THE DECOMPOSITION OF AN ARBITRARY THREE-DIMENSIONAL PLANAR POLYGON INTO A SET OF CONVEX POLYGONS (U)
NAVAL POSTGRADUATE SCHOOL MONTEREY CA J H POTTS DEC 86

UNCLASSIFIED
THE DECOMPOSITION OF AN ARBITRARY THREE-DIMENSIONAL PLANAR POLYGON INTO A SET OF CONVEX POLYGONS

by

Jeffrey H. Potts

December 1986

Thesis Advisor: Michael J. Zyda

Approved for public release; distribution is unlimited.
We present in this study a three step algorithm for the decomposition of arbitrary, three-dimensional, planar polygons into convex polygons. Through a series of translations and rotations, an arbitrary polygon is mapped onto the x-y plane, then broken into a set of convex polygons, and finally mapped back to the polygon's original coordinate system for filling and display by special graphics hardware.
The Decomposition
Of An Arbitrary Three-Dimensional Planar Polygon
Into A Set Of Convex Polygons

by

Jeffrey Hal Potts
Captain, United States Marine Corps
B. S., United States Naval Academy, 1977

Submitted in partial fulfillment of the
requirements for the degree of

MAster of science in computer science

from the

NavaL POSTGRADUATE SCHOOL

December 1986

Author: Jeffrey H. Potts

Approved by: Michael J. Zyda, Thesis Advisor

Robert B. McGhee, Second Reader

Vincent Y. Lum, Chairman,
Department of Computer Science

Kneale T. Marshall,
Dean of Information and Policy Sciences
ABSTRACT

We present in this study a three step algorithm for the decomposition of arbitrary, three-dimensional, planar polygons into convex polygons. Through a series of translations and rotations, an arbitrary polygon is mapped onto the x-y plane, then broken into a set of convex polygons, and finally mapped back to the polygon's original coordinate system for filling and display by special graphics hardware.
TABLE OF CONTENTS

I. INTRODUCTION ... 6

II. BACKGROUND ... 7
 A. DEFINITIONS ... 7
 B. DECOMPOSITION .. 7
 C. RESEARCH FACILITIES .. 9

III. STEP I: MAPPING THE 3D POLYGON TO THE 2D X-Y PLANE 12
 A. THE NORMAL TO A POLYGON .. 12
 B. ANGLES ABOUT THE AXES .. 14
 C. TRANSFORMATION MATRIX .. 16

IV. STEP II: POLYGON DECOMPOSITION .. 18
 A. CLOCKWISE ORDERING ... 18
 B. VERTEX EXAMINATION ... 19
 1. Test One ... 19
 2. Test Two .. 19
 3. Test Three .. 22
 C. SELECTION COMPLETION .. 24

V. STEP III: MAPPING TO THE ORIGINAL COORDINATE SYSTEM 26

VI. IRIS IMPLEMENTATION .. 27
 A. MATRIX IMPLEMENTATION .. 27
 B. DOUBLY LINKED LIST ... 27
 C. VERTICES STACK ... 28

VII. LIMITATIONS AND CONCLUSIONS .. 30

LIST OF REFERENCES ... 33

4
I. INTRODUCTION

Computer hardware advancements applied to the field of computer graphics have recently made possible the real-time display and animation of three-dimensional object models. In most currently produced graphics systems, the three-dimensional (3D) object models are comprised of sets of 3D polygons. For years the key bottleneck to generating real-time images of 3D models has been the limited speed with which the 3D polygons comprising the model have been filled. This bottleneck has been alleviated recently with the advent of special hardware designed to fill polygons at rates exceeding 44 million pixels per second [Ref. 1]. For real-time animation of 3D object models, such polygon fill rates are essential.

The majority of the graphics systems that provide polygon fill hardware only provide hardware for filling convex polygons. Concave polygons passed to such hardware usually are filled incorrectly, if at all. To utilize the capabilities of such hardware for the general polygon case, that is, a mix of concave and convex polygons, it is necessary to have some means of decomposing an arbitrary 3D planar polygon into a set of 3D planar convex polygons completely covering the area defined by the original polygon. The following study attempts to provide such an algorithm. We then discuss the implementation and performance characteristics of that algorithm on the Silicon Graphics, Inc. IRIS workstation.
II. BACKGROUND

A. DEFINITIONS

A polygon is defined as a geometric figure that is described by an array of x, y, and z coordinates for its vertices. A two dimensional polygon lying in the x-y plane is a special case of a three dimensional polygon in which the z coordinates are all zero. A convex polygon is one that has no points of negative curvature along its boundary [Ref. 2: p. 217]. This means that a line can be drawn from any point inside the polygon to any of its vertices and have the line lie entirely within the polygon boundary [Ref. 3: p. 350]. A concave polygon fails the above test. i.e. we cannot draw a line from every point inside the polygon to every vertex and have the line remain within the polygon boundary. However, any point inside a concave polygon can be shown to lie inside a convex polygon created by some of the vertices and sides of the original polygon [Ref. 3: p. 330]. Figure 2.1 provides examples of convex and concave polygons.

B. DECOMPOSITION

To fill a concave polygon utilizing hardware that only correctly fills convex polygons, we must first break down the polygon into simpler convex polygons that together cover the area of the original. The process of decomposing a concave polygon does not necessarily yield a single unique set of convex polygons, but the
Figure 2.1 - Convex and Concave Polygons

Figure 2.2 - Two Equivalent Decompositions of a Concave Polygon.
result of two different decompositions of the same polygon should be equivalent as shown in Figure 2.2.

During the operation of decomposing a polygon, there are two main checks that must be conducted to ensure complete and proper decomposition takes place. The first check is to ensure that no area of a created convex polygon falls outside the boundary of the original concave polygon. The second check is to ensure that the concave polygon is completely covered by the total areas of the created convex polygons. Figure 2.3 provides examples of the two checks.

The polygon decomposition algorithm produced for this study is comprised of three basic steps. The first maps the three dimensional coordinates of the polygon into a two dimensional plane. This process generates a polygon that is more easily examined and decomposed. The second step conducts the actual decomposition and performs the two decomposition checks. The third step maps the coordinates of the created convex polygons back to the the original orientation in three-space. At this point, the created convex polygons are then ready for passing to the graphics system’s polygon fill hardware.

C. RESEARCH FACILITIES

The IRIS (Integrated Raster Imaging System) 2400 Graphics Workstation, manufactured by Silicon Graphics, Inc., is the target system for our polygon decomposition algorithm. By incorporating custom VLSI chips to replace slower graphics software, the IRIS system can accept polygons in user-defined
Figure 2.3a - Without a check to ensure the convex polygon does not fall outside the bounds of the original polygon, vertices could be chosen that yield an incorrect decomposition.

Figure 2.3b - The second decomposition check ensures the concave polygon is completely covered by the decomposed polygons. In this case all vertices and edges were utilized, however a hole is still left.
coordinates, and transform them to screen coordinates for display on a color
graphics monitor that provides 1024 x 768 resolution. This use of special
hardware yields processing speeds that are some 100 times faster than similar
operations carried out in software.
III. STEP I: MAPPING THE 3D POLYGON TO THE 2D X-Y PLANE

A. THE NORMAL TO A POLYGON

The first step of the polygon decomposition algorithm is comprised of several small steps. The goal of these steps is to map the polygon to the x-y plane. First, three non-colinear points are selected from the array of x, y, and z coordinates of the polygon. These are used to define the equation of the plane for the 3D polygon, and the normal to that plane (Figure 3.1).

\[Ax + By + Cz = D \]

\[\mathbf{N} = A\mathbf{i} + B\mathbf{j} + C\mathbf{k} \]

The coefficients A, B, and C are calculated from the coordinates of the three selected points by the following equations:

\[A = (y_0 - y_1)(z_2 - z_1) - (y_2 - y_1)(z_0 - z_1); \]

\[B = (z_0 - z_1)(x_2 - x_1) - (z_2 - z_1)(x_0 - x_1); \]

\[C = (x_0 - x_1)(y_2 - y_1) - (x_2 - x_1)(y_0 - y_1). \]

The coefficients are then used to solve for D of the equation of the plane.
Three vertices 0, 1, and 4 are selected to determine the Normal to the plane.

Figure 3.1 The Normal to a Polygon
B. ANGLES ABOUT THE AXES

Once the equation of the plane is determined, each point in the polygon input array is checked to ensure that the polygon is in fact planar. If the polygon passes this test, then the angles between the normal and the axes of the coordinate system are found. From these angles, the necessary rotations about the x and y axes to bring the polygon into the x-y plane, are calculated. The following equations [Ref. 4: pp. 24-59] are used to calculate the angles shown in Figure 3.2a.

\[
\cos \alpha = \frac{A}{\sqrt{A^2 + B^2 + C^2}}
\]

\[
\cos \beta = \frac{B}{\sqrt{A^2 + B^2 + C^2}}
\]

\[
\cos \gamma = \frac{C}{\sqrt{A^2 + B^2 + C^2}}
\]

For the polygon to lie in the x-y plane, the angle between the normal and the z axis is either zero or 180 degrees. Necessarily then rotations are conducted to bring the angles between the normal and the x and y axes to 90 degrees each.

First a projection of the normal onto the x-z plane is made as shown in Figure 3.2b. The dot product of that projected normal \(\mathbf{N'} \) and the z axis is calculated. The dot product is divided by the product of the magnitudes of the two vectors yielding the cosine of the angle of rotation about the y axis (\(\phi \)).
Figure 3.2 Angles about the Axes
\[
\cos \phi = N^j \frac{z}{|N^j| |z|}
\]

A second projection of the normal onto the y-z plane is made and the angle of rotation about the x axis (\(\theta\)) is calculated in the same manner as above (Figure 3.2c).

C. TRANSFORMATION MATRIX

To actually rotate the polygon into the x-y plane, a transformation matrix must be created that is used in the multiplication of the polygon’s coordinates. We first translate the polygon to the origin by adding the negative x, y, and z coordinates of one of the polygon’s vertices. Assuming \(l, m,\) and \(n\) are the coordinates selected, the matrix becomes:

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-1 & -m & -n & 1
\end{bmatrix}
\]

A rotation matrix for the angle \(\phi\) about the y axis is then created:

\[
\begin{bmatrix}
\cos \phi & 0 & \sin \phi & 0 \\
0 & 1 & 0 & 0 \\
-\sin \phi & 0 & \cos \phi & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

and concatenated with the translation matrix. This is followed by a multiplication with a rotation matrix for the angle \(\theta\) about the x axis.
The result of these matrix concatenations is the following transformation matrix that is used to map the array of vertices onto the x-y plane.

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & \cos\theta & -\sin\theta & 0 \\
0 & \sin\theta & \cos\theta & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

Once we have this matrix set up, call it \(M_{\text{plane}} \), we then use it to transform the polygon's coordinates via a simple row vector by matrix multiplication. The result of this multiplication is a transformed set of coordinates, in which the \(z \) coordinates are zero. The \(x \) and \(y \) values of this transformed array are then used in the decomposition step of our algorithm. We note at this point that for the mapping of the coordinates back to the original vertices (Step III of the alg.), that the index into the transformed array is also the index for the untransformed point in the original array of vertices.
IV. STEP II: POLYGON DECOMPOSITION

The decomposition step divides the polygon into multiple convex polygons. In so doing, the algorithm performs the two checks to ensure that no area outside the polygon is shaded and that the created convex polygons completely cover the area of the concave polygon. This step requires that the vertices of the polygon be ordered in a clockwise fashion, with respect to the +z directed normal to the x-y plane. Thus a determination of the ordering must be made and if necessary the array of vertices reversed.

A. CLOCKWISE ORDERING

To determine if the vertices of the polygon are ordered clockwise, the polygon's area is calculated using the formula [Ref. 5: p. 369] below. (Note x, y, are the polygon's 2D coordinates.)

$$\frac{1}{2} \left((x_0y_1 + x_1y_2) + \cdots + (x_{n-1}y_n) + (x_ny_0) \right) - (y_0x_1 + y_1x_2) + \cdots - (y_{n-1}x_n) - (y_nx_0)$$

The above equation yields a negative area for clockwise and a positive area for counterclockwise polygons. If the polygon is ordered counterclockwise then the array of x, y, and z coordinates that define the polygon is reversed before the selection procedure is begun.
B. VERTEX EXAMINATION

The selection of vertices for a convex polygon is conducted by examining each vertex of the concave polygon with respect to the previously selected vertices of the developing convex polygon. This is begun by initially selecting two adjacent vertices, then in clockwise order, examining each of the polygon's remaining vertices to build as large a convex polygon as will fit within the boundary of the concave polygon.

A series of tests are conducted in the selection of vertices for the convex polygon. As vertices are selected, the line segments connecting these become the edges of the convex polygon and define its boundary.

1. Test One

The first test of a vertex is if it lies to the left or right of each line segment of the developing convex polygon. The vertices of the concave polygon are examined in clockwise order. Thus if a vertex lies to the left of any of the line segments of the developing polygon, then a concave angle is necessary to include the vertex in the polygon. As shown in Figure 4.1a, vertex 2 lies to the left of the line segment 0-1. A concave angle (\(\rho \) in Figure 4.1b) is necessary to add vertex 2 to the developing polygon. Therefore vertex 2 is not selected and the process moves on to perform the same test on vertex 3.

2. Test Two

A vertex that passes the first test may still require a concave angle to be included in the developing convex polygon. In Figure 4.2, the vertices 0, 1, 2, 3.
Figure 4.1 - (a) Vertex 2 lies to the left of the line segment 0-1, (b) Concave angle (ρ) would be required to connect Vertex 2 to the developing polygon, (c) Vertex 2 is skipped and the examination is continued with vertex 3.
Figure 4.2 - (a) Vertex 5 lies to the right of each line segment of the developing polygon, (b) Concave angle (ρ) is required to connect Vertex 5 to Vertex 0, (c) Concave angle (ρ) can be identified since 0 lies to the left of line segment 4-5, (d) Vertex 4 is skipped and the test repeated with line segment 3-5, (e) Vertex 3 is skipped and the test repeated with line segment 2-5, (f) Result of the tests are that vertices 0, 1, 2 and 5 are selected.
and 4 have been previously selected for a convex polygon with vertex 5 under examination. Vertex 5 passes the first test since it lies to the right, or inside of each of the line segments. However, a concave angle (ρ in Figure 4.2b) is again required to connect vertex 5 with vertex 0 of the developing polygon. A concave angle of this type is identified, as shown in Figure 4.2c, if the initial vertex of the developing convex polygon lies to the left of the line segment created by the vertex under examination and the last selected vertex of the developing polygon. In Figure 4.2c, the initial vertex, 0, lies to the left of line segment 4-5. To remedy this, the last selected vertex of the developing convex polygon, vertex 4, is removed and the test is again conducted with the line segment formed by the vertex under examination and the last selected vertex (Figure 4.2d & 4.2e). This process is repeated, removing vertices from the developing polygon, until the initial vertex no longer lies to the left of a new line segment.

3. Test Three

The third test conducted is to ensure that no line segment created in the convex polygon intersects any of the edges of the concave polygon. Such an occurrence results in area outside the concave polygon being included in the convex polygon and an inaccurate polygon fill taking place. In Figure 4.3, the previously selected vertices are 0, 1, 2, and 3. Vertex 7 is under examination and passes the two earlier tests. However, the selection of vertex 7 results in the convex polygon 0, 1, 2, 3, 7 which contains area outside the concave polygon. A situation such as this is identified since line segment 3-7 intersects line segment
Figure 4.3 - Tests must be conducted for the intersection of developed line segments with the edges of the original concave polygon. Otherwise Vertex 7 would be an acceptable vertex for inclusion in the developing polygon 0, 1, 2, 3...
13-0 of the concave polygon. When this occurs, the vertex under examination is removed from the convex polygon and the next vertex of the concave polygon is examined.

C. SELECTION COMPLETION

The selection process for the developing convex polygon concludes when all vertices of the concave polygon have been examined. The convex polygon is then ready for the third step of our algorithm, mapping to the original polygon's 3D coordinates. Figure 4.4 is an example of a concave polygon that was decomposed to the three shaded convex polygons using the above three tests. We have a "hole" left in the concave polygon even though all vertices and edges of the concave polygon have been utilized. Holes such as this are prevented by taking the initial and last vertices of a developed convex polygon as the starting vertices of a convex polygon to be developed. In Figure 4.4, vertices 0 and 2 of polygon 0, 1, 2 are taken to develop convex polygon 0, 2, 4 to fill in the "hole". Once this is accomplished, step two of the algorithm is repeated by selecting a vertex of the concave polygon that has not yet been utilized in a convex polygon. The decomposition process is complete when there are no vertices or edges of the concave polygon that have not been utilized in one or more convex polygons.
Figure 4.4 - All vertices and edges of the polygon have been used, yet a hole remains.
V. STEP III: MAPPING TO THE ORIGINAL COORDINATE SYSTEM

The second and third steps of the decomposition process are interleaved. i.e., each created convex polygon is immediately mapped back to the original coordinate system. This is accomplished by maintaining the original array of vertices that the user provided for the three-dimensional polygon. As a convex polygon is produced, it is actually represented by the indices of its vertices. Actual vertex coordinates are extracted from the vertex array, as required, using the index. In this manner, the transformed coordinates can be utilized during decomposition and the index can be used to obtain the original coordinates for final display. By this method, there is no consequential need to translate and rotate the vertices back to the original coordinate system.
VI. IRIS IMPLEMENTATION

Implementation of the decomposition algorithm on the IRIS system is via approximately 1600 lines of C code (Appendix). Several data structures and various IRIS system hardware features are utilized as described below.

A. MATRIX IMPLEMENTATION

In the development of the transformation matrix, IRIS system calls for translation and rotation are used to alter the top of the system matrix stack. These routines perform the matrix concatenations needed to translate and rotate the polygon to the x-y plane. To convert the polygon vertices to 2D coordinates, four vertices at a time are loaded into a matrix. The x, y, and z coordinates go into the first three columns with 1's filling the fourth column to provide the necessary homogeneous coordinates. This is placed on the system's matrix stack and multiplied with the transformation matrix using the IRIS's Geometry Engines. The transformed coordinates are removed from the matrix stack and the process is repeated until all vertices have been transformed.

B. DOUBLY LINKED LIST

A data structure for each vertex of the polygon is maintained in our system. This structure contains the vertex's index into the vertex array. As actual coordinates are needed, the vertex's index is used to extract the x, y, and z
coordinates from this array. A "used" flag indicates the vertex's use in a developed convex polygon, with a slope and y-intercept stored for the line segment the vertex forms with its predecessor in the array. A forward pointer connects the structure with the next vertex in clockwise order, while a back pointer connects the structure with its preceding vertex. This produces a doubly linked circular list of vertex structures that permits forward clockwise traversal of the polygon and rearward counterclockwise traversal (Figure 6.1).

C. VERTICES STACK

To manage the examination and selection of vertices for a developing convex polygon, a stack is utilized. The size of the vertices stack is determined at run time when contiguous memory is dynamically allocated, based on the number of vertices in the concave polygon. As a vertex is examined, its index is placed on top of the stack along with the slope and y-intercept of the line segment it creates with the vertex below it. If the vertex passes all selection tests, it remains on the stack and a new vertex is pushed on top. On the other hand, when a vertex fails a selection test, it is popped off the stack and the next vertex to be examined is placed on top. Once the selection of vertices for a convex polygon is completed, the vertices are passed to the IRIS system hardware and the stack is cleared to continue with the decomposition process.
(a) Doubly linked circular list of structures,

<table>
<thead>
<tr>
<th>Rearward Pointer</th>
<th>Index</th>
<th>Used Flag</th>
<th>Slope</th>
<th>Y-intercept</th>
<th>Forward Pointer</th>
</tr>
</thead>
</table>

(b) Vertex structure

Figure 6.1
VII. LIMITATIONS AND CONCLUSIONS

This study has presented an algorithm for the decomposition of an arbitrary planar polygon into a set of convex polygons, thus eliminating the need to manually perform such decomposition. With the algorithm’s dynamic allocation of memory, the size polygon that can be filled is limited only by the amount of memory available for use. The algorithm indirectly provides an extended capability over the IRIS system’s limit of 384 vertices in one polygon (Ref. 6: p. 2).

However due to the time required to test each vertex for concavity, the algorithm is not suggested for use where real-time response is important. To demonstrate the overhead involved in testing for concavity, a convex polygon was filled and displayed 500 times by the algorithm. The same polygon was then filled utilizing only the IRIS’s polygon fill hardware. The results are provided in Figure 7.1 for various polygon sizes.

Due to the three primary steps necessary for decomposition and the tests conducted on each vertex, the speed of the algorithm depends entirely upon the number of vertices and concave angles of the polygon. As such, the success of the algorithm’s use in real-time display and animation is based upon a balance between the complexity of the concave polygons used and the speed requirements. We suggest that the created concave polygons be computed once and saved.
Figure 7.1 - Time required to fill and display 500 convex polygons with the number of vertices indicated
For IRIS usage, this is perhaps best accomplished through the use of the "object" mechanism of the IRIS graphics library.
LIST OF REFERENCES

APPENDIX - ALGORITHM SOURCE CODE

...
globals.h
...

/* include <gl.h> */
/* include <device.h> */
/* include <stdio.h> */
/* include <math.h> */

...
GLOBAL CONSTANTS
...

/* define NULL 0 */
/* define BOTTOM 0 */
/* define new(x) : x */ malloc(sizeof(x))

...
GLOBAL TYPES
...
typedef int boolean;

' Define a structure to contain data about a vertex of the polygon
These structures will be used to create a linked list. '
typedef struct point {
 struct point *back:
 int index;
 float slope:
 Coord intercept:
 int direction:
 boolean failed:
 boolean segment used:
 struct point *forward:
}:
typedef struct point point:
"Define a structure for storing data about each vertex. This will be used to create a stack for later use."

typedef struct stack {
 int index;
 float slope;
 Coord intercept;
 int direction;
}:

typedef struct stack Stack:

GLOBAI DATA STRUCTURES AND VARIABLES

Stack 'stack:

point 'start ptr, 'current ptr:

int TOP:

boolean clockwise error flag:
ROUTINE: convert.c

This routine takes the initial array of vertices, passed by
the user, and makes the calls to other routines to perform the
necessary translation and rotations to transform the array into
the x-y-o plane. This new array is then used by the decomposer to
breakdown the polygon into convex polygons.

```c
int total pts;
Coord pts 3;
{
  int pt1, pt2, pt3, cnt;
  float A, B, C, D, anglex, angley, anglez, 'new pts;
  Matrix transform1:
  Matrix points:

  stack = (Stack *) calloc(total pts - 1, sizeof(Stack));

  dynamically allocate memory to create an array to hold the
  vertices of the newly transformed polygon.

  new pts = (float *) calloc(3*total pts, sizeof(float));

  get 3 non-colinear vertices from the polygon to be used for
  calculating the normal to the polygon.

  extract 3 pts(total pts, pts, &pt1, &pt2, &pt3);

  calculate the coefficients for the equations to the plane
  of the polygon and the normal to that plane.

  determine coeffs(total pts, pts, pt1, pt2, pt3, &A, &B, &C, &D);
```
check to ensure all vertices of the polygon lie in the same plane. If so then calculate the necessary angles of rotation

\[
\text{if(planar polygon(total pts, pts, A, B, C, D))} \{
\]

calculate the rotation about the y axis necessary to bring the normal into the y-z plane.

\[
\text{angles from normal(A, B, C, 'y', &anglex, &angley)};
\]

create the transformation matrix necessary to multiply with the array of vertices to generate the rotation.

\[
\text{build transform matrix(transforml, angley, 'y', pts, pt1)};
\]

perform the matrix multiplication with the array of vertices and store the new coordinates in the new array new pts.

\[
\text{map pts(total pts, pts, transform1, points, new pts)};
\]

now extract three non-colinear vertices from the new array of vertices, new pts.

\[
\text{extract 3 pts(total pts, new pts, &pt1, &pt2, &pt3)};
\]

since the polygon has been rotated about the y axis we calculate the coefficients for the equations to the polygon one more time.

\[
\text{determine coeffs(total pts, new pts, pt1, pt2, pt3, &A, &B, &C, &D)};
\]
calculate the rotation about the x axis

angles from normal(A, B, C, 'x', &angleX, &angleY):

create the transformation matrix

build transform matrix(transform1, angleX, 'x', new pts, pts1):

perform the matrix multiplication

map pts(total pts, new pts, transform1, points, new pts):

call the routine which will perform the decomposition
upon the newly transformed polygon which now lies in the
x-y-z plane (thus to be handled as a 2D polygon)

split(total pts, new pts, pts):

once the dynamically allocated memory for the array
new-pts has served its purpose, the memory is freed.

cfree(new pts, 3*total pts, sizeof(float));
cfree(stack, total pts, sizeof(Stack));

if not planar then the decomposition is not attempted.

return.
ROUTINE: extract.c

This routine searches the array of vertices to find three points which
do not lie on the same line and returns the indices of these points.

extract 3 pts(total pts, pts, pt1, pt2, pt3)

int total pts;
Coord pts 3;
int *pt1, *pt2, *pt3;

int count, finished;

*pt1 0, *pt2 0, *pt3 0; count 0; finished 0;

* The first vertex in the array (index 0) is selected for the first point.

while(count total pts && !finished) {

* We then search the rest of the array of vertices to locate two more.

count 1;

if(*pt2 0) {

* If the second point has not been selected yet then we check that:

x, y, and z coordinates of the vertex currently under exam. are
different.

if(pts *pt1 0 pts count 0
pts *pt1 1 pts count 1
pts *pt1 2 pts count 2)

* If so then the vertex becomes the second point.

*pt2 count;
}
else if(*pt3 0) {

* If the third point has not yet been selected then we check that:

the coordinates of the vertex under examination are different
from both the first and second point.

if(pts *pt1 0 pts count 0
pts *pt1 1 pts count 1
else
 finished - 1;

}

return:
ROUTINE: is planar.c

This routine takes each vertex of the polygon and uses it to solve the equation for the plane as calculated earlier. If every vertex lies in the plane, then a value of 1 is returned.

planar polygon(total pts, pts, A, B, C, D)

int total pts:
Coord pts = 3;
float A, B, C, D;
{
int count, planar:

count = 0; planar = 1;

while(count < total pts && planar) {

 // The equation for the plane is setup to equal zero if the coordinates of the vertex lies in the plane. A range of .02 on either size of zero is allowed to handle round off error. This test is done for each vertex in the polygon. If any vertex fails the test then the function returns (0) for non-planar.

 if(\((A*(pts count 0) - B*(pts count 1) - C*(pts count 2) - D) < .02\)
 \((A*(pts count 0) - B*(pts count 1) - C*(pts count 2) - D) > -.02\))
 planar = 0;

 count++;
}

return(planar);
}
ROUTINE: coeffs.c

This routine uses the three vertices selected from the polygon to calculate the coefficients that will be used in both the equation of the plane the polygon lies in and the normal to that plane.

determine coeffs(total pts, pts1, pt2, pt3, A, B, C, D)

int total pts;
Coord pts 3;
int pt1, pt2, pt3;

float x0, x1, x2, y0, y1, y2, z0, z1, z2;

x0 = pts pt1 0;
y0 = pts pt1 1;
z0 = pts pt1 2;

x1 = pts pt2 0;
y1 = pts pt2 1;
z1 = pts pt2 2;

x2 = pts pt3 0;
y2 = pts pt3 1;
z2 = pts pt3 2;

\[A = (y0-y1)(x2-x1) - (y2-y1)(x0-x1) \]
\[B = (z0-z1)(x2-x1) - (z2-z1)(x0-x1) \]
\[C = (x0-x1)(y2-y1) - (x2-x1)(y0-y1) \]
\[D = -A*pts pt1 0 - B*pts pt1 1 - C*pts pt1 2 \]

return;
ROUTINE: angles.c

This routine utilizes the coefficients, determined from the normal to the polygon, to determine the angles of rotation necessary about the x and y axes. These rotations are necessary to bring the polygon into the x-y plane. This routine is called the first time to calculate the rotation about the y axis. The second time it is called is to determine the x axis rotation. The parameter "axis" is used to pass which angle is to be calculated.

angles from normal(A, B, C, axis, anglex, angley)

float A, B, C;
char axis;
float 'anglex, 'angley;

{
float pi, degx, degy, degz;

pi = 3.1415926536;

degx = acos(A sqrt(A*B* B*C*C))*360 (2* pi);
degy = acos(B sqrt(A*A- B*B- C*C))*360 (2* pi):
degz = acos(C sqrt(A- A-B*B- C*C))*360 (2* pi):

if(A = 0 & & B = 0) {
 "simply translate the polygon to the origin"
 anglex = 0.0;
 angley = 0.0;
}

else if(A = 0 & & C = 0) {
 "rotate polygon 90 degrees about x axis"
 anglex = 90.0;
 angley = 0.0;
}

else if(B = 0 & & C = 0) {
 "rotate polygon 90 degrees about y axis"
 anglex = 0.0;
 angley = 90.0;
}

else {
 "must calculate amount of rotation about the x & y axes"
 anglex = acos(C sqrt(B*B- C*C))*360 (2* pi):
 angley = acos(C sqrt(A*A- C*C))*360 (2* pi):
}

43
if (axis == 'y') {
 if (degx <= 90.0) {
 *anglev = -(*angley);
 *angley = 0.0;
 } else {
 if (degx >= 90.0) {
 *anglev = -*angley;
 *angley = 0.0;
 }
 }
}

* convert the angles into tenths of degrees as needed by the IRIS system.
*anglex = 100.0*anglex;
*angley = 100.0*angley;

return;
ROUTINE: transmatx.c

This routine takes a matrix structure and initializes it to an identity matrix. Then the necessary translation values and rotation values are added to the matrix to create the resultant transformation matrix.

build transform matrix(transform1, angle, axis, pts, pt1)

Matrix transform1:
float angle;
char axis;
Coord pts 3;
int pt1;

int i, j;

' create the identity matrix '
for(i 0; i 4; i 1) {
 for(j 0; j 4; j 1) {
 if(i j)
 transform1 i j 1;
 else
 transform1 i j 0;
 }
}
pushmatrix();
loadmatrix(transform1);

' add in the rotation values '
rotate((int)angle, axis);

' add in the translation values '
translate(-pts pt1 0, -pts pt1 1, -pts pt1 2);

getmatrix(transform1);
popmatrix();

return;
}
ROUTINE: mapover.c

This routine places up to 4 vertices into a matrix at one time then performs a matrix multiplication with the transformation matrix to produce x, y, and z coordinates for the polygon that is translated and rotated some amount about the x and y axes. These new coordinates are restored in the array new pts for further manipulation.

```c
map pts: total pts, pts, transform, points, new pts;

int total pts;
Coord pts 3;
Matrix transform, points;
float new pts 3;

int count, count2, cnt;
cnt : 0; count2 : 0;
while count < total pts ;
cnt : 0;
while cnt < 4 ;

' place the coordinates of a vertex into the matrix ';
points cnt 0 pts count 0;
points cnt 1 pts count 1;
points cnt 2 pts count 2;
points cnt 3 pts count 3;

if cnt < 1 ;
cnt : 1;
else
break;

'save the state of the matrix stack and perform the multiplication,'
pushmatrix();
loadmatrix(transform);
multmatrix(points);
getmatrix(points);
```
popmatrix();

cnt = 0;

while(cnt < 4)
{
 ' move the newly calculated coordinates back into the vertices array ';
 new pts count2 0; points cnt 0;
 new pts count2 1; points cnt 1;
 new pts count2 2; points cnt 2;

 if((count2 < 1) - count)
 cnt = 1;
 else
 break;
}

return;
ROUTINE: split_c

This routine takes the array for the transformed polygon and calls
the necessary functions and routines to decompose the polygon
and pass the vertices of the convex polygons to the IRIS system
for filling.

split(tot, pts, pts, old pts)

int total pts;
Coord pts 3;
Coord old pts 3;

Object decompose polygon;
Object whole thing;
boolean clockwise;
point "p1", "p2";

Create the doubly linked circular list, "main chain", for the
concave polygon represented by the pts array. Also initialize
flags and pts that will be used in decomposing the polygon.

clockwise = clockwise ordering(tot, pts, pts);
create main chain(clockwise, total pts, pts);

Decompose the main polygon and build the set of simple convex
polygons.

decompose polygon(tot, pts, pts, old pts);

return.
ROUTINE: main chain.c

Create the doubly linked circular list, "main chain", for the
concave polygon represented by the pts array. Also initialize
flags and ptrs that will be used in decomposing the polygon.

create main chain(clockwise, total pts, pts)

boolean clockwise;
int total pts;
Coord pts 3:
{
int count1;
point *p1, *p2:

* allocate memory for a structure to contain data on the first
 vertices of the polygon *

p1 new(point);

* set pointers to this structure and initialize all values *

start ptr p1;
current ptr p1:
p1->index = 0;
p1->direction = 0;
p1->failed = FALSE;
p1->segment used = FALSE;

* if polygon vertices are ordered clockwise then we index the vertices
array beginning at 0 and incrementing from there. Other we must begin
at the other end of the vertices array to extract our coordinates. In
this way a forward move along our doubly linked list will equal a
clockwise move around the polygon. *

if(clockwise)
count1 1:
else
count1 total pts- 1:

* for each vertex of the polygon we build a point structure, calculate
the slope, intercept, initialize flags and connect the structure
via pointers to its preceding and succeeding vertices in the
polygon. The result is a doubly linked list of structures.

do:
p2 = new(point);
p1. forward = p2;
p2. back = p1;
p1 = p2;
p1. index = count1;
determine_slope(pts p1. back-.index 0, pts p1-.back-.index 1,
 pts p1-.index 0, pts p1-.index 1, &p1-.slope).
 &pl-.intercept, &pl-.direction);
pl-.failed = FALSE.
pl-.segment used = FALSE;
if(clockwise)
 count1 = 1;
else
 count1 = 1;
+winer = count1 = total pts & count1 = 0;

' connect the first vertex structure to the last vertex of the polygon
and calculate the slope and intercept of the line segment the two
create.'

pl-. forward = start ptr;
start ptr-.back = p1;
pl-. start ptr;
determine_slope(pts p1-.back-.index 0, pts p1-.back-.index 1,
 pts p1-.index 0, pts p1-.index 1, &pl-.slope).
 &pl-.intercept, &pl-.direction);

return.
ROUTEINE: clockwise.c

This routine calculates the area of the arbitrary planar polygon once it has been transformed to the 2D x-y plane.
A negative area indicates a clockwise ordering of the vertices while a positive area indicates a negative ordering of vertices.
A "0" is returned for counterclockwise ordering while a "1" is returned for clockwise ordering.

clockwise ordering(total pts, pts)

int total pts;
Coord pts 3:

\{
float area:
int i, result:

area 0.0:

for(i 0; i total pts-1; i 1) {
 area area pts i 0 * pts i-1 1:
}

area area pts total pts-1 0 * pts 0 1:

for(i 0; i total pts-1; i 1) {
 area area pts i 1 * pts i-1 0:
}

area area pts total pts-1 1 * pts 0 0:

if(area 0)
 result 0:
else
 result 1:

return result;
\}
ROUTINE: decompose

Decompose the main polygon and as convex polygons are determined these are passed through calls to the IRIS system to be filled.

Object decompose_polygon(total pts, pts, old pts)

int total pts;
Coord pts 3;
Coord old pts 3;

// boolean no point found, search incomplete, adjust needed, OK;
boolean skip flag, skip search;
int pt1, pt2, poly count, value;
point 'working ptr;

clear stack();
get pt(total pts, pts);
get pt(total pts, pts);

search incomplete TRUE;
skip search TRUE;
poly count 0;

Once an initial two points are taken from the concave polygon, the process moves through the main chain to select out points for constructing the simple convex polygons. Calls are made to various routines to check for validity of pts that are accepted into a polygon.

while(search incomplete) {
 adjust needed TRUE;
 OK TRUE;
 while(OK) {
 get pt(total pts, pts):

 // first check to see if we have made a complete loop of the vertices.

 if(loop completed()) {
 working ptr = start ptr;
 }
}

52
find the structure in the linked list that matches the vertex on top of the stack

while(working ptr - index != stack TOP . index) {
 working ptr = working ptr -> forward;
}

check to see if vertex creates a line segment with the vertex below it, on the stack, that intersects any edges of the concave polygon

if(stack TOP - 1 . index ! working ptr . back - index) {
 value intersecting lines(pts stack TOP . index 0 ,
 pts stack TOP . index 1 , pts stack TOP - 1 . index 0 ,
 pts stack TOP - 1 . index 1 , stack TOP . slope ,
 stack TOP . intercept, total pts, pts):
}

if(value) {
 if vertex creates an intersecting line segment then we remove it from the stack and reset the pointer to the linked list

 current ptr = start ptr;
 while(current ptr . index != stack TOP - 1 . index) {
 current ptr = current ptr -> forward;
 }

 current ptr = current ptr -> forward;
 release pt();
 release pt();
}

else {
 since the line segment create is OK, we simply remove the vertex from the stack since it is the same as the one on the bottom of the stack, namely the beginning vertex

 OK = FALSE;
 release pt();
}

if we have not completed the loop then we must conduct the tests to ensure valid selection of vertices for a convex
else if (pt out of bounds (total pts. pts)) {
 release pt();
}

if at least three points have been selected then...

if (valid pts()) {
 ' save the beginning and ending vertices for future reference '
 pt1 = stack BOTTOM . index;
 pt2 = stack TOP . index;
 ' pass the vertices to IRIS system hardware for filling and display '
 define polygon (old pts):
 poly count = 1:
 ' if this is a normal decomposition and not a "fill in" polygon to
 cover holes left in the concave polygon then do the following '
 if (skip search) {
 ' set the flags that indicate next time through this loop we
 will be working on a "fill in" polygon '
 adjust needed = FALSE:
 skip search = FALSE:
 ' adjust the pointers to the linked list so next time through
 the loop we have the start and end vertices of the previous
 polygon to begin working with '
 working ptr = start ptr:
 while (working ptr . index != pt2) {
 working ptr = working ptr . forward:
 }
 ' if the start and end vertices of the previous polygon are
 adjacent on the concave polygon then forget about building
 a "fill in" polygon '
 if (working ptr . forward . index != pt1) {
 while (current ptr . index != pt1) {

54
current_ptr = current_ptr->forward;
}
get_pt(total pts, pts):
current_ptr = working_ptr;
get_pt(total pts, pts);
else {
adjust_needed = TRUE;
}

' if the polygon is not fully decomposed yet we select
two new vertices to continue the decomposition process ':

if(adjust_needed) {
skip_search = TRUE;
if(obj_complete(total pts))
search_incomplete = FALSE;
else {
adjust_search_area(pts);
clear_stack();
get_pt(total pts, pts);
get_pt(total pts, pts);
}
}

return:
ROUTINE: clear stack.c

This routine simply resets the stack pointer to -1. In this manner when the stack has its first item pushed on, the pointer will accurately reflect a value of 0. (BOTTOM OF STACK)

clear stack()

;

TOP = 1;

;
ROUTINE: get pt.c

This retrieves the next point in the main chain, as identified by the current ptr, and places the point on the top of the stack. In doing so it increments the TOP variable. Also as the point is retrieved, the slope, intercept, and direction of the line segment it creates with the vertex below it on the stack is calculated.

get_pt(total_pnts, pts)

int total_pnts:
Coord pts_3:

TOP - 1:

if(TOP - total_pnts) {

' select the vertex in the linked list that is currently pointed to ' stack TOP .index = current_ptr .index:
' and then advance the list pointer ' current_ptr = current_ptr->forward:
if(TOP > 0) {

' take the x, y, and z coordinates for both the vertex on top of the stack and the vertex just below it, to calculate the slope and y-intercept of the line segment they create ' determine_slope(pts stack TOP-1 .index 0, pts stack TOP-1 .index 1,
pts stack TOP .index 0, pts stack TOP .index 1,
&stack TOP .slope, &stack TOP .intercept,
&stack TOP .direction):

}
}
else {
printf("STACK overflow occurred while retrieving another point");
}

return:
ROUTINE: release pt.c

This routine removes the item on top of the stack by decrementing the top of stack pointer TOP.

```
release pt();

if(TOP == BOTTOM)
   TOP = 1;
else {
   printf("STACK underflow occurred while trying to release a non-");
   printf("existence point.");
}

return;
```
ROUTINE: slopes.c

This works through the pts array and the stack array. By taking value of the TOP of stack and the point beneath it, the corresponding coordinates are obtained from the pts array and a slope, intercept and direction are calculated. These values are then stored in the stack.

determine slope(x1, y1, x2, y2, slope, intercept, direction)

Coord x1, y1, x2, y2:
float 'slope:
Coord 'intercept:
int 'direction:

* calculate the delta x and delta y for the two points *

dx x2- x1:
dy y2- y1:

* if the line segment is vertical then use the value 99999.0 to indicate such (avoiding division by zero problems) *

if(dx == 0) {
 'slope 99999.0:
 'intercept x2:
}
else {
 'slope dy dx:
 'intercept y2 - (dy dx) * x2:
}

* based upon the changes in delta x and delta y we determine if we are
 traversing down a slope or up a slope *

if(dy == 0) {
 if(dx == 0)
 'direction 1:
 else
 'direction 0:
}
else {
 if (idx < 0)
 *direction = 0;
 else
 *direction = 1;
}

return;
ROUTINE: compare.c

This routine determines if a point lies to the left or right of a line segment. This is done by using the x and y coordinates of the point with the slope, intercept, and direction of the line segment to create a parallel line segment. The y intercept (or in the case of vertical line, the x intercept) is used in conjunction with the direction of traversal along the line segment to find which side of the line segment the point lies on.

```c
compare_boundary(x1, y1, slope, intercept, direction)
```

```c
Coop x1, y1;
float slope;
Coop intercept;
int direction;
{

float test_value;
int value;

' if the line segment is vertical then we use the x-intercept to determine if a vertex lies to the left or right of another line segment '

if(slope == 99999.0)
    test_value = x1;
else
    test_value = y1 - slope * x1;

' based upon traversal up or down a sloping line we determine if a vertex is to the left or right of the line segment '

switch (direction) {
    case 0: if(test_value < intercept)
        value = 1;
    else
        value = 0;
    break;
    case 1: if(test_value > intercept)
        value = 1;
    else
        value = 0;
    break;
    default:
        value = 0;
    break;
}
```
else
 value = 0;
 break;

return (value);
ROUTINE: pt OOB.c

This routine takes the vertex index from the top of the stack and uses its x, y coordinates to determine if the point lies out of bounds with respect to the convex polygon being created.

pt out of bounds(total pts, pts)

int total pts;
Coord pts 3 ;

Coord xl, yl;
int ptr, value;
boolean not finished;
point *working ptr:

* obtain the coordinates for the vertex on top of the stack *

xl pts stack TOP .index 0 ;
yl pts stack TOP .index 1 ;
ptr TOP-1 ;
value 0 ;

* use the above coordinates to determine if the vertex lies to the left (out of bounds) with respect to any line segment created thus far in the selection of vertices *

while (ptr BOTTOM && !value) {
 value compare boundary(xl,yl,stack ptr .slope,stack ptr .intercept,
 stack ptr .direction);
 ptr- 1 ;
}

If point is not out of bounds with any line segments created then we check to see if the segment produced by this new point addition causes the start point for the polygon to fall out of bounds.

if(!value) {
 xl pts stack BOTTOM .index 0 ;
yl pts stack BOTTOM .index 1 ;
}
value = compare boundry(x1,y1,stack TOP .slope,stack TOP .intercept, stack TOP .direction);
if(value) {
 release pt();
 current ptr = current ptr- .back;
 working ptr = start ptr;
} else {
 working ptr = start ptr;
 while(working ptr- .index != stack TOP .index) {
 working ptr = working ptr- .forward;
 }
 if(stack TOP-1 .index != working ptr-.back- .index) {
 we use the coordinates for the vertex at the top of stack and the vertex below it to create a line segment which we then check for intersection with any of the edges of the original concave polygon.
 value = intersecting lines(pts stack TOP .index 0, pts stack TOP .index 1, pts stack TOP-1 .index 0, pts stack TOP-1 .index 1, stack TOP .slope, stack TOP .intercept, total pts, pts);
 }
} else {
 if(!value) {
 if(current ptr-.back-.back-.index != stack TOP-1 .index) {
 x1 = pts stack TOP-1 .index 0;
 y1 = pts stack TOP-1 .index 1;
 value = compare boundry(x1,y1,current ptr-.back-.slope.

64
current ptr-back-intercept.
current ptr-back-direction):
}
}

If the point is determined to be out of bounds, then the
appropriate pointers are adjusted to continue the decomposition
process. Otherwise the pt is a valid addition to the stack

if(value) {
 working ptr start ptr;
 not finished : TRUE:
 do {
 if(working ptr-index - stack TOP.index) {
 not finished : FALSE:
 if(working ptr-failed : FALSE)
 working ptr-failed : TRUE:
 else {
 working ptr working ptr-forward:
 }
 } while(not finished):
 }

 return(value):
}
ROUTEINE: loop_complete.c

This routine checks to see if the vertices of the concave polygon have been completely traversed while developing a single convex polygon. This is done when the vertex on top of the stack is the same vertex on the bottom of the stack. When this occurs a value of 1 is returned.

```c
int loop_completed()
{
    int Value;
    if (TOP == -1) {
        if (stack TOP.index == stack BOTTOM.index) {
            value = 1;
        } else {
            value = 0;
        }
    } else {
        printf("Error in stack index while checking TOP & BOTTOM values");
        value = -1;
    }
    return (value);
}
```
ROUTINE: adjust.c

This routine searches the circular list of vertices, checking the various condition flags, to locate a vertex or line segment of the original polygon which has not been utilized. As one is located, the list's current pointer is moved to that structure in the list so that further polygon decomposition may continue

adjust_search_area(pts)

Coord pts = 3:
{
 boolean done:
 point *p1:

done 0:
p1 start ptr:

 do {
 if(p1 failed 1)
 'check to see if the line segment to either side of the vertex has been used in a previously developed polygon.'
 if(!(p1 - forward segment used) !(p1 - segment used)) {
 current ptr p1:
p1 failed 0:
done 1: }
 else {
 p1 p1 forward:
 }
 else {
 p1 p1 forward:
 }
} while(!done && p1 ! start ptr):

 return:
}
This routine checks to ensure that at least 3 vertices have been determined for the convex polygon. If not then the value of 0 is returned.

```c
boolean valid_pts()
{
    int value;
    if(TOP >= 2)
        value = 1;
    else
        value = 0;
    return (value);
}
```
ROUTINE: define poly.c

This routine takes the vertices accumulated on the stack and uses the IRIS features pmv and pdr to actually perform the display of the polygon created. The index for each vertex is used to access the original array of points to get the x, y and z coordinates used.

define polygon(pts)

Coord pts 3:
{
 int count;
 point *track ptr;

 track ptr start ptr:
 * pass the starting vertex for the newly created convex polygon to the IRIS hardware with a point move command '

 pmv(pts stack BOTTOM .index 0,
 pts stack BOTTOM .index 1,
 pts stack BOTTOM .index 2):
 * locate this vertex in the linked list '

 while(track ptr .index != stack BOTTOM .index) {
 track ptr track ptr .forward:
 }

 * set the flag to indicate the vertex has been used in a convex polygon '

 if(track ptr .back .index == stack TOP .index)
 track ptr .segment used TRUE:

 * for each vertex of the convex polygon, pass its coordinates to IRIS hardware with the point draw command '

 count 1;
 while(count < TOP) {
 while(track ptr .index != stack count .index) {
track ptr = track ptr->forward;
}
if(track ptr->back->index == stack count-1.index)
 track ptr->segment used = TRUE;
pdr(pts stack count .index 0 ,
 pts stack count .index 1 ,
 pts stack count .index 2);
count = 1;
}

' pass the command to the IRIS hardware that the
fill the completed convex polygon '

plos();
clear stack();
return;
}
ROUTINE: obj_complet.c

This routine checks each vertex and edge of the original concave polygon to see if they have all been utilized in the process of decomposition. If so a value of 1 is returned.

```c
int object_complete(total pts)
{
    int total pts;
    point *p1;
    int count, value;
    count = 0;
    value = 1;
    p1 = start ptr;

    // search through the linked list of structures, for the vertices, and return the index of the first vertex that creates an edge of the concave polygon not yet utilized
    do {
        if(pl->segment used) {
            p1 = p1->forward;
            count = 1;
        } else {
            value = 0;
        }
    } while(count == total pts && value == 1);

    return (value);
}
```
ROUTINE: intersecting.c

This routine takes two vertices and the slope and intercept of the line segment they create to determine if it intersects any of the edges of the original polygon. If so then a value of 1 is returned.

intersecting lines(x2, y2, x1, y1, slope, intercept, total pts, pts)

Coord x2, y2, x1, y1:
float slope:
Coord intercept:
int total pts:
Coord pts 3:

{

point *p1:
float x intersect, y intersect, x min, x max, y min, y max, fudge:
int value:

' define a value to offset round off error '

fudge = 0.000001;

value = 0;

p1 start ptr:

' for each edge of the concave polygon we check if either vertex lies on the edge. If not then we determine the intersection of the line, defined by the edge, with the line defined by the two vertices. Finally we determine if this intersection lies on both line segments. If so then we have found an actual intersection. '

do {

' check if first vertex lies on the polygon's edge being examined '

if(((x1 ! pts p1- -index 0) (y1 ! pts p1- -index 1)) &&

((x1 ! pts p1- -back- -index 0) (y1 ! pts p1- -back- -index 1))) |

' check if second vertex lies on the edge '

if(((x2 ! pts p1- -index 0) (y2 ! pts p1- -index 1)) &&

((x2 ! pts p1- -back- -index 0) (y2 ! pts p1- -back- -index 1))) |
if the lines are not parallel then ...

if(slope != p1->slope) {

 if the line created by the vertices is vertical

 if(slope == 99999.0) {
 // determine the coordinates of the intersection
 x intersect = x2;
 y intersect = p1->slope * x intersect - p1->intercept;
 }

 if the edge of the polygon is vertical

 else if(p1->slope == 99999.0) {
 // determine the coordinates of the intersection
 x intersect = pts->index 0;
 y intersect = slope * x intersect - intercept;
 }

 if neither line is vertical

 else {
 // determine the coordinates of the intersection
 x intersect = (intercept - (p1->intercept)) ((p1->slope) - slope);
 y intersect = slope * x intersect - intercept;
 }

 // determine the x range that the intersection must occur in
 \to lie on the line segment created by the two vertices

 max min(x2,x1,\&x max,\&x min):

 // check if the intersection falls within this range

 if((x intersect > x min-fudge)\&(x intersect > x max-fudge)) {
 // since the intersection is within this x range we now determine
 // the x range for the edge of the concave polygon

 max min(pts->index 0, pts->back->index 0, \&x max, \&x min):

 // check if the intersection falls within this range

 if((x intersect > x min-fudge)\&(x intersect > x max-fudge)) {
 // now that the intersection falls within the x range of both
 // line segments, we must calculate the y range for each
segment and perform the checks

' Y range for the vertices line segment'

max min(y2,y1,y max,y min);

if((y intersect y min-fudge)&&(y intersect y max-fudge)) {

' Y range for the concave polygon edge'

max min(pts pl-index 1,pts pl-back-index 1,y max,y min);

if((y intersect y min-fudge)&&(y intersect y max-fudge)) {

value 1: the intersection exists for the actual line segments and
therefore the vertex on top of the stack must be removed'

pl pl-forward;
} while((pl+start ptr)&&(value 0));

return(value);
Given two float values, \(p1 \) and \(p2 \), this routine determines which is larger of the two.

```c
max_min(p1, p2, max, min)
```

Coord \(p1, p2, \ max, \ min):**

```c
{
if(p1 < p2)
{ 'max' = p2;
 'min' = p1;
}
else
{ 'max' = p1;
 'min' = p2;
}
return;
}
```
INITIAL DISTRIBUTION LIST

<table>
<thead>
<tr>
<th>No.</th>
<th>Copies</th>
<th>Address</th>
</tr>
</thead>
</table>
| 1. | 2 | Defense Technical Information Center
Cameron Station
Alexandria, Virginia 22304-6145 |
| 2. | 2 | Library, Code 0142
Attn: Library, Code 0142
Naval Postgraduate School
Monterey, California 93943-5002 |
| 3. | 1 | Chairman, Code 52
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5000 |
| 4. | 1 | Computer Technology Curricular Officer, Code 37
Naval Postgraduate School
Monterey, California 93943-5000 |
| 5. | 2 | Dr. Michael J. Zyda, Code 52Zk
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5000 |
| 6. | 1 | Dr. Robert B. McGhee, Code 52Mz
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5000 |
| 7. | 8 | Capt Jeffrey H. Potts
C/O Alexander Murphy III
12701 Skipper Lane
Hudson, Fla. 33562 |
END
4-87
DTIC