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I. INTRODUCTION

The data which will be presented in this report describes the deviation of
the windspeed and direction from Berlin to Lindenberg, Germany, which are ap-
proximately 35 miles (56 kin) apart. The monthly statistics form a unique data
set because other research has consisted of deriving wind variation in terms
of rectangular components (i.e., zonal and meridional windspeed), and because
it is a long-term climatology of the horizontal wind variation. The litera-
ture review addresses the dominating theme of wind variability research that
has appeared in the literature, including reference to other formulations of
variability. In light of the attempt to relate temporal to spatial variations
on a theoretical (Gage, 1979) and experimental (Jasperson, 1982) basis, tern-
poral variability is briefly discussed.

En the final section spatial wind variability statistics are presented in
monthly and seasonal summaries. The results show the frequency and Cumnulative
frequency distributions of the windspeed differences (scalar shear), wind di-
rection differences (angular differences), and vector shear at the following
constant pressure levels: Surface, 1000 mb, 850 nib, 700 nib, and 500 mb. The
corresponding 50, 90, 95, 97.5 and 99 percent values of the scalar shear, an-
gular differences, and vector shear for each of the five constant pressure
levels are also provided.

Some of the major results are the seasonal variation of the vector shear
and angular differences between Berlin and Lindenberg. E.g., the 99 percent
value of the vector shear between the two locations at the 500 nib level (ap-
proximately 5.5 kin) is 21 knots for summer as compared to 44 knots for winter.
The seasonal variation of the vector shear was found to he considerably less
at the lower levels. At the 850 mb level (approximately 1.5 kmn), the 99 per-
cent value of the vector shear averaged 22 knots, with a seasonal variation of
16 knots (summer) to 24 knots (fall). The angular differences were found to
decrease with height. At 500 mb, the 95 percent values of the angular differ-
ences for the individual seasons were all near 35 degrees, whereas at 1000 mb
(near the surface), the 95 percent value showed a variation of between 60 de-
grees (winter) and 90 degrees (summer).

24I



II. MESOSCALE MODELLING

Mesoscale meteorology has received considerable attention over the past
several years, and inteLest does not appear to have abated. Although defi-
ciencies in our meteorological knowledge of the mesoscale have been acknowl-
edged for some time, lack of financial resources have often been the limiting
factor in gathering such data. Measurement techniques to accurately resolve
spatial and temporal variations of meteorological quantities such as the
three-dimensional wind field are very expensive and require specialized ob-
serving networks (e.g., Myrup et. al, 1982, Wendell, 1972, Young and Johnson,
1984; Shreffler, 1979, Olsen et. al, 1985, Ryan et al., 1985).

Mesoscale information is required for various goals, e.g., to refine syn-
optic scale numerical weather prediction models. Indeed, numerous high reso-
lution models have been developed to forecast atmospheric motions on local
scales (e.g., 30 to 300 km). Models to quantitatively predict precipitation
(Perkey, 1976) and the onset of sea breezes (Pielke, 1974) have appeared in
the literature. A non-hydrostatic model for mesoscale studies was introduced
by Tapp and White (1976), and later used by Carpenter (1979) and Carpenter and
Lowther (1981) to perform a sensitivity analysis of the initial conditions
used in predicting the mesoscale wind field.

The mesoscale wind field has been singled out as the most important mete-
orological parameter in modelling air quality (Myrup et al., 1982). Diffusion
meteorologists have devoted much of their attention to the repercussions of
the vertical variation of the wind on atmospheric diffusion. In contrast, the
horizontal variability of the mesoscale wind in the boundary layer has re-
ceived considerably less study (Slade, 1968), despite analytical studies of
atmospheric diffusion equations which show that the effect of wind-shear on
horizontal dispersion becomes important beginning at least 5 km from the
source (Tyldesley and Wallington, 1964). This is because micrometeorologists
have often considered boundary-layer structures to be homogeneous In the hori-
zontal, thus neglecting horizontal variability and therefore reducing the
bnundary-layer model to essentially an array of one-dimensional models without
biorizontal coupling (except that the boundary conditions are horizontally
coupled). Barr and Krettzberg (1975) studied the role of horizontal variabil-
Ity in boundary-layer modelling by analyzing simple models In which surface-
induced effects decrease exponentially with height as a function of horizontal
wind, horizontal wave number of the surface irregularities, and the eddy dif-
fusivity. Their analysis of a steady-state balance between horizontal advec-
tion and vertical diffusion demonstrated (quantitatively) how models with
finer horizontal resolution improved resolution on the vertiCal scale, allow-
ing for better predictions close to the siurface. This may he useful in pre-
dicting mixing depths for air pollution warnings. Their model involves a
passive scalar quantity and cannot be used to predict the orographic effects
on the wind field.

2



III. MESOSCALE WIND FIELD

Diagnostic dynamical studies of the three-dimensional structure of fron-
tal systems have revealed notable variations in structure, particularly paral-
lel to the surface front. Roach and Hardman (1975) studied warm fronts and
rainbands by deploying dropsondes every 30 km for about 300 km parallel to the
surface warm front, the second near 2 km overriding the first at an angle of
about 50 degrees. They identified a sloping hand (approximately 1 in 200)
1 km deep of maximum direction shear roughly coinciding with maximum windspeed
in the lower portion of the warm frontal zone. The low-level jet marks an
apparent transition between a predominantly westerly flow and southerly cur-
rent of cold air ahead of the warm front. This was Inferred from their Fig.
4, in which a westerly jet of 27 m/sec- I between 1.5 and 9.n km lies above a
southerly jet of maximum windspeeds in the vicinity of 0.6 km.

James and Browning (1979) evaluated the mesoscale structure of line con-
vection at surface cold fronts on scales ranging from several km to over 100
km. Most often the line convection is broken into variahl size elements sep-
arated by smaller gaps, as opposed to a simple two-dimensional structure. The
passage of a line element usually consists of brief downpours, a drop In tem-
perature and windspeed, sudden change in wind direction, and pressure jumps.
The elements were found to disintegrate and then merge together , ain on time
scales of a few minutes to a few hours. The authors highligited certain com-
mon features of the line elements, e.g., that they are always oriented
slightly clockwise with respect to the surface cold front. Flements of dif-
ferent sizes, however, moved in the same direction with a component parallel
to the front in the direction of the low-level jet which ,ccirred ahead of the
front. One of the consequences of line convection Is often strong, horizontal
shear as large as 10-2 sec - , e.g., a change of 25 m/se -1 over 2.5 km, which
is important to those concerned with the dynamics of low-level flIp~lt. Tames
Browning (1979) lists the maximum vector wind shear observed as eloments
passed over anemometers at 10 m to range from 0.3 to 1.2 x lf)- sc - .

Attention is called that the unit second - 1 used for wind-shea rs can he
misleading. As pointed out by Essenwanger (1963) no linear tr,osfornat in
from one shear interval (horizontal or vertical) is valid.

The passage of a shallow cold front over complkx trraIn was t,,1lv/ed by
Young and Johnson (1984) using a surface mesonetwork of ). stat ins (spaced
approximately 40 km apart) and the National Oceanic and Atm,ispimeric Admini s-
tration (NOAA) Boulder Atmospheric Observatory (BAO) tower, whl'h w'is instru-
mented with sonic anemometers at 8 levels lip to 3mi) a. l.,di t rmed in the
lee of topographic barriers while other portions ol thet rnt ,sped across
the eastern plains, Including a passage of the cold fruit froil the east at
some stations. Time-height cross-sections of it- ind w- wind cimpuments at the
BAO lower are presented, supplemented by a horizontal pa;ico scale. Thei r
time-to-s ace conversion was based on a frontal speed of ipproximitelv
lo m/sec -  In a direction perpendicular to the front .,i derived trm tlie
mesonetwork. A current of cold air at )(I to 100 ti k I hl fruit rom
behind, essentially wedgod In between the sturface nricti~n l.1%'('r 111d Ihe t or-
hulent layer within the frontal zone, were ident lt lf,d l Ymir. .ind lohnsmI
(1984) as features similar to atmospheric skratvitv currenits. The t r-nsit Ion
between syn-opt ic-scale air masses ca n occitr oit ,pa ce ind t I me s-c,,l is Iml I

% % N



as 100 m and 10 sec, respectively. These phenomena (microscale turbulence,

strong windshears) are beyond the resolution capabilities of synoptic-scale
networks.

Nappo (1977) analyzed the mesoscale wind field over complex terrain
during the Eastern Tennessee Trajectory Experiment, a study motivated by the
interest in the long-range transport and diffusion of sulfates in the East.
The decrease in plume concentration over complex terrain has been partially

attributed to horizontal wind variability. The data in this study were ob-
tained from a combination of meteorological towers and single-theodolite pilot
balloon wind soundings. Nappo (1977) concluded that during stable conditions
the variability was substantial and strongly influenced by the terrain, while
during unstable conditions the variability was considerably less.

One interesting facet of the urban effects on weather is the difference
in urban and rural winds. This lively discussion has often centered around
Project METROMEX, a study which addressed mesoscale wind differences in the
St. Louis, Missouri, area. Wong and Dirks (1978) used aircraft data to por-
tray the wind field at 450 m on three summer afternoons. Their data appar-
ently supports the hypothesis of wind accelerating towards the city under a

strong heat island accompanied by light winds which are below a threshold
value, and wind accelerating away from the city under weaker heat Island with

strong winds.

Earlier Project METROMEX case studies (Spangler and Dirks, 1978) exam-

ined the variations of moisture and temperature inversion height in the metro-

politan St. Louis area by acquiring aircraft, lidar, pilot balloon, and radio-
sonde data. However, only the average low-level winds and average winds above
the inversion layer for the region are mentioned, and horizontal wind varia-
bility is not discussed.

A study known as the Regional Air Monitoring System (RAMS), a network of
17, 30 m towers, was also performed in the St. Louis region to elucidate dif-
ferences between urban and rural windspeed and direction. Shreffler (1979)
examined these data and found that for strong heat Islands, the rural wind-
speed always exceeds the urban windspeed, whereas only under a weak heat Is-
land and nearly calm winds (wlndspeed less than 1.5 m!sec) was the urban wind-
speed somewhat higher. This result caused Shreffler (1979) to cast doubt on
the concept of a generalized critical mesoscalt' windspeed (below which wind-
speed is higher in the city).

II -I



IVA. SPATIAL WIND VARIABILITY all

Although wind variability has primarily been discussed on the synoptic
scale (i.e., hundreds of kilometers), a number of researchers have concerned
themselves with mesoscale wind variability. Gabriel and Bellucci (1951) using
double theodolites and Plagge and Smith (as reported in Ellsaesser, 1969)
using GMD 1-a rawins and SCR-584 radars during the mld-50's studied time vari-
ability on an hourly basis. Within the last several years, data available
from the METRAC system (Gage and Jasperson, 1979, Jasperson, 1982a and b) and
the 40 MHz Sunset radar (Gage and Clark, 1978) have been used to evaluate wind
variability over time. Spatial wind variability, which is the topic of this
report, has been studied by Danard (1965), Lenhard (1973), and Jasperson
(1982), on spatial scales out to 48 km, 16.25 km, and 20.9 km, and 20.9 km,
respectively. In addition, Nappo (1977) reported area-averaged statistics of
horizontal wind variability for a network of stations contained within a 200
km by 160 km area. (The distance between the two stations in the present
study is approximatley 56 km.)

One of Nappo's measure of horizontal variability was the standard devia-
tion of the horizontal windspeed and wind direction from the area-overaged
speed and direction, respectively. The area-average wind direction is defined
as:

6 = tan-l(U/V) (I)

where U and V are the area-averaged values of the U and V components of the
wind velocity. However, Nappo found more useful an analysis of the spatial
mean and eddy component of the mesoscale wind field (vertical profiles formed
from the horizontally averaged windspeed and direction), in which the wind
components are decomposed into a mean and deviation from the mean (eddy
value):

Mean Kinetic Energy = MKE = 1/2 (U2 + V2 ) (2)

Eddy Kinetic Energy = EKE = 1/2 (U2 + V2 ) - MKE (3)

where the overbar indicates a horizontal average. In particular, EKE is pro-
duced by horizontal variations in wind direction in addition to windspeed, and
will decrease with increasing height. The ratio EKE/MKE for unstable periods
average 0.07 (vertical average of different heights) Increasing to 0.38 during
stable periods.

Wind variability research has centered around elucidating the dependence
of variability on space and time lags. These studies have appealed to G.I.
Taylor's statistical theory of turbulence and formulate the variability S as:

S - KQP  (4)

where Q is either time or distance and K is a constant. Lenhard (1973) chose
P - 1/2 based on Durst's (1954) original model which assumed that the Eulerian
autocorrelation function, I.e., the model for the decay of the correlation
with time was of the form:

r(t) - eat (5)

h.
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where a - 6.9 x 10-6 sec -1 was chosen by Durst so that a variation of 3 hours
was equivalent to a 50 nautical mile separation.

Temporal wind variability (see section 4B), which has received more at-
tention in the literature than spatial wind varability, may be defined as:

OT = ([U(t) - U(t + Lt]2)l/2 (6A)

The time structure function for the U component of velocity in stationary tur-
bulence is:

OT2 = 2 (U')2 (l-r(t)) = D(t) (6B)

where U' = U-U. Note that D(t) will be proportional to the square root of t,
implying P = 1/2.

By considering a theoretical two-dimensional inertial range model
("5/3 law"), it was demonstrated by Gage (1979) that the structure function
D(t) Is proportional to t2/ 3 within the inertial subrange. Therefore the
variability, which is proportional to the square root of the structure func-
tion, will follow tI/3. Gage started with the structure function In space and
derived the structure function in time. This was accomplished by applying
Taylor's transformation (also known as the frozen turbulence hypothesis) to
the expression for temporal variability, as derived from the - /3 law. Ac-
cording to the Taylor transformation, the turbulent structure will be frozen
as It is advected past a sensor with the velocity of the mean flow. Gage
essentially provided evidence for the existence of a two-dimensional, reverse-
cascading energy inertial range based on the results of wind variability
studies.

Lenhard (1973) evaluated Arnold and Bellucci's (1957) formulation for
the local czserved variability Sd.

Sd = 0.53 d 1/2 d : km, Sd : meters/second (7)

where d Is the distance between the two stations. The total observed varla-
bility, which may be found from:

(nSd) 2 = n'(U i - Ui+d) 2 - [(Ui - U+d)] 2 +
iLdJ (8)

nX(Vi - Vi+d) 2 - - Vi+d)]

was calculated by Lenhard (1973) for 41 pairs of simultaneous GMD radiosonde
flight over a distance of 16.25 km. The variability was approximately con-
stant up to 6 km (ranging from 3 to 4 meters per second) and then consistently
Increasing at higher levels. In this study, the vector mean windspeed and Sd
as a function of height were plotted. The vector mean windspeed was found by
averaging the wind components for all flights from both locations, and the
standard vector deviation was computed by averaging the component standard de-
viations. Also, by knowing d and evaluating Sd from the data, K (see Eq. (4))
was shown to increase from 0.6 at the surface to 2.0 at 9 km. K increased
with Increasing S as well as increasing windspeed, and the correlation of 0.81
was obtained from the linear regression of K on windspeed.

6U



Another way to formulate the variability is:

S 1 022 + 022 - 2rI 2 0 M (9)

where S is the variability, 01 and a2 are the standard vector deviation of the
two data sets with correlation (i.e., statistical variance formula for auto-
correlation) r12 .

For time variability, autocorrelation, where 01 0 G2

St2 = 2 a2(1 - rt) (10)

Danard (1965) called St the "true variability", where rt is the stretch vector
correlation. Referring to Eq. (5), Lenhard (1973) estimated rd from:

rd = e-at (11)

and used this value to compute an estimated variability S*,

S* = 2 02(1 - rd) (12)

where a is the standard vector deviation, and rd is the linear correlation co-
efficient of the windspeed between the two data sets (separated by a distance
of 16.25 km in this case). This estimate was lower than the actual Sd up to
5 km. Durst's model is that the variation at 3 hours is equivalent to a 50
nautical mile separation ( which accounts for the constant a). Therefore by
knowing the spatial separation, the equivalent time in seconds is then substi-
tuted into Eq. (11) to obtain an estimate for rd (see section 5).

% , 7
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IVB. TEMPORAL WIND VARIABILITY

(ifford (1956) constructed Kolmogorov structure functions for longitudi-
nal and transverse components of isotropic turbulence and concluded that time
variability of the wind will follow t1/ 3 . Taylor (1957) in evaluating bound-
ary-layer wind data and Hutchings (1955) in evaluating 6-hour 500 mb data both
found justification for a tl/3 law. Ellsaesser (1969) cites Gifford's theo-
retical findings and empirical data obtained by Plagge and Smith during the
1950's in concluding that the tI/3 law is more appropriate than the t1 2 law,
particularly for lag periods of up to 6 hours. Ellsaesser (1969) discussed
other sources of time variability data that were available at that time, but
the lack of homogeneity in each of these data sets precluded drawing any con-
chusions.

Billions (1973) analyzed hourly wind data collected by Air Force Cam-
bridge Reseach Laboratory over a 7-day period using polynomial analysis (see
Essenwanger, 1973). In this method, the autocorrelations of windspeed, wind
component (zonal and meriodional), and wind direction characteristic coeffi-
clents (surface to 1 km) as a function of lag time from 0 to 24 hours were ob-
tained.

The pulsed Doppler radar is a more recent tool for constructing a clima-
tology of mesoscale wind variability because of its ability to rapidly sample
the wind. Shapiro et al. (1984), reported on the NOAA Wave Propagation Labo-

ratory VHF wind profiler observations of mesoscale wind systems In Colorado.
The resolution capabilities of the profiler are 100 m resolution from just
ibove 1/4 km to 2 1/2 km above ground level (AGL), and 300 m resolution from
1 1/2 km to over 8 1/2 km. Their study illustrates the enormous potential to
obtain data on the vertical and horizontal scale, the approximate temporal
structure of fronts, and associated jet stream characteristics. Cage and

Clark (1978) utilized VHF Doppler radar to sample the three-dimensional field
Once per minute for 14 hours at altitudes ranging from 5 to 13 km at I km In-
tervals. Although the average variability followed a 1/3 power law to 4
hours, this power varied somewhat with height. The improved depiction and
nmrlical prediction of mesoscale weather events, particularly to forecast the
intensification of fronts over time and the subsequent development of precipi-
tation systems, Is one of the motivations behind this type of study.

;,ige and Jasperson (1979) analyzed wind variability helow 5 kn over
m Intervais for time lags of 30 minutes to 3 hours as measured by the

'IirRAC halloon-tracking system. The average temporal variahility was also
Io, nmli be consiqtent with a 1/3 power law, but the temporil variahilitv at

idividtial altitdes also showed substantial variation. In another study
ithiy the METRAC system (lasperson, 19 8 2a), the average time variability of

t,. whit for "anticyclonlc weather patterns" followed a power law, hut for
vconic patterns" (frontal passages) was more nearly 1/?*

SpI al variahibility of 0.990 m/sec - 1 , 1.741 m/sec - 1 , and :1.440 m/sec - I

tt ,h rmined by lasperson (1982) for lauinch point separations of 20 m (QI)
,tonrv. lons), 4.415 km (3116 observations), and 20.ql km ((01 observations).

I:,;por-mi refrained from deriving a power law relating the spatial variahil-
itv i,, spitlal separation because the data for each launch point separation
wcr ob faned on different days under markedly different weather conditI ons.

8
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However, Jasperson (1982) also provided unique data on the differences
between the time variability as computed at a single station, and the "space-
time" variability, which is the variability computed for a pair of stations
separated by a certain distance (in this case 20m, 4.415 kin, and 20.910 kin),
in which the balloon is launched from the second location at some later time
(from 30 to 24 minutes later at a time lag of 30 minutes). The Increased
variability due to space variability is evident in the differences between
time and space-time variability. At a time lag of 30 mim, these differences
are 0.02, 0.047, and 0.62 m/sec-1 at a separation of 20 m, 4.415 kin, and
20.910 kin, respectively. For the 20.910 km separation, the difference oscil-
lates about a value of 0.10 m/sec-l for the time lags of 90 minutes or longer.
The fact that this difference does not rapidly approach 0 indicates that there
are detectable spatial features of the wind field. From these data, Jasperson
derived an equivalent time lag of 17 minutes for a spatial separation of 4.415
km and a time lag of 90 minutes for a spatial separation of 20.910 kn.

Olsen et al. (1985), also studied both temporal and spatial variability
for an area 30 km by 20 km by analyzing data from radiosonde release. These
data were obtained as the initial phase of a wind variability study for the
MLRS System. Due to the sparseness of the data (only 8 data sets) and the
light prevailing winds, neither power law relationships nor space-time equiva-
lents were derived.

Morone (1986) studied horizontal wind variability as a function of dIs-
tance by computing structure functions (the square of the difference in wind-
speeds between two locations) from winds measured by Inertial navigation sys-
temns on jet aircraft. The structure functions were computed over separation
distances that varied up to 500 km and were sorted according to separation
distance into 20 intervals of 25 km each. Some of the structure functions
were computed over approximately the same Interval as the distance between the
two stations studied In this report. However, most of these data were collec-
ted at an altitude of 9.5 to 10.5 kmn, well above the region of interest In
this report. Coupled with the restriction that windspeeds must be less than
or equal to 20 m/sec-1, these structure functions were therefore computed away
from regions of strong horizontal shear (i.e., strong jets). Strictly speak-
ing, these structure functions are Indicative of space-tine variability, as
the wind reports nay be separated by three hours. (The assumption that the
structure functions are only a function of distance appears to be justified at
the 10 km altitude.)

% %.



V. WIND VARIATION DATA

The data presented in these sections consists of the wind variability and
wind-shear in the horizontal for two stations within close proximity, Berlin
and Lindenberg (56 km apart), calculated at the same pressure level. An exam-
ination of the difference in geopotential height between Berlin and Lindenberg
at the 850 and 700 mb pressure levels for four selected months in 1977 re-
vealed mean differences ranging from 6.5 m (April) to 10.3 m (October) at the
850 mb level and 7.9 m (April) to 13.2 m (October) at the 700 mb level. An
approximation is made that the altitude (geometric height) of the two pressure
levels will be the same for simultaneous observations. The horizontal differ-
ences are a measure of the mesoscale spatial wind variability at the indicated
altitudes. (It should be noted that geopotential heights of 1500 m, 3000 m,
and 5500 m correspond to geometric heights of 1504.5 m, 3009 m, and 5516 m for
this location.) The height of the individual pressure levels, of course,
fluctuate on a day-to-day basis.

The following analysis is due to Essenwanger (1974). For a derivation of
Eqs. (15) and (16), see Appendix A.

By considering V 1 , 'Il, V2 , and 02 to be windspeed and d!rection at Linden-

herg and Berlin, respectively, the following wind difference parameters and
wind-shear components were calculated at the surface, 1000 mb, (close to sur-

face), 850 mb (approximately 1.5 km), 700 mb (approximately 3 km), and 500 mh
(approximately 5.5 km):

Vs = V2 - V1  (13)

A = 02 - 0Q , I 1< 180 degrees (14)

,D = 2 vl V2 sin (Ae/2) (15)

S = Vs2 + bs2  (16)

The wind-shear components Vs and 's were combined vectorially to determine the
wind-shear ,. The wind-shear represents the deviation of the windspeed and
direction from one measurement location to another.

he period of record for the data that are discussed In this report is
197.4-'8 and 1981. These data were extracted from teletype messages inter-
c'pted In this office and placed on punch cards for computer analysis. All
,hi+ervatlons were taken at 12(o Greenwich Mean Time (CMT). This represents
t, best data set that we have available. The data have been stratified
acc)rd ing to month and season and totaled for the year (See Table 18).

', ah ? through 16 list the percent and cumulative percent occurrence of
wini speed differences In 3-knot Intervals as well as the 90, q(1, 95, 97.5, and
9) prcentle valties of the differences In wndspeed for the 9 id ividnal al-
t itide levels. ,As anticipated, the windspeed differences tend to Increase
With helpht. For example, the percent occurrence of differences In windspeed
less than or equal to 9 knots decreases considerably from Q? percent at the
.irface to 76 percent at 89(5 mh for all observations pooled together. At 50
moh, wind-speed differences of 6 to 11 knots occur with a frequencv of nearIv
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22.5 percent on an annual basis. Considering the individual months only, this
per-centage ranges froi' 15 percent in June to nearly 33 percent In January.

At the surface and 1000 mb (near surface), the 90th percentile ranges from
4 to 7 knots with an annual range of 4.8 knots for the windspeed, while the
99th percentile shows values mostly over 8 knot8 with an annual average of
12.2 knots at the surface and 9.7 knots at the 1000 mb level. The differences
are higher at 850 mb, between 8 and 12 knots for 90th percentile, and mostly
over 12 knots for the 99th percentile (annual average 15.1 knots). For some
individual months the 99th percentile displays very high differences such as
17 knots in January, 22 knots in September, or 25.1 knots In December at the
850 mb level. These fluctuations between the months may be attributed to var-
ious factors such as the ilmitation of the period of record, frontal passage
at one station and not yet at the other, and observational or instrumental
errors. However, the seasonal trend is adequately reflected in the seasonal
tabulations.

The wind variability Sd was computed for each of the pressure levels using
Eq. (8), and these results are listed in Table 17. The wind variability was
found to generally increase with height, a result consistent with the findings
of other authors (Danard 1965, Lenhard 1973, and lasperson 19P2). Lenhard's
data indicated an increase in variability from 5.5 knots at 1.5 km to nearly
8 knots at 3 km, decreasing slightly at 5.5 km before increasing with height
again. In the current study, the variability decreased slightly from 7.87
knots at 1.5 km to 7.13 knots at 3 km before Increasing to 9.35 knots at 5.5
km. The larger variability in this study Is not surprising due t, the in-
creased distance between stations (Lenhard's data contained only 41 observa-
tions spaced 16.25 km apart). An average variability of 7.20 knots (averaging
all of the individual varl ibilities listed in Table 17) compares well with a
variability of 7.71 knots which is obtained by substituting d = 56 km Into
Eq. (7).

Using Durst's model (Eq. (5)) for estimating rd does not reflect the rapid
increase in correlation with height due to the decreasing effect of the fric-
tion layer (Table 17). The average rd = 0.R27 Implies consideraibly more var!-
ability than r d = 0.956 as derived from Durst's model. The preictt(i r d
0.956 was obtained by finding a time equivalent in seconds for r6 km from the
relationship 3 hours = 50 nmi, and substituting this vailre of t int.) Fq. (11).

Tables 18 through 32 list the percent and cumiiatiye percent occurrence of
wind direction differences between Berlin and 1.An1denhr,, In 31)-de iree Inter-
vals as well as the 50, 90, 95, 97.5, and 9Q treon ll vailue s of the differ-
ences In wind direction for the 5 indIvidtal alt Ittide level. )vralI , dif-

ferences In wind direction of greater than or eq.il] to 60 d%,,.reevs occurred

with a frequency of 5 percent at 850 mb, decreas Iig t o 1. V) pircent at 700 mh,
and 2.75 percent at 500 mb. The effect of the triel ion liyer af the surface
is evident from theso data as dlfferences In windi ,irtitor ire smaller at 8S(
mb (approxlmat.lv 1500 meters) than at or noir tie -ort act,. (onseh rlnri the
month of liuly as in ext reme case, the percent o(w-ir'ltrrc (if winrid di rect tin
differences of less than or equal to 29 de rtns icreiste dririt eallv from h7
percent at the surr ace to 9() percent ;it 89( nib.

II
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In 50 percent of the cases the difference in direction is 20 degrees or
less at and near the surface, and 15 degrees at 850 mb. The 90th percentile
difference in wind direction decreases from 55 degrees at the surface to 35
degrees at 850 mb. Similarly, the 95th percentile difference in wind direc-
tion decreases from 75 degrees at the surface to 55 degrees at 850 mb. Also,
the 99th percentile difference in wind direction decreases from 130 degrees at
the surface to 100 degrees at 850 mb. The 95th percentile of the difference

in wind direction between the two stations ranges from 35 degrees in DecemberI
to 140 degrees in June. This decrease toward the upper levels is due to the
decreasing influence of the friction in the boundary layer.

Tables 33 through 47 contain the percent and cumulative percent occurrence
of wind-shear (as defined in (16)) between Berlin and Lindenberg in 3-knot In-

tervals as well as the 50, 90, 95, 97.5, and 99 percentile values of the shear]

for the 5 individual altitude levels. A shear of less than or equal to8
knots occurred with a frequency of 73 percent in winter increasing to 87 per-
cent in summer. Similar increases in shear during winter were noted for all
altitudes above the friction layer. A shear of 12 to 14 knots occurs with a
frequency of 0.5 percent near the surface, increasing to 2.5 percent at 850
mh, and 5 percent at 700 mb. A seasonal trend towards increasing shear during
fall and winter Is evident, as windspeeds generally increase more rapidly with
altitude In winter. This phenomena may be attributed to the difference In the
slope of cold and warm fronts. The latter is considerably smaller, thereby
producing smaller wind-shears. Large frontal slopes (cold fronts) are asso-
clated with the well developed synoptic systems which typically occur In
winter. The largest percentage of small shear in the lowest levels (at or
near the surface) occurred during winter, supporting the hypothesis of de-
creased variability during unstable conditions in the boundary layer (Nappo,
1977).



VI. SUMMARY AND CONCLUSIONS

Wind variability and wind-shear In the horizontal for two stations in
Germany that are 35 miles apart were calculated at the same pressure level. A
literature search revealed that very little data concerning wind variability
over 30 to 50 miles is available. Previous studies do not take into account
the direction contribution to the wind-shear, as other authors have analyzed
the rectangular components only.

Previous studies report on data obtained from specialized networks. How-
ever, Berlin and Lindenberg, which both report upper-air observations are only
35 miles (56 kin) apart, which has provided an opportunity to create a long-
term climatology of mesoscale wind variability.

Open literature publications briefly mention wind variability as a func-
tion of atmospheric stability. The TVA study (Nappo, 1977) provided the most
evidence that wind variability was high during stable conditions and low
during unstable conditions (above the surface). Essenwanger and Stewart
(1983) found that the atmosphere was unstable more often than neutral for
morning observations taken at 1200 GMT at Frankfurt and Hahn, Germany. Be-
cause the data in this report comprises observations taken at 1200 GMT only,
it is possible that the diurnal wind variability has been underestimated.
Therefore a further study of wind-shear as a function of atmospheric stability
utilizing both morning and evening observations would be of interest. Further
studies in this area are relevant because previous models that approximate
wind variability as a function of distance appear to be inadequate.

.JI
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TABLE IA. The Mean And Standard Deviation (In Parentheses) Of The
Difference In Geopotential Height Between Berlin And

Lindenberg At The 850 And 700 Millibar Pressure Levels

For 4 Selected Months In 1977

850mb 700mb

January 7.8 (4.7) 8.1 (5.3)

April 7.0 (9.1) 7.9 (6.5)

July 8.8 (5.6) 10.6 (8.3)

October 9.8 (8.1) 13.2 (11.9)

TABLE LB. The Number of Observations According To Month and Season.

All Observations Were Recorded At 1200 GMT For The Period
Of 1974-78, 1981

Month Number of Observations

January 95

February 101

March 108

April 115

May I1?

June 86

July 91

Aug Jst 105

September 135

October 135

November 117

December 89

Fall 387

Winter ?85

SpY inq 335

Summer 282

Total log

1%4
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TABLE 2. Percent Occurrence Of The Differences In Windspeed (Knots),

Berlin And Lindenberg, At The Surface, 1200 Hours GMT

(1974-78, 1981)

0 TO 2 3 r J 6 Ti 4 T 11 1 2 TI] 14t CT It

JA'IJA Y 68 .42 5.26 5.26 U.3i 0.00 1.35

FEBRUARY 64.3b 32.o7 2.17 V .0 3.00 0 .0 "

A2.7) .SS '3 0.'Q0 .0

AP.V'." M.2t 34.78 )U 0. )0 0.6)

Y 65.lo 16. q .25 0.iU 0. 0' 1.7

JUNE 55. 1 29.07 12.79 0. )) 2. .. U3

JULY I.54 25.27 9o1 9 2.2) 0.00 1.10

AUSJST 66.67 25.71 5.711 0.30 0.06 I. )0

SEPTI3CER 59.5Z 33.33 7.41 .1t C.7J 0.00

0CT0 , . 71.Ii 25o'I 2.q"b .74 0.00 0.0

3 C 59*83 34,19 3.4' .1 1.71

OlC:4+Ki7 54.6 37*)J t.7tt '3.u O.Gu I. z

FALL 3 3.31 3r). 75 4.' * .

4I1.TC 62.31 31 . )9 4se l .0 1) .,2 J

30. ,. 7  .

Sd&17G ).W .7 ,. . .7i !,

. .1 , .~ 6. . . 6 .. ? ) . i 7  % , 1 .  . 3 , , _ . s ',
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TABLE 3. Cumulative Percent Occurrence Of The Differences In Wind-
speed (Knots), Berlin and Lindenberg, At The Surface,

1200 Hours GMT (1974-78, 1981)

0 TO 2 3 Tfl 5 T3 9 TI 11 1.2 TO 14 GT 15

JJA AiU,< Y 69.4z 93,65 9-,95 99.95 98.95 100.00

F E" 0 , A Y bl, .3o 7.,J] IIn .10 ,1 0J L, JO .,10 0 OC.,

M A RC'-i 64.,,, 9] '99 1 ].01 JO IO( j O 00. '1

AP, I L 5 d.2(j )3. 14 1 no.. I ')"t13j. Ij 11C. 00 I0,'. j0

,' A 6 .i 1.q 6 L..? '4,' ..] k? I ,. 2 1 iO0 ).,_;U

JU NF 55.31 14. il "17 .7 5.-,7 1)0000 100.60

JULY 61.54 '. 06 Th.7) '4o.'i ' . " I no. J,

AU,;'JST 66.b7 .A C-i. 1( Th.1) 9 1. IU 1OO.jc

S Z:P T;- 13 E R 5". . )1. 15 ?,. , 10ou. () IU 0.00 G 0 1;.,)O

O)C T:J1 E R 7 1. i i- 3) =9 26 . )0 10.0), 0 ICI. -)0

"R21 : 50 ', .  14., ;' 7. . Q7,44 -o ," 1' J. ,.

.71 2

1 ' j 6 i, . -: ,-,. ,1) 7 ' 2 ' • "

%U 1'c 0 1.7,, ;4 4o L' . . Yl w t

1b

"- " .' -" "" " ---- ' "' ""- , " " " ." ." ' .--'. " " . --' .-" .-. .-' ... ' --" .'-- .- .'- -L -. " " "-. '-- ., .,.' -U :



TABLE 4. 50, 90, 95, 97.5, And 99 Percentile Values Of The Differences
In Windspeed (Knots), Berlin And Lindenberg, At The
Surface, 1200 Hours GMT (1974-78, 1981)

50TH PERC 90TH PERC 95TLI PzC 91.3 P2qC )qTH PERC

JANUARY 2.0 4.5 6.3 7. 8.0

FEBRUARY 2.0 4.9 5.0 5.9 8.0

MARCH 2.0 5.0 7.0 7.0 8.0

APRIL 2.0 5.0 6.0 7.1 8.0

MAY 2.0 5.3 6.0 7.J 17.

JUNE 2.0 6.0 3.0 3.' 12.0

JULY 2.0 6.0 7.4 11 .3 10.0

AUGUST 2.0 5.0 7.0 7.4 23.0

SEPTEMBER 2.0 5.3 6.3 7. 5.1 N

OCTOBER 2.0 4.1 5.0 6.0 7.5

NOVEMBER 2.0 4.0 6.0 7.3 35.0

DECEMRER 2.0 5.9 6.r 7.3 E.3

W INTER 2.0 5.0 6.0 7.0 8.0

SPRIAG 2.0 5.3 6.0 7.J 8.4

SUMMER 2.0 6.0 7. 1 . 14.0

FALL 2.0 4.0 ,., 1.) lu.l

ANNUAL 2.0 5.1 ,.0 1, ) 10.1

17
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TABLE 5. Percent Occurrence Of The Differences In Windspeed (Knots),
Berlin and Lindenberg, At 1000 Millibar, 1200 Hours (1974-
78, 1981)

0 T0 2 3 T 1 5 6 T . 3 9 V 11 12 TO 14 GT 15

JAN UAY 53.e 3.). 5 3 8i.42 7.37 0. j 00o

F ER :JA Y 52. st ;7. 2 5. 'F4 .'f6 o.00 1..3

MARCH 56.4 33. 33 1,31 1. 15 0.30 0.J0

AP R IL 53. 04 1G, 6.0 '6. _. 0.00 O. 0

,lAY 54..04 33.93 7. 14 .. O.00 .9

JUNE 53.49 31.',3 11.,0 '£. 1o 2.33 0.00

JULY 50. 5 31. , 6. 2) 3.33 0.0 0.30

tUGUST 52.3,j 37. 14 8.97 1.93 0.00 0.00

SETEM3EI 54. t.. 33.33 C.9 .74 .7,# 1

']CTOBz 56.30 37.)4 5.1.1 1.4.3 9.00 0.0

NO V j 3E. 47.01 3 . 05 11 . 17 1.71 0- n. .1) "

L C E 41E 51 .,)9 4). 43 4,4-3 22 >. 1.12

F~~ '. L .' 7 3 -; .1 1 1 5 1 -. . 2. 2 .

",-I; WS .-2 .5? 7' , , .0 .30

2 2. 11 .71 0.Jf
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TABLE 6. Cumulative Percent Occurrence Of The Differences In Wind-
speed (Knots), Berlin And Lindenberg, At 1000 Millibar,
1200 Hours GMT (1974-78, 1981)

0 TO 2 3 ri 5 6 T1 9 1 r) 1I 12 TO 14 GT 15

JANUARY 53°6d 84.21 92.h3 100.00 10.000 l0O.J0

FE3RUARY 52.48 91.10 6.04 9b.02 93.02 100.00

MARCH 56.4a 31.3L 1.1l 1J0...,) 100.00 100.O0

AP V IL 53.04 12.17 9,4. 13 1,.J. 3 )0.0 10 0.0 "

mAY 58.04 31.9' 19.1 5 ki,. 11 )1.i1 100.00

JU'IF 53.49 4.33 16.5l :7 .7 1.QO.0 1000.01

JULY 50.55 96. 31 9 .70 C13.01 LUO.O0 1001 J:)

AUGUST 5?.38 V1.5? li.l0 10U.00 130.00 100.00

SEPTEABE.R 54.tll 33.15 17.14 97.73 ).52 100.00

OCT13ER 56.30 11.33 98.52 100.,)0 100. 0 100.10

N4V 18R 47.01 35 47 17.&4 4.1 100.00 100. 0

FALL 52. '47 .9 17.7 ,..J1 14).4 IC.J)

A IN T ER 5?.b63 )-1.77 9 ~1-, P~ j ICJ

S PR 'G 1 3. 2 ',1. 34 1 . 1 4,4.) 70 IO0. jC

SUWIMCR 52.13 17. t "' 3., 1 .. 1 1 0.0 I0. 9

AN I!J&AL 5 3.45 1 . "  7. ;Y ' , . 0 [ (.
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TABLE 7. 50, 90, 95, 97.5, And 99 Percentile Values Of The Differences

In Windspeed (Knots), Berlin And Lindenberg, At 1000 Milli-

bar, 1200 Hours GMT (1974-78, 1981)

50TH PERg 1)3TA PERC 95Td PEBC 97.5 PERC 49TH PERC

JANUARY 2.0 7.3 9.0 10.0 10.0

FEBRUARY 2.0 5.2 1.0 9.0 25.0

MARCH 2.0 5.Z 7.0 7.3 9.0

APRIL 2.0 5.1 6.0 7.J 8.2

MAY 2.0 5.1 0.0 7.0 9.2

JUNE 2.0 6.1 7.3 8. 5 12.0

JULY 2.0 6.0 3.0 10.3 10.0

AUGUST 2.0 5.5 6.3 7.4 9.0

SEPTEMBER 2.0 6.3 7.0 11.3 15.4

UCT0,Eq 2.0 5.3 6.O 7.3 9.0

NOVEMBER 3.0 6.3 7.0 8.) 10.5

DECEABER 2.0 5.0 6. 9.0 10.1

uINT..R 2.0 6.0 1.3 9. 11.3

PqINI 2.0 5.0 6.3 7.) 9.0

I I t4 * 2 0 .3 7 . 1 4 1 3 1 0 . 2"

FALL 2.0 #.0 7.0 7.3 11.3

A ,.jAL 7 10 0

1'0

-.... ..... .o °..



TABLE 8. Percent Occurrence Of The Differences Of The Windspeed
(Knots), Berlin And Lindenberg, At 850 Millibar, 1200 Hours
GMT (1974-78, 1981)

0 TO 2 3 TIJ 5 b Tq 3 9 TO IL 12 TO 14 GT 15

JANUARY 2F.42 34.74 1i.58 1.3.311, 5.2b 6.32

FE3RUARY 41.53 39.51 12,37 2.07 3.9o 0.00

A44.44 2.35 15.74 7.41 2.7o 2.73

APRIL 53.91 ?5.22 13.34 3.4,' .87 3e48

MAY 44.54 35.71 12.50 5.35 .89 .9

JUNE 52.33 31.40 12.79 2.33 1.1I 0.00

JULY 39.56 4.?..i6 12.09 3.3J 2.20 0.o0 .'9'

AUGUST 47.62 3L.L9 10.413 1.)3 3.31 0.00

SEPTE9BER 37.78 37.04 14.07 o. 15 .74 2.92

9CTOER 48.9 27.41 14 .1l 2.91 4.b

NOVEM4ER 36.75 31.52 15.3 91.) 5.h .15

DECEMBER 3 5, (6 24.21 17. 49 3*37 i. 9

FALL 41.34 3.?.)J4 14.73 .7 3.5 1.55

W INTF R ] 4, 3 4. 31 1 4) 1, 4; 4.2 4. ,

SPRING 47.7;) 2). ?5 13. 71 1 ? 1. 2

S U,1*M1E -Zz 3,'. 34 I 70 4. 2 , .o,

A N.11U AL 4 2 ., 3?, ;'9 -b " 5 ) . .7
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TABLE 9. Cumulative Percent Occurrence Of The Differences In Wind-
speed (Knots), Berlin And Lindenberg, At 850 Millibar,
1200 Hours GMT (1974-78, 1981)

0 TO 2 3 rI i T 9U) 3 9 T) 11 12 TC 14 GT 15

JANUARY 23w.'2 63.16 74.74 8d.42 93.o8 100.)0

FE3RIJARY 41.58 30.20 93.07 Qo.04 100.00 100.00

'ARCH 44.44 71.30 97.04 4*44 9 7 .Z 100.30

APRIL 53.01 7 .13 92.17 95. 5 96.52 101?.3

wAy 4 4 .o4 it).3'3 1)2o4 93.21 49. 11 10,). U0

JUNE 52.3 3 93.7? .1 96.14 100.00 100.30

JULY 39.5t 912.42 4 ,.5 1  W.1) 100.O0 iOO.dO

AUGUST 47.,2 33.31 74. ?9 c6'. 100.00 i00.j v,

StjPTE.3ER 37.78 74.31 933.99 ?7.J4 97.78 100.1;0

-:CTCPER 4e.9 71).30 91.11 -44.31 %d.5Z 100. J

N40V-MBER 36.75 53.38 '13.76 ')3. 1t 9Q.15 1)0.,O

DECEM3ER 35.q6 S5.17 33.19 1'7.S4 91.01 iO.,i

FALL 41.3-, 73. 3 ,.11 .. 93 ,. Q" i0C.,"

rI NT ;-' 35.44 1. 32 93.T 16 -3 9 D.

P , I1G 47. 7r 7 00 .7r, I_, 1 0o0 I . -;Q

4 4 43 33 1 4 -' ,7. 'I.

V4AiU AL 4 2 ~2 7q 71?1 .1 3~'7 3 '~

Ne U



TABLE 10. 50, 90, 95, 97.5, And 99 Percentile Values Of The Differences

In Windspeed (Knots), Berlin And Lindenberg, At 850 Milli-

bar, 1200 Hours GMT (1974-78, 1981)

50TH PERC 90TH PERC 95TH PERC 97.5 PERC 9qTH PEkC

JANUARY 4.0 12.0 15.0 17.3 17.0

FEBRUARY 3.0 7.0 9.0 12.3 12.0

MARCH 3.0 9.0 12.4 14.3 18.0

APRIL 2.0 7.0 10.0 15.0 15.3

MAY 3.0 7.? 9.4 ll.U 13.4 ,

JUNE 2.0 1).4 7.3 4.2 10.6

JULY 3.0 7.1 8.4 11.h 13.0

AUGUST 3.0 6.3 1.0 12.4 13.0

SEPTEMBER 3.0 9.3 10.0 [[.4 22.0

OCTO3ER 3.0 8.3 12.0 14.3 16.4

NOVEMBER 3.5 ti.) 12.2 13.0 16.2

DECEMBER 4.0 12.0 17.5 20.2 21.5

WINTER 4.0 11.0 14.3 17.0 20.2

SPRING 3.0 9.1 11.1 14.4 I,. 4

SUMMER 3.0 7.) 9.1 ll.j 13.0

FALL 3.0 (.1 12.0 i3.J 17.3

ANNUAL 3.0 0.) 12.0 14. J 17.0

%p
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TABLE 11. Percent Occurrence Of The Differences In Windspeed (Knots),
Berlin And Lindenberg, At 700 Millibar, 1200 Hours GMT

(1974-78, 1981)

0 TO Z T )i 5 6 TO 1 9 T] 11 12 TO 14 GT 15

JUA.JARY 34.74 3).53 . 0. 53 3.16 1.Jr

P 3-- ,3 JA .7Y 45.54 04.75 21.78 5. q .99 . 4?

4A-4CH. 3. 9 .  12.16 3. 70 2.7t 2*7

4,.57 33.) 9.57 4.35 .a7 1.74

.4A y 46.43 3 l. 2; 12. 50 j. )4 1.79 O. JO

JU)Pr 52.33 ?).7 4 17.,44 3.49 O.0U 0. j0

JULY 52.75 _Q. 57 1?.9 2. ?0 2.20 2.20

AUGUST bO.00 ?6.57 9.52 2.3 .45 0.00

S'PTE73&R 44,44 3 .5? ' 1.-? 1.48 .74

*T ; -J -2 3A.52 34. 31 17. ,)4 , .15 .74, .74

144 1.03 3 3 1. 10 3. 4z- 2.5-1

' 44.,44 31 . 71 1, .". ', 4 3. 7

FALL '1. 3'. 14.'47 1

a;. 'd,6 . *. p, 1 1., t* -. 1. ?- i -

T ', I / .I.I' C- ...
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TABLE 12. Cumulative Percent Occurrence Of The Differences In Wind-

speed (Knots), Berlin And Lindenberg, At 700 Millibar,

1200 Hours GMT (1974-78, 1981)

0 TO 2 3 T) 5 h TO 8 T 13 11 12 TO 14 GT 15

JAN4UARY 34.74 '5 21S 85.26 95,74 93.9 O 100o00

FE3RUARY 45.54 70.30 92.09 98.02 99.01 100.00

MARCH 39.19 77.71 q0.74 94o44 97.22 100.00

APRIL 49.57 33.48 93o04 97,39 98.26 1O0oj0

J"AY 'i6.43 77.ba 90.1 94i.21 1OOOu 100.00

JUNE c?.33 71.07 1,151 100.00 10O.O 100.30

JULY 52.75 81.32 93.41 5 .b 6 97,O 100.0

AUGUST 60.00 31.7 96o11 09 . ) 100.O0 10000o

SEPTEMBER 44.44 82,96 91.11 97.78 4q,2o 100.00

OCTORER 38.52 73o33 90.37 98.52 99,26 100o00

NOVc'MBEo 41.03 74o36 43o16 96.53 99.15 100.00

DECEMdER 44.9. 7,3.h5 91.01 45.51 95.88 100.00

FALL 41.34 ?7.J) 91.47 47.67 99.22 100.00

I NTEr 41.75 71.23 19.47 Th.4J 911,5 100.00

SP ING 45.07 7 1.70 91.34 i.72 98.51 100 .)0

SIJ R 5503f 3?,1? 5.3) o ?,3 99.214 100.0O

.1 '. IJ AL 41,946 7.,:).1 -11 o 1,1 9:,'19 100oJO
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TABLE 13. 50, 90, 95, 97.5, And 99 Percentile Values Of The Differences
In Windspeed (Knots), Berlin And Lindenberg, At 700 Milli-
bar, 1200 Hours GMT (1974-78, 1981)

50TH PERC 9OT4 PERC 95TH PERC 97.5 PERC 9qTH PERC

JANUARY 4.0 4,5 11.0 12.9 14.0

FEBRUARY 3.0 9.0 9.0 10.5 14.0

4ARCH 3.0 8.0 12.0 13.6 17.0

APRIL 2.5 7.0 10.0 11.1 17.3

MAY 3.0 R.? 10.0 11.3 12.2

JUNE 2.0 7.0 8.0 10.2 11.0

JULY 2.0 8.0 9.0 13.1 16.0

AUGUST 2.0 6.3 8.0 9,4 10.0

SEPTEMBER 3.0 7.3 10.0 11.0 16.1

OCTOBER 3.0 9.5 9.3 10. 15.5
%.

NOVEMBER 3.0 7.3 9.0 12.3 14.2

DECEMBER 3.0 7.0 11.9 13.2 14.2

wINTER 3.0 9.0 11.0 13.3 14.3

SPRING 3.0 1.0 10.0 12.0 17.0

SUMMER 2.0 7.0 8.0 113.0 12.4

FALL 3.0 3.) 10.1 I.3 13.1

ANNUAL 3.0 ,) 10.0 l?.) 14.1

2.
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TABLE 14. Percent Occurrence Of The Differences In Windspeed (Knots),
Berlin And Lindenberg, At 500 Millibar, 1200 Hours GMT
(1974-78, 1981)

0 TO 2 3 TJ 5 6 TO 9 9 T] I1 12 TO 14 GT 15

JANUkRY 31.58 25.32 25.26 7.37 0.3007

FEBRUARY 31.68 44.55 12.17 4.15 1.918 3.16

MARCH 31.48 36. 11 13.30 9.25 3.70 5.56

APRIL 33.91 33.91 ?2.61 2.61 5.22 1.74

MAY 41.07 33.39 10.71 6.25 2.68 .gq

JUNE 58.14 2.93 6.91 d.14 3.49 2.33

JULY 43.96 32.97 16. 4 1. 13) 2.2G 3.30

AUGUST 40.00 34.05 14.29 3.21 .95 1.40 .

SEPTEM3Eq 31.11 3?.59 17.73 11.11. 4.44 2.9L -

OCTO9ER 47.4 25.19 14.07 t.67 3.70 2.,46

NOVEIBER 35.90 30.?7 17.09 1.55 2.56 5.13

DECEMiER 35.96 34.33 19.10 5.52 1.12 3.37

FALL 39.24 2.46 I1 37 .7) 3.o2 3.t2

WI-JTFR 32.98 34.44 I o. 'i . 1.05 5.11

S PR I IG 3 5. 52 31-,. 1? 5. 5. 7 3. ? .

SUMMER 46.&1 31.56 1.?o77 4.' 2.13

ANNUAL 31.25 1?. 47 1i.19 4o44 2.71; 3.f7
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TABLE 15. Cumulative Percent Occurrence Of The Differences In Wind-

speed (Knots), Berlin And Lindenberg, At 500 Millibar, 1200

Hours GMT (1974-78, 1981)

0 TO 2 3 1f) 5 6 T9 3 9 TO 11 12 TO 14 GT 15

JANUARY 31.58 57.:39 33.l6 40.53 90.53 100.00

FE3RUARY 31.68 -6._?4 89.11 94.0o 96.04 100.00

MA RCti 31.48 67.59 A1,49 90.74 94.44 100.00

APRIL 33.91 7.33 90.43 ;03.04 9d.26 100.o

MAY 41.07 79.46 90.11 4t .43 99.11 100.00

JUN E 58.14 71 J7 36.05 4.1( 97.t7 100.00

JULY 43.96 76.92 13.41 94.51 96.70 100.00

AUGJST 40.00 79.09 93.33 97.14 98.10 100.00

SEPTStIBER 31.11 63.70 81,. 4 4.5 97.04 1O0.uO

OCTOBER 47.41 72.59 96.67 93.33 97.04 100.00

N0VE.43EP 35.90 66.57 83.76 92.31 94.37 100.00

1)EC E"8 B35.9o 71. 79 q9,9 95.51 96.o3 100.00

FALL 3;.2 4 57.70 83.) 92.7o 96.3o 130.j0

WINTER 32.98 .2 17. 17 a3.33 94.39 ICO.90

SPRING 35.52 71. ,4 17. 4- 93.43 97.31 100.00

SU M"' 4".r1 71,37 91 13 3 97,52 1Or. j

AANUAL 3'1. 5 7 . ' n7,.1-1 )4 ,41.43 10.30 3

1.-
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TABLE 16. 50, 90, 95, 97.5, And 99 Percentile Values Of The Differences

In Windspeed (Knots), Berlin And Lindenberg, At 500 Milli-
bar, 1200 Hours GMT (1974-78, 1981)

50TH PERO 9OT4 PEQC 95TH PERC 97.5 PERC 99TH PEkC

JANUARY 4.5 10.5 16.3 18.0 18.0

FEBRUARY 3.0 8.1 12.0 22.8 32.0

MARCH 4.0 11.3 15.0 16.6 21.0

APRIL 4.0 8.0 13,0 14.0 15.0

MAY 3.0 8.3 9.0 i?.3 13.2

JUNE 2.0 9.4 13.0 14.3 21.3

JULY 3.0 8.3 10.4 16.3 17.0

AUGUST 3.0 7.0 9.0 10.3 15.0

SEPTEMBER 4.0 9.5 1.2.3 1b.d 40.4

OCTOBER 3.0 10.0 13.0 15.4 1.9.1

NOVEMBER 3.5 10.0 14.2 16.3 30.2

DECEMBER 4.0 8.0 11.3 21.2 36.9

WINTER 4.0 10.0 16.0 11. 36.0

SPRING 4.0 9.3 12.0 15.3 Ib. 7

SUMMER 3.0 8.3 10.1 14.J 17.0

FALL 3.0 10.) 14.0 l-).2 23.0

ANNUAL 3.0 9.1 t3.,0 L.3 22.1 
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TABLE 18. Percent Occurrence Of The Differences In Wind Direction
(Degrees), Berlin And Lindenberg, At The Surface, 1200

Hours GMT (1974-78, 1981)

0-3 3-> 9- J q-11 12-0 1 ')C)C-L

JL 67.%y 771 )l. .1 44 2. I. )5

!j A:Vi 6q.31 ?i. 7t1 7' . * o.7 0.0

' .-I62.9:. : 7:) 7.1-i 1,)5 C. 0 3

A ? 'T I- E4,.. .- 1.? ') j 7j 1.7- , 7

IA .A 5 3 5 7 -j. 3 J. 37 2.5 .31

J7.j - 1.63 44. 2 2.33 4.S5

SJJLY 6 7. 2 .7  It1 7.1 Z.Z0 (71. 0

U ST 6.7i 5.7L 7. O.03 0 . V,0 .45

7C*T 3 E 8.15 1 .? 3.71 1. 2.22

rCT 1 tz,, _  2 .8-1 7 . .7 '41 1 .).) 0. 0

'iO'ii' . 76 7 .-: 7 1 7. J; 4 . -Y t .7 0 -

q-C:3 4 :. ..27 13 ." -  9. ]3I ' 0 0 1. i

L 7(. 1 . 0 .. 5 . l, 1.)

W1 NTFk i .i4 17. 5'* 3.51 .7.4Q * 7)

-" :- . .i 27 :": i ?',1. 7-; . '

9 .

~ .0
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TABLE 19. Cumulative Percent Occurrence Of The Differences In Wind
Direction (Degrees), Berlin And Lindenberg, At The Surface,
1200 Hours GMT (1974-78, 1981)

0-79 335 .- ]! 90-11 i 120-149 1.tC-- :

'

JIIAf79,79 9 .3 ',9 4 q 7 .3? ~ .95 10oC.:3

FE 3 1J,RY 69.31 ). jY 97,'q3 97.13 100.00 o .),;J

11A ri 62.93 ' 57 1q, )7 99.07 10.0%) 1 :: -2

A?NIL 64 .35 31. 57 q5. 97,3; 99.13 1 iC.)C

46Y 56.25 40 j,+  9 2 - 915.43 99.11 IC0.3

JUP bli,53 J.35 9.37 91.32 95.35 1C.C

JULY .?4. 51 05 .61) 97.*0 1..0.3u 103.;-

AUGUST t5.71 9 1. t3 91). 5 Q.)5 99.05 1C,

S E r' Tz 3E R03.15 3(3.-37 5.q ,b. 30 -47.7o ICc. J3

C C T 3 R C)9 .69 41. 11 Q ~~. 5 2 91.52 111C..2L

Nrl 3 C- R 76.07 -. L 47. ,--.15 99.15 .I%..7 3

0'C-3 .  4.27 9?.75 97.75 4 " 9 .5 S.

FALL 70 .d 3I I J 96. 12 97.' 3 9,9.45 I1 ? "'-

',! , 4T£ 7). i4 V). )-? o? '7. ,1 1 q . 3,) 1 C "..

"'p;

7 . 19 . 4r IC•

t,4. 1) 7~ , 9 3) 3 -

32

%5



TABLE 20. 50, 90, 95, 97.5, And 99 Percentile Values Of The Differences
In Wind Direction (Degrees), Berlin And Lindenberg, At The

Surface, 1200 Hours GMT (1974-78, 1981)

50TH PEO 91I3Tf P22C 95TH Pc34C 97., PEqC 99TH PEk%

JANUARY 17., 47.5 71.3 lLb.6 145.0

FEBRUARY 20.0 55.0 70.0 131.4 135.0

MARCH 20.0 50.0 70.0 75.3 80.0

APRIL 20.0 57.5 95.0 1 2.5 135.3

MAY 20.0 70.0 97.0 I11.0 141.8

JUNE 20.0 90.) 143.0 10).0 160.0

JULY 20.0 45.5 57.2 112.8 120.0

AUGUST 20.0 55,9 70.0 75.5 85.0

SEPTEMBER 20.0 70.0 100.0 1. 166.

OCTOBER 20.0 52.5 70.0 35.0 163.5

NOVEMBER 15.0 40.) 60.0 d5.0 121.1

DECEMBER 15.0 3,.1 42.3 j).o 120.5

WINTER 15.0 45.0 66.3 Il.4 0.3

SPqING 20.0 0.3 Ii0.') 113.i 140.0

SUMMER 20. i',.1 10. 12).) 160.0

FALL 20.0 55.) it. 1 J3.3 160.7

ANNUAL 20.0 1. L0.,) i.L 15 .0
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TABLE 21. Percent Occurrence Of The Differences In Wind Direction

(Degrees), Berlin And Lindenberg, At 1000 Millibar, 1200
Hours GMT (1974-78, 1981)

yCb 7-.~* 77

71..

"?:t. 7: EP 7 7.t' .4 2.)-,: .,)

7. 4, 4 .1.J',LY 7 .1 3 i.4 2 .) 0..

7 7_. 3 1. -

CT i 7. 1 2 7,

,1 3 . -

73 .?.
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TABLE 22. Cumulative Percent Occurrence Of The Differences In Wind
Direction (Degrees), Berlin And Lindenberg, At 1000 Milli-
bar, 1200 Hours GMT (1974-78, 1981)

- 7

20 _ ", 7 ,"7 iJ O. 0 20
-5,' 3 7 99. 0 2 '7,? .- 1 10j,J i .'"

J'. , 7 . 3 .• 7 79 .7 . } , I 0 3

7 11

92 4. ) 7 'f. ' ir~ 07)' JO..) iOC.e -,

7 7 2. 533

""

C7 1 7~~'.

-9--,*,T : - 72.2 f; 3'. A5 a *, 2 ? 0*.25 t)C..>2,

Sc Jt- 75.L- , .Z ' 7.St: " ! , - * , .:,). 2,

-; -- 7 . *? -' . -' :: " JC5l~ '

. ..- 7 - . 1 * .. " • :-
* 7?.. ~ * ~ i. .'.= ). . C
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TABLE 23. 50, 90, 95, 97.5, And 99 Percentile Values Of The Differences

In Wind Direction (Degrees), Berlin And Lindenberg, At 1000
Millibar, 1200 Hours GMT (1974-78, 1981)

50TH PERC 93TH PERC 95TH PERC 97.5 PERC 99TH PERC

JANUARY 15.0 45,.0 71.3 103.3 135.0

FEBRUARY 15.0 55.0 65.0 s4.7 150.0

MARCH 20.0 50.1 70.0 70.0 80.0 "

APRIL 20.0 55.0 62.5 j5.5 121.5

MAY 20.0 60.0 90.0 IU0.J 131.8

JUNE 20.0 73.1 123.3 1*5.J 145.7

JULY 20.0 45.0 62.2 109l1 120.0

AUGUST 15.0 50.0 60.0 77.5 QO,0

SEPTEIBER 15.0 60.3 95,0 15109 161.8 6

p

OCTOBER 15.0 50.0 66.3 13.3 111.5

NOVEM4ER 10.0 40.0 50.7 65.0 109.4

JECEMBE 15.0 35.3 44,5 t0.3 72.1

TINTER 15.0 49.3 60.0 33.0 145.8

PRING 20.0 5513 70.,0 3 . 13.0.

SU M MER 20.0 j.3 10.1 1923.j 145.0

FALL 15.0 4 7J.' 45.J 155.0

ANNUAL 15.0 5.3 7') 1i.,) 145.0

3b
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TABLE 24. Percent Occurrence Of The Differences In Wind Direction

(Degrees), Berlin And Lindenberg, At 850 Millibar, 1200

Hours GMT (1974-78, 1981)

FE - UA. Y O .. . -4

4,, 3. - -. 7.

AP IL ,7' -. . .
- ..

F. ,7"o.9 7 " 71

JULY ' . 1: .5 ) :

SE P - E:' 2.2- i ~ t . .,.. "_? 3 , '

OC T33 =- R 7 - . - *.•
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TABLE 25. Cumulative Percent Occurrence Of The Differences In Wind
Direction (Degrees), Berlin And Lindenberg, At 850 Milli-
bar, 1200 Hours GMT (1974-78, 1981)
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TABLE 26. 50, 90, 95, 97.5, And 99 Percentile Values Of The Differences
In Wind Direction (Degrees), Berlin And Lindenberg, At 850
Millibar, 1200 Hours GMT (1974-78, 1981)

50TH PEP C 93TI PERC 95TH PERC 17.5 PERC 99TH PERC

JANUARY 10.0 37.5 51.3 73.1 95.0

FEBRUARY 10.0 31.5 55.0 65.0 75.0

MARCH 100 39) 6.0 71.5 75.0

APr,I L 10.0 4? .51 62. 95.0 112.3

MAY 15.0 41.3 ,6.0 i6. ) 171.2

JUNE 10.0 55.3 71.5 10.j 116.3

JULY 10.0 25.5 55.0 75..) 75.0

AUGUST 15.0 35.3 41.3 51.9 55.0

SEPTEMBER 10.0 45,0 60.0 19o4 102.0

OCTOBER 10.0 4?.5 56.3 77.5 121.8

NOVEMBER 10.0 40.0 47.2 !35.') 145.9

DECEMBER 5.0 25.3 37.3 b905 123.3

4INTER 10.0 30.0 51. -j5.0 103.0

SPRING 10.0 42.5 56.3 4 5 o j I . 3

SUNMMER 10.0 40.) 55,0 75.0 110.0

FALL 10.0 40.) 30.0 113.) 1 It. 7

ANNUAL IC.O 40. ) . 75.3 1l1.5

U
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TABLE 27. Percent Occurrence Of The Differences In Wind Direction

(Knots), Berlin And Lindenberg, At 700 Millibar, 1200

Hours GMT (1974-78, 1981)

#--2,4 31-59 '1 - 0 1'?0-1i ' j d -I * 'A 1 -i:

JA'iU AY 9 2.b3 i .l .19 15 3.) 3.OC 1.

3 i Y3 .1 2 11 013 0.-)0 0

"0-C '3 .4-1 2.7 3 1 .1 0.3) 0.30 .4?

1.74t O.C0

"*y 7.14 3.57 .24 0).3C

JULY 92.31 4. *0 3. 0.3.) 3.3 0 .

AS PJ T ,7 So7 4.7 2. 3: 0.3,0 .

T ,.2.2' .7, 2.?2 .7 .1,,

"94.-2 1 .71 1.7; 0. Ili

9:C " . 7 7. i 7 2.7 .,30 $ .

2o." .. .2o

: i 3'.- 2 7. 1.-.. .3 ,  3.0 .3l

7 .Z 3 7 . 3 , " C; :z

-0

V .* *'.' .l~d JI
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TABLE 28. Cumulative Percent Occurrence Of The Differences In Wind
Direction (Degrees), Berlin And Lindenberg, At 700 Milli-
bar, 1200 Hours GMT (1974-78, 1981)

0-29 31-5 9 - '-C I k 120-19 15c- I)

JAN:U ?.y 92.63 7. ,? 1 .-ti 90.15 )8.95 100.'110

F :_ 3.; U 4Y .Z 2 0 9 11.11 19 G O 00 oO0 100. O

MA ,C A- 0 4.4+ )7.12 1)9.17 9?.)7 91.07 100.00

APRI L t qgb 3. )1 97 . 31 9. 13 9Q.13 1006 00

0A( f03q 5,5& 09.11 11 ,,J 1;0.00 100.00

JU.F 3?.72 95. 5L 1 Q .4 , 9P,.3,' ,  100.CO

J ILY 92.31 5.,70 1P.'1 1C .'J 1600.30 100.30

%U1US T 55. 71 c) 3, . 7 .14 ic_, ) 100.00 1O0.QO

SETc43ER 8i.!!9 )7.)4 Q1.73 9,.79 v.2F LOC.30

OC T 3E 9 <4 .07 3 .30 -47 .3 '). 4 00 .]0 100. UO0

NGV-_1BER 94.02 1.51 e 99.'7 1 303 10.00 100.00

FALL 9 .25 3 .54 '7. S7 .'.74 l00.jO
:'i I'., :-_ } . . 2 97.54 gel. : 

_- ] .Q.3 0 .
.41 t'T z5 p5 o 30] 49. 3" 100.,30

A",:iU I L 7 o,.3: 100. !1

'
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TABLE 29. 50, 90, 95, 97.5 And 99 Percentile Values Of The Differences

In Wind Direction (Degrees), Berlin And Lindenberg, At 700

Millibar, 1200 Hours GMT (1974-78, 1981)

50TH PEkC qJT PERC 95TM PE-<C 97.5 PERC 99TH PERC

JANUARY 5.0 20.0 35.0 60.0

FE3RUARY 100 30.5 40,0 '5.0 60.0

MARCH 5.0 25.0 50.0 55.5 70.0

APRIL 10.0 31.0 76.? 36.3 111.

4AY IC.0 31.3 55.C 72.3 86.2

jUNE 10.0 45.3 55.0 72.3 96.9

JULY 100 25.) '2.2 z .4  65.0

AUGUST 1G.0 42.5 73.9 a d. 3 10,.0

SEPTEM13EZ 5.G 33.3 47,5 1i.3 121.3

OCT33EQ 5.3 25.0 30.0 41,t 119.0

NOYEIBEI 5.0 16,5 30.0 75.0 90.9

DECE19ER 5.0 25.0 37.3 71.1 84.3

mINTr' 5.0 30.0 35.3 '1.. 73--

SP I NG 10.3 27.5 5 5, 9 F; 5

10.0 "0.) c5.5 7)., 31-

F ALL = ,0 4 1, 7 4 . q b 3

% NNU - 1., L C;'' 7 " ]a 0

.'..:.,... . .. . . .i ., . 2 , -. - . ' -. .- . ' -" .. .).' ''' . ' . ',. , .- '. -



TABLE 30. Percent Occurrence Of The Differences In Wind Direction
(Degrees), Berlin And Lindenberg, At 500 Millibar, 1200

Hours GMT (1974-78, 1981)

0-2'1 2 1 ) " 5- 1 i -4 1 L - -' - -

F .I I'J A Y 86.1- i. 3 .q1. . C. 3

(Dgee) Beli An 5idneg t50 iia,10

MdAY 92.S6 4 .~. ).. ..

JtJU 89. 53 5 . i I 1.1i 1.. 1- . 2. 33

JUL Y 93. 41 , ILI).])9. O ,

AJGIJST 9-.1-1 3. 3I 0.^ 0 .. 0. J,

S -PT a.'E 93.33 5.1) 074 1 .74 0.(10

CCTO 3E, 94.07 . O.0') I.j4 .74 .74

Nil v .%!E 95.73 3. .'t 00 •) 0.C O.u)

CE C-Z 13E ,  9i.01 5. 4 1.12 i . I ?O J0 .,

FALL p4.32 3.;, .7 .7; .

WINT-- . ' 2.11 .' .. 2, ,3.D9

4*,J 3. 2 73 1.1- * -3 ._".
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TABLE 31. Cumulative Percent Occurrence Of The Differences in Wind
Direction (Degrees), Berlin And Lindenberg, At 500 Millibar,
1200 Hours GMT (1974-78, 1981)

14~~~ ~ ~ ~ 4y 97.39i -I c.O) j

a

J4N'J4Y '7.39 44 ).V 1 ).09 l~i. - .'O 10. JC

F .: 'A Y8 . 4 ' 3. )? * . '7 I :l ., E 5 O) .90 i1C. O)''.

p9L10 .43 *..5 C .* ~ ~ -

.1A192e67 . 32 1 1 i* *>) 13 .)J

JLYJ 93.41 L .'). 4) 1 I . 11 CO. 12C . ")

A? l 000. G5.o S} 7 T.1 96.1. 1o 3 ).CI -

S-zP7213=. 93.33 ; 3 o 12 0. 0 1o0. j)

JC' , CQ 5 T5 1o 5 14.07 7.7 -3 7 1422 i0 ,0

N0 V I q 95.73 [39. 1O . 5 1 '. 10). 30 1q0. 13

1 9 3 .I 17 7 5. )

FCaTL L'4 4 0 . 9 3, 74 00 I CS£ q -£ 91 0 p. 5 I ? . , IQ7. C"
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TABLE 32. 50, 90, 95, 97.5, And 99 Percentile Values Of The Differences
In Wind Direction (Degrees), Berlin And Lindenberg, At 500
Millibar, 1200 Hours GMT (1974-78, 1981)

50TH PERC 99TH PEC 95TH PFkC 47.5 PERC 9qTH PERC

JANUARY 5.0 15.0 ?0. r) L0. 0 20.0

FE3RUARY 7.5 40.5 60.0 72.4 85.0

MARCH 5.0 15.0 30.0 35.J 35.0

APRIL 10.0 20.0 45.0 t7.5 111.5

MAY 5.0 25.0 34.0 44.3 66.2

JUNE 10.0 ?9.o 56.0 117.5 160.0

JULY 5.0 25.0 32.2 30.0 50.0

AUGUST 10.0 20.j 25.0 31.) 35.0

SE?TE13ER 5.0 25.0 35.0 41.9 91.0

OCT06ER 5.0 20.0 29.8 .3. 1 127.8

NOVE t3ER 5.0 20.1 25.0 30.J 59.4

DECEMER 5.0 20.0 35.0 41. ? 67.7

0 1 NTER 5.0 25. 3 i6.3 ')O. , 85.7

SPRI; 50 25.) 35.0 3 7.5 

SUMMER 5.0 Z5.3 35.0 0 77.?

F ALL 5.0 33. 1 5.j I()

AINJAL 5.0 25. ) 5.! 1.3
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TABLE 33. Percent Occurrence Of The Wind-Shear (Knots) Between Berlin
And Lindenberg At The Surface, 1200 Hours GMT 1974-78,
1981)

0 Tr 2 3 r] 5 'T I T,1 I T: 4 rT ir

APJI L 31 C. 3r.. 3 . .7
!%A Y 3 4. O.9 i4 i4 175 1; 1 17

JUN Z=5 5 39. 53 ,_.325 oI 3.4 0 .' 1

JULY 34.07 420E. f,?r I.-e. 1~3 I.'

AJGIJST 39.05 43.00 17.14 .45

SEPTEI_:2E 34.07 47,41 13. 33 Z.2/ .7 ,  2.Z 2

OCTCBER 45.19 4) .74 1, 4., .74 0 . 00

N 0V r3ER 3-.46 4 .31 ii.! * 2.5-) 1.71

DEC E 37.03 l. )4 12.35 2.2' 2.25 1.12

FALL 3 9. - ,,. 4 2i ii2 5,. ,i.

W 1N T-- 3- .?5 . 32 .J l - 7) .

-7 32.- . !.',' . 77 1..>,

. ... ~~~~ 53 5 3. 1 S' .
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TABLE 34. Cumulative Percent Occurrence Of 
The Wind-Shear (Knots)

Between Berlin And Lindenberg 
At The Surface, 1200 Hours

GMT (1974-78, 1981)

0 TO 2 3 r3 T? I " L T2 1. - T i.-

4iOs 8"1.OS 94.13 96,4 9i.84 100.00

"A C'-? 2 q] 7 - 3 .i '1.17 100.3 ".

aP' [LV; '1 3 35 1" . l : i .]j 11O. )0

3jU:Yc :38.15.bI_ V7 3 : LJGi0) 100. .

JULY 34.07 73.12 A7?. I ... 10. 0

AuGUkt)ST 311.05 71). )9 9 t:.! 1?iC.o . 0 0i . Oi

S P TE 13 c:; 311. 07 1,!..  c) 4. 3,! ',7.04 97.7 ,  10 1. 0

OCT00E.( 45.19 .4 . 1 .1 1I3C.Z'J

1/ 2 1 .3 E 4 38.4o e It. 7"3 ' ,. 7 ) 7 3 ?,4. 1130.01 !

FALL 37.23 3.72 '. fl, 2 .. 71 iO), '

3[ T .3 .95 3i.?) 5 o, 7. '.> 1 ' I0.)J

SP.A 1'4G 3 0. 75 77.31 J . . ' IC~.

SiJ>V," ~33.33 7..IA ' .* " * .11'. 1 ?

4.
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TABLE 35. 50, 90, 95, 97.5, And 99 Percentile Values Of The Wind-Shear
(Knots) Between Berlin And Lindenberg At The Surface,
1200 Hours GMT (1974-78, 1981)

50TH PERC )OTH PERC 95TH PEkC 97.5 PERC 99TH PERC

JANUARY 3.5 7.5 8.4 17.4 21.2

FEBRUARY 3.5 5.7 7.1 9.6 9.9

MARCH 4.0 7.5 9.5 £0.0 14.7

APRIL 4.0 7.3 9.2 9.) 12.4

MAY 4.0 7.5 9.1 ll.l 22.2

JUNE 4.6 8.9 10.1 12.2 12.,

JULY 4.1 3.0 9.) 12.0 13.9

AUGUST 3.4 7.1 ..5 10,6 23.0

SEPTEMBER 3.5 7.1 $.4 15.3 22.6

OCTOBER 3.1 6.4 6.3 11.2 12.6

NOVEMBER 3.6 6.7 8.3 13.3 36.0

OECEMBER 3.9 7,1 9.3 13.6 14.7

WINTER 3.5 7.0 8.0 10.) 15.7

SPRING 4.0 7.5 9.3 10.7 16.6

SUMMER 4.0 8.1 9.7 12.1 16.1

FALL 3.4 7.3 [. 0 5I.

ANNUAL 3.7 7.3 Q.4 11.7 13.3
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TABLE 36. Percent Occurrence Of The Wind-Shear (Knots) Between Berlin
And Lindenberg At 1000 Millibar, 1200 Hours GMT (1974-78,
1981)

0 TO 2 3 TI 5 6 T:) 3 9 T) 1 1.£2 TJ 14 1r

JA.AUAY 26.32 45.'6 14.74 1I.5 J.00 I.:I
F.=-3 UA Y 2?.71 53. 47 9.1n 41.35 .? .

M AC 25.00 52.71 16. 3.7) .93 _

'PRIL 26.96 43. " 21.74 5.2k .7 .

MAY 31.25 4,.43 it .'16 3.57 .i-

JUNE 22.09 45.35 ?2.11 b.? 3.4i

JULY 29.67 43.35 V;.39 5.49 1.1011) I

AUGUST 30.4E 51.43 14.'. .?- ... )1

SEPTE't3E 31.11 4?.73 17.75 Z.22 1. 3 3.7)

OCT03E.A 33.33 4;. 3Q 1?.99 3.70 1.4i C.-

NGvE13E 2).06 45.3) 1i.30 4.27 1.71 . .

0 E ' 1 ' E 34.e3 4 . )4 13.4" 3 . 1? 2.25 ! .

F A LL 31.27 5.9 1-o3 3 . 5 1.5 .

SPkI'4G ?7.7 '.3.J 13.5! '.!Ii .. " .11

5iJVMEk 27.56 .. r 17. 3 4. 1.77 .

A,..'IJAL 2 . Z ' , - ! • "  , I • 12'
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TABLE 37. Cumulative Percent Occurrence Of The Wind-Shear (Knots)

Between Berlin And Lindenberg At 1000 Millibar, 1200 Hours

GMT (1974-78, 1981)

0 TO 2 3 r 5 13 T,1 a 9 T3 It L2 T3 14 GT L5

JA.'ad,&Y 26.32 71.53 Rb.32 97.9 97.89 loC.30

FEY''ARY 29.71 3'.11 92 . 97.13 93.,32 100.30

1AP; 25.00 77.73 Q4.44 9d.!5 49.07 100.3)

AP.I 2b.95 72. 17 q3 .1 7q.13 100.00 IO0. o),

4ty 3 1.Z 77.133 14 a4 913021 99.11 100. '0

JUNE 22 .9 S7, 44 SQ.3 3 C,51 100.30 100.30

JULY 29.67 7 ,32 3.41 9 .'J 100.00 100). .0

aU;UST 30.43 31.30 b,.l 1 3j 1, .O0O0 100.)0

5E.:PTE3E_ 31.11 7, 31 92.59 ,4.11 96.30 130030

OCTC.3& 33.33 3. 2 z q4.9l 9d,52 100.3 100. ill

NCV1SR 29,C. 74.bo 93.1' 7.4, 99.1, 1Co.30

DEC19Z 34,3 7471, q3.'6 53 93.86 100.30

FALL 31.27 77,2) 03,4 . 9,45 1)0.3O

1'4T 1 0.,2 77.37 9V.r-3 ;7. 9.25 100.00

SP '327.6o 7S, 24 4.3 .. 2 35109,0. 10~DO

4 N',U AL 2 q.2 5 7:1 o 03 .q 7 . 7 93.19 1O~a
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TABLE 38. 50, 90, 95, 97.5, And 99 Percentile Values Of The Wind-Shear
(Knots) Between Berlin And Lindenberg At 1000 Millibar, 1200

Hours GMT (1974-78, 1981)

50TH PRC OOT4 ?rEC 45TA OEPC ;7.5 PERC 99TH PERC

JANUARY 4.4 9.2 10.1 L, ' 21.2

FEBRUARY 4.C 7.3 9.3 11.9 25.0

MARCH 4.2 7.3 9.1 9,4 14.7

APRIL 4.3 3.1 1.4 11.7

iAY 4,4 7.6 o.4 . 15.8

JUNE 4.8 3.3 10.4 12.0 12.5

JULY 4.3 7.6 9.4 i.. 11.9

AUGUST 3.5 7.3 8.4 9,4 10.8

SEPTEMBER 4.1 7.6 12.2 13.3 25.0

OCTOBER 3.7 7.0 8.8 10.3 13.1

NOVEM3ER 4.2 7.8 9.7 l1.4 14.2

DECEM3ER 4.0 7.3 10.0 13.1 14.2

nINTER 4.0 9 e5 10.0 12. 3 21.8

SPRING 4.3 9.1 9.0 10.5 14.3

SUmM=R 4.2 3.3 q,6 11.2 12.2

FALL 4.0 7.5 910 i.3 1t.

ANNUAL 4.1 7.0 0. 6 1L. 14.9

JO
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TABLE 39. Percent Occurrence Of The Wind-Shear (Knots) Between Berlin

And Lindenberg At 850 Millibar, 1200 Hours GMT (1974-78,

1981)

0 TO 2 3 T2 5 6 TO 8 9 TJ 1.1 12 TO 14 GT 15

JANIJA.Y 7.37 3i,34 17.99 14.74 11.58 11.58

FE 3RIJA?.Y 13.36 47.52 !5.7 4 4.95 5,94 1.'1

MARCH 21.30 31.41 25.93 9.?.j 6.48 5.50

APIL 25. 22 33.34 25.22 7.?3 Z. 6 6.J)

?V.Y 14.29 4.i 11 18.75 10.71 4,4t) 2.u8

JUNE 29,07 37.21 17,44 9.303 3.49

JULY 17.5o 43.96 23.957 5o49 3.30 1.10

AUGUST 20.95 41.90 23.31 9.52 1.90 1.90

SEPTE43EI 19.26 35.55 22.Q5 11.35 3.70 6.o7

CCTqI8E. 21.48 37.4 17.7.3 12.59 3.70 7.41

NOVEM3ER 11.97 3 .45 17.l5 12.32 10.26 e.55

DECE43ER 16.35 zi.19 22.47 15.73 7.87 8.Q9

FALL 17.83 3,. 5 4.64 1Z.43 5.b8 7.49

WI 4TE 12.63 37. i) 22.11 11. 1 8.42 7.37

S? I'. 20.30 37.'91 23.?Ii 9.25 .43 4.7 3 .

S IJU ,' 12 2 .34 1 i . 1 'A3 ,.) 3.1 2•.14 2.13

A:NU AL 12.31 3 11. 3_> ?1 IJ 47 5. 3 5.59
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TABLE 40. Cumulative Percent Occurrence Of The Wind-Shear (Knots)

Between Berlin And Lindenberg At 850 Millibar, 1200 Hours

GMT (1974-78, 1981)

0 TO 2 3 rJ 5 I Ti 3 9 TI 1L 1Z TO 14 GT It

JANU&Y 7.37 44e.11 62.11 7,. 34 19.42 100.UO

FiESiZtJAY 13.26 'l.39 97.13 Z. I 93e0Z OO.3c

.?.A ,RCw  21.30 5?_7 7 ; .J 7 1 9 :7 94.44¢ 100,30

AP IL 25.22 5 .2o 4 3.1 'L.3J 93.91 100,uO

MAY l'.29 3 .3q p2 . 1 4  ca. 97.32 100.00

JUNE 29.07 5.23 - .3.7? :3.!Z 96.51 100.30

JULY 17.-6 S1.54 90.11 95. 98.90 100.30

AUGUT 20.95 5. 3) T. 57 6.1 4  9e. 10 100.00

SEPTE 3E P I.2! 5 4.31 77.7 8s,3 93.33 00.jO

OCTOBER 21.43 5,3.5 7*.30 o..5 9 100.30

NO V E Ia R 11 . q7 5 ,3 6a 1,23 91,45 10 0.,O 0

D':_, E 13 ER 16,9 5 1#4.1 4 6 7. 1. 91.91 100. 0 :

FALL 17 54. 73 74.4? ±5. ]. 92.51 100 . -C

1 l4 T . 1 , 3 11., 53 7.? 5 1 4. 2L 2- . t3 10GO00

SP I";3 20.30 53.11 104 1 .j .?5 95.22 10o.'0

2O ic 2 ,34 A 1, 4o I 3 . 97.,17 100 .,j

.

.
A~~~~~~~• U. . 1 1O,.G
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TABLE 41. 50, 90, 95, 97.5, And 99 Percentile Values Of The Wind-Shear
(Knots) Between Berlin And Lindenberg At 850 Millibar, 1200
Hours GMT (1974-78, 1981)

50TH PERC 11TH PERC 95TH PFP.C 97.5 PERC 9qTH PEIC

JANU4Y 7.1 15.1 17.5 19.0 20.4

FE4RUARY 4.9 9.6 13.2 14.7 1501

MARCH 5.5 12.8 16 4 23.7 36.0

APRIL 5.1 11.3 15.0 L5.7 19.3

MAY 4.9 iI.e IZ.e 14.5 16.6

JUNE 4.2 10.2 14.6 15.1 15.3

JULY 5.0 4.8 L..0 13.9 14.3

AUGUST 4.7 10.3 11.3 13.1 16.7

SEPTEMBER 5.3 11.3 15.3 19.7 23.5

OCTOR ER 5.2 13.0 17.4 21.) 25.9

NOVEMBER 5.9 13.7 1694 19.5 27.5

DECEMBER 6.3 13.0 19.4 21.7 22.9

WINTER 5.9 13.7 16.6 11.5 22.8

SPRING 5.1 11.7 1I.6 17. 24.3

U" MER 40.8 9.9 11.6 14.5 1f.2

FALL 5.5 13.2 17.4 1 . 7 23.h

A'.l:U L 5.2 12.3 15.1 i3.l 22.0
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TABLE 42. Percent Occurrence Of The Wind-Shear (Knots) Between Berlin
And Lindenberg At 700 Millibar, 1200 Hours GMT (1974-78,
1981)

0 TO Z 3 T) 5 6 T]3 T; T11 1 T'j 14 GTL

JANUARY 12.63 40.3t) 25.? 5 10.53 7.31 4.21 N
FE3RUARY V1..31 3u'. 9 _ '4. l 15. 4 1.43I.

MA C4 23.15 3 i3.1 7 9.2 7.'1 -. .3

APRIL 27.33 33.14 2 . 3 4 .57 4.35 1.74

4AY 29.46 31. ?5 21.43 !2.5J ?.b3 2.-

JUNP- 24.42 4 ).7.3 ?5.5q ~ l .6"

JULY 29.67 35.?5 ?3.93 2.?) 6.59 4.40

AUGUST 29.52 37.14 23.91 b.67 95 1

SEPTE-3ER Z6.67 37.7-3 17.71 d.34 657 2.?e

OCTOBER 18.'2 45.93 17.79 8,3 3.70 5.1?

N 0VE3E R 22.?" 21.06 zt '.1i 9.43 7. q 1.7i

p.

FALL 2.4 37.71 , 9.% 5.0 3. 5 1

SP' I'JG 25.'17 3 . 3. 3 ' 1). 4,5 4.71 . "

SU iHE 29,., l  3 7.9 14A) . 2.314 .

ANNU.AL 2 3.'"'' 34 ? . 1 -7 3
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TABLE 43. Cumulative Percent Occurrence Of The Wind-Shear (Knots)
Between Berlin And Lindenberg At 700 Millibar, 1200 Hours
BMT (1974-78, 1981)

0 TO 2 3 T3 5 ', T . 3 9 T.3 .1 12 TG 14 GT 15

JANUARY 12.63 5?.63 77.41) do.tZ 95.79 10o.30

F-RUARY 18.81 '41.50 30. ?1 96.14 99.22 100.0O0

M A CH 23.15 5 .)4 73.70 47.1t 95.37 1O0.jO

ARL27.83 )O . 17 34.35 93.H )1 8.? IOC.3C

WAY 29.46 ').71 .32.14 ;4.54 97.32 10.,,3i

J JNE 24.42 hr,1? 00 .0.7) 47..-7 91 . 100. jo

JULY 29.67 6i.93 96.41 cv.J1 95.5j 100.:)o

AUGUST 29.52 66.!7 1.A43 q7.1! 95.10 100.31)

SET13Eq 26.67 64.44 3 2.? 97.l 97.75 lO0.i"

DC TO03 -ER 18.52 54.44 02 * 91.11 94.91 000.)t)

N 0V F 11-ER 2 2.2 z 51.23 1 .2 3 . 3 9 6. 9 ico.o

DECE13E 20.22 57.31 77.53 9b. 2 9c51 100.O

FAL!_ 22.4t 4 7 31.11 3C.?, e. u 10. 3

W INT E 17.19 52.4 7.'I CO 3 1 c Th.'t- 10O.)O

23 15 "-':3 14 7 iG;
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TABLE 44. 50, 90, 95, 97.5, And 99 Percentile Values Of The Wind-Shear
(Knots) Between Berlin And Lindenberg At 700 Millibar, 1200
Hours GMT (1974-78, 1981)

50TH PERC 31TA PcC 95TH PEC -)7.3 Pc<C 99TH PH-L.

JANUARY 5.4 12.1 14.3 1 3 22.3

FEBRUARY 6.0 10.0 11.5 14.J 17.8

.ARCH 4.8 12.5 14.9 17.2 23.1

APRIL 4.7 10.2 12.2 14.2 19.8

FqAY 4.4 10.7 12.I 14,j 18.0

JUNE 4.1 b if0.3 11.4 14.1

JULY 4.6 12.7 14 1 17. 18.6

AUGUST 4.6 ,9 11.0 12.5 15.1

SEPTEM3ER 4.5 11.3 13.3 Lb.i 25.6

OCTOBER 5.0 11.3 14.2 21.7 27.1

;iOVEBER 5.5 10.7 12.? 14.4 19.7

DECEM.3ER 5.4 12.9 14.7 15.3 16.6

otI N'T E 5.5 11. eI714 2 LS) 2 Co5

SPQI IG 4.7 1 .0 13.0 1.) 23e5

S U MIE R 4,4 9, I? 7 14.-. 1 If-4

FALL 5,.U iL. !3. ?1'2,

ANNUAL 4,n 10.) 13. 16. 2 .4
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TABLE 45. Percent Occurrence Of The Wind-Shear (Knots) Between Berlin

And Lindenberg At 500 Millibar, 1200 Hours GMT (1974-78,
1981)

1,
0 TO 2 3 T) '5 S T9 TI r Ll L2 TO 14 GT 19

4",

J %:jU ARY 8.1.2 24.-7- 30 3 I . 3 4.3Z 1 .3-3 p

%-}JU Y 11.33 40.5o 24.75 .Q. 5.03 b. ;3

NA -'.14.51 3'. P, _3.15 12 . 4 3.70 P.3-5

A?.IL 11.30 35. 65 1 . 7 I. 43 5.96 6.1)9

MAY 24.11 37.jO 20.54 10.71 3.57 3.57

JUc.E 25.58 33.72 ?3."6 6.96 4.65 5. I

JJLY 23.08 33.45 17.53 4.39 2.20 7

'UGUST 15.24 4.54 ?.76 4. 7 2. $6

ScTE13ER 15.56 37. )t 11.2 14.07 7.41 7,41 r

CCT33ER 20.74 37.04 20.74 9.53 3.70 8.15

NOVE93ER 15.33 27.35 27.35 17.04 5.13 7.59

DECE13ER 14.61 jQ,3 1.6 11.24 157. 7.-47

FALL 17.31 34.11 w'1. 13. 44 5.4. 7. ?-

oil T- 11.53 3 1 3 2:5.77 'e ?" 6,b7 9.47

SP I'IG 1lo. 37. )1 24.43 11.)4 4.76 5. 7

Su~E'm 20.Q2 41. 13 21.oQ 7.J 3.1w . ;7

SV.J L 1).66 35. 7 26,.13 11.17 5.)-1 7. 1
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TABLE 46. Cumulative Percent Occurrence Of The Wind-Shear (Knots)
Between Berlin And Lindenberg At 500 Mililbar, 1200 Hours
GMT (1974-78, 1981)

0 TO 2 3 T' 5 '. Tl 3i 9 T) IL 1Z TO 14 CT 15

JAI:IJY 8.42 ??. 3 63. 1 0 .0J Ib.32 i00. )

FE.3VAY 11.36 3 .. % 77.-3 8 ..4 3 O 100.30

4A RC4 -[1 .31 5 . 7 1 7 5. 3? b7.90 I ., 7 100. 0

A pR IL 11.3c 4 . 75Z . 36. 4- 9 3. ' I 1 0 C. 33

A Y' 2 4.. 1 1 - 1. s 2 . 14 42 . '4 9 6 . ,43 l o 0 . 1

JlJ',E 2 o ' -3 5 it) 12 . 5 913 t °53 94°.19 i~O. )0

JULY 23.03 1.j4 71.17 39.)1 91.2L 100. 33

AUGJST 15.24 54.75 ;.5' 94.E9 97.14 100.)

S5?T--13cq 1. 5. 5.5 71.11 5 .t 92.5 100.03

CCT 3:R 20.74 57.?3 73.7 d. 1 91.35 100.) 7

L 17 15.31 4.7? 73.1' J7.13 42.31 10C

3 l . t L 4 .71 74. j '. 9 - 1 3 i00.i. '

FALL 17 .1 5 4 7 i4t.. 7 31

S , .7/ 5 . 7 3 7 I

A U i J L lm.7' - ,+ 7 . / " .74 (3 .7-1 i; ,J
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TABLE 47. 50, 90, 95, 97.5, And 99 Percentile Values Of The Wind-Shear

(Knots) Between Berlin And Lindenberg At 500 Millibar,

1200 Hours GMT (1974-78, 1981)

50TH PERC 93T4 PERC 95TH PERC 97.5 PERC 99TH PEkC

JANUARY 7.7 16.1 1$3.3 23.3 21.4

FE3RUARY 5.6 13. 19.5 21.7 32.5

MARCH 5.2 12.0 19.6 13.3 23.3

APRIL 6.0 13.3 15.1 l.3 32.4

MAY 5.0 11.) 13.7 16. 5 23.7

JUNE 4.1 1 l? .2 17.3 1 ).4 25.2

JULY 4.7 1?.4 16.0 21.1 22.7

AUGUST 5.0 9,0 12.0 14.3 16.9

SEPTEM3ER 5.9 13.4 17.0 39.3 44.0

OCTOaER 5.2 13.) 17.7 22.7 28.5

NOVEMBER 6.7 14.0 17.1 19.7 31.0

DECEMBER 6.5 14.1 11.6 3O.6 43.6

A INTER 6.5 14.3 19. 4 2 7.5 43.7

5 PRING 5.5 1 .1 15.6 a3 ? 2b.9

SUMMER 4.9 11.7 15.Q i7. 20.3

FALL 5.9 13.9 17.7 ?2.1_ 34.6

ANN''UAL 5.7 13.1 17. 1 .3 32.6
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