WIEWJ:W}MIJM&TJT i

AD~ATT78 496

B PN TR M P SR W R KA K I TR DO M 2 AR AR SR PN A AR S

X

B FILE copy

NAVAL POSTGRADUATE SCHOOL

Monterey, Galifornia

THESIS

EMYCIN-PROLOG EXPERT SYSTEM SHELL

by
Fikret Ulug

December 1986

Thesis Advisor: Neil C. Rowe

Approved for public release; distribution is unlimited

RS S tal ad gt |

URITY CLASSIFICATI i G
REPORT DOCUMENTATION PAGE
'a REPORT SECURITY CLASSIFICATION ‘b RESTRICTY
Unclassn.fled b RESTRICTIVE M"“K'NG
22 SECURITY CLASSIFICATION AUTHORITY) OISTRIBUTIONT AVAILABILITY OF.REPORT
Approved for pugllc release;
3b OECLASSIFICATION / DOWNGRADING SCHEOULE
g distribution is unlimited
2} “ 4 PERFORMING ORGANIZATION REPORT NUMBER(S) §5 MONITORING ORGANIZATION REPORT NUMBER(S)

|
| 64 NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 74 NAME OF MONITORING ORGANIZATION

H (1t Ircabdl
i Naval Postgraduate School sppicasle) Naval Postgraduate School

- 6¢ ADORESS (City, State, and 2iP Code) 7o ADDRESS (City, State, and 2/P Code)

Monterey, California 33943-5000 Monterey, California 93943-5000

82 NAME OF FUNDING / SPONSORING 8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION MUMBER
ORGANIZATION (1t apphcable)

10 SOURCE OF FUNDING NUMBERS

PROGRAM PROIJECT rasg WORK Nt
ELEMENT NO NO NO ACCESSION NO
?»}f 1 TITLE (Include Security Classifration)
EMYCIN-PROLOG EXPERT SYSTEM SHELL
: 10 PERSONAL AUTHOR(S) Fikret Ulug
& *1s TYPF OFf REPORT) 13b TIME COVERED V4 DATE OF REPORY (Year, Month Day) |'S PAGE COUNI
Master's Thesis FROM __T0 1986 December 189
'6 SULPAPLIMENTARY NOTATION
2 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block Aumber)

FELD GROUP SUB-GROUP

Expert Systems, Expert System Shell, Prolog

‘Y ABSTRACT (Continue on reverse if necessary and identify by biock number)

Building an expert system from scratch requires a long and tedious
programming process. To make this casier, expert system shells are
devised., We have implemented a shell in the language PRCLOG. Our shell
- 15 modelled on a famous one, EMYCIN. We btuilt two small-sized expert
| systems using our shell. The first one (CAR diagnosis system) diagnoses
engine problems in a car, and the second one (FINANCE analysis system)
sives financial advice. We also designed some explanation facilities
for out shell, The choice of PROLOG facilitated our study
considerably, PROLOG's built-in pattern-matching and backtracking
facilities were two powerful features for the deduction process and
CMYCTIN's backward-chaining control structure., With our shell we were
able to biild an expert system quickly., Although they were left as a

[P

10 DS RIYTON/AVAILABILITY OF ABSTRACY 2\ ABSTRACT SECUMITY CLASSIFICATION
SHCLASSIFEOAUNUMITED (O SAME AS rpt DTC USERS Unclassified

| 124 A ME OF ARSPONMBLE OIVIOUAL 170 TR EPHONE (InClvde, Ane sk oe) | 77 OFFiLt M
Heet L é. Woue " meh‘“) %2R' STMBOL

DD FORM 1473, 84 Man 8] APR edition May be used until eahaysted
SECYRITY CLASSIFICAY £ twig D
Al other #diti0ns a1@ Obsolete LATIQN QF Tmi Pact

SECURITY CLASSIFICATION OF THIL YAGE (When Date Bntered

19. ABSTRACT (continued)

- s +
future study, implementation of the user interaction and
explanation system modules can make our shell a usable product.

SN 0102:LP- 0144601

SECURITY CLASSIPICATION OF THIS PAGE(Whon Date Bntered)
9

Approved for public release; distribution is unlimited
EMYCIN-PROLOG Expert System Shell
by

Fikret Ulug
Lieutenant Junior Grade, Turkish Navy
B.S., Turkish Naval Academy, 1980

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE
from the

NAVAL POSTGRADUATE SCHOOL
December 1986

o Sl VU

Fikret Ulud/ ~

Approved by: m@ 7@41”(//

1 C. Rowe, Thesis Advisor

n, Segond Reader

o g :
Vincent Y. %dm, Chairman,
Departme of Computer Science

Knsale T. Mars

Dean of Information and Policy iences

o B i

DTIC

eoPY
| INGPECTED

6

\

"
i

\ ABSTRACT

\Sﬂ Building an expert system from scratch requires a
long and tedious programming process. To make this
easier, expert system shells are devised. We have
implemented a shell in the language PROLOG. Our shell
is modelled on a famous one, EMYCIN. We built two
small-sized expert systems using our sheil. The first
one (CAR diagnosis system) diagnoses engine problems
in a car, and the second one (FINANCE analysis system)
gives financial advice. We also designed some
explanation facilities for our shell. The choice of
PROLOG facilitated our study considerably. PROLOG's
built~in pattern-matching and backtracking facilities
were two powerful features for the deduction process
and EMYCIN’s backward-chaining control structure. With
our shell we were able t¢ bulld an expert system
quickly. Although they were left as a future study,
implementation of the user 1nteraction and explanation

system modules can make our shell a usable product.

- > .
- 1/,/ /f(%‘) , //: ¢. - o4 , (/.(:,’ . . \’L
. v/.l :’ ‘.‘)¥ - J

A+

. L ; /
ul Lol
! &‘/‘{

}

a anavayemed
-

L}
"
!

A.
3 B.

C.

ITI. THE

A.

I. INTRODUCTION . ¢ ¢ ¢ o o o o o =

EXPERT SYSTEMS ¢ ¢ o o « o o« o o 8

TABLE OF CONTENTS

THE EXPERT SYSTEM SHELL AND EMYCIN . . 10

WHY EMYCIN?
WHY PROLOG? » » L] . L] . L] Ld

THE WORK DONE

EMYCIN-PROLOG CONSULTATION SYSTEM .
INTRODUCTION « . . .

[. - . L] . . . 12
- . . - . . 14

- L] . L] 3 14

*® L] L] 18

. 3 3 . . » 18

DATA STRUCTURES . . « ¢ ¢ ¢« & « « « « « 18

1.

INFERENCE MECHANISM

The Context Tree « . 19
a. Introduction 19
b. Uses Of The Context Tree . . . 20
c. Internal Structure Of Contexts 22
Parameters . . . ¢« ¢ ¢ + .+ + . . . 24
a. Introduction 24
b. Types Of Parameters 25
c. Internal Structure Of Parameters26
Rules . . ¢« . ¢« ¢« ¢« ¢ ¢« ¢« ¢« « o« « « 28
a. Introduction 28

b. Internal Structure And Definition
Of Rules [. . 3] . - [. 30

Cc. Creation Of Context Instances And
Rule Evaluwation 32

. . . 34‘

2SNl A

e

ArR e WV SR YT

p <

Sy

A TR ST ST R

-\

SO TR L COR

b o TR 1t M AT AT AT S W VAT T A MR A R N

P AL i i e e A

£t g

III.

Iv.

VI.

INEXACT REASONING

A.
B.

KNOWLEDGE ACQUISITION

EXPLANATION SYSTEM

A.

D.

E.

CONCLUSION

A,
B.

C.

D.

E.

FUNCT IONS L] . L] L[4 » L] L] L 4
CONSULTATION CYCLE

1. Detailed Analysis Of The Control
Structure . . . ¢ « ¢ o .

2. Departures From The Main Control
Structure . . . ¢« ¢ . . .

CERTAINTY FACTORS

COMBINING FUNCTIONS

INTRODUCTION

. . . . e . .

ACQUIRING AND STRUCTURING THE SUPPORT
KNOWLEDGE » L] L] L] . L] L]

NATURAL EXPLANATION AND EXPLANATION TREE
SEMANTIC EXPLANATION NETWORK . . .

INFERENCE NETWORK

THE LESSONS LEARNED . . .

REQUIRED HARDWARE AND SOFTWARE
EVALUATION OF EMYCIN . . .
1. Generality Of EMYCIN
2. Some Particular Problems . . .
PROLOG AND EMYCIN-PROLOG . .

EFFICIENCY OF EMYCIN-PROLOG

L] L] . . 3 .

36
38

38

a4

45
46
50

52

54
54

58
59
61
62

66
66
67
68
68
69
70
71

g s e M T e A WD R S BT @ LD M o o LT TN T T S L TR

S TP T ™ s YT I

F. THE BENEFITS OF OUR WORK . .

APPENDIX A: SOURCE CODE

. . . . - . .

APPENDIX B: LIST OF FUNCTIONS . . .

APPENDIX C: KNOWLEDGE BASES

1. CAR DIAGNOSIS SYSTEM KNOWLEDGE BASE .

2. FINANCE ANALYSIS SYSTEM KNOWLEDGE BASE

APPENDIX D: SAMPLE CONSULTATIONS . .

1. CAR DIAGNOSIS CONSULTATIONS. .

2. FINANCE ANALYSIS CONSULTATIONS

APPENDIX E: FIGURES

LIST OF REFERENCES

BIBLIOGRAPHY

INITIAL DISTRIBUTION LIST . . .

72

74

124

127
128

142

156
157
163

169

184

186

187

wﬁ%ﬁﬁﬂﬁ@ﬁﬁiﬂ%ﬁlﬁﬁ&ﬂ&ﬁﬁﬁﬂl%ﬁﬁ?ﬁ%ﬁﬂﬂﬂ@§555ﬁﬁﬁlF%%ﬁ%ﬁﬁwﬁﬂﬁﬂﬂﬁﬂﬁkﬁmﬁﬁ

Ty
X

7

1 WA R e [IRt o AW R T T MY

I.JTATRODUCTION

A, EXPERT SYSTEMS

Our main goal 1s +to +translate +the inference
engine of EMYCIN into +the PROLOG language, and run
this inference engine with two different knowledge
bases. The expert system shell EMYCIN and its
inference engine are explained in Section I.B and I.E
respectively. This section provides background
information about expert systems.

One of the main interests 1in +the area of
artificial intelligence is the development of "expert
systems" (ES). An ES is a large computer program which
captures professional expertise in a field such as
fault dlagnosis, chemical analysis, or equipment
design, and i1s capable of providing recommendations as
valid as those of human experts. Some well-known
expert systems are: the Heuristic DENDRAL program
which finds the relatively small set of possible
molecular structures of known constituent atoms that
could account for the given spectroscopic analysis of
an unknown molecule [1]; MACYSMA, which assists
mathematicians, scientists, and engineers in solving
mathematical problems; and MYCIN, provides

consultatlive recommendations for dlagnosis and

8

treatment of infectious disease. The MYCIN example is
especially interesting in its ability to reason with
"inexact" data.

Years of experience have yielded a 1list of
prerequisities for the worth of expert systems [2,3].
Scme of these prerequisities merit description. First,
the program should be useful. It should respond to the
actual needs of a domain. Second, the program should
be able to explain 1its advice. It should provide the
user with enough informaticn about its reasoning to
allow a decisicn as to whether to follow the
recommendation. Finaliy, the program should be able to
communicate naturally with the user. It should avoid
confronting the user with computer jargon. It should
use a language as close as possible to the natural
language to permit understanding of data requests,
explanations and recommendations. This would
facllitate the transfer of knowledge by the knowledge
engineer +to +the program during the knowledge-base
design phase. The knowledge engineer 1s one of the
users of EMYCIN (see following section for a

discussion about the different users of an expert

system).

FA R ’ﬁ B

]
%

e W

FRE I A

",
T4

-

SR B

V&

S TR ESR IR

T

S,
LR

PLEGIPRERE: T

e B QO R |

.
LN,

YK A S ST s ool ',

A,

.y

4

T TS T A TIPS T WA

B. THE EXPERT SYSTEM SHELL AND EMYCIN

Before the concept of the expert system shell is
introduced, the principle builder of the expert
system, the knowledge engineer, and his/her
relationship to +the expert system shell should be
described. The knowledge engineer works together with
the domain expert during building process. The
knowledge engineer 1s +the AI specialist while the
domain expert 1s the speclalized senior professional
with respect +to the domain. The relationship of the
knowledge engineer and the expert system shell has
been expressed as follows: "The need for a knowledge
engineer is inversely proportional to the quality of
the tools provided by the expert system environment"
[a].

Over the years, methodologies used to build
expert systems have developed similarities, and they
can be categorized according to the representation of
knowledge (first-order predicate calculus, semantic
networks, production systems, frames [5]), and
inference methods that perform reasoning on the
knowledge ovase (generate-and-test, backward-chaining,
forward~chaining). While the first generation of
expert system bullders used enhanced AI languages like
Interlisp and PROLOG, second generation efforts

concentrated on building and wusing languages that

10

2Tt NIRRT Far e ™ S PRI 0 o O

25

LRI A Y

NIPE T oo s S WP L) el e e YWY e

1

TR TV

embody one or more of the above knowledge
representation schemes and 1inference methods. Such
languages reduce the expert system building time
considerably, and they are called expert system
shells. "Without such an environment, the development
process would focus on programming. This burdens and
lengthens +the task of the knowledge engineers and
decreases +the quality of communication with the
experts; they do not work on the same thing" [6].
EMYCIN is one such second generation expert system
building language (expert system shell). Some other
expert system shells are presented in detall elsewhere
[7].

An expert system shell should facilitate the
expression, display, organization, and interaction of
thoughts. EMYCIN presents a conceptual model
consisting of triples (attribute, object, value) and a
context tree, designed to satisfy the above
requirements. Here the conceptual model should not bhe
confused with the 1language used, since EMYCIN has
already been implecmented with different languages such
as Interiisp, and in our work, with PROLOG.

EMYCIN’s task 1s explained by 1its aizthor as
follows: "EMYCIN 1s used to construct and run a
consultation program, a program that offers advice on

problems within its domain of expertise. The

11

TRTIR IR WA A T R

R

T T TS

T

TN A O O RS,

o«

T TYT LT s At A SN S S TR YT

wIIF,

o
-

SET L L B A A S Y

~ O T

consultation program elicits information about a
particular problem (a "case") by asking questions of a
user. [t then applies 1its knowledge +to the specific
facts of the case and informs the user of its
conclusions. The wuser 1is frec to ask the program
questions about its reasoning 1in order to better
understand or validate the advice given" [8]. Once

EMYCIN is built by a shell designer +there are two

other users of it. First is the knowledge engineer who

uses EMYCIN to produce a knowledge base for the
domain. The knowledge engineer most of the time works
with the domain expert (see Figure-1). The knowledge-
base is composed of factual knowledge about the domain
and production rules [9] showing how to go through the
consultation. The third user of EMYCIN i1s what we call
the consultor to whom the advice 1s given. Thus
EMYCIN, together with the knowledge base, constructs z
new consultation system. Throughout our study we will
refer to the shell designer as "we" or "us".

Figure-1 shows the overall organization of the

EMYCIN and interactions with different users.

C. WHY EMYCIN?
In our search for an expert system shell EMYCIN
has been chosen for several different reasons. First,

as a university research project compared to a

12

commercial one, EMYCIN has 1increased credibility.
EMYCIN in fact originated from the expert system MYCIN
which diagnoses infectious diseases. MYCIN’s succesful
diagnostic results encouraged us to look at its
structure. The bullders of EMYCIN (Essential MYCIN)
stripped off the domain specific knowledge of MYCIN
and proposed +the remaining structure as an expert
system shell and also claimed its applicability for
domains other than medicine.

Our primary need was for a higher-level
conceptual structure which would embrace the domain
knowledge in a structured way. We also needed an
inference engine +to operate on that knowledge as well
as the implementation of these conceptual and
structural requirements 1in reasonable hardware and
software resources.

EMYCIN provides a highly organized conceptual
structure 1into which +the domain knowledge is to be
mapped. It is a tree whose nodes correspond to the
hierarchically organized domain-knowledge chunks.
These nodes are designated contexts. Our attempt is to
have a Dbalance between the complexlity of the context
tree requirements and their implementation

difficulties. EMIUCIN 1is expected +to provide this

balance.

13

D. WHY PROLOG?

Programs in PROLOG consist of rules and facts,
where each rule 1s equivalent to a Horn clause
[16,11]. The entire set of facts and rules comprises
the knowledge base. When this Inowledge base is
queried, the information which is a logical
consequence of facts 1in the knowledge base can be
retrieved. Inference is done 1in a top down fashion
using the resolution principle [12]. PROLOG has a
built-in-pattern-matching facility which 1is based on
the unification principle [i10]. Since the EMYCIN
inference engine works on production rules [9],
PROLOG’s basic statements, which are rules, facilitate
implementation of the rule based structure of EMYCIN.

Emergence of different PROLOG implementations on
different machines encouraged us to work with PROLOG
[13]. Also this increasing availibility and 1its ease

of use increases the portability of our work.

E. THE WORK DONE

Our work can be seen in four different parts. The
first part involves the writing of a program using
PROLOG wnich imitates the 1inference engine of EMYCIN
expert system shell. This phase of our work is called
the shell bullding process. During the shell building

process EMYCIN'’s data structures, inference mechanism,

14

 F = P TR

and the way of reasoning were analyzed. The second
part was the building of two different knowledge-
bases. The knowledge-bases are composed of production
rules and all structural information +that EMYCIN
requires (i.e., context and parameter definitions).
The third part involved running these knowledge-bases
and obtaining consultations. The final part was the
analyzing of the explanation system of EMYCIN.

EMYCIN 1is composed of +three main parts: the
knowledge-base construction system, the consultation-
driver system (inference engine), and the explanation
system (see Figure-1). The inference engine operates
on the knowledge-base using EMYCIN’s high level
conceptual structure (context tree), the data triples
[attribute, object, value (see Section II.A.1. for
details)], and production rules [9]. Reasoning is
done by backwards chaining, which is +the main reason
for choosing PROLOG as the implementation language,
since 1it already posseses this built-in control
structure.

The 1inference engine builds the context tree
dynamically and, according +to the definition of
parameters (one of the elements of data triples),
reasons on the production rules to find the wvalue of

the goal parameter defined by the knowledge engineer.

15

Two different knowledge-bases were built, namely
the CAR diagnosis system and tiae FINANCE analysis
system. Their context and parameter definitions and
production rules were defined. The 1inference engine
was run on these knowledge bases and sample
consultations were recorded (see Appendix D for sample
consultations).

The FINANCE analysis system originated elsewhere
[14]. This sample knowledge base was chosen
specifically to test our inference engine.

Following the 1implementation of the consultation
driver system (inference engine), the EMYCIN
explanation system was analyzed, i1its deficiencies
identified, and a new system proposed. Even though the
explanation system was not implemented, 1ts basic
structural elements were presented using PROLOG
definitions, and a small sample of an explanation
session was built for the CAR diagnosis system, again
using PROLOG (see Section V).

The knowledge-base construction system provides
for the acquisition of an expert’s domain knowledge
and storing of this knowledge, which 1s then ready to
be processed by the consultation driver system. While
this system was not implemented, requirements for the

knowledge acquisition system are presented in Section

IV.

16

While EMYCIN-PROLOG did not need some of the
elements of +the control structure of +the EMYCIN,
(e.g., the UPDATE-BY list is not used to keep track of
the 1list of related rules for every parameter [2]),
some new properties were added 1into +the static
definition of parameters (e.g., the "is_t" (is traced)
property of a parameter 1s to keep track of whether

the parameter’s value is traced or not).

17

i

o e ot e A o i o vl el s et

A

(288

I I

e

II. THE EMYCIN-~-PROLOG CONSULTATION SYSTEM

A. INTRODUCTICN

In +this chapter EMYCIN's data structures and
inference mechanism are analyzed. Throughout our
study, the PROLOG implementation of +the EMYCIN
inference engine 1s referred to as EMYCIN-PROLOG.
Section II.D explains the functions used in rules and
Section II.E glves a step-by-step analysis of the
whole consultation cycle.

Throughout this thesis context and parameter
names are printed 1in smaller fonts for clarity

purposes (1.e., context, parameter).

B. DATA STRUCTURES

The structural aspect of the expert’s problem
solving strategy is reflected in the context types and
their parameters. These two main elements of the
system provide the language to express the expert’s
problem-solving methods for the domain. Besides
contexts and parameters. ancother main component is the
rules which embody domain specific knowledge. The
following three sections describe the internal

structure of contexts, parameters and rules and

introuuce the idea of a context tree.

18

1. The Context Tree

a. Introduction

In this section MYCIN’s context tree
structure is used as an example (see Figure-3/4).

The context tree forms the backbone of
the consultation system by organizing the conceptual
structure of the knowledge base and providing a
framework for the flow of the consultation system. The
tree also includes the goal for which the consultation
system will try to determine a value. In our example
the goal 1s therapy (i.e., determine the best therapy
recommandation). Therapy is a parameter of the patient
context.

The context tree 1s composed of at
least one context type which corresponds +to the
conceptual entity in the domain. One conceptual entity
from our example 1is the patient context. As 1its name
implies, the context tree 1s structured in a tree
hierarchy. Each context type 1in the tree resembles a
record declaration in a +traditional programming
language. Since a context type can have more than one
instantiation, the context tree has two distinct
appearances. The first one corresponds to the

declaration phase of a record and is called the static

context tree. The static context tree 1includes every

context type 1n 1t and shows their hierarchical

19

G PR R

o XIS O VS o D M BB R W

o M T T O s N T N S N A N A

s

L,

[Eats

g} |

AL SR 105 se I gel

R

“

AN k. - (S

TR

relationship: their root context (patient), all
parent/son connections (patient context 1is parent of
the current culture context), etc. Once the
consultation starts, depending upon the specific
consultation, not necessarily all context types are
included {(e.g., therapy ccntext is not included in the
dyramic tree of +the MYCIN). A given context types
might have more than one instances (current culture
context has two instances, culture-i and culture-2).

The resulting +tree structure therefore would be quite
different from the static context tree structure. This
structure variation corresponds to the second context

appearance and 1s called +the dynamic context tree

(see Figure-4). The above distinction of static and
dynamic context tree is illustrated 1in Figure-3 and
Figure-4. These samples were taken from MYCIN [2].
Hereafter, we will call the static and
dynamic context trees the static tree and dynamic tree
respectively.
b. Uses Of ' .s Context Tree
It is very important to understand the
purpose of +the context +tree. Defining contexts of a
problem 1is not simply naming 1solated physical
entities. The context tree provides a way to represent
multiple instances of these entities. One of the main

mistakes in defining the context tree 1s +to define

20

contexts which have only one instance and no more.
This makes the tree cumbersome and does not bring any
advantage since this type of context can simply be
viewed as an attribute of the root context. For
example, one might want to write rules +that use
various attributes of a car’s carburator, but since
there is always exactly one carburator for a car there
is no need to have a carburator context; any attribute
of the carburator can be attributed to the car
context.

There are three main uses of the
context tree. The first wuse is to structure the data
or evidence which is required to advise the user about
the root context. In our sample system, "subsystem"
contexts describe +the different tests porformed to
locate the problem in the CAR. Also additional
information about car’s priorv repairs are also
represented in the tree. The context organization is
shown on Figure-5 and Figure-6.

The second use 1s to specify components
of some object. An example of this use can be taken
from a system called LITHO, which interprets data from
cil wells. In this system, each well 1s decomposed
into a number of 2zones that the petrologist can
distinguish by depth. Context organization of this

system i1s shown in Figure-7.

21

A RS

o Tete e tat,

]

ST,

2

SRS,

TR BV

W

X

-
¥

22,

P

o

ARG s R

~—ip
a2t

e TR RRERAE

LML

£

RAONL =

gt | L

P} - DN

L9
e !

oML sas

The third use is to distinguish events
or situations that an object can have. An example of
this use can be shown in CAR example, where different
repairs 1in +the past represent different situations
that a repair process can have.

c. Internal Structure O0f Contexts
dne of the important properties
associated with a context type is the definition of
parameter group. A givsn parameter group defines a
list of parzmeters which belongs to a context type.
While every context generally has 1ts own parameter
group, one parameter group can be shared by more than

one context.

Another property that a context must
have is an ASSOCWITH which shows the ancestor context.
Also a context +typically has MAINPROPS and GOAL
properties. The goal property must be defined for thc
root context. They are explained later in this
section. The consultation 1is started and driven by
tracing the parameters defilned in the &oal or
mainprops list.

The example below shows the properties
of the context type CAR from the car diagnosis system.

CONTEXT Car

OFFSPRING : [subsytem,repairs]
ASSOCWITH

nil

22

A — R A WA @ C0 W

€ A 3o PR

g T e ey PR T ST R € BT AT

A e A MR T L e

Y WL & ey O CIERETETT T 2T e T a0 W WY R R N)

>y

N S

PARMGROUP ¢ car_parms

PROMPT3 ¢ 'This is a car diagnosis program’
MAINPROFPS : [year,model,problems]

Belcw 1s +the 1list of all possible
properties of a context type with brief definitions.

ocffspring

A 1list of descendant context types. It
shows which context types are direct descendants of
this contexi type in the tree.

assocwith

The parent context of this context type
in the tree. e.g., CAR context 1s ASSOCWITH property
of the REPAIRS context.

parmgroup

A name which represents group of
parameters for this type of context.

prompti

The prompt asking whether +this type of
context exists. If the user answer 1is yes, then an
instance of this context type 1s created and its
MAINPROPS parameters will be traced. If there is no
PROMPT1 property then it 1s assumed +that there is

always at least one 1instance of the context type and

PROMPT? 1s displayed.

23

»
2
el
-.
N3
-
o
]
*
el

SSaasc el ==

AW

IR SN

prompt2

The prompt asking of +the user whether
additional instances of this context type exists.

prompt3

The prompt +that will be displayed when
the first 1instance of this context type is created.
This prompt 1is simply an announcement of the creation
of the context Instance. Existance of PROMPT3 implies
that at 1least one 1instance of this context type
exists. For example, a PROMPT3 property of +the CAR
context is: This is a car diagnosis program.

mainprops

List of parameters to be traced once a
context of +this +type has been created. The trace
process follows PROMPT3 or PROMPT! and PROMPT2 if the
user’s answer to these prompts 1s ’'yes®.

2. Parameters

a. Introduction

Parameters comprise an important class
of second 1level knowledge other than rules; they
represent properties of the context or describe facts
about the problem space in general. In the structures
context, the main use of parameters 1is to represent
the data or evidence. Taking examples from the CAR
dlagnosis system, parameters are used to describe the

status of every subsystem via observations and

24

- - s - TV LW, O L TR DT WY TR TR R PR AL
T P T TN 0 ¥ v 3 -
ol lal & ae gt S8 S S P0 P o R ™ N K KA AR 8 T TN o SR o

|t N T VI £ AR XA

measurements taken from different parts of the
subsysten. BATTERY_VOLT, HYDROMETER, AMMETER and
DIMMING_LIGHT are examples of such parameters leading
to +the description of the status of the subsystem
context. A car’'s status would be completely specified
by a context tree if values of all parameters
characterizing each node in the tree were known.

Another use of parameters is to
represent the goals or advice to be determined. For
the CAR problem, the major goal 1s to determine the
defective parts of the car which caused the trouble.
One of the goal parameters 1s STALLED_ENGINE whose
value 1s the information about the defective part of
the car causing the engine to be stalled.

Inferences and data are stored using
(attribute, object, value) triples. While the object
1s always some context in the tree, the attribute is a
parameter appropriate feor that context within the
PARMGROUP property of context.

b. Types Of Parameters

Parameters are in three different
classes according to the possible values they can
take. The simplest are the single-valued parameters.
Thess are the parameters such as model of the car or

battery voltage of the electrical system. They can

25

¥

CELL

e ST

L 4
L

T E e

o«

il FeiRt TP

LA,

']
LY

'r
Q‘A “alal.

4

tl{ﬁ "

]

. .
b ";'J

IS B

Lon

JU et ey

T g L sl e [SR T b gk ek o L

=Y

L~ LT ar e ar g o AL WL SO L e

have only one value at a time. Possible values are
mutually exclusive for these parameters.

Multivalued parameters c¢an have more
than one wvalue at a time. Possible values are not
necessarily mutually exclusive. For example the
stalled_engine parameter may have more than one value
which implies that multiple defects in different parts
of the car may cause the engine to stall.

Third parameter type 1s the yes_no
parameter which is a special kind of single valued
parameter. It has only two possible values, namely
'yes’ and ’'no’.

c. Internal Structure Of Parameters

Parameters are categorized according to
the context to which +they apply. While the PARMGROUP
(parameter group) property of a context +type defines
list of parameters which can be applied +to this
context, +the MEMBEROF property of the parameter
defines which one of the above parameter groups the
parameter belongs to. Following is a list of
properties which define a parameter’s internal
structure.

memberof

The name of the corresponding category

of parameters; any parameter group name.

26

TERTTRT TR

valutype
The type

multivalued or yes_no).

expect

Permissible
value can be asked of the
a ’yes’ or ’no’ answer is

that the expected value

of parameter (singlevalued,

values of a parameter whose
user. Yes no indlicates that
expected. Number indicates

i1s a number. Any indicates

that any value can be the answer.

prompt

The question to be

system needs to
parameter.

can ask

Whether tlie
asked or not.

An example

properties follows:

parameter(hydrometer).

know the

asked when the

value of any askable
parameter!s value can be
of a parameter and 1its

hydrometer(memberof,elec_parms).
hydrometer(valutype,singlevalued).
hydrometer(expect,any).
hydrometer(prompt,hydrometer_prompt).

hydrometer(can_ask,1).

27

hydrometer_ prompt

® e
-

print('What is the specific gravity measured by
hydrometer ?’').

The properties of a parameter and
context are defined as PROLOG facts. The prompt
property of a parameter calls a PROLOG routine which
simply prints out the question to be asked of the
user. An associated property "is_t" (is traced) of a
parameter for a particular context instance is defined
dynamically, showing that parameter’s value was traced
(i.e., an attempt was made to infer its value).

3. Rules
a. Introduction

The largest component of the knowledge .
base of The EMYCIN-PROLOG consultant is the rule base.
The rule base 1is a collection of production rules
which instruct the system how to reascn and arrive at
conclusions [9].

While the contexts and parameters
record the structural information about +the domain,
the rules describe +the action or problem solving
component of the expert’s knowledge. The content of
the rules and thelr ordering in the database determine
the search path taken tc conclude a value for goal

parameter. The search is depth-first because PROLOG's

28

inherent backtracking mechanism was used. Thus
ordering of rules has an important effect on the
consultation path. In the EMYCIN-PROLOG consultation
system rules which conclude a value with higher
certainty were put before the rules with lesser
certainty. The heuristic used by EMYCIN named "unity-
path" consists of ordering the rules with certainty
(CF = 1 or -1) first and executing in that order. Thus
if any rule with CFrule = 1 or -1 succeeds, any other
rule will not be +tried and +the search path will be
shortened.

Rule execution indirectly causes the
context instance to be created, thus providing the
mechanism for propagation of the context tree.
Creation of a new context occurs when a rule that
tried to evaluate a value for a parameter and context
tree proves to have no context to which this parameter
is applicable. A context 1s applicable to a parameter
if the parameter is a member of the parameter group of
this context (MEMBEROF = PARMGROUP). In this case an
applicable context 1is found and its new instance is

created (see Section II.E).

29

ey e e a8 A W S Sy et g o = ae e e pe

-

v _remmy ¥ 2

. - _a_

A s wyesams o mmeumma

P e

LI e -t e TR E

TTETIT IS R

TV T T T PTTTNTY

t 44

 go e o

b. Internal Structure And Definition Of
Rules

Rules have +two main parts: action and
premise. Below is the general form of a rule in PROLOG

form (rule template).

PARAM(CNTXT,N,VALUE,CFrule)

eval_premise(FUNC1,PARAM1,CNTXT,N,[VAL1],CF1),
eval_premise(FUNCn,PARAMn,CNTXT,N, [VALN],CFn),
min([CF1,CFn],CF),

conclude(CNTXT,N,PARAM,VALUE,CF,CFrule).

An example rule and its English

translation 1is:

RULE (PROLOG form)
battery(CNTXT,N, 'weak’,0.5)
eval_premise(greateq,hydrometer,CNTXT,N,[1250],true),

eval_premise(lessp,battery_volt,CNTXT,N,[12],true),

conclude{CNTXT,N,battery, 'weak’,08.5,1.0).

RULE (English Translation)

IF hydrometer value of electrical_system
is greater or equal to [1250] with CF > 0.2.

AND
30

battery_volt value of electrical_system
is less than [12] with CF > @.2.
THEN
battery value of electrical_system is
weak with certainity value 2.5.

(Note that the function min or max is
not used since functions greateq and 1lessp do not
return a certainty value).

The PROLOG routines with the
eval_premise predicate construct the PREMISE of a
rule. After all individual eval_premise routines are
executed succesfully, a certailnty calculation is made
via either the ’'max’' or 'min’ routine, which calculate
the maximum or minimum of all certainty numbers that
every individual eval_premise routine returns.

The structurs of the clause
eval_premise 1is "eval_premise{(FUNC, PAR, CNTXT, N,
[VAL], CF)" where FUNC is one of the functions defined
in Section II.D. PAR 1is the parameter (attribute) to
be evaluated, CNTXT,N is tree pointer showing current
context 1instance at any particular time of the
consultation. Its value 1s left as a variable. The
particular context instance to be applied 1is
determined during the consultation by referring to the
existing dynamic tree. The determination of +the

context instance 1s explained 1n detail in following

31

0 T T T

AR AT W WU R

A4

P AL AT TR T, €O AT IR O TR AT e T S T T T T

AR TV T = S g WS TUTI T A T4, T 2 AT sl s FT A FNEERYS (T T

A

WL

LR T, Lan ol SN I

a3

é
|
!
%
|
;
%E
|

section. The [VAL] is one or more parameter values
which bind to a given parameter’s value. This value or
values in the list are of interest. If the parameter
has a value in this list with CF value limits defined
by the ¥UNC used, then the eval _premise clause
succeeds.

The ACTION part of a rule is simply the
last routine in the body of a PROLOG rule. While there
may be other action predicates, the only predicate
used in EMYCIN-PROLOG 1s the conclude routine which
inserts the (attribute, object, value) triple into the
dynamic database with a certainty value. Note that
insertion implies updating any other database triple
if it is already in the database with a different

certainty value. This updating process 1s explained in

Section III.A.

c. Creation Of Context Instances And Rule
Evaluation

Creation of new contexts during the
consultation prccess builds the dynamic tree. PREMISE
clauses in a rule do not refer to a specific instance
of a context, rather context +type and instance are

determined 1indirectly depending wupon the current

dynamic tree.

A consultation begins with the

automatic creation of a 3xz'oot context and tracing its

A consultation begins with the
automatic creation of a root context and tracing its
MAINPROPS parameters with respect to this instance of
the root context. The evaluation process executes
rules unless the parameter to be evaluated is askable
(can_ask = 1). In +the ACTION and PREMISE parts of a
rule variable pair CNTXT,N is used which is bound <o
the appropriate value during execution. First the
current context 1s tried; 1if current context is not

applicable then the required context is found on the

current branch of the dynamic +tree (1.e., the path
from the roct node to the current context to which the
parameter in question can be applied). If no context
is found on the current branch, then the applicable
context should be a descendant of the current context.
All such contexts are found and instantiated and the
current rule 1s applied to each of these contexts.
When each context 1instance 1s created
its MAINPROPS parameters are traced. After all such
contexts have been 1instantiated and their MAINPROPS
parameters traced, the original parameter that
triggered this mechanism is traced with respect to all

of the newly created instances.

33

B

e
w7

R,

9

Pl I

«

77k LT EIINWERS

!
>

et

TR

=20

,.xﬁ.-
. T
CE P AT

Pd

st X

»»,,w
LA

- _an
g por

'}

- . “‘
'lﬂx g

A At Ay Ny
A

an

et {2

A RREE R

C. INFERENCE MECHANISM

Inference is done in a goal-oriented fashion. The
system goal 1s defined 1in the MAINPROPS property of
the root context. While the system tries to achieve
that goal, subgoals are set up and tried i1n turn. This
process 1s recursive and continues until one of the
subgoals is achlieved and in turn the top level goal is
achieved.

For example, 1in the CAR diagnosis program one of

the top level goals 1s "stalled_engine". The system

calls the rule:

stalled_engine(CNTXT,N,VALUE, 1)
eval_premise(same,electrical,CNTXT,N,VAL,CF),
hypothesis(electrical,Cx,Nx,VALUE,CFc),

conclude(CNTXT,N,stalled_engine,VALUE,1,CFc).

The premise of +this rule is the subgoal to b=z
pursued which in turn causes other subgoals to be
tried until, finally, one of the subgoals succeeds
without need to try another subgoal.

At each subgoal-pursuing process in the above
reasoning chain, EMYCIN-PROLOG proceeds in two stages.
It first attempts to update the dynamic database with

the obtained value of the parameter for the related

34

condition.

During the update stage, there are two cases to
consider.

In the first case the parameter value can be
known by the user (can_ask = 1). In this case the user
is directly asked for the value of the parameter. An
example from the car diagnosis problem of such a
question is: "What is the specific gravity measured by
the hydrometer?" EMYCIN-PROLOG uses the prompt
property of a parameter to produce this question. The
user’s response 1s checked by referring to the expect
property of the parameter. If +the answer 1is not an
expected value then the user is warned and the same
question 1s repeated until a wvalue 1in the 1iimits of
expected value 1s obtalined. If the answer is "unk"
(unknown) then rule base is consulted to evaluate the
parameter’s value for +the context of a particular
instance.

In the second case the paramster value cannot be
asked of the user, but there are rules which mention
the parameter in their action parts. In this case
EMYCIN-PROLOG 1invokes all these 1rules 1in order to

infer a value for the parameter.

In the second stage (hypothesis retrieving) the

dynamic database 1s consulted for the 1list c¢f

35

SFUILRTRR A ETategr syl

R R

L AR SIS

e

F?

D37 - {Paa

[

He Fatalied

E—
1

2T A
[t g,

BT AL A

Lt

EIERAE]

o At i T S P Phars o W T &
e TR b X K o DRI et B S A S L IO IS A B 3 S, N T

Tt e v e

A R e e i ot At B K . %

- TEET— & B Al e S T T B % DR MR e Te TS W

In the second stage (hypothesis retrieving) the
dynamic database 1s consulted for the list of
hypotheses regarding the value of the parameter. The
function in the subgoal is applied to this list in an
attempt to satisfy +the condition, and in turn to
achlieve the subgoal.

After all rules mentioning the parameter in their
action part have beenn +tried, the parameter for the
given context 1s marked as ‘’‘traced’ 1i.e., the "is_t~
property of the parameter for the given context is set
to "1". Further requests for thils parameter’s value
for the given context are met directly from the

dynamic database. This process prevents redundant

invocation of the rules.

D. FUNCTIONS

There are different types of premise functions
that can appear 1in rules. During the consultation
process, the system wants to know for a given
parameter one or more of the following:

Whether or not its value 1s known;

Whether or not its value satisfies the specific
value(s) with a specific certainty value limit;

Whether or not its value is known to be true with

a certainty value; or

36

W).}J-—o‘v - - s

Whether or not 1its value satisfies a numerical

value with CF > @.2.

The function names used for each category above

are:

(1) KNOWN,NOTKNOWN,DEFINITE,NOTDEFINITE;
(2) SAME, THOUGHNOT;

(3) NOTSAME, MIGHTBE, VNOTKNOWN, DEFIS, NOTDEFIS,
DEFNOT, NOTDEFNOT;
(4) GREATERP,LESSP,GREATEQ,LESSEQ.

Functions 1in the first three groups have
certainty factor 1limits which change according to
whether they are applied to a multivalued,
singievalued or yes_no parameter. The first three
groups of functions are called nonnumeric predicate
functions and the last groups of functions are numeric
predicate functions. Another group consists of
conclusion functions. Only the conclusion function
conclude i1s used in EMYCIN-PROLOG.

Functions are applied to data triples stored in
the dynamic database. All return a truth value except
SAME and THOUGHNOT. Functions i1in the first group are
concerned not with the actual value of a parameter but
with whether or not 1t 1is known. For example,
known(condition, electrical_system, 1, true) succeeds
i1f and only 1f the condition of the electrical system
is known with a certainty factor greater than 0.2.

A 1list of all functions with +their formal

definitions are given in Appendix B.

37

E

X
N
v
3

&
W
¥

i

gt |

N 5

PSRN

TRl At

2R AR

LR

.7
Q'

ClSy IR -4

o e
24 I

’,

7 sl

.
sy

{5

N

SEEASE VAP | - 1/RRE

E ~)

3 gt Py e, o gty 3 TR e A ot

TR, YT

E. CONSULTATION CYCLE

1. Detalled Analysis Of The Control Structure

A consultation starts with the creation of
the root node in the context tree, a context of type
CAR in our example. Creation of any context involves
two baslc processes to be done at the outset.

First the root node is added to the context

tree.

Second the parameters in 1ts MAINPROPS list
are traced.

The MAINFROPS property for context type CAR
is the list [year ,model,problems]. EMYCIN-PROLOG
traces the value of each of these three parameters in
turn. Once all of these three parameters have been
traced the consultation terminates since finding a
value for PROBLEMS parameter 1s the final goal of the
CAR dlagnosis system.

While YEAR and MODEL are askable parameters,
PROBLEMS 1s not an askable parameter. Therefore,
following the evaluation of the first two parameters,
the system proceeds to 1nfer the third parameter’s
value by consulting the rule base. The rule that
mentirns this parameter presents a menu to the user
asking the kind of the problem occurring in the car.
Repressnting this menu and asking for 1information are

not considered part of the goal-oriented reasoning

38

P S

wvhich +the system follows. However, this 1initial
information serves to focus the search and eliminate
unnecessary search paths. The user’s answers cause
another parameter value to be sought. This value is
stalled_engine 1in our example consultation. Again
stalled_engine 1s not an askable parameter. Thus the
rule base is consulted and the rules mentioning this
parameter are +tried in order. Our current context and
its instance 1s CAR,1 (the value of the tree pointer).

Rules mentioning the stalled_engine

parameter are:

stalled_engine(CNTXT,N,VALUE,1.0)

eval_premise(same,electrical,CNTXT,N,VAL,CF),
hypothesis(electrical,C,Nx,VALUE,CFc),

conclude(CNTXT,N,stalled_engine,VALUE,1.0,CFc).

stalled_engine(CNTXT,N,VALUE,1.9)

eval_premise(same,fuel,CNTXT,N,VAL,CF),
hypoiiesis(fuel,C,Nx,VALUE,CFc),

conclude(CNTXT,N,stalled_engine,VALUE,1.0,CFc).

The premise of the first rule refers to the

parameter electrical which 1s the parameter of the

39

2
Y

g

Ay By Ay Ry
are el
Y Bl SN W)

.

s R

A ¥

sAn_ gmp gun g A (SR,)

¢ gt "Ll "ot

L g o e

W TTOYITLT

electrical_system context. Since this parameter is not
applicable to +the current context +type car, the
applicable context electrical_system has +to be found

in the tree. It 1s not 1in the tree so 1t will be
created. Here the malin consultation has to stop
temporarily to create this new context.

The electrical_system context 1is a direct
descendant of the car context. The system makes use of
the PROMPT1, PROMPT2 and PROMPT3 properties of that
context type during the creation process. If there 1is
a PROMPT1 property, the context may not have any
instance at all. If there is a PROMPT3> property then
there must be at least one 1instance of the context.
The electrical_system context has a PROMPT3 property:;
hence 1t 1s printed out and context d1nstance is
created.

When the second context 1s to be created,
the PROMFT2 property is printed out and the user is
asked whether another instance of this context type is
to be created. The creation process continues until
the user replies "no". Then this context 1s marked as
nonaskable by inserting 1into the database the fact
showing that the askable property of this context is
zZero.

The next step is to trace the parameter(s)

in the MAINPROPS list of the centext. Since it is an

40

» - - - . . - - . a?

ML SOOI U L S S U0, e T Y - L T T O T T T L IR i T S R I e

o :’ o “\J:'".’)- RPNy \‘.:F J :_\J‘ L""\{\“\!'\“‘\L"n."x"\.' PR T e b PRI, NN
3

.} Snrinn L LN

empty list for electrical_system (there 1is no
parameter to be traced immediately), control of the
consultation goes back to the evaluation of the
parameter electrical. The tree pointer’s value 1is now
ELECTRICAL_SYSTEM,1.

The following sequence of events describes
the rest of the consultation process.

Electrical is not an askable parameter sc
the rule base 1s consulted. The first rule has two
parameters in its premise, DIMMING _LIGHT and BATTERY.

DIMMING LIGHT and BATTERY are applicabie to
the current context and also DIMMING_LIGHT 1is an
askable parameter (can_ask = 1). The prompt property
of this parameter 1s 1nvoked and the question: ’'Turn
on your lights and operate the starter; Do the lights
go out or become dim ? (yes/no)’' is asked. If the
answer 1is "yes" then the condition 1s satisfied since
the specified value [yes] 1s defined in the [VAL] part
of the evzl_premise clause (first premise clause). The
returned certainty wvalue 1s "1" unless a number is
specifically given with the answered value (e.g.,
’yes_9' means that answer is yes with certainty value
2.9).

The second condition 1s +the evaluation of
the BATTERY parameter. It 1s not askable so again the

rule base 1s consulted and the first related rule has

41

T TS T R TS AT T DY T e L SRR ST, AP R B O Gk IR IR poaIATINTITIN - e A LYY

o

Lo

YISk 4% red

. TMTEIET

RIAISIE T g LR L 4G

RS i e St e St]
...................
.................................

5:_\ "',.r\::':"" _-“.\ s

two parameters to be evaluated in order to succeed:
HYDROMETER and BATTERY_ VOLT.

The eval premise conditions which mention
these parameters have the numerical predicate function
LESSP. It s evaluated the same way as DIMMING_ LIGHT.
The gquestion 1s asked and the answer is compared with
the specified value, which is [1250] for HYDROMETER
and [12] for BATTERY VOLT. If in our case the answers
are less than these two values, the conditions
succeed. The nuxt condition is thie conclusior function
which inserts the hypothesis about the BATTERY
parameter into the database:
hypothesis(battery,electrical_system,1,weak, 1)

Following this first BATTERY rule all other
rules about BATTERY are also tried and, if applicable,
other hypotheses about thils parameter are inserted
into database and the is_t property of this parameter
is set to "1" for this current context, indicating
that parameter’s value was traced. If 1ts value is
needed 1n any subsequent rule, the value is retrieved
from database directly. At this point control goes
back to the first electrical rule. Since the first two
conditions have succeeded, the next premise clause
returns a minimum of concluded certainty values as a
certainty value for the premise of the rule. The next

clause before the rule succeeds 1s the coaclusion

42

e A '_\\1.‘...‘.:&.‘\“\-’.'...‘.‘_-)\-..;.\-‘-‘ 5 ..‘* NN AT }, -‘\ .\' -~ ‘\ :. t- “: T - (d - d R ;

function; another hypothesis now 1s entered into
database:
hypothesis(elec ‘*cal,electrical_system,1,battery,?.8)
assuming CF1 and CF2 are both 1, min([CF1,CF2],CF)
returns CF = 1, and the concluded hypothesis’ CF value
is the multiplication of +the rule’s certainty value
(here ©0.8) and the premise’s certainty value 1.
Following +this first electrical rule all
other rules about electrical also are +tried. At the
end the 1is ¢ flag 1s set to "1" and control is sent
back to the first stalled_engine rule. The next clause
retrieves the concluded value of electrical by calling
the clause hypothesis(electrical,C,N,VAL,CF), whose
variables 1in +the argument 1list binds the previously
concluded value. The last condition is the conclusion
function, which concludes a value (i.e., inserts a
hypothesis into the database). The inserted hypothesis
is:
hypothesis(stalled_engine,car,1,battery,®.8).
Following this rule’s execution, other rules
about stalled _engine are also tried, and the is_t
property is set to "1" again. An exhaustive execution
of all stalled_engine rules concludes the
consultation. Before the consultation ends all
concluded values of stalled_engine parameter are

printed out. The rest of the concluded hypotheses

43

=51

AN P T T TR YD IR TR LATANEEY LT

e N e R ,TAT Y TS 5 KNS, Y AT A A TR L VL e, Py et TIRY B R

aTa " m & £ A SAINEETETA A X VPRI e Ty T TV OEEYT C T

FERIE" - 1%

" a

obtained dur-ing the consultatior are also printed out

T TR R T SEa——

for debugging purposes.

2. Departures From The Main Control Structure

At any particular time, evaluation of a
parameter is exploited via rules in the evaluation of
goal parameter values. So the backwards chaining
‘ mechanism 1s not strictly followed throughout the
consultation.

Evaluation of any parameter’s value may
require creation of a context instance as explained in
a previous section. Each time a context 1is created 1ts
MATINPROPS parameters are traced whether +they are
needed or not. Following +this, +the trace process
brings control back to +the point from which it
departed. A typical example of this departure 1is seen
when an attempt is made to evaluate the THROTTLE TEST
parameter of a fuel system context following the
creation of this context. The MAINPROP parameter will

be traced whether this parameter is needed at once or

not.

44

A I I TN T AT R S P ., F R N R L A
r;”:"~‘.. Cu s L ‘.n"‘_'—- A R ".'-\' ef A et .t . Sttt et e L LA LN -
” A A BmprBgpynd

syt e Y e = — =

3

1

III. INEXACT REASONING

Since the Lknowledge base of an expert system is
basically a collection of facts and rules obtained
from the user and domain expert and since most of the
data/knowledge obtained are imprecise in nature, it is
common that both the fact and inference rules are not
completely certain.

Uncertainty is introduced into +the EMYCIN-PROLOG
expert system 1in two ways. First, factual knowledge
provided by the user represents observable evidence or
symptoms. This evidence might be difficult to observe
or might have to be measured with 1inaccurate or
unreliable equipment. A number as a measurement of
this type of uncertainty can be associated with the
observed value.

The second type of uncertainty exists in the
inference rules. The inference rules are intended to
capture the expert’'s experience, heuristics,
judgement, and intuwition, which 1is inherently vague
and nondeterministic. While +the rules are being
written, the expert’s reluctance to give a strong
relationship between +the premise and conclusion of a
rule would force the rule author to introduce a number

accounting for such uncertainty (CFrulej).

45

PRV PaT etk 3o o ad on sy o g writ 3 Few RV RENL Sione Lp 3

e ET T T S TGV 0 6 o RS AT I YA TR K B T MR T

a2 S TRMTRTRY VTN e T T A A LA T

REE A SN

Pl ol ol I - 1R ler Ton S Jbe B J

- - et PR LGP R T I N LSS R FR I R R O R e R TR R
| ATADCADLTLRACULA LA SR CVEA ML AL SEATA UYL AL LIV AL AL WA WA JA. P W M LW O i :

PLEmR I e

TN T LT P

WIS R O KL A,

b TS T AIATAE

o

L 8y

s

Since +the decisions are made by human experts
without perfect 1information - this 1s what makes
experts experts - our concern in this section is to
explain the calculus used in EMYCIN-PROLOG +to combine
different kinds of uncertainty into a final

uncertainty measure associated with the final

conclusion.

A. CERTAINTY FACTORS

Factual information 1s stored in the database as
(object, attribute, value) triples as mentioned
before. A number 1in the range of -1 to 1 is
associated with these triples assigning a measure of
belief or disbelief to the statement:

The <attribute> of <object> 1s <value>
where object (CNTXT,N) 1is a context instance as
previously defined. An object may have several
attributes (PAR). For example, electrical_system-1 in
the context +tree 1in Figure-2 has attrioutes of
HYDROMETER and BATTERY VOLT (See knowledge-base of CAR
diagnosis system in Appendix C.1.). Each attribute i1s
called a parameter. The third field is simply the
value of that attribute of the object.

A hypothesis 1is a (object, attribute, value)
triple and a certainty value associated with it. The

objJect is represented as a tuple: context name and

46

\

. - e e et ta ot ate AT T atat.ctaorar vy e
-‘q‘-'\'.,-..-.-.-'~->.-J.’\}.‘r.)-l.'_-;- S T R A AT A el :7 _ e o 7}
Sl A ~ A . p=i s

R

instance number (e.g., electrical system,1). For
example, hypothesis (battery, electrical_system, N,
weak, 0.8) denotes that the condition of the battery
is believed to be weak with the belief value 0.8.

Whenever a hypothesis is constructed, either with
the help of the rule or with information from the
user, the assocliated certainty value is also
calculated. If a rule with rule certainty value
"CFrule" is used, then the calculation proceeds as
follows.

The certainty of premise is calculated by taking
the minimum or maximum of the certainty values (CF) of

the premise. For example, 1in +the rule from CAR

dizagnose system:

electrical (CNTXT,N, ’starter_circuit’, ©.6)
eval_premise (same,dimming light,CNTXT,N,[no],CF1),
eval_premise (same,fuel_sys,CNTXT,N, [ok],CF2),

min{ [CF1,CF2],CF),

conclude(CNTXT,N,electrical,’starter_circuit’,0.6,CF).

There are two CF values, namely, CF1 and CF2.
The certainty of the premise calculated by taking the
minimum of these two values since +the premises are

ANDed. Wes would by taking the maximum of those values

47

. o e g - . NNt it Lt LS RN
T A R T S A TS o o S Ca i U A A R 1 S AT LT LY A SR 11 .1 L LR

:
!’n
;
;
i%

A RIS A S eV MR Ve Ty e ST MY L R

a4 a8 ¢ TR VXTI WS

ot PPWEYT L8 T .

o _w iamwrr -

T TR T Sl S

if they had been ORed. Following this calculation,
CFnew=CF*CFrule 1is formed (CFrule 1s 0.6 in above
example rule). The final result taken from the
multiplication process becomes the certainty value for
the concluded hypothesis. If there is another
hypothesis in the database with the same triple, then
its certainty (CFold) 1is combined with the new
certainty value (CFnew).

Combining uncertazinty values into a final value
proceeds by updating existing hypotheses until all
applicable rules have been executed. The following
small sample sessions show the use of combining
functions and obtaining a final conclusion based on
the criteria of certainty values. In the EMYCIN-
PROLOG, we preferred to 1list all concluded values of
the goal parameters so that user will have a chance to
sze all possible conclusions with their certainty
values.

Assume the goal parameter of the consultaticn is
battery and the database has the following hypotheses:

hyp #1
hypothesis(battery,electrical_system,1, bad_connectio-
ns, 9.5).

hyp #2

hypothesis(hydrometer,electrical_system,1,1200,1.0).

48

«
F oW = o ; . 7 P I N O S N I N L T SO T L "’""',".“A‘:\'-‘\"l'a\‘
E’\"r‘ "‘;‘.\(\'.\(\r‘: 8" ‘1(\‘ N \4‘-".':(‘-' AL A A ., PR Y . rorcigptieuriar o ™ SRRt

L ey T M L N T L N

hyp #3
hypothesis(battery_volt,ele~trical_system,1,10,1.2).
hyp #4

hypothesis(battery,electrical_system,1,weak,0.7).

The following rule corncludes a hypothesis for the

attribute battery:

battery(CNTXT,N, 'weak’,0.8)

eval_premise(lessp,hydrometer,CNTXT,N,[1250],true),
eval_premise(lessp,battery_volt,CNTXT,N,[12],true),
conclude(CNTXT,N, 'weak',1.0,0.8).

If the first two clauses in the premise succeed
then the following hypothesis is concluded:

hyp #5
hypothesis(battery,electrical_system,1,weak,?.8).

{(Note that the tree pointer points to
(electrical_system,1.)]. Now hypothesis #4 and #5
should be combined into a new hypothesis since they
conclude for the same (attribute,object,value) triple.

Using the first combination fun~2tion (see next

section for the explanation of combination functions)

leads to the calculation:

49

P T ATy Ay Aty TR XTI TT Y " ST B 1 3 T O W BTN A R TN W S S T T A RO ON A N Y

T T A S) AWRYC s 8 T TR Ty WWTATCT, N,

s "2 %) WERTs

"
a . - .- 5 . wnw
Jm LN N e e e TS .\'_s\.‘p.' ._-.'_._- .- "-\ u\,\l“ '_".'\.P* tpta e \-f‘ A “T." RN N AL

T A A o Cr T P W W W e Sl W W oy B e W RS

o —r

2 e sV

ARSI N AYAL

v

CFcomb

CFold + CFnew * (1 - CFold)

N

2.7 + 0.8 * (1 ~ 0.7)

C¥comb

.94

Following the update process hyp #4 becomes:
hypothesis(battery,electrical_system,1,weak, 0.94).

Comparing the final certainty values and taking
the maximum one, the final conclusion of the
consultation is:

concluded(battery,electrical_system,1,weak,0.94).
which translates as:

The concluded (value) of battery (attribute) of
electrical_system,1 (object) is "weak" with certainty
value 0.94.

As we mentioned earlier 1in our implementation a
list of all hypotheses which conclude a value of the

goal parameter are presented.

B. COMBINING FUNCTIONS

There are two possible cases during the
combination process which are determined by +the sign
of the o0ld and new certainty values (CFold,CFnew).

These different cases and corresponding combining

functions are:

50

v e

v e e w o . et et A e
N NN I I N SN S NN NNEN I SN I TSP AF AT IO ARIRRSF ZI DRI Vb M I

(1) CFold > @ and CFnew > 0
CFcomb = CFold + CFnew * (1~ CFold)
(2) (CFold * CFnew) < @

CFcomb = (CFold + CFnew)/(1- min(CFold,CFnew))
(3) CFold < @ and CFnew < @

CFcomb = ~(-CFold - CFnew * (1 + CFold))

The update process or combining certainty values
is used when the same value for the same object of an

attribute (PAR) 1is evaluated with different certainty

values.

51

N b AR

T
TS

£

SRAS

.
=

S

s

H.ﬁ

33

o g
) i:'ﬂ'.‘

EAASS

&k 4

A

Ak ‘IO | - SIIOOREE |- [

-
s

IV. KNOWLEDGE ACQUISITION

The knowledge engineer’s main task is to enter
and debug the production rules and the facts about i}
static knowledge other than rules. Acquisition of this
static knowledge requires +two 1levels of control, |
namely catching common syntax input errors such as
misspellings and catching 1inconsistencies which are
likely to occur Dbetween rules. In the EMYCIN-PROLOG
consultation system, rules are typed from the terminal
by the knowledge engineer and no automatic consistency
or error checking are performed. In +this section
possible mechanisms for such controls are discussed.

Rules are in PROLOG rule format as explained in

Section II.A.3.

Acceptance of a rule into the rule base requires
the following consistency checks:

All parameters used 1n the rule should be
defined.

The sum of certainty values of rules whose
PREMISEs can be true at the same time but conclude

different values should not exceed 1. For example the

following two rules cannot exist 1n the same rule

base:

52

-

o e B e N L m v eh s at ot At atataten ety TRt A T P
- . e T AT At O AT A R N A N NN e L N N LT e % - -'...\ -‘\', LRV I A I . A AT LR
WO O 12 ST A DI P A A AT SN A AN AR AN % 2 Le oot - o

l battery(CNTXT,N, ’bad_connections’,0.7)

.

| eval_premise(greateq,battery_volt,CNTXT,N,[12],true),

Iy s o] NS SE RIS R) e

conclude(CNTXT,N,battery, 'bad_connections’,d.7,1).

battery(CNTXT,N, 'weak’,3.5)

®
.

eval_premise(greateq,battery_volt,CNTXT,N,[12],true),
conclude(CNTXT,N,battery, 'weak’,8.5,1).

o
”

TSGR ARE WD 220

since 6.5 + 0.7 = 1.2 and 1.2 > 1.
At least one rule should exist 1in the rule base

for every non-askable (can_ask = @) parameter.

Aot £ € 7 TN TN T TS RN TR Y 5 TSR T

A ATE Tt

53

DECEEI. ™ £ WL WS o u £ {adlul et

E
g
4
J
N
]
1
h
)
#
3
d

:i-':’\:‘b =

LA)

LN

.
K

V. EXPLANATION SYSTEM

A. INTRODUCTION

Ore of the main design considerations in building
an expert system is the ability to explain 1ts advice
(i.e., provide the user with enough information about
its reasoning so that the user can decide whether to
follow the recommendation).

In this section we will introduce the
requirements for a complete explanation module. One of
the main 1ssues involves answering the question 'WHY'
asked by the user when the system requests data to
continue the consultation. (It 1s numbered as WHY1 to
distinguish it from other WHY questions.) In this case
the WHY¥1 question can be interpreted as: "How is the
request for this data related to a goal?" Other WHY
questions can be defined; one of them would be: Why
did you request this data to reach this goal? - WHYZ2-
(1i.e., give the strategy behind the inferencing
process).

Besides these two main WHY questions, some other
questions about the system’s reasoning process
include:

How does one goal lead to another?

How 1s a goal achieved?

54

Why 1is one hypothesis considered before another?
Why is one question asked before another?

In the current explanation scheme of EMYCIN, the

question WHY is handled by giving to the user the rule

which evaluates the parameter wunder consideration.

Successive WHY questions invoke antecedent rules [8].

This explanation scheme uses Just the rules.

Since rules do not have all +the necessary knowledge

elements, as discussed below, this scheme has some

deficiencies.

First the ordering of hypotheses 1in a rule’s i
premise will affect the order 1in which goals are
pursued. There is no explicit knowledge showing

reasons for this ordering.

Second the ordering of rules affects the order in

which hypotheses and hence subgoals are pursued. There

is no explicit knowledge about why a particular

ordering 1is preferred (i.e., why is one hypothesis

consldered before another).

Third the inference steps taken by the author

which connect the premise of a
are omitted. The intermediate
jJustification for a particular

could arise as to whether

reasoning connecting a

empirical study 1In some

55

.......

premise

existing

S

rule to the action part
reasoning steps provide
rule used. The argument
is

there intermediate

to an action. Our

rule-hbased systems

Sl Tl Sl ¥

S it i

showed us that most of the rules used in those systems
have the knowledge in compiled form (i.e., parts of
the expert’s reasoning 1is 1left out of a rule).
Specifically in our CAR diagnosis system design we did
not need intermediate reasoning steps to be defined
explicitly for a working consultation program with
respect to the runaing of the consultation session.

The above three types of knowledge, implicit in
rule design, should be defined explicitly to satisfy
one of the mailn design considerations of an expert
system, namely the explanation of its reasoning. Our
special interest has been focused on the type of the
knowledge explained in the third item above.

An example rule from the CAR diagnose system is:

electrical(CNTXT,N, 'low_starter_resistance’,0.7)

eval_premise(same,ammeter,CNTXT,N, [yes],CF1),
eval_premise(samse,starter_motor,CNTXT,N, [ok],CF2),
min([CF1,CF2],CF),

conclude(CNTXT,N,electrical, ’low_starter_resistance’,

@.7,CF).

The above rule concludes a value about +the
parameter electrical. Two premise clauses require

values of the parameters ammeter and starter_motor in

56

order. In either of these premise clauses, any
information which connects them +to the parameter
electrical is not known. The answer to the question:
"WHY do we need to know about ammeter and
starter_motor to be able to obtain a wvalue for the
electrical parameter?" 1s 1implicit 1in the rule. We
need additional knowledge (support knowledge) to
answer the above question, which corresponds to the
answer of WHY1. This question 1s asked of +the system
by +the user when the system requests a value of
ammeter Or starter_motor. One of the possible
explanations for such a WHY question 1s as follows:
The reason for looking for a value of ammeter is that
ammeter measures electric current and electric current
is produced by the electrical system, so any change of
the ammeter value gives a clue about the condition of
the electrical system. Similarly, an explanation for
the search a value for the starter_motor parameter
would be that the starter motor 1requires battery
voltage to operate. If the starter motor resistance is
short circuited, the battery voltage 1s used up and
very little voltage 1s 1left to crank the engine. The
battery voltage measurcs the pattery performance and
battery performance 1is the quality of the battery.
Since the battery is part of the electrical system,

any problem 1in the starting system is llikely to have

57

. R
o SRS

. - : \ - s . ety A e T AT AT et PRI PC RO P o
E""\'."-:'r:;')‘\'-:'-"":'-\'\&“:‘-*.'r\.‘-\‘lxa \"‘\."{‘.\ \"*"A‘ Gttt NS AT ;\":‘1‘:3.* B AT AT ST A SRt DU S y
o L - —_— P - - a~ - POp TP, Wiy, VR, RN WP NG EWin, U, S P, O T, SRR . S .- P z

AL e AR AP P

"

v

Tl PR e RSN G e ST T R N T S TR

[4
A

“ AW

Ny

Sl ali AL

.
TaZale

T8 A ST,

e

-

0ELL S Sy G RO

PR

an affect on the condition of +the electrical system.
So we need to know about the starter_motor parameter.

The above two paragraphs provide the support
knowledge required to bring a sound explanation to the
user'’s queries about system’s reasoning. The rest of
this chapter 1illustrates ways of structuring and
representing this support knowledge and giving
explanations by using this knowledge when 1t is
requested.

Once the representation scheme for the support
knowledge 1s defined, this knowledge is acquired from
the expert, we +then proceed with structuring and
representing this knowledge. In the following three
sections these 1issues will be presented using CAR

diagnosis system.

B. ACQUIRING AND STRUCTURING THE SUPPORT KNOWLEDGE
In the explanation phase, we focus on a
particular WHY question, namely: How is a request for
this data related to a goal? This question focuses on
a rule. Each individual premise and action part of a
rule requires the support knowledge. After all this
knowledge 1s obtained, it 1is first converted into an
explanation tree from the expert’'s natural language
form and then into a semantic network, and finally all

of such semantic networks for individual rules are

58

- v e -

. P e e - - v DR f o R P R N T R A L A
PR U B e S P) ST St S A ST R Rl el) s BIAN AN LRI E
Py Pl oS 5 a < - = =

combined into one semantic explanation network which
corresponds to the support knowledge for the whole
rule base. Support knowledge 1is represented 1in a
semantic network. To explain the above process we use
the CAR dilagnosis rule-base. Some of the system’s
requests for data from the user can be seen in
Appendix D. The explanation system is invoked if the

user answers WHY to any of these questions.

c. NATURAL EXPLANATION AND EXPLANATION TREE

The explanation process involves three main
activities: giving examples, eliminating alternatives
and giving reasons [15]. The expert tries to reach

commonly known concepts using the above three building

I S RIRALY o NI o e MRS e Ll e e S s S geil [p od RV e e e pr i mo R0V ol g -"’*‘ffoJ

blocks of natural explanation. Given an explanation
from the expert, our first goal 1s to structure and

represent this discoursive form of explanation 1n the

PR .\ K Gl RO G

tree form.

n
.

»
.

a

The explanatlion tree 1s composed of nodes and
statements connected +to them. A statement may be
another node, thereby providing an embedded structure.
Nodes are nonterminals of the grammar and statements

are terminals [15]. In our case study only one main

building block, '"giving a reason" |is used. The
corresponading grammar 1s :
start ==> 1CLUE/RSN e e
59 F
»
.l
é
’
l,
T T SR IR T FEJUEIN TSR I L L T Y -'.'\-
A R S I N 2 D O e AR R SR P P SIS AL A AT AR

TR TR O Y Y RS LY

T T X

e ==> STMT/RSN e e(el)
e ==> RSN/STMT e(el) e
e ==> AND - OR e e(el)
e ==)> IF/THEN e e
e == statement
where n>=1.
1CLUE/RSN, STMT /RSN, RSN/STMT, AND, OR and

IF/THEN are possible statement connectors. Their brief

descriptions are:
1CLUE/RSN et

value of e2 is el.
STMT /RSN el e2
RSN/STMT el e2
AND el e2
OR el e2
IF/THEN el e2

The explanation

method

Once the expert's explanation

tree,

divided into smaller parts

to one oalement

e2

tree

of the

: one of the clues to get a

the reason for e2 is el.
the reason for el is e2.
el and e2.

el or e2.

if el then eZ2.

provides a more powerful

of acquiring an explanation from the expert.

is structured 1into the

it 1s easler to proceed since the explanation is

and each part corresponds

grammar. For +this reason

construction of a individual explanation tree

(acquisition of explanation knowledge) becomes the
crucial step. An example of an explanation tree is
&iven in Figure-8.

60

AT " ST
-'.'-’;-',:\.1’.,‘- .

-'

2t
;\ &'\"' -t'

o 5 ’~“'.-.\J .“a x\;\ P “ *u‘) i .\’\“\ »

RS

\-_'

Y
.
LAY

-

D. SEMANTIC EXPLANATION NETWORK

After the explanation tree 1s formed, the next
step is to construct a corresponding semantic network.
First the terminal nodes 1n the +tree are structured
into their semantic network equivalents. Each node
in the semantic network has a STATUS and PATH link.
The path 1link provides information about relationship
between nodes. The status 1link provides information
about possible conditions of the node (parameter).
Rules in the inference network connect these
conditions to each other (see following section for
inference network).

The foilowlng sxample explains +the construction
of the semantic network, starting from the natural
language form of explanation. An explanation (answer)
to the Jquestion, "How 1s the data about starter_motor
related to the electrical parameter?" would be: "The
starter motor works with battery voltage; the battery
voltage is the quality of the battery; and the battery
is part of +the electrical system. If there is any
problem in the starter motor, then the electrical
system 1s 1ikely to exhibit of +this problem. For
example: 1if a starter motor has a low resistance, then
the battery voltage is consumed which in turn causes

the battery to be in bad condition."

61

- -, L - - - - . - - \ . L L -~ . -. u‘.
e e L A e O T R N UL S SN S S, S, S N N P AT SRR i FUL LR P P T
N"\\‘k:'r:¢’-‘.}‘h(.'hk."';.ﬂ:'f\t'b;'_. ~: "':" ‘:",'\.“‘.’.;\",‘}\.{‘.{}:ﬂ\ L) Pt el WL LE USSR, SR SR G < R

TR S R e N TIPS G K R S St S R YT O AR 1T Y TRYE

Ny MR e €4t PR VY e

W O YHEE W W _TLeS ¢ PR A S

& v rmErw

The explanation +tree corresponding to the above

W N Fa T T TN "W

explanation is depicted in Filgure-8 and the semantic

network in Figure-9. The IF/THEN conditions of the -

e acy W sy g

tree represented in the status 1links and other

terminal nodes provide the relationship links between)

nodes (parameters).

3_
:

e ans

E. INFERENCE NETWORK

The inference network 1g the representation of

the semantic network in PROLOG rules and facts. It is

R

composed of three main parts: inference rules,

relationship facts and path facts.

Inference rules provide all hypothetical] ;
conditions of parameters and thelr connections to each

other. They correspond to the IF/THEN nodes of the

o werwo . -

explanation tree.

Relationshlip facts simply represent relationships

between parameters. For example the fact
starter_motor(works_with,battery_voltage) shows +that

the relationship between the parameters starter_motor

Wm‘wﬂww X T T ALAE
PR

and battery_voltage 1s one in which the starter motor
requires the battery voltage to operate properly.

A path fact is used to facilitate the

W e e m—————

implementation of our explanation system. It directs
the inference process in the 1nference rules. There '

may be more than one path between two parameters in

62

...........
.........

" PR PR TR N . 2 T e
"1""-{('“.)-)‘J- N Ve YA .;'3‘:-'.0-'..'- . e NS -f"?’- --"A.‘ R "’ NS R S RS O,

‘A.“
nnnnn A

the semantic network. Only one path is traced at a

time and +the 1inference to be considered next is

determined by the path list obtained from path facts.
The inference network is depicted in Figure-i1

which corresponds +to the semantic network in Figure-9

A M R 2 RAT AL

and also corresponds to the natural explanation given

<
=

in Section V.D. Two parameters are the key values of %
the +tracing process: Starter_motor (one premise %
condition parameter of the rule) and electrical %
(action parameter of the rule). The tracing of the %
inference network and the providing of an explanation E
can be summarized 1n following sequence of events. %
The path list(s) are obtained from path facts E

g

using key parameters:
path(starter_motor,electrical, [battery_voltage,
battery]). Complete path list for this example is:

[starter_motor,battery_voltage,battery,electricall

NN - 1SeTRVEeRNI b

Every consecutive parameter 1in the list should

¢
have a corresponding relationship fact in the ,ﬁ
inference network. After tracing, the following list '3
of facts are obtained: i
01

N

starter_motor(works_with,battery_voltage). E

b

battery voltage(quality of,battery). 2
battery(part_of,electrical). i

e

]

63 -

3

h

B

e R MR "R AR R - AT "8 A", a & - - - 8w - - R - “w PN TN - ._\..—-‘. t N - . v .. ~....._ e et At .._'-_
ﬁ\i*}f_&i\’\f\:;\‘_:r\-‘:'&‘;\j\"\ ERE SR \'_‘-.:}-':\'xi\‘,\":-.'f-\.‘ NN (SAREN RS AAEAS R O L ST
s g X2 3

Inference rules mentioning every parameter in the
list are extracted. Starting from the 1last element of

the 1list (electrical in this case):

electrical(status,bad) :- battery(status,bad).

battery(status,bad) :-
battery_voltage(status,used_up).

battery_voltage(status,used_up) :-

starter_motor(status,low_resistance)

The rule extracting process ends when the first
element of +the 1list 1s encountered (starter_motor
here).

Finally obtained facts and rules are put in
explanation form as follows:

Starter motor gives a clue about electrical

SINCE

Starter motor requires battery voltage AND

Battery voltage 1s quality of battery AND

Battery 1s part of electrical

AND
IF starter motor has low resistance
THEN battery voltage i1is used up
AND
IF battery voltage 1s used up

THEN battery condition is bad

64

PR AF A L YA A ¥ e L A e R N G T RN P T A L PR T TN S AP R
i%..'\{k',‘\},‘q*‘:‘\\',:\'. "‘: x "“ ":‘ '.."‘C" :.’, :’h "':."x."- Lah o ~.‘-e:".',-.f._s.,‘.f:x":-_(:-.‘f_s‘f‘h.,‘:-.(\' LN x‘,\'{s"t"- AT AT A s
PLER AN R ACRA RN AT A A Vo L R AL T Tul Vol Vel Tnly, A%

T

AND
IF battery condition is bad

THEN electrical system condition 1is bad.

The first statement mentions the two key
parameters. The subsequent list of ANDed sentences are
facts obtained from the inference network and
connected to the first sentence with "since". The rest
of the explanation is ANDed rules, agailn obtained
from the inference network. Figure-1¢ through Figure-

16 shows all elements of the explanation system

(explanation trees, semantic networks, inference
network) for a CAR diagnesis system. An explanation
may not have the second part of above example; in this

case only first part of ANDed sentences are given as

explanation.

RO F TNNCEIRR, UL sainen 2t hrohaf

v

] WSS 5 2 T

-

65

-~
e

PRl Bt Lkl

»
I N

............

E

VI. CONCLUSION

A. THE LESSONS LEARNED

First we studied EMYCIN 1in detail. EMYCIN has
some weaknesses and problems. Some of them are
explained in Section VI.C. We also discovered that the
existing explanatiom system was insufficient and
proposed a new explanation system in Section V. In
building the EMYCIN-PROLOG inference engine, and the
kncwledge-base (CAR diagnosis system), and running the
consultation system, we experienced the building
process of a complete expert consultation system. We
can divide this building process into two main parts.
The first part is building the shell (e.g., EMYCIN-
PROLOG) and second part 1is constructing a knowledge-
base (e.g., CAR dlagnosis knowledge base). During the
first part a high-level conceptual structure should be
defined. This structure should be independent of the
knowledge domain and should be able to work with
different domains. In our study the two different
domains are the CAR dilagnosis system and the FINANCE
analyslis system. The high-level conceptual structure
of EMYCIN 1is the context +tree and the parameter
definitions. The construction of the knowledge-base

consists of the definition of contexts, parameters,

66

...........

and rules. We worked by starting from a small model of
the domain and expanded the model gradually. After the
complete knowledge base was built we ran a
consultation and, according to +the results obtained,
we made changes to the knowledge-base (i.e., adding
the new parameters, the new contexts, changing

or adding new rules, etc). This prozess continued
iteratively until satisfactory recommendations were
obtained from the consultation system.

Implementing the above two parts showed us the
complete cycle of the expert system building process.
We experienced the role of the snell designer and the
knowledge engineer. Finally we had a clear

understanding of the expert system design process.

B. REQUIRED HARDWARE AND SOFTWARE

During our study we translated +the EMYCIN
inference engine 1into the PROLOG system (EMYCIN-
PROLOG) and succesfully combined two different
knowledge-bases with +ihis PROLOG system. The EMYCIN-
PROLOG was first implemented on the PROLOG-86
interpreter [16] with 16-bit IBM-PC machine working
under MS-DOS or PC-DOS. Later the program was
transferred, with minor syntactical changes, onto C-
PROLOG on the 32-bit VAX machine wunder the UNIX

operating system In fact, PROLOG-86 allowed us to use

67

Se

X
»

A T

-

oot 7

MO AE)

y

ZLA): TSI nats) IR

-

- -
.2

« 2,0 %0 E R
":,{ ‘:’I] g{.ltA T

N

AN

-

s’y

JET

c e
ENENLS

o
% h

MABERE WA

............

variable predicate names which facilitated our
implementation. On C-PROLOG we wrote additional
routines (see ‘'variable_predicate" routine in the

UTILITIES file in Appendix A).

The total space requirement for +the EMYCIN- -

TR R T O T L Y o TR A
«

PROLOG codes was 40288 bytes, and the knowledge-base

wor,

of the CAR diagnosis and the FINANCE analysis systems

:

required 16244 bytes. During the consultation the
FINANCE analysis system space requirements 1in bytes
were: atom space (38584), aux stack (612), trail
(1200), heap (87728), global stack (8888), and local
stack (10240). Runtime was 22.33 sec. The above space
and time requirements of the EMYCIN~PROLOG
consultation system provide a highly portable system

since it is possible to run the system on

microcomputers with minor syntactical changes and 288

D

Kbytes of memory.

>

T

C. EVALUATION OF EMYCIN

1. Generality Of EMYCIN

EMYCIN imposes a data structure of

e e e SR oty

(attribute, object, value) triples and these triples

must be used in a backward-chaining control structure
applied to production rules [9]. Even though EMYCIN

can be applied to different domains of diagnosis

68

\"q‘u'n'n'-"‘\-‘\“ \"' ‘ ,‘l

glrarn g o e e e o -y

g v LR » 3 AR A '
\’)_.\ \‘x\\\,\.\.%\\\ _‘_-_’__:‘> R, IR AL

B Skl e e At AT Wit et ui et Aabeaie iR DO R R SRS A

Enasin S i it A

problems, another domain of design problem may not

(3 B3 ol ¥ LA ¥ I Sy L g

work properly bscause of above constraints.

2. Some Particular Problems

The context tree structure 1imposes the main

restriction. Every mnode 1n the context tree leads to

ra 80D MR PV Y K LW

the root node by a single pathway. In real

applications contexts in any domain are not
partitioned so artificially. Any improper building of
the static tree causes big troubles 1later in
consultations, and 1t is a very costly process to go
back to the start and rearrange the static tree.
Contexts are 1instantiated only when needed.
This brings considerable complexity of implementation.

This property helps avoid acquiring information which

P A LRl ol S N NI NP L 2 St

is not needed for a particular consultation, but there
may be domains where a set of contexts will always be
needed at the beginning of a consultation, which makes
the whole propagation method for the tree obsolete.

Another restriction imposed is the

JE I W R VS IO OO N D g

requirement to 1include the parameter as the gocal of
consultation in the MAINPROPS 1list of the rcot node,
since 1nstantiating the root node 1nitiates the

reasoning chain fcr the consultation.

5 @ A LNt Se W e _#T amre R

Multivalued parameters cannot be used

successfully in the function KNOWN since the function

2 uimmme~s w 2 B

14 o~ o~
would succeed 1immediatcly aftsr any one value were

Ld

69 '

1)

'l

!

)

h e, ~ I AN S T S ey W N

S A A R B R A N I AL L s A e -

" -
o herTier
E S f T, gea pun prmae gy vl S S A B
= Themhr e T e T T T LY - T - Y -
e e s _arm gt G o s aasts Jinge seih Jhath EFENY SRS MNP aEE- R

-

T

known. On the contrary, multivalued parameters have

3 Sk N

more than one value, and the function KNOWN does not

“ave a control to <check all those other possible

W D0 oy

values of parameters before success.

MAINPROPS parameters should be either
singlevalued or yes_no parameter, since there 1is no
specific value of maltivalued parameter defining
whether parameter's evaluation process is done or not,

as in the case of known function explained in previous

paragraph.

D. PROLOG AND EMYCIN-PROLOG
EMYCIN~-PROLOG possesses most of the properties of
EMYCIN since the main conceptual and control structure
is preserved, as explained in previous section.
Contrary to above problems of EMYCIN in EMYCIN-PROLOG,
PROLOG’s unification pattern-matching made deduction
possible without any additional programming. This in
turn increased the expressive power in the
representation of factual knowledge and its
manipulation. For example the hypothesis-retrieving
process was easily performed using the unification
property.
PROLOG also succesfully facilitated
implementation of EMYCIN, especially 1in the data

structures, rules (even though rules are not part of

70

EMYCIN, they are required for a working consultation
system and thus was mentioned here), and hypothesis
inference.

Compared to Interlisp (the 1language in which
EMYCIN was first implemented) PROLOG seems to be a
better 1language for implementing EMYCIN. Especially
during the rule execution phase, we did not need any
aditional programming because of PROLOG’s built-in
pattern-matching facility (see
"try_all_rules_for_PAR(...)" routine in the source

codes in the Appendix A).

E. EFFICIENCY OF EMYCIN-PROLOG

The user interaction module of an expert system
shell +typlcally covers 30% of the whole programming
effort. EMYCIN-PROLOG didn’t have a user interaction
module, and in a usable product 1t should be
implemented. Suggestions for this module are given in
chapter IV. In addition to the wuser interaction
module, the suggested explanation system (see chapter
V) also should be implemented. Rather than having
usable end product we were mostly c¢oncerned about
making the 1inside of a shell visible. The benefits of
this work are explained in the followling sectilon.

Another alternative approach ¢to the EMYCIN-

PROLOG shell would be the decision-lattice shell [18].

71

A

W LN T YN
B R N 2 W o ST G BT i S N L RV R I DRGNP LN \'-\'-\ ‘-;‘ AT A N TN R e e e N T e
RS - “ hd hd - Sab il MPA b -

— - w gl AT T

..
D e o e a utah SR G A S AE)

A decision-lattice shell 1s highly dcmain-dependent

el AL R

and it does not bring the advantages of EMYCIN-PROLOG
as explained 1in the following section (i.e., EMYCIN-
PROLOG prevents the same codes from being repeated and
shortens the programming work considerably when

building several expert systems).

F. THE BENEFITS OF OUR WORK

Once a shell 1s provided, building a complete
expert consultation system 1is much easier than
starting from scratch and programming the whole expert
system. During the bulilding of the CAR diagnoesis and
FINANCE znalysis systems the work mostly focused on .
the napping of the domain knowledge into the rules
rather than programming.

EMYCIN-PROLOG performs better on diagnostic
problems than nondiagnostic problems. Different
domains can use EMYCIN-PROLOG for bullding a complete
expert consultation systems as 1long as they are

diagnostic-type domains. The CAR diagnosis and FINANCE

analysis systems were two such domains. Two different
consultation systems were built for them using EMYCIN-
PROLOG during our work. Without EMYCIN-PROLOG we
wouldn’t have been able to build them within our time

constraints.

T2

......

Besides the above advantage of using EMYCIN-
PROLOG, we have demonstrated the phases of expert

system programming. Once the structural requirements

RN TAT IR O W TS TR O

of EMYCIN are understood, the different phases of the
building process can be seen easily (e.g., defining
structural requirements, building a shell, building
the knowledge-base, etc).

Another advantage 1is that a reader can experiment
with the code, since a complete 1list of +the program

code with the sample consultations is provided.

e T T gt FLIR ot Piag s el S St L { SRR IS ARSI I Fe e S XK IRR OO XS 1 X

e YT Y3 AN

R % TP x

s "EIIMMY v oA A S

T3

PRES R 1t S I

.....
- - - .

oA s - . - - . » - L) ."“ - -
'}'J‘\P'-"«"f'-"\"".r-‘."".r""“r.'r\'"“““" R T A S N R LI O S I S T U AL S "’,,'_N’JL-
ol P L'l harglleagKoagi-uy - WO Y Kt - SRS - —— v -

APPENDIX A
SOURCE CODE i

This appendix contains a listing of the main
program (held in the files ENGINE, FUNC, and
UTILITIES).

EMYCIN~PROLOG is written in the version of the
PROLOG language known as C~-PROLOG and runs under the
UNIX operating system on VAX Macnine. This version of
PROLOG 1is closely based on standards as described in
Clocksin and Mellish [19].

The knowledge engineer and consultor has no
responsibility or relation to the writing of the codes
which presented in this appendix.

Having entered +the PROLOG, program prints a
short message about EMYCIN-PROLOG and then user starts
the consultation with the query of "begin".

The lines that limited with "=*% are comment

lines. They should not be confused with actual PROLOG

codes.

T4

. . . - -
...... T et e B N R LA R S T I N T A P ~
R TRk k. G LA —a—i 5 - -

- - . “ ‘e v
S T S L L S P Tt LA N N e T e T LA R SR T S L., -

% fOLLOWING LIST OF CODES ARE CONTENTS OF ENGINE

JLE.

e e et

[RERRARKRAKRR XA KNANK % MATN PROGRAM # %% % 3 % 3 3 % 3¢ % % 3 % % |

All asserted facts are cleaned from database

(cleandatabase), nextnum and pasked properties of

contexts are initialized {(initialize nextnum pasked),

and user 1is asked of name of the root context. Since
root context is askable at start 1ts askable property

is set +to "i1" (initialize askable). Then root context

is created and 1ts MAINPROPS paraneters are traced

(create root and start consultation), once this

routine succeeds then consultation ends. Fnllowing the

consu.tation results are printed (print result) and

also all concluded hypotheses in the dynamic database

are printed (print dbase).

/******************************K********&*********I*/

nl,nl,nl,

write(' WELCOME TO EMYCIN-PROLOG CONSULTATION
PROGRAM'),nl,

write(’ Please enter "begin" to start the
consultation '),

nl,nl nl.

75

A) » . . - Al - »
IO »
........ P SR IR T/ el S S SR R MR o‘ '.","-‘

LI SN
a” uV
Y A Ay

s 5‘)\

e

PO 1SS

X7V

> X

Pt S

Padbd) 1Al S s e T

Lt

~y

S IR TG L PR T

5 ATMVEE ST P T2 LY, &

PRVAFAIN L LISE L AR

¥

'
.

O AT, e,

P I .

|

o P .
[gfﬁ’w'ﬁ‘w’\'w””'uﬂu"’"L*’# LTINS NI OEAS ISP I AP PRI NI o’
MG Gl S Dol e LA Sl PPN :

begin
cleandatabase,
assert(fact(not_first_run)),
not(initialize nextnum_pasked),
nl,nl,nl,
write(’Enter the name of the root context
(CAR,LEASE) '), write(’ ==>'),read(DOMAIN),
not(initialize_askable(nnil,1)),
create_root_and_start_consultation(DOMAIN,N),
print_result,

print_dbase,!.

create_root_and_start_consultation(C,N)

v_func_2{C,assocwith,Cp),
v_func_2(Cp,nextnum,N2), Np is N2+1,

create_and_trace_mainprops{(Cp,Np,C,N).

[Hnsnnnnnnxn EBVYALUATE PARAMETER VALUE #*#axxa%uxsx/

This routine evaluates the value of a parameter.
As explained 1in section II.B. there are two possible
cases ; parameter's value can be known by +the user
(can_ask = 1) or parameter's value cannot be asked of
user, 1n first case user 1s directly asked of the

value of parameter, in latter case all rules about the

76

I S R R R R TP ST S A

A

L YRt VS
e

e S a o ke d N

—

G325 B LAIETR S e e

parameter are tried (try all rules for PAR). User can

answer as "unk" if +the data 1s not available at all.
User'’s answer 1s checked against the expected value of
the parameter and if the value 1s unexpected one, user
is warned and question 1s repeated. Evaluation of a
parameter is done for a all instances of a context.
Evaluation ends when all instances of the context is
tried (nextnum = @).
/***/
eval2(C,9,PAR,VAL,CF) :~ .

eval2(C,N,PAR,VAL,CF)

v_func_2(PAR,can_ask,1),
message_askable(C,N,PAR),
get_the_answer(VAL,CF),nl,

v_func_2(PAR, expect,EXPECT),
check_the_answer(C,N,PAR,CF,VAL,EXPECT),
VAL \== ‘'unk’,
assert(hypothesis(PAR,C,N,VAL,CF)),
assert(is_t(PAR,C,N,1))},

Nn is N-1,

eval2(C,Nn,PAR,VALNn,CFn).

eval2(C,N,PAR,VAL,CF)

.
.

v_func_2(PAR,can_ask,1),

T7

W 2}

‘i.’_

-

AWESSS S TR RS

N,

04

<5

il

SRR

-~

& e

Y

T

Feeis SRS

s

arte oy

TR ST o T

PR Ty

W e

»

LIS ~ VAT

L,

ip prre

PR PRI

P

L]

) ':_‘l l

-

- .: -l‘ DH"f"-‘ "' ..' o

write(’Unexpected answer !!! Please try
again.’),nl,nl,

eval2(C,N,PAR,VAL,CF).

message_askable(C,N,PAR)

L

-

v_func_2(PAR,prompt, PROMPT),

write(C),write(’-?),write(N),nl,
PROMPT, !.

eval2(C,N,PAR,VAL,CF)

not(try_all_rules~for_PAR(PAR,C,N,VAL,CFrule)),
assert(is_t(PAR,C,N,1)),
Nn 1s N-1,

eval2(C,Nn,PAR,VALn,CFn).

Jensnunnsnnsy TRY ALL_RULES_FOR_PAR 022NN N NN

All rules which mentions particular parameter in

thelr head part are tried. The parameter 1s passed in
last eval?2 routine. If +the parameter 1s singlevalued

or yes_no parameter and there is a hypothesis wilth

certainity (CF = 1) then execution of rules 1is

stopped. (!,fall) combination stops the execution.

/***K***K****#*l***l***N*N***N********M************/

78

e ata %"

. ekt
~e ~

- - LJ - - P - -y - - - - - - - - " - e . o
-, (N I W R T Tl Py -
o N P I s AR < ~ A

-

P

try_all_rulic<_for_PAR(PAR,C,N,VAL,CFrule)
(v_func_2(PAR,valutype,singlevalued);
v_func_2(PAR,valutype,yes_no)),

hypothesis(PAR,C,N,VAL,1),!,fail.

try_all_rules_for_ PAR(PAR,C,N,VAL,CFrule)

-
-

v_func_4(PAR,C,N,VAL,CFrule),fail.

Jrnsannnnnnsn FIND APPLICABLE CONTEXT % %% %% %% %% % %% /

At any time of +the consultation 1f the current
context 1is not applicable then this routine finds the
applicable one. First parent context is checked then
descendant contexts and finally brether contexts are
tried. If +there is not any applicable context in the
dynamic tree then it is created

(create by traversing). Last argument in

"create_by_traversing'" routine 1s used to keep track
of the context which +traversing has been started.
After creation process is done then

"descendant_or_brother" routine finds this applicable

context.

/*****“***N*********l**********IN******&‘***********/

79

......

............

L

:
!

,.
el
A

N
SN,

| JHOe

, t:fvgﬂ

e a3
o

WRLEt 152

2N (RO Re - AU

LRI

.

XN |- -

Py

Nl A2

-.' ;'.J\ l“

R (A ROl (S

A oy
2 3 - : o
e O A M P
- " gyl iy i P Cal

find_applicable_context(C,N,PAR,Cap,Nap)

parent_test(C,N,PAR,Cap,Nap).

find_applicable_context{C,N,PAR,Cap,Nap)

descendant_test(C,N,PAR,Cap,Nap).

find_applicable_context(C,N,PAR;Cap,Nap)

brother_test(C,N,PAR,Cap,Napn).

find_applicable_context(C,N,PAR,Cap,Nap)

create_by_traversing(C,N,PAR,C),

descendant_or_brother(C,N,PAR,Cap,Nap).

AR R R SRS EEE TR R Y PARENT TEST ##%#®xssxnsnsnx/

parent_test(C,N,PAR,Cp,Np)
v_func_5(C,Cp,Np,C,N,tree),

cntxt_applicable(Cp,PAR).

parent_test(C,N,PAR,Cp,Np)

v_func_5(C,Cp,Np,C,N,tree),

Cp == nnil,!,fail.

80

.....

»" -

o
’n

parent_test(C,N,PAR,Cp,Np)

*

v_func_5(C,Cp,Np,C,N,tree),
not(cntxt_applicable(Cp,PAR)),

parent_test(Cp,Np,PAR,Cpp,Npp).

JREA KRR E XA X RN AR H %% DESCENDANT TEST # %% %% 3555 % %% % 3 %% |

descendant_test(C,N,PAR,Cd,Nd)
v_func_2(C,offspring,Cd),
v_func_5(Cd.C,Ng,Cd,Nd, tree),

cntxt_applicable(Cd,PAR).

descendant_test(C,N,PAR,Cd,Nd)
v_func_2(C,offspring,Cd),
v_func_5(Cd,C,Ng,Cd,Nd, tree),
not(cntxt_applicable(Cd,PAR)),

descendant_test(Cd,Nd,PAR,Cdd,Ndd).

descendant_test(C,N,PAR,Cd,Nd)

v_func_2(C,off'spring,Cd),

not(v_func_5(cd,C,N,Cd,Nd,tree)),!,fail.

81

[/

g SanlVod

A1

IR RISt YN §T TR 0 ST R | T ol o Dyt ei 1} il ol iy

R

RIS N), 1l b AR & {1

T QN

oSS T S T Y TR TY YL, I T .

[RN KR NN BROTHER TEST #%%% ¥ ¥ ¥k %% % %% /

brother test(C,N,PAR,Ch,Nb)

-
.

v_func_5(c,Cp,Np,C,N,tree),

v_func_2(Cp,offspring,Cb),

Cb \== C,

cntxt_applicable(Cb,PAR),

v_func_5(Cb,Cp,Na,Cb,Nb,tree).
/********************* DESCENDANT OR BROTHER ******/

descendant_or_brother(C,N,PAR,Cdb,Ndb)

descendant_test(C,N,PAR,Cdb,Ndb);

brot _.r_test(C,N,PAR,Cdb,Ndb).

[rnnnnunnnxu® CONTEXT CREATION ROUTINES ##w*%xxsux/
In following routines, first applicable context
ls found therr 1t 1s created and 1ts MAINPROPS

parameters are traced (create and trace). "Cx" 1in the

“create_by traversing" routine is needed to keep track
of the context which traverse began. Traversing will
stop when Cx 1is reached on the way back. If
create_applicable_cntxt did not create any context
(PROMPT2=NO) at any point then trace_back contlnues
back from the ~urrent context (C,N) which doesn’t have

any other instance i.e., prompt2 for "C" is no.

/**** ‘***%****N*****l******a‘***************N*******/

82

Ca eIt it

create_by_traversing(C,N,PAR,Cx)
create_applicable_cntxt(C,N,Cc,Nc,PAR),

trace_back(Cc,Nc,Cx,PAR).

create_applicable_cntxt(C,N,C,N,PAR)
fact(context_is_not_created),

retractall(fact(context_is_not_created)).

create_applicable_cntxt(C,N,Cb,Nh,PAR)
v_func_2(C,assocwith,Cp),
v_func_2(Cp,offspring,Cb),
Cb \== C,
cntxt_applicable(Cb,PAR),
not(v_func_5(Cb,Ca,Na,Cb,Nb,tree)),
v_func_2(Cp,nextnum,Np),

create_and_trace_mainprops(Cp,Np,Cb,Nb).

VASE R R SRR SRR RS SRZRRSSRRRARR SRR AR R SRR RSN

Go down by creating 1intermediate contexes until
the applicable context is hit then create all other
occurrences of applicable context with
"create_and_trace_malnprops" routine. If context is

not applicable to PAR, another context "Cc¢" ig tried

83

DN s TR, St v Y O 6 A TR I, SONTG TT BaR a2 MDA A AT

Pl

.LI'

AT S S YT AT L,

AN L

ERARR R -1 PR

K-

2
s
L]
]
»
m
=
E
+
»
E

L
€

f

by backtracking to C(offspring,Cc).

/***********K**/

create_applicable_cntxt(C,N,Cc,Nc,PAR)

v_func_2(C,offspring,Cc),
not(v_func_5(Ce,C,N,Cc,Nc,tree)),
cntxt_applicable(Cc,PAR),

create_and_trace_mainprops(C,N,Cc,Nc).

/**************************************ﬁ*********‘l**/

Context is not applicable then create it as an
intermediate context and continue recursively.

/******%K***I****I******5%***“**!**“****************/

create_applicable_cntxt(C,N,Cc,Nc,PAR)

v_func_2(C,offspr:.ng,Cs),
not(v_func_5(Cs,C,N,Cs,Ns,tree))},
not(cntxt_applicable(Cs,PAR)),
create_cntxt{(C,N,Cs,Ng),

create_applicable_cntxt(Cs,Ns,Cc,Nc,PAR).

create_applicable_cntxt(C,N,Cc,Nc,PAR)

v_func_2(C,offspring,Cs),
v_func_5(Cs,C,N,Cs,Ns,tree),

create~applicable_cntxt(Cs,Ns,Cc,Nc,PAR).

84

"~ T o T T T AR

create_and_trace_mainprops(¢C,N,Cc,Nc)
v_func_2(Cc,pasked,?),
create_cntxt(C,N,Cc,Nc),

create_cntxt2(C,N,Cc,Nc).

/************************************Vé***************/

IMPORTANT NOTE !!! create_and_trace_mainproprops
is called when applicable context 1is found. If
applicable context was not created yet and if answer
to the prompt to create context is NO then PAR cannot
be evaluated without creating the applicable
context.In this case either user asked for PAR value
or ERROR message 1is sent. "Cec" which 1s applicable
context has 1ts 1instance 1in context tree, which
Cc(pasked,1). "Create_cntxt2" routine asks for another
instances with PROMPTZ2.

/N*************************************l**********NN*/

create_and_trace_mainprops(C,N,Cc,Nc)

create_cntxt2(C,N,Cc,Nc).

create_cntxt(C,N,Cc,Nc)

v_func_2(Cc,pasked,?),

create_prompt3(C,N,Cc,Nc).

85

o e e oy

v -

L~ NNV ¥

ca Sammee o

F
;§
i
i
:
|

:
i
K

create_cntxt(C,N,Cc,Nc)

® m
.

v_func_2(Cc,pasked,?),

create_prompt1(C,N,Cc,Nc).

/*************************#**************************/

Answer to PROMPT1 1s "no". "Askable" property is
used in "trace_back" routine.

/***/
create_cntxt(C,N,Cc,Nc)
v_func_2(Cc,pasked,),
assert(fact(context_1s_not_created)),

update_askable(Cc,C,N,askable,®).

create_cntxt(C,N,Cc,Nc)
v_func_2(Cc,pasked,1),
v_func_2(Cc,C,N,askable, 1),

prompt_2(Cc,Nc).
/N**N****I*********I******l**l*ll***********ﬁ**N****/

Answer to PROMPT2 1is "no".

/*****N**N*N*Iﬂ*IINl**Ill****Il*l****i**************/

86

create_cntxt(C,N,Cc,Nc)

-
.

assert(fact(context_is_not_created)),

vpdate_askable(Cc,C,N,askable,?).

create_prompt3(C,N,Cc,Nc)
v_func_2(Cc,prompt3, PROMPT3),
write(PROMPT3),
create_and_trace(C,N,Cc,Nc),

update_num(Cc,pasked,1).

create_prompt1(C,N,Cc,Nc)
v_func_2(Cc,prompt1,PROMPT1),
write(PROMPT1),write(’ ==>'), read(Ans),
«ffirmative(Ans),
create_and_trace{(C,N,Cc,Nc),

update_num(Cc,pasked,1).

prompt_2(C,N)
v_func_2(C,prompt2,PROMPT2},
write(PROMPT2),write(’ ==>'), read(Ans),

affirmative(Ans),nl,

v_func_2(C,assocwith.Cp),

87

?

A

SRR TS 2

« T 3
Y

AR

- ~r
Tty tans [TSR

v_func_2(Cp,nextnum,Np),

create_and_trace(Cp,Np,C,N).

create_prompt2(C,N)

v_func_5(C,Cp,Np,C,N,tree),N1 is N+1,

v_func_2(C.promptZ, PROMPT2),

write(PROMPT2),write(’ ==>'),
read(Ans),!,affirmative(Ans),nl,

create_and_trace(Cp,Np,C,N1).1,

create_prompt2(C,N1).

/*****'i&******************)‘*************************/

"Cc,Nc" is the contexi toc be created.

/***/

create_cntxt2(C,N,Cc,Nc) :- create_prompt2(Cc,Nc).

/********)(*******l*I******I**********************K**/

Answer to PROMPT2=NO.

/****{l*******#*******&***N*l******************X****/
create_cntxt2(C,N,Cc,Nc) :-

update_askable(Cc,C,N,askable,).

create_and_trace(C,N,Cc,Nc)

v_func_2(Cc,nextroum,Nn),Nc is Nn + 1,

88

¥ R a merem

MY Rl

A bL T_UPMERE (WY f T 2T e e

Y ATy > ¥ ¥ *

L Wy

update_num(Cc,nextnum,Nc),

add_5(Cc,C,N,Cc,Nc,tree),nl,nl,

write(?’~---?),
write(Cc),write(’-?),write{¥c),write(’'----?),nl,nl,

not(initialize_askable(Cc,Nc)),

lookmainprops(Cc,Nc).

lookmainprops(C,N)
v_func_2(C,mainprops,MAINPROPS),
eval _par{(C,MAINPROPS,N).

eval par(C,[],N).

eval_par(C,[PARIREST],N)
cntxt_applicable(C,PAR),
eval2(C,N,PAR,VAL,CF),

eval_par(C,REST,N).

eval _rar(C, [PARIREST],N)
not(cntxt_applicable(C,PAR)),
find_applicable_context(C,N,PAR,Cap,Nap),
eval2(Cap,Nap, PAR,VAL,CF),

eval_par(C,RE3ST,N).

89

P 4 w o w.y ggge S .

S e, Acmy ta oY THER T

SR]

T T

e T

[Herxnurunnnnxin¥xs TRACE BACK A SRS SRS S SN

Once the applicable context 1is found then all
intermediate contexts between +this context and the
context which traversing started ("Cx") are tried
whether any of them has any other descendant context
to be created.

"C" and "Cx" are brother contexts.There 1is no
need for trace back.
/***/
trace_back(C,N,Cx,PAR)

L
.

v_func_2(C,assocwith,Cp),

v_func_2(Cp,offspring,Cx).

/*****x**n*&n******uu****u*********n*n***n****n***#n/

"Cp" 1s parent context of "C" and "Cpp" of "Cp".
"Cpp" 1s needed to find askable property of "Cp". If
"create_cntxt routine did not creat context
(PROMPT2=NO), then ‘"create_applicable _cntxt" returns
(Ck,Nk=Cp,Nc) and trace_back continu:es back from
Cp,Nc.
/*xnn*u*nunuu*n*nnnunnxuunnnnunnnuuunnuunuunununnunx/
trace_back(C,N,Cx,PAR)

v_func_5(C,Cp,Np,C,N,tree),
Cp \== Cx,

S9

ga
i{
§
:
)
!

- ..~

IR T a2y Sa il

Ry

SIS

SJEETAS SN

-

v_func_5(Cp,CTpp,Npp,Cp,Np, tree),
v_func_4(Cp,Cpp,Npp,askable, 1),
create_cntxt(Cpp,Npp,Cp,Nc),
create_applicable_cntxt(Cp,Nc,Ck,Nk,PAR),
trace_back(Ck,Nk,Cx,PAR).

trace_back(C,N,Cx,PAR)
v_func_5(C,Cp,Np,C,N,tree),
Cp \== Cx,
v_func_5(Cp,Cpp,Npp,Cp,Np,tree),
v_func_4(Cp,Cpp,Npp,askable,).
trace_back(Cp,Np,Cx,PAR).

trace_back(C,N,Cx,PAR)
v_fun~_2(C,assocwith,Cp),

Cp == Cx.

[##wnunxnw COMBINE CERTAINTY AND CONCLUDE #uwxxs¥wuswux/

A hypothesis 1s asserted 1into dynamic database.
During the assertion process database 1s checked if
there 18 any aother hypothesis which c¢oncludes the
same value for "PAR", if +there 1s then two
hypothesis’s certainty values are conbined using

"combine_func" routine and new hypothesis with new CF

91

AR T e AR, =1 e A AN |4 S S P I Lt 22 o P I L e IR

v
s 8

RESRIR F . SaPRi RS NP gt (v Pt

LA,

RENEE - e ra JOPEFLIR L . 2 LA

value 1s asserted into database.

/***/

conclude(C,N,PAR,VALUE,CFrule, CFmm)

CF is CFrule * CFmm,

certainity combine(C,N,PAR,VALUE,CF),!.

certainity_combine(C,N,PAR,VALUE,CFnew)

hypothesis(PAR,C,N,VALUE,CFold),
combine_ func(CFold,CFnaw,CF),

retract(hypothesis(PAR,C,N,VALUE,CFold)),

assert(hypothesis(PAR,C,N,VALUE,CF)).

/******ll****kl**ﬂ*ﬂ**********N***ll******#*********/

If FAR value 1s concluded for +the first time

then there would not be any concluded value in the

database.
/NlM“*ﬂ*NIIl!Ii&ill*lN*H“Iﬂﬂﬂl*NII!**N*“NNMIN**IN”NN/

certainity_combine(C,N,PAR,VALUE,CFnew)

not(hypothesis(PAR,C,N,VALUE,CFold)),

assert(hypothesis(PAR,C,N,VALUE,CFnew)).

92

ILA) ot TP S Tt g TR AT A A

/***/

There are +threce functions to combine certainty

values:
CFcomb = CFold + CFnew * (1 - CFold)
CFcomb = (CFold + CFnew)/(1 - min(CFold,CFnew))
CFcomb = —-(~ CFold — CFnew * (1 + CFold))

/****’é**/

combine_func(CFold,CFnew,CF)

CFold > 0,

CFnew > @,

CF is CFold + CFnew*(1 - CFold).

combine_func(CFold,CFnew,CF)
CFmult 1s CFold*CFnew,

CFmult < 0,

Y
min([CFold,CFnew],CFmin), i’-:-f—
N

CF is (CFold + CFnew)/(1 - CFmin). Y
s

combine_func(CFold,CFnew,CF) :1}‘:31
.f -'\

$ - ",::'23

r -Q

CFold < 0, =4
CFnew < @, -

CF 1s —-1%*(-"Fold - CFnew*(1 + CFold)).

93

=Y R T TR W WD

Ty

AR R A2 2 CLEANDATABASE *%¥%¥ M AR AKX K5 [

The following facts are asserted 1into the

database during the consultation

hypothesis(PAR,C,N,VAL,CF)

The evaluated value of parameter "PAR".

fact(context is not created)

The Warning flag showing +that after a call to
the "create_cntxt" routine no context is
created.Answer to PROMPT1/PROMPT2 is NO.

fact(not first run)

A flag to cleandatabase routine. If this fact is
in the database then database 1s cleaned.

Ce(C,N,Cc,Nc,tree)

A new context is added into context tree.

Cc(C,N,askable,Num)

An askable property ; context "C,N" has no other

context Cc descendant to 1t.

C(nextnum,N)

The context "C" has "N" instances created so far.

C(pasked,Num)

The number (Num) for the context "C" is "1v, if

context 1is created via PROMPT1 or PROMPT3, otherwise

"@". Before PROMPT2 1is asked this flag is checked
first.

54

et A R A £ o A
“a A R AR AT L AT AL AT M TR e I ST

a%a

PR TSL g W g e Pty LB

VXAl I drs

YR P R

ho

Above facts are retracted from database before

consultation starts by using "cleandatabase" routine.

/***/
cleandatabase
fact(not_first_run),
abolish(hypothesis,5),
abolish(concluded_PAR_for_C_N,5),

abolizh(applicable_descendant,5),
abolish(fact,1),
abolish(descendant,1),
abolish(is_t,4),

not(cleanit),

not(clean2),

not(clean3),

not(clean4).
cleandatabase.
cleani

context(Cc),

delete_5(Cc,C.N,Cc,Nc,tree),fail.

95

1':‘
&

.
LY
5 WO

oy
g

g

%
O

- r
it e’}
. 1

Y
A

AN
A

A

~
TNy
il S0 % WY W8

| A
E" l‘
ALY

.,‘,
e,

Ly

F I Pt
b
Bt A,

PR o AL
:,'-,"l.:t (
! y

.

A

»

[
E)
»
.
AL *a

»
L

8

i
-‘;“l
e

-
*
A:A
I

i poe

. e
.

I "v

¥
Yy e te

> ‘A
v LI
> opte '.j il’." ol

”
[}

- Ny
B
P <R

A

Js
Ja s

T

clean2
context(C),

delete_2(C,nextrnum,N),fail.

clean3
context(Cc),

delete_4(Cc,C,N,askable,X),fail.

clean4

context(C),

delete_2(C,pasked,N),fail.
/************%**** OUTPUT ROUTINES ***************/
Goal parameter 1s found and all hypotheses which
concludes about this parameter are printed. After the

goal parameter, all other hypotheses in the database
are printed.
/***/
print_result

goal (PROBLEM),

v_func_2(PROBLEM, trans, TRANS),nl,nl,nl,
write(TRANS),nl,

not(print_conclusion(PROBLEM)).

96

print_conclusion(PROBLEM)

hypothesis(PROBLEM,C,N,VALUE,CFj},
write(VALUE),nl,

. write(’with the certainity :),

write(CF),nl,nl,fail.

print_dbase

write(’THE CONSULTATION -———-——————= ’),nl

nl,nl,not(write_all_coacluded_values).

write_all_concluded_values

write('parameter / value / '),

write(’'certainity / context instance’),nl,

write_all_concluded_valuesZ2.

write_all_concluded_values2

hypothesis(PAR,C,N,VALUE,CF),

97

write(FAR), write(® --- '), write(VALUE),
write(?’---?),write(CF),

write(?’——- ?),write(C),write(’--?),write(N),nl,fail.

[rexxxnnnnnnx PROCESSING THE USER INPUT ***¥%%%x%/
User’s answer for any data request by the system
is checked against expected value of the parameter. If

the answer 1s unexpected then user is warned and the
question is repeated.
/***/
get_the_answer(VAL,CF)

®
.

read(STRING),
name(STRING,LIST),

parse(LIST,VALUE,CERTAINITY,LIST),
name (VAL, VALUE),

name (CF,CERTAINITY).

/***/

95 1s ascii code for underscore "_"

/**)’*k/

parse([XIREST],VALUE,CERTAINITY,LIST)

X \== 95'

parse(REST,VALUE,CERTAINITY,LIST).

98

parse([XIREST],VALUE,REST,LIST)

X == 95’

seperate_val LIST,VALUE).

/***/

49 is ascii code for "1" which corresponds to the
default value for CF. Default value 1 is used when
user did not specified any certainty of his/her answer
explizitly.
/***/
parse([],LIST,[49],LIST).
seperate_val([XIL1],[])

X == 95.

seperate_val([XIL1], [XIL3])

o
-

X \== 95,

seperate_val(L1,L3).

99

5
i
v
“

L L0 BN 24

gy

% FOLLOWING LIST JF CCDES ARE CONTENTS OF FUNC FILE

/************ PREMISE EVALUATION RGUTINES ****************/
First all asserted facts during the execuiion of previous
"eval_premise" routine are retracted. Evaluation process is
dgone 1in +two stages ; first database iIis updated i.e.,
parameters value 1s evaluated using "eval2" routine then
related hypothesis 1s retrieved using "retrieve_hypothesis"
routine. The variables used 1in the argumeunt lists of

rcutines and their explanations are :

L=[VAL1,¥AL2,....,VALn] list of values determin=sd by the

rule writer

Lcommon=[[VALt{,CF1]}, [VAL2,CF2],....,[VALNn,CFn]l]

intersection of evaluated values and values specified
in the rule. Lcommon = intersection[V,LST]

v

set of all hypothesis about P2AR.
LST

se

the possible values of PAR given by rule
author. "L" wusually ccntains only a single element,if
L=[] then Lcommon also equal to [].

When "eval_premise" falls, then the rule also
fails and control goes back to "try_all_rules_for_PAR"
routine. Note +that "PAR,C,N" 1is +the key, same PAR

might have different "concluded_PAR_for_C N" values
for different (C,N) pairs.

/**/

100

e T AR

eval_premise(FUNC,PAR,C,N,L,CF)

®
.

retractall(concluded_PAR for_C N{PAR,C,N,VAL,CFm)),!,

retractall(applicable_descendant(C,N,PAR,Ca,Na)}).

eval_premise2{FUNC,PAR,C,N,L,CF),!.

/****************************%**:‘&*******************/

IMPORTANT !

THE CUT (!) OPERATCR PREVENTS BACKTRACKING AND GIVES
THE CONTROL TO THE RULES. IF EVAL_PREMISEZ FAILS WE
WANT EVAL_PREMISE TO BE FAILED AND GIVE CONTROL BACK
TO THE RULES SO THAT SOME OTHER RULE WILL BE TRIED

/*****************’A****************************%****/

eval_premiss2(FUNC,PAR,C,N,L,CF)

cntxt_applicable(C,PAR),!,

eval_ premise3(FUNC,PAR,C,N,L,CF}.

/***/

The tree pointer is bound to 1its correct value
before "eval_premise3" ROUTINE 1s called.

/***/

eval_premise2(FUNC,PAR,C,N,L,CF)

not(cntxt_applicable(C,PAR)),

find_applicable_context(C,N,PAR,Cap,Nap),!,

191

eval_ premise3(FUNC,PAR,Cap,Nap,L,CF).

/***/

CFe is different than CF since commonlist chooses
desired ones from all evaluated values of PAR. PAR
value 1s evaluated first by "eval2" routine if either
"is traced" flag is "0" or PAR is multivalued. "is
traced" flag is ignored 1f PAR 1s multivalued. "cut"
(') operator 1s wused to prevent backtracking inside
the eval2. If eval2 could not conclude a value
("unknown" answer from user), then eval2 will return
reasonable value, in this case we want eval_premise3,

eval_premise2 and eventually eval_premise to be

falled.

/***/

eval_premise3(FUNC,PAR,C,N,L,CForTRUE)
(not(is_t(PAR,C,N,1));
v_func_2(PAR,valutype,multivalued)j,
eval2(C,N,PAR,VAL,CFe),!,

retrieve_hypothesis(PAR,C,N,L,FUNC,CForTRUE).

eval_premise3(FUNC,PAR,C,N,L,CForTRUE)

is_t(PAR,C,N,1),!,

retrieve_hypothesis(PAR,C,N,L,FUNC,CForTRUE).

102

7

retrieve_hypothesis(IAR,C,N,L,FUNC, true)

member (FUNC, [greaterp,greateq,lessp,lesseq]),
v_func_5(FUNC,PAR,C,N,L,true).

retrieve_hypothesis(PAR,C,N,L,FUNC,CF)

not(member (FUNC, [greaterp,greateq,lessp,lesseql)),

commonlist(PAR,C,N,L,Lcommon),!,

v_func_5(FUNC,PAR,C,N,Lcommon,CF).

VAZEZ S L RS2 FUNCTIONS IN RULE PREMISE ##*#*%%%%% /
Two main types of functions can be named as "funci1"
and "func2" where :

<func1> : Does not form conditionals on specific
values of a parameter.

<func2> : Controls conditional statements regarding
specific values of the parameter in question.

As defined above unlike the <funcil>
predicates, <func2> predicates control conditional
statements regarding specific values of the parameter
in the dquestion.These specific values are passed by
the argument "L" in eval_premise routine."L" 1s the
list of wvalues to be compared with to evaluate the

function "FUNC". Evaluation of premise includes some

simple functions.

103

Functions KNOWN,NOTKNOWN,DEFINITE and NOTDEFINITE
are concerned not with the actual value of a
parameter,but with whether or not it is known.

Functions SAME,THOUGHNOT both either fail or
return a numerical value signifying "true".

Functions NOTSAME, MIGHTBE, VNOTKNOWN, DEFIS,
NOTDEFIS, DEFNOT and NOTDEFNOT are all coricerned with
the certainity; factor with which +the wvalue of a
parameter is known to be true and all return truth
values.The empty 1list "[]" passed by commonlist
routine in +the first clause "FUNC(PAR,C,N,[],FALSE)"
implies +that PAR does not have any value which
included 1in the value(s) 1list, defined by the rule
author in the rule premise, then the premise clause
which mentions this FFUNC fails by returning value
"false".

Functions GREATERP,LESSP,GREATEQ and LESSEQ are
applied to those parameters which have a numerical
value and which return a truth value.These are called
numerical functions. Functions $AND and $OR of EMYCIN
are changed to MIN and MAX functions. Either of them
is added after premises in each rule 1f the premises

are to be ANDed or ORed.

/***/

104

same(PAR,C,N,L,CF)

get_most_strongly_confirmed_hyp(L,VAL,CF),
CF > 9.2,

notsame(PAR,C,N,[],false).

notsame(PAR,C,N,L, true)

get_most_strongly_confirmed_hyp(L,VAL,CF),
CF =< 09.2.

notsame(PAR,C,N,L,false).

mightbe(PAR,C,N,[],false).

mightbe(PAR,C,N,L, true)

get_most_strongly_ confirmed_hyp(L,VAL,CF),
CF) - 0020

mightbe(PAR,C,N,L,false).
thoughnot(PAR,C,N,L,CF)

CF < -~ 9.2.

vnotknown(PAR,C,N,[],false).

105

———

R it

— - - v e = e m emmmav-w e P~ ieaa
gy v w e m— g

R e

L s mrmmwar e e ==

vnotknown(PAR,C,N,L, true)

®
.

get_most_strongly~ponfirmed_hyp(L,VALs,CFs),
absolute_value(CF,CFabs),
CFabs =< 0.2.

vnotknown(PAR,C,N,L,false).

defis(PAR,C,N,[],false).
defis(PAR,C,N,L,true)

.

get_most_strongly_confirmed_hyp(L,VAL,CF),
CF = 1.

defis(PAR,C,N,L,false).

notdefis(PAR,c,N,[],false).
notdefis(PAR,C,N,L,true)

get_most_strongly_confirmed_hyp(L,VALl,CF),
CF > 0.2, CF ¢ 1.

notdefis(PAR,C,N,L,false).

defnot(PAR.C,N,[],false).

106

defnot(PAR,C,N,L, true)

get_most_strongly_consiirmed_hyp(L,VAL,CF),

CF = -1)

defnot(PAR,C,N,L,false).

notdefnot(PAR,C,N,[],false).

notdefnot(PAR,C,N,L,true)

get_most_strongly confirmed_hyp(L,VALs,CF),
CF { - 0.2, CF > "‘1.

notdefnot(PAR,C,N,L,false).

known(PAR,C,N,L,true)
v_func_2(PAR,valutype,yes_no),
get_most_strongly confirmed_hyp(L,VAL,CF),
absolute_value(CF,CFabs),

CFabs > 0.2.

known(PAR,C,N,L, true)

get_most_strongly confirmed_hyp(L,VAL,CF),
CF > 0.2.

107

known(PAR,C,N,L,false).

notknown(PAR,C,N,L,true)
v_func_2(PAR,valutype,yes_no),
get_most_strongly_confirmed_hyp(L,VAL,CF),
absolute_value(CF,CFabs),
CFabs =< 0.2.

notknown(PAR,C,N,L,true)

get_most_strongly_confirmed_hyp(L,VAL,CF),
CF =< 0.2.

notknown(PAR,C,N,L,false).
definite(PAR,C,N,L,true)
v_func_2(PAR,valutype,yes_no),
get_most_strongly_confirmed_hyp(L,VAL,CF),
absolute_value(CF,CFabs),
CFabs = 1.

definite(PAR,C,N,L,true)

get_most_strongly_confirmed_hyp(L,VAL,CF),
CF = 1.

108

am

definite(PAR,C,N,L,false).

notdefinite(PAR,C,N,L,true)

&
-

get_most_strongly_confirmed_hyp(L,VALl,CF),
CF < 1, CF > -1,

notdefinite(PAR,C,N,L,true)

get_most_strongly_confirmed_hyp(L,VAL1l,CF1l),
CFl < 1.

notdefinite(PAR,C,N,L,false).

[rexnnnxnxxsk®x NUMERICAL FUNCTIONS *#¥MRXXENANEN AKX [
Numerical functions return "true" if the value of

"VALX" is known with a CF »>= @.2 and is greater/
greater or equal/ less/ less or equal than the [Value]
specified.
/***************************************%***********/
greaterp(PAR,C,N, [Value], true) :-

eval num val(PAR,C,N,Value,greaterp).
greateq(PAR,C,N, [Value],true) :-

eval_num_val(PAR,C,N,Value,greateq).

lessp(PAR,C,N,[Value],true) :-

eval_num_val(PAR,C,N,Value,lessp).

109

lesse¢(PAR,C,N, [Value],true) :-

eval_num_val(PAR,C,N,Value,lesseq).

eval_num_val(PAR,C,N,Value,FUNC)

find_appl_cntxt_for_C_N(C,N,PAR),

bagof(CF,concluded_PAR_for_C_N(PAR,Cx,Nx,VAL,CF),L),
min(L,X),X > 9.2,
concluded_PAR_for_C_N(PAR,C,N,VALx,X),
satisfied(FUNC,Value,VALx).

satisfied(greaterp,Value,VALX) :- VALx > Value.
satisfied(greateq,Value,VALx) :- VALx >= Value.
satisfied(lessp,Value,VALx) :- VALx < Value.

satisfied(lesseq,Value,VALx) :- VALx =< Value.

[¥%xnxxxxskx GET MOST_STRONGLY CONFIRMED HYP **x*%x/

L 1s 1list of VAL,CF pairs. "get_most_strongly_
confirmed_hyp" routine returns to VAL,CF pair which CF
is largest value of list L.

/******************************x********************/

get_most_strongly_confirmed_hyp([[VAL,CF]],VAL,CF).

110

get_most_strongly_ confirmed_hyp(L,VAL,CF)

member([X,CF1],L),
member2([X,CF1],L,[Y,CF2]),

((CF1 =¢ CF2,delete([X,CF1],L,L1));
(CF2 =< CF1 sdelete([Y,CF2],L,L1))),

get_most_strongly_confirmed_hyp(L1,VAL,CF).

111

L pp o

Theh oy e am al Al L

WL LI

% FOLLOWING LIST OF CODES ARE CONTENTS OF UTILITIES
FILE

JrEknnnnxnnnnn%® INITIALIZATION ROUTINES %% %% *¥*¥x %%/
Three properties of a context are dynamically

stored 1in database. These properties are : askable,

nextnum, and pasked. They are initialized to "0" at

the beginning of a consultation.

Context might have more than one spring.

/***/

initialize_askable(C,N)

v_func_2(C,offspring,Cc),

add_4(Cc,C,N,askable,1),fail.

initialize_nextnum pasked

context(C),
add_2{(C,nextnum,),

add_2(C,pasked,0),fail.

update_askable(C,Cp,Np,askable,Num)

delete_4(C,Cp,Np,askable,N),

add_4(c,Cp,Np,askable,Num).

112

update_num(C,XX,N)

delete_2(C,XX,N1),

add_2(C,XX,N).

cntxt_applicable(CNTXT,PAR)

v_func_2(CNTXT,parmgroup,PT),
v_func_2(PAR,memberof,P_categ),

PT == P_categ.

ARAL LR E S A VARIABLE PREDICATE ROUTINES **%x%x*xx%x%/

Some of the predicate names are bound to their
values dynamically during the cansultation, following
routines make their use possible with PROLOG’s built-
in "=.." and "call" functions.
/***/
add_2(A,B,C)

Z=..[A,B,C],

assert(Z).

add_4(A,B,C,D,E)

Z=o . [A’B’C’D’E] ’

assert(Z).

113

T b s o S ou _bown ghan e quan b gan Jeae anC el
—y PA e s e S SR Sl gt =i S e g e
¢ g ™ T T

® 22 W IR D 10 il e v Ko o R B

W o

€24

et Be B TR oo N ol

add_S(A.B.C,D.E,F)

Z=..[A,B,C,D,E,F],

assert(Z).

delete_2(A,B,C)

Z=..[4,B,¢],call(2z),
retract(Z).

delete_4(A,B,C,D,E)

Z=..[A,B,C,D,E],call(Z),
retract(Zz).

delete_5(A,B’C)D’E’F)

Z=..[A,B,C,D,E,F],call(Z),
retract(z).

v_func_1(PRED,VAR1)

® -
.

Z=..[PRED,VAR1],call(Zz).

v_func_2(PRED,VAR1,VAR2)

114

g e el S o et T T s 3

=..[PRED,VAR1,VAR2],call(Z).

v_func_4(PRED, VAR1.VAR2,VAR3,VAR4)

Z=..[PRED,VAR1,VAR2,VAR3,VAR4],call(Z).

v_func_5(PRED,VAR1,VAR2,VAR3,VAR4,VARS)

®
.

%=..[PRED,VAR1,VAR2,VAR3,VAR4,VAR5],call(Z).

retractall (CLAUSE)

(CLAUSE =.. [PRED,A,B,C,D,~n)] ; CLAUSE =..

[PRED,A]),

not(retractall2(PRED)).

retractall2(PRED)

(Z =.. [PRED,A,B,C,D,E] s Z =.. [PRED,A]),
retract(Z),fail.

ancestor_descendant(C,N,C,N).

ancestor_descendant(C,N,Cx,Nx)

v_func_5(Cx,C,N,Cx,Nx,tree).

115

T A

" b et Seai s Shate Sndh S 2
S mads Sa AL Son G Sa Made. Snf S Snah fane Snat et Sk SaEf i Bk B e e Sach Mnge Snes S B S Sde 3

SR

bAe e

A

(S

G A X

A ES e SN |

ancestor_descendant(C,N,Cx,Nx)

v_func_5(Cs,Cs,Ns,C,N,trzss),

ancestor_descendant(Cs,Ns,Cx,Nx).

J R KK NN RN CHECKING USER'’S RESPONSE R HHNK KN [
User’s response for a data request 1is checked
against expected value of a parameter. There are three

possible expected values : a number, yes or no and any

value.
/***********i'***************************************/

check_the_answer(C,N,PAR,CF,VAL,EXPECT)

EXPECT == "number’,
number (VAL).

check_the_answer(C,N,PAR,CF,VAL,EXPECT)

EXPECT == 'y no’,

member (VAL, [yes,no]).
check_the_answer(C,N,PAR,CF,VAL,EXPECT)

.-

EXPECT == ‘'any’.

116

T
W C

ey A T

P p————

[RE AR NN LOCATING HYPOTHESES IN THE DATABASE #%%*/
"Commonlist" routine returns 1list of "VAL,CF"
pairs where +they satisfy specified values 1in the
"eval_premise" routine. "find _appl_cntxt_for_C_N"
routine finds all hypotheses 1in the database which
concludes a value for "PAR" and stores them as facts
in the form; "conclude PAR_for_C_N (PAR,C,N,VAL,CF)".
"Commonlist" routine has two choices, either a value
list 1s specified or not. If +the value 1list is not
specified then "List" 1in the argument list 1is
variable. All "conclude PAR for C N(...)" facts are
retrieved and then "VAL,CF" pairs are returned as
commonlist "Lcommon" 1in the argument 1list of the
routine. Second choice is the case where a 1list of
values are specified. In this
case "Hypothesislist" variable corresponds to all
"VAL,CF" pairs of '"conclude_PAR_for_C_N" facts. This
list is 1ntersected with specified 1liszt and resulting
list 1s returned as "commonlist".

/***/

commonlist(PAR,C,N,[List!L],I.common)
var(List),
find_appl_cntxt_for_C_N(C,N,PAR),
bagof([VAL,CF],

concluded_PAR_for_C_N(PAR,Cx,Nx,VAL,CF),Lcommon).

17

T T T

v TR
N e A aen aon sees auea e-a Aren e RTh AN L S A RS ¥

o]

commonlist(PAR,C,N,[List],Lcommon)

find_appl_cntxt_for_C_N(C,N,PAR),!,
bagof([VAL,CF],
concluded_PAR_for_C_N(PAR,Cx,Nx,VAL,CF),Hypo
thesislist),

((v_*unc_2(List,list,L),
intersection(L,Hypothesislist,Lcommon));

intersection([List],Hypothesislist,Lcommon)).

intersection(L,[],[]).

intersection(L,[[X,Y]!L1],[[X,Y]iIL2])

member(X,L),

intersection(L,L1,L2).

intersection(L, [[X.Y]!L1],L2)

®
.

intersection(L,L1,1.2).

/*****************I***!*l***************************/

Find applicable contexts for current context
instance (C,N) and parameter (PAR).

/******u***u*******u****************u********u*n****/

find_appl_cntxt_for_C_N(C,N,PAR)

check_applicable_context(PAR,Ca),
not(find_all_appl_descendants(C,N,Ca,PAR)),
not(do_assertion(C,N,PAR)).

check_applicable_context(PAR,C)

v_func_2(PAR,memberof,P_categ),
context(C),

v_func_2(C,parmgroup,P_categ).

/***/

Current context 1s already +the one which is
applicable to PAR, so there is no need to look for any
descendant.

/***/

find_all_appl_descendants(C,N,Ca, PAR)
C == Ca,
not(applicable_descendant(C,N,PAR,C,N)),

assert(applicable_descendant(C,N,PAR,C,N)),fail.

find_all_appl_descendants(C,N,Ca,PAR)

find_brother(c,Ca,Na),

119

oo adiasd-hp

b S g o ol i

not(applicable_descendant(C,N,PAR,Ca,Na)),

assert(applicable_descendant(C,N,PAR,Ca,Na)),fail.

/***/
If C,N is immediate parent for applicable context
then the fact "applicable_descendant(C,N,PAR,Cx,Nx)"

is asserted 1into dbase for all immediate descendant

contexts of C,N. Note that "C,N,PAR" +triple 1is our
key.

/*********************3************{****************/

find_all_appl_descendants(C,N,Ca,PAR)

v_func_5(Ca,C,N,Ca,Na,tree),
not(applicable_descendant(C,N,PAR,Ca,Na)),

assert(applicable_descendant{C,N,PAR,Ca,Na)),fail.

find_all_appl_descendants(C,N,Ca,PAR)

v_func_5(C,Ca,Na,C,N,tree),
not(applicable_descendant(C,N,PAR,Ca,Na)),

assert(applicable_descendant(C,N,PAR,Ca,Na)),fail.

/****************I*****I*****N******************Il**/

Applicable context is not reached yet, go down

one more level.

/**I*k*l*l*l*#lI**l**********lIN**I***“N****I*******/

120

............

TS S YT e e

find_all_applicable_descendants(C,N,Ca,PAR)

not(applicable_descendant(C,N,PAR,Cx,Nx)),
v_func_2(C,offspring,Cs),
v_func_5(Cs,C,N,Cs,Ns,tree),

find_all_applicable_descendants(Cs,Ns,Ca,PAR).

/***/
HERE by using "fall" we use all applicable
descendant contexts one by one and assert

"concluded_PAR for_C_N" for each of them.

/***/
do_assertion(C,N,PAR)
applicable_descendant(C,N,PAR,Ca,Na),

not(do_assertion2(C,N,PAR,Ca,Na)),fail.

do_assertion2(C,N,PAR,Ca,Na)
hypothesis(PAR,Ca,a,VAL,CF),

not(concluded_PAR_for_C_N(PAR,Ca,Na,VAL,CF)),

assert(concluded_PAR_for_C_N(PAR,Ca,Na,VAL,CF)),fail.

/******I********************h***********l***********/

DON'T assert 1f it 1=z already asserted.

/****!**l%****************I***************Vi********/

121

do_assertion2(C,N,PAR,Ca,Na)

hypothesis(PAR,Ca,Na,VAL,CF),fail.

find_brother(C,Cb,Nb)

v_func_5(C,Cp,Np,C,N,tree),
v_func_5(Cb,Cp,Np,Cb,Nb, tree),
Cb \== C.

absolute_value(CF,CFabs)

CF ¢ o,

Cirabs is CF * -1,

absolute_value(CF,CF).

min(A,B) :- min2(A,B),!.

min2([X],X).

min2([XIL]),X) :- min2(L,Y).X =< Y.

min2([X!L]},Y) :- min2(L,Y).

max(A,B) :- max2(A,B).!.

max2([X],X).

122

3 max2([XiL],X) :- max2(L,Y),X >= Y.
: max2([X!L],Y) :- max2(L,Y).

insert(A,[B],[A!B]).

delete(X,[X!L],L).

delete(X,[Y!L1],[YiL2]) :- delete(X,L1,L2).

member(X,[]) :~ !,fail.
member (X, [XiL]).

member (X, [Y!L]) :- member(X,L).

affirmative(y).
affirmative(yes).
negative(no).

negative(n).

member2([X,CF1],[[X,CF1]IL1],[Y,CF2]) HE
member ([Y,CF2],L1).

123

..............

PO IR T e S S I e S TP . S S S —

e Sy ot e a aa

YT R TS U TR TR R TP PO

P NETINEY

TrITTRE T T T

TR MY T~y T W STt 3

2l e e

APPENDIX B
LIST OF FUNCTIONS

This appendix contains +the list of functions
used in EMYCIN-PROLOG. Their original descriptions are
given in [2].

NONNUMERIC PREDICATE FUNCTIONS

KNOWN

Returns true 1if the value of the parameter is
known with a CF > 6.2.

NOTKNOWN

Returns true if the CF of +the parameter 1is less
than or equal to 0.2.

DEFINITE

Returns true 1f the value of the parameter is
known with certainty (CF = 1.0).

SAME

Returns the CF assoclated with the wvalue of

interest 1f 1t is greater than 0.2, otherwise returns

false.

NOTSAME

Returns true if the CF associated with the value
of interest is less than or equal to 0.2.

MIGHTBE

Returns true 1f the CF associated with the value

of interest is greater than or equal to 6.2.

124

THOUGHTNOT

Returns -CF associated with the value of interest
if it is less than -0.2, otherwise returns false.

VNOTKNOWN

Returns true 1f the CF associated with the value
of interest lies between -0.2 and 1.

DEFIS

Returns true 1f the CF associated with the value
of interest is equal to 1.

DEFNOT

Returns true 1if the CF associated with the value
of interest 1s equal to -1.

NOTDEFIS

Returns true 1f the CF assoclated with the value
of interest lies between 9.2 and 1.

NOTDEFNOT

Returns true 1f the CF associated with the value

of interest lies between -1 and -0.2.

NUMERIC PREDICATE FUNCTICNS

GREATERP
Returns true 1if the value of 1nterest i1s known

with a CF> 0.2 and is greater than or equal to the

number specified.

125

| St a2 T Sl i

TTNSE

GREATEQ

Returns true 1f the value
with a CF> 8.2 and is greater
number specified.

LESSP

Returns true if the value

with a CF> 0.2 and is less than
LESSEQ

Returns true 1if the

value
with a CF> 0.2 and is less than

specified.

of 1Interest is known
than or equal to the
of interest is known

the number specified.

of interest is known

or equal to the number

CONCLUSION FUNCTIONS

CONCLUDE

Updates the value of a parameter

database. Update

values and explained in Section

126

in the dynamic

process includes combining certainty

III.A.

L AL Stk G e S g Sngh Mt S Aamh At R NS SR ANa Y

e

PR

APPENDIX C
KNOWLEDGE BASES

This appendix contains 1listing of +the static
knowledge and rulebase of the CAR dlagnosis system and
FINANCE analysis system, which are held in the files
CARRULES, and FINANCERULES. Each file contains all
static knowledge/information about contexts and
parameters too.

Prolog rules and facts which presented in this
appendix are written oy knowledge engineer. This
process corresponds to the knowledge base construction
phase of the expert system development process.

Following are some of the the cautions about
writing rules for EMYCIN-PROLOG. The knowledge
engineer should be careful in these details.

Since all rules are tried, every rule should
include all required premises explicitly.

Premises which has VAR as a value list has to be
treated differently. After execution of a premise
clause PAR value 1s asserted into data base as
"hypothesis(PAR,CNTXT,N,VAL,CF)", this fact should be
called explicitly to be able to use VAL 1in other
premises of a rule.

In the ‘"conclude" clause of each rule CF value

should be passed by "min" or "max" function. Otherwise

127

.....................

CF value should be defined explicitly.

In "concluded" routine tree pointer should be a
variable different than current tree pointer.

The value to be searched for, should be enclosed
in brackets in "eval_premise" routine.

All rules are +tried unless PAR is singlevalued
and its value is concluded with CF=1(-1) 1in any of
previous rules. The point +that all rules are tried
should be remembered during the rule writing process

otherwise surprising answers can be obtained !'!!

1. CAR DIAGNOSIS SYSTEM KNOWLEDGE BASE

/*************&* CONTEXT DEFINITICNS ****n**********/

context(nnil).

/***/
This fact 1s required for "initialize_askable"

routine

/***/

nnil(offspring,car).

context(car).

car(offspring,electrical_system).

car(offspring,fuel_system).

car(assocwith,nnil).

car(parmgroup,car_parms).

car(prompt3,'This 1s a car diagnoses program’).

128

car(mainprops, [year,model,problems]).

context(electrical_system).
electrical_system(offspring,nnil).
electrical_system{assocwith;car).
electrical_system(parmgroup,elec_parms).
electrical_system(prompt3, 'Electrical system needs to

be checked !'! ??).

electrical_system(mainprops,[]).

context(fuel_system).

fuel_system(offspring,inil).
fuel_system(assocwith,car).
fuel_system(parmgroup,fuel_parms).

fuel _system(prompt3,'Fuel system needs to be checked
1ty ?0).

fuel_system(mainprops, [throttle_test]).

[RERERE RN R RN RN R A% % PARAMETER DEFINITIONS ***¥%%x%%/
parameter(year).

year (memberof,car_parms).
year(valutype,singlevalued).

yvear (expect,number).

year(prompt,year_prompt).

year(can_ask,1).

129

- .t
......

year_prompt

write(’ What is the year of the car ?'),

write(® ==> ?),

parameter(model).

model (memberof,car_parms).
model(valutype,singlevalued).
model (expect,any).

model (prompt,model_prompt).

model(can_ask,1).

model_prompt

write('What is the model of the car ?’),write(’® ==>
1)'

parameter(problems).
problems(memberof,car_parms).
problems(valutype,singlevalued).
problems(expect,any).

problems(can_ask,0).

parameter(stalled_engine).
stalled_engine(memberof,elec_parms).

stalled_engine(valutype,multivalued).

130

stalled_engine(expect,any).
stalled_engine(can_ask,®).
stalled_engine(trans, 'The cause

problem is : ?).

parameter(electrical).
electrical(memberof,elec_parms).
electrical(valutype,multivalued).
electrical(expect,any).

electrical(can_ask,0).

parameter(battery).
battery(memberof,elec_parms).
battery(valutype,multivalued).
battery(expect,number).

battery(can_ask,@).

parameter(dimming light).

dimming light(memberof,elsc_parms
dimming_light(valutype,yes_no).
dimming_light(expect,yes_no).
dimming_light(prompt,dimming_1ligh
dimming light(can_ask,1).

131

of the stalled engine |

).

t_prompt).

\\\\\

Mahen Bt am e Sog S Ange Sadh SR Bl Sndh

A
L Bl S 2ad e gh s Yl gk R G

dimming light_ prompt

print(’Turn on your lights and operate the starter
), nl,
print(’Do the 1lights go out or become dim ?

(yes/no)),

parameter (hydrometer).

hydrometer (memberof,elec_parms).
hydrometer(valutype,singlevalued).
hydrometer(expect,number).
hydrometer(prompt,hydrometer_prompt).

hydrometer(can_ask,1).

hydrometer_prompt

print('What is the specific gravity measured by
hydrometer ?'),

write(?® ==> ?).

parameter(battery_volt).
battery_volt(memberof,elec_parms).
battery_volt(valutype,singlevalued).
battery_volt(expect,number).

battery_volt(prompt,battery_volt_prompt).

132

Ly
»

e e e e e e e e e

battery_volt(can_ask,1).

battery_volt_prompt

print(’Disconnect the battery connections and

measure the voltage’),nl,

print('wWhat is the voltage measured on battery ?'),

write(® ==> ?).

parameter (ammeter).

ammeter (memberof,elec_parms).
ammeter(valutype,yes_no).
ammeter (expect,yes_no).
ammeter(prompt,ammeter_prompt).

ammeter(can_ask,1).

ammeter_prompt

.

print(’Does the ammeter shows a slight discharge

(or does the '),nl,

print('telltale lamp light) when the ignition 1is
turned on.? (yes/no)?),

write(' ==>).

parameter(starting_motor).

starting_motor(memberof,elec_parms).

133

starting motor(valutype,yes_no).
starting_motor(expect,yes_no).
starting_motor(prompt,starting_motor_prompt).

starting motor(can_ask,1).

starting motor_prompt

print(’Does the electrical system go dead when the
starter switch ’),nl,
print(’is turned on? (yes/no)?),

write(?’' ==> ?).

parameter(fuel_sys).
fuel(memberof,fuel_parms).
fuel(valutype,multivalued).
fuel(expect,any).

fuel(can_ask,9).

parameter(fuel_to_carb).
fuel_to_carb(memberof,fuel_parms).
fuel_to_carb(valutype,single).
fuel_to_carb(expect,any).

fuel_to_carb{can_ask,®).

parameter(throttle_test).

throttle_test(memberof,fuel_parms).

134

throttle_test(valutype,yes_no).
throttle_test(expect,yes_no).
throttle_test{prompt,throttle_test_prompt).

throttle_test(can_ask,1).

throttle_test_prompt
print(’Mcve the throttle manually, do you see a
spray of fuel’),nl,
print(’'mixture in +the carburator throat. ?
(yes/no)'),

write(' ==> ?).

parameter(fuel_pump).
fuel_pump(memberof,fuel_parms).
fuel pump(valutype,yes_no).
fuel_pump(expect,yes_no).

fuel pump(prompt,fuel_pump_prompt).
fuel pump(can_ask,1).

fuel_pump_prompt

print(® Disconnect the fuel line at the
carburator.’),nl, print(’ Crank the engine '),
print(’Do you see fuel pulsating out '),nl,

print('of the line. ? (yes/no) '},write(’ ==> ').

135

- - P auus el S - it i ~astole et ol i i i
S Sy eyt Syt A T Y

parameter{fuel_line).
fuel_line(memberof,fuel_parms).
fuel_line(valutype,yes_no).
fuel_line(expect,yes_no).
fuel_line(prompt,fuel_line_prompt).

fuel_line(can_ask,1).

fuel_line_prompt
print(’ Disconnect the fuel line at the '),
print(’inlet side of the pump.'’'),nl,
print(’ Blow into the line, ’),
print(’Does your friend hear gurgling sound’),nl,

print(’from the fuel tank inlet.? (yes/no)),

write(’'==>).

parameter(fuel_filter).
fuel_filter(memberof,fuel_ parms).
fuel_filter(valutype,yes_no).
fuel_filter(expect,yes_no).
fuel_filter(prompt,fuel_filter_prompt).
fuel_filter(can_ask,1).

fuel_filter_prompt

136

» PR
o pme . aub. gt i ARl S = s e L MED s R oAl

D gten durun J .v_"‘~f. 'y - - - TRy k ahmb st

print(’ Disconnect the inlet side of the line
filter (usually’),nl,

print(’a small, clear plastic canister spliced into
the fuel’),nl,

print(’line) Crank the engine. Do you see a good
shot of fuel. ?7?),

print(’ (yes/no)’),write(’ ==> ?).

VARAS AR SR RS LR EE Ll RULES *#®%EXXARRAARAXRER XA KK %N [

The "cut" operator (!) 1is wused to prevent
backtracking. "try_all_rules_for_PAR" routine tries
other parameters 1if it cannot find then backtracks

so, "!" stops 1t and ends consultation.

/***/'

problems(CNTXT,N, PROBLEMS,CFrule)

®
.

print(’wWhat is/are the problem(s) ?'),nl,
print(’1.Stalled engine’),nl,
print('2.Dieseling’),nl,

print(’'3.Engine noise’'),nl,

print(’4.Slow cranking’),nl,

print{’5.Hard starting’),nl,

print(’6.Rough idle’),nl,nl,nl,

print(’Enter the number which corresponds to the

problem '),

137

- ~

" I U L PR B S L I
E ""‘"b"‘\"\\\-" "\'h A N . \'\\-“.-,'q. At \;’ .'“.1!\'.‘\\"_ 4‘\‘.‘1\1\ ..'.-A.V._-.'.~‘-.~.- A ‘:',-\ A - ._A
A 2N A) -

read(NUMBER),nl,
problem_fact(NUMBER, PROBLEM),
assert(goal(PROBLEM)),

eval_par(CNTXT, [PROBLEM],N),nl,nl,!.

/***/

If any one of the rules can be satisfied more
than once, then all such choices are tried since
'try_all_rules_for_PAR’ routine wuses "faill" predicate
and any individual rule will be +tried until all
possible choices are satisfied 1in the rule premise.
For example 1in first stalled_engine rule VALc,CFc can
bind more than one values, 1f there are more than one
hypotheses in database which concludes a value about
"electrical".

/*************I*************************************/

stalled_engine(CNTXT,N,VALc,1)

>

eval premise{same,electrical,CNTXT,N,VAL,CF),
hypothesis{electrical,Cx,Nx,VALc,CFc),

conclude(CNTXT,N,stalled_engine,VALc,1,CFc).

stalled_engine(CNTXT,N,VALc,1)

eval_premise(same,fuel,CNTXT,N,VAL,CF),

hypothesis(fuel,Cx,Nx,VALc,CFc),

138

""" PR T A LTINS .4
T I R e A PR R A I R4 PN

s S atmn m e Mt e et e i i St

conclude(CNTXT,N,stalled_engine,VALc,1,(Fc).

electrical (CNTXT,N, 'battery’,8.8)

eval premise(same,dimming 1ight,CNTXT,N,[yes],CFi},
eval_premise(same,battery,CNTXT,N, [weak],CF2),
min([CF1,CF2],CF),

conclude(CNTXT,N,electrical, 'battery’,9.8,CF).

electrical (CNTXT,N, 'neutral_safety_switch’,0.7)

eval_premise(same,ammeter,CNTXT,N,[yes],CF1),
eval_premise(same,starting motor,CNTXT,N,[yes],CF2),
min([CF1,CF2],CF),

conclude(CNTXT,N,electrical,

'neutral_safety_switch’,0.7,CF).

electrical (CNTXT,N, 'starter_circuit’,8.6)

-

eval_premise(same,dimming light,CNTXT,N, [no],CF1),
eval_premise(same,fuel,CNTXT,N, [ok],CF2),
min([CF1,CF2],CF),

conclude(CNTXT,N,electrical, 'starter_circuit’,#.6,CF).

battery(CNTXT,N, 'weak’,1)

139

............ T T AR N U DI RS R0 N S
G IR KR ST AL I I DAL L IEIER NN AN P04 PO IO A FION I RO IR IEIP NI P

eval_premise(lessp,hydrometer,CNTXT,N, [1250],true),
eval_premise(lessp,battery_volt,CNTXT,N,[12],true),
conclude(CNTXT,N,battery, 'weak?’,1,1).

battery(CNTXT,N, 'bad_connections’,9.8)

eval_premise(greateq,hydrometer,CNTXT,N,[1250], true),
eval_premise(greateq,battery_volt,CNTXT,N,[12],true),

conclude(CNTXT,N,battery, 'bad_connections’,1,0.8).

o TR TR O SRR RN A Y Y PSS

battery(CNTXT,N, 'weak’,2.5)

R R

eval_premise(greateq,hydrometer,CNTXT,N,[1258],true),

id
“

SRy S

eval_premise(lessp,battery_voit,CNTXT,N,[12],true),

conclude(CNTXT,N,battery, 'weak'’,0.5,1).

battery(CNTXT,N, 'weak',0.5)

®
-

3

eval_premise(lessp,nhydrometer,CNTXT,N, [12508],true),

eval_premise(greateq,battery_volt,CNTXT,N,[12],true),
conclude(CNTXT,N,battery, 'weak’,0.5,1).

fuel (CNTXT,N, 'fuel _pump’,1)

eval_premise(defis,throttle_test,CNTXT,N,[no],true),

eval_premise(same,fuel_ pump,CNTXT,N, [no],CF1),

140

. . . .- el et et et amaN T et
R U g S VA S ST TP SV I L IR A VP LA VAR A ALGERILSES N LAY
- > ., - L - . —— - -

;

TN ST NT S A TR T o HOPA S TG TOTOO S L, VN
iﬁﬁiﬁ@k&ﬁf@ﬁ&ﬁdhﬂ&&fﬁhf#ﬁﬁni?&iﬂﬁiﬁﬁiﬁfsaux.; e

eval premise(same,fuel_filter,CNTXT,N,[no],CF2),
eval premise(same,fuel_line,CNTXT,N, [yes],CF3),
min([CF1,CF2,CF3]},CF),

conclude(CNTXT,N,fuel, *fuel_pump’,1,CF).

fuel(CNTXT,N, 'fuel_line’,1)

®
-

eval_premise(defis,throttle_test,CNTXT,N, [no],true),
eval_premise(same,fuel_ pump,CNTXT,N,[no],CFt),
eval_premise(same,fuel_filter,CNTXT,N,[no],CF2),
eval premise(same,fuel_line,CNTXT,N, [no],CF3),

min([CF1,CF2,CF3],CF),

conclude(CNTXT,N,fuel, 'fuel_1ine’,1,CF).

fuel(CNTXT,N, 'carburator?’,1)
eval_premise(defis,throttle_test,CNTXT,N, [no],true),
eval premise(same,fuel pump,CNTXT,N,[yes],CF),

conclude(CNTXT,N, fuel, 'carburator?’,1,CF).

fuel (CNTXT,N, 'carburator’,1)
eval_premise(defis,throttle_test,CNTXT,N,[yes],true),
eval_premise(same,starting motor,CNTXT,N,[yes],CF),

conclude(CNTXT,N, fuel, 'carburator’,1,CF).

141

e '-_".. U SO S P
N N

Y e s K.

fuel(CNTXT,N, fuel_filter’,1)

1]

e

eval premise(defis,throttle_test,CNTXT,N, [nol,true), .
eval premise(same,fuel_pump,CNTXT,N, [no],CF1),

eval premise(same,fuel_ filter,CNTXT,N,[yes],CF2),

min({CF1,CF2],CF),

conclude(CNTXT,N, fuel, ’fuel_fiiter’,1,CF).

[R* e nnxx%%x FACTS ABOUT MAIN MENU HRXXEXRRXNR [
problem_fact(1,stalled_engine).,

problem_fact(2,dieseling).

T R S T T G R L

problem_fact(3,engine_noise).
problem_fact(4,slow_cranking).
problem_fact(5,hard_starting).

probiem_fact(6,rough_idle).

S arn . ga ew e umuiatavied A Ch b P e aNed]

T

2. FINANCE ANALYSIS SYSTEM KNOWLEDGE BASE

Jrexnunnnnnnnnt CONTEXT DEFINTTIONS % %% %% % %% % %% % % %% % /
context(nnil).

nnil(offspring,lease).

S T TR O ST T o e Y BT

goal(payment).

] 142

LSS A S LR ALK .. AT S R ARAT I AL AL PRI

PRI ISR R TN LTI PEHI NI IR TN

context(lease).

lease(offspring,finance).
lease(assocwith,nnil).

A lease(parmgroup, lease_parms).
lease(prompt3, 'The following is a part of a
lease/acquire_by/finance DSS’').
lease(mainprops, [payment]).

lease(prompt2,’Is there any other lease problem you

want to solve ?’).

context(finance).

s

finance(offspring,nnil).
finance(assocwith,lease).
finance(parmgroup,finance_parms).

finance(prompt1,’Do you want to analyze the financing

for asset ?7').
finance(mainprops,[]).

finance(prompt2,’Do you have any other finance to

analyze 7?').

[JREnrnnnnnnnnnns PARAMETER DEFINITIONS M ® M %%t s %% %%/
parameter(asset_cost).

4 asset_cost(memberof,finance_parms).
asset_cost(valutype,singlevalued).

asset_cost(expect,number).

143

.

L grt ' g oy YT N TN e Y e]

T T e

asset_cost(prompt,asset_cost_prompt).

asset_cost(can_ask,1).

asset_cost(trans, 'the cost of the asset ’).

asset_cost_prompt

write(’'What is the asset cost'),

write(?® ==>').

parameter(down_payment).
down_payment(memberof,finance_parms).
down_payment(valutype,singlevalued).
down_paymant{expect,number).
down_payment(prompt,down_payment_prompt).
down_payment(can_ask,1).

down_payment(trans,’amount of down payment for the

asset’).

down_payment_prompt

write(’What 1s the amount of down payment ?'),

write(®’' ==>').

parameter(finance_1it).
finance_1it(memberof,finance_parms).

finance_it(valutype,singlevalued).

144

d '~ " b ™y .- -.-- \‘ ‘\".' .‘\ b.
~ NN - NG T S L ._xx.\-;_.__ ST . PRI AR
ARSI DS SN AN A A DRSS S APST SRS RN Je 0 P A s

Li \,‘_-'_\1_* :.‘ 3

by

.-

finance_1t(expect,number).
finance_1it(can_ask,d).

finance_1it(trans,’The yearly payment on the asset’).

parameter(finance_interest).
finance_interest(memberof,finance_parms).
finance_interest(valutype,singlevalued).
finance_interest{expect,number).
finance_interest(prompt,finance_interest_prompt).
finance_interest(can_ask,1).
finance_interest(trans, 'The percentage yield. to the

firm for the loan’).

finance_interest_prompt

write(’'Percent charged by the leasing firm ?°’),

write(’' ==>').

parameter(finance_period).
finance_period(memberof,finance_parms).
finance_period(valutype,singlevalued).
finance_period(expect,number).
finance_period(prompt,financs_period_prompt).
finance_period(can_ask,1).

finance_period(trans,’'The 1length 1n years of the

leasing period line for the asset’).

145

=3

.......
U

L N LT TP TR T SR R P B .t
AT AN NT A T Tt e - A A N SR NN L
£ A :
rireigeir b= -

[P T A N

[y

P Ul g Y

5
w T e -ene ey smen mive e Sren gb-u - dh Sk A g Sarih i A e e

finance_period_prompt

write('Lease period ?’),

write(®' ==>7).

parameter(option_lease).

option_lease(memberof,finance_parms).

2oVt £

option_lease(valutype,yes_no).
option_lease(expect,yes_no).

option_lease(prompt,option_lease_prompt).

o e Ot e e el

option_lease(can_ask,1).

option_lease(trans,’Lease is to be modified lease’).

€ ol g 4y Y o

option_lease_prompt

write('Do you want a lease with the option to

IR T

terminate ??'),

write(’ ==>?).

parameter(straight_lease).

straight_lease(memberof,finance_parms).
straight_lease(valutype,yes_no).
straight_lease(expect,yes_no).
straight_lease(prompt,straight_lease_prompt).

straight_lease(can_ask,1).

146

Sy

‘‘‘‘‘
a

-, ~ " PR TR I ST R I] CtAYaTe" A" " R R R S RS T R T T T cactar .(...-.
00 0 AN T A s L T e St e e AR IO e lale e te el =
AAAAAA NN N _

straight_lease(trans,’Lease 1is to be a straight

lease’).

straight_lease_prompt

write(’Do you want a straight lease ?’'),

write(®' ==>').

parameter(asset_name).
asset_name(memberof,lease_parms).
asset_name(valutype,singlevalued).
asset_name(expect,any).
asset_name(prompt,asset_name_prompt).
asset_name(can_ask,1).

asset_name(trans,’The asset that tou are considering

for?').

asset_name_prompt

write(’Asset name ?'),

write(® ==>?).

parameter(acquire_by).
acquire_by(memberof,lease_parms).
acquire_by(valutype,singlevalued).

acquire_by(expect,any).

147

......

-

3

T LT

SRS LR LA SR

acquire_by(can_ask,®).
acquire_by(trans,’Determination to straight lease or

acquire_ by the asset’).

parameter (cannot_borrow).
cannot_borrow(memberof,lease_parms).
cannot_borrow(valutype,yes_no).
cannot_borrow(expect,yes_no).
cannot_borrow(can_ask,®).

cannot_borrow(trans, 'Your credit is too 1low to get a
loan’).

parameter(cash_reserve_needed).
cash_reserve_needed(memberof,lease_parms).
cash_reserve_needed(valutype,yes_no).
cash_reserve_needed(expect,yes_no).
cash_reserve_needed(prompt,
cash_reserve_needed_prompt).
cash_reserve_needed(can_ask,1).
cash_reserve_needed(trans,’You do need to maintain

large cash reserves').

cash_reserve_needed_prompt

write(’'Do you need to maintain larger cash reserves ?
(yes/no)’),

write(!' ==>').

148

R R G . Lk S S S S LTI Wres e -
.__ .;‘_f,",';l Y - - ¥ - - - - -~ 4

P RN

e

R Tt

Con gren e s - B

parameter (how_to_acquire).
how_to_acquire(memberof,leas<_parms).
how_to_acquire(valutype,multivalued).
how_to_acquire(expect,any).
how_to_acquire(can_ask,@).

how_to_acquire(trans,'My recommendaticn’).

parameter(lender_checks).
lender_checks(memberof,lease_parms).
lender_checks(valutype,yes_no).
lender_checks(expect,yes_no).
lender_checks(prompt,lender_cnecks_prompt).
lender_checks(can_ask,1).

lender_checks(trans, 'Lender does check on outstanding

leases when making a loan’).

lender_checks_prompt

write(’When you go to borrow money , Does the

lender check’),nl,

write{’on any outstanding leases you have ?
(yes/noj’),

write(?®' ==>').

parameter(lessee_cash).

lessee_cash(memberof,lease_parms).

149

P CT W T Ve A O SRl

., RPN _ RS . IR B P SR O € U R TR

P S

TR WS

lessee_cash(valutype,singlevalued).
lessee_cash(expect,any).

lessee_cash(prompt,lessee_cash_prompt).
lessee_cash(can_ask,1).

lessee_cash(trans, 'The cash reserves’).

lessee_cash_prompt

write(’how would you describe your cash reserves ?

(good/fair/poor)’),

write(?®' ==>?).

parameter{lessse_credit).
lessee_credit(memberof,lease_parms).
lessee_credit(valutype,singlevalued).
lessee_credit(expect,any).
lessee_credit(prompt,lessee_credit_prompt).
lessee_credit(can_ask,1).

lesses_credit(trans, 'Your credit rating’).

lessee_credit_prompt

1.y

write('How would you describe your current
rating ? {(good/fair/poor)'’),
write(' ==>').

parameter(payment).

150

........
. . DI AL T S I
L T . . . S ettt e T - -)

credit

.....
.......

payment(memberof,lease_parms).
payment(valutype,singlevalued).

payment(expect,any).

payment(can_ask,0).

payment(trans, 'Payment on the asset for the asset is

($)).

parameter(preserves_cash).
preserves_cash(memberof,lease_parms).
preserves_cash(valutype,yes_no).
preserves_cash(expect,yes_no).
preserves_cash(can_ask,0).

preserves_cash(trans, 'This 1lease does preserve your

cash reserves'’).

parameter(preserves_credit).
preserves_credit(memberof,lease_parms).
preserves_credit(valutype,yes_no).
preserves_credit(expect,yes_no).
preserves_credit(can_ask,0).

preserves_credit(trans,’This lease does preserve your

credit rating’).

151

.S..\.\\‘

& . \,- q._-.'. : 2z ‘. “.
I N e R T T e e T

N,
IJ{\‘(‘J

JRERERE AR KRR RNX RN R %Y RULES HANRARARERRRRERNR XN R KA % [

o P 24 Tl e

cannot_borrow(CNTXT,N,’yes’,1.0)

eval_premise(same,lessee_credit,CNTXT,N, [poor],CF),

Lo)

) conclude(CNTXT,N,cannot_borrow,’yes’,1.0,CF),nl,
write(’Your credit 1is not adequate.You cannot
borrow money to acquire_by the asset ’),nl,

write(’'Therefore LEASE the asset '),nl.

acquire_by(CNTXT,N,’lease’,1.0)
(eval_premise(same,cannot_borrow,CNTXT,N,[yes],CF1);
eval_premise(same,preserves_credit,CNTXT,N, [yes],CF2);
eval_premise(same,preserves_cash,CNTXT,N, [yes],CF:)),
conclude(CNTXT,N,how_to_acquire,'lease’,1.0,CF1),
conclude(CNTXT,N,acquire_by,’'lease’,1.8,CF1),nl,

write('My recommendation is lease the asset’),nl.

acquire_by(CNTXT,N, 'purchase’,1.0)

not(hypothesis(acquire_by,Cx,Nx,VAL,CFx)),
conclude(CNTXT,N,acquire_by, 'purchase’,1.8,1.0),nl,

write('My recommendation is buy the asset’),nl.

152

- S h e . cpr e . v e T aM et t e Nt e
N N R A R A AR AT A T
o

»/
- « .
. o ; R I WS PRI 19 2 R S, T)
AN ot ettt Tt ateT at atatatala

oYY

preserves_credit(CNTXT,N, 'yes’,1.0)
eval_premise(same,lessee_credit,CNTXT,N,[fair],CF1),
eval_premise(same,lender_checks,CNTXT,N, [no],CF2),

; min({CF1,CF2],CF),
conclude(CNTXT,N,preserves_credit,’yes’,1.0,CF),nl,
write(’Your credit rating will not be affected by

leasing the asset’),nl.

preserves_cash(CNTXT,N,’yes’,.9)
eval_premise(same,lessee_credit,CNTXT,N,[fair],CF1),
eval premise(same,lender_checks,CNTXT,N, [yes],CF2),
eval_premise(same,lessee_cash,CNTXT,N,[fair],CF3),
eval_premise(same,cash_reserve_needed,CNTXT,N, [yes],
CF4),

min([CF1,CF2,CF3,CF4],CF),

conclude(CKTXT,N,preserves_cash,’'yes’,.9,CF).

finance_1t(CNTXT,N,VAL,1.0)

eval_premise(same,acquire_by,CNTXT,N,[lease],CF1),
eval_premise(same,straight lease,CNTXT,N,[yes],CF2),
eval_premise(known,asset_cost,CNTXT,N, [VAL1], true),

eval_premise(known,finance_interest,CNTXT,N, [VAL2],

true),

153

- x
3 - « s e e T AT e e T AT AT AT Tm e e T AT e T A -
..... ., AT AN . . % Y N R

- A" e TmteT s T AW e e - LTI,

o (e PRAL IR R L * L e e S TR DA R T Ay PRTRIASIFS TN A

":';E'Q)'\? ":3\:‘\"‘\-""-3\&‘:":1:31-i:"*-‘;z‘:‘;?:\‘j\"\ \:ﬁ\"'-ﬁ-:’*‘,{i.'-"-- A R T e L T G e
M Tl T o u" _a A RN 0% P T3 % pa S V) a e .

\,3_'«.1\4&

eval premise(known,finance_period,CNTXT,N,[VAL3],
true),

hypothesis(asset_cost,Cx,Nx,VAL4,CFx),
hypothesis(finance_interest,Cy,Ny,VAL5,lFy),
hypothesis(finance_period,Cz,Nz,VAL6,CFz),
min([CF1,CF2],CF),

VAL is (VAL4*(VALS5/100)+(VAL4/VAL6)+((VAL4*2)/1@0)),
conclude({CNTXT,N,finance_1it,VAL,1.8,CF).

finance_31t(CNTXT,N,VAL,1.0)

eval_premise(same,acquire_by,CNTXT,N,[lease],CF1),
eval premise(same,option_iease,CNTXT,N, [yes],CF2),
eval_premise(known,asset_cost,CNTXT,N, [VAL1],true),
eval_premise(known,finance_interest,CNTXT,N, [VAL2],
true),
eval_premise(known,finance_period,CNTXT,N, [VAL3],
true),

hypothesis(asset_cost,Cx,Nx,VAL4,CFx),
hypothesis(finance_interest,Cy,Ny,VAL5,CFy),
hypothesis{finance_period,Cz,Nz,VAL6,CFz),
min({CF1,CF2],CF),

VAL is ((VAL4*(VAL5/100))+(VAL4/VAL6)),

conclude(CNTXT,N,finance_1t,VAL,1.8,CF).

154
'''''''''''''''''' Ca AT A MER L N e :. '__.‘, ‘./'
5*" \}_ " » ' NS '1‘ ' J ‘5..‘“ “‘\"\ " “wt -\.":: A " RN \‘.".-s.' \.'\.“'\.".\.‘:__m' RN Sl A .
!. e

'f' ‘J\....A.A_\.~

finance_ 1t(CNTXT,N,VAL,1.0)

eval premise(same,acquire_by,CNTXT,N, [purchase],CF),
eval_premise(known,asset_cost,CNTXT,N, [VAL1],true),
eval premise(known,finance_interest,CNTXT,N, [VAL2],
true),
eval_premise(known,finance_period,CNTXT,N,[VALB],
true),
eval_premise(known,down_payment,CNTXT,N,[VAL4],true),
hypothesis(asset_cost,Cx,Nx,VAL5,CFx),
hypothesis(finance_interest,Cy,Ny,VAL6,CFy),
hypothesis(finance_pericd,Cz,Nz,VAL7,CFz),
hypothesis(down_payment,Cw,Nw,VAL8,CFw),

VAL is (((VAL5-VAL8)/VAL7)*((100+VAL6)/100)),

conclude(CNTXT,N,fivance_1it,VAL,1.0,CF).

payment(CNTXT,N,VALx,1.0)

eval_premise(same,finance_it,CNTXT,N,VAL,CF),
hypothesis(finance_it,Cx,Nx,VALx,CFx),

conclude(CNTXT,N,payment,VALx,1.0,1.0).

155

APPENDIX D
SAMPLE CONSULTATIONS
The sample consultations presented 1in this
appendix occur between expert system and consultor.
The consultor 1is in charge of finding required data.
The consultor can answer any data request as "unk"

which implies that there 1s no data available.

156

LY

“» A
-~ . " O R N e ‘..n‘.)‘) ,"J-Jl..--
N‘ "‘1’ ‘ﬁ“ N G (oSN O, (S RS W B v A AN ey skt S S s
-f‘. S v 2N "~ > - -

'
s

«

; 1. CAR DIAGNOSIS CONSULTATIONS

Depending upon the data provided by the consultor
three different consultations are obtained for the CAR

diagnosis system.

C-Prolog version 1.5
' i ?—- [engine,func,utilities,carrules].
engine consulted 12380 bytes 3.08333 sec.
func consulted 6572 bytes 1.98333 sec.
utilities consulted 7028 bytes 1.71667 sec.
carrules consulted 108000 bytes 2.9 sec.

WELCOME TO EMYCIN-PROLOG CONSULTATION PROGRAM

Please enter "begin" to start the consultation

2

yes

{ ?- begin.

Enter the name of the root context (CAR,LEASE)
=>car.

This is a car diagnoses program

-—=-car-1----

car-1

What is the year of the car ? ==> 86.

car-1

What i1s the model of the car ? ==> new.

What is/are the problem(s) ?

1.Stalled engine

: 2.Dieseling

157
P NN AUNU ARSI RN R AR ATARRLAEY AT A N "'-";-‘.-*}‘}“:-"'.-"3‘}‘}"}
f’. RS, }'.- WA e NS AT NN T SNSRI \.-:‘ Y ‘-J.\J:-.ﬂ_.‘- T e T s T T

3.Engine noise

4 .Slow cranking

5.Hard starting

6.Rough 1idle

Enter the number which corresponds to the problem ==> '
1.

Electrical system needs to be checked !'! ?
----glectrical_system-1----

lectrical_system-1

g Turn on your lights and operate the starter
Do the 1lights go out or become dim ? (yes/no)

‘ ==> si.
Unexpected answer !!! Please try again.
electrical_system-1

Turn on your lights and operate the starter

Do the lights go out or become dim ? (yes/no)
==)> yes.
. electrical_system-1

What is the specific gravity measured by hydrcmeter ?
==> 1200.

electrical_system-1

Disconnect the battery connections and measure the

voltage

E What is the voltage measured on battery ? ==> 10.

electrical_system-1

Does the ammeter shows a slight discharge (or does the

158

-..f{ T T e Ve o AR N S A N YA) PSS LU R D w® % q...‘.“.'.~.t LN [I PRI RN
i‘ " P I I Y ata®e P Y Y I Y IS T I SR Sl N U SATC TR SRR v .. \‘-‘. KA COTS

. N - ~ S g] P I \A ol n-,A:.a"A.‘l’:,f.e_ P n‘.d‘...;“:.l\!:y.}- AC A Aol
L’.‘L 5 S P AR > S P R PP PN ot e a

P I 2eA D P S N S S - A >t ", . . oo

telltale lamp light) when the ignition is turned on.?
(yes/no) ==> yes.

electrical_system-1

Does the electrical system go dcad when the starter
switch 1s turned on.? (yes/no) ==> no.

Fuel system needs to be checked !! ?
----fuel_system-1-—--

fuel_system-1

Move the throttle manually, do you see a spray of fuel
mixture in +the carburator throat. ? (yes/no) ==>
yes.

The cause of the stalled engine problem is :

battery

with the certainity : ©.8

——————— CONCLUSIONS MADE DURING THE CONSULTATION --

parameter / value / certainity / context instance

- — - — o — — —— —— ——— — " f— ¢ G — TS — G Ak Gt = ME SN At W) S mm e man Sre e M M e Gt S — v T e e —— —t ——

year -—-— 86 ---~ {--- car--1
model --- new ---— 1--- car--1
dimming light -~-- yes ---~ 1--- electrical_system--1
hydrometer --- 1208 --- 1--- electrical_system--1
battery_volt --- 10 --- 1--- electrical_system--1
battery --- weak --- 1--- electrical_system--1

159
"\Q.-.'X’:\. —a" LR '\."q' SO a D .' ’ ;' .‘ ‘. \"';. . ‘-'- -.;'.‘ LN o ‘ ‘_ . l';' b ‘.'.' " '.'.' s

. T) ‘_‘0'0
.’,..P.f.r.f..'r.'_.».’f PRI PR R R R

; - - LI . S
".‘,_AAA.‘AA\‘ ar A LS s ’h.__-A- - e s a PN a -

PR P SRS T "3 v o WAL I, s’ e 230 ¢ .4 L P TR A T A

S. Y FIDE Y Y

- s

¢ 5 MW W W WM AL ASEEES B P S SR ST THCE LT

Lt wmmme W A ZANMREIe _B_~_. a4 s B AT _."cTa a4 o<

.» mmars m

electrical -~-- battery --- 0.8--- electrical_system--1

ammeter --- yes --- 1--- electrical_system--1

starting motor --- no --- 1--- electrical_system--1 .
stalled_engine ---battery---@.8---electrical_system--1
throttle_test --- yes --- 1--- fuel_system--1)
yes

{ ?7- begin.

Enter the name of the root context (CAR,LEASE)
==>car.

This is a car diagnoses program

———-car-1----

car-1

What 1s the year of the car ? ==> 65.

car-1

What 1s the model of the car ? ==> old.

What 1s/are the problem(s) ?
1.Stalled engine

E

E 2.Diessling

F 3.Engine noise

4.Slow cranking
5.Hard starting

6.Rough idle

Enter the number which corresponds to the problem

]
u
v

1 .

e n e e e e N e sy tat At artat At R T A TS TR
. - M ta it N L e CHE e I O R I L . .".““J‘.‘ .._‘. DR ':'A“.'a."'('.‘_r}_ ERTRCE LK
E"{":";":" N R R A TR ISR AN A AT RIS
D S ST IR DT I RS S I . A " AT T, Visie. Phs. Wie VL VAL PG 0T WL W L WP P 3 WP

Electrical system needs to be checked !! ?
-—-——electrical_system-1---—-

electrical_system-1

Turn on your lights and operate the starter

Do the 1lights go out or become dim ? (yes/no)
=> yes.

electrical_system-1

What is the specific gravity measured by hydrometer ?
=> 1300.

electrical_system-1

Disconnect the battery connections and measure the

voltage

What 1s the voltage measured on battery 7?7 ==> 12.

electrical_system-1

Does the ammeter shows a slight discharge (or does the

telltale lamp 1light) when the ignition is turned on.?
(yes/no) ==> yes.

electrical_system-1

Does the electrical system go dead when the starter

switch 1is turned on.? (yes/no) ==> no.

Fuel system needs to be checked t! ?

-—---fuel_system-1----~

fuel_system-1

Move the throttle manually, do you see a spray of fuel

mixture in the carburator throat. ? (yes/no) ==»

no.

161

fuel_system-1
Digsconnect the fuel line at the carburator.

Crank the engine.Do you see fuel pulsating out

of the line. ? (yes/no) ==> yes.

The cause of the stalled engine problem is :

.

carburator

with the certainity : 1

;
&
i
;
B
!

—————— CONCLUSIONS MADE DURING THE CONSULTATION ---

parameter / value / certainity / context instance

A e . - — A - —— " — S —— s S . . S me G S e e S e - — S . S G et S S TS G G0 S e e ——— — — v

E year --- 65 --- 1--- car--1

' model --- old --- 1--- car--1
dimming light --- yes --- 1--- electrical_system--1

? hydrometer --- 1300 --- 1--- electrical_system--1

E battery_volt --- 12 --- 1--- electrical_system--1
battery -—- bad_connections ——— 0.8---

electrical_system--1

ammeter --- yes --- 1--- electrical_system--1
]
g starting_motor --- no --- 1--- electrical_system--1
E throttle_test --- no --- 1--- fuel_system--1
fuel pump --- yes --- 1--- fuel_system--1
162

- g . o, - P2 T IO AR S L R T ~ AT N e Lt e e e et NS ST
e 1 % b AR P SR AR A o o " [Sall W B R P I SR e Ak -
J'.,'.r'- - <y -y IRER LR O N Ve J‘“) PRI T I N FRASAFREN ¥ g o N
LR YA A A A N o L o da PSR T i SisN =
| EREA A AR RTAL S AN

i NC -1.‘“: \“\"

fuel --- carburator ---1--- fuel_ system-—-1

stalled_engine---carburator---1---electrical_system--1

i ?- halt.

[Prolog execution halted]

2. FINANCE ANALYSIS CONSULTATIONS

The consultation results obtained for the FINANCE
analysis system are the same with the original FINANCE
analysis system which 1is built elsewhere [13].
Following the second consultation original

consultation results are also given for the comparison

purpose.

% prolog

C-Prolog version 1.5
i ?- [engine,func,utilities,financerules].
engine consulted 12344 bytes 3.86667 sec.
func consulted 6572 bytes 1.9 sec.

utilities consulted 7020 bytes 1.63333 sec.

163

T A "V \"'».-.\
mﬁ?gheﬁee.)‘\a@‘*\-¢-h~¢)e\ P SN R

.“«’a-ﬁo‘*‘

2 LT P M T VIR LT IETYRT 0 o TS Y R A S P ST

@ N A A P L E CLD A K S ML AT 4

e ANMERYF ey W W LA ¢ SR -

e L. e

a2

2 e A _mEmmrae W 2 = ¥

[y
ki
-
»
[
0

l Q
’n.\’n , <&

L2 a0 tal.

financerules consulted 9788 bytes 2.65 sec.

WELCOME TO EMYCIN-PROLOG CONSULTATION PROGRAM

Please enter "beglii" to start the consuitation
yes

i ?- begin.

Enter the name of +the root context (CAR,LEASE)
==)]lease.

The following 1s a part of a lease/acquire_by/finance
DSS

-~---lease~1-——-

Do you want to analyze +the financing for asset <7
==>y.

—-~--finance-1----

Do you have any other finance to analyze 7 ==>n.
lease-1

How would you describe your current credit rating ?
(good/fair/poor) ==>good.

My recommendation is buy the asset

finance-1

What is the asset cost ==>3000.

finance-1

Percent charged by the leasing firm ? ==>12.
finance-1

Lease period 7?7 ==>2.

finance-1

What 1s the amount of down payment ? ==>500.
164
LA S A UL T B S S L S R S L ol T ‘-o "- ".’ TR L N -‘-'.'... . T "'h"w - A I hd
e, '-.’".-K’:‘ """"""" ;‘f_.-'.i": ik:":j:*;-f:{:":!';- :v‘:i‘:'-!":q‘.\-lryl':-f:'lj\n'}(- PRI IS S R

Is there any other lease problem you want to solve 2

=>n.

Payment on the asset for the asset is (%) :

1400

with the certainity : 1

—————— CONCLUSIONS MADE DURING THE CONSULTATION ——-

parameter / value / certainity / context instance

——_..._.._.___.__._—__—_.—_._——-———.——_——_—_—._———.——-———._—._...._.___

lessee_credit --- good ~-- 1--- lease—-1
acquire_by --- purchase --- 1--- lease—-1
asset_cost --- 3000 --- 1-—- finance—--1
finance_interest --- 12 ——- 1-—- finance--1
finance_period --- 2 —-—- 1--- finance--1
down_payment --- 50@ --- 1--- finance--1
finance_it —-- 1400 --- 1--- finance--1
payment --- 1400 --- 1--~ lease--1

yes

i ?- begin.

Enter +the name of the root context (CAR,LEASE)

=>lease.

The following 1s a part of a lease/acquire_by/finance

DSS
165

..................... . o e e o :
SON R o N et G N %, L R R R I RN A OO P IR R PN N
4 a4 T e . B

L S)

e

~-—--lease-1~—--

i

Do you want to analyze the financing for asset ?

==>y. :
———-finance-1--~-

Do you have any other finance to analyze ? ==>y.
~--—-finance-2----

Do you have any other finance to analyze 7 ==>n.
lease-1

How would you describe your current credit rating ?
(good/fair/poor) ==>poor.

Your credit is not adequate.You cannot borrow money to
acquire_by the asset

Therefore LEASE the asset

My recommendation is lease the asset

finance-1

Do you want a straight lease ? ==>yes.

finance-1

What is the asset cost ==>4000.

finance-1

Percent charged by the leasing firm ? ==>13.

finance-1

Lease period ? ==>3,

finance-1

Do you want a 1lease with +the option to terminate ?

==>no.

Is there any other lease problem you want to solve ?

166

|
..... IR T A S T S S O I WL S
"\(.‘-'. ;.}'.‘.\:’-.:A\“\‘, T AN A S T N I

. w E AN A\
AR TR TR O WL SEWE

-

E: N .r.y"

=>n.
Payment on the asset for the asset is ($) :
1853.3

with the certainity : 1

—————— CONCLUSIONS MADE DURING THE CONSULTATION ---

parameter / value / certainity / context instance

e e e e T —— i — — " — —— —— —— o — —— —— —— — ——— ——— o —— — ——— ————— — S

lessee_credit --- poor --- 1--- lease--1
cannot_borrow --- yes --- 1--- lease--1
how_to_acquire --- lease --- 1--- lease--1
acquire_by --- lease --- 1--- lease--1
straight lease --- yes --- 1--- finance--1
asset_cost --- 4000 --- 1--- finance--1
firance_interest --- 13 --- 1--- finance--1
finance_period --- 3 --- 1--- finance--1
finance_it --- 1853.3 --~ 1--- finance--1
option_lease --- no --- 1--- finance--1

payment --- 1853,% —~-- 1--- lease--1

yes

[Prolog execution b=lied]

............ ~
" . A, - L] . N % e Te T e . _-\, -------------- \‘(-{:
- U R N TR S S e S TRl LTI Fleele, . <o RIS RN
‘ {lb“- f ?\(\‘:*(.“_"“; .’.'i.'i\i.:u.":_u'i\ -"::‘ P ‘:-:Z'i\'_a}_r,‘.,,} ~ ".A\J Y R J\) '«1 -’\—‘\—L "“ Tale A
P - "2 e’ A Tt D

'
2
-
id
7]
E
]
>

Lo e ml e

Ll iaar Tk a4

-
2 ® .
“‘

((

Consultation results of the Personal Consultant
Plus expert system shell for +the FINANCE analysis
system [14].

The knowledge-base for these results are the same
with the one in appendix.C.2. In parantheses are the

corresponding terms of our FINANCE analysis system.

Consultation record for: DEMO : LEASE OR BUY
DECISION SYSTEM

your credit rating ::+ \POOR\
lease is to be a modifiable option i... :: \YES)\
(straight lease ?)

ASSET~COST :: \4000\
FINANCE-INTEREST t: \13)\
FINANCZ-PERIOD o \3\
analyzing the financing :: \NO\

(any other lease problem ?)

ASSET-1 CONCLUSIONS
My recommandation is as follows: LEASE the asset

Payment for the (ASSET-1) is as follows: $ 1853.3 per

year

168

s s o s e f.‘\ e ars f\f“"' Wy d’\t:."". 3

o sf 7 '\“'xfr:" N \g','¢‘¢*£‘¢A;'-“*‘;‘:!;f:?;.l,L_i_z::jr:e AR AON AT
j

APPENDIX E

FIGURES
Knowledge
!?r(:gineer — domain expert
Knowledge Base
Construction Aids
e - | |
S Dormain
Knowiedge
» Base
Explanation Consukation |,
System Driver
-__f— -
|

Consukor

Figure 1 BMYCIN's Overali Organtzation

169

3

Car-1

Electrical Fuel_system-1
System-1

Figure 2 A Context Tree

PATIENT

[CURRENT PRIOR OPERATIONS THERAPY
CULTURE CULTURE
CURRENT PRIOR OPERATION
ORGANISM ORGANISM DRUGS
CURRENT t PRIOR

DRUGS l DRUGS

Figure 3 MYCIN's Static Tree Of Context Types

170

Ui e e ot

Tt o™ " A n s At atat atat ~atacs LS L S L L LN e e m v, e A A L D SR NI
Tl N AL P L SR SR P e SIS M O T8 PR TN T A A A AT R N) v, > -~ -.f.{., Lo S PP S L
RPN A A R N A NN D N e e e N e o T Ny o

putient- |

culture- | culture-2 culture-3 operation-1
(current culture) (current cuiture) prior culture)
organism- | orgenism-2 orgenism-3 organism-4
(current org.) (current org.) (prior org.) (prior org.)
drug-3
drug-1 drug-2 (current drug)

(current drug) (current drug)

Figure 4 A Context Instance Tree From MYCIN

171

.o
L

CAR

e

REPAIR SUBSYSTEM

Figure. 5 Static Tree of Context Types of CAR Diagnose System

CAR-1

L

REPAIR-1 SUBSYSTEM-1 SUBSYSTEM-2

(Prior Repar) (Electrical System) (Fuel System)

Figue 6 Oynamic Tree of CAR Diagnose System.
unsance nanes are in parentheses)

172

N T e I IR A A PR A AR REREAK el LU S
%ﬂxf.&;}&;&;&};" 'Jh: S .‘s?\,\--\ %1\£ i..n .!i' EE e &"\‘: \J Tal e I S 3

WELL

ZONES

Figure. 7a. Static Contex: Tree of LITHO.

WELL-10

ZONE-1

ZONE-2

ZONE-3

Figure 7b. Dynamic Context Tree of LITHO.

173

{03}410818/1030W™U8)140VS J0 8841 uojipue|dx3y g eundi4

SOURISISe A dn posn peq
Mmof sy s} 0ej{0A 5} uopuoo peq 5
A030W J0)my S flieyyeq flaesyyeq UL IPUOO [E04I3 0N &

VAV
s o b

sbejioa Ruapyeqg

{€0}.5309 ¢
Jo yaed

5 Ruaeq
Joyou
1801430818 J1s}ae6

S,

174

« “..\‘..‘..\

Y

e ig—tigre—tiagrriiagrerdiag——tug-——i ity ——viogr———

\'.\‘A\O‘\I‘kb \...'. RS

-
X

_of electrical

status
4 4
low
resistance used_up bed bad

Figure 9 Semantic Network Of Starter_motor/electrical

175

L Baat o d S Saa Be o S A Sec e B B B SESE S AR LI e

Lialk.a s

ammeter/electrical

Electric current is produced by electrical system

and ammeter measures the electric current. *

dimming light/electrical

o em g

Electric current is produced by the electrical

~ o~y vegmar ge-

system and dimming light-test measures the electric

current.

hydrometer/battery

Hydrometer measures the specific gravity value of
electrolyte. Electrolyte 1s part of the battery and if
the specific gravity value 1s 1less than 1258 then

battery will not function properly.

battery voltage/battery

Battery voltage 1s the measure of the battery

performance and 1f its value 1s 1less than 12 V. then

N

battery will not perform properly. t
™

2

Y

Figure 10 Natural Explanations B
L4

4

'

:e

4‘

:

176 &

RRTE .- bty

.....
..............
.................

vvvvv

starter_motor(works_with,battery_voltage).
battery_voltage(quality_of,battery).
battery(part_of,electrical).
hydrometer(measures,specific_gravity).
specific_gravity(quality_of,electrolyte).

electrolyte(part_of,battery).

ammeter (measures,electric_current).
dimming_light(measure,electric_current).

electric_current(produced_by,electrical).

Figure 11.a. Relationship Facts Of The Inference
Network

path(starter_motor,electrical, [battery_voltage,

battery]).

path(ammeter,electrical, [electric_current]).

path(dimming_light,electrical, [electric_current]).

path(hydrometer,battery, [specific_gravity,
electrolytel).

path(battery_voltage,battery,[]).

Figure 11.b. Path Facts Of The Inference Network

177

battery(status,bad) :- battery_volt(value,< 12).
pattery(status,bad) :- hydrometer(value,< 1250).
battery(status,bad) :-
battery_voltage(status,used_up).
battery_voltage(status,used_up) :-
starter_motor(status,low_resistance).

electrical(status,bad) :- battery(status,bad).

Figure 11.c. Rules Of The Inference Network

178

.........

ammeter

electrical electric current ammeter measures
is produced by electric current
electrical system

Figure 12.2. Explanation Tree Of "ammeter/electrical”

| e/ system

Figure 12.b. Semantic Network Of “ammeter/electrical’

179

''''''

iy r———r— =il gl — A ——————tiee il —p—————— e g el

STMT/RSN

YCLUE/STMT

dimming_light electrical slectric current dimming light
is produced by measures ths

slectrical system condition of the

slectric current

Figure 13.a. Explanation Tree Of "dimming_light/electrical”

@mming_ measures .(electric rodu electricsl
light urre. ste

Figure 13.b. Semantic Network Of "dimming._light/electrical”

180

SRR

B
e

1CLUE/STMT

specific gravity |
/ \ velueof batiery.
Hydrometer Bettery electrolyte. _
er Battery will not

value ¢ 1250 perform properiy.

Figure 14.a. Explanation Tree Of “hydrometer/battery”

hydrometer n electrolyte

Figure 14.b. Semantic Network Of "hydrometer/battery”

181

Hydr

messures Electrolyte
specificgravity ~ 1spartof
value of battery.

bmeter

battery Battery electrolyte. _
voltage battery voltege Battery will not
value is less perform properly.
than 12v.

Figure 15.a. Explanation Tree Of "battery_voltage/battery”

battery quality_of battm
voltage

Figure 15.b. Semantic Network Of "battery_voltage/battery”

182

R L A N L A S e e S

/drometer electrolyte

electrical
system

produd

E

electric

ammeter current

Mmeedures

dimming

light

Figure 16. Semantic Network

183

10.

11.

LIST OF REFERENCES

Barr, A., Feigenbaum, E.A. The Handbook Of
Artificial Intelligence. Vol.II. William
Kaufmann, Inc. 1981.

Buchanan, B.G., Shortliffe, E.H. Rule-Based
Expert Systems, The MYCIN Experiment Of The
Stanford Heuristic Programming Project.
Addison-Wesley. 1984.

Narain, S. MYCIN: The Expert System And Its
Implementation In LOGLISP. Tech. Report,
C.I1.8., Syracuse University, Syracuse, N.Y.
August 1981.

Reggia, J. Knowledge Based Decision Support

Systems. Ph.D. Dissertation, University Of
Maryland. 1981.

Barr, A., Felgenbaum, E.A. The Handbook Of
Artificial Intelligence. Vol.I. William
Kaufmann, Inc. 1981,

Mulsant, B., Servan-Schreiber, D.
Knowledge Engineering: A Daily Activity On
A Hospital Ward. Computers And Biomedical
Research, (1984) 17, 71- 91.

Harmon, P., King, D. Artificial Intelligence
In Business EXPERT SYSTEMS. John Wiley And
Sons, Inc. 1985.

Van Melle, W. EMYCIN: A Domain Independent
Production Rule System For Consuvltation
Programs. Ph.D. Thesis, Computer Science
Department, Stanford University. 1980.

Davis, R., Buchanan, B.G. Shortliffe, E.H.
Production Rules As A Representation For A
Knowledge-based Consultation Program.
Artificial Intelligence, (February 1977) 8, No.

Sterling, L., Shapiro, E. The Art Of
Prolog. The MIT Press. 1986.

Clocksin, W.F. Mellish, C.S. Programming
In Prolog. Springer-Verlag. 1984.

184

12.

13.

14,

15.

16.

17.

18.

Robinson, J.A. A Machine-Oriented Logic
Based On The Resolution Principle. Journal

Of The Association For Computing Machinery.
(1965) 12, 23-41,

Wong, W.G. PROLOG A Language For Artificial

Intelligence. PC Magazine, (October 1986) 14.

Texas Instruments. Personal Consultant Plus

User’s Guide.

Goguen, J.A., Weiner, J.L., Linde, C.
Reasoning And Natural Explanation.

Int.J .Man-Machine Studies, (1983) 19, 521-
559.

Micro-ATI. Prolog-86 User’s Guide And
Reference Manual.

Hirsch, J.D. The Complete Book Of Car
Maintenance And Repair. Charles Scribner’s
Sons. 1973.

Rowe, C.N. Introduction To Artificial
Intelligence Through PROLOG. Prentice Hall
Englewood Cliffs N.J. 1987.

185

2w mcam

BIBLIOGRAPHY

Cendrowska, J., Bramer, M.A. A Rational Reconstraction
Of The MYCIN Consultation System. Int. J. Man-Machine
Studies, (1984) 20, 229-317.

Chandrasekaran, C. Generic Tasks In Knowledge-
Based Reasoning:High-Level Buillding Blocks For
Expert System Design. IEEE Expert, (Fall 1986).

Chandrasekaran, C. Tcwards A Taxonomy Of Problem

Solving Types. The AT Magazine, (Winter/Spring
7983).

Hayes-Roth, F., Waterman, A.D., Lenat, D.B. Building
Expert Systems. Addison Wesley. 13883.

Keonrad, L., Parker, D.S. Control Over Inexact
Reasoning. AI Expert Premier, (1986) 32-43.

Raul, E.V. Inside An Expert Systems Shell. AI Expert,
(October 1986) 30-42.

Waterman, D.A. A Guide Tc¢ Expert Systems. Addison
Wesley. 1986.

william, J.C. The FEpistemology Of A Rule - Based
Expert System - A Framework For Explanation.

Artificial Intelligence, (1983) 20, 215-251.

186

TR ORI R

INITIAL DISTRIBUTION LIST

No. Copies

Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

Library, Code 90142 2
Naval Postgraduate School
Monterey, California 93943-5002

Department Chairman, Code 52 1
Department Of Computer Science

Naval Postgraduate School

Monterey, California 93943-5000

Assoclate Professor N.C. Rowe 1
Code 52Rp

Department Of Computer Science

Naval Postgraduate School

Monterey, California 93943-5000

Associate Professor B.J. MacLennan 1
Code 52M1

Department Of Computer Science

Naval Postgraduate School

Monterey, California 93943-5000

Asscciate Professor T.R Sivasankaran 1
Code 54SJ

Department Of Administrative Sciences

Naval Postgraduate School

Monterey, California 93943-5000

Yucel Ozin 1
K.K.K'1ligi

Muh. Elk. ve Bilgl Sis. D. Bsk'’ligi

Bilgi Sistem Destek Subesi

Bakanliklar-ANKARA

TURKEY

LTJG Fikret Ulug, Turkish NAVY 2
Define Sok. 4/2

Aydinliitevlier-ANKARA

TURKEY

187

AL

L} "
e v

‘e

2

[N

)

Deniz Harp Okulu Kitapligi
Deniz Harp Okulu Komutanligi
Tuzla-ISTANBUL

TURKEY

188

gy T e g s

Kl OAODOODIRE. AANRDI sl ot Sl sbarsl blsS s

R T

oy

P IRRR AT,

[.t' .n‘ J

 Sall

