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ration. The solution shows that the response coordinates are non-stationary -
random processes and the three normal modes are 

in complete nonlinear inter-

action. The interaction is found to be very strong at a region of internal NON
detuning which is shifted from the exact internal resonance condition. This
result is under further investigation by using a non-Gaussian closure p

scheme.

The experimental investigation is conducted out on a two degreeof-freedom
model ,)whose analytical solution was obtained during the first year of this
project-. When the first normal mode is externally excited by a band-limited
random excitation, the system mean square response is found to be linearly
proportional to the excitation spectral density level up to a certain level
above which the two normal modes exhibit discontinuity governed mainly by
the internal detuning parameter and the system damping ratios. The results
are completely different when the second normal mode is excited. For small
levels of excitation spectral density the response is dominated by the
second normal mode. For higher levels of excitation spectral density the
first normal mode attends and interacts nonlinearly with the second mode in
a form of energy exchange. --

New directions of this research project have been evolved during this year.
These include the influence of random in aerodynamic forces on the nonlinear
response of typical aeroelastic structures. Two aeroelastic models, are .
chosen to carry out this investigation.
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ABSTRACT

The work accomplished during the second year of this research project is a

combination of analytical and experimental investigations:

The analytical part deals with the nonlinear response of a three-degree-of-
p.

freedom aeroelastic structural model in the neighborhood of combination

internal resonance condition. The Fokker-Planck equation approach is used

to derive a general differential equation for the response statistical joint

moments. This equation is found to constitute a set of infinite coupled

first order differential equations. In view of the system complexity an

attempt is made to close the infinite hierarchy by using a Gaussian scheme.

This scheme leads to 27 differential equations in the first and second

response moments. The equations are solved by using numerical integration.,-

The solution shows that the response coordinates are non-stationary random

processes and the three normal modes are in complete nonlinear interaction.

The interaction is found to be very strong at a region of internal detuning

which is shifted from the exact internal resonance condition. This result

is under further investigation by using a non-Gaussian closure scheme.

The experimental investigation is conducted out on a two degree-of-freedom

model whose analytical solution was obtained during the first year of this

project. When the first normal mode is externally excited by a band limited

random excitation, the system mean square response is found to be linearly

proportional to the excitation spectral density level up to a certain level

above which the two normal modes exhibit discontinuity governed mainly by

the internal detuning parameter and the system damping ratios. The results

are completely different when the second normal mode is excited. For small

.7•
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levels of excitation spectral density the response is dominated by the

second normal mode. For higher levels of excitation spectral density the

first normal mode attends and interacts nonlinearly with the second mode in

a form of energy exchange.

New directions of this research project have been evolved during this year.

These include the influence of random in aerodynamic forces on the nonlinear

response of typical aeroelastic structures. Two aeroelastic models, are

chosen to carry out this investigation
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INTRODUCTION "

This report presents the main results of the research project "Stochastic

Nonlinear Flutter of Aeroelastic Structures" funded by the AFOSR under grant

No. AFOSR-85-0008. The report covers only the work performed during the

second year of this project. Furthermore, additional new research problems

have been evolved during this year. These problems include the influence of

the aerodynamic forces on the random response of nonlinear aeroelastic

structures. A formal proposal will be submitted next June for new funds to

support these new problems.

SUMMARY OF MAIN RESULTS

ANALYTICAL INVESTIGATION

The linear and autoparametric modal interactions in a three degree-of-

freedom structure subjected to wide band random excitation are examined.

For a structure with constant parameter properties the linear response is

obtained in a closed form. When the structure stiffness matrix involves

random fluctuations, the governing equations of motion, in terms of normal

coordinates, are found to be coupled through parametric terms. The struc-

ture response is mainly governed by the condition of mean square stability.

The boundary of stable-unstable response is obtained as a function of the

internal detuning parameter. The results of the linear system with constant

parameters are used as a reference to measure the deviation of the system

response when the nonlinear inertia coupling is included. In the neighbor-

hood of combination internal resonance the system random response is deter-

mined by using the Fokker-Planck equation approach together with the

Gaussian closure scheme. This approach results in 27 coupled first order

differential equations in the first and second response moments. These

-3-



equations are solved by numerical integration. The response is found to

deviate significantly from the linear solution when the system internal

detuning is close to the exact internal resonance. The autoparametric

interaction is found to depend significantly on the system damping ratios

and the nonlinear coupling parameter. In the vicinity of combination inter-

nal resonance, the second normal mode mean square exhibits an increase

associated with a corresponding decrease in the first and third normal

modes. The first normal mode shows a very small deviation from the linear

solution which implies that the nonlinear interaction takes place between

the second and third normal modes. This unexpected feature is currently

under further investigation in parallel to a non-Gaussian closure analysis.

The results of this work has been accepted for publication in the journal of

Probabilistic Engineering Mechanics. A copy of the page proof of this paper

is attached.

In order to enhance our understanding to the main results of structural

dynamics with parameter uncertainties, the P.I. has conducted an extensive

literature survey which has been accepted for publication in the ASME

Applied Mechanics Reviews, A preprint of this paper is attached.

EXPERIMENTAL INVESTIGATION

A series of experimental tests is conducted on a two degree-of-freedom

elastic structural model. The model is subjected to a band-limited random

excitation with a central frequency very close to one of two normal mode

frequencies. The band width is selected such that only the mode under

consideration is excited. The model normal mode frequencies are adjusted to

have the ratio 2 to 1. This ratio meets the condition of internal resonance

of the analytical model. When the first normal mode is external excited the

-4- %J
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system mean square response is found to be linearly proportional to the

excitation spectral density up to a certain level above which the two normal

modes exhibit discontinuity governed mainly by the internal detuning

parameter and the system damping ratio. The results are completely zp

different when the second normal mode is externally excited. For small

levels of excitation spectral density the response is dominated by the

second normal mode. For higher levels of excitation spectral density the

first normal mode attends and interacts with the second normal mode in a •..

form of energy exchange. A number of deviations from theoretical results

are observed and discussed in the attached manuscript (28th SDM Conference,

Paper No. 87-0079-CP) which will be presented at the AIAA/ASME/ASCE/AHS 28

Structures, Structural Dynamics and Materials Conference.

NEW RESEARCH DIRECTIONS

The influence of random aerodynamic forces, in subsonic and supersonic flow

regimes, on the nonlinear response of typical aroelastic structural models

has been identified as a potential problem in aeroelastic flutter. Two

models, which include a cantiluvel wing beam and a flat panel, will be

adopted. The equations of motion of the first model have been derived by

using the Lagrangian formulation. The aerodynamic forces are derived by

using the modified strip theory which includes the effect of the span finite

length. The linear part of the equations of motion has ben considered to

derive the flutter boundaries and to identify the system eigenvalues. This

prelimenary analysis is essential to identify the system parameters which

satify the condition of internal resonance between bending and torsional

motions. The work of this part is in progress.

-5-
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Stochastic modal interaction in linear and nonlinear
aeroelastic structures

R. A. Ibrahin and Z. Hedayati*

Texas Tech. Universatl. Department of Alechaicol Enqmuicrimii LiohhocL. Tc \u. 79409. USA

The linear and autoparametric modal interactions in a three defrce-of-frcedom structure under
wide band randorn excitation are examined. For a structure s rill constant parameters the linear
response is obtained in a closed form. When the structure stiffness matrix involves random'
fluctuations, the governing equations of motion, in terms of the normal coordinates, are found to
be coupled through parametric terms. The structural response is mainly governed by the condition
of mean square stability. The boundary of stable-unstable responses is obtained as a function of
the internal detuning parameter. The results of the linear system with constant parameters are
used as a reference to measure the deviation of the system response when the nonlinear inertia L-
coupling is included. In the neighbourhood of combination internal resonance the system random
response is determined by using the Fokker Planck equation approach together with the Gaussian
closure scheme. This approach results in 27 coupled first order differential equations in the first
and second response moments. These equations are solved numerically. The response is found to
deviate significantly from the linear solution when the system internal detuning is close to the exact
internal resonance. The autoparametric interaction is found to depend significantly on the system
damping ratios and a nonlinear coupling parameter. In the vicinity of combination internal
resonance, the second normal mode mean square exhibits an increase associated ,vith a
corresponding decrease in the first and third normal modes.

1. INTRODUCTION as well as within the structural components themselves.

The modal analysis of aerolastic structures is usually Concentrated nonlinearity acts locally lumped in control

carried out by using one of the available computer codes mechanisms or in the connecting parts between wine andexternal stores. This nonlinearity results from back-lash
for eieenvalues and eigenvectors. These computeralgorithms are useful in deterrninin the structural in the linkage elements of the control system, dry friction

dynamic behavior under various types of excitations. The in control cable and push rod ducts, kinematic limitation
i:, t i:p Ls:,uai,, iivolves the deteimination of of the control surface deflection, and application of spring

tab system provided for relieving pilot operation.eterminues the ienearores ith toi determitrion one 1reitbach' determined the flutter boundaries for threecandmeitin r rsostem t cnistant different configurations distinguished by different types of
random excitations. For systems w\it h constant .. ''
parameters the mean square response to external white nonlinearities in the rudder and aileron control s% stem of

excitation spectral a sailplane. It was shown that the influence of h steretic
dnseis Inerl proptionsaly to the damping results in a considerable stabilizing effect and andensity. If the excitation is acting parametrically to the ices ntefutrsed oeeti pca yeo
system the equilibrium state could be stable or unstable in non-linearity does notr dr th s se pe o it
a stochasticsn Ict stia t bring the structural response it a -.-I s a s ehre 1\ bounded limit cyclc. Similar effects of nonlinearities duenot behave according to the linear theory of small to friction and b ck-lsh k ere considered b, D cFerarl ,t

toilain fritio and back-las of coree cosierdpyoenesraeoscillations and a number of complex response i. Peloubet ct a/', Reed et al.- and Desmarais and
characteristics such as amplitude jump, internal
resonance, saturation phenomenon, and chaotic Reedb examined the effects of control system
motion ' -' may be observed. These new characteristics 1)onlincarities. such as actuator force or deflection limits,
owe their origin to the system inherent nonlinearitics on the performince of an active flutter suppression
which should not be ignored in dynamic analysis sisten . It was sho..n that a nonlinear system s, hich is

In aircraft structures several iypes of nonlineariie stihle with respect to small disturbances may be utstable
have been reported. Breitbach 3 classified strict u-l with respect to large ones Another important feature wkas
nonlinearitics into distributed and concentrated that a stoic on a p, bith low pitch stiffness can piovide
)istribution noinearity is induced b\ elastic substantilcrcaie in fluter speed and redace the

d.pendcsc, of fluttcr on the mass and inertia of storesdeformation in r... .td.. screwed and bolted cnti Ons rellise to that of sliff-nolinted stores.

SCurrenti, 'ht) I'j cn Ntm.ichi e of C ich In sI 1tuCtlul d\ nmics. the nonlillarlitv Ill'm take one
DepJrmCfl Of .c.h.,ical Ei L;i-c,[tm,r , C.ilhrLdcc. MA Ui I S of thlee classes" l CLaslic. inertia. aid damllpng
Recei cd Sepiemobr 106 t,>.u . ,., sC I ch it., 19- non Incai r IS. ElastIc nonI I nearit\ stems from nonl hneai

A"-....
~ % . % ~. . . . . . . . . . . . . . . . . . . . . . . . .



strain -displacement relations which are inevitable. Inertia
nonlinearity is derived, in Lagrangian formulation, from FM
the kinetic energy. In multi-degree-of-freedom systems K ' 2 IN,2

the normal modes may involve nonlinear inertia coupling ------ - --..

which may give rise to what are effectively parametric - 3
instability phenomena within the system. The parametric ""-....- .....
action is not due to the external loading, as in the case of
parametric vibration, but to the motion of the system 3 C /2

itself and, hence, is described as autoparametric" . The
main feature of autoparametric coupling is that responses Fig. 1. Schematic diagram of an aeroelastic Structure
of one component of the structure give rise to loading of and Coordinate System
another component through time-independent
coefficients in the corresponding equation of motion. The
deterministic autoparametric interactions in two and
three freedom systems were examined by Barr and of the shown system only the symmetric motions of the
Ashworth -" , Haddow et al. 3 , Ibrahim et al.", and two sides of the model are considered. Under random
Ibrahim and Woodal'. These studies have shown that excitation the system response will be described by the
the mode which is externally excited exhibits a saturation generalized coordinates q , q2 , and q3 as shown in the
phenomenon in which energy is transferred to other figure. The equations of motion are derived by applying
modes involved in the nonlinear coupling. The stochastic Lagrange's equation
aspects of parametric and autoparametric vibrations have
recently been documented in a recent research d .L .- 2rO,} (I)
monograph by Ibrahim 6 .

To the authors' knowledge the random response of
systems with autoparametric coupling has been restricted where L = T- V
to two-degree-of-freedom systems. This paper deals with The kinetic energy T is given by the expression'
the linear and nonlinear modal interactions of a three
degree-of-freedom aeroelastic structure subjected to 1 F 312 ' 2 .
random excitation. The deterministic respinses of this 2=- ,(+nl2Ll+ 2 1 -) }q +-n 2 q2
model under various internal resonance conditions
k/o= 0 (where ki are integers and w i are tge system I1 " ).2 + 3 l 2

yl+ Ill-z 2 1 3) 2 1 qq 2normal mode frequencies) have been determined by 2
Ibrahim et al.-'". The system involves quadratic 9 12
nonlinear inertia which couples the system normal +(t, +1-i2)cifl q+ 201- (q,q + 1

5q 14' 3)

modes. It was shown that under principal internal
resonance, the mode which is directly excited is 3?2 (qlq q 2 +2
suppressed and energy is transferred to the other mode. + +q 1 2 4 3 +4,qA 3 +qq)
When the structure possess combination internal 21, \ 5
resonance of the summed type the normal mode 6712
amplitudes did not achieve a steady state and the --- (q22l3 +, q2 4i2 ) (2)
response is characterized by energy exchange between the

three modes. where a dot denotes differentiation with respect to time t.
The main objectives of this paper are to present the Neglecting the gravitational effects, the potential eneigy

linear, parametric and autoparametric random responses V is Pien by
of the same aeroelastic model considered in Refs 14 and
15. The mean square responses will be evaluated for a V= 1/2 (k iq + k 2qi + k3q') (3)
model with constant parameters and for a model with Substituting for T and Vin equation (I). and considering
random variations in its stiffness matrix. The nonlinear F(i) as the only nonconservative force (damping forces'"
random response of the system in the neighbourhood of will be introduced later) results in the equations of notion
combination internal resonance of the summed type will in terms of the nondimensional coordinates i,.
be determined by using the Fokker Planck equation
approach together with a Gaussian closure scheme. The [ "11 2 31 1 0 0 qeffects of the system nonlinearity and damping j I
coefficients on the mean square responses will be (0 S lt12 122 0 q-2 + 0 k2 0
examined. 1111 3  0 77733 ') 0 0 k3  ,.3

1 0 q V
1. BASIC MODEL AND EQUATIONS OF 0 i (4)

MOTION q3 F(:/w 3 ) I3
Fig. I shows a schematic diagram of an analytical model
of an aircraft subjected to random excitation F(t). The wNhere
fuselage is represented by the main mass ?113, linear spring
K3, and dashpot C3. Attached to the main mass on each
side are two coupled beams with tip masses 77t7 and m2, q( is taken as the rool-ncan-square of the miin mass
stiffnesses K, and K2, and lengths l, and /,. In the analysis wN hen all othe, pari are locked under foiced cxc)tat on.

"I-N:



wU3 is taken as the third cigenvalue of the system, and

filI=111 + ni2 [ + 2.25(1/2/,~)2] S

111333=1111 +"332 +13 33 ./ 0.1

1111 3 =1111 +"112

0,= "3 j. 4 5(1I1 )(2q~ij, +4 + 5q3 q,)

+ (l.511)(0.2q~ij-f-q2 3 + 2q 2ij + 2( lq2) k

+ (1.2/12 )('J2~2 4 5
where a prime denotes differentiation with respect to the 0 1 13 .

dimensionless time T. Fi1.1'ci~lL ffeu'ic ai i S133

pnlaimi~cte fior I " 1 = 0.25., m, 'in 0., in M 3 /in 3 =5

III. EIGENVALUES OF THE SYSTEM

The system eigenvalues are determnined frorn the Y, by' usn rasomto
conservative linear part of the equations of motion % ~ tetasomto

[ln]{1,q}+[Ik]{q)={0) (6) q-[]Y(9

The characteristic equation of (6) is where [Rx] is the modal matrix consisting of the
DctIk] w3 nzlI= 0(7) normalized eigenvectors,

where wo is the eigenvalue of the mode in question.F1 1 11
Expanding the determinant gives the cubic equation .1 (0

[R = [ I 13 " 112 33 ()

I + %I-
13k122 11~313 03the elements of matrix (10) are determined by- using the

+(0 '3w Y decomposition method"8 and are listed in Ref. 17.
(J)33I 111"13 '1 1122 CI 3 3/ Revfrning equations (4) tn the matrix formn and using

2 transformation (9) gives
[lC0K + ( 0)2 + [k ] {R ] Y)' = F - * '( 1

(,0. 2(,)2 )2PremultiplNin g equation (II I b\ the r an pose of the

+=0(S) modal mnatrix results in dia,-cn alizinu the miass and
(j'33/ \(-)33/ stiffness matrices. The result[[i(- equations 1m\ olve

nonlinear couIplIne and has e the form
where the frequency parameters wK,'i.are the
natural frequencies of the individual components of the[.t 0 0 1 j
structure. The INMSL (international Mathematical and I ol l
Statistical Library) Subroutine ZPOLR (Zeros of a 1II) [ 0 0 0 A~ 0 kj 3
Polynomial with Real Coefficients) is used to find the 0 0 0'3  0 LA
roots of equation (8) numerically. Fig. 2 shows a sample I~i~ 1
of the dependence of the natural frequency rationr = (03 1 12)2
((!) + (02) on the ratios (.') 1 /w4 3 3 and (0L2 ,03 for beams = i.FIT ~3 --

length ratio 1, /1, = 0.25, and mass ratios 11i2 ""'1 = 0.5. and IFI
"13 /)"1 = 5.0. Other sets of curves for different system n
parameters are obtained and reported in Ref. I7. The
importance of these curves is to dlefine thc critical points hecre
where the structure possescs internal combi nation011
resonance r = 1.0. It is seen that the most critical re~non is Al,=I%(I4251 ~3b i,~1 v

located for the curves of W12 2 '/(')33 = 1 and 2. For the +.[
analysis hereafter the following parameters As Ill be uIsed
12 /12 =0. 25, W,,,/v 3 3 =1.4. %,=I±1. r4 3 Ki

IN'. TRANSFORMIATION INTO NORMAL.[ C:0 L, 1-.3,l
COORDINATES 3. i4I 3  U I*/lI

Equation1s (4) include linear and nonlinear d\ namic .

cou plings. The linear couIpling is eliminated b\3I
tiansforming equations (4) into normalized cooi dinates 4 21 .' M, V~



a=n2 /a,, f==1//I" where the double summation expression is called the
Wong-Zakai correction term".

L jk = 0.9/1 + 2.25fl-' + 0.3n, + + 3nj The system stochastic Ito equations are .

+(l'2/fl)nj 6+',[O.3+ l'Sii+(l.2/,l)nJ(l fi')dX, =X 2 dr, dX 3 =X, dT, dX 5=X 6 dT

+ i,[2.25P + 1.5(11 + ?,) + (.2/fl)n 1].
=-0.91 + 3(n +)I,) + (2.4/,8)n II dX 2 r -r

- 2.4n, + -,4.5p + 3( + i,) + (2.4'fl)n k ] x (L3 X, + L A,,X3 +L3 3 X )

,,, =0.45fl + 3, + (1.2/(2 23X + 2 3X3 )
0.5,+ 1,[2.25+n, + (1.2/fl x(L 2X1 +L, 2 X 3+L 1 3 2Xs)-(+ 2 3X6 +X)

x (L,, 3X , + L, 23 X 3 +L, 33X 5)+Al1,,X

(=k=l) (13) A
+A1I122

s 2 "+
A1I

3 3 X
62

V. DYNAMIC MOMENT EQUATIONS +A., 12XX,+Al,, 3X ,X,+A. 23X+X.] dr

The response coordinates can be approximated as a
Markov vector if the random excitation is approximated to(
as a zero mean physical white noise W(T) having the +-f [-f, f(L IIX, +L 1 2 1 X 3 +L, 3 1 X5 )

autocorrelation function + f2(LI ,2XI +L122X 3+ L, 32XS) ...
R..(Ar)=E[V(T)WV(T +A)] =2D6(Ar) (14) + f3(L1 ,3XI + Ll 23X3 + LI 33XS)] .''

where 2D os the spectral density intensity and (S( ) is the ..+.+ X
Dirac delat funcation. This modelling is justified as long 2- 012 2

as the relevant Wong-Zakai"' correction term is + Al 11Af, 2 [f(L2 1 1X+L 2 2 X 3 +L 2 3 1 XS)

introduced. The non-linear functions 0, contain +f 2 L22 2X, +L 2 2 2 X 3 +L 2 3 2 X5 )
acceleration terms coupled with displacement
coordinates such as Y7') These terms are removed from +(f 3 (L22 3 X1 +L2 2 X 3
equations (12) by successive elimination by using +L 2 33X 5 )](L 1 2 X, + 1 2 2X 3 +L1 3 2 X5 )
MACSYMA software. Equations (12) take the new form 2 2

I"i+ 2;,3Yi+r,3Y, =fW(T) + EgYY') (15) + 1 A133 [f 1 (L3 1 IX +L 32 IX 3 +L 331 XS)

where linear viscous damping terms have neen introduced +f 2 (L3,2X I + L 3 2 2 X 3

to account for energy dissipp ion, and
+ L 3 2 2X 5)+f 3 (L 3 13Xl + L 3 2 3X3 , %.(0 .2= (k ii/M ,)(k , / no t), , 3 e) , 3 ,

f =E=,. jqc'/1, +L 3 3 3 X5)] +L 1 3I XI

+L 1 2 3X 3 + L33XO)}dB
I w F(r ' 3)

q3 wS1111
-. -- 2:,21'23'Y4 +?-3 3 + 3A22 ,..'3X-

Introducing the transformation into the Markovs< dX 4 sa- .e , .2 + [(_2.-.3 2r 3X1 )
vector X(L 21 1 X 1 +L1 2 2 X 3 +L 2 31 X5 )

Y'. - Y 1' Y2 , 1 , , "13 = ' ,,, . b. ., A', (16) x (2, I X + L 3 + 3 1

equations (151 may be written in the standard form of
Stratonovich differential equations x (L2 , 2X + L222 X 3 + L232.X')

- (2 3X 6 +.A',)

dX,=F,(X.T)dz+ N" G,(X.r)dBJ(r) (17) x(L,13-Y1+L 2 23 X 3 +L 233X 5 )
J + Alt, X'+ A,.1X +M2 33 X

where tie white noise I'T) has been replaced by tie ]1i --

formal derivative of the Bro%%nan noltion process B(T). + Al 2 2.42 +, A2,3X 2 X 6 +Af3\.I d.
i.e .. .

WlT) = o dBW i d, 2 =21) + f- 2
[ f , ( L , -iX + L 2 2 

1X 3 + L 2 3 , X 5 )

Alternatively. equations (171 may in turn be U A,,

transformed into the Ito t pc eluation +f 2(L 2,2X, + L2 22 X 3 + L232X5)

SA ,(;li,- +'f 3 (L 2, 1'N - -20*3
d.',= FX V , - d 2'

,-I + L233.\')]+
%22,1 ii

+ d

. . ,. ~ . .%



x [f,(L, 1XI + L1 2 IX + L13 Xs) incremental moments evaluated as follows

+f 2 (L,2XI +L, 2 2 X 3 +L, 32XS) aiX.T)= ,imolE[Xi(T+Ar)_X,(r)]

+f 3(L, 13X.+L 1 2 3X 3 +L 33 X 5 )] a, -, AT

x 2L1 X "2 2 bij(X,T)= lrn I E[1kXi(r+AT)-X(T)}
+(L2,,X,+L22 1X+L 23 ,Xs)+ -a A- 0 X AT

Al2 2A 33
x {X(r +AT)-Xj(r)}] (21)

x [f (L3 X t+ L3 , X + L ) The coefficients a, and b, are evaluated for the present ,

+f 2(L3 12X, +L 32 2 X 3 +L 3 3 2X 5 ) system with the aid of MACSYMA program. It is not

+f 3 (L 3 1 3 X I+ 42 3A 3 + L 3 3 3X 5 )] possible to solve the resulting Fokker planck equation
even for the stationary case. Instead, one may generate a

x( 1 X X X Bgeneral first order differential equation describing the
x (L X+ L23X3 + L233Xs) dB evolution of response moments of any order. This

equation is obtained by multiplying both sides of the
dX, 11 E [_ :- rsystem Fokker Planck equation by the scalar function

dX.= - 2 3  + X + A- [(- " 3 X2.4t( )- X ,) k(x)

x(L 3
""X"+L

3 2
,X

3 +L 33 X12 4 6 (22)
- (27,r23X4 + r32tX +Land integrating by parts over the entire state space - o- <
-(2 2r23 X'+ r2 3X3 ) X < c0. The following boundary conditions are used
x(L 3 1 2 X 1 +L 3 22X 3 +L 33 2Xs) p(X-- - o= p(X- o)= 0 (23)

- (2; 3X6 + X5 )(L 313X] Due to space limitation the system moment equation
x L32 3X3 + L3 3 3 X 5 ) will not be listed in this paper. The reader may refer to

Ref. 17 for more details. However, the general form of the
M3 I

X
22 + M322" 4+M333X6 resulting differential equation is

+A13 1 2X 2X 4 + M 3 I 3 X 2XfM 3 2 3X 4X61 dr = F,(,,ni2t,n, . n, N ?? ) - (24)

where N = I ki.
tot In deriving the system moment differential equation the

+f -- [f 1 (L 3 I IX+L32IX3+L33IXs) following notation is adopted
M33

+f 2 (L3 12XI+L 322 X 3 +L 3 3 2 X 5 ) "Ik:....k.= _. p(X, )(X)dX, dX 2 ... dX, (25)

+f 3 (L31 3X1 + L 3 23X 3 + L 333Xs)] o d
e202 It is found that the differential equation of order N

+ [f 1 (L 11 XI +L,, 2 X 3 +Ll 31X 5 ) contains moment terms of order A' and N + 1. The source ,
M 3 3 M of this infinite hierarchy is the system nonlinear functions

+f2(L1 2X, + L1 ,,2X + L, 3 ,X,) Ipl in equations (12). If these nonlinear functions are
dropped the system becomes linear and the response

+f 3(L,13XI + L 23X3 + L1 3 3X 5)] moment equations are consistent. In the present study the

x(L 31 X1 +L 3 2 1 X 3 +L 33 1 X 5 ) following three cases will be examined:
2'2 (i) Linear response of constant coefficients structure.

+ M33 2 [fl(L211XI +L22'X3+L23,XS) (ii) Linear response of the structure with random
MaM [ 2  , X Xstiffness.

+f 2 (L212Xt +L 222 X 3 +L 2 3 2XS) (iii) Response of the structure with autoparametric
+f3(L2,3X)+L 223 X 3 +L 5)] interaction involving the internal combination

L2 3 5 ]internal resonance 02 1co + a0,. *'

x(L 3 2 X+L 3 22X 3 +L 3 3 2X 5 )}dB (19) i.n +

VI. STRUCTURE WITH CONSTANT
The evolution of the response probability density PARAMETERS

function is described by the Fokker-Planck equation The equations of motion for this case are obtained from

equations (11) by excluding the nonlinear functions Oi.
ep(XT) . [ The resulting equations of motion are

eT, ?2 I 1 0 0 "; 2 O0 0 , '

1 10 10 111 + 2 ,130 0 )"
+_ 7 r X [b(X, r)p(X' r)] (20) 0 I " 0 2

0 11 0 0]I
where p(X,r) is the response joint probability density 4 0 r25 01 ; 1W) 1f2 0
function, and a,(X. T) and bAX, -) are the first and second 0 0 1 J . . (26)

%..-- .. ' " . . . ' '. --.-. ". ,%
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For this linear case the response moment differential EIN' 
2  

2

equations are consistent. The mean squares of the
stationary response is obtained in the closed form 2EJ} 2 .o4

l 2)
E[ Y] =Df I/(2C. r'3), E[",'2]=Df'/(2,rI3), .0"

E[ Y] = Df 2 /(2C3 ), E[ Y; 2] = Df2 /(2W3)

Before presenting the linear response graphically, it .0 .002

would be useful to recall that the generalized coordinates EIy '-1
qiwere nondimensionalized with respect to the root-mean .%

square of the main mass response when the coupled .02 2 .001

system was locked under forced excitation. The value of E -

q' can be estimated from the single degree of freedom
0 .8 .9 1.0 1.1 1.2 1.3

1 +n2 +m114 3 +C 3q +k 3q3- F(t) (28) r"3 1 1 ' 2

which has the stationary response Fig. 4. Alean square response of normal modes for
(29) CIC 2 =0.01, C3=0.01E[ q3 = E[ il3] = D1/2V3. (29) _"

and therefore=- E .2

3q-= /D/2,- 3  (30)
The excitation parameter level D/2 3 is chosen so that 2." 1

q' is chosen so that q' is unity and as a result any
deviation from unity gives a measure of the dynamic 1.2 -2 .. 12

interaction (linear or nonlinear) with other mides. For the 1.2i

analysis hereafter the excitation level will be chosen such
that 0.8 Eli ,.08

D/2C3 = 1 (31)

In this case the mean square response (27) is reduced to
the simple form o.4 .. 0"

E[YI] ' , E[Y.' 2] yfl=L_ f_ 
_ _

r 133 '0

3 '1 3  3 r 1 3  0 .8 .9 1.0 1.1 1.2 1.3

2C
L2f ,2]J 2A ~3 1 +'2~

E[ Y22] 3 f  E[ 2 =7-,"%'

3 rC2 3'2 r 3  Fig. 5. Mean square response of generalized coordinates

E[y2]=E[Y,2]=f2 (32) for C1 =C 2 =0.005, C3=0.01

The linear response for both normalized and generalized t 2, EI

coordinates is determined for various damping ratios. F -"

Fies 3 and 4 show the mean square responses as a . 8l ,
function of the frequency ratio r for two sets of damping
ratios. It is seen that both the first and second normal
mode mean square responses decrease faster than the .6 - .12

31.

El 20E ) 2 .006 3

2

.46

0 .8 .9 1.0 .1 1.2 1.3

.2-

Fig. 6. Meani square response of generalized coordinates .
.06 .002 for , =C=0 ,=0.01

i,) third mode as the frequency ratio increases. In terms of

(' . generalized coordinates. Figs 5Sand 6 shows that the mean
.*";" . . square displacement inecases while the two beam".

: ' : ~~displacements decrease with the frequency ratio. The tWO ,i
Fig. 3. Mfean ,quare resOn.F of normal godes for sets offiguresshowthe well known controldamping effect
, =C,=u.0(S, . =0.01 on the mean square responses.

,'r- -"" '- "- " " v ." -2.v - ...-.. W '...G-. 'i-spl""c-m"e" "s- "e"'re"se" ""i"h"" " " .. .• " "" " ""a" '"o. "T"e '" "
Fig ' . . , e m_Ci,",Ct." squar ,,"ons . ,of , %% .)lrnu ,,),-1-',,-' for.,.• sets -ffi-'e show ,' -he well known€ -' conro dam in effe-t



VII. STRUCTURE WITH RANDOM STIFFNESS D.

The equations of motion of this case are obtained by
including a random component to each stiffness in the
original linear equations of motion. .15

The equations of motion take the[ i ' 1  ',2 f1 3 q1  .10-

12 122  0 q 2

)1113 0 f113 3  q 3

0 2 +S2(1) q = 0.

0 0 ) k 3 +S 3(t) q3  F(t) o ."'."

(33)

Introducing the same dimensionless parameters listed Fig. 7. Alean square stahility boundarv of the strnctire"
in Sections II and III, the equations of motion in terms of with random stiJfness, (or = 0.01 .

the normal coordinates after introducing linear damping
are: riy..
y + 2;rD" +1 ay +s1 3Y +1,3), 'S I (T)+s W2(r)/ .

+.51 3W3 (T)]3V =fI.V(T) EIYI
.0015

y'+2C2rz 2 + r23 V2 + [S21 lI (T)+ S2 2 112(r) .'I .0
+ s2 3 W 3(T)]y 2 =f2W(T)

S .0010

y' + 2. +3 '+Y3 +[s31 l'V(t)+s 3 '(r) .(T)

+ s33 IV3 (T)])7 3 =f 3 IV(T) (34) ,_Y 2

where . .0005

and WV() are zero mean white noise processes with
spectral densities 2D,. Equations (34) constitute a set of 0 1 ,_,___,_o______
coupled differential equations. The response mean 0 .01 .2 .03 .0, . 0 O'

squares are obtained by solving the stationary moment Fig. 8. Mean square response of normal modes with.
equations. The analytical solution for the stationary random stiffness for r =1.0, ,=0.01
response is

E' D.., iS 33 -O s 1 3 ),r I - 2 -D and 9 in terms of noranl and generalized coordinates.

E[ y,2] =r', E[ 1"] respectively. It is observed that the response of tip mass of
E[ y2] = Df' /{2.2 , 3 - Ds2 D~s -D 3s23 , the vertical cantilever is the main source of instability.

E[ y2] = r 2E[ 1] VIII. AUTOPARA.METRIC INTERACTION "%
E[Y ] =,4, - sL-D-DS2  

2 ---
32 3 In this case the influence of nonlinear modal coupling on-

E[ )"] = E[ Y3] (35) the system response will be examined by including the
functions in the anysis. These funtrlions are onhe

This solution indicates that the system may be unstable funion in the s is the fntens ae
depending on the values of D,. The fact that the mean nrma iode frctucs tue Inea relathat tr,

square must always be positive provides the stability normal mode frequencies have a linear relationship. For

criteria for mean squares given by (35). These criteria are internal resonance conditions caa take placen t
obtained by keeping the denominators of (35) always ita
positive, i.e., ,3J = (,) + ("2

2 3r> (D'sI + D-s, + Dsl,) )3 =2(),, and v,=2(:, (37)

2C.. ,3 > (D s , + D.s> + D3s3) lhe random response of the system will be exmined
iunder the first internal resonance condition. As

. 3- 3  mentioned in Section III the response moment equations

The stability boundaries represented by conditions 136) involve infinite coupling \\hich must be closed in order to
are shown in Fig. 7 as a function of the internal resonance sol\e for the response statistics It is kno\n that the
frequency ratio r. For simplicity the excitation le\cls response of anv nonlhi ca s\icm to a random Gaussilan
D,/2,, of the random stiffness perturbations are assumed excitation '\ill be non-Gau,.SIn rhe de\iaton of the
to be equal. Samples of the response means squares as response from norm, hil\ depends on the degiec of the
function of the excitation level D,'2, are shown in Figs 8 system nonlincaritv (enemall\. closue schemes aie

.. ~* 7 * .



tt2 linear response characteristics which are displayed in Fig.
Etq1  I10. It is seen that the response fluctuates between t~o

I limits during the transient period, then converges to a
stationary values which corresponds exactly to the linear
solution of section VI. The effect of different initial
conditions is examined and it is found that regardless of

3I q-q ))the initial conditions the solution reaches the same steady
state value. For internal resonance ratio r = 1.175, Fig. I I

.- 2 shows another set of time history responses. In this case
q2) the response mean squares do not achieve a stationary

state. During the transient period the frequency of the
.1 EkI third mode is approximately 1.17 times the sum of the first

two mode frequencies. The quasi-stationary behaviour,
although present for all three modes, is most prominento , , , , for the second mode.

0 .01 .02 .03 .0 .05 .06 To further illustrate the departure of the nonlinear
D-/24k response from the linear one, Figs 12-15 display the

Fig. 9. Mean square response of generalized coordinates dependence of the normalized mean squares on the
for same conlit ions of Figs 8 internal resonance for various system parameters. The

mean squares are normalized by the corresponding linear
solution. The subscript G/L refers to the ratio of the

classified into Gaussian and non-Gaussianm The nonlinear Gaussian solution to the linear response. In the
Gaussian schemes are useful for dynamic systems with regions near critical internal resonance the upper and
weak nonlinearity. However, in certain situations the lower envelopes of the quasi-stationary response are
application of Gauisian closures may lead to stochastic plotted. A general trend is observed to exist in all figures.
stability boundaries which are different from those There is a sharo increase in the displacement mean square
derived by other techniques such as Stratonovich
stochastic averaging or non-Gaussian closure
approaches. This type of contradiction has been reported
for nonlinear systems under parametric random 06
excitations 6 . For two degree-of-freedom systems the .06 oe it Ely

Gaussian closure scheme yields nonstationary response .02
while non-Gaussian closure gives strictly stationary L ,,r .t
response. However, the main response characteristics are
found identical as predicted by both methods. .0006- El 2 1

This Section examines the nonlinear response as .00o0-

obtained by using a Gaussian closure scheme which is .0001,

based on the properties of the cumulants. F-or the present 0
system 27 equations for the first and second order
moments will be cenerated. The moment equations are 0 3

closed by setting all third order cumulants to zero. i.e., .o_
.0'

3 0

.[xx X]= E[XX,] - E E[x,]E[,VA'j 0 200 ,00 oo 8oo

Fig. 10. Time history response of nornal coordinates for
+ 2E[X,]E[X,]E[X,] = 0 (38) 0.01o, c=o.025. r W3 /(W, + 1)= 210

where the number over summation sign refers to the 0.

number of terms generated in the form of the indicated .03 P to p - ...
expression without allowing permutation of indices. .02
Relation (38) is used to obtain expressions for the third 2

order moments in terms of first and second order '"\
monents.

The solution of the closed 27 coupled moment .00o75 rl 21

equations is obtained numerically by using the IMSL .oooso
DVERK Subroutine (Rungc-Kuti a-Verner fifth and sixth .000.5
numciical integration method) Depending on the value
of internal dct uning parameter r thle sscin response ma% r~ 1121 0 0
be reduced to the same linear response of section VI o,r .075 . .

may become quasi-stat1on:ry \k hich devia tes significantly .05 
%

from the linear solution The response of autoparametr .o -c
interaction is found to take place in regions of internal
resonance rallo slighti de\ted fior the exact tuning o 2.80 :,4 (

r= I.Thedcsatiorn. vbe attribuLcdto thccontribution Fi. II Tione lmori r spouse of ,io nial oo, dtnlcat.s
of nonhncali ute, incurred during the Gatussian closure %/iolinq ltoparonllt I Ic int('rlactioni. for " (ItHI. -'

proccdurc Surpriminls . exact internal resonance ,ields 0.025. r ()3 ,(1)1 + )) = 1.175

%.
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EXPERIMENTAL INVESTIGATION OF STRUCTURAL AUTOPARAMETRIC

INTERACTION UNDER RANDOM EXCITATION

R. A. Ibrahm* D. G. Sullvan**">
Texas Tech University >
Lubbock, Texas 79409

degree-of-freedon systems. Parametric instability

ABSTRACT takes place when the external excitation appears as,-
a coefficient in the homogeneous part of the equa- '

The paper presents th eut fa xeietl tion of motion. It occurs when the excitation .

investigation of random excitation of a nonlinear frequency is twice (or multiple) of the system
two-degree-of-freedom structural model. The model natural frequency. Internal resonance and satura-
normal mode frequencies are adjusted to have the tion phenomenon may occur only in nonlinear systems .

ratio of 2 to 1. This ratio meets the condition of with more than one degree-of-freedom. Internal

internal resonance of the analytical model. When resonance implies the existence of a linear rela-.-

the first normal mode is externally excited by a tionship between the system natural frequencies and
band limited random excitation, the system mean causes nonlinear normal mode interaction in the""-

square response is found to be linearly propor- form of energy exchange. Under external harmonic %•.

tional to the excitation spectral density up to a excitation, the mode which is directly excited, ,
cranlevel above which the two normal modes exhibits in the beginning, the same features of a 4

exhibit discontinuity governed mainly by the inter- single-degree-of freedom system response and all
nal detuning parameter and the system damping other modes remain dormant. As the excitation
ratio. The results are completely different when amplitude reaches a certain critical level, the '

the second normal mode is externally excited. For other modes become unstable and the originally "

small levels of excitation spectral density the excited mode reaches an upper bound. In this case,

response is dominated by the second normal mode. the mode is said to be saturated and energy is.-

For higher levels of excitation spectral density transferred into other modes. This interesting ,
the first normal mode attends and interacts with phenomenon takes place only in systems with quadra-

the second normal mode in a form of energy tic nonlinear coupling which results in a third -

exchange. A number of deviations from theoretical order internal resonance.

results are observed and discussed.
Under deterministic unsteady aerodynamic forces,-.-

4..

Most nonlinear characteristics can be predicted 
by" '"

I. INTRODUCTION one of the standard techniques of nonlinear dffe-

'.

rentRal equationsA However, aerospace structures

The last two decades have witnessed an increasing are usually subjected to turbulent air flow, and '
interest in the study of dynamic behavior of non- the eeroelastician is confronted with aerodynamic "
linear systems under deterministic and random exci- loads which are random in nature. These loads vary
tations. Under certain conditions these systems may in a highly irregular fashion and can be described

experience complex response characteristics such as in terms of statistical quantities such as means,
jump phenomenon, limit cycles, internal resonance. mean squares, autocorrelation functions ani c- -
sto-dereeof-feeomo and chaotic motion. These tral density funct oI., brahim and Robertsatu

nonlier phenomquenc ae jsn pred toaed theoreti- and Ibrahim and Heo considered nonlinear two

rally - and observed experimentally 
-  

under haro- degree-of-freedom structural systems and applied

nic excitations. However, most of the predicted Gaussian and non-Gaussian closure techniques to "-
random response characteristic a ncluding response predict the response statistics and response rte-

stochastic stability and statist ics,
7
.
8  

have not chastic stability. These studies revealed that a
been verified experimentally. Very few experimental system with internal resonance ay experience non-
investigmted random iation, of nonlinear linear characteristics such as autoparametric In-
systems have been reported in the literature.

7 
The 14

iexection. Roberts conducted a series of expe-lack of experimental verifications may be due to e ts i te beinig the an faresaseveral rason. These include difficulties in te- s nlaes of dm sy response a ouaed tal

Senerating the same properties of the random exci- ordes rea drman s he citatio

ration as represented theoretically, end the limi- degree-of-freedom system. Roberts reported a num-
thtions of experimental equipment. Recently, ber of difficulties in measuring the stability

reoine i dmi ned b tbe ond nermnal ode- tboundaries. Based on the authors experience and
F o h igher sed levels er of exnpectal d y other investigators work, it is understood that
cultis encountered in experimental measurements of experimental investigation of nolinear randomwtqar

stochastic stability of parametric excited systems. vibration in not a simple task and requires careful"In deterministic nonl in airm o nergy ticnning and advanced equipment preparations. ti

tude jump. limit cycles, and parametric Instebilty The purpose of the present paper is to report the

reut ar-e obetrved and donicsed.8nle ml

mresults of an experimental investigation bo ea-
sure the response mean squares of a nonlinear ioffe

Professor, Depareent of Mechanical Engineering degfreq iov aeedom structural model under band
Member AIAA limited random excitation. The sa e model was an-

c Graduate Student lyrically examined by Haddow a t te under haano- ap%

nic xciatins. oweer, mostof he redited GausianandnonGausiancloure echiqus-t

random . .- esponse characteristics, - -.-i--n .cl.' ,.-.-, ...ng repne prdc.hersos statistics' an resons ... to- .... . '



nic excitation, and by Ibrahim and Heo
2
,
13 

under 
*%

wide band random excitation. Agreements anr disag-

reements with theoretical predictions will be dis-

cussed together with recommendations for future

experimental work. q2 %

II. ANALYTICAL BACKGROUND t)2' 2

The random response of a two degree-of-freedom ,m.

elastic structure has been determined analytically

in references [12,13]. The analytical model shown

in fig. (1) consists of two beams with end masses.

Under vertical support motion (t) the response of q

the two beams is mainly governed by linear dynamic

and parametric couplings. However, if the system Fig.(1) Model of coupled two beams

is designed such that the first two normal mode 
*J

frequencies w and w satisfy the internal reso- %

nance conditign w 2 - , the nonlinear inertia

forces become dominant and the system dynamic res- E 2

ponse deviates from the linear response. In terms 1 -0.015

of the non-dimensional normal coordinates Y the -O.015

system equations of motion are: 2.=0.02 0.0

2=0.025 L:

[I](Y") + [¢](Y') + [r
2
](Y} - =0.02

1.5 _.03

where a prime denotes differentiation with respect // \

to the nondimensional time parameter-t-wt. and the

coordinates Y are related to the dimensidnal normal 4r %

coordinates by the relation (YI,Y 2) - l' ,y2 )/q' 1.0 v 0.02

q
0 

is taken as the response root mean square of the

q *stem when the length of the vetcl emshik
to zero, ~e the response root mean square of theI
main beam with end mass (mI+m ), The elements of

the vector (a) and matrix [bi are constants depen- -

ding on the system properties. The small parameter 0.5 I E[Y'] 0.01

-q/t.- The 2matrix [r] is diagonal with elements

lan; ("/ ) The vector (T ) contains all quad -/
ratic nohlilear terms which encompasses two groups: 

/

nonlinear terms of the same mode and autoparametric 
'-

terms of the type Y Y" It is the autoparametric

coupling which gives lise to the internal resonance 0 . 45  0.5

condition r - w2 /u1 -2. 
0.55

The random acceleration Ci) was assumed to be

Gaussian wide band process with zero mean and a Fig. (2) Gaussian closure solution tor

smooth spectral density 2D up to some frequency various values of nonlinear

higher than any characteristic frequency of the coupling paramter

system. The acceleration terms in the nonlinear

functions 4' were removed by successive elimina-

tion and the system equations of motion was tran-

sformed into a Markov vector via the coordinates This approach resulted in fourteen coupled differe-

transformation ntial equations for first and second order moments
of the response coordinates. The numerical integ-

ration of these equations revealed that the 
respon-

tyiY 2yy' (.l X2 X X (2) se mean squares fluctuate between two limits. This

2' 2 2 4 12fluctuation means that the response does not 7

achieve a stationary state. The autoparametric

A set of first order differential equations of the interaction took place in the neighborhood of

response statistical moments were generated by internal resonance and was manifested by an energy

using the Fokker-Planck equation approach.
7 

These exchange between the mean squares of the two normal

equations were found to be coupled through higher modes. Figure (2), taken from reference 12, shows

order moments and were closed via two approaches: a sample of the mean square response of the system

Gaussian and non-Gaussian closures. These closure normal modes against the internal detuning

techniques are based on the cumulant properties. parameter. -

The Gaussian closure is established by equating all

cumulants X of order greater than two to zero, i.e. The second method takes into account the effect Of

the response non-normality. As a first order non-

k, k2  I Gaussian approximation all cumulants of order

X2 'X! 2 ... n 0, - (3) greater than four were equated to zero. i.e.%
i-j i



2 2 the existence of saturation phenomenon. The satu-
EjY Pj ' I ' ' l '''J ration phenomenon 2 is a well known feature for

2.0-0.015 0.04 multi-degree-of-freedom systems involving quadratic

20.02 nonlinear coupling subjected to harmonic forced
excitation.

-0.025
It is well known that the predicted results are

2 approximate and their validity has not been

1.5 - 0 0.03 examined. The next section reports the measured

results of a series of experimental tests of the

same model under band limited random excitation.

1 \ ¥21 J.02 III. EXPERIMENT AL INVESTIGATION
I. 0 '. %.

111.1 Experimental Model and Eouioment

The model is similar to a great extent5 to the
\O experimental model used by Haddow, et al. It con-

-- ' sists of a horizontal beam of cross section of
0.lll"xl.O", length 7.5", and carries a tip mass of

0.015 slug. The tip mass has a provision for
clamping the vertical beam which has cross section
0.054"xl.0". The length of the vertical beam can

0 I .1 , ,, ,0 be adjusted by changing the location of its top

0.45 0.5 0.55 mass (0.0127 slug). The deflections of the two

beams are measured by strain gages fixed at the
root of each beam. Two gages are mounted on the

horizontal beam in a two arm bridge. Four gages
lig- (3) Non-Gaussiai closure solution !or are mounted on the vertical beam in a four arm

various values of nonlinear coupliog bridge. The fixed end of the horizontal beam is
parameter L clamped by a fixture which is bolted on the top of

the shaker armature. The shaker is a Caldyne model

A88 of thrust 100 lb and provides 1" peak-to-peak
k2  kn stroke. The shaker is powered by a Ling Electro-

X .. " X . 0, N - k (4) nics Model RA-250 power supply and receives a ran-
4 X 2' n3 ~dom signal through a GenRad Type 1381 Random Noise

generator. The random signal is filtered to a
This approach resulted in 69 first order differen- desired band width with a Krohn-Hite Model 3343

tial equations, in the first through the fourth Variable Electric Filter. The filtered signal is %

order moments, which were solved numerically. The amplified via a Calex Model 176 Instrument .

solution reaches a stationary state after a tran- Amplifier. Figure (4) shows a schematic diagram of %

sient period and exhibits the same nonlinear the instrumentation used in this investigation.
interaction as predicted by the Gaussian closure The acceleration of the shaker platform is measured
solution. Figure (3) shows the stationary mean by a PCB Piezotronic Model 302A02 shock accelerome-

square response of ti'e normal coordinates against ter. The accelerometer is powered by a PCB . -

the internal detuning parameter. Piezotronic Model 480C06 power unit. ..

Although the two approaches yielded common features The first two normal mode frequencies of the system S.
to those predicted by deterministic theory

5 
of are determined theoretically and measured experime-

nonlinear vibration such as autoparametric sup- ntally as a function of the beams length ratio k /
pression effect, the random analysis did not verify as shown in fig. (5). This figure shows that the•

internal resonance w 1/wa - 2 is obtained in two -

locations of the lehgth ratio. At these mass

locations the normal mode frequencies are:

5.5.

• .

- m

-m2

fig. (4) Arrangement of experimental equipment Fig. (5) Measured and theoretical frequency ratio
of the first two normal modes.

,:. .,...: .,......- .......- ..-. , . .......- : -,. :X ,' .-' ..-..- '...., .. .,-:-. .
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£2/t - 0.485: f - 9.1 Hz, f - 18.2 Hz (5a) +0.0049v. This resolution is analogous to a def-
2 2 lection of the horizontal beam beas of +0.00073-in

and the vertical of +0.00097-in and an acceleration
£2 /t - 0.707: fl - 7.45 Hz, f2 - 14.9 Hz (Sb) of +0.00044-g for the excitation.

The experimental model is taoted under various

The analog signals of the excitation and responses levels of excitation spectral density. This is
ere read and converted into binary numbers using a achieved by keeping the input signal level constant a

Data Translation Model DT-3752 Intelligent Analog (Master Gain on Ling Amplifier) for the range of %
Peripheral (lAP). This ZAP is capable of reading internal detuning of the model. The level of
either 8 channels (+lOv) or 16 channels (0-10v) of amplification is adjusted to five levels for tes-
input. It can also read and convert analog signals ting of both the first and second normal frequency
at up to 40k points per second. This unit is bandwidths. Another series of tests are conducted
mounted in an expansion slot of an IBM System 9001 for excitation spectral density that covers both
Senchtop Computer. The control and programming of normal mode frequencies.
the Analog/Digital (A/D) system are accomplished
through the software controlled registers and field II1.2 Experimental Results
selectable (hardware) options. The software con-
trolled registers are the control registers, status The experimental results include sample records of
register, and gain/channel register. The control time history responses and the mean square respon-
register controls the operation and mode of the A/D ses in terms of generalized coordinates and normal %
system. The modes which are used in this investi- coordinates. The mean square response will be rep-
gation are direct memory transfer and increment resented against the internal detuning parameter r
mode operation. Direct memory transfer places and the excitation spectral density level. The
converted data directly into the memory of the bandwidth of the random excitation depends on the
computer. The increment mode allows the A/D to mode under investigation.
increment the input channel number automatically
before each A/D conversion. This allows data to be
taken from sequential channels without requiring a I1112.1 First Mode Excitation
program to specify each channel. The status regis-
ter reports the complete status of the A/D system The first mode is excited by a limited bandwidth
during the operation. The gain/channel register random excitation of bandwidth 5Hz and a central
selects the desired channels from which the data is frequency very close to the first normal mode natu-
to be taken and sets a programmable gain for all ral frequency. The frequency content of this ran-
input signals. This gain is set to one for all dom process is selected such that it does not
tests. The computer controls the DT-3752 through a excite any higher structural modes. For the five
Fortran program. Analog signals are converted for levels of excitation spectral density, the system
a specified amount of time or until the computer response is governed mainly by the first mode which
memory is full. When the computer has completed does not show any nonlinear coupling. Figure (6)
collecting data, the data is transferred to a flop- shows a sample of the time history resp nse under
py disk for future processing. excitation spectral level S.- 0.0142 (g /Hz) when

the model is internally tuned to the resonance
The data processing is performed at equally spaced condition ./., -2.0. It is seen that the response
intervals. The problem of determining this time is characteiizid by a narrow band random process of
interval is well discussed in Bendat and Piersol.15  frequency close to the first normal mode - 7.5 Hz. . -

Generally, if sampling is prepared at points which
are too close together, it will yield correlated
and redundant data. This will unnecessarily in-
crease the labor and cost of calculations. Sam-

pling at points which are too far will lead to the 41 0,-0 .'*'-
problem of aliasing. The aliasing is mainly a
confusion between the low and high frequency compo- $
nents in the original data. In order to eliminate
the problem of clasing, a sampling rate should be . ..-* WlhDP # 1.-_

chosen to be at least two time the maximum frequen-
cy that the model will experience. In order to get ;

agood sample data, a sampling rats is chosen which
is roughly eight times the maximum frequency. In ill 'I I i 111! , AliA

tepresent investigation, the sampling raete is A '1 11111I11 0I '1, ~I~ II~
chosen to be 80 Hz per channel for the first mode
excitation and 160 Hz per channel for the second o 4 , ,-
mode and wide band excitation. Data processing
involves another problem known as quantization
which is the conversion of data values at the Fig. (6) Time history response of first normal mode

sampling points into digital form. The infinite excitation, level V, So- 0.0142 g2/z'.
number of values of the continuous analog signal
must be approximated by a fixed set of digital
levels. A choice between two consecutive levels
will be required because the scale is finite. The Figure (7a) shows the mean square response of the
accuracy of the approximating process is a function generalized coordinates for the same excitation
of the available levels which is dependent upon the spectral density level of fig. (6). The empty
analog to digital converter resolution. The accu- points are measured when the mass of the vertical
racy of the DT-3752 is the value of the least beam moves upward while the full points are
significant bit which corresponds to a voltage of obtained when the mass moves downward. Both groups

%
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a) Mean square responses of generalizedcoordinates under first noal mode'-

excitation. t e.ty
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gee

Excitati Fig. (Sa) Relationship between mean square

coresonresponses of generalized coordinates
are:: red * . . and the excitation spectral density for

catsvarious values of internal detunng.

W/ inae. Thi im.0 ie th. t the model2

Fig. (7b) Mean square response of normal ve "i
coordinates under first noral mode
excitation. Thi -t i

Excitation level V: S O - 0.0142 g 2 empty points .'.e,

correspond a iher position of the upper mass while

full points correspond lower position.

are measured in the neighborhood of the systeminternal resonance. The group of full pointa indi--.

cates that the mean square of the horizontal beaon- Le
increases while the mean square ovtue vertical 0

beam decreases as the normal mode frequency ratio
te r / t increases. This implies that the model
b ehaves l ike a single degree-of-freedom system for

2 i> 2. For the second group of results (empty

points) the mean square response of the vertical
bea increases and the mean square of the horizon-
tal beam decreases. This feature is belonging to
the characteristics of linear vibration absorbers
due to inertia coupling. The corresponding respon-_ _____._g_

ae cures in normal coordinates are shown in fig. -- _ -i i
(7b). The square points (empty or full) are belon-
ging to the first normal mode which obviously pre- 0 0.3 oC og s .a ,i e

domiwates the response. It is also seen that asmas
the vertical mass moves downward, the model starts .
to behave like a linear single degree-of-freedom

system whose mean square is given by the relation.
ship 17  Fig (8b) Relationship beteen mean square"

* ~responses of normal coordinates and
3 22  the excitation spectral density for

-E/2] 3
- m2 ) (6) various values of internal detuning.

(Measurements are taken for lower position of the
where m, w and are the mass, natural frequency, upper mass).
and damping ratio of the system, respectively. 2D "

S-
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is the excitation spectral density of a wide band I
random excitation. ~ia- i'i.k

It is clear that the trend of the full square
points agrees with the linear solution (6) that the
mean square response is inversely proportional to-
the cube of the first normal mode frequency.

In order to provide more insight to the system Cttmrepons sttsis th en qaeepne is
plotted against the excitation spectral density w, %

level as shown in fig. (Be) for various values of iI
internal detuning. It is seen that the mean --
squares of the two beams increase with the excita- 0 2 4 S B jt) ,o
tion spectral density up to a certain level above Fr
which the curves are discontinuous. The degree of Fig. (9a) Time history response of second modediscontinuity depends on the internal detuning. excitation under citation spectral
Any deviation from the exact internal detuning density of 0.022 g /Hz.
results in a strong discontinuity. This disconti-
nuity means that the system is unstable in the mean
square sense. Similar features were reported in
the deterministic response of the same system by
Haddow, et al.5  The location of discontinuity is
strongly dependent on the values of damping ratios
and the internal detuning of the structure. Figure - M A A AJ.A.A A
(8b) shows the mean square response of the normal vv v vv V VV - V %
coordinates against the excitation spectral densi-
ty. The curves have the same trend of fir. (R^

111.2.2 Second Mode Excitation |. .

The second normal mode is excited by a limited band -i "v"random excitation of bandwidth 5 Hz and central 4 -

frequency very close to the second normal mode .
frequency. Five levels o5 excitation Spectral Fig. (9b) Magnification of time history response of %
density ranging from 0.001 g /Hz to 0.022 g /Hz are second mode excitation showing attendance1 selected. A general feature of the time history of first normal mode.
response records is that both amplitudes q, and q
increase with the levels of excitation as in thi _ ,o._ _
first mode excitation. The records also show that m-..mso
for all selected beam length ratios and for all - e a a -
levels of excitation spectral density, the vertical
beam amplitude q is always greater than the hori-
zontal beam amplitude . Another observation is• .that when the excitatio;% level is held constant the
amplitudes q and q2 increase slightly as the beam
length ratio increases. For small levels of exci-
tation spectral density, the second normal mode is *onm

m  
ccoc C C -s

observed to have no interaction with the first 2 "* & &
mode. However, above a certain level of excitation* * * ** " * * *
spectral density, it is found that the first mode
appears for a certain period of time and then , , a. ", 2 2 2t .IS 2:2

I disappears as the second mode takes over, and so on
as shown in fig. (9a). This nonlinear interaction Fig. (lOa) Mean square responses of generalized
of the two normal modes is more clarified coordinates under second normal mode
in fig. (9b). Under harmonic excitation, Haddow, excitation.
at al. 5  reported similar energy exchange between 2.
the two modes. Furthermore, it was shown that the s-0110 1

directly excited mode becomes saturated and energy &-&%N Dmuc 0 *0
is transferred to the first mode. In the present inmoo 0'
investigation, the energy transfer takes place not m.
only under high levels of excitation spectral den-
sity but also when the the internal resonance is
approaching the value 2 as vertical beam length is * !.' *
increasing. , & .,a' ,

The mean square responses of the generalized and 0.3
normal coordinates are plotted against the internal a
detuning parameter r in figs. (10a) and (lOb), & • • * , , , , £ *
respectively. The suppression effect of the a -. 06 0 - 9 2 2
excited mode takes place only when te vertical 2*

mass is moved downward as shown in fir,. (lOb) by %
the full triangular points. The second mode mean Fig. (lOb) Mean square responses of normal ,square (empty triangular points) increases with a coordinates under second normal mode
corresponding decrease in the first mode mean excitation.
square (as the vertical mass moves upward).

- a -P %-%-
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e Figures (l1e) and (lib) show the influence of the

excitation spectral density on the normal mode
vo a mean square responses of the generalized and normal

coordinates, respectively. Figure (lb) indicates

that the second normal mode mean square is relati-

vely smaller than the first normal mode mean square

response. This suppression effect is due to the ''

4 nonlinear normal mode interaction. However, the

saturation phenomenon, known in deterministic sys-
'A s tems with quadratic nonlinearity, is not pronounced

a- in the present results zn*the excitation isa
random process which containa several frequencies

S -each of which may excite the two modes. In deter-
ministic excitation, the external and internal

I detunings are very important in establishing the

pow saturation phenomenon.

sa 11.2.3 TWO MODE EXCITATION

The purpose of these tests is to explore the beha-

vior of the system under random excitation which

,-"shaker limitation the tests are conducted under
single excitation spectral density level S- 0.0026

g /Hz. A sample of the time history response

0 s , s a a. record is shown In fig. (12) which reveals the
presence of the two modes. The amplitude of oscil-

lation of each beam depends on the vertical mass

location which yields the same internal resonance
Fig. (lla) Relationship between mean square condition. Figures (13&) and (13b) show the depen-

responses of generalized coordinates and dence of the mean square response on the internal
excitation spectral density for various detuning in terms of generalized and normal coordi-

values of internal detuning. nates, respectively. The full points reveal linear
response characteristics while the empty points
show a -onlinear interaction between the two modes.

2-

. ,s ITV. CONCLUSIONS AND DISCUSSION

The results of an experimental investigation of

nonlinear modal interaction in a two-degree-of-

• °. freedom structural model under random excitation

are reported. The model equations of motion In-
lude linear and nonlinear inertia couplings of the

0.s~generalized coordinates. The normal mode frequen-

cies w, and w2 of the model are adjusted to meet
..4 the internal resonance condition r - 2.0. This

... - • - frequency ratio is found to exist at two beam
I,

" length ratios j_ /i - 0.49 and 0.71. At these
locations the sstei response characteristics are

completely different when the model is excited by a. .band limited random excitation. Three main series

of tests are conducted to examine the system res-

ponse behavior when the first and second modes are
excited separately and when both modes are excited
simultaneously.

0a e.6 -,, When the first normal mode is externally excited it

is found that the mean squares of the two modes are

increasing monotonically with excitation spectral
0 . . - density. The response-excitation relationship Is

0 , . almost linear for small excitation levels. When

WEPO m~the two beams are tuned to the exact internal

resonance, the response-excitation relationship

Vfollows a continuous curve. For different internal
'd detuning, the response curves exhibit a disconti-

Fig. (llb) Relationship between mean square determinis-

responses of normal coordinates and nuity. This feature is similar to

excitation spectral density for various tic characteristics of the same model.

values of internal detuning. When the second normal mode is externally excited,
' 'Jthe sytmresponse is dominated by the second

(Measurements are taken for lower position of the the systemre is dinated b ec nd
normal amde up to an excitation spectral density

• -guppr mes.)level above which the first normal mode attends and

'C

m.

-----------------------------------------------------,---



a. deviation from theory is attributed to the fact

that the experimental excitation is a band limited

random process, while in theory it is represented .

by a wide band random process. Another source of

3 s deviation is that the transformation into normal

coordinates is not exact since it does not take

V into account the effect of structural damping. To
eliminate this problem, it is convenient to adopt

I other models whose generalized and normal coordi-
nates are the same. With new equipment and more

Iog powerful shakers the first author is currently V

undertaking an experimental research program

-a .supported by the NSF.

Fig. (12) Time history response of 
two normal modes 
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Structural dynamics with parameter uncertainties
R A Ibrahim
Department of Mechanical Engineering, Texas Tech University, Lubbock TX 79409

The treatment of structural parameters as random variables has been the subject
of structural dynamicists and designers for many years. Several problems have
been involved during the last few decades and resulted in new theorems and
interesting phenomena. This paper reviews a number of topics pertaining to
structural dynamics with parameter uncertainties. These include direct problems
such as random eigenvalues and random responses of discrete and continuous
systems. The impact of these problems on related areas of interest such as
sensitivity of structural performance to parameter variations, design optimiza-
tion, and reliability analysis is also addressed. The paper includes the results of
experimental investigations, the phenomenon of normal modes localization, and
the effect of mistuning of turbomachinery blades on their flutter and forced
response characteristics.

1. INTRODUCTION

The concept of uncertainty plays an important role in the (1958). Anderson showed that the electron eigenstates in a
investigation of various engineering and physical chemistry disordered solid may become localized and results in a reduc-
problems. In fluid mechanics, for example, the inaccuracy of tion of metallic conductivity. In structural dynamics with
measurements is called "uncertainty" which differs from the parameter uncertainties, irregularities may inhibit the propa-
concept of error (Kline, 1985). An error in measurement is the gation of vibration within the structure and the vibration modes
difference between the true value and the measured value. On become localized. The similarities between the propagation of
the other hand, an uncertainty is a possible value that the error vibration in an elastic system and the conduction of electrons in
might take on in a given measurement. Because the uncertainty a solid is discussed by Hodges (1982). Hodges and Woodhouse
can take on various values over a range. it is inherently random. (1983). and Pierre et al (1986). Several problems in physics and
In control theory, the differential equations of control systems physical chemistry pertaining to crystal lattice dynamics were
often involve uncertain bounded state variables. The parameters reviewed by Elliot et a] (1974) and recently documented in a
of transfer functions of certain models usually vary with a monograph by Bottger (1983).
certain degree of uncertainty (Ashworth. 1982). Thus a prob- In structural dynamics, uncertainties arise from two main
abilistic transfer function can be defined with uncertain param- sources (Prasthofer and Beadle, 1975). The first is a statistical
eters and can lie anywhere within the ranges which are de- one and is due, for example, to the stiffness or damping
termined from simulation tests. The identification of uncertain fluctuations caused by random variations in material properti s.
parameters has recently been examined by Skowronski (1981, randomness in boundary conditions, and variations caused by
1984). manufacturing and assembly techniques. The second is nonsta-

Another class of problems involving parameter uncertainties tistical and is due, for example, to the inaccuracies and assump-
is the random heterogeneity of real media which possess proper- tions introduced in the mathematical modeling of the structure.
ties that are described in a probabilistic sense. More specifically, In the first class the mechanical properties of dynamic systems
these properties vary randomly with respect to time and posi- are subject to a certain degree of uncertainty because the
tion, and thus constitute a random field. The theory of wave physical properties of their elements are not measured exactly.
propagation in random media is very complicated and involves In addition, the physical properties can experience variations
partial differential equations whose coefficients are random with the passage of time as a result of wear and tear or just
functions of space and time. The difficulty of random wave inherent deterioration. These properties should be modeled as
propagation problems stems from the fact that the solution of a random variables with a probability distribution representing
linear partial differential equation depends nonlinearly upon the distribution of the measured values. This modeling results
the coefficients (Chernov, 1960; Frisch, 1968; Sobczyk, 1985). in random eigenvalues, eigenvectors, and random responses of

In physical chemistry the problem of determining the vibra- the system in question. The analysis of random eigenvalues and
tional properties of randomly disordered crystal lattices in- eigenvectors has been a subject of several studies by mathema-
volves the calculations of the frequency spectrum. electronic ticians and engineers and will be reviewed in section 3.
energy levels of binary alloys, thermodynamic properties of Figure 1 shows five examples of structural systems involving
alloys, isotropic mixtures, and other solid state phenomena. Of parameter and load uncertainties. They include "almost" peri-
particular importance is the "normal localization" or "confine- odic structures, similar component subsystems, multi-span
ment" phenomenon which was first reported by Anderson beams, rocket fins, and turbomachinery rotors. The rocket fins
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(a) Disordered chain of random mass, spring, and damping

(Soong and Bogdanoff, 1963)

\A+. .4r.' ' i (b) Disordered chain of
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A\ (c) Disordered multi-
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.
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disk
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with uncertainties in "

(e) Misaligned fins boundary conditions and
axial load

FIG. 1. Examples of disordered systems.

are not usually identical in their areas and each fin has some systems. In particular, they may cause the occurrence of mode

misalignment with the rocket longitudinal axis. For the case of localization which can be used as a means of passive control of
turbomachinery rotors, there is always some mass and stiffness vibrations. In civil engineenng the mechanical and strength

eccentricity in the disks. Parameter variations exist in disk properties of the material vary from one point to another point
blades and result in corresponding variations in the individual and are seldom prone to certain in situ measurements but onh
natural frequencies of the blades. This problem is known as to indirect estimates (Augusti et al. 1984) The uncertaint, of
mistuning (Srinivasan. 1984) which may have a significant effect these properties has a direct relationship to the reliabilit., of
on the forced response amplitude of the blades and also in the such structures. These uncertainties are usually manifested in
value of the flow speed at which flutter of the blades occurs. the applied loads, stiffness, and theoretical models that are used
Other examples include buried pipelines, railroad trackes. and to describe and relate loading and resistance The design of
interconnected girders. The uncertainties in these systems affect structures under conditions of uncertainty implies a balancing ,
to a large extent their design and operating performance. decision between risk of failure and cost or weight (Ang and

It should be noted that parameter irregularities may cause Tang. 1984: Frangopol. 1986) The nsk is an unavoidable
significant changes in the dynamic characteristics of structural consideration for structural optrntization problems It has been
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customary in most reliability studies to measure the risk by the 3. RANDOM EIGENVALUES
probability of failure (ic, the likelihood of occurrence of some
specified limit state). On the other hand, when restrictions and 6%

constraints of the design are imprecisely described, the design 3.1. Basic concept of random eienvalue 0

objective functions become fuzzy (Zadeh, 1965, 1973; Brown, The value of the natural frequency of simple single degree-
1980; Brown and Yao, 1983). Recently, the fuzzy set theory has of-freedom systems is given by the square root of the stiffness to

been applied in multi-objective fuzzy optimization design of mass ratio. This value is assumed by constant for identical

ship grillage structures (Gangwu and Suming. 1986). systems. However, experiments have shown that this value
The degree of sensitivity of structures to either deterministic varies randomly (Mok and Murray, 1965) because in reality the

design changes. or stochastic parameter variations is of great physical properties of the elements can neither be measured
importance to the structural dynamicist. In particular, it is exactly nor manufactured exactly. Thus, the eigenvalues are
essential to determine if small perturbations can result in sig- random variables whose statistical properties are determined by
nificant changes of the free or forced response amplitudes. This the random coefficients of the inertia and stiffness terms of the
sensitivity analysis is of great concern to those who are involved equations of motion. Consider for example the natural frequency
in the control of large flexible space structures (Meirovitch et al, of a simple mass-spring system
1983; Nurre et al, 1984). These structures possess several modes
densely packed at low frequencies. When they are descretized, A - - k/rn

model errors occur and the free modes of vibration cannot be
determined accurately. Thus when a control system is designed
for natural frequencies whose values are assumed to be exact, the variation of X due to variations in stiffness k -k - Bk and

the model errors and structural uncertainties may deteriorate mass m - ;A + Sm, may be expressed as a Taylor series

the performance of the control loop, and may even make the - ax ax
system unstable. This problem results in what is known as 8A-A- A- -- 8k - am
robustness, ie, a control system is termed robust if it is rela- ak am
tively insensitive to model errors and structural uncertainties. 8 a A 2 1 A

This paper provides a review of the recent theorems and + - - 8k)+ (1) -
results pertaining to structural dynamics with parameter uncer- 2 dk2 2 a m

tainties. An early account of the subject was provided by Soong where overbar quantities refer to mean values and A - k/-i
and Cozzarelli (1976). Three main problems will be addressed. whee variatins rm an keandom aae

TheseWhen the variations m and k are random variables the
natural frequency will be a random variable. The mean and

1. Random eigenvalues, variance of X can be evaluated as follows

2. Random response characteristics, and 1X 1 a2 ,X
3. Design optimization and reliability. E A -I + - - - E[ 8k] E[ 8m 2 ] (2)

2 k2 am

Before reviewing these three problems the differences between and

parametric random vibration and structural dynamics with 0 - ' 02 ,,a E[
parameter uncertainties will be discussed first. E[(x - )E[Sk-]+ -- E[8mS ]

ax ax
2. BETWEEN PARAMETRICALLY EXCITED AND 2 EI8k 8.]

DISORDERED SYSTEMS ak am .

It is very important to distinguish between two types of +3_{ '2X "

parameter variations encountered in structural dynamics. The 4 J i ET Sm]
first type arises due to random parametric excitation of systems
with essentially fixed properties while the second class is inter- (3)
nal and is associated with the system when its parameters are 2
represented in a probabilistic sense. In the former case the
system equations of motion are stochastic differential equations The same is applied when the mass moment of inertia is
with random coefficients represented by random processes included in the equations of motion. Collins and Thomson
(Ibrahim. 1985). while in the latter case the equations of motion (1967) derived the statistical characteristics of principal mo-

are differential equations with random parameters represented ments of inertia and principal axes directions, .5

by random variables (Soong. 1973) The methods of treating Generally, the structural dynarricist is interested in de- -'

dynamic systems under parametric random excitations are dif- termitnng the probabil tv that one or more cigenrvalues lie in a
ferent from those used in solving differential equations with given range or less than a certain value (Bovce. 1968) Howe'er.
random variable coefficients. Parametric random vibration is the probabilistic description of the eigenvalues and the eigen-
basically a combination of the theory of stochastic processes. vectors has been examined for a limited and simple class of
stochastic differential equations. and applied dynamics Systems problems In most cases, it is possible to calculate the statistical
with parameter uncertainties (referred to in the literature as functions (such as expectations, variances, and covanance func- .
"disordered systems"), on the other hand. involve boundarv- tions) of the eigenvalues and eigerivectors
value problem and random field theory (Vanmarcke. 1984) The The random eigenvalue problem has been examined for a

term "disorder" has been extensively used in the literature to limited number of linear discrete ard continuous \s.tems The A

distingush between the case of random perturbation of the treatment of these systems is based on the anahsis of random
system parameters (described by a probabilistic law) and the matrices and random differential operators (Scheidt and Purkert.
case when these parameters are perturbed in a determnistic 1983) The next subsections will review the methods and main
sense. results reported in the literature
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3.2. Random eigenvahues of discrete systems random variables 4(,:

The statistics of random eigenvalues and eigenvectors of N +
discrete systems may be determined by using one of three main J-1 + + ,
approaches. These are the transfer matrix method, the random
perturbation method, and the Monte Carlo numerical simu- N-I

lation algorithm. The transfer matmx method (Kerner 1954. £ + k-2 (Xa)
1956 Soong. 1962) utilizes a perturbational expansion of the A'1 k>i

random eigenvaues in terms of the random perturbations of the ,
system parameters. The perturbation method is based on an i-s Z + F Woj for small c:. n -1.2 ..... N. (8b)
asymptotic expansion and combines the ordinary perturbation J-1
and multivariate statistical analysis. The multivariate estab- Let the random "ariables be statistically independent. identi-
lishes the probability distributions of random eigenvalues in cally and normally distributed with zero mean. This means that

terms of the distributions of the matrix coefficients in the the probability density function of each is m t

equations of motion. The Monte Carlo method, on the other 1

hand, generates a random sample of the system random param- p( ,,2- exp( (9)
eters which are used for computing numerically the eigenvalues
and eigenvectors for each set of parameters in the sample. where a,-" is the variance of the random variable (
Monte Carlo simulations are expensive since they require a From the theory of random processes (Lanng and Battm•
large number of numerical solutions to define the probability 1956). it is known that if the random variables (, are indepen-
level at the tails of the distribution. This disadvantage becomes dent and normally distributed the random eigenvalues will be
evident when one deals with large or medium size systems norialy distributed wth mean value and variance
where numerical sinulations become unrealistic on conventional These two statistical parameters provide the ele-
digital computers. The first two methods will be outlined in the p b d t on of w. e-

nettw etin.ments of the probability density funcino ,cnext two sections.I.'-
3.Z1. Tranfrmatri mep(t.hod, )exp-()"O'W (o).

This method was first developed for disordered periodic O 2.
lattice systems by Kerner (1954, 1956). It was adopted by Soong Figure 2 shows p( ,) and the standard deviation o for a
and Bogdanoff (1963) to examine the statistics of the random spring-mass chain of 10 degrees of freedom with a, - 0,05 It is.-,
eigenvalues of disordered spring-mass chain of N degrees of seen that the randomness of the masses results in a considerable
freedom of the type shown in Figure l(a). Basically the method dispersion in the high frequency region The standard deviation
is an extension of the transfer matrix developed originally for of the random eigenvalues increases with the standard devation
free vibration of deterministic discrete systems (Thomson, 1981). of the mass perturbauons n according to the formula dSoong.

The method transfers the displacement vector (X), of the jth 192)
mass into next mass displacement vector IX],.,. ie 192

(X},-[IiT-..,{X) .,. (4) / -.

where I is the unit matrix and 11 - 1] is the transfer matrix. The 3.2.2 Random penurbation method
first displacement vector Xj,, is related to the last displace- The perturbation method for twe deterministic eigenxalue
ment vector X) , bv, the relationship problem is well documented Cole. 196S. Meirovitch. 19890The method has recently been extended for random eigenalues

1 by Scheidt and Purkert (1983). The eigenvalues of discrete
(X -[11 - TI, (X} . (5) systems are usuall,, determined from the conservative part of

, I jthe system equations of motion whose eigenvalue equation is

In order to demonstrate the method, a periodic disordered gen in the form
chain with random masses and constant equal springs of stiff- [K( s) - AM( s)] { x = (0). (12)
ness K will be considered. Let the random mass be defined by where K(s) and M( s) are symmetric stiffness and mass matrices.
the expression respectively The elements of these matrices are taken from the

m -,(1 +,). (6) entire sample space S, ie, sC S A and )x , are the /th-
eigenvalue and eigenvector. respectively The random matrices

where in is the mean value of the mass and is a small K(s) and M(s) can be written as the sum of deterministic and
random variable with zero mean random matrices

The transfer matrix can be written in the form K( s) -K--k( s)

WV) - 0(. (13)
[I * T]-11 [I T . [F . (7) where k(s I and fit(s) represent random fluctuations in the

stiffness and mass matrices. respectivelv. with zero means such
where JEJ, is a perturbational transfer matrix which results that
from the random perturbations ( .

The characteristic equation can be established from eq 151 .k( il- ] & (s) ,
The roots of this equation are the sstem eigenvalues w., In k , ,-
order to determine the statistical properties of the eigenvalues it and .
is necessary to express w in terms of the random variables
It will e assumed that the range over which the values of t are il s < (14)
distributed is small and w, can be explained in powers of the .-.
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FIG. 2. Probability density functions and standard deviation of w,,

Alternatively, the problem can be stated by transforming eq. vectors are

(12) into the standard form E- [X,(s)] -A, ± E[a,,a,,l/A,, .. (22)

[A- A x = ( 0 ) (15) .

where A is the system dynanuc matrix which is symmetric r 1 ,, o
positive and has the random perturbational form Ejx(s), I + E[(I 1 .i 1 )i

A(s) - Aia(s). (16) +E[{ Z}] + + (23)

The deterministic matrix A has the simple eigenvaues where A,, - X, - X. ( Z}, 2 - (Z,,, Z,,,. ... Z}r and the ele-

,1 <A, < ... <A (17) ments of { Z),. are given by the expression
f . 1 a,,a, 1 " "

while the random matrix A(s) has the random eigenvalues ( - A- ,

X(s)< (s)<.< .(s) (18) A ,, < "

it is clear that the existence of the first two moments of the for *j and ( Z,), 0.

eigenvalues As) is implied by the existence of the first two On the other hand, the correlation relations of the eigenval-

moments of the elements of A(s). ues and eigenvectors up to the (k + 1)-th order in the perturba- %
The eigenvectors (x), are normalized by the relation t a, are

1. (19) R( j. k) - E[J, X,]=E[a,,a ] E?[ .1

where (x,. x,) denotes the scalar (or inner) product of the same i 1 \
vector x,, ie {x )T(x),. Introducing the two expansions + ,-E~aa~A

A,s)A+ FA,"(S) (20) / 1
SIa,,,, ,,( I "..--,1) {i}, 4 (i(s)},, (21) ;-:j1* '

k-1 ..

where (i),-(0,0.....0.1',0. 0) is the normalized eigenvec- + _ --.--- Eta,,a,,a,,a (
tor associated with A,. ,(s) and {i(s)},, are the contribu- ,.I.i ,,All 1
tions due to the perturbed elements of a(s). From the analytical
dependence of A, and (x), on the elements of a(s). Scheidt and t

Purkeri (1973) showed that expansions (20) and (21) converge + E[ aa,a, a,]

at least for sufficiently small values of the elements of a(ws. The V

homogeneous terms A,, (s) and x(s)),h up to fourth order are ?

given by Scheidt and Purkert (1983). These terms can then be + E , ]

used to determine the expectations and correlation relations of ,. - A aaaa.

the random eigenvalues and eigenvectors. If the correlation ,0.

between the elements of a(s) - [',I are only given, then up to
first-order perturbation the means of the eigenvalues and eigen- - E[ a,, a,, E a,, a,]..

..- .-.
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The analysis is called first order perturbation if first-order Schiff and Bogdanoff (1972a, b) derived an estimator for the
terms in expansions (20) and (21) are retained and higher-order standard deviation of a natural frequency in terms of second-
terms are excluded. It is second order if terms up to second order statistical properties of the system parameters. The de-
order are kept. However, second-order perturbation is tedious rivation was based on the mean square approximation devel-
and involves multivariate statistical analysis. Most of the oped by Bogdanoff (1965, 1966).
analyses reported in the literature deal with the first-order It may be noticed that the statistical properties of random
perturbation. eigenvalues are usually based on the assumption of normal

Problems involving a random symmetric matrix with multi- distribution of the system random parameters. However. for
ple eigenvalues of the unperturbed matrix have been treated by correlated non-Gaussian parameters the analysis can be per-
Scheidt and Purkert (1983). The analysis consists in the formu- formed in terms of another set of Gaussian random parameters
lation of a convergence condition for the perturbation expan- which are evaluated by using the Rosenblatt (1952) transforma-
sions. tion. This transformation has extensively been used in reliabil-

Collins (1967) and Collins and Thomson (1969) considered ity analysis when the performance function is nonlinear. This
first-order perturbation and derived the eigenvalue and eigen- issue will be addressed in detail in section 5.1.
vector statistics of a multi-degree-of-freedom system in terms of
the covariance matrix of the system elements. With reference to
the eigenvalue eq. (12) they showed that the variations in the 3.3. Random eigenvalues of continuous systems
mass and stiffness matrices result in the following first order 3.3.1. Methods of analysis
variations in the eigenvalue and eigenvector, respectively: Continuous systems may involve uncertainties from two

*, a O, a, main sources. These are (Boyce and Goodwin 1964):E k- +_ _(,i + ..., (5
1 ak, (i) Uncertainties in the geometry and the material proper-

kx 2 ax, ties. The random variation in space dependent parame-
X,, - il ( k - ) + + ... ters results in variations of the differential operators

-. 1-1 am, governing the free vibrations of the structure.

(26) (ii) Uncertainties in the support mechanism of the system
(or the boundary conditions).

If the elements of the mass and stiffness matrices of eq. (12)
are random variables with means k: and Tn, and variances a The uncertainties of the first class constitute a random field.
and o,, then the expected eigenvalues and eigenvectors are 1, According to Vanmarcke (1984) the behavior of disordered
and i,,. respectively, and the variance of the eigenvalue is systems is governed by two general laws. The first is a statement

2 a2 of "conservation of uncertainty" as measured by the product of -"

ah Va"2, E -_coy(k,,I kJ the variance by the scale of fluctuation of the property in the r
1-t , - - - random field. The scale of fluctuation is taken as the area under

the correlation function. This product remains invariant under
,, ' o~h oa , coy( k, linear transformation that preserves the mean. The second law
+ 2 a k, am, states that the degree of disorder of a homogeneous randomfield, as measured by the direction-dependent bandwidth mea-

3A a ax, sure. tends to increase when a random field is subjected to local
-coV( in.in) (27) aggregation.

dm, am, For the two classes of uncertainties the random eigenvalue

where has been determined for a limited class of dynamical systems.
These include elastic strings and bars (Boyce, 1962: Goodwin

cov(k,.kl) - f(k, -- ,)(k,-,)p(k,.k,)dkdk, and Boyce. 1964) and elastic beams (Boyce and Goodwin 1964:
-~ Bliven and Soong. 1969; Hoshiya and Shah, 1971; Shinozuka

- PIYIfOA/. (28) and Astill, 1972: Vaicaitis 1974). Boyce (1968) outlined a num-
ber of techniques for determining the statistics of the eigenval-

and p(k,, k,) is the joint probability density function for K, ues of systems described by partial differential equations and
and K,, and p,, is the correlation coefficient for k, and k,. boundary conditions involving uncertainty in their parameters.
Expressions for cov(k,, m ,) and cov(m,. m,) follow the same These differential equations are of order 2n and usually written
format of relation (8). in the form

For a simple chain of equal springs and masses with uncor-
related random masses or with random uncorrelated stiffnesses, Yw(x) A'w( x), (29)
Collins and Thomson showed that the standard deviation of the subject to the boundary conditions
frequency is governed linearly with the standard deviations of 0 ( w) - 0. - 1,2 .. 2 n. (30)
the masses and stiffnesses. The results were confirmed by an
independent Monte Carlo simulation and were very close to where .Y, .W, and 4r are differential operators (with respect to
those obtained earlier by Soong and Bogdanoff (1963). How- the spatial coordinate x ) whose coefficients are random van-
ever. these linear relationships disappear when correlation exists ables. %,( x) is the displacement of the system at x Equation
in the masses or stiffnesses and the eigenvalues are not closely (29) involves values of w and its first 2n - 1 derivatives at the
spaced. Recently Pierre (1985) considered two different discrete end points of the interval in which solutions are sought The
systems and employed a first-order perturbation to solve for the eigenvalue problem defined by eqs. (29) and (30) is assumed to
statistics of their eigenvalues. The first system is a mass-spring be self-adjoint and positive definite. The investigation of ran-
chain with random mass and the second is a chain of coupled dom eigenvalues has been carried out via analytical or numen-
pendula with random lengths. His results were found identical cal approaches. The numerical methods include the Monte
to those obtained by Soong and Bogdanoff. Carlo simulation and stochastic finite element methods. The
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analytical treatment of the random eigenvalue problem of sys- Boyce (1%6, 1980) considered a Sturm-Liouville problem with
tems described by eqs. (29) and (30) is outlined by Boyce (1%8) a stochastic nonhomogeneous term. In their recent monograph
and Scheidt and Purkert (1983). The mathematical methods Sheidt and Purkert (1983) analyzed the moments of the ei-
which have been used to determine the statistical moments of genvalues and mode shapes of random matrices and random
eigenvalues are classified according to whether the statistical or ordinary differential operators. The calculations of these mo-
nonstatistical part of the analysis is performed first. One class ments were based on perturbation expansions, and so required
consists of first expressing the solution in terms of the system the random terms to be appropriately small. Day (1980) de-
parameters, without regard to whether these parameters are veloped a number of asymptotic expansions for the random
random or deterministic. Having obtained such a solution, the eigenvalues and eigenvectors of continuous systems. ""

statistical properties are then determined. According to Keller The concept of the Wiener field, which is obtained by
(1962, 1964) this approach is referred to as "honest" and the replacing the time variable of the Wiener process by a space
solution can be determined by using one of the following coordinate, was adopted by Wedig (1976, 1977) as a basic
techniques (Boyce, 1968; Scheidt and Purkert, 1983): model for randomly distributed loadings or imperfections of

continuous structural systems. The solution of such boundary
(i) Perturbation methods. value problems may thus be described by integral equations
(ii) Variational methods. defined on the Wiener field and thus possesses the Markov
(iii) Asymptotic estimate methods. properties. Wedig showed that these integral equations may be
(iv) Integral equation methods. interpreted in the mean square sense via the boundary and

eigenvalue problems of elastic structures with random distrib-

The "honest" approach does not provide an exact solution and uted imperfections or loadings.
-the above four methods are not suitable for every problem. For 3.3.2. Applications
example, the variational methods are not suitable for structures The random eigenvalue of a column under axial force F,
with random boundary conditions. Variational methods and shown in Figure I(f), is described by the second order partial
integral equation methods are limited because they only lead to differential equation
statements for the first eigenvalue of the system. Moreover, in a2  a2 w(x,) Faw(x,t) -w(x. t)
order to apply the integral equation methods, very strong T E(x) + + A(x)

e, conditions for the calculation of the mean of the eigenvalues are x x2  ..

required. Under certain conditions pertaining to the spatial (31)
correlation function, the asymptotic methods and perturbation and the boundary conditions:
techniques lead to the same results. The perturbation methods
have less restrictions and are extensively used in the literature. a2w( x, 1) aw( X.

The approach, on the other hand, is called "dishonest" E(0) dx 2  1_ -0
(Boyce, 1%7) if the statistics of the eigenvalue problem are
directly determined by performing averaging analysis to the w(O, t) - 0: (32)
system's paitial differential equation and its associated boundary a 2w(x, ) aw( x, t)
conditions. The statistics can be evaluated by using one of the EI( L) -I L + K_ ,= = 0.
following methods: dxZ dx

w( L.t) -0.
() Iteration methods. "

(u) Hierarchy methods (Haines. 1965. 1967: Adomian. where w(x. t) is the lateral displacement at distance x and time

1983). t, L is the length of the column, EI(x) is the flexural stiffness.
and pA(x) is the column mass per unit length. K, and K. are

The iteration methods are based on some assumptions for the the stiffnesses of the end springs. For simple supports K, - K,

correlation relations in order to solve the averaged integral h0, and for fixed Supports K K, i e

equations of the random eigenvalue. The hierarchy methods The solution of eq. (31) may be expressed in the form

take into consideration further equations so that all statistical w( x, t) - Uz( X)exp( ictmr). (33)
functions in question can be calculated. ".

In a series of papers by Purkert and Scheidt (1977, 1979a, b). Introducing the following substitutions
a number of theorems pertaining to functionals of weakly
correlated processes -ncountered in the eigenvalue problems. X - x/L,
boundary value problems, and initial value problems were
established. They treated the stochastic eigenvalue problem for
ordinary differential equations with deterministic boundary A(X) -AT[ I + a( X)],
conditions. The coefficients of the differential operator were FL'/Ei,
independently weakly correlated processes of small correlation
spatial length. They showed that as the correlation length A oAL'w ,/EI.
becomes very small, the eigenvalues and eigenvectors possess
Gaussian distributions. This result has recently been confirmed where a( X) and a( X) are random variables, eq. (31) and the
by Boyce and Xia (1983). When the random terms are not small boundary conditions (32) for mode . become:
the perturbation method is no longer valid and the second term ([1 + a( X)] U"( X) " L' "( X) - 4[1 - a( ") ]U( X) - 0.
in the Hermite-Chebychev expansion (Ibrahim. 1985) of the (34)
distribution function will not vanish. This implies that the
distribution of the eigenvalue will not be normal. Boyce and [1 + a(O) ] U"(0) - (KL/El) L"(0) = 0 L(O) -0:
Xia (1985) obtained the upper bounds for the mean of eigenval-
ues through a variational characterization of the eigenvalues. [1 + a(1)]U"(l) + (K 2L/EI)U'(1) - 0: U(L) -0.

For stochastic boundary value problems Linde (1969) and (35)

.-.
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where a prime denotes differentiation with respect to X. and greater error for the buckling case than in the vibration case.
subscript j. indicating the mode number in expansion (33). is Furthermore, the perturbation solution for the eigenvalue van-
removed. ance can be approximated reasonably well by using an assumed

Hoshiva and Shah (1971) employed the standard perturba- mode shape in place of the unperturbed mode shape. Vaicaitis
tion analysis to determine the expected value and variance of (1974) employed a two-variable perturbation expansion proce-
the eigenvalue of the nth mode by using a linearized perturba- dure to determine the eigenvalues and normal modes of beams
tion technique. They found that the variance of the nth natural with random and/or nonuniform characteristics which do not
frequency is proportional to the variances of the stiffness coeffi- dev'ate considerably from the beam mean properties. A Monte
cients at the boundaries and the axial load. This linear relation- Carlo simulation was used to determine the statistical averages
ship implies that the principle of superposition can be applied of beam eigenvalues and mode shapes. Two cases of random
in a modified form. For the buckling case, ie. when X - 0, the fluctuations of beam cross section were considered. For one
eigenvalue problem is reduced to determine the statistics of the particular case there was significant deviation attributed mainly
buckling egenvalue (Augusti et al, 1981, 1984). Shinozuka and to the fact that gradual change in the beam stiffness was
Astill (1972) considered the case when both K, and K2 are permitted. In this case the beam is "soft" at one end and
random variables. "hard" at the other end.

The natural frequencies of transverse vibration of elastic Hart and Collins (1970), Collins et al (1971), and Hasselman
beams were analyzed by Boyce and Goodwin (1964). They and Hart (1971, 1972) developed a numerical method for com-
considered the geometry of the cross-section of the beam and its puting the variance of structural dynamic mode properties by
support mechanism as random variables. The statistics of the using component mode synthesis which was formulated origi-
eigenvalues were determined by using three different tech- nally by Hurty (1964, 1965). Numerical solution provided rea-
niques. These were the perturbation method, the method of sonable results for lower modes even when a relatively small
integral equations. and numerical solution. Bliven and Soong percentage of available component modes is used. Hart (1973)
(1969) determined the statistics of the natural frequencies of a developed a general algorithm for calculating the statistics of
simply supported elastic beam with random imperfections in the natural frequencies and mode shapes of structures acted
the beam stiffness. The beam was modeled as a lumped-parame- upon by an external static loading. This type of problems
ter model and the properties of the frequencies were derived by involve considerable calculations due to the fact that the pro-
using a perturbation method. The stiffness random variation portionate axial load in each member of the structure is depen-
was represented by the relation dent upon the structural parameters which are random vari-

El -I/[ 1 + a( x)], ables. For the two-bar truss shown in Figure 3 Hart determined
E l the first natural frequency's mean and standard deviation. The

where E! is the mean value of the beam stiffness and (x) is a influence of the static load on the statistics of the first natural
stationary random field process with zero mean and autocorre- frequency is shown in Figure 4. It is seen that the standard
lation function given by the relation deviation of the natural frequency increases with the axial load.

- The implication of this increase was further demonstrated in
E[ ax 1), a( x2)J - 2exp( -1x- x2j/d), (36) Figure 5 by using normal probability density function. The

where d is a non-negative constant known as the correlation observed flattening shape of the probability density function
distance. with increased compressive loading shows a marked decrease in

The standard deviation of the natural frequency of the beam confidence with the magnitude of loading.
was obtained in the closed form The random eigenvalue problem of disordered periodic beam

was considered by Lin and Yang (1974). They used a first-order
a(n) - Z(n) 'g(- , (37) perturbation procedure to derive expressions for the variances

where Z(n) is the n th mode natural frequency of the uniform of natural frequencies and normal modes for different cases of

beam -nr2 I/mL 4  random bending stiffness and span lengths. The natural fre-
quencies were found to be more sensitive to span variations

g( n) - sin n rx, slw- ( n rx ,  than to bending stiffness fluctuation. It was shown that if the
random variations in bending stiffness for different spans are -

xexp[ -1x 1 - x, Vd]dxdx,, uncorrelated then there is no effect on the statistics of the
eigenvalues. The effect exists only when there is a correlation in

and T is the beam mass per unit length. the random variation in the individual spans. For a random 7
Bliven and Soong found that when the stiffness fluctuation variation in the span lengths it was shown that the variance of

has zero correlation distance d - 0, the natural frequency stan- the natural frequency is inversely proportional to the number of
dard deviation vanishes. The standard deviation was found to
reach the value of oa(n)- 0.55(n)o when the stiffness vari- ..

ation is perfectly correlated (d - .
The random eigenvalue of a beam-column supported at its F

ends by a rotary springs was examined by Shinozuka and Astill
(1972). The spring supports and axial applied force were treated
as random variables. The distribution of material and geometric
properties were considered correlated homogeneous random A,E2 T
functions. The distributions of these properties were generated A.., 1
by using a Monte Carlo simulation for multivariate and mul- H
tidimensional random processes developed originally by
Shinozuka (1971). The mean and variance of the eigenvalues I
were determined by using the perturbation analysis and Monte 40 90""
Carlo simulation. It was found that the application of ap-
proximate methods, such as the perturbation technique based
on exact or an assumed mode shape, causes a considerably FIG. 3. Two bar truss (Hart. 1973).
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FIG. 4. Variation in fundamental natural frequency statistics with applied load (Hart, 1973).

spans. The random imperfections in spatial periodicity also with homogeneous parameters. The standard deviation of the ""
resulted in variability in the normal modes. However, due to the natural frequency of rth mode was expressed in terms of the

arbitrary choice of modal amplitude the variance of the normal (2 m )th Fourier coefficients of the random parameters and was.-"

mode was not a unique function of space. represented as a vector sum of their standard deviations. While .-
Ie statistics of natural frequencies of mistuned blades of a the normal modes of a homogeneous structure have a shape of

circunferentially closed packet of turbomachin weodcere ex- harmonic waves with symmetrically located nodal diameters.

areined by EvAins (1973) and Huang (1982). When thde toe nra ruc ywith random parameters the mode shapes are th

disk assembly is tunedal amll the blades are identical the complicated and the nodal diameters are lcated unsymmetri-

natural frequencies are quite regular. Each cally. It was shown that these modes have a shape involing not

mode may be described as having a particular number of nodal only the main harmonic, but also an infinite number of harmon-

diameters just as for an unbladed disk. However. wthe be ics. In addition these random normal mt es are orthogonal

blades are mistuned to a degree which might well exist in despite their complicated form. Another important feature was
service, the mode shapes and frequencies becomes irregular. In that the phase angles of random normal modes are not arbitrary
this case the natural frequencies of the individual blades can be (as in the case of a homogeneous structure) but are random
randomly different from one another. This problem is belonging variables independent of the initial conditions.
to systems with periodic random parameters and such systems Recently, the stochastic finite element method has been used
are modeled by a stiff ring supported by transverse springs with by Nakagiri et al (1985) to determine the uncertain eigen%alue "

randomly distributed stiffness and mass parameters. Huang of fiber reinforced plastic (FRB) laminated plates These com-
adopted an exponential form for the auto- and cross-correlation posite materials usually exhibit ansotrop. and heterogencit'
function of the random structural parameters. This form was The elastic constants may fluctuate around the mean values duc
originally assumed by Hoshiya and Shah (1971). The analysis of to some slackness during the manufactunng process %%hich
Huang was based on a spectral analysis method. He found that causes spatial distribution of the volume fraction In addition.
the mean of the natural frequency of the structure with random another parameter known as the stacking sequence is usuall
parameters is identical to the natural frequency of the structure used as a major design parameter of the FRB laminated plates
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FIG. 5 Probability density function variation with applied load (Hart. 1973).



The stacking sequence (Vinson and Chou, 1975) implies a group irregularities in shrouded blades of jet engine rotors can result
of parameters such as elastic constants, layer number, fiber in a stabilizing mechanism which is closely connected with the
orientation, and layer thickness. Nakagiri et al considered the phenomenon of mode localization. In the framework of local-
effect of the fluctuation of the overall stiffness due to uncertain ization theory, the stabilizing mechanism is explained based on
variation of the stacking sequence. The uncertain stacking se- the fact that the original monochromatic flutter wave is scattered
quence was treated as a set of random variables for the case of into waves of different and more stable wavelengths and inter-
simply-supported graphite/epoxy plates. It was found that the blades phase angles. While the effect of mistuning between
eigenvalue is more sensitive to the standard deviation of the turbomachinery blades is favorable in flutter (see also Kaza and
fiber orientation, and the effect of the stacking sequence is more K.ielb. 1982) it can lead to an increase in amplitude on at least
pronounced for the rectangular plate than for the square one. one blade in forced vibration situation as will be shown in -
3.3.3. Normal mode locali-ation section 4.1.2.

Periodic structures with slight variations in their periodicity For periodic multispan beams Miles (1956) showed that the
can exhibit a phenomenon known as normal mode localization, natural frequencies are clustered in an infinite number of groups,
This phenomenon takes place in a manner that vibrational or bands, with n frequencies in each band, where n is the
energy injected into the structure by an external source cannot number of spans. If a torsionial spring is placed at the n - 1
propagate to arbitrarily large distances, but is instead substan- intermediate support location, then the width of the frequency
tially confined to a region close to the source. Hodges (1982) bands diminishes as the spring constant k increases. In the
called this phenomenon as "Anderson localization" due to limit as the spring constant goes to infinity, the beam becomes
Anderson (1958) who discovered mode localization in solid clamped at the constraint locations and the width of the
state physics in an attempt to understand electrical conduction frequency bands is reduced to zero. Pierre et al (1986) estab-
processes in disordered solids. The effect of irregularities has a lished an internal coupling parameter which is equivalent to the
similar effect to damping in that it limits the propagation of inverse of the torsional spring constant 1/kq. For ko = 0 the
vibrations at large distances from the excitation source. This spans are fully coupled. For large values of the spring constant
effect is mainly caused by confinement of the energy close to and irregular spacing between supports. a multispan beam can
the source, not by dissipation of the energy as it propagates out. be regarded as a disordered chain of weakly coupled subsys-

The phenomenon of mode localization can be well under- tems. Pierre (1985) and Pierre and Dowell (1986) developed a
stood by using the coupled pendula example [Fig. 1(b)] which theoretical analysis for the mode localization phenomenon and
was adopted by Hodges (1982). Hodges provided an excellent indicated that the free modes of vibration are susceptible to
explanation of mode localization: If all pendula are identical so becoming localized and the natural frequencies of the multispan
that their individual natural frequencies are precisely equal, beam are in bands of small width if the spring constant is large.
then the normal modes of oscillation when these pendula are They proposed a general criterion stating that localization may
coupled together extend throughout the system, the amplitude occur if the width of the frequency band of the ordered system
of oscillation of each pendulum varies sinusoidally with its is of the order of, or smaller than, the spread in individual
position in space. On the other hand, if the natural frequency of natural frequencies of the disordered component systems.
oscillation varies from pendulum to pendulum in some kind of Pierre et al (1986) determined the free modes of transverse
random fashion, then in the limit of zero coupling, normal vibration of a disordered two-span beam by using a Rayleigh-
modes consist of oscillation of individual pendula at frequen- Ritz formulation with the constraint conditions enforced by
cies equal to their natural frequencies. For small coupling the means of Lagrange multipliers. The' developed a modified
normal modes remain localized close to individual pendula and perturbation method to analyze the localized modes. Figure 7
the normal mode frequencies approximate the natural frequen- shows the mode shapes for tuned and mistuned beam for
cies of the pendula. Thus for a particular mode one pendulum is torsional spring parameter c = 1000, where c = 21A,'iEI. / is
oscillating close to its natural frequency with a large motion. Its the length of the beam and E and I are the Young's modulus
nearest neighbors, unlike the ordered system, are driven off and area moment of inertia of the beam. respectively. For a
resonance, and since the coupling is weak they respond with mistuned beam it is seen that mode localization is manifested in
much smaller amplitudes. These neighbors in turn drive pendula that the peak deflection is much larger in one span than in the
further out and so on. but at each step the driving force and other one.
response tend to diminish in magnitude. A typical mode shape

D diagram is shown in Figure 6. In terms of forced oscillations,
mode localization implies localization of the response in the 4. RANDOM RESPONSE
vicinity of the excitation point. The response of linear structural components with uncertain

The effect of mode localization was examined by Bendiksen parameters can be determined by using standard techniques
(1984ab! and Valero and Bendiksen (1985) who showed that such as the impulse and frequency response functions and %

perturbation methods, or numerical approaches such as stochas-
W(i) tic finite methods and Monte Carlo simulation. The results

reported in the literature will be reviewed in the next two
subsections.

4. 1. Standard techniques

w(1) w(2) (n) 4. 1. 1. Simple structural components
1-4-In an attempt to examine certain aspects of the dynamical

response of statistically defined systems. Chenea and Bogdanoff
(1958) and Bogdanoff and Chenea (1961) considered a linear
single degree-of-freedom system with independent discrete dis-

FIG 6 Schematic diagram of the site amplitude wwi for a local- tributions in the mass. damping, and stiffness coefficients. The
ized normal mode (Hodges. 1982) analysis of Bogdanoff and Chenea was based on a partial
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differential equation for the response joint density function standard deviation of the response amplitude are nonstationary
(Kozin, 1961). This equation is known as the Liouville equation and the standard deviation is 90 degrees out of phase from the
(Soong, 1973) and is identical to the Fokker-Planck equation mean. The amplitude of the response standard deviation in-
with zero diffusion coefficient. Small dispersions in the system creases with time, and gradually dampens out after it reaches a
parameters were found to result in a considerable dispersion in certain level. For systems with a very high natural frequency.
the frequency response. The impulse response of the same the uncertainty in the natural frequency was found to have very
system was determined by using the perturbation method by small effect on the response statistics. However. the effect is
Chen and Soroka (1973). They considered a linear system significant if the natural frequency is low. As the damping
described by the differential equation factor decreases, the dispersion from the mean became substan-

tial.X2 ,,X+ ,X-/(t). (38) ta
The response of multi-degree-of-freedom systems with ran-

where the natural frequency is considered random w, - Z, + dom parameters was examined by Soong and Bogdanoff(1963.
* cC,, Z, is a constant and the perturbation , is a random 1964) and Chen and Soroka (1974). Soong and Bogdanoff

variable with zero mean. t is a small perturbational parameter determined the statistics of the impulse admittance and
and f(t) is an impulse excitation. Chen and Soroka derived the frequency response of a linear chain with random masses dis-
solution of equation (38) by using a perturbational technique. tributed in a small range. Chen and Soroka developed a method
Figure 8 shows a sample of the time history response curves for which relates the statistics of response parameters to the statis-
damping ratio "- 0.05. It is seen that both the mean and tics of the system eigenvalues and eigenvectors. They showed
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that the response statistics of disordered systems are higher opposite to the direction of disk rotation so as to appear
than those of purely deterministic systems. The instantaneous stationary to a fixed observer). An interesting and important
transient response statistics of an undamped linear multi-de- structural phenomenon resulting from mistuning is the splitting
gree-of-freedom system, with random stiffness, subjected to of a bladed disk's diametral modes of vibration (modes having
arbitrary but deterministic forcing functions was investigated 1,2 .... n nodal diameters) into "twin" or "dual" modes, The
by Prasthofer and Beadle (1975). For the case of an impulsive presence of dual modes characteristics in a bladed disk can %
excitation, they found that the growth of the response uncer- significantly affect either or both of its aeroelastic stability and
tainty is exponential. As the standard deviation of the stiffness resonant response characteristics. Whitehead (1966) showed
increases the response mean square increases rapidly with time. that there is an upper limit to the effect of mistuning and is
For a multi-degree-of-freedom system the response decay rate given approximately by the factor of (1 + N)/2. where N is the
decreases as the correlation coefficient between the stiffness number of blades in the row. This upper limit was obtained
elements increases. The influence of damping uncertainty on the under the assumption that the damping forces are substantially -
frequency response of a linear multi-degree-of-freedom system less than the aerodynamic coupling forces. Jay and Burns
was examined by Caravani and Thomson (1973). They de- (1984) conducted a series of rotating and unrotating test to
termined the mean and standard deviation of the response by identify mistuning, damping, split factors for various diametral
using a linearization technique and a Monte Carlo simulation. patterns and dynamic strains signatures from resonant tests of
They pointed out that an accurate estimate of the damping a shrouded fan blade/disk. System mode responses to various
coefficients for lightly damped systems, in the neighborhood of distortion patterns were found to involve standing waves and
a natural frequency, is very important in determining the mean traveling waves.
and standard deviation of the system response. A number of lumped mass models of bladed disk assemblies

The means and variances of the frequency response func- have also been used to study the effects of various blade
tions of a disordered periodic beam were studied by Yang and mistune distributions on the maximum resonant response of the
Lin (1975). Two types of excitation were considered. These were blades (Wagner, 1967; Dye and Henry, 1969; EI-Bayoumy and
a concentrated force (or moment) and a distributed force con- Srinivasan, 1975; MacBain and Whaley, 1984). The nature of
vected at a constant velocity. It was shown that the magnitude the lumped parameter models used in these studies is such that
of the statistical average of the frequency response function can individual blade response was studied in terms of single or
be considerably greater than the value computed without taking two-degree-of-freedom blade modes whose vibratory response
into account the random variation in the span lengths. In the was altered by mechanical coupling via the disk portion of the
neighborhood of resonance frequencies the standard deviation models. Hence, the basis or starting point for these lumped
of the frequency response function becomes quite large, indi- mass models was the individual blade resonant frequencies. The
cating greater uncertainty in such regions. In the case of con- results showed how much greater or smaller the individual
vected loading the use of a perfect periodic model cannot blade response would be for a set of mistuned blades compared
account for the response in certain vibration modes while these to the response of a tuned set of blades. For a given mistuning
modes can be induces in a disordered periodic beam. distribution and excitation, the response of the mistuned set of
4.1. 2 Mistwed bladed disks blades was found to be many times greater or smaller (de-

It has been indicated in section 3.3.3 that the mistuning of pending upon the disk circumferential location) than the re-
turbomachinery bladed disks could have beneficial effect in the sponse of tuned blades. Ewins and Han (1984) conducted a
case of blade flutter. However. the effect is reversed in the case sereis of case studies to examine the influence of various param-
of forced vibration (Whitehead, 1966; Ewins, 1969: Stange and eters on the resonant response levels of individual blades on a
MacBain, 1983). It is believed that Tobias and Arnold (1957) disk. They found, for the case of a 33-bladed disk, that mistun-
have made the first attempt to understand the effect of blade ing always increases the highest resonant response level from
mistuning on the response of stationary waves (modes traveling that experienced by a tuned system but while some blades are
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more highly stressed. others suffered a lower level and the mean Grigoriu claimed that it can be applied to determine the re-
value is roughly constant. It was also concluded that the highest sponse statistics to external dynamic excitations even when the
response is always experienced by a blade of extreme mistune. statistical information about spatial variation of material prop-

Analytical investigations of mistuning fall into three cate- erties is limited. Recently Liu et al (1985a.b, 1986) developed a
gories (Griffin and Hoosac, 1984): deterministic (Dve and number of probabilistic finite elements methods for nonlinear
Henerv, 1969: Ewins. 1973. EI-Bayoumy and Srinivasan. 1975), structural dynamics. These methods are applicable for corre-
statistical Huang. 1982), and combined and statistical ap- lated and uncorrelated discrete random variables. For elastic-
proaches (Sogliero and Srinivasan, 1980: Kazan and Kielb, plastic bar with end load, they (Liu et al, 1985b) computed the
1982; Muszynska et al. 1981). Basu and Griffin (1986) used a mean and variance of the displacement at the free end by using
deterministic/statistical approach and developed a model in- the probabilistic finite element and Monte Carlo simulation.
volving aerodynamuc and structural interaction for studying the The solutions of the two methods compared very well, however,
effect of mistuning on bladed disk vibration. They found that the probabilistic finite element approach required much less
the mistuning effect significantly decreases as the density of the computer time than the Monte Carlo simulation. Unfortunately
gas floing through the turbine is decreased. On the other hand these results did not reflect the influence of parameter uncer-
the effect was found to increase linearly with the number of tainties on the random response.
blades on the disk. The dynamic response of random parametered structures

under random excitation has been examined in a number of
studies by Paez and his group (Chang, 1985; Bennett, 1985:

4.2. Stochastic finite element methods Branstetter and Paez, 1986). These studies provide computer

Recent developments of stochastic finite element methods programs in a finite element framework to establish response

have promoted the analysis of structural dynamics with uncer- moments on a step-by-step basis. These numerical algorithms

tan parameters. These techniques could be broadly classified evaluate the system response characteristics at an advance time

into statistical and nonstatistical (Liu et al. 1985b). The statisti- by using the statistical information about response structural
ca approach is based on numerical simulation via Monte Carlo, characteristics, and excitation at a previous time. Branstetter
stratified sampling, and Latin Hypercube sampling. A compara- and Paez (1986) examined their computer programs for several

tive discussion of these techniques is provided by damped single degree of freedom systems and several un-

Mckay et al (1979). All simulation methods require that the damped two degree-of-freedom systems. The responses of these
joint probability distrbutions of the excitation and random systems to white noise excitations were obtained for random

parameters be available. However, these distributions are sel- stiffness parameters while all other system parameters were
dom to be available. Instead, one usually may assume that the fixed. It was shown that single-degree-of-freedom systems dis-
input random variables are mutually independent and Gaus- play greater response variance than systems with deterministic

sian. If these random inputs are non-Gaussian distributed, one stiffness. The difference in response variance is found to be ,.
may use the Rosenblatn (1952) transformation to transform small when the structure initial conditions are zero. The dif-

V non-Gaussian correlated variables to Gaussian uncorrelated ference increases and assumes an oscillatory character when the

ones. Nonstatistical approaches include numerical integration initial conditions depart from zero. The mean response is non-

(Liu et al, 1985a, 1986). second moment analysis (Cornell 1972) zero for structures with nonzero initial conditions and/or non-

and stochastic finite element methods (Nakagiri et al. 1984: Liu zero mean load. '

et al. 1985ab: Hisada and Nakagiri, 1982; Hisada et al, 1983). Bennett (1985) considered uncertainties in the stiffness and

A major advantage of these methods is that the multivariate damping of single- and multi-degree-of-freedom structural sys-

distribution functions need not to be known but only the first tems. The random variables of the system parameters were

two moments. Recently several stochastic finite element ap- replaced by a deterministic component (equal to the mean of

proaches have been developed by Vanmarcke and Grigoriu the original random variable) and a random component with

(1983). Liu et al (1985a,b). Dias and Nagtegaal (1985), and zero mean and with variance equal to that of the original

Mori and Ukai (1986). Linear problems in structural mechanics random variable. For a single-degree-of-freedom system
with uncertain parameters have been solved by second-moment Bennett found that the value of the peak response increases

analysis (Contreras, 1980: Nakagiri et al. 1984). monotonically with the standard deviation of the stiffness. For

Astill et al (1972) examined the problem of impact loading lightly damped systems which do not have zero mean, the

of structures with random geometric and material properties. effects of the damping randomness on the response are less

Their approach is a combination of finite element method and a pronounced than those obtained when the stiffness was random.
Monte Carlo simulation. For the case of an axisymmetric The standard deviation of the response at the time of peak ...
concrete cylinder they assumed spatial distributions of Young's response was found to increase with the correlation between the

modulus and density for each realization of the test cylinder, stiffness and damping.
Each test cylinder was subjected to the same axial impact
loading. The algorithm gave a sample of 100 maximum stress
intensities from which the sample mean and standard deviation 5. DESIGN OPTIMIZATION AND RELIABILITY
were computed. For a certain intermediate location of the test
cylinder it was found that the axial stress is always different 5.1. Reliability-based design.
from the corresponding stress in a uniform cylinder.

Vanmarcke and Grigoriu (1983) developed a stochastic finite The study of response of disordered systems is very im-
element analysis for solving first- and second-order statistics of portant for design purposes. These responses can help the
the deflection of structural members whose properties vary designer to establish acceptable tolerances on system compo-
randomly along their axis. The covariance matrix of these nents. The main problem which concerns the designer is how to
element averages was obtained by simple algebraic operations govern the fluctuations of the system parameters for safe oper-
on the variance function which in turn depends primarily on the ations. For example when the values of the elastic displacement
scale fluctuation. Although this approach was used to determine of a structure are significant, the problem is to set up an
the free end deflection of elastic members, Vanmarcke and optimum standard of manufacturing the structure components.

.
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Here the permissible fluctuation in the structure parameters Y. Symbolically, these states are
becomes a restrictive condition. Generally, design optimization p "Prob[ Q C 5], and P, - Prob[ Q C 9). (41)
of structures subject to reliability requirements is regarded as

the ultimate goal of any design procedure. The basic approach Among the basic formulations of reliability calculations are
in most reliability-based structural optimization is to impose a the level I and level 2 approaches. In level I one simply applies
set of constraints on overall system reliability or probability of the characteristic safety factor y - RIS. In level 2 one needs to
failure (Ang and Tang, 1975, 1984; Moses, 1973; Parmi and determine a reliability index f which measures, in units of
Cohn, 1978). Another approach suggests to minimize the total standard deviation, the distance between the average point and
cost or weight for a specified allowable overall failure probabil- the boundary of failure region. This means that larger values of r. I
ity (Frangopol, 1984a; Hilton, 1960; Moses and K.inser, 1967). ft imply smaller probability of failure. The probability of failure

One of the main objectives of the designer is to establish an is found (August et al, 1984) to be less dependent on the -.-
acceptable probability of failure. Several procedures for the coefficient fo variation 8,- ,(S)/EtS of external excitation if
analysis of probability of failure of structures have been devel- the corresponding coefficient of resistance 8R - a(R)/E[ R] is
oped (Frangopol, 1984a, b, 1985a, b; Frangopol and Nakib, relatively large, where 8(S) and 8(R) are the standard devia-
1986; Kam, 1986; Moses, 1974; Moses and Kinser, 1967; Moses tions of the applied stress and the resisting stress, respectively.
and Stevenson, 1970). In order to establish a probability of Level 2 reliability methods include the estimation of the
failure consider a structural system subjected to a number of mimimum distance fP which is regarded as a safety measure of
external loads. The structure is said to survive if the applied the smallest distance of the surface separating the safe and
stress OD in the built-in section due to all external loads is unsafe regions from the origin in the space of random vari-
smaller than an ultimate limit stress a. ables Q.

d < ov .  (39) Generally the level of performance of any structural system
S39 depends on the properties of the system. Thus, it is possible to

The equality sign in eq. (39) corresponds to the state of the characterize a function g(Q) known as the performance func-
collapse threshold of the structure. In general, for each limit tion such that
state, it is possible to establish a critical inequality similar to eq. g( Q) > 0 - the safe state, and
(39) and identify, in the space of the relevant parameters, a (4ge)
"safe region Y (or success region)", where the critical in- g(Q) < 0- the failure state.
equality holds, and unsafe region F (or failure region), where it Geometrically the limit-state equation g(Q) = 0 is an n-dimen-
does not hold. These regions are shown in Figure 9(a) according sional surface that is referred to as the "failure surface," The
to Augusti et al (1984), where performance function could be linear or nonlinear. The evalua-

S - UD and R - a. (40) tion of the exact probability of safety for nonlinar performance
function is generally involved and the determination of the

In most cases the applied load S - S(t) is a random process, required reliability index would not be as simple as in the linear
while the resistance R, which is calculated or measured, is a performance function (Ang and Tang, 1984). For correlated
random variable. For each actual structure, the resistance takes non-Gaussian random variables, the safety index may be
up a constant value R,, although uncertain, and the representa- evaluated in terms of another set of independent Gaussian
tive point (R, S) moves in time up and down the solid line in variables through the Rosenblatt transformation (1952).
Figure 9(a). Figure 9(b) shows a possible realization of the Hohenbichler and Rackwitz (1981) developed an algorithm to
random loading process S(t). The limit state is attained when determine the safety index by using the Rosenblatt transforma-
S(t) violates the threshold R. The time to failure tf can be tion.
used as a measure of the structure reliability. Alternatively, one Tanaka and Onishi (1980) developed a method of regulating
can consider a time interval (0. t) and then check the critical the deviations of random parameters and derived a restrictive
inequality in the worst possible condition. This can be for- conditional formula in terms of the permissible displacement
mulated in probabilistic terms by stating that the probability of (or natural frequency) fluctuation. The method is based on the
failure Pf,,1 and the complementary probability of success (reli- linear deviation analysis with partial differential analysis to-
ability) r - P coincide respectively with the probability that gether with sequential linear programming (SLP) for a number
the critical inequality is violated at least once in the interval of restrictive conditions. Tanaka et al (1982) treated the optimi-
(0, t). In space random variables, the probability that a point zation problem of the allowable variance of random parameters
Q, which represents the significant input and system parame- by using a perturbation method and Monte Carlo simulation.
ters, falls either in the failure region F or in the success region They computed the deviation of the steady state response of

R R0 _-f al t-:* t -

S Smx .

R-const. failure --

(a) (b)

FIG. 9. (a) Safe and unsafe regions for (b) realization of S(t} (Augusti et al. 1984).
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structural systems involving random parameters with the pu- possible in real problems because they cannot be identified
pose of regulating the deviation of the random parameters when exactly. It is a common practice in sensitivity theory to define a %
the deviation of the response is specified. sensitivity function S which relates the elements of the set of the

The techniques of mathematical programming have been parameter deviations 1a to the elements of the set of the
extensively used to minimum-weight design of deterministic parameter-induces errors of the system function Ax by the
structures subject to constraints on stresses, displacements, dy- linear relationship
namic response, and stiffness (Moses and Kinser, 1967), Moses Ax = S(na) Ad. (44)
and Stevenson, 1970; Moses 1973, 1974). The stochastic pro-
gramming of dynamically loaded structures was developed This relation is a linear approximation of eq. (43) and is valid
originally by Charnes and Cooper (1959) and is well docu- only for small parameter variations, ic, 11all A Iao1. S is a
mented by Rao (1979). The basic idea of this method is to matrix function known as the trajectory sensitivity matrix which P
convert the probabilistic problem into an equivalent determinis- can be established either by a Taylor series expansion or by
tic one by minimizing the expected value of the objective partial differentiation of the state equation with respect to the
function subject to certain constraints. Davidson et al (1977) system nominal parameters.
applied the mathematical programming techniques for optimi- When the system is random, the function S is referred to as
zation of structures subject to reliability requirements. Their stochastic sensitivity function. Szopa (1984) developed equa-
work resulted in a general formulation of the minimum-weight tions for stochastic sensitivity functions to determine the in-
optimization for indeterminate structures with random parame- fluence of changes in the initial conditions on the response.
ters. Jozwiak (1985, 1986) applied the stochastic programming These functions were apL..d to a stochastic nonlinear oscillator
based on expected values in the problem of optimization of with a limit cycle. It was found that the mean values and the
dynamically loaded structures with random parameters. The variances of the stochastic sensitivity functions converge to
mean values of joint displacements and their derivatives were zero. Szopa (1986) used the sensitivity theory to investigate the
determined by solving the equations of motion of the structure influence of changes in system parameters on solutions of
under the constraints of minimum weight. dynamical systems. The statistics of the stochastic sensitivity

Other techniques such as multi-objective optimization meth- functions were found to have finite values when the response
ods (Rao, 1982, 1984; and Schy and Giesy, 1981) and fuzzy sets exhibit chaotic characteristics.
(Zadeh 1965, 1973; Brown, 1980; Brown et al, 1983) have been 5.22 Design derivtives
employed to the design of simple structural elements and Consider the eigenvalue problem given by eq. (15). It will be
aeroplane control systems involving uncertain parameters and assumed that the eigenvalues X, of the system matrix A are
stochastic processes. The basic idea in multi-objective design is distinct. The elements of A are function of the system parame-
to include all important objectives in a vector objective func- ters a. The sensitivity of the free vibration of the structure as
tion. The problem of optimizing structural systems involving well as the sensitivity of its relative stability with respect to any
dynamic restrictions, random parameters, stochastic processes, parameter of A can be characterized by the sensitivity of the
and multi-objectives has been outlined by Rao (1982). By eigenvalues X, with respect to the parameters.
considering the imprecision of the restricitons such as use, The partial derivative
design, construction, one may assume that, some of the con-
straints and goals for each of the objective functions are fuzzy " ,
or imprecise in multi-objective fuzzy optimization design. If the is known as the eigenvalue sensitivity or the eigenvalue deriva-
corresponding expectation functions for objective and admis- tive.
sion for constraint are introduced it is possible to quantify the The eigenvector sensitivity (or derivative) of the system
fuzzy objectives and constraints. Guangwu and Suming (1986) matrix is also given by the partial differentiation
employed the concept of multi-objective fuzzy design optimiza- mni (4.

tion for ship grillage structures. .,

The eigenvalue sensitivity has been examined mathemati-
5.2. Design sensitivity to parameter variations caly by McCalley (1960), Mantey (1968), and Reddy (1969).

Frank (1978) developed a number of formulae to determine the
5.2). Basic concept of sensitivity analysis eigenvalue sensitivity. The derivatives of the eigenvalues and

The sensitivity of a structural system to variations of its eigenvectors are very helpful in design optimization of struc-
parameters is one of the basic aspects in the design of struc- tures under dynamic response restrictions. They have been
tures. The sensitivity theory is a mathematical problem which extensively used in studying vibratory systems with symmetric
investigates the change in the system behavior due to parameter mass, damping, and stiffness properties (Fox and Kapoor, 1968:
variations. The basic concepts of sensitivity theory are well Kiefling, 1970) and in nonself-adjoint systems (Rogers. 1970.
documented in several books, see, eg, Frank (1978). The sensi- Plaut and Huseyin, 1973; Rudisill, 1974). For distributed
tivity problem can be stated by defining the actual system parameter systems, design derivatives of eigenvalues were first
parameters represented by the vector a - (a . a,, ) encountered in optimization studies by Haug and Rousselet
which differ from the nominal value a, by a deviation AdI. (1980) and Reiss (1986). Reiss used a relatively simple method
These parameters are related to a certain vector x which char- to determine explicit results for the design derivatives of eigen-
acterizes the dynamic behavior of the system. In structural values and eigenvectors. He expressed self-adjoint operator
dynamics the vector x can be taken as the system response equations in terms of integral form by using Green's function
vector. The mathematical model of the system response can be (Reiss. 1983). Recently Kuo and Wada (1986) developed the
written in terms of the first order differential equations nonlinear sensitivity coefficients and correction terms, usually

() { f(x,a. t,F)}, {x( t,)) - {x), (43) eliminated during the linearization process in the Taylor expan-
sion. The nonlinear correction terms were found significant in

where F represents the input vector, problems involving many finite element analyses where the size
Generally a unique relationship between the parameter vec- of the eigenmatrix is of order 10E06 and the difference in the

tor and the response vector is assumed. However, this is not eigenvectors may be of order 0.01.
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Lund (1979) developed a method to calculate the sensitivity w,tz
of critical speeds of a conservative rotor to changes in the
design using a state vector- transfer matrix formulation. Fritzen 4.4 -
and Nordman (1983) have developed the eigenvalue and eigen- A Theoretical
vector derivatives for general vibratory system (with nonsym- 4.0 . ,o

metric system matrices) and used them in evaluating stability 0 Experimental

behavior due to parameter changes in rotor dynamics. Palazzolo cond mode
et al (1983) presented a generalized receptance approach for 3.6
eigensolution reanalysis of rotor dynamic systems. Their method
has the advantage of accomodating system modificaion of arbi- 3.2 -
trary magnitude and treats the modifications simultaneously. 3.,
Rajan et al (1986) developed the eigenvalue derivatives for the
damped natural frequencies of whirl of general linear rotor 2.8 First mode
systems modeled by finite element discretization. For under-
damped modes, the eigenvalue derivative is complex. The real
part represents the damping sensitivity coefficient while the 2.4 I 1 T
imaginary part gives the whirl speed sensitivity. Rajan et al 0.0 0.02 0.04 0.06 Ll
showed that the combination of design parameter and whirl
frequency sensitivity coefficients may be used to evaluate the FIG. 10. Comparison of experimental and theoretical natural fre-
damped critical speed sensitivity coefficients. quencies of the first two modes for c - 281.8 (Pierre et a. 1986).

In reliability-based design optimization it is useful to ex-
amine the results to sensitivity analysis in order to determine ou mit
the influence of the statistical parameters on the optimum ordered case were found in some cases quite large (99%) with
solutions. The essential objectives of sensitivity analysis of any only 2.4% standard deviation in the mass positions.
system is to establish a measure of the way each response Pierre et al (1986) conducted an experimental investigation
quantity varies with changes in the parameters that define the to verify the existence of localized modes for two disordered
system (Grierson, 1983). Recently, Arora and Haug (1979) and two-span beams shown in Figure 7. The beam was pinned at
Frangopol (1985a) have developed a technique for determining both ends while the third support with variable torsional stiff-
the reliability-based optimum design sensitivity of redundant ness was located near the mid-span. This middle support can be
ductile structures. Frangopol investigated the sensitivity of an moved to various locations. A pure excitation torque was ap-
optimum design to changes in the statistical parameters that plied to the specimen beam near its intermediate support.
define the loading and resistance strength of the structure. Figure 10 shows the comparison between theoretical and experi-

mental natural frequencies of the first two modes versus mistun-
ing parameter 81 - Al/i, where I is the length of the beam, and
A/ is the variation from the middle of the beam. The coupling

6. EXPERIMENTAL RESULTS parameter c - 2k,1/EI, where k, is the stiffness of the tor-
sional spring, E and I are the Young's modulus and the area

The first attempt to measure the statistics of structural moment of inertia of the beam, respectively. The degree of
modal frequencies is believed to be made by Mok and Murray localization of a mode is expressed by the ratio A - ,4 ,A,
(1965). They carried out a series of free flexural vibration tests which represents the peak deflection in one span to the peak
of a bar with a stepped profile and a maximum variation in the deflection in the other span. such that the numerator of this
cross section of 50%. The predicted and measured results were ratio corresponds to the span with smaller peak deflection. This
found very close. Twenty years later. Paez et al (1985, 1986) peak ratio is shown in Figure 11 for the two modes for two %
conducted a series of experimental investigations to measure the different values of torsional spring constant c. The mode shapes
random variation of the natural frequency of a cantilever beam. of tuned and mistuned beams are shown in Figure 12. It was
One end of the beam was mounted on a fixture through a screw reported that for 81 - 2% and c - 281.8. the first mode of the
and two washers, and the other end carries a concentrated mistuned beam is strongly localized in the second span. whereas
mass. The torque in the screw establishes a preload which the one of the tuned beam is collective, that is the peak
governs the stiffness of the beam at the fixture. Paez et al deflection is the same in both spans.
conducted 19 experiments each with different values of base A comprehensive experimental and theoretical investigations
torque and stiffness. The variation of the fundamental frequency were conducted by Ewins (1976) to determine the effects of
with the base stiffness was obtained experimentally and numeri- turbomachinery blades mistuning. His bladed disk testpiece
cally (by using a finite element program). It was shown that the model consists of 24 blades. A provision for adjusting the tune
standard deviation of modal frequency increases with the mean of each blade individually was accomplished by adding a num- P4

modal frequency. Another interesting feature observed by Paez ber of washers to a nut and bolt attached near the tip of each
et al was that the magnitude of random variation in modal blade. The test piece was excited by placing an electromagnet
frequency can become greater than the spacing between modal close to its surface and passing an alternating current through
frequencies as the frequency order increases. the magnet. The response of the bladed disk was detected by a

The phenomenon of normal mode localization was first set of strain gages fixed near the root of each blade. The natural
examined experimentally by Hodges and Woodhouse (1983). frequencies were then measured by adjusting the frequency of -.-,
Their model was a thin high-tensile steel wire stretched between the magnet so as to produce a large response in the strain gage
two supports. Seven small lead weights were securely attached outputs. The shape of each mode was determined by examina-
initially at equal lengths and then were shifted slightly to give a tion of the relative amplitudes of all the blades. It was observed
controlled amount of irregularity. Under a step function force that there was a distinct, though complex, pattern linking the
with repeatable amplitude the string motion was observed and basic (tuned) mode shape with the mistimed mode shape and
measurements were taken for the energy transmission from end the mistuned pattern, particularly for the lower diametral modes.
to end of the string. Levels of energy attenuation in the dis- Jay and Burns (1986) conducted a series of rotating and non-

-.-
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A rotating tests to identify individual blade frequencies. mode

1.0 shapes, mistuning. damping. and split factors for diametral
'A Theoretical patterns of the 3, 4, 5, and 6 diametral mode families The first
0 Experimental harmonic of the normalized axial velociN deficit at the proper

0.5 Scmass flow rate was used to construct a gust perturbation veloc-
ity. These spanwise gust perturbation velocities multiplied b.
the product of the density and the relative velocity squared
results in the normalized force parameter It was found that an%

0.0 increase in the perturbation force parameter results in an in-
crease in the dynanuc stress in the bladed disk In addition the

First mod perturbation parameter does account for the interaction be- %

tween the wake and modal response of the system as they are
-0.5 changed by aerodynamic loading.

7. CONCLUSIONS

A
1 Theoretical Several problems in structural dynamics involving parameter

1.0 (b) Experismental uncertainties have been treated in the literature. These problems
include the random eigenvalue of disordered systems, normal
mode localization, random response. design optimization. and

0.5 reliability. The mathematical theory of the random eigenvalue

Second mode has reached the maturity stage, however, this theory has not
been fully implemented to treat real engineering problems. It is

0.0 . observed that some progress has been made towards the devel-
opment of numerical algorithms such as stochastic finite ele-
ment methods and Monte Carlo simulations to determine the
response of structural elements. These developments have pro-

-0.5 moted the investigation of several problems including mistuned
turbomachinery bladed disks, reliability-based design and de-
rivatives of eigenvalues in design optimization. Few attempts

-1.0 I I have been made to employ new approaches such as multi-

0.0 0.02 0.04 0.06 9 objective optimization and fuzzy sets in design optimization
problems. It is believed that these techniques will have new

FIG. 11 Comparison of expenmental and theoretical peak ratio A research avenues in many design problems. Another area of
of the first two modes for (a) c - 904. (b) c - 281 8 (Pierre et al. 1986) potential future research is the optimum design sensitivity in

reliability-based design under multilevel reliability constraints
to evaluate the significance of various uncertainties and ap-
proximations on the optimum solutions.

The problems treated in the literature have been restricted
within the framework of the anear theory. The limitations of
.-he linear formulation need to be defined to provide the struc-

tuned tural dynamicist the influence of nonlinearities as a source of
uncertainty. Future studies should include the influence of
geometric and material nonlinearities. Experimental investiga-
tions are also very important to examine the influence of

parameter uncertainties of composite structures on their dy-

namic performance. r.

(A) 01 - 0.0
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