Mechanisms of Action of Trichothecenes in the Cardiovascular System

Annual Progress Report

W. T. Woods, Jr.

October 1, 1986

Supported by

U. S. ARMY MEDICAL RESEARCH AND DEVELOPMENT COMMAND
Fort Detrick, Frederick, Maryland 21701-5012

Contract No. DAMD17-86-C-6075

University of Alabama at Birmingham
Birmingham, Alabama 35294

DoD Distribution Statement

Approved for public release; distribution unlimited

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.
Mechanisms of Action of Trichothecenes in the Cardiovascular System

WILLIAM T. WOOD

1A. TYPE OF REPORT
Annual

1B. TIME COVERED
From 1 Oct 85 to 30 Sep 86

1C. DATE OF REPORT (Year, Month, Day)
1986 October 1

1D. PAGE COUNT

16. SUPPLEMENTARY NOTATION
Work performed during the past quarter was composed of our final experiments with T-2 toxin and Rodin A as well as an increasing number of experiments with low molecular weight toxins that alter ion channels in excitable membranes [tetrodotoxin (TTX), batrachotoxin (BTX), and veratridine (V)]. The mycotoxin experiments were consistent with previous observations that autonomic nervous system disturbances are responsible for a substantial part of the cardiovascular collapse reported for trichothecene mycotoxicosis. Neither depressed cerebral blood flow nor pulmonary arteriolar resistance increase appeared to be of importance in experiments carried out in pentobarbital-anesthetized rats and dogs. The other set of experiments confirmed that single openings of Na⁺ channels in cardiac cell membranes are difficult to study because of their voltage- and time-dependencies (they open infrequently once and briefly for a single voltage step). Therefore, we tested effects of BTX and V (Na⁺ channel openers) on single channels of cardiac muscle cells. The results indicated that they open channels that carry inward current and this can be blocked by TTX. They will be studied further as Na⁺ channel agonists as well as TTX antagonists in cardiac cells.
ANNUAL PROGRESS REPORT
CONTRACT NUMBER: DAMD17-86-C-6075
Mechanisms of Action of Trichothecenes
in the Cardiovascular System

Report Period: October 1, 1985 - September 30, 1986
SUMMARY

The first half of the past contract year was devoted solely to investigation of mechanisms by which T-2 toxin, Roridin A, and their congeners exert toxic effects on the mammalian cardiovascular system. For the second half of the year we requested, and were granted permission by USAMRDC, to phase in experiments to determine mechanisms of action of other low molecular weight toxins in cardiac cells; our experimental program on trichothecenes was simultaneously completed. With respect to trichothecene toxicity, our data confirmed the hypothesis that cardiovascular complications mainly result from imbalance within the autonomic nervous system; the imbalance appears to be caused by direct effects on autonomic neurons. With respect to the toxins known as tetrodotoxin (TTX), batrachotoxin (BTX), and veratridine, each of which binds to sodium channels in excitable cell membranes, our data suggest that BTX and veratridine can promote opening of cardiac sodium channels and that TTX blocks them. These antagonistic effects and how they can be applied to alter activities of different kinds of cardiac cells will be further investigated. In additional studies we will elucidate mechanisms of action of saxitoxin and blue-green algae toxins (when they become available) in cardiac muscle and conduction cells.
FOREWORD

Animal Statement: All animal facilities at the University of Alabama at Birmingham are under the direction of full-time veterinarians and are fully accredited by the American Association for Accreditation of Laboratory Care. UAB complies with the NIH policy on animal welfare (letter of assurance filed January, 1985), the Animal Welfare Act, and all other applicable federal, state and local laws.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cover</td>
<td>1</td>
</tr>
<tr>
<td>Report Documentation Page</td>
<td>11</td>
</tr>
<tr>
<td>Title Page</td>
<td>1</td>
</tr>
<tr>
<td>Summary</td>
<td>2</td>
</tr>
<tr>
<td>Foreword</td>
<td>3</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>4</td>
</tr>
<tr>
<td>Introduction</td>
<td>5</td>
</tr>
<tr>
<td>Part 1 - Mycotoxins</td>
<td></td>
</tr>
<tr>
<td>Statement of Problem</td>
<td>5</td>
</tr>
<tr>
<td>Background</td>
<td>5</td>
</tr>
<tr>
<td>Results</td>
<td>6</td>
</tr>
<tr>
<td>Summary of Results</td>
<td>16</td>
</tr>
<tr>
<td>Discussion and Conclusions</td>
<td>18</td>
</tr>
<tr>
<td>Part 2 - Other Toxins</td>
<td></td>
</tr>
<tr>
<td>Statement of Problem</td>
<td>18</td>
</tr>
<tr>
<td>Background</td>
<td>19</td>
</tr>
<tr>
<td>Approach to the Problem</td>
<td>19</td>
</tr>
<tr>
<td>Results</td>
<td>21</td>
</tr>
<tr>
<td>Discussion and Conclusions</td>
<td>21</td>
</tr>
<tr>
<td>References Cited</td>
<td>23</td>
</tr>
<tr>
<td>Appendix:</td>
<td></td>
</tr>
<tr>
<td>A. Copies of publications from 01 October 1985 through 30 September 1986 supported in part or in full by this contract.</td>
<td></td>
</tr>
</tbody>
</table>
INTRODUCTION

Because there were 2 phases of work in the past contract year, the body of this report is divided into 2 parts, 1. Mycotoxins and 2. Other Toxins. Following the Conclusions section of part 2, a bibliography of publications supported by this contract is included. Copies of these can be found in Appendix A.

PART 1. MYCOTOXINS

STATEMENT OF PROBLEM

A meeting held at USAMRIID in January 1986 revealed that three studies were viewed as high priority. First, the question of whether or not high pulmonary vascular resistance contributes to T-2 toxicosis was to be answered with whole animal studies. Second, the question of whether effects of T-2 and roridin-A on the cardiac conduction system are mediated via the cell membrane or via intercellular communication was to be answered with single cell studies. And third, the question of whether or not effects of T-2 are mediated through the ATP-sensitive K+ channel was to be answered with patch clamp studies. These particular studies were substantially complete by October 1, 1986.

BACKGROUND

Past studies (1,4,5,8,9) and recent ones in this and other laboratories (7,10,12,15-18,21-23,25) have suggested that trichothecenes can have lethal effects on mammalian cardiovascular and nervous systems. One such effect, sudden death due to abnormal heart rhythm, could result from dysfunction of cardiac cells or from damage to cardiac nerves. We have observed that T-2, some of its metabolites, and certain macrocyclic
trichothecenes can alter electrical activity in cardiac cells and they also interfere with autonomic neural control of the heart and circulation.

These studies were performed in rats, swine, and dogs. Electrocardiograms (ECG's) and arterial and venous pressures were recorded to continuously monitor cardiovascular responses to intravenous trichothecenes. To elucidate mechanisms for the previously observed changes in heart rate, cardiac pacemaker regions (sinus nodes) were excised and perfused in vitro where electrical activity in individual cells could be studied with microelectrodes (29). Whenever trichothecenes were found to alter transmembrane potentials or ionic currents, single isolated atrial or ventricular (24) cells were studied with the technique known as patch clamp (voltage clamp of a patch of membrane) in which conductance of certain membrane channels was measured (33,34). Thus, we investigated which transmembrane currents are affected.

Both the low vascular tone and reduced cardiac output implicate a disturbance in autonomic neural activity. Hence we tested the hypothesis that trichothecenes block myoneural transmission and/or produce cerebral ischemia (via pulmonary hypertension or low cerebral blood flow).

RESULTS

Project Title: Effects of Intravenous T-2 and Roridin A on the Canine Cardiovascular System.

This was a study of trichothecenes effects in whole anesthetized animals and this year's results confirmed our previous ones that have been published. Extensions of these studies to the level of the cardiac cell membrane were accomplished by applying the techniques described in this progress report.
Project Title: Trichothecene-induced Action Potential Changes in Canine Atrial Working Myocardium.

The nature of changes produced by T-2, roridin A, and other trichothecenes in cardiac working muscle cells (atrial and ventricular) do not suggest that they are likely substrates for trichothecene-induced arrhythmias. Thus, membrane conductance mechanisms in other cardiac cells such as the sinus node pacemaker and A-V node were studied.

Project Title: Electrophysiologic Effects of Trichothecenes on Canine Sinus Node Pacemaker Cells.

Although the predominant responses to intravenous T-2 and roridin A were hypotension and reflex tachycardia, simultaneous direct effects on sinus node pacemaker cells developed progressively. Sinus node firing rate became slower as pacemaker cell maximum diastolic potential became more negative, and this progressed to sino-atrial block or sinus arrest. If at the same time the A-V junction substitute pacemaker were to become suppressed, this would be a potentially lethal electrophysiologic event. Membrane mechanisms for pacemaker suppression were investigated in isolated cells.

Project Title: Effects of Trichothecenes on Cell Membrane Ion Conductance.

We have recently adapted a cell dispersion technique to our isolated, perfused canine atrial preparation and we find that a high yield of atrial cells can be reproducibly harvested from hearts of any age. Critical points in this procedure appear to be 45 min. arterial perfusion with 0.1% collagenase, \([\text{Ca}^{++}] = 0.03 \text{ millimole/liter or less, and maintenance of normal arterial pressure and temperature.}\)

The collagenase-treated tissue is minced with scissors and mildly agitated in 10 ml. Ca\(^{++}\)-free perfusate for 10 min. It is then filtered
through a nylon mesh (200 micron pore diameter) and bovine serum albumin (Sigma Chem.) is added (final concentration = 1%). For long-term culture experiments sterile technique is practiced. All solutions are passed through a 0.2 micron filter before contacting tissue. All tools are sterilized by autoclave. Final steps in the dispersion are carried out in a laminar flow hood (NuAire 300) to maintain sterility. After the mincing step the tissue fragments are mildly agitated in 10 ml. Medium 199 with 10% canine serum and 50 units/ml. each of penicillin and streptomycin (Irvine). Tissue debris is strained with sterile nylon mesh and medium is added to bring the final volume to 10 ml. Aliquots (2.0 ml.) are transferred to 35 mm. diameter Falcon culture dishes (5 per atrium or sinus node).

The dishes are stored in a water-jacketed, humidified 5% CO₂ incubator (Forma 3158) at 37°. Aliquots (0.2 ml.) are aseptically removed from them and placed in a glass-bottomed chamber (0.5 ml.). In this chamber cells adhere to the collagen treated bottom so that they can be suffused with fresh media. Cells are viewed through an inverted microscope (Nikon Diaphot) resting upon a compressed gas suspension table (Micro-G) to suppress vibration. Cell density is typically 50 ± 25 cells per field of view at 400 power magnification.

Suitably constructed microelectrodes can remove a patch of cell membrane and record the passage of current through it. Both transmembrane potential and chemical composition of the solutions bathing the patch are controlled to determine what kinds of ion-channels are present. Micropipettes are pulled in a 2-stage process so that the final product has a 2.0 micron outside diameter tip with 0.5 micron diameter opening. It is
again heated in a microforge to remove any jagged edges. The shaft of the pipette is insulated with a layer of Q-dope all the way to the tip.

Negative pressure in the pipette lumen draws a cell membrane tightly against the opening and the membrane bonds electrostatically to the exposed glass ring of the pipette tip. When the membrane bonds to the entire ring of glass, it creates a high resistance (giga-ohms). Thus, current passing through the pipette traverses the relatively lower resistance of the membrane patch. This current is both injected and recorded with an Axopatch Patch Clamp system.

The membrane patch is either attached to the cell membrane or removed, which is desirable when the ionic composition of the solution exposed to the (formerly) intracellular membrane surface must be controlled precisely. Trans-patch voltage gradient is set with the patch clamp amplifier. At certain levels of transmembrane potential voltage-sensitive ion-specific channels open and close rapidly and these appear as high frequency (depending on temperature and voltage) current spikes of constant amplitude (Figure 1 and 2). Current carriers are identified by changing the concentrations of Na⁺, K⁺, Ca**, etc. to alter the driving forces on them during the channels' open phases.

To investigate characteristics of K⁺ channels, K⁺ is the only cation present and an impermeant anion is used (such as gluconate). For inside-out or cell-attached type patches, the bath contains 150 mM K gluconate, 5 mM HEPES, and the pipette contains the same plus 1 mM Ca++. With inside-out patches and the same K⁺ concentration on both sides, the reversal potential is zero, i.e., no current seen at mv. In other inside-out or cell-attached type patches, the reversal potential is determined. In those cases various combinations of bath and pipette
solution compositions (75 mM., 150 mM., or 300 mM. K gluconate) result in varying reversal potentials depending upon the direction of K⁺ concentration gradient.

To detect the presence of Ca²⁺-activated K⁺ channels, the Ca²⁺ concentration in the pipette of inside-out patches is varied (in different patches) between 0.5 and 1000 micromolar. The Ca²⁺ concentration in the bath of outside-out patches is varied also between 0 and 2 mM. The Ca²⁺ concentrations are buffered to insure accurate concentrations by using appropriate combinations of Ca²⁺ and EDTA and measurement with a Ca²⁺-sensitive electrode (Orion).

Canine right atria are electrophysiologically mapped and arterially perfused with collagenase (0.1%). After the dispersed cells are transferred to culture dishes (5.0 ml.), individual cells and clusters of cells are observed in an inverted microscope. The nominal pacemaker cells and working muscle cells are visually identified and impaled with microelectrodes to record spontaneous electrical activity. The technique used to disperse nominal pacemaker cells reduces the working muscle cell population of the sinus node sample.

Project Title: Effects of Trichothecenes on Cerebral Blood Flow and Pulmonary Vascular Resistance.

The model described in the previous progress report was used to answer 2 questions this quarter. First, in 6 rats injected intravenously with T-2 toxin or Roridin A (up to 4.0 mg./kg.), no changes in cerebral blood flow were detected by the hydrogen clearance technique (see Figure 3). Second, in the same animals catheters advanced into the inferior vena cavae recorded no changes in venous pressure. This supports the hypothesis that trichothecenes do not cause pulmonary arteriolar constriction (pulmonary
Figure 1. Currents recorded from an inside/out patch of pacemaker cell membrane are shown at 5 different holding potentials. For current calibration the unitary events of 0 mV and 1.8 picammperes in amplitude. Upward deflections are outward current; downward deflections are inward currents. Closed level = dashed line. Each record is 1.1 sec in length.
CURRENT-VOLTAGE RELATION
CANINE SINUS NODE CELL
(INSIDE-OUT PATCH)

The current/voltage plot for data in Figure 2 is shown.
hypertension) as does endotoxin. Therefore, by elimination of other possibilities, we conclude that the major effect on the autonomic nervous system may be mediated by membrane effects or by interference at the myoneural junction. Further studies will be performed to determine whether the effect is pre- or post-synaptic. For example, we will selectively block vascular adrenergic receptors to test for post-synaptic effects and membrane effects will be assessed by the patch clamp technique.

SUMMARY OF RESULTS

Single channel electrical activity has been characterized in canine atrial myocytes and pacemaker cells. We can, therefore, directly study changes in specific ion conductance pathways in the heart cell membrane. The following conductances have been recognized:

1. Ca**-sensitive K* conductance
2. Rectifying K* conductance
3. Stretch-sensitive conductance (not voltage-sensitive)

One manuscript that was previously submitted became accepted for publication in Toxicon (Bubien, J.K. and Woods, W.T., Jr., Direct and reflex effects of trichothecene mycotoxins). A manuscript was prepared for a book in preparation by V.R. Beasley (editor) to be entitled, Trichothecene Mycotoxicosis. Our chapter is to be entitled "Effects on the Cardiovascular System" [authors: J.K. Bubien, G. Lundeen (Univ. Ill.), C.B. Templeton (USAHRID), and W.T. Woods, Jr.]. Experimentally the studies to test whether or not T-2 or Roridin A diminish cerebral blood flow were concluded. The "hydrogen clearance" technique was applied to microelectrodes inserted into each cerebral hemisphere of anesthetized rat brains to record changes in regional blood flow. No significant changes were observed to correlate with intravenous infusion of the mycotoxins from 0.5 to 2.0 mg per kg.
Figure 3. Cerebral blood flow (hydrogen clearance technique) remained unaffected by T-2 and Roridin-A. Likewise, central venous pressure remained unchanged for at least 2 hours of exposure to toxins (1-8 mg./kg.) (data not show). P = propranolol (5 mg.); T-2 = T-2 toxin; R-A = Roridin-A; all intravenous injections.
To test the hypothesis that pulmonary arteriolar constriction contributes to the mycotoxicosis, we measured right atrial pressure with inferior vena caval catheters in anesthetized rats and dogs while T-2 and Roridin A were administered intravenously. Central venous pressure remained constant throughout the 4 hr. observation period during which toxin concentrations were 0.5 to 2.5 mg. per kg.

DISCUSSION AND CONCLUSIONS

Trichothecene Mycotoxicosis

Experiments to determine the effects of trichothecenes on cardiovascular function were completed and summarized. In general, we conclude that the most prominent effects on the cardiovascular system are mediated via imbalance within the autonomic system caused by direct effects on autonomic neurons.

PART 2. OTHER TOXINS

STATEMENT OF THE PROBLEM

1. Does the slow death (3-4 days in mice) component of microcystin operate on heart muscle or nerve cell membranes (i.e. to promote arrhythmias or dysautonomia)?

2. Does vital organ death from anatoxin A or S result from neuro-muscular, neural, or muscle cell inexcitability (like tetrodotoxin) or hyperexcitability (like batrachatoxin)?

3. Since binding of saxitoxin to cardiac cell membranes correlates poorly with electrophysiologic effects of saxitoxin, we propose to test the hypothesis that saxitoxin binds to Na+ channels of the conduction system rather than those of cardiac muscle.
Previous studies in this laboratory (13,27) revealed that tetrodotoxin (at a concentration adequate to produce atrial quiescence in the isolated canine heart) has only a brief negative effect on pacemaker firing rate. However, when Mg** concentration was reduced the effect of tetrodotoxin became enhanced; it was no longer simply transient and its negative chronotropic effect became substantial (lowered firing rate by 50%) (Figure 4). The hypothesis that tetrodotoxin and Mg** share a common mechanism to regulate transmembrane current in pacemaker cells is under study.

BACKGROUND

As described previously, we are directing our attention to cardiac effects of certain low molecular weight toxins that have known specific effects on excitable cells. TTX, for example, arrests activity of cardiac muscle cells but has no effect on cells in the cardiac conduction system which is responsible for generation and conduction of the cardiac electrical impulse. We have, therefore, performed experiments to test the hypothesis that cardiac function depends upon Na* channels that play different roles in different kinds of cardiac cells.

APPROACH TO THE PROBLEM

An abstract will be presented at the February 1987 meeting of the Biophysical Society in which our preliminary studies will be described. BTX binds to neural and muscle Na* channel receptors and holds them in the open configuration, in contradistinction to TTX which promotes the closed or blocked condition. In freshly isolated canine atrial cells we have observed that in the presence of BTX single channels carrying inward Na* current (the only charge carrier available) open repeatedly. Furthermore, when TTX was added, these unitary events ceased. Veratridine, which has the
Figure 4. Sinus rate in this experiment remained (see point A) stable (130 bpm) until Mg\(^{2+}\) was removed (unfilled horizontal bar) at which point it increased to 190 bpm (see point B). Tetrodotoxin (TTX 1.0 x 10^{-7} molar) added before Mg\(^{2+}\) was removed (arrow) caused only a transient rate decrease, but during hypomagnesemia, TTX substantially lowered sinus rate (Point C).
same action as BTX, was less potent by at least 100 fold as reported by other laboratories for nerve cells. We use the IPROC program of Sachs et al. modified for our LSI 1173 computer to analyse single channel data. BTX-induced channel characteristics are shown by Figures 5, 6, and 7.

RESULTS

Na⁺ channels can be opened by exposure to BTX and veratridine in canine atrial myocytes. They can be blocked by TTX. By experimentally counter-posing these 2 effects, we will determine specific roles played by Na⁺ channels in the cardiac muscle versus conduction cells and also we will investigate mechanisms by which these agents antagonize each other as well as saxitoxin and anemone-toxin which have related effects.

DISCUSSION AND CONCLUSIONS

Experiments revealed that single openings of Na⁺ channels in cardiac cell membranes are difficult to study because of their voltage-and time-dependencies (they open only once and briefly for a single voltage step). Therefore, we tested effects of BTX and Veratridine (Na⁺ channel openers) on single channels of cardiac muscle cells. The results indicated that they open channels that carry inward current and this can be blocked by TTX. They will be studied further as Na⁺ channel agonists as well as TTX antagonists in cardiac cells.
$+50 \text{ mv (pipette potential)}$

175 Na-Glu; BTX-B (pipette)

Figure 5. Unitary events are shown at 50 mv clamp potential with 175 mmolar Na$^+$ in the pipette. Upward deflections are inward (openings). Cell is an atrial working myocyte.
CLOSED TIME HISTOGRAM

membrane potential = -50 mv
number of events = 1093
bin width = 0.5 msec
\(\tau = 3.30 \) msec

Figure 6. This histogram shows the distribution of closed times for the Na\(^+\) channel. The time constant was 3.3 msec.
Figure 7. This histogram shows the distribution of closed times for the Na⁺ channel. The time constant was 7.09 msec.
REFERENCES CITED

APPENDIX A

Copies of publications from 01 October 1985 through 30 September 1986 supported in part or in full by this contract.

ABSTRACTS

DISTRIBUTION LIST

5 copies
Commander
US Army Medical Research Institute of Infectious Diseases
ATTN: SGRD-UIZ-M
Fort Detrick, Frederick, MD 21701-5011

1 copy
Commander
US Army Medical Research and Development Command
ATTN: SGRD-RMI-S
Fort Detrick, Frederick, MD 21701-5012

12 copies
Defense Technical Information Center (DTIC)
ATTN: DTIC-DDAC
Cameron Station
Alexandria, VA 22304-6145

1 copy
Dean
School of Medicine
Uniformed Services University of the Health Sciences
4301 Jones Bridge Road
Bethesda, MD 20814-4799

1 copy
Commandant
Academy of Health Sciences, US Army
ATTN: AHS-CDM
Fort Sam Houston, TX 78234-6100