
RD-f?@ 296 THI*N-I.LED uE THEORIES WS THIRl WPLICRTIONS IN TE in1
TORSIOINL STRENST. (U) DEFENCE RESERECH ESTROLISUENT
NYRLNETIC DRRTNSUTH (NOMN SCOTI.. T R VERNON ET AL

UwNCfiSF JR N D EfdT - TN-SPaSF/ 131

MENNENhhhh
Ehhmmhhhhhh



1-2 114 1*6
1 1N

-UI **.** II ,



UNLIMITED DISTRIBUTION

I4National Defence Defense nationale
Research and Bureau de recherche
Development Branch at d6veloppement

to TE::CHNICAL MEMORANDUM 87/202

N January 198'

00

%%; .1 zs

THIN-WALLED BEAM THEORIES -

AND THEIR APPLICATIONS IN
THE TORSIONAL STRENGTH ANALYSIS

OF SHIP HULLS

T.A. \Vernon -Y. Nadeau

DTI C
DOISMIRON IrATEEI A *LECTE

Ap;pwved it publc 1036as MAR 2 6W
D~stz'-butma Uujmited

Defence -Centre de0
AResearch Recherches pour la

Establishment Defense
Atlantic / Atlantique

Canadta
~7 3 t



IL7.0 W-

UNLIMITED DISTRIBUTION

* National Defence Def ense nationale
Research and Bureau de recherche
Developmnent Branch et developpemnent

THIN-WALLED BEAM THEORIES a

AND THEIR APPLICATIONS IN
THE TORSIONAL STRENGTH ANALYSIS

OF SHIP HULLS

T.A. Vernon - Y. Nadeau '

January 1987

Approved by B.F. Peters A/DirectorITechnology Division

DISTRIBUTION APPROVED BY

AID/TO

TECHNICAL MEMORANDUM 87/ 202

r %

Defence Centre de t

Research Recherches pour la
Establishment Defense
Atlantic Atlantique

'.w...a,.

Vaid
kk,-o.



Abstract

Unified developments of the St-Venant and warping-based thin-walled beam theories
and their application in the torsional analysis of ship structures are presented. Open cell,
closed cell and multi-cell configurations are treated. The warping-based torsional theory,
which accounts for out-of-plane displacements and displacement restraints, provides axial
stress distributions resulting from bimoments and in general offers improved predictions
of shear stress distribution in thin-walled beams over the St-Venant theory; however, the
use of that theory necessitates a more detailed cross-sectional property evaluation. The
generalization of the warping function to a displacement field independent of the twist is
discussed, as are several iterative methods of including warping shear deformations. The
application of the prismatic warping theory to the analysis of non-prismatic beams is dis-
cussed, and the flexural-torsional beam method proposed by Pedersen is developed. This
method, in conjunction with a computer program to calculate the required cross-sectional
properties, has been integrated into a general torsional stress analysis capability within
Defence Research Establishment Atlantic (DREA). The DREA system, which can account
for geometric discontinuities in a structure, has been developed as an alternative to finite
element methods, and is evaluated here via comparison with detailed finite element analy-
ses for several prismatic beams with discontinuities. The flexural-torsional model appears
to give representative behaviour only for structures which possess considerable transverse
rigidity. Finally, the beam theory is applied to the stress analysis of the hull of a frigate.
The shear and axial stresses predicted for the applied torsional load are quite low, despite
the existence of significant geometric discontinuities in the hull.
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R~sum6 '

Sont pr~sent6s des d~veloppements unifi6s de la th~orie de
Saint-Venant et de la th6orie des poutres t paroi mince fond~e sur le
gauchissement ainsi que leur application l'analyse torsionnelle des
structures navales, pour des configurations A cellule ouverte, ; cellule
ferm~e et A cellules multiples. La th~orie des torsions fond~e sur le
gauchissement, qui explique les d~placements hors-plan et les limites de
d~placement, donne les distributions des contraintes axiales r6sultant des
bimoments et, de fagon g~n6rale, permet de mieux pr~voir la distribution des
contraintes de cisaillement dans les poutres i paroi mince que la th~orie de
Saint-Venant; elle n~cessite toutefois une 6valuation plus d~taill6e des
caract~ristiques sectionnelles. La g~n~ralisation de la fonction de r
gauchissement en un champ de d~placement ind6pendant de la torsion est
6tudi~e, ainsi que plusieurs m~thodes it~ratives d'inclusion des deformations
de cisaillement de gauchissement. L'application de la th~orie du
gauchissement prismatique l'analyse des poutres non prismatiques est
6galement discut~e, puis la m~thode des poutres de fl~chissement-torsion
propos~e par Pedersen est 6labor~e. Cette m~thode, combin6e i un prograimme de
calcul des caract~ristiques sectionnelles n~cessaires, a 6t6 incorpor6e i un
syst~me d'analyse g6n6rale des contraintes torsionnelles au Centre de
recherche pour la D~fense/Atlantique (CRDA). Le syst~me du CRDA, qui peut
expliquer les discontinuit~s g6om~triques d'une structure, a 6t mis au point
commue substitut aux m~thodes A differences finies. Son 6valuation est faite
en coxnparaison avec des analyses d6taill~es i diff~rences finies de plusieurs
poutres prismatiques pr~sentant des discontinuit~s. Le mod~le
fl6chissement-torsion semble produire un comportement repr~sentatif uniquement
des structures qui poss~dent une rigidit6 transversale considerable. Enf in,
la th~orie des poutres est appliqu~e i l'analyse des contraintes de 19 coque
d'une fr~gate. Les contraintes axiales et de cisaillement pr6vues pour la
charge torsionnelle appliqu6e sont assez faibles, en d~pit de l'existence de
discontinuit~s g~om~triques importantes dans la coque.
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Notation

A cross-section area

b length of discrete thin wall segment

B hull breadth

c,, cZ coordinates of cross-section pole (shear center)

Cw hull waterplane area coefficient

CB hull block coefficient

D hull depth, vector of generalized displacements

E modulus of elasticity

* shear modulus

h distance from profile line tangent to shear center

IV second moment of area about the Y-axis

I, second moment of area about the Z-axis

It, product of area

I" f w2 dA sectorial moment of area

I,,, f wy dA sectorial deviation moment

I,, f wz dA sectorial deviation moment

Ihh f h2 dA central moment of area

It St-Venant torsional constant

k warping parameter = I-V EI,

I length of beam

L total hull length

m, Mn, m, distributed torsional and flexural moments

M, bimoment
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n number of segments in the cross-section

nc number of cells in a cross-section

pX, p1 , pZ distributed body forces

P., Py, P, concentrated body forces

P(x) particular solution of a differential equation

qi, q2 St-Venant shear flow, warping torsional shear flow

QV, Q shear forces along y and z axes respectively

normalized St-Venant shear flow

s curvilinear coordinate along wall profile %

so, s1  arbitrary and principal curvilinear coordinate origins

SY static moment= f y dA

Sz static moment = f z dA .
S..

S, statice moment =f w dA

SY static moment function = f' yt ds ,.

j static moment function = fo' zt ds .

S~f, static moment function = wt ds

t wall thickness

T total torsional moment about shear center, kinetic energy

T, St-Venant torsional moment

T,, warping torsional moment

u normal displacement with respect to the profile line

U internal energy

v tangential displacement along the profile line

w longitudinal displacement

V i,
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W potential energy of the loads

x longitudinal coordinate

Xe vector of integrable functions

y, z cartesian coordinates in the plane of the cross-section

', a' warping compatability coefficients at station i

f horizontal bending slope

- shear strain in cross-section wall

6 longitudinal deformation due to axial loads at a section

engineering strain, shear center offset
I.

17 vertical offset of a point from longitudinal axis

o warping factor

K general coefficient matrix

horizontal offset of a point from longitudinal axis

p warping moment parameter = hIhh -It

a, warping normal stress

r general shear stress

normalized St-Venant shear stress

r1  St-Venant shear stress

r2 warping shear stress

4 rotational angle

€' rotation per unit length (twist)

w sectorial coordinate

O1 frequency

41 phase angle

C(s) sectorial derivative -9a
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1 Introduction

Thin-walled beams have found many applications in modern structural engineering be-
cause of their potentially high strength/weight ratios. Much of the early development of
engineering thin-walled beam theory has its roots in aircraft design and analysis, where
weight savings have always been particularily important. Similar methods have tradition-
ally been applied in the stress and vibration analysis of ship hulls, as these structures, -.

although of a different scale, are well within the dimensional assumptions of the thin-walled
theory.

The construction of larger and more novel hull forms in the past two decades has led
to a demand for better analytical tools for the prediction of ship hull flexural and torsional
response. While numerical techniques such as the finite element method can provide the
desired capability, the time consuming nature of that form of analysis has provided moti-
vation for further development of thin-walled beam modelling methods. These more recent
developments in the thin-walled beam theory are the subject of this report.

There are two inherent characteristics of thin-walled beams which can be a drawback
to their utilization: the higher level of shear stress which is generally present in the thin
walls, and the tendency of such beams to warp out of plane under torsional or flexural -
loading. The higher wall stresses can lead to shear buckling of very thin plate structures, a
particular concern in the aerospace industry, but not generally a problem with ships because
of their greater plate thicknesses. The warping tendency is particularily severe in the case of
torsional loading of open cell sections, Figure 1, a cross-sectional configuration common in
ship hulls. In such cases, the application of the traditional St-Venant theory of torsion can
lead to inaccurate stress predictions. This inadequacy is primarily a result of the neglect
of the warping deformation, which is a function of the geometry of the section in much the
same manner as bending is related to the area moments of the section. In attempting to
obtain a better stress prediction capability, the modern beam models for torsional analysis
account for warping.

As suggested, the requirement for a detailed torsional analysis capability for ship hulls
is relatively recent. Most conventional hulls have adequate torsional resistance simply as a -

result of the closed, cellular configuration of the shell and decks, or from the inclusion of
torsion boxes, Figure 2. However, if the cellular nature of the hull is highly discontinuous,
or if large sections of the hull are open, torsional loading can induce quite high shear and
localized axial stresses in the vicinity of the geometric discontinuities, and deformations
can be high in the open sections. This has been a significant consideration in .he design
of second and third generation container ships, and torsional analysis methods for ship
structures have been developed to assess displacements and stresses in such designs. These
methods also have applications in the design and analysis of modern warship hulls which
often have large discontinuities and open sections to accomodate uptakes and downtakes,

°.'-..



weapon systems, or elevator shafts. Prismatic beam torsion theories are generally used,
whereby the hull is modelled as a series of prismatic segments. With a consistent derivation
of the coupling and compatibility parameters required for linking the beam segments, these
simpler models can provide stress predictions which compare reasonably well with full scale
finite element and experimental results. However, in certain cases, the assumptions on
which these theories are generally based are not valid, and the beam theory predictions are
little better than poor approximations of the true structural response. Unfortunately, the
relaxation of the violated assumptions often leads to an intractable solution method for the
complex geometries of ship cross-sections.

The available comprehensive literature on this subject originates mainly from German
and northern European authors, but much of this is lacking in general context and tends
to be problem specific. As well, the notation is inconsistent and the mathematical develop-
ment, with few exceptions, is often vague and incomplete. With these considerations, the
aim of this report is to provide a unified development of both the St-Venant and warping
torsion theory, emphasizing the different assumptions underlying each model. The devel-
opment treats open, closed and multi-cell configurations separately for both theories and
also presents the further refinement of the warping torsional model proposed by Kollbrunner

and Hajdin(1) and discusses the iterative techniques suggested by Westin(2 ) and Pittaluga(3 ).
Section 2 presents a review of the St-Venant theory, and the warping theory is developed

in Section 3.
Although warping based theories can provide quite adequate displacement and stress

predictions for prismatic beams, many structures of interest, such as ship hulls, are non-
prismatic. Methods of treating this problem are discussed in Section 4. As an example of
the warping theory generalized to include longitudinal cross-sectional property variation,
the formulation of the differential equations of equilibrium as proposed by Pedersen(") is also

presented in Section 4. This method, which models horizontal beam flexure and torsional
displacements, also accounts for larger geometric discontinuities in the structure via coupling

coefficients relating the bending and warping functions on either side of a discontinuity. The
large cutouts for intakes and uptakes in warship hulls are examples of such discontinuities.

A modified version of the fiexural-torsional solution algorithm presented in Section 4
is used in conjunction with several programs developed at Defence Research Establish-

ment Atlantic (DREA) to provide a simpler alternative to finite element analyses of thin-
walled structures under torsional loading. This system, described in Section 5, utilizes
the TPGEOM( s ) program to establish a cross-sectional data base for a structure, and the
SCRAP 6 ) program for calculation of all relevant cross-sectional properties. These prop-
erties are stored by section, and a beam model is constructed for use in the formation of

the equilibrium equations. The sectional shear and axial stress distributions are also cal-
culated and displayed by the SCRAP program. These distributions are scaled from the
internal forces in the beam calculated from the TORSON program, which provides a nu-

2
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merica] solution of the coupled differential equilibrium equations. The TORSON program
was originally obtained from the Technical University of Denmark.

Section 5 also describes an evaluation of the displacement and stress prediction ca-
pabilities of this system by comparative analyses utilizing detailed finite element models
for several simple prismatic thin-walled beams. These studies have indicated that the as-
sumption inherent in the beam methods of no in-plane distortion is a very critical one, a
conclusion also reached by other authors.(2, 7 ) Although potentially very significant in un-
stiffened structures, the loss of accuracy due to cross-sectional distortion will be reasonably
nominal in a beam me'hod analysis of a typical warship hull because of the large configura-
tional stability provi, d by the numerous deep web frames and transverse bulkheads. The
system has been utilized in a study of a frigate under an assumed torsional/flexural load,
the results of which are also presented in Section 5. Since no comparative solution exists
for this hull, these results remain unverified.

2 A Review of the St-Venant Torsion Theory

Traditional torsional analyses of ship hulls have utilized the St-Venant theory of torsion
to predict the shear stresses and twist angles of the hull girder under a specified loading
distribution.(8 ) If the hull sections are largely cellular in nature, the shear stress and twist
angles will generally be small, and their predictions via the traditional methods can be
considered accurate to at least the same level as the description of the loads. If the structure
is of a mainly open or mixed nature, the stress predictions from the St-Venant theory can
be in error, particularily in the vicinity of large geometric discontinuities or longitudinal
displacement restraints such as torsion boxes, which cannot be properly included in that
approach. These discontinuities and stiffening structures inhibit the free warping of the
structure, and can lead to significant axial and secondary shear stresses superimposed on
the St-Venant shear stress distribution. An example of the influence of a discontinuity on
the stress distribution near the discontinuity of a typical ship hull is presented in the final
section of this report.

A physical concept of the phenomenon of warping is useful in visualizing the differ-
ence between classical torsion (St-Venant) and warping torsion. Subsequent discussion will
present the mathematical treatment of these two subjects.

A St-Venant torsional moment generates a shear stress pattern on the surface of the
cross-section as illustrated in Figure 3. For a closed section, a shear flow is able to 'circulate' %

around the cross-section and the shear stress is constant over the thickness. For an open
section, the shear stress assumes a linear distribution over the thickness with a zero average.
The notion of St-Venant torsional stiffness can thus be considered as the effectiveness with
which a given cross-section will generate a shear stress distribution on its surface to oppose

3.
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the applied torsional moment.
To illustrate warping torsion, consider an open beam section, Figure 4. The cross-

section undergoing rigid body rotation must also undergo longitudinal displacement as
a kinematical consequence of this rotation. In other words, the tangential displacement
of an element of the surface of the cross-section must be accompanied by a longitudinal
displacement w if the generator G is not to stretch. If this longitudinal displacement is
restrained, a new resistance will have to be countered to deform the body, adding to the
overall torsional stiffness. Additional stresses will thus be induced in the beam. Accordingly,
the warping torsional stiffness of a cross-section can be viewed as the relative capacity of
the section to generate a stress pattern on its surface that will effectively resist a torsional
moment when the section is longitudinally restrained.

As discussed, a shear flow is free to circulate around the contour of a closed section.
Observing an element of the wall, Figure 5, it can be seen that equilibrium then requires a
longitudinal shear flow. This will cause a shear deformation in the plane of the wall and this
deformation will partially cancel the warping. For this reason, the warping displacement
in closed sections will be smaller and consequently less affected by a longitudinal restraint.
Hence, closed sections will generally have a smaller warping torsional stiffness than open
sections. For certain geometries such as squares and circles, the shear and kinematic defor-
mation completely cancel each other, and no warping occurs.

The St-Venant theory of torsion assumes that the section is free to warp. For elastic
behaviour, a first order differential equation can be derived,(P) which relates the St-Venant
torsional moment to the twist,

T. = Gt' (1)

where T, is the St-Venant torsional moment, G is the shear modulus of the material, It
is the St-Venant torsional constant of the section, and 0' is the twist (rotation per unit

length). This relationship is valid for both open and closed cell configurations; the only
difference occurs in the value of It, the St-Venant torsional constant. The calculation of
this constant for the cases of open, closed and multicell sections is briefly presented below.

2.1 Open sections

For an open section generated from a series of folded segments, It can be approximated(10)

as I,, where,
1obt3

Ito t ds (2)

or, for numerical calculation,

s=1

4
p"

p

p
p2

-,
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where b and t are respectively the length and the thickness of the n discretized elements
of the cross-section. The stress has a linear variation over the thickness with a zero mean,
and its maximum value at the edge is approximated by,

(7')maz - (4)

2.2 Closed section

A closed section is considered here to be a single cell cross-section of arbitrary shape
that contains no free ends. For such a section, the torsional constant is composed of two
terms:

(1) It, as for an open section and corresponding again to a shear stress .

varying linearly over the thickness;
(2) If, corresponding to a shear stress which is constant over the thickness. %

The closed cell torsional constant It can be found from consideration of the overall equilib-
rium and potential energy. Consider an element of the wall that can be of varying thickness, %
Figure 6. Since the section is assumed to be free of longitudinal restraint, there should be
no axial stress on the surface. Equilibrium in the axial direction requires,

(Tbtb - 7.t.)dx = 0 (5)

which implies, for rt = q ,that
= qb (6)

indicating that the shear flow must be constant around the section. It should be noted that
this conclusion was reached because of the assumption of no axial stress over the thickness. 1
This is an important characteristic of St-Venant torsion that differs from warping torsion,
as will be shown.

Refering to Figure 6, the value of the St-Venant shear flow q, can be found from the
equilibrium of internal and external forces. We have,

dT, = hql ds (7)

since . ""'

dA = -hds (8)

We have, after integration,

T. = 2qA (9)

5 . .

. ~ ~ ~ ~ ~ ~~~~~ % .* , .. . . . . . . . . .

*Z~t% % %



and hence, Ta
Y= (10)

The work done by the applied forces must equal the work done by the internal forces.

1Td = dxf r7/ytds (11)
2

since

T~d -- x f(r 1 )2

Td¢ = df /-u-t ds (13)

where the j indicates integration around the complete cell. Substituting equation (13) into
equation (10) gives,

T, = It0' (14)

where,
4A2  '

It 4A2 (15)
f

In most sections containing closed cells, If is many orders of magnitude larger than Ito, and
the latter is generally neglected.

2.3 Multi-cell sections

For a section composed of a number of cells, the total St-Venant torque will be equal to the
sum of the torques contributed by each cell,

ne

T. 2(Aql)i  (16)

This indeterminate problem can be solved by assuming that the shape of the section is
assumed to remain unchanged. This implies that all cells have the same twist,

Ol = 02 = 03 ... = O'o = of (17)

From equation (13), the twist can be expressed as,
, 1 f(q').

0 f 2= G f q- ds (18)

6
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Letting,,',,-

'= €, ~ ~~~(19) , .. '.,-.

we obtain tbe system of equations, ]

-ds =2AiG i =1,nc (20)

Developing the integral for cell i gives,

ds ds -] ds . 2AIG (21)
qi - - q -t "'

tt " "'

where " and are the constant unit shear flows around cell i and j, respectively and
fij represents an integration performed along walls common to cell i and j, Figure 7.
The integrals in the above expression can readily be calculated by a cross-sectional analysis " Z
program, and equation (20) can be expressed as a matrix system for numerical computation
as,

[ic ( ) = 2G (A) (22)

where,
ds (3

cell i

ds- (24)

Equation (16) then becomes,
nc 1.* ,*..tV

T = 2A, (20 G [,c] ' (A)), (25)

Rearranging,
T.= GIt' (26)

where, -
It = 4(A) [c]- ' (A) (27)

For a specified T8, the twist can be obtained and the St-Venant shear flows (ql)i found from,

(ql)i = 4' i = 1, nc (28)

in which T has been obtained from the solution of the matrix system of equation (22). It
can be observed that equation (27) is simply the general form of equation (15). N

V, % P-
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Although not discussed here, the calculation of the shear stress distribution for multi-cell
sections under transverse shear loads follows a similar procedure to that outlined above. In
that case, a zero twist is assumed for each cell and the shear flow is written as the sum of an
'open' cell shear flow and a constant correcting flow. An analogous matrix system relating
the open and correcting shear flows can be developed, which utilizes the same coefficient
matrix [n] as above (see, for example, Reference 11).

3 Warping Torsion
C.

The St-Venant theory of torsion discussed in the previous section has been widely used
to predict shear stresses in beams, and the assumptions on which it is based are realistically
accurate for thick-walled or solid sections, or sections which have no warping restraint. In
the case of thin-walled sections, the assumption of free warping is often a poor one for two
reasons. The first is that such sections are prone to warp and the second is that this warping
is usually restrained in some way. These restraints provide additional torsional stiffness but
generate secondary shear stresses in the vicinity of the restraint which can alter the overall
stress distribution significantly.

Warping restraints are typically points of global fixity or internal points of attachment
of restraining structure. In non-prismatic beams, the geometric discontinuities themselves
are relative restraints, and the incompatibility occurring in the warping displacements can
lead to additional shear and axial stresses. In the case of ship hulls, such discontinuities
exist at large hatch openings, and wherever cellular sections abut open sections. As with
other forms of loading, abrupt changes in geometry generate stress concentrations.

Whereas the St-Venant theory provided a simple first order differential equation relating
the applied load and displacement, it will be shown that the inclusion of warping results .
in a fourth order differential equation. This equation must be solved for the distribution
of twist and its derivatives to obtain sectional stresses in the beam. This section presents
the derivation of the equation for a prismatic beam. Two assumptions underlie all of the
developments that follow:

(1) The beams contain only thin walls. Accordingly, warping displacements and
stresses can be assumed constant over the wall thickness.
(2) The shape of the cross-section remains unchanged; no transverse deformation
occurs in the cross-sectional plane under the applied load.

A third assumption will often be made about the shear deformation in the plane of the
walls. It will be outlined as each case arises.

The development is in two parts; the first treats open sections and draws heavily on the

8
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development of Vlasov,( 12 ) and the second treats closed configurations. For the simplest
case of an open section, warping torsion will be studied in parallel with other states of
loading since bending and warping torsion are similar in their mathematical formulation.
Thus, the latter can be understood as part of a general theory of thin-walled beams. As
more complicated cases are treated, the development will consider warping torsion only.
Finally, multi-cell sections are presented as a generalization of the closed cell development.

3.1 System of coordinates

A right-handed system of coordinates will be used, Figure 8, with the cross-section in the
Y - Z plane, Z vertical, and axis 0 - X being any axis of the beam parallel to the axis of the
centroid. Each point on the surface of the cross-section can therefore be determined by the
two coordinates y and z. Because the beam is thin-walled, a more convenient coordinate,
s, can be defined as the curvilinear distance along the wall profile from an arbitrary origin.
In this case, the positive direction is taken as counterclockwise with respect to the origin of
the cartesian system of coordinates. Once the origin of the s-coordinate is established, the

functions y(s) and z(s) are well-defined for the complete cross-section.

3.2 Open sections

For open sections, an assumptirn (30) in addition to (1) and (2) above is made:

(3) The shear deformation 1, in the plane of the walls (plane xs of Figure 6) can

be neglected."%
S.

It was stated in the previous chapter that for an open section, there is no St-Venant %

shear flow circulating around the cross-section. Instead, the shear stress assumes a linear
distribution over the thickness with a zero average. Consequently, equilibrium of a wall
element does not require longitudinal shear stress and there will be no longitudinal shear
deformation caused by a St-Venant torsional moment. In the case of warping torsion,
the warping shear stress will be assumed constant over the thickness, in accordance with
assumption (1). As a result, there will be a certain amount of shear deformation in the
plane of the walls caused by a warping torsional moment. Therefore, the consequence of
assumption (3a ) is the neglect of the longitudinal shear deformation but not the longitudinal
shear stress nor the axial deformation caused by a warping torsional moment. 'S

With reference to Figure 9, the displacement of any point on the cross-section can

be expressed with respect to the displacement of an arbitrarily chosen point A, which is
assumed to be rigidly connected to the cross-section. In the figure, C(x) and 17(x) represent
the projections of the rigid body displacement of point A on axis 0-Y and 0-Z respectively
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for a given section, for x constant. These functions of x then represent the space curve that
an axis of the beam passing through point A assumes after deformation.

Let O(z) be the rotation of the section in its own plane (Y - Z). The displacement in
the plane of the cross section of any point B located on its surface can be expressed using
assumption (2), which allows us to treat the cross-section as a rigid body. The kinematics
of rigid body motion can therefore be applied, giving,

G = C(X) - (zb - a.)O(z) (29)

17b = 7W - (Yb - a,)O(x) (30)

The general vector representing the displacement of point B can be expressed using the
three components u, v, w, as illustrated in Figure 8. Displacement u is directed along the
tangent to the profile line with positive direction given by the s coordinate; w is directed
along the axis of the beam with positive direction given by the X-axis; v is directed along
the normal to the profile line with positive direction given by the requirement that vectors

u, v, w form a right-handed coordinate system.
Let a(s) be the angle that the tangent to the profile line makes with the 0 - Y axis,

Figure 9. Let h(s) and g(s) be the length of the perpendiculars from point A to the tangent

and normal of the profile line respectively, at point B. Components u and v can be found
from equation (29) and geometrical considerations, giving,

u(z,s) = - (x) coscC(s) - r(z) sin a(s) + O(x)h(s) (31)

v(x,s) = -C() sin a(s) + tl() cos a(s) + (x)g(s) (32)

Tu this point, only kinematic relations have been used, giving the state of displacement
in the Y - Z plane. It remains to determine the longitudinal displacement w. To do so,
use will be made of assumption ( 3 ) of negligible shear strain in the walls of the beam.

Expressed mathematically, this condition is,

au 49wa w = -Yz' =0 (33)

Solving equation (33) for w yields,

w (Xs) = 6(X) - - ds (34)
ax

where b(x) is the longitudinal displacement of the cross-section at point s. of the s-

coordinate.

Equation (31) gives,

auTd = -'(x) cos a(s) ds - ?7'(x) sin a(s) ds + 0'(x)h(s)ds (35)

10
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where the prime notation indicates differentiation with respect to x. Observing that,

cos ck(s) ds = -dy (36)

sin a(s) ds = -dz (37)

and defining,
h(s) ds = dw (38)

substitution of equations (35), (36) and (38) into (34) yields, after integration,

w(xs) = b(z) - '(z)y(s) - ri'(z)z(s) - O'w(s) (39)

For specific points A and so, w(s) is a uniquely defined function of s, just as y(s) and
z(s) and, in fact, w(s) corresponds to twice the area of the triangle formed by points A, so
and s. This function of s is commonly called the sectorial coordinate, point A is called the
pole of the sectorial coordinate and point s0 is the sectorial origin. The line that connects . .

"

point A to point so is defined as the fixed radius vector and the line that connects point
A to the variable s is defined as the mobile radius vector. These vectors define the sign
convention used for the integrations involved in the calculation of cross-sectional properties.
A contour increment is considered here to be positive if the mobile radius vector moves
counterclockwise. This sign convention can be included in the definition of the sectorial
coordinate, equation (38), if the s-coordinate is chosen in the proper fashion; that is, if its
positive direction defines a counterclockwise movement with respect to pole A.

The first term of equation (39) represents a uniform axial stretching, and the second
and third terms represent bending of the beam. The last term is due to the warping of
the cross-section under torsion, and represents the displacement of the cross-section out-
of-plane. The similarity of the bending and warping terms is evident and this analogy is
useful in dealing with the less familiar problem of warping torsion.

For elastic behaviour, the axial stress in the beam is given by:

u,= Ee =E (40)

Substituting from equation (39),

oa.(z,s) = E(6'(z) - "(z)y(s) - 17"(z)z(s) - 0"(X)w(s) (41)

The tangential shear flow is found using the condition of equilibrium of a wall element, ".
Figure 10. If there are no body forces, .'.-

t- + t- =0 (42)
ax (9s
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Then,

tro = - /-Ox t ds + (tr)o (43)

If the integration is commenced at a free edge, (tr)o is zero. Substituting equation (41)
into (43) and integrating gives the shear flow as,

trz, = q(z,s) = E(-b"(x)-(s) + "'"(s) + r7'(x)-(s) + "'(x)SZ(s)) (44)

where,

k(s) = t ds (46)

TY (s) = yt ds (46)

YZj(s) = wt ds (48)

These quantities, called static moments functions, are determined from an integration
commenced at a free edge, following an integration path that leads inward in the section.
The condition of a zero algebric sum of the shear flows is used at segment intersections
(nodes) to continue the integration. For the case of pure torsion, the shear stress of equa-
tion (44) is often referred to as the secondary shear stress r2 , where,

tr2 = q2 = EO'(x)S.(x) (49)

The derivation of this stress assumes that an axial stress exists in the wall. In the pre-
vious chapter, the St-Venant shear stress was found assuming the absence of any normal
stress; therefore, these two stresses are of a different nature. The St-Venant shear stress is
commonly called the primary shear stress rl. The total shear stress is the sum of r1 and
r:, and the relative distibutions are functions of the geometric properties and the warping
restraints in the system. In an open section, the total shear stress is then the superposition
of a constant and linearly varying distribution across the wall thickness.

In the development of u(x) and r,, four unknowns are included: b(x), C(x), 77(x) and
6(x). These unknowns can be found from the requirement of equilibrium of the complete
beam.

Consider a strip of the beam of length dx, Figure 10. From equilibrium, we have,

ZF, =0 - (t dx ds + p. d = (50)
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ZFy =0 IA ax cos adx ds + pdx 0 (51)

Z F2  =0 ] sin cedx ds+ p, dx :=0 (52)IN

Z MA =0 J aXr)hxs mx T= (53)

Here, p., py and p-. are the distributed forces acting on the section, and m is the total
distributed torsional moment. Since the St-Venant shear stress is not included in r, its
resulting moment, the St-Venant torsional moment T, can be introduced separately in the -

equilibrium equations. Dividing equations (50)-(53) by dx and using equation (36), we can
integrate by parts to obtain,

fJAO' dA+ p =0 (54)

[a~r)]Ja(55)
[91 2 1 a r IA T axrt

L8ZIA ~ .s 8z +PzO(56)
a xrt as 8(tx d

[~~ axM~w[a ++-T" -0 (57)

where dA =tds.

The first component of the last three equations is evaluated on the limits of the surface,
the free edges. These terms all vanish identically since LU = - nafe deweerx
is zero everywhere. Substituting from equations (41) and (44) for a and r, we have, after
rearrangement,

-A" +s" S s" sk'- (58)
E

S 611 + ICif+ 'YZ1?ff + I 4? - E P (59)

S~ "' Ize" + I 1 7r" + I__ ? fil -z (60)
E

S6~ ~ + ~ +IwL~4?""= r GI 1,
Sbf+ wC11+Izflf+E + E (61L)

Equations (58)-(61) are derived for an arbitrary coordinate system but can be more conve-
niently expressed if a coordinate system is chosen such that,

Sy S"= IZ =0 (62)
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and,

S' = A. 0 (63)

Equation (62) is satisfied if coordinates y and z are expressed in terms of the principal
axes of the section. The requirements of equation (63) define the pole and the origin of
the principal sectorial coordinate. Assume point C, Figure 11, is a pole that fulfills these
conditions. The sectorial coordinate with respect to pole C can be expressed as a function
of the sectorial coordinate with respect to an arbitrary pole A by geometric relations,

WC = WA + (c, - a,)y(s) - (c, - a,)z(s) + (c. - a,)z(so) - (c. - a,)y(so) (64)

where y(so) and z(so) are the coordinates of the sectorial origin for both poles (wc(so) =

WA(so) = 0). Multiplying by the functions y(s) and z(s) in turn, and integrating both
equations over the sectional area, these relations reduce to,

(cz - az)1z + WAy dA = 0 (65)
a

- (c,, - a1) -I- JWAZ dA 0 (66)

The coordinates of the principal pole at C are then,

c= a. + 1WA. (67)
'V

WA V (68)

It can be shown that the principal pole of the sectorial coordinate is also the shear center
of the section(12) .

The principal sectorial origin s, can be found from the requirement that S, = 0 in
that system. Using the geometry of Figure 11, we can express the sectorial coordinate with
origin at s, as a function of the coordinate with origin at an arbitrary point s0 as,

W(s,, S) =W (sos ) - W(so, si) (69)

where it is now assumed that w is calculated with respect to the principal pole. Multiplying
the above expression by dA, applying the above vanishing criterion, and integrating over
the sectional area gives w(so, s1) as,

W~so, SO) =-S"Cso, s) (70)
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We can use equations (69) and (70) to redefine the sectional properties in terms of this *'.-

principal sectorial coordinate. Using this system, the set of equations (58)-(61) reduces to
the more familiar form,

EAS" = -PZ (71)

E =,C"' py (72)

E "= p2  (73)

Elww,¢"" - GIt¢" . (74)

It is instructive to define generalized forces in terms of the global degrees of freedom of
the beam: longitudinal stretching, bending in the two directions and twist. Accordingly, I
these forces can be defined as the work done by the stress fields of a and r moving through a -
unit global displacement. In the case of longitudinal stresses, the internal work done arises
through the local w displacement and the force system is given as,

F = Iaw dA (75)

Substituting equation (39) and letting 8 = 1, 1' = -I, 7' -, and €' = -1 respectively, '

the four generalized force components of F become,

N f a dA (76) ..

M =IA y dA (77,

a, ] zZ dA (78)

M,= I, w dA (79)

The first three quantities are recognized as the normal force and the bending moments
acting on the cross-section. The fourth quantity is specifically related to the warping and
is called the bimoment. Although it represents a real state of stress, it results in no net
body force since, from equation (63), the axial warping stress distribution is seen to be
exactly that of the principal sectorial coordinate which is skew symmetrical. This stress
will therefore have no influence on the global equilibrium of the complete beam. For this
reason, the bimoment is often referred to as a self-balancing generalized force system.

Substituting the expressions for a from equation (41) into equation (76) and using the
orthogonality conditions of equations (63) and (65), equation (41) can be rewritten as, ,

N~ Mu M2  Mi,(80
A - M y +  z + )1
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The same procedure can be followed to define the generalized forces that correspond to
the shear stress r. This stress acts along the displacement u, given by equation (31). We
define:

Q= A q dy (81)

QZ = fA q dz (82)

= IA qd (3T= dw (83)

For the case of transverse loading only, 8" = 0, and after substitution of equation (44)
into (81), equation (41) can be written as,

q Y Ty+ 9. 3- + ,-)(84)

where,
= EI ... (85)

QY = -EIzC" (86)

Q. = -EyIv7" (87)

This expresses the total shear flow in the wall in terms of the applied loads and generalized
cross-sectional properties analogous to that of traditional beam flexure theo. '. The warping
torsional moment T, characterizes the effect of the secondary shear stress distribution on
the cross-section, and its magnitude reflects the relative warping stiffness of the section.
Equation (74) can then be written as,

T = T. + T. = GI,¢' - EI,¢" (88)

The total applied torsional moment is thus the sum of the St-Venant and the warping tor-
sional moments, and at each section, there is a specific distribution of T, and T" dependent
on the relative St-Venant and warping stiffness.

Equations (71)-(74) are the differential equations of equilibrium to be solved for a pris-
matic open section. For the torsional equation, a unique solution can be obtained for a
beam of length I in the general form,

CI + C 2 x + C 3 sinh( ) + C 4 cosh(-) + P(x) (89)
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where P(x) is any particular solution and the parameter k is defined as,

G.p.k= I (90)

The coefficients of the general solution are determined from the application of the appro-
priate boundary conditions (See Appendix A). Once the distribution of O(x) is known,
sectional stresses can be calculated from equations (41) and (44).

5*.

3.3 Closed sections

In a closed, single cell system, the St-Venant shear stress can be considered constant
across the wall thickness, in contrast to the open section in which the stress varies lin-
early with a zero mean. This non-zero mean wall stress generates a longitudinal shear
deformation. Moreover, this shear deformation cannot be neglected in this case because its
existence is required by the condition that the net longitudinal displacement must be zero
for a complete circuit around the cell. To account for the shear deformation, assumption
(3') of section 3.2 will be reformulated:

(3b) The longitudinal shear deformation in the walls is caused by the primary shear "-

stress only; the additional shear deformation caused by the secondary shear
stress can be neglected.

Using the new assumption, equation (33) becomes,

au aw r1  (91)- +  - = " °  - (9 1 ) 6

For convenience, we can define,
- T (92)

t GI¢'

where T is then the St-Venant shear stress for a unit St-Venant torsional moment. Using
this definition, and noting that the shear strain -, always opposes the kinematic rotation,
equation (35) can be written,

ds -c'(x) cosa(s) ds -'(x)sinu(s) ds- '(x)(h(s) -qIt) ds (93)Fra dxcrs-scioth tr ,:,"x(hs

For a given cross-section, the term It is well-defined and depends only on the geometry AL
of the section. It is possible to include directly the results of the previous section if the

17



sectorial coordinate is expressed in the more general formulation,

W (s) = (h(s) - 1 It) ds (94)

which reduces to equation (38) for an open section since is then zero. Equation (94) is
more properly written as the sum of two terms,

W(S) h(s) ds -j d, (95)

since, in fact, h(s) is a scalar quantity while fIt is a vector tangent to the s-coordinate
but not necessarily in the same direction. Here again, the positive direction of the 8-
coordinate gives a counterclockwise rotation of the mobile radius vector with respect to
the pole. The positive sign of the unit St-Venant shear flow is taken as counterclockwise
around the cell. Written thus, the expression for the longitudinal displacement w(x, s) from
equation (39), remains unchanged, and the formulation of the expressions for the principal
sectorial coordinate and the axial stress is exactly as outlined in the previous section.

For a closed section, the net warping around a closed path must be zero,

dw = 0 (96)

It is important to check that this requirement is embodied in assumption (3b). For the sake
of clarity, consider the case of pure torsion. We have, for a closed section, from equation (15)

T.= f qh ds (97)

where,
It = 4A (98)

hence,
2AO'G 

(99)

Recalling the definition of q, we have,

J ItO' ds = 2A4' (100)

or, equivalently,

f t~ ds = 0'fh(s)8ds (101)

18



which is exactly satisfied by enforcing equation (96), using the definition of the sectorial
coordinate of equation (95). J

For the closed section, the starting point for the integration of equation (43) can no
longer be a free edge and the constant of integration cannot be taken as zero. However, this
constant can be found in the following manner. Again, for simplicity, consider pure torsion.
The secondary shear flow is then,

q2(z, s) = E(C"'(x)(s)) + (q2)o (102)

An arbitrary starting point can be chosen for the integration of S (s) to find the first term.
This is equivalent to cutting the cell open at this point and finding the corresponding shear
distribution of the 'open' section. We define,

q2 (X, s) = q; + (q2)0 (103)

where the (q2)0 is a constant correction factor. According to assumption (3'), the longi-
tudinal shear strain caused by the secondary shear flow is negligible. In support of this
assumption, it is cons'stent to determine the constant shear flows in such a manner that q2
gives no contribution to the shear deformation of the cell,

2 ds = -ds = 0 (104)

Substituting equation (104),

(q2)o - ds (105)

hence the complete shear distribution in the cell can be found once (q2)0 is calculated.
The warping torsional moment is,

T. q2h d f(q; + (q2)o)h ds (106)

According to equation (94),

h(s)ds= dw+ !It ds (107)
t

substituting into equation (106),

T. (q; + (q2)o) dw + (q; + (q2)o) 11 ds (108)

The second integral is zero from equation (104). Performing the integration on the line
integral of s by parts gives, for the first term,

(q; + (q2)o) ds = (q + (q2)o)w]A- j ws a(q; + (q2)0) (109)
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Since the integration is performed for a complete path, the first term on the right is zero.
The constant correction shear flow (q2)0 can be dropped as it is constant, leaving,

T.= - = -E w2t ds = -El,¢' (110) .%

By comparing this expression with equation (87), we see that the expression for the
warping torsional moment is unchanged. The differential equation is then, as before,

T = T, + T. (111)

T = Gh#' - E1..0.. (112)

with the value of It and I, as appropriate for the closed cell, and the same general hyper-
bolic solution form is obtained. Once known, the distribution of 0 and its derivatives can
be used to scale the sectional shear and axial stresses, where these distributions are given
for the case of pure torsion as,

qtotat = G-t + Eo"-i(s) + (q2)0 (113)
2A

and,

-xEk" h(s) ds - I dsj (114) 5

3.4 Multi-cell sections

Multi-cell sections can be treated as a generalization of the theory for a single cell
cross-section, and the development leads to the same differential equation. The sectorial
coordinate is again given by,

W(s) f(h - It) ds (115)

In this case, for a given cell wall, the unit shear flow is the algebraic sum of the constant
St-Venant unit shear flows corresponding to each cell of which it is part. Here again, a
consistent sign convention must be observed. Once the principal sectorial coordinate is

'5
defined for the cross-section, all of the relevant properties can be calculated exactly as
discussed in the previous sections.

To find the stress distribution in a multi-cell section, nc constants of integration must be
found, where nc is the number of cells in the section. The requirement of zero net secondary

shear strain is enforced for each cell. In terms of stress, this gives,

fds
q-0 1,nc (116)
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This allows the formation of a matrix system, the solution of which gives the required (q2)0
correcting factor for each cell. Using the same notation as in section 3.3, we can develop
for cell i, ds fds d

q2 - + (q2)0i t - - "* = 0 (117)-
f t .T i

where q; is again the shear flow distribution derived from equation (103) after cutting the .

cells open. In matrix form, equation (117) can be written,

N ((q2)0) = (q;) 11)

where it can be seen that the K coefficient matrix is exactly that derived for the solution of a
the St-Venant shear flows.

Solving for the (q2)0, the warping secondary shear stress can be found from equa-
tion (113) and the axial stress distribution from equation (114). The total shear stress -,. *..

distribution is the sum of the St-Venant, transverse, and secondary warping shear stress
distributions. The longitudinal stress distribution is given by the sum of the two bending
and the axial stress distributions.

3.5 A Refined Beam Torsion Model

The development of the previous beam torsional model has been consistent with most
classical beam theory, wherein equilibrium is enforced despite the neglect of secondary shear- "
deformations. This leads to the assumption that the warping deformation is proportional
to the twist, as in the case of unrestrained warping. A more general form of warping dis- "
tribution has been proposed(') in which a displacement field proportional to the sectorial "..
coordinate, but independent of the twist, is assumed. This new degree of freedom is com-
monly called the generalized warping function. Unfortunately, such an assumption can lead
to unsatisfactory local equilibrium conditions, and the warping stress distributions pre-
dicted by this theory are not completely reliable;(13) however, the sectional loads calculated
from the refined theory can be used in the classical stress equations to improve the stress
prediction accuracy of that model. F. .*f.*

For simplicity, consider the case of pure torsion. Since no assumption is made about the
shear deformation in the x - s plane, Figure 6, equation (91) is,

au awaz+ -s = -, (119) K.K-4:.-

The expression for the tangential displacement u remains unchanged as the assumption of no
in-plane distortion of the section is retained. For pure torsion, we have from equation (31), . .

u~xs) = O(x)h(s) (120)
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The longitudinal displacement w will again be assumed proportional to the sectorial coor-
dinate and to an arbitrary function of the longitudinal position x, rather than the twist

w(Xs) = -O(z)w(s) (121)

where O(x) is the defined as the generalized warping function. The negative sign is intro-
duced to retain the similarity with the previous development. Substituting equations (120)
and (121) into equation (119) gives the shear deformation as,

-, = O'h(s) - O(x)c.(s) (122)

where the overdot indicates differentiation with respect to s,

(s) = aw = h~s) - Vi
as t

The stresses can then be expressed as,

aw
a(z,s) = E- = -EO'(x)w(s) (123)ax

r(x, s) = G-yz, = G(4'h(s) - O(x)&,(s)) (124)

where r now represents the complete shear stress in the cross-section derived from an
assumed displacement field. The shear center location is not affected by these new assump-
tions, and can be found in the same manner as previously discussed. The total torque on
the cross-section is,

T = f h(s)r(x, s)t ds (125)

Substituting from equations (122) and (123), and using the relation,

f 2q,A (126TItht ds = - ds = I -t (126)
f G~ G,0 =I

we have a differential equation in 4 and 0,

T = GhhO'(x) - G(Ihh - 't)0 (127)

or, more generally,
GhhO" - G(hh - I)9' + m = 0 (128)

where,
aT
8x
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and,

ihh h'tds (129)-

is called the central moment of area. Strictly, equation (126) is valid if only the closed
cell contributions are important in the calculation of the St-Venant modulus. This is an
acceptable assumption for most ship hull analyses, but will introduce inaccuracy in the
analysis of predominantly open configurations.

The differential equation contains two unknown functions O(x) and O(x), and another
relationship is required before a solution is possible. The principle of virtual work can be ".

used to establish a further relationship between O(x) and O(z) based on the assumption
of axial equilibrium. Away from local end effects, the internal virtual work of the shear
stresses can be equated to the work done by the external forces moving through a virtual
displacement field. The incremental axial stress in this case can be considered as the "
external load, Figure 10. In the general case, this stress will also include the contributions . :"

from bending and longitudinal loads. We can write, for a unit 0,

[t ds dx = rf f t ds dx (130)

f ., -x %/.

where Z and i represent virtual displacement and strain fields respectively. Using equa-
tion (123) in (130), we have, after substitution and cancelation,

Eo"(X) f w2 t ds + GO'(x) f h t ds - GO Jf 2t ds -0 (131)
. ' -

Expanding the second integral, we obtain,

J hjt ds =fh(h - t-)t ds =hh -It (132)

and the third integral becomes, .,.a
)2)2t ds)22 + . "-e.

i't-ds =-(h " t t- t ds (133)

Evaluating the final integral,

t ds = s 7ds = 4t ds (134)

which leads to, 
'-M

n= (-, - ds) = 2 Aq. = I (135)
23 r
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where it is again assumed that the open section contribution to It is negligible. Equa-
tion (131) can then be written,

ElO" + G(O' - 0)(Zhh - It) = 0 (136)

Solving equation (128) for 0',

O' - rn + GIhh" (137)G(Ihh - It)<

After app:opriate differentiation and substitution, 0 and its derivatives can be eliminated
from equation (136) to give,

EIp4" - GIt0" = M - EpI,,m" (138)

Glhh

where,
Ip h (139)

=hh - It

The analytical solution of this differential equation can be difficult if the applied moment
distribution is of higher than linear order. In practise, linear or harmonic variations can be
used to model moment distributions on ship hulls, in which case the particular solution of
equation (137) is usually evident. The characteristic solution is given as in equation (89).
The warping factor 0 can be obtained, after solution of the differential equation, from
equations (137) and (138),

EI2 (in'+ -Ihh"') (140)

As is evident from equation (140), the warping displacement is now a function not only of
the twist, as in free torsion, but also is dependent on the warping stiffness properties and
the loading distribution on the beam. The total torque can be found from substitution of
equation (140) into equation (128) to obtain,

T =GI,¢' - EIw.wpO"' -El,,,P rn' (141)"
-C Ihh 11

or,

T = T. + T. (142)

where, as before,

T. = GIt0' (143)

and,

= -E,,wpO" - EI.p 1 (144)
G Ihh
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Recalling the definition of the bimoment from equation (76), and using equation (138),

M-Iawt ds = -E wox wt ds (145) q.

or,

= G(-h- I,) + E1,0"p] (146)

After solution of the differential equation and calculation of the internal forces T,, T, and
M, the stresses can be calculated from equation (123). This gives,

r(x, s) = G 6 -T 1- (147)
(Ihh - Itt)'2  '

and,

a (x,s) = E M + G w(s) (148)

In general, this procedure does not provide an equilibrium stress system at all points, since
the formulation is based on an assumed displacement field, and the equilibrium statement,

a(tu) a(tr) = 0 (149) "a x as =

is not necessarily satisfied. For example, on a single cell cross-section of constant thickness, %
with m = m' = 0, the equilibrium statement leads to, J."

w(s) -0 (150)_

(Ihh - It)ws 0(1)
I,5,

This defficiency is particularily severe in the ca-e of sections which are predominately open, .
since the assumption of negligible open section contribution to It becomes less acceptable.
It is recommended in such cases that the stresses be calculated from the theory discussed
in the previous section, using the forces derived from the refined model.

3.6 Account of Shear Deformation

Each of the three assumptions outlined in the development of the beam theory introduces
some error into the method. Of particular concern are the assumption of no cross-sectional
distortion and the neglect of the warping shear deformation. The former cannot be relaxed "2.w,
within the limits of the sectorially based thin-walled beam theories which depend on an
invariant geometry; however, it is, in principle, possible to include the effects of the shear
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deformation if an iterative calculation method is used. The simplest method typically
uses the warping moment from an initial solution neglecting the shear strains to define
a warping stress distribution. The cross-sectional properties are then recalculated, this
process continuing until a prescribed convergence criterion is satisfied. As an example, this
approach can be developed in conjunction with the refined beam theory of the previous
section. The equilibrium condition becomes,

at + L w rl + T2  (151)
ax a9s G

and the principal sectorial coordinate becomes,

W(s) = h ds - fa F + _2 ds (152)

where f2 is the initially unknown warping shear stress distribution function. The St-Venant
shear stress function T (here called 7i for clarity) was defined as,

= ..... L. (153)
Tt C 4)'

Since r1 is proportional to 0', this function is independent of the loading. The warping
shear stress function could be defined in a similar fashion as,

__= r (154)

and if T2 were proportional to 0, this distribution function would also be independent of the
load. With reference to equation (147), it can be seen that a simple proportionality with
0 does not exist, and in fact a more relevant divisor might be '. However, because the
shear stress distribution of the refined method generally does not provide equilibrium, it is
more common to use the original warping torsion shear stress distribution given by,

= -~ T~S(155)

with T,, derived from the refined theory. This formulation leads to a solution uniquely
defined by the load and boundary conditions, which invalidates any superposition of different
solutions. From the results described by Westin, 2 ), it appears that this iterative procedure
is not always convergent, particularily if large warping shear stresses are present, as will
occur at a warping restraint. In applications of this method to typical ship structures, the
boundary conditions may require certain idealizations to facilitate a convergent solution.

A more detailed approach to the complete inclusion of the warping shear deformations
has been described by Pittaluga.(3 ) This method uses a more general St-Venant solution
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of the equilibrium equations to define the requirements of certain cross-sectional functions.
The distributions of these functions are solved by a finite strip method utilizing linear
interpolation functions within the cross-section. Using fairly realistic assumptions about the
loading and twist distribution, an iterative procedure yields the desired warping torsional
stiffness independent of the applied load. Although there are definite approximations used
in this development, convergence does not appear to be problem.

Both of the methods outlined above can be applied to the analysis of non-prismatic
beams, either by a finite beam element approach,( 3) or a transfer matrix method. (1" 3 )

An advantage of Pittaluga's method is that only one solution of the complete system is
required once the various sectional properties have been calculated. The application of
the thin-walled theories in the analysis of non-prismatic beams is discussed further in the
following section.

In some instances, the inclusion of warping shear deformations will improve the displace-
ment and stress predictions of the thin-walled beam methods; however, in many structures,
the largest error in the theory is introduced by the assumption of no transverse distortion,
and the effects of shear deformation are quite nominal. In those cases, it is questionable
whether the added complexity of iterative computations are justifiable, particularily if a
convergent solution is not guaranteed.

."

4 Application to Non-Prismatic Beams

4.1 General Approaches

The warping based theories of the behaviour of prismatic thin-walled sections described
in this report yield quite accurate stress predictions for transversely rigid structures. A
natural extension of the theoretical development is its application to the analysis of non-
prismatic structures such as ship hulls. This generalization presents a number of difficulties; --
either the differential equations must be reformulated to account for the longitudinal vari-
ation of cross-sectional properties, or the structure must be approximated by prismatic
discretization. The former method yields a more complex system of differential equations,
and neither method provides complete internal stress equilibrium. Despite these draw- * --
backs, the prismatic beam theory is often used in the analysis of non-prismatic beams, and
a variety of methods have been presented in the literature.(2,3413,14,15)

The simplest application of the theory is to assume that the hull girder behaves as a ... '."

prismatic beam having some longitudinally averaged characteristics. Such a method can
provide boundary conditions for more detailed internal analyses, but in general does not
yield accurate local stress predictions.

A second alternative is to model the hull as a series of prismatic segments, using the finite
beam or transfer matrix methods to assemble the complete representation of the hull. In the
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finite beam method, interpolation functions are formed to describe the internal deformation
distributions in terms of the local nodal degrees of freedom. Using the principle of virtual
work, the nodal degrees of freedom are related to the generalized force vector, defining the
beam element stiffness matrix. Various choices of deformation and interpolation functions
lead to alternative element stiffness representations. (3,'S6) The element stiffnesses and loads
are assembled in the usual manner to obtain the overall system of equilibrium equations,
and application of suitable constraints on the system allows a solution via normal matrix
methods. The transfer matrix method also results in a global representation of the complete
beam as an assembly of individual transfer matrices which link displacements at either end
of a beam segment. In this case, the actual differential equation defines the deformations in
each prismatic segment. The system of equations is solved for the beam end displacements

(or loads) wvhich comply with the boundary conditions.
An unavoidable deficiency is the inability of either approach to correctly describe the

compatibility of warping displacements at the model geometric discontinuities. As a result,
complete internal equilibrium is not maintained, and the stress estimates from these mod-
els are least accurate precisely at the locations where good predictions are most valuable.
A number of methods of minimizing the compatibility errors at discontinuities have been
proposed, such as a least squares minimization of the displacement gap field between the
segments,( 16 ) or the application of orthogonality criteria to partially satisfy the internal
equilibrium requirements. (4,13) For ship hull sections which have only one plane of symme-
try, improved compatibility can also be obtained by maintaining the coupling between the
horizontal bending and torsional displacements at a discontinuity via coupling coefficients.

A further refinement in the modelling of non-prismatic structures is the generalization
of the differential equations of equilibrium to include the longitudinal variation of sectional
properties. This leads in the most general case to an impractically complex set of coupled
differential equations with longitudinal properties which cannot be calculated by conven-
tional cross-sectional analysis programs. If suitable assumptions are made of the relative
magnitudes of the variations of the structural properties and displacements, this approach
can be reduced to a tenabit ",r -tat. The effects of transverse beams, torsion boxes and other
internal torsional rest;:aints can be included in both this approach and the discretization
methods by the introduction of equivalent bimoment springs and distributed loading.

4.2 A Fl(- ural-Torsional Model

As an example of the generalization and application of the prismatic beam theory to
the analysis of non-prismatic structures, a method of flexural-torsional analysis is presented.
This method models the ship as a beam with slowly varying cross-sectional properties, an
assumption which possibly allows the neglect of the longitudinal variation characteristics,
although a verification of this assumption remains to be ascertained. For the flexural-
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torsional problem, this approach yields a boundary value problem of four coupled differential
equations in the generalized displacements 0, 0, , ). This theory has been developed and %
implemented in a computer program( ' ?,) which is currently in use at DREA as a part %
of the ship hull torsional analysis program suite. The analysis considers only horizontal %
flexure, since, for ship hulls which normally possess center-plane symmetry, the vertical
flexure and torsional response are independent and the former can be obtained by other
methods.

An energy variational approach can be used to determine the equations of motion of the
beam,

f 2(T - (U + W)) dt =0 (156)

where 6 is the first variation with respect to time and T, U, W are the kinetic, internal and
external energies of the system respectively. To evaluate the energy expressions for a beam
in which the location of the principal axes and shear center are longitudinally varying, a
fixed baseline must be established for the coordinate system, Figure 12. From equation (39),
we have, considering only horizontal bending,

W(X, S) = -8(X) j(s) - 9(X)W(X, s) (157)

where the warping function of section 3.5 has replaced 0', and 8 = '. The tangential
displacement reflects the influence of the new coordinate system,

u(x, s) = 4(x)h(s) + (C(x) - zO(x)) - (158)
ds

where z, is the offset of the shear center from the baseline. Formulating the strains in
accordance with the assumptions previously discussed, we have,

E= aw (159)

aw x u
a+a (160)

The internal strain energy of the system is,

S= (E1 + x_,)X dA dx (161)

Substituting the appropriate expressions for the strains, we can obtain an expression for the
total internal strain energy in terms of the four generalized coordinates and their derivatives.
To simplify this expression, it is assumed that the longitudinal variation is slow, that is, the
x-derivatives of the sectional points and sectorial coordinate can be neglected in comparison
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to the corresponding derivatives of displacements. The s-coordinate origin is defined again
in such a way that,

I.Y = I, =SW =0 (162)

Applying these criteria, and recalling the relations of equations (132) and (134), the strain
energy becomes,

U= 1 f[E [0,21,,. + 0,2i1] (163)

+ 1 j G[¢'2 I,, + (e2 - 20'0)(Ihh - It) (164)

+ 2Iph(O + -(ZO)' - - 0'(Zo)' - 01,8 + OT) (165)

+ IPP(' 2 + (Z, 2 - 2'(z,0)' - 2C'fl + 2(zO)',3)] dx (166)

The prime and dot superscripts again denote differentiation with respect to x and s respec-
tively.

The potential energy of the loads for the system can be expressed as,

W= - C(Pw + (in2 + pu z.) 0 + mfl) dx (167)

If we consider only the static problem, the above energy expressions can be substituted into
equation (156) and the variation taken with respect to each of the displacement variables
0, O'C, 0. This yields the following four coupled differential equations of static equilibrium,

[El fl']' + GIpp(C - 8 - (z,¢)') + GIph(¢' - 0) = -Mnz (168)

[GIpp(C' (z,¢)' - i5) + GIph(¢' -0)' = -Py (169)

[Gihhe' - GO(Ihh - It) + GIh(V' - (zO¢)' - 8)]' = - pvzO (170)

1,,, 0'1' + GIIp h( - - (z,0)') + G(O - €')(Ihh - It) - 0 (171)

For a dynamic analysis, the kinetic energy and time variation of the system is included
in the functional and the variation procedure yields the equations of motion of the system.

Note that, in the most general case of an analysis of a beam, this procedure will yield seven
coupled differential equations, rather than "Dur, since the axial, and vertical bending and
displacement variables will also be included (See Reference 16).

The boundary value problem in the present case requires eight boundary conditions
for solution. These can be defined in terms of displacements or forces; forces are used
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here. Since this program has been developed specifically for the analysis of ship hulls, the
horizontal bending moment, torsional moment and shear force are assumed to be zero at
each end. Following Reference 4, the bimoment, rather than assumed zero, can be assigned
a value to reflect the different forms of warping restraint which can occur at the ends of a
hull,

Mz kO]=o= 0 (172)

or
[EI,,' + k09.= 0 z= = 0 (173)

Abrupt changes in cross-section can be incorporated in this formulation as discontinuity
conditions analagous to boundary conditions. In the real beam, these geometric disconti-
nuities cause fin'ite but often non-localized stress gradients. In the numerical model, they -

are two dimensional phenomena which result in an axial displacement gap field at the junc-
tion of the sections. If we assume that the discontinuity is effectively closed with a stress
distribution proportional to the gap size, an assumption consistent with linear behaviour,
then minimization of this stress field in some way may yield a good approximation to the ",,

true stress disribution.
A relatively simple method can be developed if it is assumed that sections spanning

a discontinuity can undergo only rigid body motion with respect to to each other. This
results in two relationships between the displacements on either side of a discontinuity at •.

X2,

o(x) = co(z) (174)

O~i)= N(XT) + Q'2(z7-) (175)

where the ai are discontinuity coefficients to be determined in some consistent manner. The
axial displacements are then, . .

w(z7, s) = -PL(Xz)y(s) - 9(xf)W(Xz, s) (176)

(,,s)= -(X.)Y(S) - 0(X-)(cMW(t,) + 2 {*)) (177) -

4 S .

and, in accordance with the above assumption, the differential stress field at the disconti-
nuity is described by,

ax = c(w (t) - W(X.)) (178)-
where c is a constant. To determine the values of the two discontinuity coefficients which
may minimize the effect of the incompatibility, it is consistent to apply local equilibrium
conditions to the differential stress field. For complete equilibrium, these requirements are,

IA L,(w(X7) + w(+)) dA 0 (179)

. • °
JA'
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I ad = 0 (180)
A

f Luy dA =0 (181)
IA

The first expression is the equilibrium statement for the bimoment at the section, and the
second and third integrals refer to the axial and horizontal bending equilibrium respectively.
Two of these conditions can be satisfied with the two degrees of freedom available from the P
rigid body motion assumption. In the current formulation these are chosen as the bimoment
and horizontal bending relations. (These criteria can be satisfied identically in certain
cases of complete cross-sectional symmetry; in the more general case, the application of the
simple rigid body parameters will not completely alleviate the incompatibility.) Substituting
equations (176) and (178) into (179), the coefficients cr' and a can be found in terms of

the sectional properties at the discontinuity,

2I V I,;. - Ij;,,

IV - - 2 
(182)

IQ -2' I, (183)

The cross-sectional properties in these expressions are calculated for the cross-section which
is common to both sides of the discontinuity. Since the coefficients are functions of two cross-
sections, their values cannot be established in a single cross-sectional property computation.
The calculation of these compatibility coefficients is discussed in more detail in Reference
20.

The necessary relations between the loads at the discontinuities can be derived from the
requirement of overall internal equilibrium at the discontinuity, which implies equality of
the virtual work done by the stress field under a virtual displacement,

a ." iv dA = [ ! a, dA (184)
fA 7 ,, It

Using the expressions of equations (176) for w, this yields,

V(, ) = M.(z7-) (185)
1w

M, (x + ) = (M" (Xi) + C2M,(X,)) (186)

The horizontal shear force is continuous across the discontinuity as is the rotation and
horizontal displacement,

PY(4-) = Py(xi-) (187)
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= 4(188)

= (189)

and the torsional moment relation becomes,

T(z+ ) = T(') + P,(z,(z) - z,(x )) (190)

because of the difference in shear center locations.
The warping restraint of internal structures such as torsion boxes and deck strips across

large openings can be included in the analysis by their introduction as point bimoment
springs in the system in the form,

M,,(x + ) - M,(x-) = K,,O(z,) (191) .5.

The warping stiffness K, expresses the restraining effect of the structure as a function of
the end fixity, torsional and bending stiffness, and sectorial coordinate of a general point "'. .,
of attachment of the internal structure. The inclusion of larger restraining structures such _
as wide deck strips can be derived in terms of distributed contributions to all forces and
is included directly in the right hand side of the differential equations (168)-(171). A full
development of the stiffness derivation of internal structures and the modifications required
in the differential equations can be found in Reference 4.

The discussion of this section has presented the derivation of the differential equations
of equilibrium for the flexural-torsional problem. This constitutes a special case of the
more general formulation of the equations of motion, obtained from the variation of the
complete energy functional. For a ship structure, a complete derivation must contain the
hydrodynamic effects relevant to hull motion in the expression for the kinetic energy. In
the current approach, these hydrodynamic terms are the added fluid mass associated with
the sway acceleration and added mass moment of inertia. They are currently calculated on '

the basis of Lewis form representations of discrete hull sections.(18)
The mathematics of the solution of the complete boundary value problem is quite in-

volved and is beyond the scope of this report. The method involves the choice of a set of
separable functions for the generalized displacements in the form,

[DJ = IX.] sin(flt + 1) (192)

where D is the vector of generalized displacements, X, is a vector of arbitrary, integrable
functions, and fl and 41 are the frequency and phase angle respectively. The substitution of
the form (192) into the differential equations (168)- (171) and boundary and discontinuity
conditions yields a self-adjoint, positive semi-definite eigenvalue problem which can be solved
by an iterative approximation technique. For the calculation of natural frequencies, the
iteration vectors must be normalized and orthogonalized at each iteration and a solution
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is established when successive eigenvector norms differ by an arbitrary small number. The
response to periodic forcing functions is expressed as a series summation of the modal
responses derived by the iteration process.

The solution method originally supplied by Pedersen has been adapted for use at DREA
and provides the dynamic response predictions as above, and also the longitudinal distri-
butions of the displacement variables relative to the baseline. The distribution of the bimo-
ment, warping moment and St-Venant torsional moment can then be input into a suitable
stress calculation program (typically the same program that generates the cross-sectional
properties) to obtain the sectional stress distributions.

5 Implementation and Evaluation of the Flexural-Torsional
Model

The theoretical basis for the torsional analysis of beams with slowly varying cross-
sectional properties has been developed, and a solution method has been programmed. This
section discusses the program and its application to actual structures. The displacement and
stress predictions are compared to both published data and to finite element comparison
solutions for several simple box beams. The beam method is then utilized in a static
torsional analysis of the hull of a frigate.

5.1 DREA Torsional Analysis Program Suite

The torsional analysis system in use at DREA comprises three independent but com-
patible computer programs. Since several of these programs are of a general purpose nature
this section discusses only the specific details relevant to a torsional analysis. The first
program in the suite, TPGEOM, is a planar digitization program which provides the data
base for each cross-section. This data base includes all plate thicknesses, beam locations
and dimensions relative to a baseline which is usually defined by the keel in the case of hull
sections.

The second program, SCRAP, accesses the data base and provides a general purpose
cross-sectional property and strength analysis capability. This includes the calculation
of the added fluid mass for a section based on the two dimensional Lewis form method,
the calculation of warping related sectional properties, and graphical display of all stress
distributions from specified transverse or torsional shear forces, bending moments, and
bimoments. The torsional stress distributions are based on the warping torsion theory
discussed in Sections 3.2, 3.3 and 3.4. SCRAP stores the relevant sectional information for
use either in the flexural-torsional beam model, or in an equivalent beam format suitable
for further analysis with an in-house finite element program VAST(' 9). The equivalent
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beam models are used for prediction of vertical hull vibration characteristics and dynamic
response.

The third computer program is a Fortran transcription of the TORSON program sup-
plied to DREA by the Department of Ocean Engineering, Technical University of Denmark.
This program is based on the fiexural-torsional theory presented in Section 4.2, and solves
the system of equations subject to the appropriate boundary conditions, and discontinuity
and internal restraint conditions. The program is currently utilized only for static stress
analysis, although further capabilities may be developed in the future. For this case, the
program provides longitudinal baseline distributions of the global displacements, and St-
Venant moments, warping moments and bimoments for the beam, given the data file as
ouput by SCRAP and a description of the external loads. The internal sectional loads
are then used in SCRAP to scale the warping based sectional stress distributions. The
St-Venant, transverse shear, and secondary shear stresses, and the bimoment and primary
bending stresses can be superposed respectively to obtain the total shear and longitudinal
stress distributions. Specific aspects of the operation of the torsional analysis programs are
presented in Reference 20.

5.2 Evaluation of the torsional analysis system

A number of simple test structures have been analyzed to evaluate the displacement
and stress prediction capability of the flexural-torsional method. To facilitate comparison
of the results with finite element solutions, these models have been prismatic beams with
simple geometric discontinuities.

Because the TORSON program has been transcribed into Fortran computer code from
its original Hewlett Packard Basic form, it was first necessary to run a sample problem for
which results are available from the author to ensure that the program integrity had been
maintained. A comparison with the available results for the beam of Figure 13 is presented
in Figures 14 and 15. These figures indicate that the SCRAP and TORSON programs are
providing results in complete agreement with those of Pedersen. A finite element comparison
solution provided by Pedersen is also shown. There is very good agreement in the rotation
angle predictions, and the axial stresses are in general agreement except very close to the
discontinuity.

As an independent evaluation, a second test structure with an intermediate deck and a
smaller deck opening has been studied, as this beam characterizes an actual ship structure
somewhat better than the first model. A detailed finite element model of one half of the
beam has been used as a comparison solution. This model, shown in Figure 16, comprised
885 nodes, 270 isoparametric shell elements, and 30 isoparametric membrane elements.
Symmetry boundary conditions were used and longitudinal restraints were imposed at points
of zero warping predicted by the SCRAP cross-sectional analysis. An end moment was
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imposed as an antisymmetric series of point loads at the free end of the beam. The initial
comparison of the results from an unstiffened finite element model with those of the flexural-
torsional beam method were very poor. A series of other models were analyzed with similar
results; the finite element solutions predicted much larger values of rotation and stress than
both the classical and beam theory methods. An investigation of this disparity( 21) indicated
that there were large cross-sectional distortions occurring which are not accounted for in
either the traditional St-Venant or the fiexural-torsional theory. These distortions give rise
to high plate bending stresses and large rotational displacements. The disparity between the
solutions also appeared sensitive to the tendency of the structure to warp, a characteristic
not always known a priori.

To reduce the in-plane distortion, and hence better approximate the assumption inherent
in the beam theory, the internal transverse membranes evident in Figure 16 were introduced
into the finite element model. The twist angle and axial stress comparisons for that model
are presented in Figures 17 and 18 respectively. The twist angle results indicate that there
is good agreement between the two methods for the open section of the beam, but that the
finite element method is not predicting the large differential in torsional stiffness between the
open and closed hull sections. This result is consistent with other finite element studies of
structures with discontinuous torsional stiffness in the St-Venant sense. Evidently, the good
agreement in Pedersen's results of Figure 14 was obtained using full transverse membranes

at every nodal cross-section to minimize the in-plane distortion.(7 ) That level of stiffening
was not practicable in the present model, but it is anticipated that the addition of full
transverse membranes in the model would yield better comparative results.

The necessity of providing transverse stiffness underscores the importance of the thin-
walled beam theory assumption of no in-plane distortion, as well as the large contribution
such stiffness makes to the overall torsional rigidity. In fact, the introduction of such stiffness
in the finite element models is not completely legitimate in the sense that the response of
two different physical models is being compared. It must be concluded that the thin-walled
theory will provide somewhat optimistic results for beams which do not possess a reasonable
degree of in-plane stability; however, in the application of the beam theory method to a
typical ship hull structure, an assumption of small distortion would be more appropriate
because of the large in-plane stability provided by the numerous transverse bulkheads and r
deep web frames.

Figure 18 indicates that, despite the poor agreement in twist angle, the axial stress
results compare quite favourably. The discontinuity attracts a somewhat higher stress
concentration than the beam theory method predicts. The axial stress contours for the
top surface of the test beam are shown in Figure 19. The stress concentration at the
discontinuity is very apparent.

Anticipating at least representative predictions of displacement and stress, the flexural-
torsional beam method has been applied to a study of the static response of the hull of
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a frigate under torsional loading. A detailed data base available for this ship allowed the
formation of a very representative beam model for use in the torsional analysis. Although
a number of reasonably large discontinuities exist in the hull chosen for analysis, only the

two most serious were used in the current study. Since a hydrodynamically derived load
distribution was not available for this analysis, a distribution given in Lloyds Register(2 2)

has been used as a representative load case. This moment distribution is given, in kn-m,
as;

m(x) = .8 °e°°O2LLB CT (1.75 + 1.5-) (1 - cos a) (193)

where c represents the offset of the shear center below the structure baseline (keel), D is the
ship depth, L the total s.hip length between perpendiculars, and CT is a coefficient related
to the water plane area coefficient, Cw, as;

CT = 13.2 - 43.4Cw + 78.9CW (194)

with n
Cw = 0.165 + 0.95CB CB > 0.6 (195) .e -

The traditional harmonic variation is given by the cosine term, where,

Q= 27r 5  (196)
L

The two major components of this formula attempt to account for the variation of vertical
hydrostatic pressure in quartering seas as well as the twisting moment created by the hori-
zontal force resultant about an offset shear center. Substituting the appropriate parameters
for the frigate hull, we obtain the moment distribution presented in Figure 20.

The twist angle predictions for the frigate hull for runs with no discontinuities and two -
discontinuities are presented in Figure 21. Evidently, the inclusion of discontinuities has
little effect in this case. (This was not the case in the Pedersen beam, Figure 14.) Figures -
22 and 23 present the axial warping stress distributions resulting from this load for sections
aft and forward of the first discontinuity respectively, where the warping induced stresses-":: .

are expected to be highest. These distributions indicate that despite the large geometric
discontinuity, the axial stress levels are quite low. Figures 24 and 25 illustrate the differences
in the shear stress distributions predicted by a traditional analysis and that provided by
the warping beam theory for the section in the vicinity of the deck cut-out. Again, the
maximum stress levels are quite low in either case.

6 Conclusion

This report has presented a unified development of the thin-walled beam theory and
several refinements of that theory adopted for use in ship structural strength analysis. The
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various assumptions underlying each formulation have been set out, and their consequences
discussed. The introduction of the general warping function, and the formulation of several
iterative methods to attempt to account for the secondary shear deformation have been
presented. It has been shown that the former refinement leads to unsatisfactory local
equilibrium conditions, whereas the latter is computationally more intensive and, in the
-ase of at least one method, can give non-convergent solutions. On that basis, it is not

*. evident that the use of the iterative methods is necessarily worthwhile. As well, certain
results as evidenced in Figure 17 appear to indicate that the assumption of no geometric
deformation is a far more inaccurate assumption than that of negligible secondary shear
strain.

Despite the problems associated with the refinements of the theory, the sectorial based
warping formulation provides, in general, a better model of the behaviour of prismatic thin-
walled sections because of the account of longitudinal deformation. The non-localized axial
and secondary shear stresses associated with warping restraint can add significantly to the
overall stress distribution, particularily in open sections with low St-Venant stiffness. Since
ship hulls can have significant variations of torsional rigidity due to geometric discontinuities,
it is worthwhile to apply these methods to better understand the state of stress in the hull,
and the application o_' these prismatic beam theories to the analysis non-prismatic ship
hulls has been discussed. In several of these methods, the ship is idealized as a series
of prismatic segments, and improved -compatibility of warping displacements between the
segments can be obtained through the use of coupling coefficients. For typical warship hulls,
these coefficients appear to have little effect on the static displacement or stress predictions.

For singly symmetric structures such as ship hulls, horizontal flexure and torsion are
coupled, and a derivation of the static equilibrium equations from an energy variational has
been presented. This approach assumes the structure to be a slowly varying beam, and re-
lies on unverified simplifying assumptions to form a tractable solution method. A system of
four coupled differential equations requiring numerical solution methods is derived. A com-
puter based analysis system based on this theory has been implemented at DREA for ship
hull torsional strength evaluation. Using this system, a number of prismatic test structures
have been studied, and the results compared to those of finite element solutions. These
comparisons indicated that the thin-walled beam theory assumption of complete in-plane
stability is an unrealistic one for unstiffened structures, and very optimistic displacement
and stress predictions will be provided by that theory for structures without significant
in-plane stiffness. This assumption appears to be a major limitation in the potential ap-
plications of the beam method. In cases where a large degree of configurational stability is
present, the beam method should provide representative behaviour of the structure under
torsional loads. This will be the case for a typical warship hull, because of the large number
of deep web frames and transverse bulkheads.

The fiexural-torsional beam method has been applied in the analysis of a frigate hull
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under a hypothetical torsional load, and the results indicated that quite low stresses are
generated in the hull from the prescribed load. Such low stresses are a result of several
factors, the most important being the large torsional stiffness inherent in the cellular con-
figuration typical of most warships. It is concluded that normal detailing practices at AZ
geometric discontinuities in the hull would be more than adequate to compensate for any
stress concentrations caused by axial or shear stresses in torsion.

There are several areas described in this report which could benefit from further in-
vestigation and development. Specifically, a more general method of coupling the segment
warping displacements in non-prismatic beams than the rigid body displacement approach
commonly in use could be developed. As well, the importance of the many terms ignored %
in the strain energy derivation for the slowly varying beam should be investigated. Finally,
and perhaps most critically, better descriptions of maximum torsional and flexural loads for
ship hulls are required. "" .4

p.

tell

K k, .,4

o..'. •

.4

-. -4 ..

a . - - . . ° -. -. ,° , -. o ° .. -° -. . ° % -° - . - -. . . ° - ° . % -. •4,.. ..

/. _ .'," .: " < - ".".'..%" '...."'.. . .'. ,"..,, .'. . . . .' " .-.. "- .." ',- " . : " " :"-4-4"-

.V 4 - . d' °'-t .• .. " # . ,' .,' #. . . •', . " " • "" • .' •" ' '# o"• ' • ." ', ," ,'-. • S-°4, .. "



OPEN CLOSED

MULTI-CLL MIXE

Figue 1 Opn, cose an muli-cll hin-alld bams

40f



.k

Ad

LONGITUDINAL %~.a

TORSION BOXE

DEC 7*AM

TRANSERSESTIFENIN

TRANVERS STIFFENINGN)

Figure 2: Tsinreaintsein atese bul fomn with led isctinis.

41 ~



-7 w -3 _3 -i -3 37M 97

Ap

hdO do

G T

A *dS

Gs d

rds

Figure 4: Warping deformation of an cosed section.

42O

-~~d a.. .x... . . - . .- . . . . .



S.

".

qqa
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Figure 14: Twist angle predictions for test 1 under a torsional load (Pedersen).
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EI ".' - G- --" m(-) (197)

where m represents the external couple per unit length along the beam. Defining the non- ,
dimensional parameter, k, as, :.

k 1 E,,, (198)

equation (197) can be written, '

T2,,k E, ,,,-

The fundamental solution of this linear, inhomogeneous differential equation is obtained by "
assuming a solution form €=er' and solving the characteristic equation for the roots r. "o
This leads to a general solution of the form, kzk

O(X) = C1 + C2(X) + C3 sinh -- + C4 cosh - + P(X) (200)

The coefficients of the solution can be determined from the bounda-ry conditions of the ,
problem once a particular solution has been established for the given load case. Some
common forms include,

concentrated load:"

M () = 0 (201).-,R
P(X) = 0 (202) "

uniformly distributed load: r

m(X) =PO (203)

2Fk~x .."

P(X) =-Po21Eiw (204) :.

sinusoidal distribution:
re(x) = Asin T (205).''

P~x) = At' sin _
P()=Ei,,r2C7r2 + k2)  (206).'"

.

Four boundary conditions are required, two per beam end, to establish the complete
solution. These conditions can be in the form of kinematic or statical constraints. Some
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common conditions include, .
clamped pend:'" ..

€ ' = 0 ( 2 0 7 )"
free to wapbut not rotate: ".M 0 (208)

free end:"
' ' '  "M, -- T = 0 (209)

Other boundary conditions and combinations are possible, such as linear relations between "5.-"
statical and kinematic variables to reflect elastic support conditions. Reference 12 provides '"--a very complete presentation of the various load and boundary conditions.

It is instructive to consider the influence of the parameter k, which characterizes the ": .,
elastic properties of the thin-walled beam. As an example, consider the axial stress distri--.bution for a clamped-free beam under a concentrated torsional end moment. In that case,.
the complete solution of the differential equation (199) is given as, ...

T [x z+ I tanh k(cosh -T - 1) - I sinh kx(210)'-.-"

and hence, from the development of Section 3, the axial warping stress distribution is given

by, 
"""'0k S - tanh k cosh )xs) (211)

Plotting the non-dimensionalized axial stress then gives a description of the attenuation of

that stress with length. This has been done in Figure A for various values of the parameter
k. It can be seenst t the stress decays inene o th near fashion for this particular case.The higher the value of k, the more localized is the area influenced by the bimoment stress
field. In the limiting case of k = oo, the stress is completely concentrated at the restraint.
Although the decay characteristics of the axial stress are a function of the load and boundary

conditions, this trend is universal."-' '-The value of k depends mainly on three characteristics of the beam: thickness, length,.','zand geometric configuration. It can readily be shown that k decreases with decreasing thick-
ness by consideration of the St-Venant and warping stiffness dependence on that variable.Also evident is the importance of the overall beam length; again, in the limiting case of
an infinitely long beam, the warping stresses become completely localized. Not as evident
is the configurational dependence, and it is difficult to estimate a priori the ratio of the
St-Venant and warping torsional rigidities for complex geometries. .

Despite the fact that typical warship hulls are quite cellular and hence have large St-
Venant torsional rigidities, the k values in the regions of large deck openings can be quite
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low. Assuming that the ends of the cut-out zone are essentially fixed against warping
because of their larger St-Venant stiffness, and using the length of the cut-out as a length
paramenter, k values of 0.12 and 0.11 are obtained for the two major discontinuities in
the CPF hull. Warping restraints in these areas will therefore cause axial and secondary
stresses of a non-localized nature.

According to the principle of St-Venant, stresses developed in a section through the al-
plication of a balanced external load are localized, and dimirish rapidly away from the point
of load application. Such a principle should apply to the self-balancing force system of the
bimoment distribution. However, because of the relatively slow decay of these axial stress
systems, particularily in thin-walled beams of open section, and the nature of the distortion
caused by these stresses, the application of the St-Venant principle to such structures is not
valid.

*8
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