NEUROTOXIN BINDING SITE ON THE ACETYLCHOLINE RECEPTOR

ANNUAL REPORT
Thomas L. Lentz, Maria Gastka, and Diana Donnelly-Roberts

March 1987
U.S. ARMY MEDICAL RESEARCH AND DEVELOPMENT COMMAND
Fort Detrick, Frederick, Maryland 21701-5012

Contract No. DAMD17-86-C-6043
Yale University School of Medicine
New Haven, Connecticut 06510

DOD DISTRIBUTION STATEMENT
Approved for public release; distribution unlimited

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.
Neurotoxin Binding Site on the Acetylcholine Receptor

Thomas L. Lentz, Maria Gastka, Diana Donnelly-Roberts

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT
Annual FROM 1/1/86 TO 12/31/87 1987 March 61

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
Acetylcholine receptor, apamin, ɑ-bungarotoxin, cobratoxin, neurotoxin, binding assay

ABSTRACT (Continue on reverse if necessary and identify by block number)
This research was designed to (1) develop binding-inhibition assays that could be used to screen compounds that might be effective in inhibiting neurotoxin binding to the acetylcholine receptor (ACHR), (2) carry out studies to identify the anionic site on primary sequence of the ɑ-subunit to which neurotoxins bind, and (3) determine if antibodies to synthetic receptor peptides might be effective in inhibiting neurotoxin binding to the receptor.

A solid phase radioassay was developed to measure the binding of neurotoxins to receptors using binding of 125I-labeled ɑ-bungarotoxin (RTX) to purified Torpedo ACHR and membrane-bound ACHR as a model. The solid-phase assay is rapid, convenient, and utilizes small quantities of reagents. Association and dissociation rate constants and dissociation constants for RTX binding to the ACHR determined from kinetic and equilibrium binding data (Kd ~ 10^-13) were comparable to the constants observed with...
in vitro assays (filter disk and centrifugation assays) and to those reported in the literature, thus validating the solid phase assay. Besides α-bungarotoxin, a long, postsynaptic neurotoxin, binding of cobra toxin from Naja naja atra, a short, postsynaptic neurotoxin, and apamin, a centrally acting neurotoxin, could be demonstrated using the solid phase assay. The binding of apamin to brain synaptosomes indicates the assay is sensitive enough to be utilized with preparations containing a low density of receptors. The assay was also employed as a binding-inhibition assay by incubating constant amounts of toxin with increasing concentrations of cholinergic ligands (agonists and antagonists). This assay should be useful in screening compounds that might potentially be effective in inhibiting toxin binding to receptors.

To gain information on the location of the BTX-binding site on the primary sequence of the α-subunit of the AChR, [125I]BTX binding to a 32 amino acid peptide (32-mer), comprising residues 173-204 of the Torpedo α-subunit was investigated. Toxin binds to the peptide with the same affinity as binding to the isolated α-subunit. Binding of toxin to the 32-mer could be competed with cholinergic antagonists. It is concluded that this region of the α-subunit is a major determinant of the toxin-binding site on the receptor. Investigation of toxin-binding to shorter peptides comprising portions of the 32-mer should further localize the site. Substitution of glutamine for the negatively-charged glutamate-180, which possibly represents the anionic site to which the quaternary ammonium group of acetylcholine and the guanidinium group of arginine-37 of the neurotoxins bind, in a calf 32-mer did not significantly affect toxin binding. Thus, either another negatively-charged residue is important in binding or, in view of the multisite interaction of BTX and AChR, alteration of a single residue has little effect on binding. Binding of [125I]BTX was considerably less to corresponding calf and human 32-mers than to the Torpedo 32-mer. This raises the possibility that the neurotoxins do not have as great an effect on the human receptor and that other constituents of snake venoms contribute more to the toxic effects of the venoms in humans. Finally, antibodies could be raised against the Torpedo 32-mer. These antibodies cross-reacted with membrane-bound and purified AChR, demonstrating the accessibility of the site on the intact receptor.
NEUROTOXIN BINDING SITE ON THE ACETYLCHOLINE RECEPTOR

ANNUAL REPORT

Thomas L. Lentz, Maria Gastka, and Diana Donnelly-Roberts

March 1987

U.S. ARMY MEDICAL RESEARCH AND DEVELOPMENT COMMAND
Fort Detrick, Frederick, Maryland 21701-5012

Contract No. DAMD17-86-C-6043

Yale University School of Medicine
New Haven, Connecticut 06510

DOD DISTRIBUTION STATEMENT

Approved for public release;
distribution unlimited

The findings in this report are not to be construed as an official Department
of the Army position unless so designated by other authorized documents.
SUMMARY

This research was designed to (1) develop binding-inhibition assays that could be used to screen compounds that might be effective in inhibiting neurotoxin binding to the acetylcholine receptor (AChR), (2) carry out studies to identify the anionic site on primary sequence of the α-subunit to which neurotoxins bind, and (3) determine if antibodies to synthetic receptor peptides might be effective in inhibiting neurotoxin binding to the receptor.

A solid phase radioassay was developed to measure the binding of neurotoxins to receptors using binding of 125I-labeled α-bungarotoxin (BTX) to purified Torpedo AChR and membrane-bound AChR as a model. The solid phase assay is rapid, convenient, and utilizes small quantities of reagents. Association and dissociation rate constants and dissociation constants for BTX binding to the AChR determined from kinetic and equilibrium binding data (Kd = 10^-11) were comparable to the constants observed with in vitro assays (filter disk and centrifugation assays) and to those reported in the literature, thus validating the solid phase assay. Besides α-bungarotoxin, a long, postsynaptic neurotoxin, binding of cobra toxin from Naja naja atra, a short, postsynaptic neurotoxin, and apamin, a centrally acting neurotoxin, could be demonstrated using the solid phase assay. The binding of apamin to brain synaptosomes indicates the assay is sensitive enough to be utilized with preparations containing a low density of receptors. The assay was also employed as a binding-inhibition assay by incubating constant amounts of toxin with increasing concentrations of cholinergic ligands (agonists and antagonists). This assay should be useful in screening compounds that might potentially be effective in inhibiting toxin binding to receptors.

In order to gain information on the location of the BTX-binding site on the primary sequence of the α-subunit of the AChR, 125I-BTX binding to a 32 amino acid peptide (32-mer) comprising residues 173-204 of the Torpedo α-subunit was investigated. Toxin binds to the peptide with the same affinity as binding to the isolated α-subunit. Binding of toxin to the 32-mer could be competed with cholinergic antagonists. It is concluded that this region of the α-subunit is a major determinant of the toxin-binding site on the receptor. Investigation of toxin-binding to shorter peptides comprising portions of the 32-mer should further localize the site. Substitution of glutamine for the negatively-charged glutamate-180, which possibly represents the anionic site to which the quaternary ammonium group of acetylcholine and the guanidinium group of arginine-37 of the neurotoxins bind, in a calf 32-mer did not significantly affect toxin binding. Thus, either another negatively-charged residue is important in binding or, in view of the multisite interaction of BTX and AChR, alteration of a single residue has little effect on binding. Binding of 125I-BTX was considerably less to corresponding calf and human 32-mer than to the Torpedo 32-mer. This raises the possibility that the neurotoxins do not have as great an effect on the human receptor and that other constituents of snake venoms contribute more to the toxic effects of the venoms in humans. Finally, antibodies could be raised against the Torpedo 32-mer. These antibodies cross reacted with membrane-bound and purified AChR, demonstrating the accessibility of the site on the intact receptor.
Foreword

In conducting the research described in this report, the investigators adhered to the "Guide for the Care and Use of Laboratory Animals", prepared by the Committee on Care and Use of Laboratory Animals of the Institute of Laboratory Animal Resources, National Research Council (DHEW Publication No. (NIH) 78-23, Revised 1978).
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title Page</td>
<td>1</td>
</tr>
<tr>
<td>Summary</td>
<td>2</td>
</tr>
<tr>
<td>Foreword</td>
<td>3</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>4</td>
</tr>
<tr>
<td>List of Illustrations</td>
<td>5</td>
</tr>
<tr>
<td>List of Tables</td>
<td>6</td>
</tr>
<tr>
<td>Problem Under Study</td>
<td>7</td>
</tr>
<tr>
<td>Background and Review of Literature</td>
<td>7</td>
</tr>
<tr>
<td>Rationale Used in Current Study</td>
<td>8</td>
</tr>
<tr>
<td>Experimental Methods</td>
<td>10</td>
</tr>
<tr>
<td>General Procedures</td>
<td>10</td>
</tr>
<tr>
<td>Assay Development</td>
<td>11</td>
</tr>
<tr>
<td>Structure/Function Studies</td>
<td>14</td>
</tr>
<tr>
<td>Therapy</td>
<td>16</td>
</tr>
<tr>
<td>Results</td>
<td>17</td>
</tr>
<tr>
<td>Assay Development</td>
<td>17</td>
</tr>
<tr>
<td>Structure/Function Studies</td>
<td>41</td>
</tr>
<tr>
<td>Therapy</td>
<td>41</td>
</tr>
<tr>
<td>Discussion and Conclusions</td>
<td>51</td>
</tr>
<tr>
<td>Literature Cited</td>
<td>57</td>
</tr>
<tr>
<td>Publications Supported by Contract</td>
<td>59</td>
</tr>
<tr>
<td>Personnel Receiving Contract Support</td>
<td>60</td>
</tr>
<tr>
<td>Distribution List</td>
<td>61</td>
</tr>
</tbody>
</table>
List of Illustrations

<table>
<thead>
<tr>
<th>Fig.</th>
<th>Illustration Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 1</td>
<td>BTX-Torpedo Association. Solid Phase Assay.</td>
<td>18</td>
</tr>
<tr>
<td>Fig. 2</td>
<td>BTX Binding to Torpedo. Solid Phase Assay.</td>
<td>19</td>
</tr>
<tr>
<td>Fig. 3</td>
<td>Saturation of BTX Binding to Torpedo-Solid Phase Assay.</td>
<td>20</td>
</tr>
<tr>
<td>Fig. 4</td>
<td>Scatchard Plot for BTX-Torpedo. Solid Phase Assay.</td>
<td>21</td>
</tr>
<tr>
<td>Fig. 5</td>
<td>BTX-AChR Association. Solid Phase Assay.</td>
<td>22</td>
</tr>
<tr>
<td>Fig. 6</td>
<td>BTX Binding to AChR. Solid Phase Assay.</td>
<td>23</td>
</tr>
<tr>
<td>Fig. 7</td>
<td>BTX-AChR Dissociation. Solid Phase Assay.</td>
<td>24</td>
</tr>
<tr>
<td>Fig. 8</td>
<td>Saturation of BTX Binding to AChR. Solid Phase Assay.</td>
<td>25</td>
</tr>
<tr>
<td>Fig. 9</td>
<td>Scatchard Plot for BTX-AChR. Solid Phase Assay.</td>
<td>26</td>
</tr>
<tr>
<td>Fig. 10</td>
<td>CTX-AChR Association. Solid Phase Assay.</td>
<td>28</td>
</tr>
<tr>
<td>Fig. 11</td>
<td>CTX-AChR Dissociation. Solid Phase Assay.</td>
<td>29</td>
</tr>
<tr>
<td>Fig. 12</td>
<td>CTX-AChR Saturation. Solid Phase Assay.</td>
<td>30</td>
</tr>
<tr>
<td>Fig. 13</td>
<td>CTX-AChR Scatchard Plot. Solid Phase Assay.</td>
<td>31</td>
</tr>
<tr>
<td>Fig. 14</td>
<td>Apamin-Synaptosome Association. Solid Phase Assay.</td>
<td>32</td>
</tr>
<tr>
<td>Fig. 15</td>
<td>Apamin-Synaptosome Saturation. Solid Phase Assay.</td>
<td>33</td>
</tr>
<tr>
<td>Fig. 16</td>
<td>Apamin-Synaptosome Scatchard. Solid Phase Assay.</td>
<td>34</td>
</tr>
<tr>
<td>Fig. 17</td>
<td>BTX-AChR Association. Filter Disk Assay.</td>
<td>35</td>
</tr>
<tr>
<td>Fig. 18</td>
<td>BTX-AChR Dissociation. Filter Disk Assay.</td>
<td>36</td>
</tr>
<tr>
<td>Fig. 19</td>
<td>Saturation of BTX Binding to AChR. Filter Disk Assay.</td>
<td>37</td>
</tr>
<tr>
<td>Fig. 20</td>
<td>Scatchard Plot BTX-AChR. Filter Disk Assay.</td>
<td>38</td>
</tr>
<tr>
<td>Fig. 21</td>
<td>BTX-Torpedo Association. Centrifugation Assay.</td>
<td>39</td>
</tr>
<tr>
<td>Fig. 22</td>
<td>BTX-Torpedo Saturation. Centrifugation Assay.</td>
<td>40</td>
</tr>
<tr>
<td>Fig. 23</td>
<td>Binding-Inhibition Assay. Inhibition of 125I BTX Binding.</td>
<td>42</td>
</tr>
<tr>
<td>Fig. 24</td>
<td>Binding-Inhibition Assay. Inhibition of 125I BTX Binding.</td>
<td>43</td>
</tr>
<tr>
<td>Fig. 25</td>
<td>125I-BTX Binding to 32-mer. Competition with Antagonists.</td>
<td>44</td>
</tr>
<tr>
<td>Fig. 26</td>
<td>125I-32mer Binding to BTX. Competition with unlabeled 32mer.</td>
<td>45</td>
</tr>
<tr>
<td>Fig. 27</td>
<td>Binding-Inhibition Assay. Inhibition of 125I AChR Binding.</td>
<td>46</td>
</tr>
<tr>
<td>Fig. 28</td>
<td>Binding of Anti-32mer Antisera to 32mer. Dilution Curve.</td>
<td>47</td>
</tr>
</tbody>
</table>
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1</td>
<td>Sequence and Alignment of Synthetic Peptides of AChR α-Subunit</td>
<td>13</td>
</tr>
<tr>
<td>Table 2</td>
<td>Binding-Inhibition Assay, ¹²⁵I-BTX to AChR</td>
<td>48</td>
</tr>
<tr>
<td>Table 3</td>
<td>Binding-Inhibition Assay, ¹²⁵I-BTX to 32-mer</td>
<td>52</td>
</tr>
<tr>
<td>Table 4</td>
<td>¹²⁵I-BTX Binding to 32 Residue α-Subunit Peptides</td>
<td>50</td>
</tr>
<tr>
<td>Table 5</td>
<td>Reactivity of Antisera to 32-mer with 32-mer and AChR</td>
<td>52</td>
</tr>
<tr>
<td>Table 6</td>
<td>Rate Constants and Dissociation Constants for ¹²⁵I-BTX and ¹²⁵I-CTX Binding to Purified AChR</td>
<td>53</td>
</tr>
</tbody>
</table>
PROBLEM UNDER STUDY

The following three problems were studied during the term of this contract:

a. Assay Development. The suitability of solid phase radioassays to measure the binding of neurotoxins to membrane preparations or purified acetylcholine receptor was investigated. The toxins studied were α-bungarotoxin, cobratoxin, and apamin. Experiments were conducted to determine whether the solid phase assay could be used as a binding-inhibition assay to screen compounds that might inhibit binding of toxins.

b. Structure/Function Studies. Studies were performed in an effort to identify the site on the primary sequence of the α-subunit of the acetylcholine receptor to which curaremimetic neurotoxins bind. A synthetic peptide of a portion of the α-subunit was synthesized and tested for ability to bind α-bungarotoxin. The specificity of binding was analyzed by competition experiments using cholinergic agonists and antagonists.

c. Therapy. Antibodies were raised against the α-subunit peptide because these might be effective in inhibiting neurotoxin binding to the receptor. Polyclonal antibodies were raised in rabbits and monoclonal antibody production undertaken using mice.

BACKGROUND AND REVIEW OF LITERATURE

The nicotinic acetylcholine receptor (AChR) functions to transduce a chemical signal (acetylcholine) into an electrical event by opening a channel through which sodium ions pass. The AChR has been well characterized, both physiologically and biochemically (1-3). The AChR purified from the electroplaque of the electric organ Torpedo californica consists of four subunits present in the molar stoichiometry of α2βγδ (3-6). The Torpedo AChR has close structural and functional similarities with AChR from other sources including mammals (7). The pentameric complex of subunits contains the agonist binding site responsible for receptor activation and desensitization as well as the ion channel for cation flux through the membrane. Although the AChR is the best characterized neurotransmitter molecule, many questions concerning its function remain unanswered. These include the nature of the interaction of the transmitter with the receptor and how this leads to opening of the ion channel. Recent information on the primary amino acid sequences of the polypeptides comprising the receptor (8-11) provides a basis for analyzing and understanding the receptor functions at a molecular level.

The study of the AChR has been aided by the use of snake venom curaremimetic neurotoxins. Neurotoxins from snakes belonging to the families Elapidae (cobras, kraits, mambas, and others) and Hydrophidae (sea snakes) are polypeptides of 60-74 residues which bind with high affinity to the nicotinic AChR (12,13), and as with curare, competitively block the depolarizing action of acetylcholine (14). The binding of toxins is competitive with the binding of the affinity labeling agents 4-(N-maleimido)-α-benzyltrimethylammonium (BTA) and bromoacetylcholine (1). α-Bungarotoxin (BTX), a long neurotoxin, binds with high affinity to the Torpedo AChR (12-15). The most widely used procedure for measuring toxin-binding to the AChR is the DEAE-cellulose disk assay (filter disk assay) of Schmidt and Raftery (16). BTX binds with lowered affinity to isolated α-subunit but not to β,γ, and δ subunits (17-19).
competition between cholinergic agonists and neurotoxins suggests that the toxin-binding region of the α-subunit includes the AChR-binding site.

The snake venom neurotoxins are flat, hand-shaped molecules with three polypeptide loops projecting from a central core of four disulfide bridges near one end (20-28). All of the side chain residues that have been identified as being important functionally are located on the concave surface of the molecule which comes into contact with the AChR (28). The residues which interact with the acetylcholine-binding site on the AChR lie at the end of neurotoxin loop 2, the so-called toxic loop, protruding from the molecule. The cationic guanidinium group of the invariant arginine-37 of the neurotoxin is considered to be the counterpart of the quaternary ammonium group of acetylcholine (20-23). Most likely, an anionic site on the AChR lying beneath arginine-37 of the toxins forms part of the acetylcholine-binding site (28). Other toxin residues participate in binding to the AChR (28,29) and such multipoint interactions may be responsible for the high affinity of toxin binding (30).

Several models of the secondary structure of the α-subunit of the AChR have been proposed (11,28,31-35). These differ largely in the number of membrane-spanning α-helices. The acetylcholine binding site lies on the ectodomain of the α-subunit. The binding site is located near the disulfide group which is reduced and alkylated by the affinity ligands. Based on the size of these ligands, the negative subsite binding the quaternary ammonium group is about 10 Å from the sulphydryl group formed by reduction of the disulfide (1). The α-subunit has four cysteine residues which can form two disulfides. Initially, a disulfide occurring between cysteine residues at positions 128 and 142 was postulated as the most likely region of the acetylcholine-binding site (36). An alternative region is near cysteine residues at positions 192 and 193. These cysteines are present in the α-subunit but not the other subunits. Karlin and co-workers have shown that cysteine-192, and possibly in addition cysteine-193, were specifically labeled by the affinity alkylating agent MBTA (37). In addition, evidence has been presented that a disulfide bond exists between cysteine 192 and 193 (38). Thus, it seems likely that at least a portion of the acetylcholine binding site lies near cysteine 192 and 193. It is possible that other regions of the α-subunit brought into proximity to this region contribute to the binding site. Recently, a synthetic peptide comprising residues 173-204 of the α-subunit has been shown to bind BTX with the same affinity as the isolated α-subunit (39). This finding suggests a major determinant of the BTX-binding site in the α-subunit resides between residues 173 and 204. Furthermore, a shorter peptide, residues 185-196, has also been shown to bind BTX, although with lower affinity (40).

RATIONALE USED IN CURRENT STUDY

a. **Assay Development.** As noted above, BTX has been extremely useful in investigating the AChR because of its specificity and high affinity. A filter disk assay (16) has been widely employed to measure BTX binding to the AChR. However, in preliminary experiments, we have found that toxin binding can be measured using solid phase radioassays in which purified receptor is adsorbed to the wells of polystyrene microtiter plates and the binding of 125I-labeled BTX measured. The solid phase radioassay is considerably easier to perform than the filter disk assay. In addition, it lends itself to performance of binding inhibition assays in which a potential inhibitor is added along with
125I-BTX and effects on binding measured. Therefore, it was planned to develop a model protocol for solid phase radioassays and binding-inhibition assays using 125I-BTX and receptor-rich membranes and purified AChR from Torpedo electric organ. In order to validate the solid phase assay, the kinetics and binding constants determined with this assay were compared with those obtained with in vitro assays (the filter disk assay and centrifugation assay). In addition, experiments were performed to determine whether the solid phase assays can be applied to other neurotoxins. In this case, the solid phase assays could have wide applicability in screening compounds that would potentially inhibit toxin binding. Different classes of toxins were selected for investigation. Erabutoxin is a short, postsynaptic neurotoxin compared to BTX, which is a long, postsynaptic neurotoxin. B-Bungarotoxin is also a component of snake venoms, but acts presynaptically to inhibit transmitter release. Cardiotoxin is another component of snake venoms, but interacts with the membranes of other cells such as muscle to produce persistent depolarization. Apamin is a neurotoxic octadecapeptide from bee venom which, unlike other peptide toxins, crosses the blood-brain barrier to exert effects on the central nervous system.

b. Structure/Function Studies. These studies were designed to identify the BTX and hence acetylcholine binding site on the AChR. Because the toxin is competitive with acetylcholine binding, the toxin-binding site must be located at or very near the acetylcholine-binding site, and therefore identification of the toxin-binding site should also localize the acetylcholine binding site. Because the primary amino acid sequence of the α-subunit is known, it is possible to synthesize peptides comprising portions of the α-subunit and to test these for ability to bind BTX. Evidence exists that studies of such ligand-peptide interactions are feasible. A 33 residue synthetic peptide containing loop 2 of Naja naja philippinensis toxin has been shown to bind to the AChR and to compete with BTX for binding (41). In addition, BTX has been shown to bind to proteolytic fragments of the α-subunit as small as 7 kD in molecular mass (42). Finally, 2-residue (39) and 12-residue (40) peptides of the α-subunit have been shown to bind BTX. Thus, neither the entire toxin or entire α-subunit is necessary for binding. The fact that synthetic peptides bind BTX does not provide conclusive evidence that the acetylcholine binding site is also located on the peptide. It is possible that the peptides interact with some portion of the toxin molecule other than that binding to the acetylcholine binding site. To determine whether the acetylcholine binding site resides on the peptide, it is necessary to determine whether the binding of BTX is competed with cholinergic antagonists or agonists. Therefore, in these studies, the 32-residue peptide (residues 173-204) was synthesized and the ability of cholinergic antagonists to inhibit BTX binding tested. The 32-mer contains several negatively-charged residues that represent candidates for the anionic subsite. To further localize the binding site, shorter peptides comprising portions of the 32-mer were synthesized with the goal of testing them for ability to bind toxin.

c. Therapy. If the toxin binding site of the receptor can be identified, a basis is provided for developing therapies to inhibit binding of the toxin to the receptor and thus toxicity. Highly specific homogeneous toxin-like probes directed at many parts of the AChR molecule can be obtained from cloned hybridoma cell lines producing monoclonal antibodies (43). These have had many useful applications in the study of the AChR and the autoimmune response to the receptor in myasthenia gravis (44). It can be expected that antibodies to the toxin-binding peptide and the synthetic receptor peptide itself should compete or block binding of toxin to the receptor. Thus, anti-
bodies were raised against the 32-residue peptide in rabbits. The production of monoclonal antibodies in mice was undertaken. These antibodies can then be tested for ability to block toxin binding to AChR using the solid phase radioassay and for ability to prevent toxicity in vivo.

EXPERIMENTAL METHODS

General Procedures

Torpedo electric organ membranes. Frozen electric organ tissue (50-100 g) from Torpedo californica (Pacific Biomarine, Venice, CA) was minced and homogenized in 50-100 ml of homogenization buffer (0.4 M Tris-Cl, pH 7.4, 10 mM Na₂ EDTA, 0.1 mM phenylmethylsulfonyl fluoride (PMSF), 0.02% NaN₃), for 2-3 min with a Virtis homogenizer. After centrifugation in a Sorvall RC-5 centrifuge (10 min at 4,000 x g), the supernatant was centrifuged at 100,000 x g for 45 min in a Beckman L2-65 ultracentrifuge with a 50.2 Ti rotor. The membrane pellet was resuspended and recentrifuged at 100,000 x g. The final membrane pellet was resuspended in homogenization buffer to give a protein concentration of ~10 mg/ml. This fraction was stored at -70°C until use.

Torpedo AChR. The AChR was affinity-purified on a cobra toxin-Sepharose column essentially as described by Frohner and Rafto (45). Protease inhibitors (0.1 mM PMSF and 10 units TrasyloM/ml) and divalent cation chelators (1 mM EDTA and 1 mM EGTA) were present throughout the extraction. Torpedo electric organ membranes were solubilized in Triton X-100 and passed over a cobra toxin-Sepharose column. The AChR was eluted from the column with 1 M iodoacetic acid (IAA) in 50 mM Tris-Cl, pH 7.4, 0.1% deoxycholate. The purified AChR was dialyzed against the same buffer containing the protease inhibitor. The receptor preparations routinely bound ~7.5 nmol of [125I]labeled α-BTX per mg of protein. Upon sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis (PAGE), the four receptor subunits were revealed, demonstrating the purity of these preparations.

Synaptosome preparation. Five to 10 brains from adult male Sprague-Dawley rats were homogenized in 0.32 M sucrose in 5 mM Tris-Cl, pH 7.4, protease inhibitors, 10% w/v, with a glass homogenizer. The homogenate was centrifuged at 1000 x g for 20 min in a L2-65 ultracentrifuge with a Ti 45 rotor. The pellet was resuspended in a small volume of 0.32 M sucrose in 5 mM Tris-Cl, pH 7.4, layered on a discontinuous sucrose gradient (0.3, 1.0, 1.2 M) and centrifuged at 33,000 x g for 60 min in a SW41 rotor. The material at the 1.0 M and 1.2 M interface was removed with a J syringe, added to PBS (1:1), and centrifuged at 100,000 x g in a 50.2 Ti rotor for 30 min. The pellets were resuspended in PBS, recentrifuged, resuspended, aliquoted, and protein concentration determined by Lowry.

Iodination of BTX and other proteins. BTX was iodinated using the chloramine T method (46) essentially as described by Wang and Schmidt (47). The iodinated mixture was chromatographed on a Sephadex G-10 column to remove free iodide. The iodinated toxin was then fractionated on a C18-Sephadex column to separate di- and moniodinated BTX. The latter was used in these studies. Other toxins and the 32-mer were iodinated in the same manner.
Toxins. Toxins were obtained from the following sources:

- α-Bungarotoxin: Miami Serpentarium
- α-Cobratoxin (Naja naja siamensis): Miami Serpentarium
- Cobratoxin (Naja naja atra): Miami Serpentarium
- Erabutoxin: Sigma Chemical Co.
- β-Bungarotoxin: Miami Serpentarium
- Cardiotoxin: Sigma Chemical Co.
- Apamin: Sigma Chemical Co.

All other reagents were analytical grade from conventional commercial sources.

Assay Development

Solid phase radioassay. A protocol was developed for measuring the binding of iodinated toxins to purified receptor or membranes adsorbed to the wells of polystyrene microtiter plates. A large number of preliminary experiments were performed to determine the optimum conditions and amounts of material to be used. The protocol developed to measure binding of BTX to Torpedo membranes and purified AChR is described below. This assay was also utilized to measure binding of erabutoxin and cobratoxin to the AChR, α-bungarotoxin to synaptosomes, and apamin to synaptosomes. To characterize binding of toxins, experiments were performed to measure toxin binding as a function of receptor concentration, the time course of association and dissociation, and saturability of binding. Competition experiments were performed by incubating a constant amount of labeled toxin with increasing amounts of competitor and measuring bound radioactivity. The effects of unlabeled BTX, α-cobratoxin, d-tubocurarine, nicotine, carbamol, choline, and NaCl on 125I-BTX binding were tested. The conditions of each individual experiment are described in the figure legends in the Results section.

SOLID PHASE RADIOASSAY

α-Bungarotoxin to Acetylcholine Receptor

1. Make up receptor or membranes at desired concentration (1-10 μg/ml for receptor, 10-25 μg/ml for membranes) in coating buffer (0.05 M carbonate/bicarbonate buffer, pH 9.6 containing 0.02% NaN₃).

2. Add 100 μl (0.1-2.5 μg) of receptor or membrane solution to wells of 96-well polystyrene microtiter plates (Nunc, USA/Scientific Plastics). Use 3-4 replicates for each condition. Add coating buffer to other wells for background measurements. Experimental and control wells are treated identically in subsequent steps.

3. Incubate overnight at 4°C in humidified chamber (plastic box with wet paper towel) to adsorb receptor or membranes to plastic. Alternatively, plates containing membranes can be centrifuged at × 1,000 g in plate carriers for 30 min.

4. Wash 3 times with PBS (10 mM phosphate buffer, 0.15 M NaCl, pH 7.4). Wells can be aspirated with a Pasteur pipette and a vacuum source. PBS is dispensed with a 12-channel Titertek dispenser.
5. Quench wells by adding 300 μl of 5% BSA (Sigma, Fraction V) in PBS.

6. Wash wells 3 times with PBS.

7. Add 100 μl 125I-labeled α-bungarotoxin (*BTX) to wells. The buffer, amount of toxin, length of incubation, etc., depend on the specific activity of the *BTX and nature of the experiment. Routine conditions are 1-5 nM *BTX (25,000-100,000 cpm/well) in 10 mM phosphate buffer, pH 7.

8. For competition experiments, add 50 μl of competitor in increasing concentrations to wells. Immediately add 50 μl of *BTX at constant concentration (1-5 nM). (Note that final concentration of each will be half the starting concentration.) Incubate 10 min (remain in linear phase of association of *BTX).

9. Wash 5 times with PBS.

10. To remove and measure bound radioactivity, remove buffer and add 200 μl 5% SDS in 0.2 N NaOH. Let stand 2-5 min. Remove solution from each well with a Pipetteman and place in a gamma vial or tube. Repeat twice. Count in gamma counter. Subtract cpm in control wells from cpm in experimental wells.

Note: This protocol can be used for many ligand-receptor interaction. Ligands include labeled monoclonal antibodies, IgG, protein A, Con A, hormones, toxins, peptides, viruses, etc. If the receptor is present in low concentration, use 24-well culture plates (Costar), the wells of which have a greater surface area. Two-step procedures employing a primary antibody and a labeled second antibody or protein A can be used. It is important to determine the optimum conditions for each protocol as they will differ to some degree. This is achieved by performing test experiments in which the concentration of reagents used and time of incubation for each step (receptor or membrane, quench, and ligand) is varied independently. If backgrounds are high, increase the quench concentration (to 10% BSA), number of washes, or include detergent in the washes (0.02 to 0.1%, Triton X-100 or Tween 20). For viruses, especially inclusion of Triton in the final wash step reduces the background greatly. For ligands not easily solubilized (e.g., viruses), place the plate containing SDS-NaOH on a hot plate or in an oven (~45°C).

The amount of receptor that actually bound to the plastic after adsorption was determined. To wells, 0.2 μg (4.2 fmol) of AChR was added. After washing and quenching for 50 min with 5% BSA, wells were incubated with excess of 125I-BTX (3.6 x 10$^{-4}$M, 331 cpm/fmol). Background binding of 125I-BTX to quenched wells lacking AChR was measured and subtracted from experimental values. Under equilibrium conditions, 24.105 cpm or 7 fmol of 125I-BTX were bound. Because there are 2x-subunits per receptor, the toxin binding sites represent 36.3 fmol AChR, or 9% of the total AChR added to the wells.

To validate the results obtained with the solid phase assay, *BTX binding to the AChR was also measured using in vitro assays in which 125I-IVTX is incubated with receptor or membranes in solution. Thus, the toxin-receptor complex is separated first unbound toxin by immobilization on a filter in the filter disk assay or centrifugation in the centrifugation assay. The proto-
cols for these assays are shown below. Experiments comparable to those performed with the solid phase assay to determine the kinetics of binding were carried out and the results compared. Dissociation constants were calculated as described by Bylund (48).

DEAE - CELLULOSE FILTER DISK ASSAY

The amount of toxin and receptor, length of incubation, amount of buffer etc. depend on the specific activity of the hot toxin, the number of receptor sites, the nature of binding, and the type of experiment performed. Routine conditions are nanomolar toxin concentrations. Filters must be tested with hot toxin alone to determine the nonspecific background. This depends on the overall charge of the toxin.

1. Make up AChR in 50 mM PB (phosphate buffer) + 0.1% Triton X-100 + 0.005% NaN₃, pH 6.5-7.5. Concentration of receptor usually should be 3-6 x 10⁻³ μg/μl.

2. Make up toxin in 50 mM PB + 0.1% Triton X-100 + 0.005% NaN₃ + 0.2% BSA, pH 7.0.

3. Add toxin and receptor to 2 glass tubes. In 1 tube place 500-1000 fold excess of cold toxin. Put the corresponding volume of buffer in the other tube. Both tubes are treated identically in subsequent steps. Vortex each tube.

4. Incubate for desired time.

5. Spot 50 μl on a filter (Whatman DE-81, 25 mm diameter). Do not allow to dry.

6. Wash filters in washing buffer (PBS + 0.1% Triton) for 10 min with gentle shaking. Do not use a stir bar or over-agitate. Filters will disintegrate. Repeat twice more.

7. Count filters in a gamma counter.

CENTRIFUGATION ASSAY

1. Make up membranes at desired concentration in 10 mM PB + 0.005% NaN₃, pH 7.4.

2. Make up ¹²⁵I-labeled toxin. The buffer, amount of toxin, length of incubation, etc., depend on the specific activity of the hot toxin and the nature of the experiment. Routine conditions are 1-5 nM labeled toxin (10,000-150,000 cpm/tube) in 10 mM PB + 0.2% BSA + 0.005% NaN₃, pH 7.0 (BSA necessary in buffer).

3. Quench microcentrifuge tubes (polypropylene, USA/Scientific Plastics) by adding 500 μl of 5% BSA in PB. Spin 10 min in microfuge (~13,000 xg), aspirate supernatant.
4. Add 500 µl (0.0025 µg-10 µg) of membrane to each microcentrifuge tube. Use three replicates for each condition. To determine nonspecific binding of toxin to tube, run controls without membranes (some toxins "stick" to plastic more than others). Experimental and control tubes are treated identically in subsequent steps. Spin 10 min, aspirate supernatant.

5. Add 250-500 µl labeled toxin to each tube (the minimum volume is 250 µl). Vortex. Incubate until equilibrium is reached. For association experiments the reaction is stopped with the addition of excess cold toxin (200-1000 X excess). Spin 10 min, aspirate supernatant (for saturation experiments save 50 µl of supernatant to determine the concentration of free toxin).

6. Wash with 1000 µl PBS, vortex. Spin 10 min, aspirate. Repeat three times.

7. Remove sample with 500 µl NaOH + SDS and count in a gamma counter.

Structure/Function Studies

Synthetic peptides. Peptides comprising portions of the α-subunit of the AChR were synthesized by the Protein Chemistry Facility of the Department of Molecular Biophysics and Biochemistry, Yale University. The sequences of the peptides synthesized are shown in Table 1. Toxin binding to peptides was tested according to the protocol listed below:

125I-BTX Binding to 32-mer

1. Coating: 5 µg 32-mer were added to the wells of microtiter plates in 100 µl of coating buffer (0.05 M carbonate/bicarbonate buffer, pH 9.6, containing 0.02% NaN3) and incubated overnight at room temperature.

2. Quench: Peptide is removed and wells quenched by adding 2% BSA in 10 mM phosphate buffer, pH 7.5, for 1 h at room temperature.

3. Incubation: Quench is removed and 1 nM 125I-labeled BTX in 0.1% BSA, 10 mM phosphate buffer, pH 7.5, added to wells and incubated 2 h at room temperature.

 Competition experiments are performed by adding increasing concentrations of competitor to wells followed by 1 nM 125I-BTX.

4. Wash: Wells are washed 4 times with 200 µl of 0.1% BSA in 10 mM phosphate buffer.

5. Solubilization: Radioactivity is removed by adding 100 µl of 2.5% SDS in 0.25 N NaOH, swabbing well with cotton-tipped applicator, placing applicator in a vial and counting in a gamma counter.
Table 1

Sequence and Alignment of Synthetic Peptides of AChR α-Subunit

<table>
<thead>
<tr>
<th>Peptide Type</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Torpedo 32-mer</td>
<td>SGEMVKDYRGKHWVYYTCCPDPYLDITYH173</td>
</tr>
<tr>
<td>Human 32-mer</td>
<td>SGEWVIKESRGKHSVTYSCCPDPYLDITYH</td>
</tr>
<tr>
<td>Calf 32-mer</td>
<td>SGEWVIKESRGKHWVFYACCPSTPYLDITYH</td>
</tr>
<tr>
<td>Modified Calf 32-mer</td>
<td>SGEWVIKESRGKHWVFYACCPSTPYLDITYH</td>
</tr>
<tr>
<td>Torpedo 19-mer</td>
<td>SGEVMKDYRGKHWVYT</td>
</tr>
<tr>
<td>Torpedo 12-mer</td>
<td>CPDPYLDITYH</td>
</tr>
<tr>
<td>Torpedo 11-mer</td>
<td>PDTPYLDTYH</td>
</tr>
<tr>
<td>Torpedo 14-mer</td>
<td>KDYRGKHWVYYTC</td>
</tr>
<tr>
<td>Torpedo 12-mer</td>
<td>KHWVYYTCPDT</td>
</tr>
<tr>
<td>Torpedo 11-mer</td>
<td>HWVYYTCPDT</td>
</tr>
</tbody>
</table>
A second assay was devised to demonstrate binding of peptides to BTX. In this assay, BTX is bound to plastic and incubated with purified AChR or 32-mer iodinated by the chloramine T method. The ability of peptides (which should compete with receptor 32-mer for binding to adsorbed toxin) to inhibit \(^{125}\text{I}-\text{AChR} \) binding or \(^{125}\text{I}-32\text{-mer} \) is tested. This protocol is described below:

1. **Coating:** Wells are coated with 5 μg BTX in coating buffer (0.05 M carbonate/bicarbonate buffer, pH 9.6, 0.02% NaN\(_3\)) overnight at room temperature.

2. **Quench:** BTX is removed and wells quenched with 300 μl 2% BSA in distilled water for 1 h at room temperature.

3. **Incubation:** \(^{125}\text{I-ACHR} \) or \(^{125}\text{I-32-mer} \) in 10 mM phosphate buffer, pH 7.0, 0.1% BSA, and 0.2% Triton X-100 with increasing amounts of unlabeled AChR or 32-mer are added to wells and incubated for 15 min at room temperature.

4. **Wash:** Wells are washed 4 times in 10 mM phosphate buffer, pH 7.0, 0.1% BSA, and 0.2% Triton X-100.

5. **Solubilization:** 100 μl of 2.5% SDS in 0.25N NaOH is added to wells, wells are swabbed with a cotton-tipped applicator, the applicator placed in a vial, and radioactivity measured in a gamma counter.

Therapy

Polyclonal antibodies. Antibodies were raised against the Torpedo 32-residue peptide. The procedure for antibody production is outlined below.

1st injection: Four pound New Zealand white rabbits were injected subcutaneously in the back with 50 nmoles 32-mer in complete Freund’s adjuvant.

1st boost: Two weeks after the first injection, 50 nmoles 32-mer in complete Freund’s adjuvant was injected, half subcutaneously on the back and half intramuscularly in a thigh muscle. Two weeks after injection rabbits were bled from an ear vein after anesthetizing the ear with Solarcaine.

2nd boost: Two weeks after the second injection, 10 nmoles 32-mer in complete Freund’s adjuvant was injected, half subcutaneously in the back and half intramuscularly in a thigh muscle. Two weeks after injection, rabbits were bled from an anesthetized ear vein.

3rd boost: Same as second.

Sera were screened for antibodies against the 32-mer and AChR (purified AChR and AChR rich Torpedo membranes). Antigen was adsorbed to wells of 96-well microtiter plates, washed and quenched with 5% BSA, incubated with sera, washed, incubated with \(^{125}\text{I}-\text{labelled Protein A} \). After washing, bound radioactivity was removed and counted in a gamma counter.
Monoclonal antibodies. Monoclonal antibodies were raised against the 32-residue peptide essentially as described by Tzartos and Lindstrom (43). C57 black mice were used as immunizing animals and as a source of feeder spleen cells. Mice were injected subcutaneously with 32-mer (50 nmol) emulsified in complete Freund's adjuvant. A booster injection was given subcutaneously one week later and intravenously after another week. Mice were sacrificed 4 days later. Prior to sacrifice, an orbital bleed was performed and the serum tested for reactivity against the 32-mer using enzyme-linked immunosorbent assay (ELISA). Spleen cells from positive animals were fused with the mouse non-secreting mouse myeloma line Ag 653 with the procedure of Kohler and Milstein (49). Spleen cells were mixed with myeloma cells (10^9) and 50% polyethylene glycol (PEG 1500) added. Cells were then diluted with culture medium and rediluted in hypoxanthine-aminopterin-thymidine (HAT) medium in Costar microtest wells. After 14 days, supernatants from wells with proliferating hybrids were assayed for the presence of anti-32-mer antibody. Cells from positive wells were cloned by serial dilutions in 0.25% agar (50).

RESULTS

Assay Development

Solid Phase Assay

α-Bungarotoxin. The binding of 125I-labeled BTX to AChR-rich membranes from Torpedo electric organs and the affinity purified AChR was measured using a solid phase assay. The time course of association for 125I-BTX binding to Torpedo membranes is shown in Fig. 1. Equilibrium is reached in about 3 hours. Toxin binding increases as a function of membrane adsorbed to wells of microtiter plates (Fig. 2). Saturation of BTX binding to membranes is shown in Fig. 3. Nonspecific binding represents binding in the presence of a 200-fold excess of cold toxin. This value was subtracted from the total cpm bound to obtain the specific binding. The data of the saturation experiment are expressed by Scatchard analysis in Fig. 4. The slope of this plot yields a K_d for toxin binding of 3.5 x 10^{-10} M.

Similar experiments were performed to characterize BTX binding to purified AChR using the solid phase assay. The time course of association of toxin binding to AChR is shown in Fig. 5. Equilibrium is reached at about the same time as BTX binding to Torpedo membranes. Toxin binding as a function of the amount of receptor placed in the wells is shown in Fig. 6. Binding of toxin can be detected after adding as little as 0.1 μg AChR to the wells.

Dissociation of the 125I-BTX-receptor complex was measured in the presence of a large excess of cold toxin (Fig. 7). Association and dissociation rate constants were calculated from the data in Figs. 5 and 7 as described by Blylund (48). The association rate (K_a) is 3.45 x 10^9 min^{-1} M^{-1} and the dissociation rate constant (K_d) is 1.5 x 10^{-4} min^{-1}. The K_d calculated from the rate constraints is 4.3 x 10^{-11} M. Saturation of 125I-BTX binding to AChR is shown in Fig. 8. Scatchard analysis of the data is illustrated in Fig. 9. The K_d calculated from the equilibrium binding experiment is 4.1 x 10^{-10} M.

Cobra toxin. The solid phase assay was also employed to study the binding of α-bungarotoxin, erabutoxin, cobra toxin (Naja naja atra) (CTX), and apamin. Specific binding (binding competed by excess cold toxin) was not detected in
Fig. 1. Association of $^{125}\text{I}}$-BTX with AChR-rich membranes from Torpedo electric organ. Solid phase assay. Wells of microtiter plates were coated with 25 μg membrane protein, quenched with 10% BSA, and incubated with 5.6×10^{-9}M $^{125}\text{I}}$-BTX for increasing periods of time. After washing, bound toxin was removed and counted in a gamma counter. Values are the mean of four replicates.
Fig. 2 125I-BTX binding to receptor rich membranes from Torpedo electric organ as a function of membrane concentration. Wells of microtiter plate were coated with increasing concentrations of Torpedo membrane protein. After quenching with 10% BSA, 125I-BTX (5.6×10^{-9} M) was incubated for one hour, wells washed, and bound radioactivity removed and counted in a gamma counter. Values are the mean of four replicates.
SATURATION OF BTX BINDING TO TORPEDO

Solid Phase Assay

![Graph showing saturation of BTX binding to receptor rich Torpedo membranes.](image)

Fig. 3 Saturation of 125I-BTX binding to receptor rich Torpedo membranes. Solid phase assay. Wells were coated with 10 µg membrane protein, quenched with 10% BSA, and incubated with increasing concentrations of 125I-BTX (1 X 10^{-10} M - 5 X 10^{-8} M) for 2 hours. After washing, bound radioactivity was removed and counted in a gamma counter. Values are the mean of four replicates.
Fig. 4. Scatchard analysis of the data presented in Fig. 3. Bound toxin/free toxin was plotted versus bound toxin. The equilibrium K_D calculated from this data is 3.5×10^{-10} M.
Fig. 5. Time course of association of 125I-BTX with AChR. Solid phase assay. Wells of microtiter plates were coated with 0.2 μg AChR in coating buffer at 4°C overnight. Wells were washed, quenched with 5% BSA, washed and incubated with 5nM 125I-BTX in 50 mM phosphate buffer, pH 6.5, containing 0.2% BSA for increasing times. Bound radioactivity was removed with SDS/NaOH and counted in a gamma counter. Values are the mean of three replicates.
BTX BINDING TO AChR
Solid Phase Assay

Fig. 6. 125I-BTX binding to AChR as a function of receptor concentration. Solid phase assay. Wells of microtiter plates were coated overnight at 4°C with AChR in increasing concentrations in coating buffer. Wells were washed, quenched with 5% BSA, washed and incubated with 5nL 125I-BTX in 50 mM phosphate buffer, pH 6.5, containing 0.2% BSA for 5 hours. After washing, bound radioactivity was removed and counted in a gamma counter.
Fig. 7. Dissociation of 125I-BTX from AChR. Solid phase assay. Wells of microtiter plates were coated with 0.2 μg AChR in coating buffer overnight at 4°C. Wells were washed, quenched with 5% BSA, washed and incubated with 5mM 125I-BTX for four hours. After four hours, 1000-fold excess of cold BTX was added to the wells. At increasing intervals, wells were washed and bound radioactivity removed and counted in a gamma counter. Values are the mean of three replicates.
Fig. 8. Saturation of 125I-BTX binding to AChR. Solid phase assay. Wells of microtiter plates were coated with 0.1 μg AChR in coating buffer overnight at 4°C. Wells were washed, quenched with 5% BSA for one hour, washed, and incubated with increasing concentrations ($2 \times 10^{-11} - 5 \times 10^{-7}$ M) of 125I-BTX for five hours. Wells were washed and bound radioactivity removed and counted in a gamma counter. Non-specific binding is binding of 125I-BTX in the presence of a 200-fold excess of cold BTX. This value was subtracted from the total radioactivity bound to determine the amount specifically bound. Values are the mean of three replicates.
Fig. 9. Scatchard analysis of the equilibrium binding data in Fig. 8. Bound toxin/free toxin is plotted versus bound toxin. The equilibrium K_D calculated from this data is 4.1×10^{-10} M.
the case of β-bungarotoxin and erabutoxin. This was most likely due to inac-
tivation of β-bungarotoxin by iodination and to inadequate iodination of
erabutoxin. However, binding of cobratoxin, a short postsynaptic neurotoxin
like erabutoxin, was observed.

Association (Fig. 10) and dissociation (Fig. 11) of CTX with AChR was
measured. A biphasic curve was observed in the case of the dissociation
experiment. Rate constants were calculated from the initial rates and are K+1
= 1.2 x 10^-7 min^-1M^-1 and K-1 = 1.8 x 10^-3 min^-1. The K_D determined from
these rate constants is 1.5 x 10^-10M. Saturation of 125I-CTX with the AChR
was observed (Fig. 12). Scatchard analysis of this data is shown in Fig.
13. The K_D calculated from the equilibrium binding data is 2.7 x 10^-9M.

Apamin. When 125I-apamin binding to synaptosome membranes was tested
using 96-well microtiter plates, only very low signals could be detected. However, adequate signals (~3,000 cpm) were obtained when synaptosomes were
adsorbed to the wells of 24-well polystyrene plates (Costar) which have a
considerably larger well area than the 96-well plates. Association of 125I-
apamin is shown in Fig. 14. It can be seen that equilibrium is reached in
about 30 min. After that, there is a rapid decline in binding. This apparent
loss of binding is most likely due to proteolytic digestion of either apamin
or synaptosomes. Because of the loss of signal, it was not possible to
perform a dissociation experiment. A saturation experiment in which synap-
tosomes were incubated with increasing amounts of labeled apamin was performed
(Fig. 15). Saturation was not achieved because the labeled apamin was not
present in high enough concentration. However, Scatchard analysis of the
equilibrium binding data yielded a non-linear plot (Fig. 16). This is indica-
tive of two binding sites of high and low affinity although it cannot be ruled
out that the lower affinity binding represents non-specific binding.

Filter Disk Assay

α-Bungarotoxin. In the filter disk assay, 125I-BTX is incubated with AChR
in solution. An aliquot of the solution is then placed on filter paper and
unbound 125I-BTX, which does not adhere to the filter paper, is washed away
and bound radioactivity measured. Using the filter disk assay, association
(Fig. 17), dissociation (Fig. 18), and saturation experiments (Figs. 19, 20)
were performed. One difference in comparison to the solid phase assay is that
association is more rapid when measured with the filter disk assay, reaching
equilibrium in 30 min. The K+1 is 9.3 x 10^-5 min^-1M^-1 and the K-1 = 4.1 x 10^-4
min^-1. The K_D determined from the rate constants is 4.4 x 10^-10M. The K_D
obtained from Scatchard analysis of the saturation data is 2.8 x 10^-10M,
comparable to the K_D obtained from equilibrium binding in the solid phase
assay.

Centrifugation Assay

α-Bungarotoxin. Binding of 125I-BTX to receptor-rich Torpedo membranes
was studied using a centrifugation assay for comparison with results obtained
using the solid phase assay. In the centrifugation assay, labeled toxin and
membranes are incubated in solution, the membranes are pellets by centrifuga-
tion to separate them from unbound labeled toxin, and bound radioactivity in
the pellet measured. Association of toxin with membranes is illustrated in
Fig. 21. The rate of association is more rapid than that observed with the
solid phase assay (Fig. 1). Saturable binding of toxin to membranes was
observed (Fig. 22).
Fig. 10. 125I-CTX association with AChR. Solid phase assay. Wells of microtiter plates were coated with 0.1 μg AChR in coating buffer by centrifuging plates at 1000 X g for 30 minutes. Wells were washed, bound radioactivity removed and counted in a gamma counter. Values are the mean of three replicates.
Fig. 11. 125I-CTX-ACHr dissociation. Solid phase assay. Wells of microtiter plates were coated with 0.25 µg AChR in coating buffer overnight at 4°C. Wells were washed, and quenched with 10% BSA for 30 minutes. 125I-CTX (6.9 x 10^{-9} M) was added to wells and incubated for four hours. A 1000-fold excess of cold CTX was added to the wells. At increasing times, wells were washed and bound radioactivity removed. Values are the mean of three replicates.
Fig. 12. Saturation of \(^{125}\text{I}\)-CTX binding to AChR. Solid phase assay. Wells of microtiter plates were coated with 0.25 μg of AChR in coating buffer by centrifuging plates at 1000 X g for 30 minutes. Wells were washed, treated with 10% BSA, and incubated with increasing concentrations of \(^{125}\text{I}\)-CTX (5 \times 10^{-12} \text{M} - 10^{-6} \text{M}) for 60 minutes. Bound radioactivity was removed and counted in a gamma counter to determine total binding. Non-specific binding represents binding observed in the presence of a 200-fold excess of cold toxin. This value was subtracted from total binding to determine specific binding. Values are the mean of four replicates.
Fig. 13. Scatchard plot of equilibrium binding data in Fig. 12. Solid phase assay. Bound 125I-CTX/free 125I-CTX is plotted versus bound 125I-CTX. The K_D calculated from the data is 2.7×10^{-9} M.
APAMIN—SYNAPTOSONE ASSOCIATION

Solid Phase Assay

Fig. 14. Association of 125I-apamin with synaptosome membranes. Solid phase assay. Wells of 24-well microtiter plates were coated with 250 μg membrane protein by centrifuging plates at 1000 X g for 30 minutes. Wells were washed, quenched with 10% BSA, and 125I-apamin added (100,000 cpm). At increasing times, wells were washed and bound radioactivity removed. Values are the mean of four replicates.
Fig. 15. Saturation of 125I-apamin binding to synaptosomes. Solid phase assay. Wells were coated with 200 μg synaptosome membrane protein by centrifugation. After washing and quenching, increasing concentrations of 125I-apamin were added and incubated for 30 minutes. Some wells were incubated in the presence of a 200-fold excess of cold apamin to determine non-specific binding. Bound radioactivity was removed and counted and specific binding determined by subtracting non-specific binding from total binding. Values are the mean of four replicates.
Fig. 16. Scatchard analysis of 125I-apamin-synaptosome equilibrium binding data (Fig. 15). Bound apamin/free apamin is plotted versus bound apamin. A non-linear curve indicative of two binding sites is observed.
Fig. 17. 125I-BTX association with AChR. Filter disk assay. 125I-BTX (150,000 cpm) was incubated with AChR in tubes in 50 mM phosphate buffer, 0.1% Triton X-100, 0.005% NaN₃, pH 6.5. A 1000-fold excess cold BTX was included in some tubes. Incubation was allowed to proceed for increasing times after which 50 μl of solution was spotted on a filter. Each aliquot contained 500 fmol AChR. Filters were washed three times and counted in a gamma counter. Radioactivity observed in the presence of excess cold toxin was subtracted from the radioactivity observed with hot toxin alone to determine specific binding. Values are the mean of three replicates.
Fig. 18. Dissociation of 125I-BTX from AChR. Filter disk assay. 125I-BTX was incubated with AChR for 45 minutes after which 1000-fold excess cold BTX was added to the tube. At increasing time intervals, 50 µl of solution was spotted on a filter. The filters were washed and counted in a gamma counter. Background was the radioactivity bound after incubating hot and excess cold toxin for 45 minutes. Values are the mean of three replicates.
Fig. 19. Saturation of 125I-BTX binding to AChR. Filter disk assay. Increasing concentrations of 125I-BTX (5×10^{-14} M - 5×10^{-8} M) were incubated with AChR for 45 minutes. Fifty µl of solution were spotted on filters which were washed and counted in a gamma counter. Each aliquot contained 500 fmol AChR. Non-specific binding is the radioactivity bound in the presence of excess cold toxin minus the radioactivity bound after spotting hot toxin to the filters alone. Non-specific binding was subtracted from the total binding to determine specific binding. Values are the mean of three replicates.
Fig. 20. Scatchard plot of equilibrium binding data in Fig. 19. Bound toxin/free toxin is plotted versus bound toxin. A linear plot is observed which yields a K_d of 2.3×10^{-15} M.
Fig. 21. Association of 125I-BTX with AChR-rich Torpedo membranes. Centrifugation assay. Microcentrifugation tubes were quenched with 5% BSA. Ten µg of Torpedo membrane in 500 µl was added to tubes which were centrifuged for 10 minutes in a microfuge. The supernatant was aspirated and 500 µl of 1000-fold excess toxin was added to stop the reaction. The tubes were vortexed and centrifuged 10 minutes. The pellet was resuspended and washed three times with PBS. The final pellet was solubilized by SDS and counted in a gamma counter. Background binding observed in the presence of 1000-fold cold toxin was subtracted from experimental values. Values are the mean of three replicates.
Fig. 22. Saturation of 125I-BTX binding to Torpedo membrane protein. Centrifugation Assay. Labeled toxin in increasing concentration (1×10^{-10}M - 2×10^{-8}M) was incubated with 10 mg Torpedo membrane protein for 30 min, as described in Fig. 21. Background radioactivity measured in the presence of a 200-fold excess of cold toxin represents non-specific binding. This value was subtracted from total binding to obtain specific binding. Values are the mean of three replicates.
Binding inhibition assay. Experiments were performed to determine whether the solid phase assay could be used as a binding-inhibition assay that would be useful in screening potential inhibitors of toxin binding. The effect of cold BTX, α-cobratoxin, d-tubocurarine, nicotine, carbachol, choline, and sodium chloride on 125I-BTX binding to purified AChR was tested (Figs. 23,24). BTX, α-cobratoxin, and d-tubocurarine are cholinergic antagonists, nicotine and carbachol are nicotinic agonists, and choline and sodium chloride are cationic agents. The concentrations of agents that produced 50% inhibition of binding (IC50) of 5 mM 125I-BTX are listed in Table 2.

Structure/Function Studies

The ability of a 32 amino acid peptide (32-mer) to bind 125I-BTX in a solid phase assay was measured. This peptide comprises residues 173-204 of the Torpedo alpha subunit and contains cysteine-192 and -193. Peptide was adsorbed to the wells of 96-well polystyrene microtest plates as described for coating with AChR. Binding of labeled toxin to the adsorbed peptide was observed and could be competed by excess cold toxin (Fig. 25). To test the specificity of binding and obtain information on affinity, the ability of ligands to compete labeled toxin binding to peptide was measured. Employing the solid phase assay as a binding-inhibition assay, increasing amounts of ligand were incubated with 1 nM 125I-BTX. The results of these experiments are illustrated in Fig. 25. The IC50's of the agents tested are shown in Table 3. It was also possible to demonstrate binding by adsorbing toxin to the wells and incubating with iodinated 32-mer. Competition of labeled 32-mer by unlabeled 32-mer is illustrated in Fig. 26.

Preliminary experiments were undertaken to measure toxin binding to shorter peptides comprising portions of the 32-mer. These experiments yielded low levels of binding and high variability. Besides inability of peptides to bind toxin, these results could be due to inability of short peptides to adhere to plastic. Therefore, another assay which does not depend on immobilization of peptide was developed. In this assay, BTX is adsorbed to plastic and incubated with iodinated AChR. The ability of unlabeled AChR to compete with labeled AChR is shown in Fig. 27. It appears that this assay will be feasible for testing peptides, since, if they contain the binding site, they should compete with the labeled AChR for binding to the toxin.

Preliminary experiments were undertaken to compare the binding of 125I-BTX to the Torpedo 32-residue peptide with corresponding peptides of calf and human α-subunit. In addition, toxin binding to a calf 32-mer in which glutamine was substituted for negatively-charged glutamate (position 180) was measured. Binding of 1 nM 125I-BTX in the presence of 1 μM cold BTX is shown in Table 4. A greater reduction caused by cold toxin is indicative of a higher affinity of peptide for toxin. These results show that the Torpedo peptide binds toxin with higher affinity than the mammalian toxins and that the modification of glutamate 180 has little or no effect on binding.

Therapy

Production of antibodies against the 32-residue α-subunit peptide was undertaken as the first step in the long range goal of determining whether these might be effective in inhibiting toxin binding. Two rabbits were immunized with the 32-mer to raise polyclonal antibodies. The results obtained with one rabbit are shown in Fig. 28. This rabbit showed an increasing titer
Fig. 23. Competition of 125I-BTX binding to AChR. Solid phase assay. Wells of 96-well microtiter plates were coated with 0.15 µg AChR and quenched with 5% BSA. After washing, 50 µl of α-bungarotoxin, α-cobratoxin, or d-tubocurarine in increasing concentrations was added to the wells. Immediately thereafter, 50 µl of 1nM 125I-BTX was added to wells and incubated for 10 minutes. Wells were washed and bound radioactivity removed and counted in a gamma counter. Values are the mean of three replicates.
Fig. 24. Competition of 125I-BTX to AChR. Solid phase assay. The effect of nicotine, carbachol, choline, and NaCl on toxin binding was measured as described in Fig. 23. Values are the mean of three replicates.
Fig. 25. Binding of 125I-labeled BTX to Torpedo 32-mer and competition with antagonists. Wells of microtiter plates were coated with 5 μg 32-mer, quenched, and incubated with 1nM 125I-BTX. The effects of the following agents on toxin binding were tested: α-bungarotoxin (BTX), α-cobratoxin (CTX), d-tubocurarine (dTC), and NaCl. After washing, bound radioactivity was removed by SDS/NaOH and counted in a gamma counter.
Fig. 26. Competition of 125I-32-mer binding to BTX by cold 32-mer. Wells of microtiter plates were coated with 5 μg BTX, quenched, and incubated with 125I-32-mer (100,000 cpm) in the presence of increasing concentrations of unlabeled 32-mer for 3 hours. Wells were washed and bound radioactivity removed and counted in a gamma counter. Values are the mean of three replicates.
Fig. 27. Inhibition of 125I-AChR binding to BTX by unlabeled AChR. Wells of microtiter plates were coated with 5 μg BTX. Wells were quenched with 2% BSA and incubated with 125I-AChR (500,000 cpm) and increasing amounts of unlabeled AChR. After washing, bound radioactivity was removed by SDS and counted in a gamma counter.
Fig. 29. Binding of anti-32-mer antisera to 32-mer. Antibodies were raised in rabbits against the 32-residue α-subunit peptide (32-mer) as described in Materials and Methods. To test reactivity of antisera, wells of microtiter plates were coated with 5 μg of 32-mer. Wells were quenched and incubated with dilutions of sera for one hour. Wells were washed and incubated with 125I-protein A (50,000 cpm) for one hour. Bound radioactivity was removed and counted in a gamma counter.
Table 2

Binding-Inhibition Assay, 125I-BTX to AChR

<table>
<thead>
<tr>
<th>Agent</th>
<th>IC_{50}</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-Bungarotoxin</td>
<td>4.0×10^{-9} M</td>
</tr>
<tr>
<td>α-Cobratoxin</td>
<td>6.0×10^{-8} M</td>
</tr>
<tr>
<td>d-Tubocurarine</td>
<td>1.8×10^{-5} M</td>
</tr>
<tr>
<td>Nicotine</td>
<td>1.4×10^{-3} M</td>
</tr>
<tr>
<td>Carbachol</td>
<td>3.4×10^{-3} M</td>
</tr>
<tr>
<td>Choline</td>
<td>5.0×10^{-2} M</td>
</tr>
<tr>
<td>NaCl</td>
<td>$> 1.0 \times 10^{-1}$ M</td>
</tr>
</tbody>
</table>

The concentrations of agents that produced 50% inhibition of 1 nM 125I-BTX binding to AChR in the solid phase assay are listed. Based on experiments and data shown in Figures 23 and 24.
Table 3

Binding-Inhibition Assay, 125I-BTX to 32-mer

<table>
<thead>
<tr>
<th>Agent</th>
<th>IC$_{50}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-Bungarotoxin</td>
<td>5.0×10^{-8} M</td>
</tr>
<tr>
<td>α-Cobratoxin</td>
<td>4.4×10^{-7} M</td>
</tr>
<tr>
<td>d-Tubocurarine</td>
<td>8.9×10^{-5} M</td>
</tr>
<tr>
<td>NaCl</td>
<td>1.6×10^{-2} M</td>
</tr>
</tbody>
</table>

The concentrations of agents that produced 50% inhibition of 1 nM 125I-BTX binding to 32 residue α-subunit peptide (32-mer) in the solid phase assay are listed. Based on experiment and data shown in Figure 25.
Table 4

125I-BTX Binding to 32 Residue α-Subunit Peptides

<table>
<thead>
<tr>
<th>32-mer</th>
<th>% Residual Binding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Torpedo</td>
<td>13.5</td>
</tr>
<tr>
<td>Human</td>
<td>66</td>
</tr>
<tr>
<td>Calf</td>
<td>40</td>
</tr>
<tr>
<td>Modified Calf</td>
<td>39</td>
</tr>
</tbody>
</table>

The reduction in binding of 1 nM 125I-BTX to 32-mer by 1 μM unlabeled BTX was measured. Peptides (5 μg) were adsorbed to wells of microtiter plates. After quenching in 2% BSA, 1 nM 125I-BTX and 1 μM cold toxin in 1% BSA in 10 mM phosphate buffer was added to the wells and incubated for 3 hours. Wells were washed and bound radioactivity removed and counted in a gamma counter. Values are the mean of three replicates.
against the 32-mer with successive boosts. The other rabbit showed a decrease in titer after the second boost. Antisera obtained after the first boost was tested for reactivity against the 32-mer, purified AChR, and AChR in receptor-rich Torpedo membranes (Table 5). Both antisera reacted with the 32-mer and receptor in Torpedo membranes. Only one antiserum, however, reacted with purified receptor. Binding of labeled BTX shows that the low binding to purified AChR is not due to lack of receptor.

In addition to polyclonal antibodies, monoclonal antibodies were raised in mice. Several clones producing antibody reacting against the 32-mer were obtained. Supernatants from the hybridoma cultures are being collected for concentration of antibodies. Further characterization of the antibodies has not yet been undertaken.

DISCUSSION AND CONCLUSIONS

A solid phase assay was developed to measure binding of 125I-BTX to receptor-rich membranes from Torpedo electric organ and to AChR purified on a a-cobratoxin-Sepharose column. Comparable experiments were performed using two in vitro assays, a filter disk assay and a centrifugation assay. The affinity of toxin binding to the purified receptor was calculated from the rates constants determined from association and dissociation experiments and by Scatchard analysis of saturation data. The affinities obtained are shown in Table 6. In addition, the affinity of toxin binding to receptor-rich Torpedo membranes determined from a saturation experiment with the solid phase assay was 3.5×10^{-10} M. Both the rate of complex formation and dissociation were faster with the in vitro assay than for the solid phase assay. The dissociation constants determined from kinetic and equilibrium binding data were comparable, however. For both assays, the equilibrium K_d was one order of magnitude less than K_d for kinetic data. The rate constants observed with both assays fall within the range reported in the literature (15,47,51,52). The similarity in dissociation constants obtained with the solid phase filter disk and centrifugation assays thus validates the solid phase assay as a useful technique for investigating toxin-receptor interactions.

Rate and dissociation constants were also determined for CTX (Naja naja atra), a short, postsynaptic neurotoxin (Table 6). With the solid phase assay, the rates of association and dissociation are faster for CTX than BTX, a long, postsynaptic neurotoxin. The dissociation constants determined from kinetic data and equilibrium binding data are at least an order of magnitude lower than for BTX (Table 6). Chicheportiche et al. (13) reported that the dissociation constants for long and short neurotoxins are similar but that short toxins associate and dissociate from the receptor faster.

Efforts to measure binding of 125I-labeled erabutoxin (ETX), another short neurotoxin, were unsuccessful. This may have been due to failure to adequately iodinate ETX. ETX has only one tyrosine residue at position 25, which may be buried in the molecule and not iodinated under mild conditions (see 51,47). CTX has an additional tyrosine at position 39 which is exposed. Thus, iodination of tyrosine 39 of CTX by the chloramine T method may explain why binding of this toxin could be demonstrated.

The solid phase assay offers several advantages over the in vitro assays. Because incubations are performed in the wells of 96-well microtiter plates, small amounts of materials and reagents (receptor and toxin) are required.
<table>
<thead>
<tr>
<th></th>
<th>Serum No. 1</th>
<th>Serum No. 2</th>
<th>Serum No. 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>32-mer</td>
<td>878</td>
<td>971</td>
<td>---</td>
</tr>
<tr>
<td>AChR</td>
<td>111</td>
<td>1199</td>
<td>28814</td>
</tr>
<tr>
<td>Torpedo membranes</td>
<td>2848</td>
<td>1013</td>
<td>14249</td>
</tr>
</tbody>
</table>

The 32-residue peptide, purified AChR, and receptor-rich membranes from Torpedo electric organ were adsorbed to wells of microtiter plates. After quenching with 5% BSA, serum from rabbit number 1 and rabbit number 2 diluted 1:50 were added to wells. After washing, 125I-labeled protein A was added, wells washed, and bound radioactivity removed and counted in a gamma counter. Wells containing AChR and membranes were also incubated with 125I-RTX to obtain an estimate of the relative amount of receptor present.
<table>
<thead>
<tr>
<th>Assay (Toxin)</th>
<th>K_{+1}</th>
<th>K_{-1}</th>
<th>K_d (Kinetic)</th>
<th>K_d (Equilibrium)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid Phase (BTX)</td>
<td>$3.4 \times 10^6 \text{ min}^{-1} \text{ M}^{-1}$</td>
<td>$1.5 \times 10^{-4} \text{ min}^{-1}$</td>
<td>$4.3 \times 10^{-11} \text{ M}$</td>
<td>$4.1 \times 10^{-10} \text{ M}$</td>
</tr>
<tr>
<td>Filter Disc (BTX)</td>
<td>$3.9 \times 10^7 \text{ min}^{-1} \text{ M}^{-1}$</td>
<td>$4.1 \times 10^{-4} \text{ min}^{-1}$</td>
<td>$1.0 \times 10^{-11} \text{ M}$</td>
<td>$2.8 \times 10^{-10} \text{ M}$</td>
</tr>
<tr>
<td>Solid Phase (CTX)</td>
<td>$1.2 \times 10^7 \text{ min}^{-1} \text{ M}^{-1}$</td>
<td>$1.8 \times 10^{-3} \text{ min}^{-1}$</td>
<td>$1.5 \times 10^{-10} \text{ M}$</td>
<td>$2.7 \times 10^{-9} \text{ M}$</td>
</tr>
</tbody>
</table>

Rate and dissociation constants for 125I-BTX and 125I-CTX to affinity purified Torpedo AChR were calculated from the data reported in the Results Section as described by Rylund (48).
Replicates are easily performed. Washing steps can be performed quickly using an aspirator and a multichannel pipette. Similarly, competition experiments are easily performed by adding inhibitors to the wells. Background binding (binding of labeled toxin in absence of receptor) is negligible in the solid phase assay. In the centrifugation assay, the signal/background ratio is about 10:1 and in the filter disk assay about 5:1. Background increases significantly in the filter disk and centrifugation assay at high toxin concentrations. Apparently, BTX binds less to the polystyrene plastic of microtiter plates than to DEAE-cellulose filter paper and polypropylene microcentrifugation tubes. Variability in experiments performed at different times and in replicate samples is lowest with the solid phase assay and highest with the centrifugation assay.

Some differences were noted between the results obtained with the solid phase and in vitro assays. The rate of association of toxin with the receptor was slower with the solid phase in comparison with the in vitro assay. Second, the affinities of agonists and antagonists of BTX binding as determined by IC₅₀ values in the solid phase assay are at least one order of magnitude less than the affinities generally reported in the literature. The IC₅₀ values observed with the solid phase assay are consistent, however, with the relative affinities of these agents for the AChR. Thus, the solid phase assay is most useful in comparing the relative effectiveness of agents that inhibit toxin binding.

Differences in the solid phase and in vitro assays may occur because in the former, toxin binds to receptor immobilized on plastic, while in the latter, it interacts with receptor in solution. In addition, in the filter disk assay, binding takes place in the presence of 0.1% Triton X-100. With the filter disk assay alone, differences in toxin binding to solubilized, purified and to the membrane-bound AChR have been observed (51). Solubilized receptor binds toxin more rapidly than membrane-bound receptor. Differences in rate constants could be due to different conformations for the soluble, purified and membrane-bound receptor, with toxin binding more rapidly to the solubilized conformation, or because the solubilized receptor is homogeneously distributed in the reaction volume, while the membrane-bound receptor is not (51). Such factors probably play a role in toxin binding to receptor immobilized on plastic, since different surfaces of the receptor may randomly adhere to plastic. In this case, the toxin-binding domain may vary in its accessibility to toxin in solution.

Binding of apamin to brain synaptosomes could be measured using the solid phase assay. It was necessary, however, to utilize 24-well polystyrene plates, the wells of which are larger than those of the 96-well plates. Apamin acts on the central nervous system by binding to receptors for vasoactive intestinal polypeptide (54). This receptor is present in considerably lower density than AChR in electric organ membrane. Thus, the solid phase assay can be used with preparations containing a low density of receptors by immobilizing a larger amount of membrane.

In order to identify the toxin-binding site on the AChR, ¹²⁵I-BT binding to a 32-residue peptide (173-204) of the Torpedo α-subunit was investigated. Previously, binding of toxin to the 32-mer was demonstrated using a dot-blot assay (39). Here, binding of toxin to the 32-mer was observed using a solid phase assay in which peptide was immobilized on plastic. Specificity of binding was determined by the ability of excr. peptide in solution and cholinergic antagonists to compete BTX binding. The concentration of BTX that
inhibited 50% of $^{125}\text{I-BTX}$ binding was 5.0×10^{-8} M and the concentration of d-
tubocurare was 8.9×10^{-5} M. Earlier, it was show that the IC_{50} for inhibi-
tion of $^{125}\text{I-BTX}$ binding to the isolated α-subunit immobilized on filters was
1×10^{-7} M and 9×10^{-4} M for d-tubocurare (18). Thus, the affinity of toxin
binding to the 32-mer is as great as the affinity for the intact but denatured
α-subunit. It is concluded that the 32-mer is a major determinant of the BTX-
binding site in the receptor. However, the affinity of BTX for the 32-mer and
the α-subunit is less than that for the intact receptor. Thus, it is likely
that other nonadjacent sequences contribute to the overall high affinity of
binding observed with intact AChR and perhaps also to the formation of the
acetylcholine binding site.

It is generally assumed that the quaternary ammonium group of acetylcho-
line and the guanidinium group of arginine-37 of the neurotoxins interacts
with an anionic subsite on the AChR. Of the four negatively charged residues
in the 32-mer, the charge at residue 195 is not conserved in α-subunits from
other species (55). The negatively charged residues at positions 175 and 200
are also present on at least two of the three other subunits constituting the
Torpedo californica AChR (32). Thus, only the negative charge at residue 130
is unique to the α-subunit and, therefore, represents a likely candidate for
anionic subsite.

To further localize the site, shorter peptides comprising portions of the
32-mer were synthesized. To date, binding of toxin to the shorter peptides
has not been characterized because of difficulty in immobilizing short pep-
tides. However, an assay in which receptor peptides are tested for ability to
compete labeled intact receptor binding to BTX shows promise. Neumann et al.
(40) reported binding of BTX to a 12-amino acid peptide comprising residues
185-196 of the α-subunit. However, the affinity of toxin binding to the 12-
mer is 3.5×10^{-5} M (55), considerably less than the affinity we observe for
BTX binding to the 32-mer (5.0×10^{-8} M). It does not seem likely that this
short peptide contains all of the determinants for binding. To determine the
importance of the negative subsite at position 180, a calf 32-mer was synthe-
sized in which glutamine was substituted for glutamate-180. Little difference
in binding of toxin to unmodified and substituted peptide was observed. This
finding suggests that position 180 may not represent the negative subsite.
Alternatively, since the toxin most likely interacts with multiple sites on
the receptor, alteration of a single residue may not significantly affect
overall binding.

Binding of labeled toxin to 32-residue peptides representing residues
173-204 of Torpedo, calf, and human α-subunits were compared. Surprisingly,
affinity of toxin binding to the mammalian peptides was considerably less than
to the Torpedo peptide. Similarly, Neumann et al. (56) reported that the
human 12-mer (185-196) did not bind BTX in contrast to the Torpedo 12-mer.
Most studies on toxin affinities have been performed using receptor derived
from electric organ and we are unaware of any reports on toxin binding to the
human receptor. It is possible, as suggested by those observations, that the
human receptor does not bind BTX with as high affinity as Torpedo AChR. In
this case, other toxins in the snake venoms may make a greater contribution to
the overall toxic effects of the venoms on humans. This is an interesting
question that deserves further investigation.

Both the calf and human peptides differ from the Torpedo 32-mer in that a
serine is present at position 131 in the former in place of a tyrosine in
torpedo. Because aromatic-aromatic interaction is important for protein
structure stabilization (57), the lack of a tyrosine may indicate the human receptor has a different conformation than the Torpedo receptor, possibly accounting for the lower affinity of toxin binding.

Both polyclonal and monoclonal antibodies were raised against the Torpedo 32-mer. These results demonstrate that the peptide is sufficiently antigenic to elicit an immune response. The antibody titer in rabbits was relatively low, however, indicating that the hybridomas represent a better source of antibodies. Polyclonal antibodies were found to cross-react with purified AChR and membrane-bound AChR. This finding indicates the region of the receptor comprised by the 32-mer is accessible and not buried, as would be expected for the toxin binding site. One antiserum reacted with membrane-bound receptor but not isolated AChR. Such differences in reactivity are not uncommon and most likely are due to dependence of antibody binding on receptor conformation. The results of the antibody studies thus far demonstrate the feasibility of generating antibodies with binding-site peptides. Future studies can determine if these antibodies block toxin binding to the receptor.
LITERATURE CITED

Publications Supported by Contract:

Note: Solid phase and binding inhibition assays, developed with support from this contract, were employed in the above publications. Additional publications of work supported by this contract are planned.
Personnel Receiving Contract Support

Thomas L. Lentz, M.D., Professor of Cell Biology
Maria Gastka, Assistant in Research I
Diana L. Donnelly-Roberts, Ph.D., Postdoctoral Associate
DISTRIBUTION LIST

5 copies
Commander
US Army Medical Research Institute of Infectious Diseases
ATTN: SGRD-UZ-M
Fort Detrick, Frederick, MD 21701-5011

1 copy
Commander
US Army Medical Research and Development Command
ATTN: SGRD-RMI-S
Fort Detrick, Frederick, MD 21701-5012

2 copies
Defense Technical Information Center (DTIC)
ATTN: DTIC-DDAC
Cameron Station
Alexandria, VA 22304-5145

1 copy
Dean
School of Medicine
Uniformed Services University of the Health Sciences
4301 Jones Bridge Road
Bethesda, MD 20814-4799

1 copy
Commandant
Academy of Health Sciences, US Army
ATTN: AHS-CDM
Fort Sam Houston, TX 78234-6100

61