REFERENCES

] Software Technology for 4Adapiable Reliable Systems (ST AKS/
Frogram Strafegy Washington, DC Department of Defense, 15 Muarch
1983

2 McClure, Carma L Mandging Software Developmend dnd i
lendnce New York Van Nostrand Reinhold Co. 1981

B Intormation Technology K& D (ritcal Trends and /ssves \Wash
mgton, DC US Congress. Office of Technology Assessment. OTA CIT
26R February 19RS.

4 Elson. Benmjamin M. "Software Update Aids Defense Program.
Avratron Week & Space Technology, March 14, 1983 pp.209-221.

S, Wolberg. John K. Conversion of Computer Sotrware. Euaglewood
| Cliffs. NJ Prentice-Hall, 1985

\ O Dunn, Robert and tMiman, Richard Quaniv Assurance for (om -
| puter sSorrware New York McGraw Hill, 1982

7 Saitb, Sabina Ada An /nroduceron . New York. Holt, Rinchart
and Winston, 1985

|
’ A Wolf, Martin [et al The Ada lLanguage Svstem JEFE Com
puter, lune 1981 pp 27 39

| 9 A Force Informailion Svstems Archrtecture Volume /. (her
view Washington DO Headquarters United States Air Force, B May)
1989

10 Interim Dol Policy on Computer Programming [anguages
Memorandum. USDR&E to Secretaries of the Military Departments el
al 10 June 1T9YR,

30

XL

‘J‘)
IR
2
23
VU Keport on Data Syvstems Management and Manpower Impacls, "
lolume [Frecutrve Summarv Washington, DC Air Force Manage-
ment Analysis Group. 1 September 1984
12 Database Machine Requirements Contract and Standardization
on Structured Query Language (SQL' Letter, Headquarters United " '
States Air Force/SIT, 1o all Major Command/SI et al., 18 June 1985 4-;‘-;-_ -
P 201
.':'..'
15, Inmierim Report on A Force Base Level Automalion Etnviron ;:-_5
y men!. Washington, DC. National Academy Press, January 1986. o
| iy
1 >Sime, Max E and Coombs, Michael | (ed) fesigning for human- '-;Z-C:
. . . b e
computer communcayon . London Academic Press, 1983 L
;:-
1S Federal Sottware Fxchange Caraloy Washington, X0 National e
Technical Information Service, PB8S 904001, 1985 N
~TN
16 >Stenning, Vic et al. 'The Ada Environment. A Perspective l_*_l::s
IEEE Computer, June 1981, pp. 17 26. Oy
"7 software Modernization Headquarters United States Awr Force/ ;-:i.,-
SITT staff paper. undated (c. 1985) RN
.':\"'
N
4
R
N
N
N
." \
i
S
o
)
21 e

o s R0 B R AR L Aol A e iedaietedaln e M MA Ral i

|

i

}

|

|

GLOSSARY
AB Air Base

Ada Department of Defense standard high-order computer
programming language. Named in honor of Augusta Ada
Byron, Countess ol Lovelace (1815-51), the lirst computer
programmer. (ANS[/MIL STD IRI1SA [9R3)

ADP Automatic Data Processing

AFB Air Force Base

AFIT Air Force Institute of Technology

ANSI American National Standards Institute

BASIC A high-order programming language intended for use by

mimmally trained personnel to do relatively simple
programs. (Beginners' All-purpose Symbolic Instruction
Code)

BS Bachelor of Science (degree)

Burroughs Standard Air Force base level computer prior to Phase 1V

3500/ capital replacement program.
3700/
4700 .
COBOL A high-order programming language for business appl-

cations. (COmmon Business Oriented l.anguage) :
DBMS Data Base Management System
DDN Defense Data Netwaork
DoD Department of Defense

32

WENMA] FEEEXARFE AR RMPEF |

| RSNy PO AL PO 1% (RN VR AN ¥ X

Flll
FIRMR

FORTRAN

FSEC

FY
HOQ
|EEE

JOVIAL

MIL-STD

Mission -
Critical

MS

Phase 1V

Phb
R&D

R DBMsS

Long-range interdiction fighter aircraft
Federal Information Resources Management Reguiation

A high-order programming language for technical and
scientific applications (FORmula TRANslator)

Federal Software Exchange Center, S285 Port Royal Road.
Springfield, VA 22161. (703) 487 4848.

Fiscal Year (1 October — 30 September)

Headquarters

Institute of Electrical and Electronics Engineers

A high-order programming language for command and
control applications. (Jule's Own Version of International
Algorithmic Language)

Military Standard

An application exempted from the Brooks Act by 10 USC
2315 the Warner Amendment to the FY 1982 Derense
Authorization Act. (10:1}

Master of Science (degree)

Program for capital replacement of standard Air Force
base level computers (UNIVAC 1050-11 and Burroughs
3500/73700/4700) with Sperry 1100/60 computers
Doctor of Philosophy (degree)

Research and Development

Retationa! -Data Base Managemont System

ey
f l. 3
’.""‘

." .

v %f(ﬁ\
S"-".’
LR

L4
NAL

_~;'
LA

&';;’5

S

o f O,

I..I:‘I LA

“p

LA

SEI

SIT

SITT

SQL
STARS

UNIVAC
1050-11

us
USAF
USC

USDR&E

- -

Software Engineering Institute (Carnegie Mellon Univer-
sity, Pittsburgh, Pennsylvania)

Assistant Chief of Staff for Information Systems (HQ
USAF), or

Deputy Chief of Staff for Information Systems (Major
Command).

Architecture and Technolgy Directorate, Assistant Chief of
Staff for Information Systems (HQ USAF)

Technology and Securitv Division, Assistant Chief of Staff
for Information Systems (HQ USAF)

Structured Query Language
Software Technology for Adaptable, Reliable Systems

Air Force Standard Base Supply System computer prior to
Phase 1V capital replacement program.

United States (also written US.)
United States Air Force
United States Code

Under Secretary of Defense for Research and Engineering

34

:

AN]
.

~,
>

R I N R T S N I I N T ORI N

¢
£
x

K
1
L]

R R R R N N N N R AR R AT RIS

i ot 32 BN A ¥
L‘,L‘!L‘:;‘.,L a W

