





MASSACHUSETTS INSTITUTE OF TECHNOLOGY
LINCOLN LABORATORY

AN ARRAY COMPUTER FOR DIGITAL SIGNAL PROCESSING

M.A. ZISSMAN
Group 24

TECHNICAL REPORT 759

5 JANUARY 1987

Approved for public release; distribution unlimited.

LEXINGTON MASSACHUSETTS



ABSTRACT

This report describes the implementation of a MIMD array computer designed
and built at the Lincoln Laboratory for signal processing. Some of the software
tools needed to successfully use such an array are discussed, and the software
package written to allow debugging of the array from a host computer is
described. The first application of the array, a 12-channel filter bank front-end
for a speech recognition system, is discussed. Finally, a block diagram compiler
is described. This compiler converts block diagrams, entered at a CAE work-
station, into efficient assembly code for all cells in the array.

iii



TABLE OF CONTENTS

Abstract i1
List of Illustrations vii
INTRODUCTION 1
HARDWARE OVERVIEW 5
2.1 The Cell 5
2.2 The Interfaces 7k
2.2.1 Host Network Interface 7
2.2.2 Analog Interfaces 7
2.2.3 MULTIBUS Interface i

2.3 Implementation 9
BASIC SOFTWARE DEVELOPMENT TOOLS 11
3.1 Control Schemes 11
3.1.1 In-Circuit Emulation Method 11
3.1.2 Host Control Method 11
3.1.3 PROMs 12

3.2 Implementation of Host Control 12
3.2.1 Host Control Software 12
3.2.1.1 Host Computer 13

3.2.1.2 Host Network Interface 13

3.2.1.3 TMS32010 Cells 13

3.2.2 Interprocessor Communication 13
3.2.2.1 Intercell Protocol 14

3.2.2.2 HNI/Cell Communication 17

3.2.2.3 Host/HNI Communication 17

3.2.3 Command Example 18
3.2.4 Running and Stopping 19

3.3 Testing and Evaluation 19
TWELVE-CHANNEL FILTER BANK 23
4.1 Application Software Z3
4.2 Application Hardware 23
4.3 Evaluation 26



5.  HIGH-LEVEL SOFTWARE DEVELOPMENT TOOLS

S

52

33
5.4

6.

The Block Diagram

5.1.1
S22
5.1.3
5.14
5.1.5

Primitive Bodies

Hierarchy — Nonprimitive Bodies
Interconnection of Bodies — Signals
The Synchronous vs Asynchronous Issue
Partitioning Assignment

Block Diagram Compiler

5.2.1

52,2

323

5.24

Graphics Modules

5.2.1.1 Graphic Data Entry System

5.2.1.2 Graphic Sub-Compiler

Data Base Generation Modules

5.2.2.1 Signal Table Generator

5.2.2.2 Primitive Table Generator

Partitioning Module — The Splitting and Routing

Program

5.2.3.1 Splitting a Multi-Cell Application

5.2.3.2 Routing Intercell Data Transfers

Code Generation Modules

5.2.4.1 Ordering Program
5.2.4.1.1 Cl — The Simplest Constraint
5.2.4.1.2 C2 — Feedback Handling Constraint
5.2.4.1.3 C3 — The Delay Handling Constraint
5.2.4.1.4 The Asynchronous/Synchronous

Constraint
5.2.4.2 Assembly Code Generator

Task Assignment Tool

Efficiency and Evaluation

5.4.1
5.4.2
54.3

Easing the Programming Task
Efficiency
Conclusion

CONCLUSIONS

Acknowledgments

References

APPENDIX — USER COMMANDS

vi

27

31
31
35
35
35
39

4]
44

44

44
47

47
47
49
49
49
49
50
50

il
57

S

S
60
60
61

63
65
67

69



Figure

O 00 NN N W b W N

T T R T T e N I O T I TR
A W A W N = © WV 00 NN oh W N =D

LIST OF ILLUSTRATIONS

IIR and FIR in Series

Cell Block Diagram

Array Examples

Array Examples with Interfaces
Prototype Test Stand

Five-Channel Filter Bank Block Diagram
Twelve-Channel Filter Bank Block Diagram
Two-Cell MULTIBUS Card
Second-Order Filter

Simple Application Block Diagrams — 1
Simple Application Block Diagrams — 2
ADDERI1, ADDER2, GAIN

DELAY and GAIN__SPEC

(a) SOS Body, and (b) Definition

(@) Two Drawings, Same Meaning; (b) Asynchronous Primitives

(a) ADAPTIVE__GAIN, and (b) DOWN
Asynchronous Example

Diagram with PROC__NUMs

IIR and FIR in Series

BDC Flowchart

IIR/FIR Parsed Expansion File

Part of the IIR/FIR Signal and Primitive Tables
Splitting and Routing

Asynchronous Block Diagram to Flowchart Conversion
Block Diagram with Asynchronous Primitives

An Ordered Process Table

vii

Page

10
20
24
25
28
29
30
32
33
34
36
37
38
40
42
43
45
46
48
52
54
39



Figure Page

No.
27 IIR/FIR Process Table; Primitive Macro Programs 56
28 Assembly Code for Cell 0000 58

29 BDC vs Manually Written Code 59

viii



AN ARRAY COMPUTER FOR DIGITAL SIGNAL PROCESSING

1. INTRODUCTION

Many problems in the field of real-time digital signal processing can be solved efficiently
using parallel and pipelined architectures. One type of architecture which has been exploited is
the array processor. Generally, an array processor consists of (1) a grid of cells where a cell is
the basic processing element, and (2) a network of data paths through which the cells communi-
cate with each other. The structure of the cells and the manner in which they are interconnected
depend on the particular application.

Besides differing in hardware, each array processor can be categorized by the type of soft-
ware which it runs. Single instruction stream-multiple data stream (SIMD) machines require that
each cell be running the same program.! Another class of machine, the pipelined linear array,
requires lock-step data communication between cells. A linear pipelined array with adjustable
length has been built, with each cell consisting of a multiply-accumulate chip and memory.2
Finally, multiple instruction stream-multiple data stream (MIMD)34 machines have been
suggested.

While SIMD architectures are well suited for highly structured problems, like matrix oper-
ations, they are not easily adapted to less-structured problems which arise in digital signal pro-
cessing. Because each cell in the MIMD machine can execute a different program, the MIMD
architecture has a far greater range of applications than the SIMD architecture. This fact was
our major motivation for building a MIMD computer. It should be noted that a MIMD
machine can emulate a SIMD system if all cells are running the same program.

A general-purpose systolic MIMD digital signal processing architecture has been designed
at Lincoln Laboratory.’ The architecture calls for an arbitrary number of processing cells to be
connected 1n a rectangular array. Each cell can interface up to four other cells. All cells are
identical. A cell is composed of a TMS32010 processor, RAM and PROM, four 1/O ports, and
support logic. The array as a whole communicates with the outside world through (1) A/D and
D/A converters which can be connected at an edge of the array, (2) digital interfaces which con-
vert, for example, data from the array into MULTIBUS protocol, and (3) a host network inter-
face (HNI), containing an 8085 microprocessor, which allows array communication with a host
computer via an RS-232-C port.

The Lincoln array, being built of discrete “off-the-shelf” components, cannot match the
throughput of some of the array processors which have cells on a chip.6 However, the effective-
ness of a system is oftentimes better measured not by its speed in “bits-per-microsecond,” but
rather by its speed in “answers-per-month”.”7 In the past, the drawback of MIMD systems has
been that programming them has been difficult. In general, each cell in the array was pro-
grammed separately. The purpose of our project was not merely to build hardware, but to build
a system which would take as input a high-level description of a task and would output a com-
plete hardware and software design of an array processor which would implement that task in



sa1as ut Y4 pup Yii

dO€

O=WNN D0V 00EB=WNN"O0Hd 00E8-WNN"J0Hd
0=140d 92V d62
C Fmr—

diZZ YEZ-3NIVATOIV

O00EB=WNN"J0Hd  oc_3nva-90V

O0EB=WNN"J0Hd
dve

00£8-WNN-20Hd A”

dse

] a4n3ry

SLS=3NMVA™OIV
00EB=WNN"J0Hd
d9z

1-81v9L

— x - i —H =il
~ |1 ** 71" 50 |HoNAs | 88 Lo
00£8=-WNN-D0Hd 00E£8=WNN J0Hd O00E8=WNNJ0Hd 0000=WNN"DOHd
dLe dsz dLE dEE
_ 73
GSEZ=3INTVA"OIV 00¥Z=3NTVA"DIV
0000=WNN"J0Yd 0000=WNN"D0Hd
d0Z_4 N\ 961
. ~NJ 1 H .
0000=WNN"20Yd
O¥L=3NTVA"DOV e dul +2 _ 9
0000=WNN"20Hd
. die1 NG »(3 ) 0000-WNN-20u4
0000=-WNN-20Yd 0000=-WNN"J0¥d 0000-WNN-20Yd 0000=WNN"-D0Hd
dvl 12 000Z=3NTVA~DIV 4| oost=3mvA-90Vv 0=WNN-9IV
0000=WNN-D0Hd dsi dcl Z=1HOd 92V
S5 P -1
2 a n_opfn—.\ﬂ v /_nmm HONAS AQQU
ooo?zzzdmm_ﬂ—_ 0000-WNN-20Hd 0000=WNN-D0Ud dge

dee



real time. Blackmer? has suggested this end-to-end approach for synchronous linear arrays, and
Barnwell has been pursuing this goal for a nonsystolic multi-microprocessor system.8

To better understand the motivation for the work presented in this report, consider the user
who wants to manually implement an application like an infinite impulse response (IIR) filter
in series with a finite impulse response (FIR) filter on a MIMD machine. Ordinarily, the user
would first draw a block diagram, such as that shown in Figure 1. Next, he would partition the
block diagram among the cells in his machine, perhaps assigning the IIR filter to cell 1 and the
FIR filter to cell 2. His third task would be to convert the block diagram into two programs,
one for cell 1 and one for cell 2. While writing the programs, he would have to route intercell
communication, which would be easy in this example, since data are being passed only from
cell 1 to cell 2, but which would be difficult if the application were more complex. After the pro-
grams were written, each cell would be downloaded with the proper program. This might be
done with In-Circuit Emulation (ICE). Finally, the user would be ready to enter the run-analyze-
modify phase until the program was debugged.

As an alternative, the system described in this report can be used to automate and/or sim-
plify most of these software development tasks. The high-level software development tools are
able to convert a graphic block diagram description of an application, such as that shown in Fig-
ure 1, into source code for each cell in the array. This process is called Block Diagram Compila-
tion. Using the Block Diagram Compiler (BDC), the user is shielded from the details of assembly
coding each cell in the array. In addition, the system automatically routes communication be-
tween cells. Since the array is meant to run real-time applications, the code generated by the
BDC must be efficient. Once the source code has been generated, basic software development
tools are used to control the downloading of programs to the array and to debug the application
programs. ICE is unnecessary. Both sets of tools are very useful in programming the MIMD
hardware described herein.

The rest of this report describes: (1) the hardware design of the MIMD computer, the design
of the interfaces, and the prototype implementation; (2) the software control system and de-
bugger, including the method of controlling the array from a host computer; (3) the first applica-
tion of the computer, a 12-channel filter bank for a speech recognition system; and (4) the high-
level tools written to ease software development, including the block diagram compiler and the
automatic code generator. Finally, some conclusions are drawn and further work is suggested.



76418-2

2. HARDWARE OVERVIEW

This section describes the hardware comprising the array computer. Beginning with a discus-
sion of the basic processing element, the cell, and continuing with a description of the various
array interfaces, the section concludes with a brief description of the prototype system.

2.1 The Cell

As mentioned previously, the computer designed consists of a grid of identical asynchronous
microprocessor-based cells. Each cell in the array consists of a single processing unit with four
ports configured so that the cells can be connected into a rectangular grid. Figure 2 is a block

diagram of the cell.

TO NORTH
NEIGHBOR

PORT 1

16-BIT DATA BUS

TO WEST TO EAST
NEIGHBOR| FiFo TMS32010 o NEIGHBOR
—4 BUFFER PORT 2 DIGITAL SIGNAL —] PORT 0 —

PROCESSOR
12-8IT
ADDRESS BUS | 16-BIT DATA BUS
MEMORY (4K Words*)
PORT 3
*4K WORDS OF RAM AND 4K WORDS OF PROM FIFO BUFFER I
OUT OF WHICH TO CHOOSE THE 4K WORDS | |
THAT THE TMS32010 WILL ADDRESS.
TO SOUTH
NEIGHBOR

Figure 2. Cell block diagram.



EXAMPLE 2 — NONSTANDARD

Figure 3. Array examples.

CONFIGURATION

PORT 1 PORT 1 PORT 1 PORT 1
o~ (o] o~ (=] o~ o o~
k| CELL (& =| CELL |& =l CELL |& 2| ceLL
e e e e e e 4
a a a
PORT 3 PORT 3 PORT 3 PORT 3
PORT 1 PORT 1 PORT 1 PORT 1
o~ o ~ o o~ (<] o~ (<]
&] CELL |& =l CELL {& k| cew |& | cew |%
e e Q g g e e e
PORT 3 PORT 3 PORT 3 PORT 3
PORT 1 PORT 1 PORT 1 PORT 1
o~ (o] o~ (=] (] o o~ o
2| cewL | 2| CELL 'g =l CELL |E £| CELL &
e e e & e e g g
PORT 3 PORT 3 PORT 3 PORT 3
EXAMPLE 1 — STANDARD 3 x4 CONFIGURATION
PORT 1 PORT 1
o~ © o~ o)
2l cew & e| cew |=
e e g e
PORT 3 PORT 3
PORT 1 PORT 1 PORT 1 PORT 1 PORT 1
o~ (=] o~ o o~ o ~ (=] o~ (=]
'uo‘: CELL 'g =| CELL |k E| CELL |= &| CELL |k 2| ceL |&
& e Q o e e e e e e
PORT 3 PORT 3 PORT 3 PORT 3 PORT 3
PORT 1 PORT 1 PORT 1
o~ o o~ o o~ o
2| cew |z | CELL |% =| cew |
e e e e e e
PORT 3 PORT 3 PORT 3

76418-3



The cell processing unit is centered around a TMS32010 digital signal processor, a 16-bit
fixed-point processor capable of doing a multiply/accumulate in 200 ns. The chip has 128 words
of on-board memory and the ability to access 4K words of external memory. A full complement
of RAM and PROM are provided in each cell. The cell also contains four ports that allow it to
communicate with its neighbors. Port-to-port data communication takes place over a 16-bit bus
which is buffered by 16-word first-in-first-out (FIFO) memories, allowing the cells to operate
asynchronously.

Figure 3 shows some examples of how cells are typically connected to form an array. The
shape and size of the array are arbitrary and would be chosen by the user with a particular task
in mind.

2.2 The Interfaces

There are three interfaces which have been designed and implemented to interface the out-
side world. The Host Network Interface is used for control of the array. The Analog Interface
and MULTIBUS Interface are used for data input and output. Figure 4 shows some array exam-
ples with the interfaces connected. The following three sections describe the interfaces.

2.2.1 Host Network Interface

The Host Network Interface (HNI) allows a user access to the array from a host computer.
This allows the user to control the array from the host, as discussed in Section 3. The HNI con-
sists of a host interface, a network interface, and a microprocessor-based controller. The host
interface, provided by a UART, is a standard RS-232-C connection. The network interface is sim-
ilar to the standard cell port. Control of the HNI is provided by an Intel 8085 microprocessor,
which is programmed to translate the hexadecimal packet data format of the array into the
ASCII format used for communication with the host and vice versa.

2.2.2 Analog Interfaces

The two types of analog interfaces, A/D and D/A converters, have 12-bit precision and sam-
ple at a 10-kHz rate. The analog interfaces also connect to the array through cell-like ports. The
A/D allows analog input data entrance to the array, while the D/A permits output of analog
data.

2.2.3 MULTIBUS Interface

The MULTIBUS Interface (MBI) was designed to allow array communication with a micro-
computer. The MBI is a MULTIBUS slave which interrupts the MULTIBUS controller indicat-
ing readiness to transmit or receive data. Once again, the MULTIBUS interface connects to the
array through a cell-like port, but it is used to allow digital 1/O with the array.



PORT 1 PORT 1 PORT 1 PORT 1
~ o &3 o - o - . ANALOG
Z| CEW |& z| CEW |z =| CELL |z | cEW $ o L e
5 2 g 2 e g 15
PORT 3 PORT 3 PORT 3 PORT 3
PORT 1 PORT 1 PORT 1 PORT 1
~ o ~ [ ~ (=] ~ o
z| CEW |z =1 CELWL g =| CELL ‘g z| CELWL |
2 2 9 e g € g g
PORT 3 PORT 3 PORT 3 PORT 3
PORT 1 PORT 1 PORT 1 PORT 1
ANALOG ~ o ~ =] ~ o ~ (=) RS-232 TO
OUTPUT |p/a|kE | CEWw {& E| CEW |& Z| cew [z 7| cEw |& @ [HNi| HOST
g g £ e 4 e € g 2 g
PORT 3 PORT 3 PORT 3 PORT 3
EXAMPLE 1
RS-232 TO
HOST HNI
PORT
J,.o = ANALOG INPUT SoRT i ANALOG INPUT
o~ [+ ~ [+
E| CEW |& | CELW |z
& 2 A/D o 9 A/D
PORT 3 PORT PORT 3 PORT
PORT 1 PORT 1 PORT 1 PORT 1 PORT 1
~ [} ~ o ~ [} ~ [} ~ (=]
- (= — = - - -
x| CELL |« =| CELW |& z| CELL | x| CELL | z| CELW |
e e e g e g e & 2 e
PORT 3 PORT 3 PORT 3 PORT 3 PORT 3
PORT 1 PORT 1 PORT 1
ANALOG " n - A N a
OUTPUT - 'é z| CEW % z| CEw |& z| CELL |&
a g e 4 4 g b4
PORT 3 PORT 3 PORT 3
PORT
MBI EXAMPLE 2
MULTIBUS

Figure 4. Array examples with interfaces.

76418-4



2.3 Implementation

The cell, complete with four ports, consists of about 60 chips, and fits on an Augat HPGI10
high-density wire-wrap board. For the prototype system, two cells were built, along with a HNI
and an analog interface. These four boards and the special-purpose test stand are shown in Fig-
ure 5. Connections were made through the 120-pin edge connectors at the bottom of each card.



A/D
PORT
PORT 1 PORT 1
~ (=] ~ (=]
D/A ’g 'g CELL |k el cew |E ’g HNI
&= a g e e o
PORT 3 PORT 3

PROTOTYPE INTERCONNECTIONS

TEST STAND PHOTOGRAPH

Figure 5. Prototype test stand.

10

76418-5



3. BASIC SOFTWARE DEVELOPMENT TOOLS

This section describes the control and debugging system designed and implemented for the
array processor. The first subsection outlines the three control schemes; the second subsection
details the most useful of the three schemes, which also happened to be the most difficult of the
three to implement; the final subsection offers an evaluation of the complete control and debug-
ging package.

3.1 Control Schemes

Three methods of controlling the array exist, with each method appropriate to a different
phase of development. First, the In-Circuit Emulation scheme is valuable during the hardware
verification phase. Next, the Host Control method is useful during software development. Finally,
the PROM method is helpful after software verification, when an array is to be used for one
special-purpose application. A description and evaluation of each of these schemes follow.

3.1.1 In-Circuit Emulation Method

The first method of control is In-Circuit Emulation (ICE). Texas Instruments markets an
emulator for the TMS32010 called an Evaluation Module (EVM). Each module has a cable
which plugs into a cell in place of the TMS32010. Through this cable, the EVM controls the
operation of the cell. The EVM contains its own memory, two RS-232-C ports for communica-
tion to a host and to a terminal, as well as most of the common microprocessor development
debugging tools. In addition to the Texas Instruments product, Hewlett Packard has made avail-
able a TMS32010 adapter for its Model 64000 microprocessor development workstation.

For small arrays (less than four cells), two emulators could be used to debug the whole
array. However, larger arrays would require more and more emulators, which would become
expensive. Therefore, use of emulators is best restricted to the hardware verification phase, when
the ability to control one or two cells at a time is all that is necessary.

3.1.2 Host Control Method

A second control scheme is the Host Control method. The goal of the Host method of con-
trol is to provide the user with an interactive method of controlling the array during the debug-
ging phase of software development, after the hardware has been verified operational. The user is
allowed to issue commands, through a host computer and HNI, to the array. These commands
are as simple as run and stop or as complicated as modify data memory 100 5 5434, where the
first number specifies the address of a cell, the second number specifies a memory address within
the cell, and the third number specifies the new value to be written at that address. In addition, a
facility for the downloading of programs from the host to the array is provided. This method of
control allows the greatest flexibility and most powerful debugging.



The Host method of control necessitates two separate array modes. While the array is in
application mode, the individual cells are doing some sort of signal processing application. Con-
trasting with application mode is command mode, during which individual cells are expecting
commands to be coming from the host. The array is toggled between application mode and
command mode by using the run and stop commands. Commands cannot be issued in applica-
tion mode, i.e., the array must be stopped before command processing can begin.

3.1.3 PROMs

The third method of control calls for a set of PROMs to be burned for each cell in the
array. Each set of PROMs contains the application program that the particular cell is going to
run, along with a standard group of routines for intercell communication. This method of control
is only appropriate when an array is to be used for one special-purpose application for which
error-free software already exists. This control scheme is a “final” phase control scheme, to be
used after the hardware and software have been verified using the other two control schemes.

3.2 Implementation of Host Control

This section outlines the design and implementation issues of Host Control. While each of
the control methods is useful during different development stages, and while all three have been
demonstrated, the ICE modules and PROMs are commercially available, so their associated con-
trol methods did not require new implementations. On the other hand, the Host method of con-
trol was designed and implemented from scratch. Host Control requires that three different kinds
of processors work together: (1) the host computer, (2) the HNI, and (3) the cells. These proces-
sors split the task of interpreting and executing the user commands. In addition, three different
types of interprocessor communication protocols are necessary: (1) intercell, (2) HNI/cell, and
(3) host/ HNI. These protocols specify the rules for interprocessor communication. The next few
sections outline the task of each of the three processors during Host Control and detail the inter-
processor protocols. Finally, an example is presented to help clarify the discussion.

3.2.1 Host Control Software

The goal of the Host Control software is to enable the user to issue commands from the
host which the array is able to understand, execute, and acknowledge. The set of instructions
includes the ability to read and write, for any cell in the network, the following:

TMS32010 Register Set,
TMS32010 Program Counter,
TMS32010 Stack,

TMS32010 Data Memory,
Cell Offchip Memory.

12



The Host Control software design attempts to divide the tasks of interpretation and exe-
cution of the user commands in an “intelligent” way among the host, HNI, and cell. By
“intelligent” we mean that the division of labor was made after considering the strengths and
weaknesses of each processor. The next three paragraphs describe the function of each processor
during Host Control.

3.2.1.1 Host Computer

The host computer, a VAX 11/780 running UNIX, provides an interface between the user
and the rest of the system. Commands are issued at a video display terminal, and acknowledg-
ments from the array are displayed thereon. The user is able to see results of a command in
progress as well as a completed command. Because the host computer provides high-level pro-
gramming languages, and because there is a great deal of memory available, as much of the
command interpretation as possible takes place on the host computer. The host computer is con-
nected to the HNI through a 9600-b/s RS-232-C link.

3.2.1.2 Host Network Interface

The HNI provides the interface between the host computer and the array. Its primary func-
tion is to convert serial ASCIl data from the host computer into the binary data format of the
array, and vice versa. The HNI has only 4K bytes of memory, so its program is fairly compact.
In order to maximize memory use, the HNI program is written in assembly language. Its output
to the cell network is simple for the cells to interpret.

3.2.1.3 TMS32010 Cells

Each cell in the network has a “kernel” program containing instructions for the interpreta-
tion of commands coming from the HNI. This entire program for data communication is less
than 1K words (25 percent of available program memory). The program, written in assembly
language, allows the cell to decode the command arriving through the network from the HNI,
perform the specified action, and respond accordingly.

3.2.2 Interprocessor Communication

While the preceding sections briefly described the Host Control software for each of the
three processor types (i.e., host, HNI, and cell), the next few sections describe the communication
scheme implemented for the command mode of the Host method of control. These sections do
not apply to application mode issues, nor do they deal with ICE or PROM control methods.
Communication in these other modes and control methods are left up to the user or to the high-
level software development system described later in this report. To summarize, this section
explains the communication protocols used when the user types a command such as modify data
memory 100 5 5434.

13



There were four major design specifications imposed on the command mode communication
system. First, the following scenario was proposed for all commands. The array would be at-
tached to the host by exactly one HNI. Commands typed by the user to the host would be pro-
cessed on the host and sent to the HNI. The HNI would do further processing and then send the
command to the cell to which it was connected. In turn, each cell would read the command
header, and determine whether it was the destination of the command. If it was the destination,
it would execute the command and return an acknowledgment toward the direction from which
the command came. If it was not the destination, it would forward the command in the direction
of the destination cell and wait for an acknowledgment from that same direction. Upon receiving
the acknowledgment, the cell would forward the acknowledgment message back toward the direc-
tion from which it received the command initially. Eventually, the HNI would receive the
acknowledgment and forward it to the host. The communication channel would remain open
until the command had been executed by the destination cell and an acknowledgment had been
returned from the destination cell, through the array, through the HNI, to the host. Only one
communication channel would be open at any one time.

The second design constraint was that the system had to be fast enough to respond to the
user’s commands within a reasonable time frame. While no time limits were specified, it seemed
realistic that simple commands (start and stop) should be almost immediate (less than | s), while
more complicated commands (load and display data memory) could take somewhat longer

(e.g., 55s).

The third design goal was to implement relative addressing of cells rather than absolute
addressing. Absolute addressing would have required a switch pack on each cell for specifying
its address. Relative addressing alleviated this complication without affecting the software
complexity.

Finally, the last design specification was that the cell portion of the communication software
had to be as compact as possible, because cell external data memory is quite limited (4K words).
A limit of 1K words, 25 percent of available external memory, was placed on the cell communi-
cation software length.

With these four design specifications in mind, a summary of the three types of communica-
tion (i.e., intercell, HNI/cell, and host/HNI) is presented. The three protocols were chosen to
match the strengths of the processors which use them.

3.2.2.1 Intercell Protocol

The intercell protocol calls for data to be transferred from one cell to another in packets.
Each packet contains a header indicating (1) the final destination of the data, (2) the number of
words of data in the packet, and (3) some information regarding the nature of the data. The
header itself is from one to three words long, with the length of the header specified in the first
header word. The header contains enough information for the receiving cell to determine what to
do with the rest of the packet. An initial scheme for intercell data transfer was proposed earlier.>

14



A modified version of that initial scheme is used in the current implementation, and its descrip-
tion follows.

The header information preceding a data block transmission can be up to three words long
(1 word = 2 bytes). The first word is mandatory and contains various control bits. The second
word is optional and, if present, contains either block length or routing information. The third
word is also optional and, if present, contains routing information. Header word 1 is decoded as
follows:

Header Word 1 — Upper Byte

15 14 13 12 11 10 9 8
len rout comm ack rsy rsv rsvy rsv
len: 1 if a length word is present in the header. 0 otherwise.

rout: 1 if a routing word is present in the header. 0 otherwise.

comm: 1 if this header is the header for a command. 0 otherwise.

ack: 1 if this header is the header for an acknowledgment. 0 otherwise.
rsv: reserved for further command information.

Header Word 1 — Lower Byte

len7 len6 len5 lend len3 len2 lenl len0

len7 to len0 is the length of the data block following; ignored if len = 1. If len = 0 and rout = 0,
then the data block length can be found in header word 1 and the cell receiving the data block
is the destination. If len = 0 and rout = 1, then the data block length can be found in header
word 1 and the second header word contains the routing information. If len = 1 and rout = 0,
then the second header word contains the number of words in the data block and the cell receiv-
ing the data block is the destination. If /len = 1 and rout = 1 then the second header word con-
tains the number of words in the data block and the third header word contains the routing
information. Shown in tabular form:

15



Header Composition

Number ContentsT
len rout of Header
Words Word 1 Word 2 Word 3
0 0 1 Block Length X X
0 1 2 Block Length Routing X
1 0 2 t Block Length X
1 1 3 b4 Block Length Routing

t Besides the contents listed here, word 1 always contains control information.

+ Word 1 contains only control information in this case.

The word representing the number of words in the transmission is simply the 16-bit two’s-
complement binary representation of the number of words. Thus, 32K — 1 is the largest possible
block size. A TMS32010 can only store 4K words, so this block size constraint is not a problem.
For block sizes of 256 bytes or greater, the header must contain a block length word.

The word representing the routing directions can be decoded as follows:

Routing Instructions — Upper Byte

15 14 13 12 11 10 9 8
east horz6 horz$ horz4 horz3 horz2 horzl horz0
east: I = east, 0 = west

horz6 to horz0: binary representation of how many cells to the east (or west) the
destination is.

Routing Instructions — Lower Byte

7 6 5 4 3 2 | 0
north vert6 verts vert4 vert3 vert2 vertl vert(
north: 1 = north, 0 = south

vert6 to vert0: binary representation of how many cells north (or south) the destination is.

16



When a cell receives a header with a routing word, it modifies the routing word before passing
the header to its neighbor. Each cell decrements either the upper or lower byte of the routing
word, depending on the direction of the data. For example, if a cell receives the routing word:

1000 0011 0000 0010
from its west neighbor, it will send:
1000 0010 0000 0010

to its east neighbor. By convention, cells attempt horizontal transmissions before vertical trans-
missions; i.e., in this example, the data will be passed two more cells east before being passed
two cells south. Using a relative addressing scheme such as this has the advantage that a specific
cell does not have to know its position in the network. If absolute addressing were used, each
cell in the network would have to know its own position, requiring either a different program for
each cell or a switch pack.

3.2.2.2 HNI/Cell Communication

The second type of communication is that between the HNI and the cell. As noted in the
discussion of the hardware, the HNI is connected to one cell in the network. That cell does
not treat its connection to the HNI any different from a connection to a cell. Therefore, the
HNI/cell communication protocol is identical to the intercell packet protocol described above.

3.2.2.3 Host/HNI Communication

The final communication link is that between the host and HNI. Similar to the intercell
communication, the host/ HNI communication also uses packets. In this case, however, the
packets are transmitted in ASCII bytes. ASCII characters are used because (1) the operating sys-
tem of the host is designed to normally send and receive ASCII characters, (2) the line analyzer
applied to the RS-232-C cable during the debug phase is easier to read if ASCII characters are
being transmitted, and (3) the higher speed afforded by binary data transmission is not necessary
for this application. The header contains 17 bytes. The first 8 bytes contain the command name.
The next 4 bytes contain the hexadecimal representation of the number of bytes in the data por-
tion of the packet. The next 4 bytes contain the address of the destination cell, also represented
in hexadecimal notation. The last byte is a line feed. Shown in a table form, we have:

Host/HNI Packet Header — 17 Bytes

0-7 8-11 12-15 16

Command Name Block Length Cell Address Line Feed

%



3.2.3 Command Example

Instead of delving into the details of what interpretation and translation occurs where, an
example command trace is illustrated for the reader. A complete list of commands available is
contained in the Appendix.

Suppose the user would like to display the data memory of the cell at location 0100H
(a digit string followed by an “H” represents a hexadecimal number; a digit string followed by
a “B” represents a binary number). This cell is immediately west of the cell connected to the
HNI. He would issue the command:

display data memory 0100

The host interprets this command, and sends the following data over the RS-232-C connec-
tion to the HNI:

getdmem<sp>00000100<1{>

where <sp> is the ASCII space character, and <If> is the ASCII line feed character. The first
eight characters are the command name. The next eight are the length and routing information.
The last character sent is a line feed. All command names must be eight characters long, hence
the need for a space in this case. The first four zeros following the command specify the number
of words following the 17-character header, and in this case indicate that no other information is
coming from the host. The next four characters form the address of the cell for whom this com-
mand is intended. In this case, the address is 0100H.

The HNI receives this packet, which in this case is just the 17-character header, and trans-
lates the ASCII data into binary data which can be understood by the cell array. In this exam-
ple, it sends a two-word header with no data:

First Word — 6200H = 0110 0010 0000 0000 B
Second Word — 0100H = 0000 0001 0000 0000 B.

The first header word indicates that (1) there won’t be a length word (bit 15 = 0B), (2) there will
be a routing word (bit 14 = 1B), (3) this header is the header of a command (bit 13 = 1B), and
(4) the length of the data portion of the packet is 0B (lower byte = 00H). In addition, bits 8-11 of
the first word indicate that the command is a get data memory (command code 0010H = get data
memory). The second header word is the routing word indicating that the relative address of the
destination cell is 0100H. The cell connected to the HNI reads this header, realizes that the
command is not intended for it, decrements the routing word, and passes the command to its
neighbor to the west:

First Word — 6200H = 0110 0010 0000 0000 B
Second Word — 0000H = 0000 0000 0000 0000 B.

The next cell reads the header, and realizes that it is the destination. After some decoding, it
recognizes the command as a get data memory and sends an acknowledgment, which contains a

18



header and the desired data memory information, back to the cell from which the command
came. Specifically, the acknowledgment contains a two-word header and 90 words of data:

First Word — 5290H = 0101 0010 1001 0000 B
Second Word — 0000H = 0000 0000 0000 0000 B
90 Words of Data Memory Contents.

The cell attached to the HNI, which has been waiting for the acknowledgment, increments the
routing word and forwards the acknowledgment to the port from which it received the original
command:

First Word — 5290H = 0101 0010 1001 0000 B

Second Word — 0100H = 0000 0001 0000 0000 B

90 Words of Data Memory Contents.

The HNI translates the binary data into ASCII and sends it to the host:
getdmem<sp>00000100<lf>{360 characters of data}

Acknowledgments from the HNI to the host have headers identical to the last command
issued by the host. The host reads the data and displays it on the screen of the user’s terminal.

3.2.4 Running and Stopping

Running and stopping the array, i.e., toggling from command mode to application mode and
application mode to command mode, is done using a hardwired signal available to all cells. This
signal, ATN=*, is generated by the HNI. On reception of either a stop or run command from the
user, a pulse is transmitted on ATN#* which interrupts the TMS32010’s. By convention, the first
pulse on the ATN=* line is a start. After that, the meaning of the pulse alternates between stop
and start. The cell interrupt routine causes the cell to begin its application program on interpreta-
tion of a start. On a stop, the interrupt routine causes the cell to enter command mode.

Notice that these two commands are “broadcast,” making them different from all the other
commands which must propagate along the array data paths.

3.3 Testing and Evaluation

The software and communication schemes described above were first tested on an array of
two cells. Using the EVMs, PROM code was developed for the kernel program. The RAMs of
the cells were successfully loaded with application programs using the load instruction of the con-
troller. The array was started, stopped, probed, modified, restarted, etc. In this manner, the
application programs were debugged. Eventually, the two cells working in tandem were able to
perform a five-channel filter bank with pre-emphasized input and companded output. Figure 6
shows a block diagram of this application.

19



BPF LPF CELL 2
RECT

D
D

|
T

48

HFFE
N B
I

O O scope

CELL 1
PRE-EMPHASIS ) COMPANDER
A/D \{f =|e D/A
Figure 6. Five-channel filter bank block diagram.

20

76418-6



The implemented array met all four of the original design constraints, namely, (1) the
command-execute-acknowledge procedure, (2) fast response, (3) relative addressing, and (4) cell
communication program of less than 1K words. In this regard, the host/HNI/array software
package was deemed a success.

One unfortunate aspect of the cell program memory restriction is that a completely general
cell communication program would not fit within 1K words. Thus, the program run by each cell
will work only properly in a rectangular array. Arrays with strange snakelike configurations
would pose a problem for the current version of the cell software. While the control system
worked well and was very helpful in debugging the application software, there are two limitations
which are worthy of mention. First, there is no provision in the array for hardware breakpoints.
The reason for not implementing full hardware breakpoints was the added hardware complexity
cost. A full hardware breakpoint would have allowed a user to (1) specify a breakpoint for any
cell, (2) start the array, and (3) have all cells in the array enter command mode on any cell’s
entrance into a breakpoint. This entrance into command mode in unison would be accomplished
through another common signal similar to ATN#*, called BRK*. Hardware contained on each cell
would decode the address used to fetch program instructions and would assert BRK# if and
when the breakpoint address was identified. A scheme which would be less intensive hardware-
wise would be to reassemble a cell’s application program with an instruction to assert this new
breakpoint signal, BRK#, after entrance into the breakpoint. Future versions of the array might
implement this feature.

The second limitation of the controller is that the array cannot be single-stepped. Since any
“apparent” single-step would require a number of real steps in every processor to allow packet
communication among the cells, it seemed that single-stepping would not aid in identifying
errors. In addition, the amount of software which would have had to be resident on the cell to
handle a single-step feature would have increased the command software well beyond its
25-percent limit.

A



4. TWELVE-CHANNEL FILTER BANK

The first application run by the array was a front end for the Lincoln Laboratory’s Dynamic
Time Warping (DTW) Speech Recognition System.? This system needed a real-time 12-channel
filter bank front end which could output average power estimates for each channel of analog
speech input. While there were other available means for implementing this front end, each had
drawbacks. An analog filter bank could have been built, but changing filter parameters would
have required modifying the hardware, which would have been undesirable. A digital filter bank
could have been programmed on a Lincoln Digital Signal Processor (LDSP), which is a 50-ns
instruction cycle special-purpose processor. The LDSPs, however, are housed in large racks (6 ft
high, 3 ft wide, 3 ft deep), which would have made the DTW system immobile. For these rea-
sons, as well as for experimental purposes, the array processor described in this report was built
to implement the filter bank. The next few sections describe the software and hardware design
decisions made in this first application.

4.1 Application Software

Each channel of the filter bank produces a power estimate for a specified band every 10 ms.
Three cells are required for the 12-channel front end. Each channel runs the same software,
except for the filter specification constants. The input is pre-emphasized, boosting the high end
for speech recognition purposes. In each channel, the pre-emphasized signal is fed through a two-
section band-pass filter, where each section is a second-order Butterworth filter. The filtered
output is rectified, adding a D.C. component to the spectrum. Following rectification, the signal
1s low-pass filtered and down-sampled. After down-sampling, u-law compression is performed. It
1s this compressed output which is transmitted over the MULTIBUS to the DTW wafer.

After writing some blocks of code to do these various functions, it was estimated that three
cells would be needed to run the application in real time. Figure 7 shows the layout of cell
interconnects as well as cell function. The application code is about 1/2K-word long in each cell,
so program memory is not constraining. The actual constraint is the real-time restriction. Using
three cells, each cell is processing about 80 percent of the time. I/O overhead is held below
10 percent. It would have been impossible to use only two cells and still meet the real-time
restriction.

4.2 Application Hardware

In order to integrate the array into the DTW card cage, the prototype design was
repackaged on two MULTIBUS wirewrap cards. Card 1 contains two cells and is shown in
Figure 8. Card 2, which looks similar to card 1, contains one cell, one HNI, an A/D, and an
MBI. Both cards have been built and tested.

23



CELL 1

o
0
-

LPF

.,

HEBEE
y
B HBE

CELL 2

PRE-EMPHASIS COMPANDER
so 0 |
* e "™

C —

A/D

+

+
e

DTW
-4 WAFER
SYSTEM

CELL 3

5
= B
\

§-- 1

:

IEEE
'
B

BPF LPF

Figure 7. Twelve-channel filter bank block diagram.

24

76418-7



76418-8

= —
PORT 1 PORT 1
o~ [~ o~ <]
J6] g CELL 'g ’g CELL g 143
& & a &
PORT 3 PORT 3
J5 Ja

TWO-CELL MULTIBUS CARD
INTERCONNECTIONS

(o)}
s
O
ki
m
w

TWO-CELL MULTIBUS CARD PHOTOGRAPH

Figure 8. Two-cell MULTIBUS card.

25



4.3 Evaluation

The low-level software development tools described in Section 3 performed admirably during
the debug phase of the filter bank system. Debugging the DTW front end consisted mainly of
(1) tracking down noise in the inter-card MULTIBUS hardware, (2) reviewing the TMS32010
fixed-point overflow mechanism, and (3) establishing communication between the array and the
MULTIBUS system CPU. As of this writing, the hardware and software serving as the DTW
front end have been completely tested.

26



S. HIGH-LEVEL SOFTWARE DEVELOPMENT TOOLS

MIMD systems, such as the one described in this report, are often very difficult to program
since the programmer must (1) partition the problem among the cells, (2) route intercell data
transfers, and (3) write different code for each cell in the array. To make this MIMD array pro-
cessor attractive to use, development tools were created to automate steps (2) and (3) listed
above. In addition, an automatic partitioning tool, to ease step (1) of the programming problem,
was developed outside the scope of this report and is briefly described at the end of this section.
While the system I implemented requires manual partitioning of the problem, future versions will
incorporate an automatic partitioning tool, resulting in a completely automatic software develop-
ment system.

The procedure for developing software is based on the system block diagram, since block dia-
grams are the natural means of describing most signal processing applications. The user begins
by drawing a block diagram of his application on a computer aided engineering (CAE) worksta-
tion. Figure 9 is an example of a block diagram for a second-order filter section. The ADDER,
GAIN, and DELAY blocks represent functions, while the lines connecting the blocks represent
data paths. A block diagram compiler (BDC) was written which (1) converts each of the blocks
on such a drawing into pieces of TMS32010 code, and (2) links the individual pieces of code into
a complete program. The data paths represent input arguments to functions and output values
from functions. The BDC converts these data paths into TMS32010 data memory locations. The
final output of the software development system is a “ready to be assembled” source program for
each cell in the array.

There are a number of issues which complicate the seemingly straightforward block diagram
compilation. First, there must be a provision for assignment of block diagram bodies (blocks on
block diagrams are called “bodies™) to physical cells, since, in general, the user will want to parti-
tion his application among the available cells in his array. Furthermore, intercell data transfer
routing should be automatic. Figure 10(a) shows two GAINS, one assigned to cell 0000 and one
assigned to cell 8283, connected by signal A. Since cell 0000 is not adjacent to cell 8283, the
actual path of the data out of the first GAIN and into the second may be fairly complicated,
e.g., 0000 may pass the value to 8100, which will pass it to 8200, etc. The BDC should automati-
cally route such intercell transfers.

The second, and most difficult, problem facing the BDC is the fact that a block diagram can-
not be directly translated into source code since the block diagram may specify completely paral-
lel processing while the actual hardware consists of processors which run sequential programs.
Figure 10(b) shows a simple application. The signal A is needed for both GAINs, and both
GAINs are assigned to processor 0000. Since processor 0000 contains a single TMS32010, it can-
not execute both GAINs in parallel, i.e., only one GAIN can be executed at a time. In this sim-
ple case, the ordering of the two GAINS is arbitrary, since they do not depend on each other. In
Figure 10(c), an ADDER has been added to the drawing. Again, all three bodies have been
assigned to processor 0000. Clearly, once signal A has arrived, both GAINs must be executed

21



SSEZ=IMVYA~OIVY

“A3itf 49pI0-puodas 6 2ansif

00v2=3NTVA~OIV

6-8Lv9L

4 Joost=amivaA0ov  g-wnn-90V
dzi 0=140d™" 92V

d0¢
7~ )l
r / A | H _\
-2
ovL=3NTVA"OIV i ooowum:..<>|ww«
dLe
l_.. . e U_/ - l_l
dvt / N 3 L~ a
Z
0=WNN"90V A u
= 3
T.Eomnow‘q dz
0 1no l_.l il o) g

d¢e deElL

d9t dEe

28



76418-10

PROC_NUM=0000 PROC_NUM=8283

—>D 4 :{>

(a} TWO GAINS, DIFFERENT PROCESSORS

PR OC_NUM=0000

—'D—

PROC_NUM 0000

_.D__

(b) TWO GAINS IN PARALLEL

PROC_NUM 0000

I > 3P
A PROC_NUM=0000

PROC_NUM 0000

_.D__J

{c} TWO GAINS AND AN ADDER

2P
PROC_NUM=0000

.

1P
PROC_NUM=0000

Z) e

(d) FEEDBACK LOOP

Figure 10. Simple application block diagrams — 1.

29



before the ADDER is executed. DELAYs further complicate the issue. Figure 10(d) shows a sim-
ple feedback loop. The ADDER cannot be executed until both of its inputs are valid, but the
bottom input will not be valid until the DELAY has executed. The DELAY cannot be executed
until its input is valid. Since the DELAY input is the ADDER output, the DELAY cannot exe-
cute before the ADDER. This example, which seems to cause deadlock, must be properly han-
dled by the BDC. The solution is to allow every DELAY to have an initial value which it can
output before it has received its first input. Another problem is caused by a body which either
(1) does not need all of its inputs to generate one of its outputs, or (2) does not necessarily gen-
erate one of each of its outputs on reception of all of its inputs. As one example of the first
class, consider the drawing in Figure 11(a) which shows the ADAPTIVE_GAIN body. This
body multiplies its two inputs and places this value at the output. The ADAPTIVE_GAIN
needs a new value of its first input to generate each output, but the second input is stored and
may be only irregularly updated, i.e., ADAPTIVE_GAIN does not need a new value of its
second input in order to generate an output. Figure 11(b) shows the ADAPTIVE_GAIN used

in an application. The ordering process must correctly account for the special nature of the
ADAPTIVE_GAIN, i.e., allowing it to execute even if its second input has not been given a
new value. These examples show that an ordering algorithm must be developed for the BDC to
correctly convert a block diagram into sequential code.

ap

{a) THE ADAPTIVE_GAIN

(b) ADAPTIVE_GAIN APPLICATION

Figure 11. Simple application block diagrams — 2.

30

76418-11



The final complication to the BDC design problem is the body-to-code conversion task. A
library containing short TMS32010 programs corresponding to primitive bodies, such as the
ADDER and GAIN, must be created. Hierarchy should be supported so that a user can define a
new body in terms of already existing bodies, much the way a software designer uses subroutines.

The BDC solves these three problems: (1) intercell communication routing, (2) ordering, and
(3) assembly code generation. The rest of this section describes the operation of the BDC and, in
the process, provides a solution for each of the three problems listed. Section 5.1 outlines the
creation of a block diagram, including several common examples. In Section 5.2 we describe the
tools designed and implemented for analyzing the block diagram, creating the various data bases,
routing intercell communication, and synthesizing source code. A brief description of the auto-
matic partitioning tool is presented in Section 5.3. Section 5.4 concludes the discussion and evalu-
ates the efficiency of the system.

The tools described in the rest of the section are aimed at signal processing problems which
are easily described by a signal flow graph. These tools are not directly aimed at simplifying
block data processing problems, such as the overlap-add method for FFT calculations, although
it is possible to ease this task as well using the hierarchical methods discussed below. Further-
more, the only data types supported are 16-bit fixed point and 1-bit flags. These are the only two
types of data for which the TMS32010 provides reasonable support.

5.1 The Block Diagram

This section describes the block diagram, which is the interface between the programmer of
the array processor and the software development tools. The block diagram is a complete descrip-
tion of the desired application and is also the input to the system. This is analogous to the com-
puter program which, containing a complete description of an application, is the interface
between the computer programmer and the compiler.

A block diagram is composed of a group of blocks (called bodies) connected by lines (called
wires). The bodies represent functions, and the wires represent data paths. Block diagrams con-
taining bodies such as ADDERs and GAINs are drawn much the same way digital circuit dia-
grams are drawn containing AND gates and inverters. Figure 11 shows how bodies such as
ADDERs, GAINs, and DELAYs can be interconnected, using wires, to form a second-order fil-
ter. The following subsections describe the various bodies available to the user, the method of
interconnecting the bodies, and some of the issues involving their use.

5.1.1 Primitive Bodies

The primitive bodies are the lowest-level bodies available. They are atomic, in the sense that
they cannot be split into bodies of simpler nature. An example of a primitive body is the
ADDER shown in Figure 12(a). Each primitive body has a set of pins used for I/O. Each pin
has a property called a PINNAME, which has an alphanumeric string as its value. Pins are often
referred to only by their PINNAME property, as a given primitive cannot have two pins with the

31



same value for PINNAME. In addition, each pin has an IOTYPE property, which can have the
value INPUT or OUTPUT. The ADDER has three pins: ADDENDO has IOTYPE=INPUT,
ADDENDI has IOTYPE=INPUT, and SUM has IOTYPE=OUTPUT. Figure 12(b) shows
another “version” of ADDER. Each version of a primitive has the same pins, but their orienta-
tion may be different. The version of a given primitive used on a drawing depends on what
makes the drawing easiest to read. The functionality of the drawing remains the same, regardless
of the version chosen.

The GAIN is another primitive body, shown in Figure 12(c). It has two I/O pins. The first
has PINNAME=IN and IOTYPE=INPUT. The second has PINNAME=0OUT and IOTYPE=OUT-
PUT. In addition, the GAIN property has the property ACG_VALUE. This property must be
given a value specifying the value of the gain.

INPUT
ADDEND1

INPUT OUTPUT
ADDENDO sum

(a) ADDER VERSION 1

OUTPUT
SUM

INPUT
ADDENDO

Figure 12. ADDERI, ADDER2, GAIN.

INPUT
ADDEND1

(b) ADDER VERSION 2

IN out
INPUT OUTPUT

ACG_VALUE=??
(c) GAIN

32

76418-12



76418-13

Figure 13(a) shows the DELAY primitive, which has one input and one output. Its output
pin has the special property INITIAL_VALUE, indicating that the DELAY primitive is able to
output its first value before it receives its first input. The importance of the INITIAL_VALUE
property is more fully explored in succeeding sections.

Bodies can have an arbitrary number of outputs. For example, a special body called
GAIN_SPEC, shown in Figure 13(b), has two outputs: OUTI is the input doubled, and OUT2 is
the input tripled.

When primitives appear on drawings, pin properties such as PINNAME, IOTYPE, and
INITIAL_VALUE are not displayed on the drawing. Body properties, such as ACG_VALUE, are
displayed. In addition, each body on a drawing has a unique identifier, called its path name. This
path name distinguishes each of the four ADDERSs seen in Figure 9. A part of the path name,

IN . ouTt
ineut - ® outPuT
INITIALVALUE=0

(a) DELAY
g OUT1
Figure 13. DELAY and GAIN_SPEC. OUTPUT
IN o
INPUT
3 ouT2
OUTPUT
GAIN_SPEC

(b} GAIN_SPEC

33



vL-8LYOL

‘wornuifop (q) puv ‘Apoq SOS (v) ¢l 2n31d

Q)

H

)

doti

ZLo 90V 2 —

113700V

-2
d¢ m

&=T107OIV
=110V e
=707790V
&=100"90V
&=000"90V
NOILD3S ¥IAHO-ANOI3S

dil

34



called the path number, is displayed near the body. In the example drawing (Figure 9), there is
an ADDER which has path name EX16 ADDERI16P and path number 16P. Only the 16P
appears on the drawing (the EX16 comes from an abbreviation to the title of the drawing). Path
names and path numbers are generated by the system and need not be specified by the user.

5.1.2 Hierarchy — Nonprimitive Bodies

Much as the programmer defines subroutines to avoid unnecessary code repetition and to
help modularize, the block diagram user can create nonprimitive bodies for similar reasons. A
nonprimitive body is defined by a group of bodies, interconnected by wires. Figure 14 shows the
SOS body, a second-order section, along with its definition. The compact SOS body can be used
in place of the complicated SOS definition on any drawing. A new body, the FILTERBANK,
could be defined using several SOSs.

5.1.3 Interconnection of Bodies — Signals

Bodies are interconnected by signals, which are wires whose nodes are body pins. Signals
have the SIGNAME property, which is given an alphanumeric value. In the second-order section
of Figure 9, the signal connecting the OUT pin of the GAIN body at 16P to the ADDENDO pin
of the ADDER at 15P has SIGNAME=D. Signals which are not explicitly given SIGNAMEs
will be assigned a SIGNAME by the system. All signals having the same SIGNAME are the
same signal. Thus, the two drawings in Figure 15(a) represent the:same application. Each signal
must have exactly one node with IOTYPE=OUTPUT.

5.1.4 The Synchronous vs Asynchronous Issue

We now address the classes of primitives which (1) do not need all their inputs to generate
an output, or (2) might not generate any of their outputs even on reception of all their inputs.
By affixing the READY property, with value either SYNCHRONOUS or ASYNCHRONOUS,
to output pins of primitives, the user specifies whether a primitive falls into either of these two
classes.

The READY property with value SYNCHRONOUS is given to an output pin of a body if,
in the steady state, that output is generated if and only if a new value for each input to the body
has arrived. The READY property with value ASYNCHRONOUS is given to an output pin of a
body when (1) that output can be generated without new values for all the inputs to the body
available, or (2) that output might not be generated even if new values for all the inputs to the
body are available. Output pins which are not explicitly given the READY property are SYN-
CHRONOUS by default.

All the examples shown so far have had SYNCHRONOUS outputs. The SUM output on
the ADDER body requires exactly one ADDENDO and one ADDENDI to generate one SUM.

35



4P 3P 2P
| | I sIG1
l T\ ] 1P
SIG1 (|
o A
IN ® = S ® ouT
ASYNCHRONOUS
ASYNCH
INPUT ouTPUT
INY .—-——————»\\\ 1/,—————————. ouT1
N—
B B

INPUT
SYNCH2 IN2 .——-——/

OUTPUT
\_—. ouT2

READY=ASYNCHRONOUS
OUTPUT
ouT1

4.

IN @
INPUT

o
ouT2

SPLIT2

OUTPUT
READY=ASYNCHRONOUS

(b)

Figure 15. (a) Two drawings, same meaning; (b) asynchronous primitives.

36

76418-15



76418-16

SUM cannot be generated without both inputs, and it must be generated if both inputs are avail-
able. Thus, the SUM output is SYNCHRONOUS. Similarly, since the INITIAL_VALUE prop-
erty affects only the first output of the DELAY body, and since the OUT output of the DELAY
body is generated exactly once for each IN input thereafter, the OUT output of the DELAY
body is SYNCHRONOUS.

An example of a body having an asynchronous output is the ADAPTIVE_GAIN, shown in
Figure 16(a), which has two inputs (IN and GAIN) and one output (OUT). OUT is defined as
IN muitiplied by A_GAIN. The ADAPTIVE_GAIN does not need a new value of A_GAIN for
each new value of IN. Rather, A_GAIN values arrive sporadically. The ADAPTIVE_GAIN uses
the most recent value of A_GAIN in calculating QUT. Thus, OUT has READY=ASYNCHRO-
NOUS. The down-sampler body, DOWN, is another example of a body having an asynchronous
output. It is shown in Figure 16(b). DOWN has one input pin (FAST) and one output pin
(SLOW). Having the body property ACG_RATIO, the decimation factor, it must receive
ACG_RATIO values of FAST before generating one SLOW output. Therefore, SLOW has
READY=ASYNCHRONOUS.

A_GAIN
INPUT
= out
INPUT & OUTPUT
ASYNCHRONOUS
(a)
: DOWN
SAMPLER
FAST plow
INPUT & @ OUTPUT
ASYNCHRONOUS

ACG_RATIO=??

(b)

Figure 16. (a) ADAPTIVE_GAIN, and (b) DOWN.

37



ACG_PORT=1

ACG_NUM=0
9P 11P
8P P
12pP
10P > - =Prrreie] D
ACG_PORT=2 ACG_PORT=2
ACG_NUM=2 ACG_NUM=1
5P
= —\
7P
6P 4 3P
/ 28 1P
\ SYNCH D
ACG_PORT=3
SEGHUME ACG_PORT=3
ACG_NUM=0

38

Figure 17. Asynchronous example.

76418-17



A synchronous body is defined as one whose outputs all have READY=SYNCHRONOUS.
A synchronous signal is one whose output node has READY=SYNCHRONOUS. A synchronous
group is a collection of interconnected synchronous bodies and signals. Similarly, an asynchro-
nous body is one which has at least one output with READY=ASYNCHRONOUS. An asynchro-
nous signal is one whose output node has READY=ASYNCHRONOUS.

There are three restrictions on the design and interconnection of synchronous and asynchro-
nous bodies and signals:

(1) Any signal having a node on an asynchronous body is asynchronous by definition.

(2) All input signals to a synchronous body or group must be synchronized with each
other.

(3) An asynchronous signal must have exactly one node which has IOTYPE=INPUT
and one node which has IOTYPE=OUTPUT.

There are three types of bodies provided to allow the programmer to meet the three restric-
tions. The first is the ASYNCH primitive which converts a synchronous signal to an asynchro-
nous signal. The second type of body is the SYNCH primitive, which synchronizes signals with
each other. The third type of body is the SPLIT primitive, which splits an asynchronous signal
into several asynchronous signals. These three types of bodies are shown in Figure 15(b). Both
the SYNCH and SPLIT primitives are better thought of as families of primitives. For example,
the SYNCH primitives have names such as SYNCH2, SYNCH3, etc., depending on how many
signals are being synchronized. Similarly, the SPLIT family contains primitives such as SPLIT2
and SPLIT3, where the last character of the name indicates the number of output signals of the
splitter.

An example of the use of synchronous and asynchronous signals and bodies is shown in Fig-
ure 17. The output of an INPUT primitive is asynchronous, by definition. In order to interface
the two inputs at 8P and 10P to the synchronous ADDER at 11P, a SYNCH2 is needed (Restric-
tion 2). This SYNCH2 causes polling of the two INPUTS until they both have valid data on
their output lines. When this occurs, the ADDER is allowed to execute. The ASYNCH at 5P is
used to convert the synchronous output of the ADDER at 11P into an asynchronous signal (Re-
striction 1), for input into the ADAPTIVE_GAIN at 7P. The SPLIT2 effectively splits the out-
put of the ADAPTIVE_GAIN at 7P for input into the ADAPTIVE_GAIN at 3P (Restriction 3).

5.1.5 Partitioning Assignment

The final issue involving the creation of a block diagram is the assignment of each block in
the drawing to a given processor. Currently, the user makes this assignment manually by attach-
ing the PROC_NUM property to each body in the drawing. For each body, the PROC_NUM
property is given a value representing the physical processor on which the body is to run. Fig-
ure 18 shows an example of a block diagram whose bodies have been assigned to physical proces-
sors through the use of the PROC_NUM property. In future versions of the BDC, the automatic
partitioning tool (alluded to at the beginning of this section, and described at the end of this sec-
tion) will be used to make this assignment of bodies to physical processors.

39



SWAN DOYd Yho wosoiq 8] 2n31d

L=WNN"DOV
£-1H0d"DOV
Z8E£8-WNN-J0Hd OJ
dLi "
€=WNN"DOV |
Z-1HOd"DOV
00Z8=-WNN"J0Hd 0 ) r —
dvi 0018=WNN"20Hd
Z=-WNN"DIV dsi

€=140d 92V

00L8=WNN"00Hd On "

81-8L¥9L

001L8=WNN"20Hd
S=WNN"OJV
0=140d 90V

. AU%—

d

00L8=WNN"J0Hd
Z=WNN"OJV
0=1HOd 92V
diLi

.9

0000=WNN"J0Hd
dS

0000=WNN"DJ0Hd 0000=-WNN-J0Hd
d9 dL

dol
00L8=WNN"D0Hd  0000=WNN"J0Hd
dZl dEl
: 7z f=
W 8 7 8
0000=WNN"20Yd 0000=WNN-D0Hd
A - € | \amvaoov N e
0-1H0d"92V
+ -~ a /I_ll\i 9 Tl HONAS || ” m

0000=WNN"J0Hd 0000-WNN~J20Hd
d8 d6é

40



5.2 Block Diagram Compiler

The block diagram compiler (BDC) is a tool developed to automate the code generation and
intercell communication routing. The BDC takes a block diagram as input, and outputs source
code for each cell in the array. The process closely parallels the automatic circuit design packages
currently available, in which the user draws the circuit on a CAE workstation and the system
converts the drawing into appropriate net lists and parts lists needed for fabrication. In fact,
some of the BDC is part of an automatic circuit design package adapted to this particular
application.

As described above, the user draws a block diagram with the aid of a CAE workstation. The
BDC groups the bodies by their physical processor assignments and converts the block diagram
into programs for each sequential processor. Bodies are eventually converted to code, and wires
become memory locations. Bodies can be simple (e.g., adders or subtractors) or complicated (e.g.,
second-order filters). In addition, the BDC handles all intercell communication routing.

Figure 19 shows the block diagram for an example of a digital signal processing task, a
second-order infinite impulse response filter (IIR) in series with a three-tap finite impulse
response filter (FIR). The filters are to be run on different processors, using a pipeline, to
increase throughput. The picture created on the CAE system is input to the BDC. The BDC is
also informed of the physical array geometry characteristics, e.g., number of cells, arrangement
of the cells within the array, cell interconnections. The output of the BDC is one assembly code
program for each cell, including the intercell communication software. Thus, the BDC has
spared the user the time-consuming job of converting the block diagram into source code.

The operation of the BDC is split into seven modules:

Graphics Modules
1. The Graphic Data Entry System
2. The Graphic Sub-Compiler

Data Base Generation Modules
3. The Signal Table Generator
4, The Primitive Table Generator

Partitioning Module
5. The Splitting and Routing Program

Code Generation Modules
6. The Ordering Program
7. The Assembly Code Generator

which are described in the succeeding sections. A flowchart description of the BDC is provided
in Figure 20.

41



0=WNN"OJV
0=140d4d 92V
00€8=-WNN"J04d
dZe

1no

£9S=3IMVAOIV
00E8=WNN"J0YHd
dvZ

00E8=WNN"DJ0Hd

1

Sa143s U1 Y[ puv YII 61 2nBid

00E8=WNN"J0Hd
d0g

d

YEZ=3INTVATOIV
00E8=WNN"D0Hd

dse

61-8Lv9L

SLS=-3INVYATOIV
00€8=WNND20Hd

d92

OrL=3MVA™OIV
0000=WNN"20Y4d

-2 —
dl

.
I—I o= / ZJ

e
0000=WNN"J04d
¥ 0000=-WNN"JO0Y4d | | 2 000Z2=3NTVYATOIY
dL ” dg8l

0000=WNN"J04d
dtEl

0000-WNN"J0Hd

-z | 1-Z -
N 7 22 HONAS | gg r_
O00EB=WNN"D0Hd O0O0E8-WNN"D0Hd O00E8=WNN"O0Hd 0000=WNN"DO0Yd
dLe d8¢ dLE dEE
SSEZ=INTVA OOV 00tZ=3NTVA" DIV v
0000=WNN"20Yd 0000=WNN"204d
| P B d6L_
p /.—1 ﬂ e _\
0000=WNN"O0Hd

0000=WNN"DJ04d
dSiL

0000-WNN"J0Hd 0000=-WNN"J04d

00SL=3NTVA™OIV 0=WNN"D2V
dilL 2=1404 92V
e

33 aag dez

0000=WNN"JO04dd

d9l dZe

42



START

:

DRAWING
GENERATION |- BODY
USING LIBRARY
GRAPHICS
EDITOR

SUB-COMPILER

Y

76418-20

INITIAL
DATA BASE
GENERATION
Y
SPLITTING
AND - ARRAY
ROUTING LIBRARY
CELL O CELL 1 l CELL N
\ T y
PROCESS PROCESS PROCESS
ORDERING ORDERING ORDERING
see CODE
J LIBRARY
/ )  J
ASSEMBLY CODE ASSEMBLY CODE ASSEMBLY CODE
GENERATION GENERATION GENERATION
ASSEMBLY ASSEMBLY ASSEMBLY
CODE CODE CODE

Figure 20. BDC flowchart.

43



5.2.1 Graphics Modules

The graphics modules described below are implemented on a VALID SCALDsystem CAE
workstation. The system used consists of two workstations, a CPU, a 400-Mbyte disk drive, and
two printer/plotters.

5.2.1.1. Graphic Data Entry System

The graphics editor is used to “draw” the block diagram. The workstation is equipped with a
puck and a magnetic tablet which are used to enter the drawing. Bodies are added to the draw-
ing, placed in the proper positions, and connected with wires using VALID’s graphics editor
(GED). Text is added to the drawing using the workstation’s keyboard.

5.2.1.2 Graphic Sub-Compiler

When the user has finished adding and connecting bodies, he issues a command which writes
his drawing to the mass storage device (a disk in this case). The form in which the drawing is
stored, a so-called “vector representation,” is one which makes it easy for a workstation to re-
display the block diagram on the screen at some later time. This representation of the block
diagram is not suitable for the task we want to perform, namely block diagram compilation.
However, VALID provides a sub-compiler (they call it the “compiler,” but in this report it will
be referred to as the “sub-compiler”) which converts the less-than-useful vector description into
an easily readable ASCII file containing all the information about the bodies, their connectivities,
and special properties necessary to perform the compilation. The sub-compiler “flattens” the
hierarchy of the drawing by expanding all nonprimitive bodies into their all-primitive equivalents.
In order to eliminate some of the extraneous information, the compiler expansion file is run
through a “filter” program, leaving only relevant data. The beginning of the filtered expansion
file for the IIR/FIR example is shown in Figure 21.

5.2.2 Data Base Generation Modules

Once the sub-compilation is finished, the data base generators begin the task of converting
the long ASCII compiler expansion file into two compact data bases. The reason for making this
conversion is that the BDC can run much faster if the drawing can be represented by a number
of special-purpose linked lists, as opposed to one single file. The next two paragraphs briefly de-
scribe the data base generators.

5.2.2.1 Signal Table Generator

A data base of the signals, called the signal table, is generated for the entire application. The
signal table is implemented as a hash table, where the hashing function extracts the first character
in the signal name and uses it as an index into the signal table array. For each signal, a doubly



76418-21

FILE_TYPE«PARSED_LOGIC_EXPANSION: END_BINDINGS:
ROOT_ORAWINGs ' ITRFIR'S END_FRIMITIVE;
PRIMITIVE 'GAIN': PRIMITIVE °*ADDER';

BODY BODY
PATH_NAME="(1IRFIR GAIN24P)"; PATH_NAME«'(1IRFIR ADDER3OP)":
PROC_NUMe'B308": PROC_NUMe'B389°:
ACG_VALUE='567"; END_BODY;

END_BODY: BINDINGS

BINDINGS *SUM'='P*\]OTYPEs'OUTPUT";
*OUT*="UNSISADDERS29PSADDENDI *<OX\IOTYPE="OUTPUT"; ADDENDI*=*0*\TOTYPE="INPUT";
“IN'a*N'\NIOTYPE="'INPUT"; *ADDENDZ '« K'\1OTYPE="INPUT";

END_BINDINGS: END_BINDINGS:

ENO_PRIMITIVE: END_PRIMITIVE;
PRIMITIVE ‘GAIN': PRIMITIVE 'ADDER';

BODY BODY
PATH_NAME='(1IRFIR GAIN2SP)' PATH_NAME«'(IIRFIR ADDERISP)';
PROC_NUM="B388"; PROC_NUM="2889";
ACG_VALUE='234" END_BGDY

END_BODY: BINDINGS

BINDINGS *SUM's *B'\I1OTYPE="OUTPUT";
*OUT'=*Q°\10TYPE="OUTPUT"; *ADDENDI '='F'\IOTYPE="INPUT";
*IN*e*L*'\IOTYPEs'INPUT"; *ADDENDZ'="A'\IOTYPEs"'INPUT";

END_BINDINGS: END_BINDINGS;

END_PRIMITIVE: END_PRIMITIVE;
PRIMITIVE ‘GAIN': PRIKITIVE ‘ADDER‘:

BODY BODY
PATH_NAMEs' (1IRFIR GAIN26P) ' PATH_NAME«*(1IRFIR ADDERISP)";
PROC_NUMe'B388" ; PROC_NUM='2988"°;
ACG_VALUE="575"; END_BODY:

END_BODY; BINDINGS

BINDINGS *SUM'=*F'\1OTYPE="OUTPUT";
*OUT'="M*\1OTYPE« "OUTPUT'; *ADDENDI'«’D'\IOTYPE«"INPUT":
*IN'e*CC*\1OTYPE= ' INPUT"; *ADDENDZ '« "G '\IOTYPE="INPUT";

END_BINDINGS; END_BINDINGS:

END_PRIMITIVE: END_PRIMITIVE:
PRIMITIVE ‘*DELAY': PRIMITIVE °*ADDER":

BODY BODY
PATH_NAME="{1IRFIR DELAY27P)': PATH_NAME="(IIRFIR ADDER14P)}";
PROC_NUM='B398"; PROC_NUM="2988";

END_BODY: END_BODY:

BINDINGS BINDINGS
"OUT*=*N*\INITIAL_VALUE="'8'\IOTYPE="OUTPUT": *SUM'e*K'\I1OTYPE="OUTPUT";
CIN'=CL*\IOTYPE="TNPUT"; *ADDENDI '« ' 1*\IOTYPE«"INPUT":

END_BINDINGS: *ADDENDR'='J *\1OTYPE="INPUT";

END _PRIMITIVE: END_BINDINGS:
PRIMITIVE ‘*DELAY';: END_PRIMITIVE:

BODY PRIMITIVE ‘ADDER";
PATH_NAME='(1IRFIR DELAY2BP)': BODY
PROC_NUM='B388"; PATH_NAME="(I1IRFIR ADDERI3P)":

END_BODY: PROC_NUM="'90980";

BINDINGS END_BODY:

"OUT*= 'L \INITIAL_VALUE="'2"'\IOTYPE="OUTPUT"; BINDINGS
“IN*='CC*\IOTYPE="INPUT"; *SUM'e'AA'\IOTYPEs"'OUTPUT
END_BINDINGS: *ADDENDT *="K'\IOTYPE="'INPUT" ¢
END_PRIMITIVE: *ADDENDS '« B '\IOTYPEe ' INPUT":

PRIMITIVE 'ADDER; END_BINDINGS;

BODY END_PRIMITIVE:
PATH_NAME="({1IRFIR ADDER29P)'; : PRIMITIVE ‘DELAY":
PROC_NUM='B398": 80DY

END_BODY: PATH_NAME='(I1IRFIR DELAY7P)':

BINDINGS PROC_NUM='9098";
*SUM'='OUT'\IOTYPE="OUTPUT"; END_BODY:
*ADDENDI'="UNSISADDERS29PSADDEND I CAD\NIOTYPE="INPUT"; BINDINGS
*ADDENDS'='P \IOTYPE="INPUT"¢ *OUT'e'E'\IOTYPE="OUTPUT \INITIAL_VALUE="2",

Figure 21. IIR/FIR parsed expansion file.

45



FILE_TYPESICNAL_TABLE:

Signatl Namer A
Does not have Inftia) value.
Synchronous.

Inputs on Nett
(TIRFIR ADDERIGP) t ADDENDE

Outputs on Net:
(IIRFIR GAINIZ?P) 1 OUT

Previous:
NULL

Next:
AA

Signal Namet AA
Does not have Inftial value.
Synchronous.

nputs on Net:
IR

!
( FIR ASYNCHIIP) 1 1IN

Outputs on Net:

(TIRFIR ADDERI3IP) 1 SUM
Previous:

A

Next:
NULL

Signal Name:s B

Does not have fnitis)l value.
Synchronous.

Inputs on Net:

(TIRFIR DELAY?P) ¢ [N
(TIRFIR ADDERI3P) : ADDENDS

s on Net:
R ADDERIBP) 1 SUM

Previous:
NULL

FILE_ TYPE=PRIMITIVE_TABLE:

Pathnames TIIRFIR ADDERISP) 1a a [an)
Run on proceasor: SE88
With Inputs:

Pin ADDENDE 1a connected to €

Pin ADDENDI 1as connected to D
With outputs:

Pin SUM la connected to F
Has Properties:

NONE

Pathname: I[1IRFIR ADDERIGP) 13 & (an)
Run onh processor: 888
With Inputs:

Pin ADDENDE Ia connected to A

Pin ADDENDI s connected to F
With outputs:

Pin SUM Is connected to B
Has Properties:

NONE

Pathnames (IIRFIR ADDERIBP) 13 s (an)
Run on proceasor: 8398
With (nputa:

Pin ADDENDS 1a connected to M

Pin ADDENDI Is connected to Q
With outputst

Pin SUM (s connected to P
Has Propertlies:

NONE

Pathname: IIIRFIR ADDER29P) 13 a {(an)
Run on proceasort: 8388
With (nputas

PIn ADDENDS 1s connected to P

PIn ADDENDI 1s connected to UNE
With outputs:

Pin SUM (s connected to OUT
Has Properties:

NONE

Pathnames IIIRFIR DELAY28P) 13 & (an)
Run on processor: 8388
With inputs:
Pin IN Is connected to CC
With outputs:
Pin OUT 13 connected to L
Has Properties:
NOKNE

Pathnamet [IIRFIR DELAY27P) (s a (an)
Rurt.on processor: 8388
With (nputs:
Pin IN s connected to L
With outputs:
Pin OUT Is connected to N
Has Propertiest
NONE

Pathnames ITIRFIR GAIN26P) 13 & lan)
Run on processor: BIFE

Figure 22. Part of the IR/ FIR signal and primitive tables.

46

ADDER

ADDER

ADDER

ADDER

DELAY

DELAY

GAIN

76418-22



linked list entry is created containing (1) the signal name, (2) the path name of each primitive
which has a pin on the signal net, (3) an indication of whether the signal has an initial value,
and (4) an indication of whether the signal is synchronous or asynchronous. The entries for sig-
nals A and AA in the IIR/FIR application have been printed in Figure 22 (left column).

5.2.2.2 Primitive Table Generator

A second data base, called the primitive table, is created in tandem with the signal table.
The primitive table contains an entry for each primitive in the array. An entry consists of (1) a
path name, (2) a primitive type, (3) a physical processor number, (4) each pin name on the primi-
tive, along with the name of the signal to which it is connected, and (5) the primitive properties.
The primitive table is implemented as a singly linked list. The entries for some of the ADDERS
in the IIR/FIR application have been printed in Figure 22 (right column).

5.2.3 Partitioning Module — The Splitting and Routing Program

The drawing which is input to the system by the user specifies an application°which, in
general, is to be executed using many cells. The partitioning module divides the multi-cell prob-
lem, as specified by the signal table and primitive table, into many single-cell problems which are
simpler for the BDC to process. Next, intercell data transfers are routed through the array. The
rest of this subsection describes the algorithms implemented to accomplish both these tasks.

5.2.3.1 Splitting a Multi-Cell Application

The algorithm for splitting the multi-cell application into many single-cell applications is
straightforward. For each signal in the signal table, a routine is run which determines whether all
primitives using the signal are to be run on the same cell. If so, the routine exits. If not, the
intercell signal is split into many single-cell signals, connected by INPUTs and OUTPUTs. Con-
sider the application shown in Figure 23(a). The ADDER output is used as an input to a
DOWN, with an ASYNCH between them. The ADDER and ASYNCH run on cell 0000, while
the DOWN runs on cell 8300. The signal D, therefore, is an intercell signal. The splitting and
routing program (1) determines that D is an intercell signal, (2) finds all the primitives attached
to it, (3) routes paths from the primitive using the signal as an output to all the cells using it as
an input, and (4) adds the appropriate INPUT and OUTPUT primitives. Figure 23(b) shows the
result of this conversion. Note that since cell 0000 is not adjacent to cell 8300, there are a
number of intermediate cells which are used in forwarding the data. The splitting and routing
program is given information describing the geometry of the array being used so that it knows
how to route data properly. Once all the intercell signals have been converted in this manner, the
program continues by splitting the large primitive table into many primitive tables, one for each
cell.

47



PROC_NUM=8300

PROC_NUM=0000 PROC_NUM=0000

A

A

-

D

DOWN E

8

1 SAMPLER

ACG_RATIO=10

(a) DRAWING INPUT BY USER

PROC_NUM=0000 PROC_NUM=0000

PROC_NUM=0000

-GO—F

8

PROC_NUM=8100

S 9

ACG_PORT=0
ACG_NUM=0

PROC_NUM=8100

-,

ACG-PORT=2
ACG_NUM=0

PROC_NUM=8200

=

5 .

ACG_PORT=0
ACG_NUM=??

PROC_NUM=8200

ACG_PORT=2
ACG_NUM=0

PROC_NUM=8300

y B

ACG_PORT-=0
ACG_NUM=0

PROC_NUM=8300

DOWN

D " | SAMPLER

ACG-PORT-=2
ACG_NUM-=0

E

ACG_RATIO=10

{b} DRAWING EXPANDED BY SPLITTING
AND ROUTING PROGRAM

Figure 23. Splitting and routing.

48

76418-23



5.2.3.2 Routing Intercell Data Transfers

The last task performed by the splitting and routing program is some further processing of
the intercell data transfers. Specifically, for each cell all INPUTs and OUTPUTSs are grouped on
the basis of which port they will be using. If more than one INPUT or OUTPUT is using the
same port, the multiple INPUTs and OUTPUTSs are converted into multiple-input and multiple-
output bodies. In the code generation phase of the BDC, each multiple-input and multiple-output
body is converted into assembly code which implements a polled 1/O scheme. Each data word to
be transmitted is preceded by a header, indicating its I/O number. For example, if cell 0000
expects two different types of data from cell 8100 (over port 0), cell 8100 must precede each data
word sent to cell 0000 by a header indicating which of the two types of data it is about to send.
This header overhead is only suffered when there is more than one INPUT or more than one
OUTPUT using the same port. The user is free to define his own INPUT_BLOCK or
OUTPUT_BLOCK bodies which would be capable of block transfers, thereby reducing the
header overhead. Future versions of the BDC may incorporate more efficient routing schemes
including automatic block data transfer handling and interrupt driven I/O.

5.2.4 Code Generation Modules

The code generation modules use the data bases described above to generate assembly code
for each cell in the array. The ordering program is run once for each cell in the array taking the
global signal table and the cell’s primitive table as input. The sections below describe the use of
the code generation modules for one single cell’s code generation, since their operation is identi-
cal for each cell in the array.

5.2.4.1 Ordering Program

The ordering program uses the signal table and the primitive table to generate a control flow-
chart for each cell. This conversion from a block diagram containing parallel flow patterns into a
flowchart containing only sequential flow patterns is needed because each cell is really a sequen-
tial processor, i.e., ADDERs which look like they can run in parallel on the block diagram can
only be run one at a time on a TMS32010.

The description of the ordering program begins with a step-by-step explanation of the con-
straints on the ordering processes. The constraints are presented in order of increasing complexity
and robustness.

5.2.4.1.1 C1 — The Simplest Constraint

An ordering constraint is used to generate an ordered list of execution for each cell. After
forming this ordered list, an assembly language program is generated consisting of the code neces-
sary to execute each primitive in the list in proper order. After execution of the last primitive in
the list, the loop is restarted with the first primitive. This ordered primitive list contains each

49

-



primitive to be processed by the cell exactly once. Clearly, we cannot arbitrarily enter the primi-
tives into the ordered primitive list. The simplest constraint, C1, on the ordering process would
be:
A primitive is allowed to run only after each of its input pins has been satisfied. By
“satisfied,” we mean that given an input pin, the primitive which contains the pin of type

OUTPUT on the signal of the input pin has already been executed. Primitives having no
input pins, such as INPUT primitives, can be executed immediately, with no constraints.

For example, consider the second-order section of Figure 9. The ADDER at 15P would not be
allowed to execute until both the GAINs at 18P and 19P had been executed. Using this con-
straint dictates that the GAIN at 17P should be executed first. Now, we are stuck. The ADDER
at 16P cannot be executed because while A has been calculated, F has not been calculated. The
problem is that the feedback loop caused by the DELAY primitives has not been addressed. The
solution is found in C2.

5.2.4.1.2 C2 — Feedback Handling Constraint

C2 differs from Cl by specially handling bodies with INITIAL_VALUE properties on their
outputs:

A primitive is allowed to run only after each of its input pins has been satisfied. By
“satisfied,” we mean that given an input pin, the primitive which contains the pin of type
OUTPUT on the signal of the input pin has already been executed or the pin of type
OUTPUT on the signal of the input pin has the property INITIAL_VALUE. Primitives

having no input pins can be executed immediately, with no constraints.

In our example, the GAINs 18P, 19P, 21P, and 20P have all their input pins satisfied and can be
executed immediately. Unfortunately, whereas C2 does not get fooled by feedback, it can yield
erroneous orderings. Assume that the ADDER at 16P has been executed, yielding B. If the
DELAY were considered a normal primitive, we would execute 7P and then execute 1P. This
would be a mistake, though, because we would be setting signal E equal to signal B and then set-
ting H equal to signal E. Thus, H would equal B. This is not the effect that was desired when
those two DELAYs were drawn in series. In fact, we wanted signal H to be set to E first, then E
set to B. A better constraint is needed.

5.24.1.3 C3 — The Delay Handling Constraint

C3 correctly handles the problem of DELAYs:

Any primitive except a DELAY is allowed to run only after each of its input pins has been
satisfied. By “satisfied,” we mean that given an input pin, the primitive which contains the
pin of type OUTPUT on the signal of the input pin has already been executed or the pin of
type OUTPUT on the signal of the input pin has the property INITIAL_VALUE.
Primitives having no input pins can be executed immediately, with no constraints. After all

50



the non-DELAY primitives have been executed, the DELAY primitives are executed in
reverse order.

By “reverse” order, we mean that a DELAY cannot be executed until all its outputs are
reverse satisfied. By ‘reverse satisfied,” we mean that given an output pin, all the
primitives which contains pins of type INPUT on the signal of the output pin have been
executed.

Constraint C3 insures that DELAYs are the last primitives executed and that, for example, 7P
cannot occur before 1P.

Closely examining C3 reveals some unwanted implicit restrictions which we have made on
each of the primitives. First, we have assumed that each time a primitive is executed, it will
generate a new output. This is a reasonable assumption for an ADDER, but is not reasonable
for an INPUT or a DOWN_SAMPLER. Second, we have assumed that a primitive needs all of
its inputs to generate each and every output. This is reasonable for a MULT, but not for an
ADAPTIVE_GAIN which might have inputs appearing at different rates. Thus, we discover that
C3 correctly orders synchronous primitives only.

5.2.4.1.4 C4 — The Asynchronous/Synchronous Constraint

A new constraint, C4, is needed to handle a mixture of synchronous and asynchronous
bodies and signals. Before stating C4, the synchronous/asynchronous issues must be studied more
closely.

A synchronous signal, i.e., a signal whose lone output pin has the READY property with
value SYNCHRONOUS, contains only data. An asynchronous signal, i.e., a signal whose lone
output pin has the property READY=ASYNCHRONOUS, must contain not only data, but also
a flag indicating whether the data are valid. This flag is a single-bit value called the READY bit.
Upon output of an asynchronous signal, the signal’s READY bit is asserted. When the asynchro-
nous signal is used, the signal’s READY bit is de-asserted. Since there is only one READY bit
per asynchronous signal, an asynchronous signal can be an input to exactly one body. A synchro-
nous signal must pass through an asynchronizer before being used by the rest of the (asynchro-
nous) system. The beginning of a synchronous group is designated by (1) a SYNCH primitive or
(2) a synchronous primitive with exactly one input. The end of a synchronous block is designated
by an ASYNCH primitive or a primitive which has an output having its READY property equal
to ASYNCHRONOUS.

For each primitive p which has no inputs, the program orders all the primitives which de-
pend on p. Where synchronous groups are encountered, the primitives are ordered according to
the constraint C3. Where asynchronous primitives are encountered, a modified constraint (C4) is
used:

An asynchronous primitive is allowed to run whenever any one of its input pins has been
satisfied. By “satisfied,” we mean that given an input pin, (1) the primitive which contains

51



s
P1

(a) BLOCK DIAGRAM DRAWING

P1

NO

YES

P2

(b) FLOWCHART INTERPRETATION

P2

Figure 24. Asynchronous block diagram to flowchart conversion.

52

76418-24



the pin of type OUTPUT on the signal of the input pin has already been executed and the
READY bit is set on that signal, or (2) the signal of the input pin has the property
INITIAL_VALUE. Primitives having no input pins can be executed immediately, with no
constraints.

Using C4 and considering Figure 24(a) and (b), any primitive p2 which has an input signal s,
which in turn was output by pl, will be executed every time pl generates an output on s. Notice
that p2 is not necessarily executed every time pl is executed, but that execution is conditional on
the presence of valid data on s. Thus, the block diagram shown in Figure 24(a) has the flowchart
shown in Figure 24(b).

By using the two constraints, C3 for synchronous groups and C4 for all primitives not in a
synchronous group, it is possible to correctly order any block diagram comprised of the primi-
tives described so far. An example block diagram with asynchronous and synchronous primitives
is shown in Figure 25. 1120 is an arbitrary one-input two-output asynchronous primitive. Sim-
ilarly, 3120 is an arbitrary three-input two-output asynchronous primitive. The INPUTs are
asynchronous, meaning that there are two possible outcomes of executing the INPUT primitive:
(1) data were available, meaning that a value is placed on the output signal and the READY bit
is set; or (2) no data were available, meaning that no value is placed on the output signal and
the READY bit is not set. The asynchronous primitive at 12P is a SPLIT2, i.e., a one-to-two-
signal splitter. 11P is a SYNCH2, i.e., a two-signal synchronizer. 13P, 14P, and 15P are
ASYNCHS. The rest of the primitives are “normal” synchronous primitives.

Figure 26 shows the output, called a process table, available from the ordering program
given the input of Figure 25. Each line contains either a label, beginning with the letter “L,” or a
statement. Comments, provided by the system, are separated from the statements by semicolons.
Statements can be “imperatives” or “interrogatives.” The imperatives correspond to primitive exe-
cutions, while the interrogatives correspond to READY bit checks of SYNCH checks. The pro-
cess table begins with the execution of the INPUT at IP. After execution of the INPUT, there
might or might not be a valid data value contained in signal D. If D is valid, the INPUT primi-
tive will set the READY bit of signal D. Otherwise, the bit will remain unset. The next line of
the process table questions whether that bit is set. If it is not set, execution of primitives depend-
ing on D and following 1P will not be attempted at this time. In that case, a jump to label LO is
made. If the READY bit of signal D was set, execution continues with the SYNCH2 primitive.
In this respect, the SYNCH primitive is an exception because it is a combination of an impera-
tive statement and an interrogative statement. A SYNCH primitive tests whether all its inputs are
ready. If so, it copies its inputs to its outputs and evaluates as ready. Otherwise, it evaluates as
not ready. In this example, if both C and D are ready, the SYNCH2 copies C to H and D to I.
Execution continues with the ADDER at 2P. If the SYNCH2 either C or D had not been ready,
execution would have continued at LI.

Instead of continuing this detailed analysis of the example, some of the important characteris-
tics of the output will be highlighted. Notice the two NEGs, 7P and 6P. These are synchronous
primitives, so once M is ready, both 7P and 8P can be run without checking the status of F.

53



‘Soaurid snNOUONYIUASD Ynm wpi3plp yo0)g  *¢7 24n3t

SZ-8LY9L

L=WNN"DJV

Z=WNN"D2V
Z=14Od DOV
dlL
Z=WNN-DOV
0=1HOd~ 9V T 1.
de T 5
A H-AI del
7
0=WNN"9OV 1 -
- ozie jJ= - x- s
£=1HOd 9OV o 2 4 P w u% oziL
A T||.¥ dvL d9 dl
db _ —“ X- -
A | E g
dS dsli ds d6

1=1HOd 92V

<]

dolL

54



76418-26

FLE_TYPE<ORVEKED_PROCESS_TABLE:
INPUT (D,2,2) ; (EXI2 INPUTIP)
IF NOT D JUMP TO L@
If NOT SYNCH2 (C,D.H,1) JUMP TO L1 i (EX12-SYNCH2.11P)
ADDER (H,I,G) ;3 (EX12 ADDERZ2P)
ASYNCH (G,N) : (EX12 ASYNCHI13P)
IF NOT N JUMP TO L2

3120 (R,O0,.N,K,L) ; (EX12 .312085P)
IF NOT K JUMP TO L3
OUTPUT (K,d,3) 1 (EXI2 OUTPUT4P)

IF NOT L JUMP TO L4
OUTPUT (L,2.8) ;3 (EX12 OUTPUT3P)

INPUT (A,I,I) : (EX12 INPUT18P)
1IF NOT A JUMP TO LS
1120 (A,B,S) ; (EX12 .11209¢f)
IF NOT B JUMP TO L6
NEG (B,E) : (EXI2 NEGSP)
ASYNCH (E,R) ; (EX12 ASYNCHISP)
IF NOT R JUMP TO L7
3120 (R,Q0,N.K,L) s (EX12 .31205°P)
IF NOT K JUMP TO LS8
OUTPUT (K,8,3) ;s (EX12 OUTPUT4P)

IF NOT L JUMP TO L9
OUTPUT (L,2.8) s (EX12 OUTPUT3P)

IF NOT S JUMP TO L1# -
SPL1T2 (S.M,C) ; (EX12 SPL1T2.12P)
IF NOT M JUMP TO L1
NEG (M,F) ;s (EXI2 NEG7P)
NEG (F.P) : (EX12 NEG6P)
ASYNCH (P,0) ; (EX12 ASYNCH14P)
1F NOT O JUMP TO L12
3120 (R,Q,N,K,L) ; (EX12 .31205P)
1F NOT K JUMP TO L13
ouUTPUT (K,H,3) ;3 (EX12 OUTPUT4P)

IF NOT L JUMP TO L14
ouUTPUT (L,2,8) ;s (EX12 OUTPUT3P)

IF NOT C JUMP TO L1S
1F NOT SYNCH2 (C,D,H,I) JUMP TO L16 ; (EX12 SYNCH2.11P)
ADDER (H,I1,G) : (EX12 ADDER2P)
ASYNCH (G,N) i (EX12 ASYNCH13P)
IF NOT N JUMP TO L17
3120 (R,Q,N,K,L) ; (EX12 .31205P)
IF NOT K JUMP TO L18
OUTPUT (K,#,3) i (EX12 QUTPUT4P)

IF NOT L JUMP TO L1S
OUTPUT (L.2,.8) ; (EXIZ2 OUTPUT3P)

Figure 26. An ordered process table.

55



This situation is correctly handled in the ordered process table. Next, notice that the 3120 at 5P
is found in the ordered process table four times. This accounts for the many different scenarios
preceding its execution. Asynchronous primitives require this type of special handling since they
may execute without receiving all of their inputs. This code repetition/speed trade-off is dis-
cussed at the end of this section. The process table for the IIR/FIR filter example is shown in

Figure 27 (left column).

FILE_TYPE=ORDERED_PROCESS_TABLE:
PROCESSOR '8388°':
INPUT (YY2,222.2) ; (RTPG INPUT29P)
IF NOT YY2 JUMP TO L8

SYNCH! (YY2.,CC) ; (IIRFIR SYNCH1.31P)
GAIN (L.0.234) : (1IRFIR GAINZ5P)
GAIN (N,UNB,.567) (1IRFIR GALINZ24P)
GAIN (CC.M.575) : (IIRFIR GAIN26P)
ADDER (M.,Q.P) : (IIRFIR ADDER3ZP)
ADDER (P, UNZ,OUT) : (I1IRFIR ADDERZ29P)
OUTPUT (OUT.@.8) : (IIRFIR OUTPUT22P)
DELAY (L.N) : (IIRFIR DELAY27P)

DELAY (CC.L) (1IRFIR DELAY28P)

Lg:
END_PROCESSOR:
PROCESSOR 'B288°':
INPUT (YY1,221.2) : (RTPG INPUT27P)
If NOT YYI JUMP TO L@
QUTPUT (YYl1.Z222.8)
La:
END_PROCESSOR;
PROCESSOR 'B188°:
INPUT (YY8,228.2) : (RTPG INPUT25P)
IF NOT YYZ8 JUMP TO L@
OQUTPUT (YY@8.221,8) : (RTPG QUTPUT26P)
Lg:
END_PROCESSOR:
PROCESSOR 'Q800°':
INPUT (DD.08.2) ; (1
IF NOT DD JUMP TO L
{

(RTPG OUTPUTZ28P)

RFIR INPUT23P)

|
g
SYNCHI (DD.EE) ; IIRFIR SYNCH1.32P)
GAIN (E.D.29888) ; (IIRFIR GAINISBP)
GAIN (E,1,148) ; (1IRFIR GAIN2IP)
GAIN (H,G.2488) : (IIRFIR GAINI19P)
GAIN (H,J0,2355) : (IIRFIR GAIN28P)
GAIN (EE.A.1588) : (IIRFIR GAINIT7P)
ADDER (J.1,K) ¢ (IIRFIR ADDERI4P)
ADDER (G,D,F) : (IIRFIR ADDERISP)
ADDER (A,F,8) : (IIRFIR ADDERI1GEP)
ADDER (B8.K.AA) ; (1IRFIR ADDER13P)
ASYNCH "(AA.B88) : (IIRFIR ASYNCH33P)
DELAY (E,H) : (IIRFIR DELAYIP)
DELAY (B.E) : (IIRFIR DELAY?P)
[F NOT 88 OUMP TO LI
OUTPUT (88.228.8) : (RTPG OUTPUTZ24P)

Coulide

Lg:

END_PROCESSOR:

END.

adder

delay

MACRO EXAMPLES

Smacro a,b,c
zalh :a.s:
addh DS
sach %C. 'Sh
Send

Smacro a,b
lac ‘a.s:
sacl :b.s:
Send

Figure 27. IIR/FIR process table; primitive macro programs.

56

76418-27



5.2.4.2 Assembly Code Generator

The last step in the block diagram compilation is the translation of the output of the order-
ing program into TMS32010 assembly code. This is easily accomplished by creating a library of
macro programs which roughly correspond to each graphical primitive. Figure 27 (right column)
shows the macro programs corresponding to the ADDER and DELAY primitives. Information
from the ordered process table, along with some additional information from the signal and prim-
itive tables, is used during assembly code generation. Figure 28 shows part of the assembly code
for cell 0000 in the IIR/FIR example.

5.3 Task Assignment Tool

An automated procedure has been developed to assign parts of a large problem, described in
a data flow language, to cells in the array. This procedure uses an algorithm called “simulated
annealing”!0 to find an assignment with minimum “cost.” The cost of an assignment is deter-
mined by summing the charges for “penalties” incurred by the assignment. The group of penalties
is flexible, but might include: (1) “Excessive Idle,” i.e., too many processors in the array are idle
too often; or (2) “Excessive Intercell Communication,” i.e., the processing required for intercell
communication is too large a fraction of total processing time. After associating a charge for
each penalty incurred, and by following the six steps listed below, the assignment with the min-
imum cost can be identified:

(1) Randomly assign tasks to cells.

(2) Compute cost of current assignment.

(3) Randomly move one task from one cell to another.
(4) Recompute cost.

(5) Accept this change with probability p.

(6) Decrease p by some percentage.

(7) Decrement count. If zero, finished. Else, go to (3).

Future plans call for integration of the task assignment tool with the rest of the BDC.

5.4 Efficiency and Evaluation

The high-level software tools described above can be evaluated in two areas. First, we must
judge how effective the tools are at reducing the user’s software development task. Second, we
must determine whether the software which is output by the tools makes efficient use of the
array hardware. Evaluation of the high-level software in these two areas is the subject of the rest
of this section. The chart shown in Figure 29 shows some example evaluations.

57



(areinaino saw !

(deTnrvo wraarr) ¢

0‘ed o

ToTTX 26

INIAYE aNY
T+Zs0 O OV
TN ININVE NI

0°022°8¢ lndno

11 28
ASE QXY
‘WO o3
13°QEE ‘NG IONaI
1 Vs
g o7l
(dexv12Q ¥1911) ¢ '?  XVia
H VS
o7
(dTxv12@ wIdEIl) ¢ H'2  Xviaq

AgE TOVS
AgE W0
UL O V1

13

(dCCHONASY ¥IJAII) ¢  QU'VW HONXSY

YW TN
1 Q¥
g o1
(acTEzaQvy ¥I13MII) ¢ wWl'de  @aav
€ VS
4 aav
Y ov1
(d9Twzaqy ¥INII) ¢ @°I'V  w@aay
3 Vs
a Qav
0 o1
(asTe3oqy wIdNIl) °  3°a'D  wloay
I Vv
1 Qav
r o
(dvrazogvy wrquI1) ¢ X'I°r  w@aay
Y'Y VS
oNg
00ST 1XdH

S
a

005tV 32 NIV

43

T o8%d IPTT STISTT 9067 €0ST L Inf

‘0000 1192 40f apod Ajquiassy g7 aindid

€O8Y CS¥0 LT00
€S¥0 1100

¥$¥0 IS¥O
0042 TS¥O 0100
aL6L OS¥0 6000
OLTL Iv¥Y0 8000
ALYy IY¥0 LOOO
IY¥0 9000
aY¥0 $000
aryo Y000
2Y¥0 €000
avyo 1000
¥ 1000
Y500

$$¥0 Q¥
0041 O¥¥0 €000
Y06L S¥¥O LO0O
0LOT Y¥¥O 1000
€500
LO0S 6¥Y¥O TOOO
TOOT 8¥Y¥0 1000
£$00
€005 L¥Y¥O 000
LOOT 9Y¥FO TOOO
1500
IO LOOO
YO0§ SYFO 9000
YOVYL ¥¥¥0 S000
0L0T CY¥O Y000
CY¥O €000
€005 TY¥O L0000
T00Z TY¥O 1000
0500
1005 O¥¥0 €000
2000 2C¥0 T00O
TOOT IC¥O 1000
6%00
00§ QEVO COO0
6000 O€¥0 LO00
C00T €C¥YO T000
8700
6005 YE¥O COO0
$000 6€¥0 TOOO
YOOr 8€¥0 TOO0
13 0%
2005 LEYO (OO0
2000 Y0 L0000
Qo0 $€¥0 T000
9500
000% ¥YC¥YO Y000
a81L CCYO €000
2058 ILY0 LO0O
SOVY TL¥O T000
§$¥00
q00s OC¥O Y000
381L IL¥O €000

(dotNIvo ¥IUIl) ¢ SSCT'L'H NIVD

(d6TNIVD w1JuII) ¢ 0OYL‘O°H NIVD

(dTTHTVD WIZEID) ¢ 0PI’ NIVD

(40INIVD wWIjuIl) ¢ 000r°q‘3 KIVD

319 XQvay ‘¢
DI DL WID ¢

{42C TIORXS WIXNII) ©  32°G0 THORXS

01°800°KAG  IONJI

1I1¢ xaQvay IO 138 ¢
IvQ il ‘'t

(1Y

€4Q°2N0 OV

‘0q NI

oTX 24

INIAVE QXY
el VIO IV
IJLINIINIXVE NI

(dceznax: WINEII) ¢ r°0'0d  INANI

34839

8Z-8Lv9L

€c69 Ir¥0 Looo
qOvy QI ¥0 1000
y¥00
Y005 2I¥0 %000
29dL ST¥O €000
0968 VYT¥O TOOO
gOY9 6T¥0 T000
€¥00
200§ 9I¥0 Y000
201L LTYO €000
2808 9T¥O LOOO
LOY9 ST¥O T000
14 40.°]
$005 ¥I¥O Y000
201L CTYO €000
ogLe TT¥O tooo
LOYY TZ¥O T000
TY00
TL¥O 0T00
9005 OT¥O 6000
900C JT¥O 8000
IT¥0 LOCO
YO0§ IT¥O0 9000
¥o6L QI¥O $000
TLBL OTHO Y000
0LTT §T¥O €000
q1¥0 000
gI¥0 1000
o0

¥$¥0 YI¥O
0013 ¢1%0 (00O
yO6L 8T¥O LOOO
OLTT LT¥O TO00
6C00
LT¥O 6100
LT¥O 8700
LT¥O LTO0
005 9TV 9700
YOYL ST¥O $T00
OLTT ¥YI¥O ¥T00
¥1¥%0 CT00
90LY CT¥O LT00
€T¥0 TT00

LT¥O LT¥O
0023 TT¥0 0100
2L6L OTHO 6000
OLYT 20%0 8000
LYY 20¥0 (OO0
20¥0 9000
200 5000
20%0 ¥000
20%0 (000
20¥0 000
2070 T000
8€00
2070 (C00

T edvg ISTT JITIITT 9967 80:§T L 100

58



6-CHANNEL FILTER BANK
(Not Including 1/0)
LOOP TIME PROGRAM LENGTH DATA MEMORY
GENERATOR () (in Words) LOCATIONS NEEDED
BDC (Simple Primitives) 37 186 72
BDC (Extended Primitives) 14 34 30
HAND CODED 14 34 30
8-POINT FFT
(Complex Data, No Scaling, No 1/0)
LOOP TIME PROGRAM LENGTH DATA MEMORY
GENERATOR (ks (in Words) LOCATIONS NEEDED
BDC (Simple Primitives) 26 1024 48
BDC (Extended Primitives) 26 128 48
HAND CODED 26 128 20

76418-29

These charts show the relative performances of the three methods of code generation. The “"BDC Simple
Primitive” method limits the block diagram to adders, mults, etc. The “BDC Extended Primitive” method
allows the use of higher-level primitives, e.g., a FILTER_.BANK primitive. The “Hand Coded” method is
self-explanatory.

Figure 29. BDC vs manually written code.

59



5.4.1 Easing the Programming Task

Since the primary design goal of the BDC was to automate the MIMD software develop-
ment process, we would expect that for any implementation of a BDC to be judged a success, it
must substantially reduce the amount of time the user spends programming. Using this criterion,
preliminary results indicate that the BDC implementation described in this report is a success.
First, the fact that the experienced user does not get bogged down in TMS32010 assembly code
generation causes a marked decrease in the amount of time spent developing a program. A
novice user need not learn the TMS32010 assembly language at all. Second, the BDC is, for the
most part, processor independent (i.e., should a new MIMD array be developed in the future,
only the assembly code generation module would need to be substantially modified). The inter-
face to the user could remain virtually identical. This is the same sort of criterion which one uses
to judge standard programming languages, namely, source code transportability among various
hardware implementations.

5.4.2 Efficiency

The second area of evaluation of the BDC is efficiency. Efficiency encompasses many
notions of performance; so, for the purposes of this report, we will consider the following
comparisons:

(1) Speed of compiled code vs speed of manually written code,
(2) Size of compiled code vs size of manually written code, and

(3) Data memory allocation in compiled code vs data memory allocation in manually
written code.

We will find that in all three of these comparisons BDC code, while not as efficient as manually
written code, performs reasonably.

In the speed comparison, we find that applications drawn by the user containing primitive
elements such as ADDERs and MULTs, or nonprimitive elements which are defined in terms of
primitive elements such as ADDERs and MULTS, take almost twice as long to run as their
hand-coded counterparts. The reason for this is twofold. First, the compiler is unable to make
use of the index registers. Thus, special TMS32010 pipelining instructions which use the index
registers as pointers are never generated by the BDC output. Second, the compiler is unable to
use the accumulator as a storage location between bodies. This means that many intermediate
values, which might have been stored in the accumulator, must be written to and then read from
data memory. However, if the user has more-complex primitive bodies available to him (e.g., a
primitive body that represents a filter section), we find that the efficiency of the BDC output can
approach 90 percent of the efficiency of hand-coded programs. Thus, depending on the size of
the library of primitive bodies, the speed of BDC code ranges anywhere from 50 to 90 percent of
the speed of hand-coded programs.

60



In the program length comparison, the results depend greatly on the particular application.
Since the BDC generates in-line code, rather than subroutines, any application which makes use
of the same code module many times will be much longer if generated by the BDC than if gener-
ated by hand. One reason for inefficiency is that in-line code runs considerably faster than sub-
routines and, since most real-time applications are constrained by the speed of the TMS32010
(rather than the size of its program memory), this trade-off seems justified. In fauture versions of
the BDC, the user would be given the option of in-line code or subroutine generation. A second
reason for inefficiency is the need for data memory access when hand-coded programs can use
the accumulator. This inefficiency was also seen in the speed comparison.

In the data memory use comparison, the results show that the BDC is quite inefficient com-
pared with the hand-coded programs. Once again, we see that the reason for this inefficiency is
the fact that the accumulator cannot be used to store intermediate results. For this reason, future
versions of the BDC will make more efficient use of the accumulator as a temporary storage loca-
tion. However, when the primitive library is expanded to include more-complex modules, the use
of the data memory decreases dramatically.

5.4.3 Conclusion

Concluding, we see that if the BDC makes use of an expanded primitive library, its output
is comparable to hand-coded programs in many areas of efficiency. When the added BDC benefit
of ease of use is also considered, the BDC appears to be a success.

There are many areas for improvement of the BDC. First, data-type support would be valu-
able in order to use the BDC with hardware supporting different data types. If an array were
built out of cells centered around a floating-point processor, BDC data-type support would be
quite valuable. Second, the BDC should be given more knowledge about the type of cell for
which it is generating code. In the TMS32010 case, an improvement would be to pass variable
values in the accumulator, instead of in data memory. This would increase speed and decrease
memory use at the same time. Third, as already mentioned, program length might be significantly
reduced without an unreasonable effect on speed if subroutines were generated for common-code
blocks instead of in-line code. Fourth, extended signal and body properties could be provided to
allow more-sophisticated applications. These properties could support more-complex data struc-
tures, such as circular buffers and multiple time scales. Fifth, some of the explicit boundaries,
such as SYNCHs and ASYNCHs, which the user must place between asynchronous and synchro-
nous blocks could be inferred by the system. Finally, the BDC could be merged with the task
assignment module forming a more-complete system. Part of the task assignment module would
be an algorithm for determining the percentage of real time that each processor was running.

61



6. CONCLUSIONS

In conclusion, the work undertaken in this report has encompassed many areas. First, a com-
plete MIMD hardware system was designed, implemented, and debugged. Second, software was
provided to make the hardware controllable from a Host Computer. Third, the hardware was
demonstrated in a particular application, the 12-channel filter bank. Finally, high-level software
tools were designed and implemented to make the hardware more attractive to use by easing the
software development task.

What has been created is a complete system which can be used as a general digital signal
processing facility. The fact that the MIMD system can be programmed automatically is novel,
and forms the basis of the original research of the report. The existing system is modular enough
that a new hardware design having different cell structure could still make use of many of the
low- and high-level tools already existing.

A 16-cell array has recently been built and debugged. This new hardware will afford us the
opportunity to test and, if necessary, upgrade both the low- and high-level software tools.

Future research and development would be concentrated in two areas. First, the existing sys-
tem could be upgraded by implementing any of the minor upgrades described at the end of Sec-
tions 3 and 5. Basically, these upgrades were (1) hardware modifications to support breakpoints
and single stepping, and (2) various modifications in the BDC to improve efficiency.

The second area of future research would be in major hardware and software modifications.
In the area of hardware, “cell on a chip” architectures which would be supported by the type of
low-level tools described in this report could be designed. In the software field, a BDC which
could naturally handle block-type data transfers would be a more general-purpose tool than the
BDC described in this report.

63



ACKNOWLEDGMENTS

I would like to thank Gerald O’Leary and Bruce Musicus for supervising the
writing of my Master’s thesis, on which this report is based. Gerry, once
again, was very helpful in providing both technical advice and general
guidance; his help was invaluable. In addition, I'd like to thank Ben Gold,
Roger Hale, Al Huntoon, and Joe Tierney for answering my technical
questions and Ed Adamczyk and Al Davison for their expert technical
assistance.

65



10.

REFERENCES

M.J. Flynn, “Very High-Speed Computing Systems,” Proc. IEEE 54,
1901-1909 (1966).

J. Blackmer, G. Frank, and P. Kuekes, “A 200 Million Operations Per
Second (MOPS) Systolic Processor,” in Real-Time Signal Processing IV,
Proc. SPIE 298, 10-18 (1981).

A. Gottlieb, R. Grishman, C.P. Kruskal, K.P. McAuliffe, L. Rudolph, and
M. Snir, “The NYU Ultracomputer — Designing an MIMD Shared Memory
Parallel Computer,” IEEE Trans. Comput. C-32, 175-189 (1983).

M.C. Pease, III, “The Indirect Binary n-Cube Microprocessor Array,” IEEE
Trans. Comput. C-26, 458-473 (1977).

M.A. Zissman, “An Array of Digital Signal Processors,” Bachelor’s Thesis,
MIT (1985).

A.L. Fisher, H.T. Kung, L.M. Monier, and Y. Dohi, “The Architecture of a
Programmable Systolic Chip,” J. VLSI Comput. Syst. 1, 153-169 (Fall 1984).

G.M. Amdahl, G.A. Blaauw, and F.P. Brooks, Jr., “Architecture of the IBM
System/360,” IBM J. Res. Dev. 8, 87-100 (1964).

T.P. Barnwell, III and C.J.M. Hodges, “A Synchronous Multi-
Microprocessor System for Implementing Digital Signal Processing Algo-
rithms,” SOUTHCON/82, Orlando, Florida, Vol. 21, No. 4, 23-25 March
1982, pp. 1-6.

J.R. Mann and F.M. Rhodes, “A Wafer Scale DTW Multiprocessor,”
ICASSP 86, Vol. 3, 8-11 April 1986, pp. 1557-1560.

S. Kirkpatrick, C.D. Gelatt, Jr., and M.P. Vecchi, “Optimization by Simu-
lated Annealing,” Science 220, 671-680 (1983).

67



APPENDIX — USER COMMANDS

While in the Host Control mode, the user can issue instructions to read and write the
following:

TMS32010 Register Set
TMS32010 Stack
TMS32010 Data Memory
Cell Offchip Memory

Commands which display, modify, or load memory can only be executed while the array is in
Command mode. Command mode is entered when the reset button is pushed or when a stop
command is issued. Following is a list of commands which are currently available to the user.

Argument Definitions

filename: A file specification recognizable by UNIX, e.g., /u0/maz/tms320/bpf.obj (or just
bpf.obj if the array control program was called from /u0/maz/tms320). The file should be the
object code resulting from the assembly of a TMS32010 assembly language program in the Texas
Instruments SDSMAC format.t

cell__address: The hexadecimal representation of the relative address of a cell. Relative addressing
begins from the cell which is connected to the HNI. Addressing follows the same rules as those
for intercell communication, e.g., the cell which is one cell to the east and one cell to the south
of the cell connected to the HNI has address 8101 (=1000 0001 0000 0001).

memory__address: The hexadecimal representation of a memory address. Valid data memory
and addresses run from 0000 to 008F. Valid external memory addresses run from 0000 to OFFF.
Leading zeros can be dropped.

new__value: Any 4-digit (16-bit) hexadecimal number, e.g., A8C4.

1 “TMS32010 Assembly Language Programmer’s Guide,” Texas Instruments (1983).
Commands (Square Brackets Contain Optional Part of a Command)

l{oad] filename cell__address

Loads the file specified by filename into the cell at relative address cell__address.

dfisplay] dfata] mfemory] cell__address

Displays the entire 144-word data memory of the cell at relative address cell _address.

69



dfisplay] e[xternal] mfemory] cell__address memory__address

Displays 128 words of external memory, beginning at memory address memory__address, of
the cell at relative address cell__address.

mfodify] d[ata] m[emory] cell__address memory__address new__value

Sets the location specified by memory__address to new__value of the data memory of the
cell located at relative address cell _address.

rfun]

Sends the run command to the array.

sftop]

Sends the sfop command to the array.
c[lear]

Clears the CRT screen.

hfelp]

Lists the available user commands on the screen below the command line.

nfohelp]

Removes the list of user commands from below the command line.

qluit]
Exits the array control program back to UNIX exec.

Notice that there are no display register or modify register commands. These are not neces-
sary because each cell automatically writes the contents of most of the TMS32010 registers to
data memory when entering Command mode, as shown in the following table:

70



Memory Location TMS32010 Register

88 Low Word of Accumulator
89 High Word of Accumulator
8A Auxiliary Register 0

8B Auxiliary Register 1

8C Top of Stack — PC Register
8D Second on Stack

8E Third on Stack

8F Bottom of Stack

In addition, modifying the data memory locations listed above will modify the corresponding reg-
isters when a run command is issued.

71



UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE T T
1. REPDRT NUMBER 2. GDVT ACCESSION NO. 3. RECIPIENT'S CATALDG NUMBER
ESD-TR-86-102
4. TITLE (and Subtitie) 8. TYPE DF REPORT & PERIDD COVERED

Technical Report
An Array Computer for Digital Signal Processing

6. PERFORMING ORG. REPORT NUMBER
Technical Report 759

7. AUTHDR(s) | 8. CONTRACT DR GRANT NUMBER(s)
Marc A. Zissman F19628-85-C-0002
9. PERFDRMING DRGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PRDJECT, TASX
Lincoln Laboratory, MIT AREA & WDRK UNIT NUMBERS
P.O. Box 73 Program Element Nos. 33401F
Lexington, MA 02173-0073 and 64754F
11. CONTRDLLING OFFICE NAME AND AODRESS 12. REPDRT DATE
Air Force Systems Command 5 January 1987
Andrews AFB
Washington, DC 20334 13. NUMBER OF PAGES
82
14. MDNITDRING AGENCY NAME & ADDRESS (if different from Controlling Office) 15. SECURITY CLASS. (of this Report)
Unclassified

Electronic Systems Division

Hanscom AFB, MA 01731 15a. DECLASSIFICATIDN DDWNGRADING SCHEDULE

1B. DISTRIBUTIDN STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NDTES

None

19. XEY WDRDS (Continue on reverse side if necessary and identify by block number)

block diagram compiler multiprocessor
digital signal processing processor arrays
MIMD architecture

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

This report describes the implementation of a MIMD array computer designed and built at the
Lincoln Laboratory for signal processing. Some of the software tools needed to successfully use such an
array are discussed, and the software package written to allow debugging of the array from a host
computer is described. The first application of the array, a 12-channel filter bank front-end for a
speech recognition system, is discussed. Finally, a block diagram compiler is described. This compiler
converts block diagrams, entered at a CAE workstation, into efficient assembly code for all cells in the
array.

DD FosM 1473 EOITION OF 1 NOV 85 IS OBSOLETE UNCLASSIFIED

1 Jan 73 SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)



