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ration. The solution shows that the response coordinates are non-stationary
: random processes and the three normal modes are in complete nonlinear inter-
action. The interaction is found to be very strong at a region of internal
detuning which is shifted from the exact internal resonance condition. This

result is under further investigation by wusing a non-Gaussian closure
, scheme.

\ The experimental investigation is conducted out on a two degree:of-freedom
model»lzafse analytical solution was obtained during the first year of this
projectT> When the first normal mode is externally excited by a band-limited
A random excitation, the system mean square response is found to be linearly
3 proportional to the excitation spectral density level up to a certain level
above which the two normal modes exhibit discontinuity governed mainly by
the internal detuning parameter and the system damping ratios. The results
are completely different when the second normal mode is excited. For small
levels of excitation spectral density the response is dominated by the
second normal mode. For higher levels of excitation spectral density the
first normal mode attends and interacts nonlinearly with the second mode in
a form of energy exchange. -

New directions of this research project have been evolved during this year.
These include the influence of random in aerodynamic forces on the nonlinear
response of typical aeroelastic structures. Two aeroelastic models, are
chosen to carry out this investigation.




~’f$'\'\'$I' LS

+ TABLE OF CONTENTS

L]
e 3 % &

Page Number

A A A A

% ABSTRACT ® & e & P 6 8 e+ e e & s & s * * & B B 6 ¢ o & s s o o o 1

INTRODUCTI ON ¢ & & e s 2 e 2 & 2 s e & ¢ s+ & 2 & e 6 s & s s o o 3

SUMMARY OF MAIN RESULTS .

.
.
.
.
.
.
.
.
.
.
.
.
.
.
(¥1 ]

Pttt et
. _"!{‘v/.i""‘ Ly

ANALYTICAL INVESTIGATION . « « ¢ o o ¢ ¢ o « o o o o o« s o « 3

EXPERIMENTAL INVESTIGATION . o & v ¢ o o s o v o o o o o o o & 73
".‘o
NEW RESEARCH DIRECTIONS « « « « « « o o « ¢« o s o s « s s o &« 5 e
.

LIST OF PUBLICATIONS . ¢ « ¢ o o ¢ o o« o o o o s o o s s o o« o o« b

PROFESSIONAL PERSONNEL . ¢« ¢ ¢ ¢ o o o o o o o o o o s o o o

~
'

.-:'
APPENDIX I: Preprint of "Stochastic Modal ':
Interaction in Linear and Nonlinear o
Aeroelastic Structures"” .
APPENDIX II: Preprint of "Experimental Investigation of ':
Structural Autoparametric Interaction ;
Under Random Excitation” N
~
APPENDIX III: Preprint of "Structural Dynamics .
with Parameter Uncertainties”
¥
"s N
Accesion For J
NTIS  CRA&I W -

DTIC TAB ]
Urannesced ]
Justhication

Di.t tbution |

¢

% .l' '-' * .'l. 'v’ b

vy

L ——

Availability Codes

‘ Avail and | or
Dist Special

All |

prIC

O ale e ANy
RARIRS IS

L dald ey
INSPICTED
At N L N e T e et s e N T e T AN
LA AL W o R N P N PR R e S R O R T A P R R O A AN A ARG AN A




(PRI R W Wi T PO U VU RSN A e  Bat Pat Bav Ba’ Borx b B b

ABSTRACT

The work accomplished during the second year of this research project is a

combination of analytical and experimental investigations:

The analytical part deals with the nonlinear response of a three-degree-of-
freedom aeroelastic structural model in the neighborhood of combination
internal resonance condition. The Fokker-Planck equation approach is used
to derive a general differential equation for the response statistical joint
moments. This equation 1is found to constitute a set of infinite coupled
first order differential equations. In view of the system complexity an
attempt 1is made to close the infinite hierarchy by using a Gaussian scheme.
This scheme leads to 27 differential equations in the first and second
response moments. The equations are solved by using numerical integration.
The solution shows that the response coordinates are non-stationary random
processes and the three normal modes are in complete nonlinear interaction.
The interaction is found to be very strong at a region of internal detuning
which is shifted from the exact internal resonance condition. This result

is under further investigation by using a non-Gaussian closure scheme.

The experimental investigation is conducted out on a two degree-of-freedom
model whose analytical solution was obtained during the first year of this
project. When the first normal mode is externally excited by a band limited
random excitation, the system mean square response is found to be linearly
proportional to the excitation spectral density level up to a certain level

above which the two normal modes exhibit discontinuity governed mainly by

the internal detuning parameter and the system damping ratios. The results
are completely different when the second normal mode is excited. For small
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levels of excitation spectral density the response is dominated by the N
second normal mode. For higher levels of excitation spectral density the )
first normal mode attends and interacts nonlinearly with the second mode in

a form of energy exchange. d?
\J

New directions of this research project have been evolved during this year. '
These include the influence of random in aerodynamic forces on the nonlinear ’
response of typical aeroelastic structures. Two aeroelastic models, are N

chosen to carry out this investigation -
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INTRODUCTION

This report presents the main results of the research project "Stochastic
Nonlinear Flutter of Aeroelastic Structures" funded by the AFOSR under grant
No. AFOSR-85-0008. The report covers only the work performed during the
second year of this project. Furthermore, additional new research problems
have been evolved during this year. These problems include the influence of
the aerodynamic forces on the random response of nonlinear aeroelastic
structures. A formal proposal will be submitted next June for new funds to

support these new problems.
SUMMARY OF MAIN RESULTS

ANALYTICAL INVESTIGATION

The 1linear and autoparametric modal interactions in a three degree-of-
freedom structure subjected to wide band random excitation are examined.
For a structure with constant parameter properties the linear response is
obtained in a closed form. When the structure stiffness matrix involves
random fluctuations, the governing equations of motion, 1in terms of normal
coordinates, are found to be coupled through parametric terms. The struc-
ture response is mainly governed by the condition of mean square stability.
The boundary of stable-unstable response is obtained as a function of the
internal detuning parameter. The results of the linear system with constant
parameters are wused as a reference to measure the deviation of the system
response when the nonlinear inertia coupling is included. In the neighbor-
hood of combination internal resonance the system random response is deter-
mined by wusing the Fokker-Planck equation approach together with the
Gaussian closure scheme. This approach results in 27 coupled first order

differential equations in the first and second response moments, These
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equations are solved by numerical integration. The response is found to
deviate significantly from the linear solution when the system internal
detuning 1is close to the exact internal resonance. The autoparametric
interaction 1is found to depend significantly on the system damping ratios
and the nonlinear coupling parameter. 1In the vicinity of combination inter-
nal resonance, the second normal mode mean square exhibits an increase
associated with a corresponding decrease in the first and third normal
modes. The first normal mode shows a very small deviation from the linear
solution which implies that the nonlinear interaction takes place between
the second and third normal modes. This unexpected feature is currently
under further investigation in parallel to a non-Gaussian closure analysis.
The results of this work has been accepted for publication in the journal of
Probabilistic Engineering Mechanics. A copy of the page proof of this paper

is attached.

In order to enhance our understanding to the main results of structural
dynamics with parameter uncertainties, the P.I. has conducted an extensive
literature survey which has been accepted for publication in cthe ASME

Applied Mechanics Reviews, A preprint of this paper is attached.

EXPERIMENTAL INVESTIGATION

A series of experimental tests is conducted on a two degree-of-freedom
elastic structural model. The model is subjected to a band-limited random
excitation with a central frequency very close to one of two mnormal mode
frequencies. The band width 1is selected such that only the mode under
consideration is excited. The model normal mode frequencies are adjusted to
have the ratio 2 to 1. This ratio meets the condition of internal resonance

of the analytical model. When the first normal mode is external excited the




system mean square response is found to be linearly proportional to the

excitation spectral density up to a certain level above which the two normal
modes exhibit discontinuity governed mainly by the internal detuning
parameter and the system damping ratio. The results are completely
different when the second normal mode is externally excited. For small
levels of excitation spectral density the response is dominated by the
second normal mode. For higher levels of excitation spectral density the
first normal mode attends and interacts with the second normal mode in a
form of energy exchange. A number of deviations from theoretical results
are observed and discussed in the attached manuscript (28th SDM Conference,
Paper No. 87-0079-CP) which will be presented at the AIAA/ASME/ASCE/AHS 28

Structures, Structural Dynamics and Materials Conference.

NEW RESEARCH DIRECTIONS

The influence of random aerodynamic forces, in subsonic and supersonic flow
regimes, on the nonlinear response of typical aroelastic structural models
has been identified as a potential problem in aeroelastic flutter. Two
models, which include a cantilcvel wing beam and a flat panel, will be
adopted. The equations of motion of the first model have been derived by
using the Lagrangian formulation. The aerodynamic forces are derived by
using the modified strip theory which includes the effect of the span finite
length. The linear part of the equations of motion has ben considered to
derive the flutter boundaries and to identify the system eigenvalues. This
prelimenary analysis is essential to identify the system parameters which

satify the condition of internal resonance between bending and torsional

motions. The work of this part is in progress.
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Stochastic modal interaction in lincar and nonlinear

aeroelastic structures

R. A. Ibrahim and Z. Hedayati*

Texas Tech. University, Department of Mechanical Engincering, Lubbock. Texas 79409, USA

The linear and autoparametric modal interactions in a three defree-of-frecdom structure under
wide band random excitation are examined. For a structure with constant parameters the Jinear
response is obtained in a closed form. When the structure snffness matrix involves random
fluctuations, the governing equations of motion. in terms of the normal coordinates. are found 1o
be coupled through parametric terms. The structural response is mainly governed by the condition
of mean square stability. The boundary of stable-unstable responses is obtained as a function of
the internal detuning parameter. The results of the linear system with constant parameters are
used as a reference to measure the deviation of the system response when the nonlincar inertia
coupling is included. In the neighbourhood of combination internal resonance the system random
response is determined by using the Fokker Planck equation approach together with the Gaussian
closure scheme. This approach results in 27 coupled first order differential equations in the first
and second response moments. These equations are solved numerically. The response is found to
deviate significantly from the linear solution when the system internal detuning is close to the exact
internal resonance. The autoparametric interaction is found to depend significantly on the system
damping ratios and a nonlinear coupling parameter. In the vicinity of combination internal
resonance, the second normal mode mean square exhibits an increase associated with a
corresponding decrease in the first and third normal modes.

1. INTRODUCTION

The modal analvsis of acrolastic structures is usually
carried out by using one of the available computer codes
for eigenvalues and eigenvectors. These computer
algornthms are uscful in determining the structural
dynamic behavior under various types of excitations. The
fost step uwsualhy  dnvolves  the  determination  of
cigenvalues and eigenvectors. With this information one
can determine the lincar response to determimistric or
random excitations.  For  systems with  constant
parameters the mean square response to external white
noisc s linearly proportional to the excitation spectral
density. If the excitation is acting parametrically to the
svstem the equilibrium state could be stable or unstable in
a stochastic sense. In certain situations the structure may
not behave according to the linear theory of small
oscillations and a number of complex response
characteristics  such as amplitude jump. internal
resonance, saturation phenomenon, and chaotic
motion'? may be observed. These new characteristics
owe their origin to the system wherent nonlincarities
which should not be ignored in dynamic analyvsis

In aircraft structures several types of nonhincarines
have been reported. Breitbach?® classified  structurai
nonlineariics into  distnbuted  and  concentrated
Distribution  non‘inearity s induced by clastic
deformation in riveted. screwed and bolted connections

* Currently PhD student. Massachusetts Institate of Technolog
Depurtment of Mcchamiea! Eneineening. Cambadee, MA 0263 1 SA
Recened Seprember 1986 Discosvion closes February 1987

as well as within the structural components themselves.
Concentrated nonlinearity acts locally lumped in control
mechanisms or in the connecting parts between wing and
external stores. This nonlinearity results from back-lash
in the linkage elements of the control system. dry {riction
in control cable and push rod ducts. kinematic limitation
of the control surface deflection. and apphication of spring
tab system provided for relieving pilet operation.
Breitbach® determined the flutter boundaries for three
different configurations disinguished by different types of
nonhnearities in the rudder and atleron control system of
a sailplane. Tt was shown that the influence of hysteretic
damping results in a considerable stabilizing effect and an
icrease 1n the flutter speed. However, this spectal tvpe of
non-linearity does not bring the structural response into a
bounded hmit cyvele. Similar effects of nonhneanities duc
to friction and back-lash were considered by De Ferrari er
al *, Peloubet ¢r ol ®, Reed er al.” and Desmarais and
Recd®  cxamined the effects of control  syvstem
nonhncarities, such as actuator force or deflection hmats,
on the performance of an active flutter suppression
system. [t was shown that a nonlincar svstem which is
stable with respect 1o small disturbances may be unstable
with respect to large ones Anotherimportant feature was
that a store ona pylon with low pitch stiffness can provide
substantial increase in flutter speed and reduce the
dependency of Nutter on the mass and inertia of stores
relitnve to that of suff-mounted stores.

In structural dynamics. the nonhinearity may take one
of three classes” ' clastic. merua. and  damping
nonhneantes. Elasue nonhneanty stems from nonlinea
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strain-displacement relations which are inevitable. Inertia
nonlinearity is derived, in Lagrangian formulation, from
the kinetic energy. In multi-degree-of-freedom systems
the normal modes may involve nonlinear inertia coupling
which may give rise to what are effectively parametric
instability phenomena within the system. The parametric
action is not due to the external loading, as in the case of
parametric vibration, but to the motion of the system
itself and, hence, is described as autoparametric’’. The
main feature of autoparametric coupling is that responses
of one component of the structure give rise to loading of
another component through  time-independent
coefTicients in the corresponding equation of motion. The
deterministic autoparametric interactions in two and
three freedom cystems were examined by Barr and
Ashworth'?, Haddow er al.'3, lbrahim et al.'*, and
Ibrahim and Woodal'®. These studies have shown that
the mode which is externally excited exhibits a saturation
phenomenon in which energy is transferred to other
modes involved in the nonlinear coupling. The stochastic
aspects of parametric and autoparametric vibrations have
recently been documented in a recent research
monograph by Ibrahim!é

To the authors® knowledge the random response of
systems with autoparametric coupling has been restricted
to two-degree-of-freedom systems. This paper deals with
the linear and nonlinear modal interactions of a three
degree-of-freedom aeroelastic structure subjected to
random excitation. The deterministic respinses of this
model under various internal resonance conditions
Y kw;=0 (where k; are integers and w; are tge system
normal mode frequencies) have been determined by
Ibrahim er al.!*!®. The system involves quadratic
nonlinear inertia which couples the system normal
modes. It was shown that under principal internal
resonance, the mode which 1is directly excited is
suppressed and energy is transferred to the other mode.
When the structure possess combination internal
resonance of the summed type the normal mode
amplitudes did not achieve a steady state and the
response is characterized by energy cxchange between the
three modes.

The main objectives of this paper are to present the
linear, parametric and autoparametric random responses
of the same aeroelastic model considered in Refs 14 and
15. The mean square responses will be evaluated for a
mode] with constant parameters and for a model with
random variations in its stilfness matrix. The nonlinear
random response of the system in the neighbourhood of
combination internal resonance of the summed type will
be determined by using the Fokker Planck cquation
approach together with a Gaussian closure schcme. The
effects of the system nonlinearity and damping
coefficients on the mean squarc responses will be
examined.

11. BASIC MODEL AND EQUATIONS OF
MOTION

Fig. 1 shows a schematic diagram of an analytical model
of an aircraft subjected to random excitation F(r). The
fuselage is represented by the main mass my, lincar spring
K ;. and dashpot C,. Attached to the main mass on cach
side are two coupled beams with tip masses m, and .,
stiflnesses K| and K,,and lengths!, and /,. In the analysis

f.v( 7 ay

..
'
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Fig. 1. Schematic diagram of an aeroelastic Structure
and Coordinate System

of the shown system only the symmetric motions of the
two sides of the model are considered. Under random
excitation the system responsc will be described by the
gencralized coordinates ¢, ¢,, and g3 as shown in the
figure. The equations of motion are defived by applying
Lagrange’s equation

d {cL cL (
e o

where L=T-V.
The kinetic energy T is given by the expression'’

1 312 MN., 1t .,
T—§ my +ni,| 14 21 ql+§mzqz

Im,l, | .
j—zfmz

—

+§ (1 +m, +my) g3+
9m,l

+ (1, +111,)G, 4 +——:3—2(ql412+541414'3)
2003

3m a9
+——2(q' 22 4416243 +419243 +G192)

21, 5
6n
+ S 2 (920205 + 419242) ()

where a dot denotes differentiation with respect to time t.
Neglecting the gravitational effects, the potential energy
Vis given by

V=1/2(k g7 +k,q3 +k,q3) &)

Substituting for 7 and Vin equation (1), and considering
F(1) as the only nonconservative force (damping forces
will be introduced later) results in the equations of motion
in terms of the nendimensional coordinates g,

My, My, Mg d, k, 0 0 4,
w3 | m, my, 0 g} +10 &, 0 4z
myy 0 ma, q, 0 0 k&, 4a
| 0 L
IH:(/3(1)3 -
=3 0 - *—‘I*'— ijlz (4)
q3 ) 1 ~
Flrjwy) Vs
where
4,= 4,4 T=w,l
¢y 18 tahen as the root-mean-square of the mamn mass
when all other parts are locked under forced exaitation.




w; is taken as the third cigenvalue of the system, and
myy =my+my[1+225(1, /1))
Mys =1,
Nlyy =Ny 40y + 0y
myy=1.5my(l,/1,)

Ny y=m, +imy

¥ ="’z[045(12’ (29,4, + i + 54,G53)
+(L5/100.29, 5y + 4243 + 2424, + 24,4,
+(1.2/1,)(q24: +¢3) (5)

where a prime denotes diflerentiation with respect to the
dimensionless time 1.

III. EIGENVALUES OF THE SYSTEM

The system eigenvalues are determined from the
conservative linear part of the equations of motion

(m)iq} +[k]iq} ={0} (6)
The characteristic equation of {(6) is
Det|[k] - w*[m]|=0 (7

where w is the eigenvalue of the mode in question.
Expanding the determinant gives the cubic equation

2 2 6 2
m m w w
-1 +—lz+__L — + st 23
My My, m“mn w33 Wy3
2 4
w IH m w
22 l3 +{1- 12 <
Wiy ”1]’"133 ny My, [OFT
[(Ull> (w ) <wll)2+<w22>zJ< - )2
W33 W;2 Wjy3 Wys
w ,
(e
W33 w

7/ \Y™33y/

where the frequency parameters w,,=K,/m,. are the
natural frequencies of the individual components of the
structure. The IMSL (Internatioral Mathematical and
Statistical Library) Subroutine ZPOLR (Zeros of a
Polynomal with Real Coeflicients) is used to find the
roots of equation (8) numerically. Fig. 2 shows a sample
of the dependence of the natural frequency rationr = w,/
{tn, + ;) on the ralios @, /wyy and w,, /vy, for beams
length ratio /, /1, =0.25, and mass ratios m, /m, = 0.5, and
my/m, =5.0. Other sets of curves for different system
paramcters are obtained and reported in Ref. 17. The
importance of these curves is to define the critical points
where the structure posseses internal combination
resonance r = 1.0. It is seen that the most critical region is
located for the curves of w,,/my3=1 and 2. For the
analysis hereafter the following paramecters wili be used:
I3/1;=0.25, w,, fry3=1.4.

IV, TRANSFORMATION INTO NORMAL
COORDINATES

Equations (4) include lincar and nonhnear dynamic
couplings. The lincar coupling s chiminated by
transforming equations 14} into normalized coordinates

0 I 4 1

0 1 2 3 o e

Fig. 2. Dependence of  frequency  ratio on  system
paraimerers for 1,70, =023, myym, =05, my/m =3

Y,. by using the transformation
=(R){Y] ©)

where [R] is the modal matrix consisting of the
normalized eigenvectors,

[(Rl=1|n, ny ny (10

the elements of matrix (10) are deternined by using the
decomposition method'® and are listed in Ref. 17.

Rewrniting equations {4) in the matrix form and using
transformation (9} gives

(m)[RY(Y" L+ [K)[R) Y =(F!—v) (11)

Premultiplying equation (11) by the transpose of the
modal matnx results in diagenahzing the mass and
sullness  matrices. The resuling equations mvolve
nonlinear couphing and have the form

MO 0 l\',’l Ay 00 14\,1
moy [0 M, 0 +4, 10 4, 0 ',\:[

V2
0 0 My, l\,l 0 0 Ay I.‘J

nF{t/w,) . ‘ v, I (12
L R ' _ IH;‘(] 3y .
=4 anF(r(.))), L Iw:l
INZIATN Yy
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a=m,/m,, p=1/,
Lijk =098 +2258n,+0.3n, + 1505, + 3n;
+ (L2, +n 034+ 1.50 +(1.2/8)n,(1 +n,)]
+n[2.250+ L5(n,+n)+(1 .Z/ﬁ)njnk]
15 =09 +3(n;+n) + (2.4/B)nn,
—=24n,4+n[4.58+ 30+ n) + (2.4,’[3)njnk]
(i#k)
M, =0.458+3n,+ 1.2/}
= 1.2n,4n[2.258 + 3n,+ (1.2/n}]

(=k=1l (13)

Y. DYNAMIC MOMENT EQUATIONS

The response coordinates can be approximated as a
Markov vector if the random excitation 1s approximated
as a zero mean physical white noise #'(z) having the
autocorrelation function

R (A1)=E[W({1)W(t+A1)]=2Dé(A1) (14)

where 2D os the spectral density intensity and &( )is the
Dirac delat funcation. This modelling 1s justified as long
as the relevant Wong-Zakai'® correction term is
introduced. The non-linear functions ; contain
acceleration terms coupled with  displacement
coordinates such as Y7Y, These terms are removed from
equations (12) by successive elimination by using
MACSY MA software. Equations (12) take the new form

Yi4 2 s Yit+rhYi= W) +eg (YY) (19

where linear viscous damping terms have neen introduced
to account for energy disstpz ‘ion, and

P =k /MK my), Fia =W /s,
fi=n /M. e=q5/l,

W)=

Flt/w;)

q3u3r11,

Introducing the transformaton into the Markov state
vector X

(YL YL Y Yo Y ¥y =X, X, X (16)

equations (15) may be written i the standard form of
Stratonovich differential equations

6
dX,=F(X.0d:+ ¥ G (X.1}dBx) (1T
=1

where the white noise H'(r) has been replaced by the
formal derivative of the Browman motion process B(t),
e,

Wity=6dBt:) d:, 62=2D

Alternatively, equations (17} may i turn  be
transformed into the lto type equation

ol ( JX. r)
T Y 6N dr

e t,\.A

d.\',=[>f‘,(4\.r)‘

1

L]

+ 3 G N ) dB ) (18)

dX,=X,dr,

dA’2=—{25| ‘3X2+"l3X +—

where the double summation expression is called the
Wong-Zakai correction term'®

The system stochastic 1to equations are

dX,=X,dr, dX,=X,dz

M [( 20 ry3x, — "nxn)
1]
X (L X+ L X3+ L3 Xs)

— (2,23 X +133X3)

X (Lyy2 X+ L5 X 3+ L3 Xs)—(+ 203X+ X)
X(Lnsxx+L123X3+L133X5)+A1111X§

+ M, X34 M, 55X

FM XX e+ M X X o+ A1mx4x6]} dr

i [Nl X+ Lya X3+ L3, Xs)
M“

+ (L1 X + Ly X3+ L3, Xs)
+ 5Ly 3 X+ Ly23X 3+ Ly3sXs)]

ea?
M“M22

+f3(Lyy 3 Xy 4+ Lyga X3+ L33, X )
+(f3(La)3 X, +Ly23X5

+ L33 X)Ly 12X+ L2 X3+ Ly, Xy)
e’a?

+1\1“1\'I33

+2(L3; X + L350 X,

+ L33, X )+ [3(L313 X, + Ly Xy

+ L33 X)) + Ly X,y

[ fi(Lyy X 4+ L33 X3+ Ly5, X )

[filly X+ L3y X3+ Lyy Xs)

+L13 X+ Ll,y\'s)} dB

£x - . 2
dX, .= — {4_,2 PN+ 13y X3+ ——[(= 20,138, —riX))

M,
X(Lyy X+ L33 X3+ Ly, Xy)
= (203133 X ¢+ 133X y)

X(LyyaXy+ Ly, X3+ La3n Xs)
— (20, X+ X)

X (L3 X, + Ly X3+ L;33X0)
+ My X34+ Mg X3+ Moy NG

F My X X+ My N, X, +/\12:,,\',,X,,]} dr
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x[filly; 1 X, + L2, X3+ L5, Xs)

+ (L2 X+ L2 X3+ L3, Xs)
+ /3Ly 13X + L33 X3+ L33 X))
eta?

x(Lyy, X, +L22,X3+L23,X5)+m3

X[ fi(Lsy 1 X+ Lyy X3+ Ly3, Xs)
+f3(L3y 2 X + L33 X 3+ L33, Xs)
+ /3Ly 13X + Lyp3 X 3+ Ly33Xs)]

v r - 81 - ’ 2 '
dXe=—{2;X¢+ Xs+—[(—=20,r3 X, —r1:X))
M,

X(L3yy Xy + Ly X3+ L5, Xs)
= (2533 X +733X5)

X(L312X )+ L3 X3+ L33, Xs)
— (203X 6+ X5) (L3 3 X,

X Ly;3X3+L;333X5)

+ My X3+ My X3+ My X3

+My X, X+ My, 3X2X6Msst4X6]} dz

e ;
+f3———[filL3), X, + L35, X3+ L33, Xy)
My,

+ /(L3 2 X+ L3y X3+ L33, Xs)
+/3(L3y3X ) + Lay3 X3+ Ly33X)]
ea?
MM,
+f2(Lyy Xy +Ly50X s+ L5 Xo)
+ /3Ly s Xy + L3 X 3+ Ly 33X )]
X (L3, X, +L321X3+L3 lxs)
. e’
My3M;,
+ 2Ly 2 Xy + Lapa X3+ L;3:Xs)
+ 3Ly 3 X + Loy X3+ Ly3yXs)]
X (L3y2 Xy + Ly X3+ L33, X)j dB

(AL X+ L X3+ Ly, Xs)

3
[NLa X+ L X3+ Ly3,Xs)

(19)

The evolution of the response probability density
function is described by the Fokker-Planck equation

pXa) & ¢ ' |
et .;. o, [adX.1)p(X.1)]

+lii & (b, X 7)p(X.1)] 20

2"’lj=l‘:/\’,(.:xj GdNATIPLAT 2 )

where p(X,1) is the response joint probability density
function, and a,(X.1)and b, (X, ) are the first and second

.
LSRN

e

incremental moments evaluated as [ollows

ai(X.1)= lim A—lt— E[Xf1+A1)~ X {1)]

4t—0
1
hij(x'r)=,;l.iTo A E[iX{t+Ar)-X (1)}

x{Xj(t+A1)- X (1)}] (21)
The coefficients a; and b;; are evaluated for the present
system with the aid of MACSYMA program. It is not
possible to solve the resulting Fokker planck equation
even for the stationary case. Instead, one may gencrate a
general first order differential equation describing the
evolution of response moments of any order. This
equation is obtained by muluplying both sides of the
system Fokker Planck equation by the scalar function
D(X)
GX)= X4 XeXeXe XXy (22)
and integrating by parts over the entire state space — o0 <
X < 0. The following boundary conditions are used

p(X— —c0)=p(X—0)=0 (23)

Due to space limitation the system moment equation
will not be listed in this paper. The reader may refer to
Ref. 17 for more details. However, the general form of the
resulting differential equation is

my = Fy(m;,my,. .. my,mN+ 1) (24)
where N=3 %, k,.

In deriving the system moment differential equation the
following notation is adopted

M, ___k.=J- . JP(X,I)Q(.\’)dX, dx,...dXx, (25)

-«

It is found that the differential equation of order N
contains moment terms of order N and N + 1. The source
of this infinite hierarchy is the system nonlinear functions
¥; in equations (12). If these nonlincar functions are
dropped the system becomes linear and the responsc
moment equations are consistent, In the present study the
following three cases will be examined:

(i) Lincar response of constant coefficients structure.

(i1) Linear response of the structure with random
stiffness.

(iti) Response of the structure with autoparametric
interaction involving the internal combination
internal resonance wy = w, +w,.

VI. STRUCTURE WITH CONSTANT
PARAMETERS

The equations of motion for this case are obtaincd from
equations (11) by excluding the nonhnear functions .
The resulting equations of motion are

20, 00 lr’,l
0 0],y
-

I,
<2723

00 ),I
ool yvst o+
0

1
0 :
0 4 P B Y
iy 00 ‘)', I 1 l
+ [0 r3y O 40, =Wy N
0 0 1 l)', ‘ If, ‘ (26)
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For this linear case the response moment differential
equations are consistent. The mean squares of the
stalionary response is obtained in the closed form

E[Y})=Df}/(2,r5),  E[YV)=Df1/(25r,),
E[Y§]=Df§/(2§z’;3)o E[Y§2]=Df§ /203r33)
E[Y3]=Df3}/(25), E[Y¥]=Df}/(2{y)

Before presenting the linear response graphically, it
would be useful to recall that the generalized coordinates
g;were nondimensionalized with respect to the root-mean
square of the main mass response when the coupled
system was locked under forced excitation. The value of
q5 can be estimated from the single degree of freedom
equation of motion

{m, +my+m3)g5+ Caq3 +kaq5=Flt) (28)
which has the stationary response
E[43’]=E[45%]) =D/, (29)

q5=+/D/2{, (30)

The excitation parameter level D/2{; is chosen so that
q5 is chosen so that g5 is unity and as a result any
deviation from unity gives a measure of the dynamic
interaction (linear or nonlinear) with other mides. For the
analysis hereafter the excitation level will be chosen such
that

and therefore

D/ =1 L (31)

In this case the mean square response (27) is reduced to
the simple form

4L /i L Ji
E[Y}]=22 4L, E[Y2]=2ZL,
[ri] {311y (vv] Carys
- 2 2
E[Y3 =;—Zfi, E[Y? =C—’—fi,
[ 2] e;ris [ 2] {3723
E[Yi]=E[Y¥]=/3} (32)

The linear response for both normalized and generalized
coordinates is determined for various damping ratios.
Figs 3 and 4 show the mean square responses as a
function of the frequency ratio r for two sets of damping
ratios. It 1s seen that both the first and second normal
mode mean square responses decrease faster than the
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Fig. 3. Mean square response of normal modes for
5 =0, =0.005, 3=001
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Fig. 6. Mean square response of generalized coordinates
Jor {,=0,=001,{3y=0.01

third mode as the frequency ratio increases. In terms of
generalized coordinates, Figs Sand 6 shows that the mean
square displacement increases while the two beam
displacements decrease with the frequency ratio. The two
sets of figures show the well known control damping effect
on the mean square responses.
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VII. STRUCTURE WITH RANDONM STIFFNESS

The equations of motion of this case are obtained by
including a random component to each stiffness in the
original linear equations of motion.

The equations of motion take the

myy, My My, 4

nyy myy 0 4,

myy O Ny, 43
k,+S,() O 0 q, 0
+10 ky+S,(¢) O q; =40
0 0 ky+S,ln) q | F(1)
(33)

Introducing the same dimensionless parameters listed
in Sections 11 and 111, the equations of motion in terms of
the normal coordinates after introducing linear damping
are:

¥+ 2007y iy s W) +5,, W)
+5 W3]y =fiW()
Y2+ 2007 23yy +r3va+ [52 W, (1) + 52, W, (1)
+523W5(0)Jy =W ()
¥3+20305+ ya+[53, W, (1) + 53 W, (1)
+s533Ws(D)]ys=fW) (34)
where

and W) are zero mean white noise processes with
spectral densities 2D;. Equations (34) constitute a set of
coupled differential equations. The response mean
squares are obtained by solving the stationary moment
equations. The analytical solution for the stationary
response is

E{ )'ﬂ =Df} /{213~ Dsi = Dysi, —Dssis)s

E[Y?)=r1,E[Y])

E[ Y%] =Df}/{2],r3;— D53, —Dysi, - Dysis),

E[Y3]=r}E[Y])

E[Y§]=Df§/{2’:3—D15§| —Dysi; = Dysiy),

E[Y#)=E[Y]] (35)

This solution indicates that the system may be unstable

depending on the values of D,. The [act that the mecan
square must always be positive provides the stability
criteria for mean squares given by (35). These criteria are

obtained by keeping the denominators of (33) always
positive, i.e.,

20,r}y> (D5, + Dasty + Dysiy)

205r33> (D53, + Dasiy + Dysiy)
273> (D,s3, + D353y + Dysiy) (36)
The stability boundaries represented by conditions (36)
are shown in Fig. 7 as a function of the internal resonance
frequency ratio r. For simplicity the excitation levels
D,/2;, of the random stiffness perturbations arc assumed

to be equal. Samples of the response means squares as
function of the excitation level D2 are shown in Figs §
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Fig. 7. Mean square stability boundary of the structure
with random stiffness, for { =001
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Fig. 8. Mean square response of normal modes with
random stiffness for v=10, {,=0.01

and 9 in terms of normal and generalized coordinates,
respectively. 1t is observed that the response of tip mass of
the vertical cantilever is the main source of instability.

VIIL. AUTOPARAMETRIC INTERACTION

In this case the influence of nonlinear modal coupling on
the system response will be examined by including the
functions in the unalysis. These funcuions are only
significant if the structure is tuned internally such that the
normal mode frequencics have a hinear relationship. For
the present system it 1s found that the following three
internal resonance conditions can take place's:

)y =Wy + ),
wy=2w, and  wy=2w, (37)

The random response of the system will be exmined
under the first anternal  resonance condition.  As
mentioned 1n Section 111 the response moment cquations
involve infinite couphng winch must be closed in order 1o
solve for the response statuistics. It s known that the
response of any nonhneiar istem to a random Gaussian
excitation will be non-Gaussian. The deviauon of the
response from normahty depends on the degree of the
svstem nonhincarity - Generally. closure schemes aie
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Fig. 9. Mean square response of generalized coordinates
Jor same conditions of Figs§

classified into Gaussian and non-Gaussian'®. The
Gaussian schemes are useful for dynamic systems with
weak nonlinearity. However, in certain situations the
application of Gaussian closures may lead to stochastic
stability boundarics which are different from those
derived by other techniques such as Stratonovich
stochastic  averaging or non-Gaussian  closure
approaches. This type of contradiction has been reported
for nonlinear systems under parametric random
excitations'¢. For two degree-of-freedom systems the
Gaussian closure scheme yields nonstationary response
while non-Gaussian closure gives strictly stationary
response. However, the main response characteristics are
found identical as predicted by both methods.

This Section examines the nonlinear response as
obtained by using a Gaussian closure scheme which is
based on the properties of the cumulants. For the present
system 27 equations for the first and second order
moments will be generated. The moment equations are
closed by setting all third order cumulants to zero. ie.,

3
AIXX N ]=E[X.X,X,]-S E[XJE(X,X,]
+2E[N JE(YJE[X,)=0 (38)

where the number over summation sign refers to the
number of terms gencrated in the form of the indicated
cxpression without allowing permutation of indices.
Relation (38) 15 used 1o obtain expressions for the third
order moments in terms of first and second order
moments.

The solution of the closed 27 coupled moment
equations 1s obtained numerically by using the IMSL
DVERK Subroutine (Runge-Kutta-Verner fifth and sixth
numernical integration method). Depending on the value
of internal detuning paramecter r the svstem response may
be reduced to the same hinear response of section VI or
may become quasi-stationary which deviates significantly
from the hincar solution. The response of autoparametric
interactuon s found 1o take place n regions of internal
resonance rato shehtly deviated from the exact tuning
r=1.Thedevition may he attnibuted to the contribution
of nonhncanties mcurred dunng the Gaussian closure
procedure Surprisingly. exact internal resonance yields

T e
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linear response characteristics which are displayed in Fig.
10. It is seen that the response fluctuates between two
limits during the transient period, then converges to a
stationary values which corresponds exactly to the linear
solution of section VI. The effect of different initial
conditions is examined and it is found that regardless of
the initial conditions the solution reaches the same steady
state value. For internal resonance ratior=1.175, Fig. 11
shows another set of time history responses. In this case
the response mean squares do not achicve a stationary
state. During the transient period the frequency of the
third mode is approximately 1.17 times the sum of the first
two mode frequencies. The quasi-stationary behaviour,
although present for all three modes, is most prominent
for the second mode.

To further illustrate the departure of the nonlinear
response from the linear one, Figs 12-15 display the
dependence of the normalized mean squares on the
internal resonance for various system parameters. The
mean squares are normalized by the corresponding linear
solution. The subscript G/L refers to the ratio of the
nonlinear Gaussian solution to the linear response. In the
regions near critical internal resonance the upper and
lower envelopes of the quasi-stationary response are
plotted. A general trend is observed to exist in all figures.
There is a sharo increase in the displacement mean square
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Fig. 10. Time history response of normal coordinates for
=001, e=002 r=w;3/(w, +w,)=10
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of the second mode associated with a corresponding
decrease in the mean square of the third normal mode and
very slight drop in the first mode. This feature is similar to
a great extent to the deterministic nonlinear absorbing
effect reported by Ibrahim and Woodall*®. Figs 12and 13
show the effect of damping ratios of the system response.
It is seen that nay increase in damping results in
narrowing thr region of autoparametric interaction. The
nonlinear coupling parameter ¢ has a direct influence on
the degree of the response deviation from the linear
solution as shown in Figs 12-15. As ¢ increases from 0.025
to 0.05 the region of autoparametric interaction becomes
more wider.

IX. CONCLUSIONS

The linear and nonlinear modal interactions of a three-
degree-of-freedom  structure subjected to random
excitation is examined. For the linear modelling the
response is determined for two cases of structure
parameters. The first case is when the parameters are
constant coeflicients. The mean square response of this
case is obtained in terms of the excitation spectral density
and the internal detuning parameter. The second case
involves random parametric excitations in the stiffness
matrix. These excitations result in modal parametric
coupling of the normal coordinates. The mean square
responses are governed by the spectral densitics of
parametric excitations which also result in the conditions
of mean square stability. The results of the first case are
used as a reference to measure the effects of nonlinear
inertia coupling of normal modes on the mean square
response of the system in the neighbourhood of
combination internal resonance. It is found that the
critical internal resonance occurs at a value close to r=
1.175 which is deviated from the exact value r=1. The
nonlinear modal interaction results in an increase of the
second normal mode mean square response and n an
associated decrease of the first and third normal modes.
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EXPERIMENTAL INVESTIGATION OF STRUCTURAL AUTOPARAMETRIC

INTERACTION UNDER RANDOM EXCITATION

R. A. Ibrahim¥

D. G. Sullivan¥*

Texas Tech University
Lubbock, Texas 79409

ABSTRACT

The paper presents the results of an experimental
investigation of random excitation of a nonlinear
two-degree-of -freedom structural model. The model
normal mode frequencies are adjusted to have the
ratio of 2 to 1. This ratio meets the condition of
internal resonance of the analytical model. When
the first normal mode is externally excited by a
band 1limited random excitation, the system mean
square response 1is found to be 1linearly propor-
tional to the excitation spectral density up to a
certain level above which the two normal modes
exhibit discontinuity governed mainly by the inter-
nal detuning parameter and the system damping
ratio. The results are completely different when
the second normal mode is externally excited. For
small levels of excitation spectral density the

response is dominated by the second normal mode.
For higher levels of excitation spectral density
the first normal mode attends and interacts with
the second normal mode in a form of energy

exchange. A number of deviations from theoretical
results are observed and discussed.

1. INTRODUCTION

The 1last two decades have witnessed an increasing
interest {n the study of dynamic behavior of non-
linear systems under deterministic and random exci-
tations. Under certain conditions these systems may
experience complex response characteristics such as
jump phenomenon, 1limit cycles, internal resonance,
saturation phenomenon, and chaotic motion. These
nonllqgsr phenomena have been predzcged theoreti-
cally " ““and observed experimentally*” > under harmo-
nic excitations. However, most of the predicted
random response characteristics, including response
stochastic stability and statistics,’’® have not
been verified experimentally. Very few experimental
investigations of random vibration of nonlinear
systems have been reported in the literature.’ The
lack of experimental verifications may be due to
several reasons. These include difficulties in
generating the same properties of the random exci-
tation as represented theoretically, and the limi-
tations of experimental equipment. Recently,
Bolotin” discussed a number of experimental difff-
culties encountered in experimental measurements of
stochastic stability of parametric excited systems.

In deterninistic nonlinear vibrations; the ampli-
tude jump, limit cycles, and parametric instsbility
are common features of nonlinear single- and multi-

* Professor, Departmeent of Mechanical Engineering
Member AIAA.
#* Graduate Student

degree-of-freedom systems. Parametric instabiliry
takes place when the external excitation appears as

a coefficient i{n the homogeneous part of the equa-
tion of motion. It occurs when the excitation
frequency 1is twice (or multiple) of the system

natural frequency. Internal resonance and satura-
tion phenomenon may occur only in nonlinear systems
with more than one degree-of-freedom. Internal
resonance implies the existence of a linear rela-
tionship between the system natural frequencies and
causes nonlinear normal mode interaction in the
form of energy exchange. Under external harmonic
excitation, the mode which is directly excited,
exhibits in the beginning, the same features of a
single-degree-of freedom system response and all
other modes remain dormant. As the excitation
amplitude reaches a certain critical level, the
other modes become unstable and the originally
excited mode reaches an upper bound. In this case,
the mode is said to be saturated and energy is
transferred into other modes. This interesting
phenomenon takes place only in systems with quadra-
tic nonlinear coupling which results in a third
order internal resonance.

Under deterministic unsteady aerodynamic forces,
most nonlinear characteristics can be predicted by
one of the standard techniques of nonlinear diffe-
rential equations. However, aerospace structures
are usually subjected to turbulent air flow, and
the aerocelastician is confronted with aerodynamic
loads which are random in nature. These loads vary
in a highly irregular fashion and can be described
in terms of statistical quantities such as means,
mean squares, autocorrelation functions ‘“10F35°'
tral density funccioqi.lgbrahim and Roberts “~*

and JIbrahim and Heo €’ ““considered mnonlinear two
degree-of-freedom structural systems and applied
Gaussian and non-Gaussian closure techniques to
predict the response statistics and response sto-
chastic stability. These studies revealed that a
system with internal resonance may experience non-
linear characteristics such as autoparametric in-

teraction. Roberts 14 conducted a series of expe-
rimental tests to measure the mean square stability
boundaries of a unimodal response of a coupled two-
degree-of-freedom system. Roberts reported a num-
ber of difficulties in measuring the stability
boundaries. Based on the authors experience and
other investigators work, it is understood that
experimental investigation of nonlinear random
vibration is not a simple task and requires careful
planning and advanced equipment preparations.

The purpose of the present paper is to report the
results of an experimental investigation to wea-
sure the response mean squares of a nonlinear two
degree-of -freedom structural model under band
limited random excitation. The same model was ana-
lyticslly examined by Haddow, et al-’ under harmo-




nic excitation, and by Ibrahim and Heo!2+13 under
wide band random excitation. Agreements and disag-
reements with theoretical predictions will be dis-

cussed together with recommendations for future
experimental work.

11, ANALYTICAL BACKGROUND

The random response of a two degree-of-freedom
elastic structure has been determined analytically
in references [12,13]). The analytical model shown
in fig. (1) consists of two beams with end masses.
Under vertical support motion £(t) the response of
the two beams 1is mainly governed by linear dynamic
and parametric couplings. However, if the system
is designed such that the first two normal wmode
frequencies w, and w, satisfy the internal reso-
nance conditién w, = 2”1 , the nonlinear inertia
forces become dominant and the system dynamic res-
ponse deviates from the linear response. In terms
of the non-dimensional normal coordinates Y the
system equations of motion are: -

[1](Y") + [C](Y'} + (£2]4Y) =

En(t)la) + g£" () [BJIYY + c(y) (1)

where a prime denotes differentiation with respect
to the nondimensional time parameter t=wft, and the
coordinates Y are related to the dimensiJhal normal
coordinates y by the relation (Y,,Y,) = (yl,yz)/q°,
q° is taken as the response root mean square of t%e
s¥stem when the length of the vertical beam shrinks
to zero, i.e. the response root mean square of the
main beam with end mass (m +m ). The elements of
the vector {a) and matrix {b] are constants depen-
ding on the system prop rties. The small parameter

/%.. The matrix [r] 1is diagonal with elements
1 un& (& Jw.)<. The vector (V¥ )} contains all quad-
ratic noalikear terms which encompasses two groups:
nonlinear terms of the same mode and autoparametric
terms of the type Y YI. It is the autoparametric
coupling which gives Tise to the internal resonance
condition r = wz/wl -2,

The random acceleration £(1) was assumed to be
Gaussian wide band process with zero mean and a
smooth spectral density 2D up to some frequency
higher than any characteristic frequency of the
system. The acceleration terms in the nonlinear
functions were removed by successive elimina-
tion and the system equations of motion was tran-
sformed into a Markov vector via the coordinates
transformation

‘YI'YZ'Yi'Yi‘ - (Xx. Xz. XB. Xb) (2)

A set of first order differential equations of the
response statistical moments were generated by
using the Fokker-Planck equation approach. These
equations were found to be coupled through higher
order moments and were closed via two approaches:
Gaussian and non-Gaussian closures. These closure
techniques are based on the cumulant properties.
The Gaussisn closure is established by equating all
cusulants X of order greater than two to zero, i.e.

k, k k
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Fig. (2) Gaussian closure solution tor
various values of nonlinear
coupling parameter €

This approach resulted in fourteen coupled differe-
ntial equations for first and second order moments
of the response coordinates. The numerical integ-
ration of these equations revealed that the respon-
se mean squares fluctuate between two limits. This
fluctuation means that the response does not
achieve a stationary state. The autoparametric
{nteraction took place in the neighborhood of
{nternal resonance and was manifested by an energy
exchange between the mean squares of the two normal
modes. Figure (2), taken from reference 12, shows
a sample of the mean square response of the systea
normal modes against the fnternal  detuning
parameter.

The second method takes into account the effect of
the response non-normality. As a first order mnon-
Gaussian approximation all cumulants of order
greater than four were squated to zero, l.e.
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W A  LALANL A R N SN B R S L )21 the existence of saturation phenomenon. The satu- '_:-'
By th ration phenomenon is a well known feature for :1,"
2.0 €=0.015 0.04 multi-degree-of-freedom systems involving quadratic KhY
) B =0.02 ] nonlinear coupling subjected to harmonic forced o'y
—_— ) excitation.
---- 0.025 It is well known that the predicted results are , :
approximate and their validity has not been A
do.os examined. The next section reports the measured ‘:_-
results of a series of experimental tests of the s
same model under band limited random excitation. :.:~"
111, EXPERIMENTAL INVESTIGATION )
J.02 ,:‘,
Lo
1111 Experimental Model and Equipment A
The model 1is similar to a great extent, to the f"
0.0i experimental model used by Haddow, et al.” It con-
: sists of a horizontal beam of cross section of e
0.111"x1.0", length 7.5", and carries a tip mass of :'.’_
0.015 slug. The tip mass has a provision for S~
clamping the vertical beam which has cross section NG
0.054"x1.0". The 1length of the vertical beam can ':-‘
0 be adjusted by changing the location of its top '_«_':
mass (0.0127 slug). The deflections of the two . :,
beams are measured by strain gages fixed at the -
root of each beam. Two gages are mounted on the .
horizontal beam in a two arm bridge. Four gages '-_"‘
Fig. (3) Non-Gdussian closure solution ior are mounted on the vertical beam in a four arm ".-."
various values ol nonlinear coupling bridge. The fixed end of the horizontal beam {s :_'.'
parameter ¢ clamped by a fixture which is bolted on the top of o
the shaker armature. The shaker is a Caldyne model -
AB8 of thrust 100 1b and provides 1" peak-to-peak N
2 0 stroke. The shaker is powered by a Ling Electro-
)‘N’)A [xl X 2 xn ] =0, N=02 ki (%) nics Model RA-250 power supply and receives a ran-
3 dom signal through a GenRad Type 1381 Random Noise -':-'
generator. The random signal is filtered to a e
This approach resulted in 69 first order differen- desired band width with a Krohn-Hite Model 3343 ':\"
tial equations, in the first through the fourth Variable Electric Filter. The filtered signal is e
order moments, which were solved numerically. The applified via a Calex Model 176 Instrument -
solution reaches a stationary state after a tran- Amplifier. Figure (4) shows a schematic diagran of ’:-"
sient period and exhibits the same nonlinear the instrumentation wused in this 1investigation. "
interaction as predicted by the Gaussian closure The acceleration of the shaker platform is measured h
solution. Figure (3) shows the stationary mean by a PCB Piezotronic Model 302A02 shock accelerome- e
square response of the normal coordinates against ter. The accelerometer is powered by a PCB Y
the internal detuning parameter. Piezotronic Model 480C06 power unit. ':-\
Although the two approaches ylelded common features The first two normal mode frequencies of the system . :
to those predicted by deterministic theory5 of are determined theoretically and measured experime- RS
nonlinear vibration such as autoparametric sup- ntally as a function of the beams length ratio £ /&
pression effect, the random analysis did not verify as shown in fig. (5). 'l'his figure shows that he! e
internal resonance W = 2 {s obtained in two e
locations of the le%:gch ratio. At these mass R
locations the normal mode frequencies are: "
AP ’ N

DATA
sToRree
.
o3 0 4a o2 ose o6 ore o, ':-:‘:
Fig. (4) Arrangenent of experimental equipment Fig. (5) Measured and theoretical frequency ratio ::'-
of the first two normal modes. SN

‘J";.‘\'-: g Q’.-J'\- N \
AN




-0.485: f «9 1Hz, £ = 18.2 Hz Sa
£2/R.l 1 ) (5a)

- 7.45 Hz, f

9.2/1l = 0.707: £ 5

1 = 14.9 Hz (5b)

The analog signals of the excitation and responses
are read and converted into binary numbers using a
Data Translation Model DT-3752 Intelligent Analog
Peripheral (IAP). This IAP is capable of reading
either B8 channels (+10v) or 16 channels (0-10v) of
input. It can also read and convert analog signals
at up to 40k points per second. This wunit {is
mounted in an expansion slot of an IBM System 9001
Benchtop Computer. The control and programming of
the Analog/Digital (A/D) system are accomplished
through the software controlled registers and field
selectable (hardware) options. The software con-
trolled registers are the control registers, status
register, and gain/channel register. The control
register controls the operation and mode of the A/D
system. The modes which are used in this investi-
gation are direct memory transfer and increment
mode operation. Direct memory transfer places
converted data directly into the memory of the
computer. The 1increment mode allows the A/D to
increment the input channel number automatically
before each A/D conversion. This allows data to be
taken from sequential channels without requiring a
program to specify each channel. The status regis-
ter reports the complete status of the A/D system
during the operation. The gain/channel register
selects the desired channels from which the data 1is
to be taken and sets a programmable gain for all
input signals. This gain is set to one for all
tests. The computer controls the DT-3752 through a
Fortran program. Analog signals are converted for
a specified amount of time or until the computer
memory is full. When the computer has completed
collecting data, the data is transferred to a flop-
Py disk for future processing.

The data processing is performed at equally spaced
intervals. The problem of determining this time
interval is well discussed in Bendat and Piersol l5
Generally, 1f sampling is prepared at peints which
are too close together, 1t will yield correlated
and redundant data. This will unnecessarily {in-
crease the labor and cost of calculations. Sam-

pling at points which are too far will lead to the
problem of aliasing. The aliasing is mainly a
confusion between the low and high frequency compo-
nents in the original data. In order to eliminate
the problem of aliasing, a sampling rate should be
chosen to be at least two time the maximum frequen-
cy that the model will experience. In order to get
a good sample data, s sampling rate is chosen which
is roughly eight times the maximum frequency. In
the present investigation, the sampling rate {s
chosen to be 80 Hz per channel for the first mode
excitation and 160 Hz per channel for the second
msode and vide band excitation. Data processing
involves another problem known as guantization
which {s the conversion of data values at the
sappling points into digital form. The infinite
number of values of the continuous analog signal
sust be approximated by a fixed set of digital
levels. A choice between two consecutive levels
will be required because the scale is finite. The
accuracy of the approximating process is a function
of the available levels which is dependent upon the
analog to digital converter resolution. The accu-
racy of the DT-3752 is the value of the least
significant bit which corresponds to a voltage of

+0.0049v.
lection of the horizontal beas beam of +0.00073-in
and the vertical of +0.00097-in and an acceleration
of +0.00044-g for the excitation.

This resolution is analogous to a def-

The experimental model is tested under various
levels of excitation spectral density. This {s
achieved by keeping the input signal level constant
(Master Gain on Ling Amplifier) for the range of
internal detuning of the model. The level of
amplification {is adjusted to five levels for tes-
ting of both the first and second normal frequency
bandwidths. Another series of tests are conducted
for excitation spectral density that covers both
normal mode frequencies.

111.2 Experimental Results

The experimental results include sample records of
time history responses and the mean square respon-
ses in terms of generalized coordinates and normal
coordinates. The mean square response will be rep-
resented against the internal detuning parameter r
and the excitation spectral density level. The
bandwidth of the random excitation depends on the
mode under investigation.

111.2.1 First Mode Excitatiopn

The first mode is excited by & limited bandwidth
random excitation of bandwidth SHz and a central
frequency very close to the first normal mode natu-
ral frequency. The frequency content of this ran-
dom process 1s selected such that it does not
excite any higher structural modes. For the five
levels of excitation spectral density, the system
response is governed mainly by the first mode which
does not show any nonlinear coupling. Figure (6)
shows a sample of the time history response under
excitation spectral level S - 0.0142 (g“/Hz) when
the model 4s {nternally tuned to the resonance
condition o /w., =2.0. It is seen that the response
is characte;izéd by a narrow band random process of
frequency close to the first normal mode = 7.5 Hz.

oA
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Fig. (6) Time history response of first normal mode
excitation, level V, SD- 0.0142 gz/Hz.

Figure (7a) shows the mean square response of the
generalized coordinates for the same excitation
spectral density level of fig. (6). The eapty
points are measured vhen the mass of the vertical
beam moves upward while the full points are
Both groups

obtained wvhen the mass moves downward.
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are measured 1in the neighborhood of the systenm 5
internal resonance. The group of full points ind{- ) ..
cates that the mean square of the horizontal beanm Feany B
increases while the mean square of the vertical oY ] L
beam decreases as the normal mode frequency ratio POwE I ’
Y increases. This implies that the model e ] .
bghavés like a single degree-of-freedom system for 4
wplwy >> 2. For the second group of results (empty ] .
points) the mean square response of the wvertical V] i
beam increases and the mean square of the horizon- d Dy
tal beam decreases. This feature is belonging to 1 N
the characteristics of linear vibration absorbers E {.
_ due to inertia coupling. The corresponding respon- °® ]
= se curves in normal coordinates are shown in fig. ]
(7b). The square points (empty or full) are belon- } "
ging to the first normal mode which obviously pre- °3 r
dominates the response. It is also seen that as .\
the vertical mass moves downward, the model starts el <.
to behave 1like a linear single degree-of-freedom 7]
system whose mean square is given by the relation- ™~
ship Fig. (8b) Relationship between mean square :‘
o responses of normal coordinates and
2 3 2 the excitation spectral density for T
E[(y®] = D/{guw” m°} (6) various values of internal detuning.

(Measurements are taken for lower position of the
wvhere m,  and [ are the mass, natural frequency, upper mass).

and dasping ratio of the system, respectively. 2D 3
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is the excitation spectral density of a wide band
random excitation.

It is clear that the trend of the full square
Points agrees with the linear solution (6) that the
®ean square response is inversely proportional to
the cube of the first normal mode frequency.

In order to provide more insight
response statistics, the mean square response is
plotted against the excitation spectral density
level as shown in fig. (8a) for various values of
internal detuning. It is seen that the mean
squares of the two beams increase with the excita-
tion spectral density up to a certain level above
which the curves are discontinuous. The degree of
discontinuity depends on the internal detuning.
Any deviation from the exact internal detuning
results in a strong discontinuity. This disconti-
nuity means that the system is unstable in the mean
square sgense. Similar features were reported in
the deterministic response of the same system by
Haddow, et al.® The location of discontinuity is
strongly dependent on the values of damping ratios
and the internal detuning of the structure. Figure
(8b) shows the mean square response of the normal
coordinates against the excitation spectral densi-
ty. The curves have the same trend of fir. (8a)

111.2.2 Second Mode Excitation

The second normal mode is excited by a limited band
random excitation of bandwidth 5 Hz and central
frequency very close to the second normal mode
frequency. Five levels of excitation gpectral
density ranging from 0.001 g“/Hz to 0.022 g</Hz are

to the system

selected. A general feature of the time history
response records is that both amplitudes q1 and q
increase with the levels of excitation as' in thé

first mode excitation. The records also show that
for all selected beam length ratios and for all
levels of excitation spectral density, the vertical
beam amplitude q, 1is always greater than the hori-
zontal beam amplitude Another observation is
that when the excitatiof level is held constant the
applitudes q, and q, increase slightly as the beam
length ratio increases. For small levels of exci-
tation spectral density, the second normal mode is
observed to have no interaction with the first
mode. However, above & certain level of excitation
spectral density, it is found that the first mode
appears for a certain period of time and then
disappears as the second mode takes over, and so on
as shown in fig. (9a). This nonlinear interaction
of the two normal modes is more clarified
in fig. (9%b). Under harmonic excitation, Haddow,
et al’d reported similar energy exchange between
the two modes. Furthermore, it was shown that the
directly excited mode becomes saturated and energy
is transferred to the first mode. In the present
investigation, the energy transfer takes place not
only under high levels of excitation spectral den-
sity but also when the the internal resonance {s
approaching the value 2 as vertical beam length {s
increasing.

The mean square responses of the generalized and
normal coordinates are plotted against the internal
detuning parameter r in figs. (10a) &nd (10b),
respectively. The suppression effect of the
excited mode takes place only when the vertical
mass is moved downward as shown in fis,. (10b) by
the full triangular points. The second mode mean
square (empty triangular points) increases with a
corresponding decrease in the first mode mean
square (as the vertical mass moves upward).

"

SRR LR

I IR
‘o

| o
- ety

[ ] 1) 10

Fig. (9a) Time history response of second mode
excitation under effitation spectral
density of 0.022 g /Hz.
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Fig. (3b) Magnification of time history response of
second mode excitation showing attendance
of first normal mode.
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Fig. (10a) Mean square responses of generalized
coordinates under second normal mode

excitation.
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Fig. (10b) Mean square responses of normal
coordinates under second normal mode
excitation.
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o) ] length ratios ¢ /R = 0.49 and 0.71. At these
o 1 locations the s ste* response characteristics are
h completely different when the model is excited by a
] band limited random excitation. Three main series
] of tests are conducted to examine the system res-
7 E ponse behavior when the first and second modes are
'] excited sepsrately and when both modes are excited
1 simultaneously.
os /e, = 1 When the first normal mode is externally excited it
) XY {s found that the mean squares of the two modes are
] Y AL increasing wonotonically with excitation spectral
& © 4 — ” T e density. The response-excitation relationship is
7 7 ° os ! " LY almost linear for small excitation 1levels. When
‘%l ' the two beams are tuned to the exact {internal
:‘c resonance, the response-excitation relationship
e follows a continuous curve. For different internal
%l detuning, the response curves exhibit a disconti-
ﬁsl Fig. (11b) Relationship between mean square nuity. This feature {s similar to thg deterainis-
i responses of normal coordinates and tic characteristics of the same model
excitation spectral density for various ‘
ol
‘¢ J" values of {nternal detuning. Vhen the second normal mode is externally aexcited,
s the system response is dominated by the second
?;J (Measurements are taken for lower position of the normal mwode up to an excitation spectral density
St upper mass.) level above which the first normel msode attends and
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Figures (1lls) and (11b) show the influence of the
excitation sgpectral density on the normal wode
mean square responses of the generalized and normal
coordinates, respectively. Figure (11b) indicates
that the second normal mode mean square is relati-
vely smaller than the first normal mode mean square
response. This suppression effect is due to the
nonlinear norsal mode interaction. However, the
saturation phenomenon, known in deterministic sys-
tems with quadratic nonlinearity, i{s not pronounced
in the pregent results since the excitation is a
random process which contains several frequencies
sach of which may excite the two modes. In deter-
ministic excitation, the external and internal
detunings are very important in establishing the
saturation phenomenon.

111.2.3 WO MODE EXCITATION

The purpose of these tests i{s to explore the beha-
vior of the system under random excitation which
covers both normal mode frequencies. Due to the
shaker limitation the tests are conducted under
single excitation spectral density level S = 0.0026

/Rz. A sample of the time history response
record 1is shown in fig. (12) which reveals the
presence of the two modes. The amplitude of oscil-
lation of each beam depends on the vertical mass
location which ylelds the same internal resonance
condition. Figures (13a) and (13b) show the depen-
dence of the mean square response on the internal
detuning in terms of generalized and normal coordi-
nates, respectively. The full points reveal linear
response characteristics while the empty points
show a ronlinear interaction between the two modes.

IV. CONCLUSIONS AND DISCUSSION

The results of an experimental investigation of
nonlinear modal interaction in & two-degree-of-
freedom structural model under random excitation
are reported. The model equations of motion in-
clude linear and nonlinear inertia couplings of the
generalized coordinates. The normal mode frequen-
cles w; and w of the model are adjusted to meet
the i{nternal” resonance conditlonr = 2.0. This
frequency ratio is found to exist at two bean
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Fig. (12) Time history response of two normal modes

excitation.
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Fig. (13a) Mean square responses of generalized
coordinates under band-limited random
excitation of the two normal modes.
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Fig. (13b) Mean square responses of normal
coordinates under band-1limited random
excitation of the two normal modes.

(S o= 0.0026 ;Z/Hz, points notation follows fig.
(M.

the two normal modes exhibit nonlinear interaction.
Above this excitation level, the first normal mode
shows large random motion which results in a sup-
pression of the gecond mode. The results do not
display any evidence for the existence of saturs-
tion phenomenon. The main features of the vibratien
sutoparametric nbsotbefzeffec: reported theoretica-
1ly by Ibrahim and Heo'® are not exactly confirmed
in the measured results. It is believed that the

e e e ey Te e e T T T N N e T Y T S LT T
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deviation from theory is attributed to the fact
that the experimental excitation is a band limited
random process, while in theory it is represented
by a wide band random process. Another source of
deviation {s that the transformation into normal
coordinates 1is not exact since it does not take
into account the effect of structural damping. To
eliminate this problem, it is convenient to adopt
other models whose generalized and normal coordi-
nates are the same. With new equipment and more
powerful shakers the first author 1s currently
undertaking an experimental research program
supported by the NSF.

ACKNOWLEDGEMENT

This research is supported by a grant from the Air
Force Office of Scientific Research under grant No.
AFOSR-85-0008. Dr. Anthony Amos is the program
director.

REFERENCES

1. Evan-Ivanowski, R. M., "

Resonance Oscillations
in Mechanical Systems," Elsevier, New York,
1976.

2. Nayfeh, A. H. and Mook, D. T.,"Nonlinear Oscil-
lations." John Wiley & Sons, New York, 1979.

3. Schmidt, G. and Tondl, A., "Nonlinear Vibra-
tions," Cambridge University Press, Cambridge,
1986.

4. Hatwal, H.; Mallik, A. K.; and Ghosh, A.,
"Forced Nonlinear Oscillations of an Autopara-
metric System, Part II: Chaotic Motion," ASME

, Vol. 50(4), 1983, pp.
663-668.

S. Haddow, A. G.; Barr, A. D. S.; and Mook, D. T.,
"Theoretical and Experimental Study of Modal
Interaction in a Two-Degree-of-Freedom Struc-
ture,” J, Sound and Vibratiep. Vol. 97(3),
1984, pp. 451-473.

6. Bux, S. L. and Roberts, J. W.,"Nonlinear Vibra-
tory Interactions in Systems of Coupled Beams,"
, Vol. 104(3), 1986,

pPp. 497-520.

7. Ibrahim, R. A.,"Parametric Random Vibrationp."®
John Wiley & Sons, New York, 1985.

8. Piszczek, K. and Niziot, J., "

Random Vibration
," John Wiley & Sons, New
York, 1986.

9. Bolotin, V. V,, "

Random Vibration of Elastic
Systems.” Martinus and Nijhoff Publishers, The
Hague, The Netherland, 1984,

10. Ibrahim, R. A. and Roberts, J. W., "Broad Band
Random Excitation of a Two Degree-of-Freedom
System with Autoparametric Coupling,” J. Sound
and vibration. Vol. 44(3), 1976, pp. 335-348.

11. Ibrahim, R. A. and Roberts, J. W., "Stochastic
Stability of the Stationary Response of a Sys-
tem with Autoparametric Coupling,” &, Angew
Math Mech, (ZAMM), Vol. 57, 1976, pp. 643-649.

e a na L h au e RN it e te> et It et bt b St Ll VETEUNT

e

.-

,..(-A"

>
G AORA

’
.{'-{‘.{'nr'-r"{'* a

RPN

LA
Kis 2

e

:’\"'1'. o

W

[AAARA  PIRRN _*-‘,‘v_,'v',

S

.':(‘\ 'S

[N ]

“w

v

v o s v, .
LA

*

R RDIRE
PR PRI

[y

.

.....-.‘.'\. oo B

s




12.

13.

14.

15.

16.

Ibrahim, R. A. and Heo, H., "Autoparametric
Vibration of Coupled Beams under Random Support
Motion,*"

, Vol. 108, 1986, pp.
421-426.

Ibrahim, R. A. and Heo, H., "Stochastic Respon-
se of Nonlinear Structures with Parameter Ran-

dom Fluctuations," AIAA Journal, Vol. 25(3),
March 1987.

Roberts, J. W., "Random Excitation of a Vibra-
tory System with Autoparametric Interaction,”

, Vol. 69(1), 1980,
pp. 101-116.

Bendat, J. S. and Plersol, A. G., "Random Data:
Analysis and Measuregent Procedures.” John
Wiley & Sons, New York, 1971.

Lin, Y. K., "Probabilistic Theoxry of Structural
Dynamics.” McGraw-Hill Book Co., New York,
1967.




[ " Rat Ra® 0 AoV 88 0

-

b

L propagation problems stems from the fact that the solution of a  random variables with a probability distribution representing
linear partial differential equation depends nonlinearly upon the distribution of the measured values. This modeling results
the coefficients (Chernov, 1960; Frisch, 1968: Sobczyk. 1985).  in random eigenvalues. eigenvectors, and random responses of

In physical chemistry the problem of determining the vibra-  the system in question. The analysis of random eigenvalues and
tional properties of randomly disordered crystal lattices in- eigenvectors has been a subject of several studies bv mathema-
volves the calculations of the frequency spectrum, electronic ticians and engineers and will be reviewed in section 3.
energy levels of binary alloys. thermodynamic properties of Figure 1 shows five examples of structural svstems involving

b alloys. isotropic mixtures, and other solid state phenomena. Of  parameter and load uncertainties. They include **almost” peri-
particular importance is the “normal localization™ or “confine-  odic structures, similar component subsystems, multi-span
ment” phenomenon which was first reported by Anderson beams, rocket fins, and turbomachinery rotors. The rocket fins
Appl Mech Rev vol 40, no}, Mar 1987 € Copyright 1987 American Society of Mechanical Engineers
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Structural dynamics with parameter uncertainties

R A Ibrahim

Department of Mechanical Engineering, Texas Tech University, Lubbock TX 79409

The treatment of structural parameters as random variables has been the subject
of structural dynamicists and designers for many years. Several problems have
been involved during the last few decades and resulted in new theorems and
interesting phenomena. This paper reviews a number of topics pertaining to
structural dynamics with parameter uncertainties. These include direct problems
such as random eigenvalues and random responses of discrete and continuous
systems. The impact of these problems on related areas of interest such as
sensitivity of structural performance to parameter variations, design optimiza-
tion, and reliability analysis is also addressed. The paper includes the results of
experimental investigations, the phenomenon of normal modes localization, and
the effect of mistuning of turbomachinery blades on their flutter and forced

response characteristics.

1. INTRODUCTION

The concept of uncertainty plays an important role in the
investigation of various engineering and physical chemistry
problems. In fluid mechanics, for example, the inaccuracy of
measurements is cailed “uncertainty” which differs from the
concept of error (Kline, 1985). An error in measurement s the
difference between the true value and the measured value. On
the other hand, an uncertainty is a possible value that the errcr
might take on in a given measurement. Because the uncertainty
can take on various values over a range, it is inherently random.
In control theory, the differential equations of control systems
often involve uncertain bounded state variables. The parameters
of transfer functions of certain models usually vary with a
certain degree of uncertainty (Ashworth, 1982). Thus a prob-
abilistic transfer function can be defined with uncertain param-
eters and can lie anywhere within the ranges which are de-
termined from simulation tests. The identification of uncertain
parameters has recently been examined by Skowronski (1981,
1984).

Another class of problems involving parameter uncertainties
is the random heterogeneity of real media which possess proper-
ties that are described in a probabilistic sense. More specifically,
these properties vary randomly with respect to time and posi-
tion, and thus constitute a random field. The theory of wave
propagation in random media is very complicated and involves
partial differential equations whose coefficients are random
functions of space and time. The difficulty of random wave

(1958). Anderson showed that the electron eigenstates in a
disordered solid may become localized and results in a reduc-
tion of metallic conductivity. In structural dynamics with
parameter uncertainties, irregularities may inhibit the propa-
gation of vibration within the structure and the vibration modes
become localized. The similarities between the propagation of
vibration in an elastic system and the conduction of electrons in
a solid is discussed by Hodges (1982). Hodges and Woodhouse
(1983). and Pierre et al (1986). Several problems in physics and
physical chemistry pertaining to crystal lattice dynamics were
reviewed by Elliot er al (1974) and recently documented in a
monograph by Bottger (1983).

In structural dvnamics, uncertainties arise from two main
sources (Prasthofer and Beadle, 1975). The first is a statistical
one and is due, for example, to the stiffness or damping
fluctuations caused by random variations in material propertics,
randomness in boundary conditions, and variations caused bv
manufacturing and assembly techniques. The second is nonsta-
tistical and is due, for example, to the inaccuracies and assump-
tions introduced in the mathematical modeling of the structure.
In the first class the mechanical properties of dynamic systems
are subject to a certain degree of uncertainty because the
physical properties of their elements are not measured exactly.
In addition, the physical properties can experience variations
with the passage of time as a result of wear and tear or just
inherent deterioration. These properties should be modeled as
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FIG. 1. Examples of disordered systems.

are not usually identical in their areas and each fin has some
misalignment with the rocket longitudinal axis. For the case of
turbomachinery rotors, there is always some mass and stiffness
eccentricity in the disks. Parameter variations exist in disk
blades and result in corresponding variations in the individual
natural frequencies of the blades. This problem is known as
mistuning (Srinivasan, 1984) which may have a significant effect
on the forced response amplitude of the blades and also in the
value of the flow speed at which flutter of the blades occurs.
Other examples include buried pipelines, railroad trackes. and
interconnected girders. The uncertainties in these svstems affect
to a large extent their design and operating performance.

It should be noted that parameter irregularities may cause
significant changes in the dynamic characteristics of structural

systems. In particular, they may cause the occurrence of mode
localization which can be used as a means of passive control of
vibrations. In civil engineering the mechanical and strength
properties of the matenal vary from one point to another point
and are seldom prone to certain in situ measurements but onl
to indirect estimates (Augusti et al, 1984). The uncertaintyv of
these properties has a direct relationship to the reliability of
such structures. These uncertainues are usually manifested in
the applied loads. stiffness, and theoretical models that are used
1o describe and relate loading and resistance. The design of
structures under conditions of uncertainty implies a balancing
decision between risk of failure and cost or weight (Ang and
Tang. 1984; Frangopol. 1986) The nsk 1s an unavodabie
consideration for structural opumization problems. It has been
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customary in most reliability studies to measure the risk by the
probability of failure (ie, the likelihood of occurrence of some
specified limit state). On the other hand, when restrictions and
constraints of the design are imprecisely described, the design
objective functions become fuzzy (Zadeh, 1965, 1973; Brown,

1980: Brown and Yao, 1983). Recently, the fuzzy set theory has

been applied in multi-objective fuzzy optimization design of
ship grillage structures (Gangwu and Suming, 1986).

The degree of sensitivity of structures to either deterministic
design changes. or stochastic parameter variations is of great
importance to the structural dynamicist. In particular, it is
essential to determine if small perturbations can result in sig-

) nificant changes of the free or forced response amplitudes. This
b sensitivity analysis is of great concern to those who are involved
in the control of large flexible space structures (Meirovitch et al,
1983; Nurre et al, 1984). These structures possess several modes
densely packed at low frequencies. When they are descretized,
model errors occur and the free modes of vibration cannot be
determined accurately. Thus when a control system is designed
for natural frequencies whose values are assumed to be exact,
the model errors and structural uncertainties may deteriorate
the performance of the control loop, and may even make the
system unstable. This problem results in what is known as
robustness, ie, a control system is termed robust if it is rela-
tively insensitive to model errors and structural uncertainties.

This paper provides a review of the recent theorems and
results pertaining to structural dynamics with parameter uncer-
tainties. An early account of the subject was provided by Soong
and Cozzarelli (1976). Three main problems will be addressed.
These are:

1. Random eigenvalues,
2. Random response characteristics, and
3. Design optimization and reliability.

Before reviewing these three problems the differences between
parametric random vibration and structural dynamics with
parameter uncertainties will be discussed first.

2. BETWEEN PARAMETRICALLY EXCITED AND
DISORDERED SYSTEMS

It is very important 1o distinguish between two types of
parameter variatons encountered in structural dvnamics. The
first type arises due to random parametric excitation of systems
with essentially fixed properties while the second class is inter-
nal and is associated with the system when its parameters are
represented in a probabilistic sense. In the former case the
system equations of motion are stochastic differential equations
with random coefficients represented by random processes
(Ibrahim, 1985), while in the latter case the equations of motion
are differential equations wmith random parameters represented
by random variables (Soong, 1973). The methods of treating
dynamic svstems under parametric random excitations are dif-
ferent from those used in solving differential equations with
random variable coefficients. Parametnc random wibration 1s
basically a combination of the theory of stochastic processes.
stochastic differential equations. and applied dvnamics. Systems
with parameter uncertainties (referred to in the hterature as
“disordered systems™), on the other hand. involve boundary-
value problem and random field theory (Vanmarcke. 1984) The
term “disorder” has been extensively used in the lLiterature to
distinguish between the case of random perturbation of the
system parameters (described by a probabilistic law) and the
case when these parameters are perturbed in a determinustic
sense.

lbrahim: Structural dynamics with parameter uncertainties

3. RANDOM EIGENVALUES

3.1. Basic concept of random eigenvalue

The value of the natural frequency of simple single degree-
of-freedom systems is given by the square root of the stiffness to
mass ratio. This value is assumed by constant for identical
systems. However, experiments have shown that this value
varies randomly (Mok and Murray, 1965) because in reality the
physical properties of the elements can neither be measured
exactly nor manufactured exactly. Thus, the eigenvalues are
random variables whose statistical properties are determined by
the random coefficients of the inertia and stiffness terms of the
equations of motion. Consider for example the natural frequency
of a simple mass-spring system

A= =k/m,

the variation of A due to variations in stiffness k = k + 8k and
mass m = m +38m, may be expressed as a Taylor series

< ax A
A=A -)= —a—kak‘*‘a—mam
+£?—:—A—(8k)2+£~a—2(8m)24 (D)
2 9k* 2 dm’ '

where overbar quantities refer to mean values and A = & /7.
When the variations §m and 84 are random variables the

natural frequency will be a random variable. The mean and

variance of A can be evaluated as follows

192\ 1 d°A

E[A] =X+ - ~—E[8k’]+ = — E[8m*]+ - (2

(A =R+ 5 =3 E(8K ]+ 5 5 Elam?] « - ()

and

E[(A-—X):] -(%v):s[skl] +‘\%):E[8m:]

EPN)
+251-a—mE[8k~8m]

Lpaiay o LT .
e ) e - 5[ 5 ) o)
+l a;)‘V(‘9—:1)5[81(3-8»13]*u- )

21 k" [ dm° )

The same is applied when the mass moment of inertia s
included in the equations of motion. Collins and Thomson
(1967) denved the statistical charactenstics of pnnaipal mo-
ments of inertia and pnincipal axes directions.

Generally, the structural dynamcist 1s interested in de-
termining the probabiltv that one or more eigenvalues hie in a
given range or less than a certain value (Bovce. 1968) However.
the probabilistic descnption of the eigenvalues and the eigen-
vectors has been examined for a imited and simple clasy of
problems. In most cases. 1t 1s possible to calculate the statistical
functions (such as expectations, vanances. and covanance func-
nons) of the eigenvalues and eigenvectors

The random eigenvalue problem has been examined for a
limited number of linear discrete and contuinuous svstems The
treatment of these systems 1s based on the analvsis of random
matnces and random differennal operators (Scheidt and Purkert,
1983). The next subsections will review the methods and main
results reported in the literature



c‘ic’..

3.2. Random eigenvalues of discrete systems

The statistics of random eigenvalues and eigenvectors of
discrete systems may be determined by using one of three main
approaches. These are the transfer matrix method. the random
perturbation method, and the Monte Carlo numerical simu-
lation algorithm. The transfer matrix method (Kerner 1954,
1956: Soong, 1962) utilizes a perturbational expansion of the
random cigenvalues in terms of the random perturbations of the
system parameters. The perturbation method is based on an
asymptotic expansion and combines the ordinary perturbation
and multivanate statistical analysis. The multivariate estab-
lishes the probability distnbutions of random eigenvalues in
terms of the distributions of the matrix coefficients in the
equations of motion. The Monte Carlo method, on the other
hand, generates a random sample of the system random param-
eters which are used for computing numencally the eigenvalues
and eigenvectors for each set of parameters in the sample.
Monte Carlo simulations are expensive since they require a
large number of numerical solutions to define the probability
level at the tails of the distribution. This disadvantage becomes
evident when one deals with large or medium size systems
where numenical sinulations become unrealistic on conventional
digital computers. The first two methods will be outlined in the
next two sections.

3.2.1. Transfer matrix method

This method was first developed for disordered periodic
lattice systems by Kemer (1954, 1956). It was adopted by Soong
and Bogdanoff (1963) to examine the statistics of the random
eigenvalues of disordered spring-mass chain of N degrees of
freedom of the type shown in Figure 1(a). Basically the method
is an extension of the transfer matnx developed onginally for
free vibration of deterministic discrete svstems { Thomson, 1981).
The method transfers the displacement vector {X}, of the ;th
mass into next mass displacement vector [ X] .. 1e

X} =(1+T] (X} .. (4)

where [ is the unit matrix and [I ~ T) s the transfer matnx. The
first displacement vector { X}, 15 related to the last displace-
ment vector { X}, by the relauonship

}-[ﬂ[l*Tl,]{x

=1

(3)

In order to demonstrate the method. a penodic disordered
chain with random masses and constant equal springs of stiff-
ness K will be considered. Let the random mass be defined by
the expression

m =m(l +(,,).

(6}
where m 1s the mean value of the mass and ¢ is a small
random vanable with zero mean.

The transfer matnx can be wntten in the form

(1-T]. =[1-T).~[F],. (7

where [E] 1s a perturbational transfer mairix which results
from the random perturbations ¢

The charactenstic equation can be established from eq. (5).
The roots of this equation are the svstem eigenvalues w,. In
order to determine the statistical properties of the eigenvalues it
1S necessary 10 express w, 1n terms of the random vanables ¢, .
It will be assumed that the range over which the values of ¢ are
distnbuted is small and w, can be explained in powers of the

S e s e .’-'\‘~. oo - e o,

.)A‘

random variables ¢ :

N N
w, =W, + Zw11(1+ pN w:lcf
J=1 =1
N-1 A
+ X r wy €€ T (Ra)
s=1 k=2
k>
N
=25, + Y w, ¢, forsmalle,, n=12....N (8b)
=1

Let the random variables ¢, be statistically independent, ident:-
cally and normally distributed with zero mean. This means that
the probability density function of each is

1 T ma
p(o) q¢5;cXP{ /207 ), (9
where o is the variance of the random vanable ¢.

From the theory of random processes (Laning and Batun.
1956), it is known that if the random variables ¢, are indepen-
dent and normally distributed the random eigenvalues will be
normaly distnbuted with mean value @, and variance
6’L*. wi, These two statistical parameters pr(mde the ele-
ments of the probability density function of w;

plw,) = —==exp{ ~(w,~&,) 20%)] (10)
oVl

Figure 2 shows p(w,) and the standard deviauon o_ for a
spring-mass chain of 10 degrees of freedom with o, = 0.05. It 1s
seen that the randomness of the masses results 1n a considerable
dispersion in the high frequency region. The standard deviation
of the random eigenvalues increases with the standard deviation
of the mass perturbations ¢, according to the formula (Soong,
1962)

12

): “’1, ‘
/-l
3.2.2. Random perturbation method

The perturbation method for the determinustic eigenvalue
problem s well documented (Cole, 1968. Meiroviich, 1980)
The method has recently been extended for random eigenvalues
by Scheidt and Purkert (1983). The cigenvalues of discrete
svstems are usuallv determined from the conservative part of
the svstem equations of motion whose eigenvalue equaton is
given in the form

[K(s) —AM(s)]{x} = {0}, (12)

where K(s) and M(s) are svmmetric stifiness and mass matnces.
respectively. The elements of these matnces are taken from the
entire sample space S.ie, 5SS A and {x}, are the sth
eigenvalue and eigenvector. respectivelv. The random matnices
K(s) and M(s) can be wntten as the sum of determimstic and
random matnces

o, /0, = (11)

K(s)=K<«k(s).
M(s) =M = in(s). (13)

where k(s) and f(s) represent random fluctuations 1n the
stiffness and mass matnces. respectivelv, with zero means such
that

k(s)|=

<€
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and
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(14)

r ,;,;,(s)‘: m

o= '

|ﬁ|(s)l--’

TR Yy,




e
b
T T T T U 1 LR i 1
plw ) g /a ~
n - w € ::\
-\
\ c_ = 0.05 -,
€ N
" 200 - \ LK) '
‘ \\P (wn)
\ -
{ = \\ . / 0-2 _‘_
\ :1mlcxe i / e
\ .-.'
100 n N / I-.~ g
- S o - - @
-~40.1 :
- ~N e ".\‘
4 R
B V - n- ~3
~—T ﬂ ":'
L~ L i‘_/‘
k 0 7 0.0 W
0.0 0.2 0.4 0.6 0.8 1.0 w, .
...’
wy w, wq W, wg we Wy W Wg W4 O
K g
FIG. 2. Probability density functions and standard deviation of w, -..:
r":
? Alternatively, the problem can be stated by transforming eq.  vectors are n u
(12) into the standard form E_[)‘/(S)]-X/,, ZE[a,,a,,]/X,,* (22 ‘.;,.
(A -AM]{x} = {0}, (15) oy N
s
where A is the system dynamic matrix which is symmetric ' 1 . - - \_
positive and has the random perturbational form Elx(s),]={1+ EE[(xﬂ‘x/‘)] X0 e
A(s)=A+a(s). (16) +E[(Z),.)+ s (23) o
The deterministic matrix A has the simple eigenvalues where A, =X, - . (Z},;=(Z:.Zx...., Z1, )], and the cle- s
A <hi< e <A, (17) ments of {Z} . are given by the expression .:'_:.
while the random matrix A(s) has the random eigenvalues (Z.) 1 { i 1 2.a 1 2 a } ‘:*:
LTS Nl e 3 4 T X 4,4, >
A (s) <Ai(s)< - <A,(s). (18) )“/l’;'l)“/ TR ,J ::
L¥} a
r it is clear that the existence of the first two moments of the fori#jand(Z,,) =0 g
cigenvalues A,(s) is implied by the existence of the first two On the other hand. the correlation relations of the eigenval- g
moments of the elements of A(s). _ ues and eigenvectors up to the (k + 1)-th order in the perturba- :".-
The eigenvectors {x}, are normalized by the relation tions a,, are ;‘: -
(x,.x,) =1, (19) Ry(;. k) =E[X, A\] =Ela,a,,] e
where (x,.x ) denotes the scalar (or inner) product of the same " a a
vector x, ie { x}/{x},. Introducing the two expansions + Y .X—E[a,,a,,a“(l+~.>\—’i)] .
_ x =1 Ty o :-;f
A(s)y =X+ LA (s) (20) B )
kel L | a, .
_ 0 + Z T_E[adalua//(l‘&.—k_)] :':‘:
* (x()}, = {%},+ L (X(5)} « n Bl " W
k=1 .
where (X}, = (0.0,....0,1.0,....0) is the normalized egenvec- + Y -—'}-_‘5[0,.“,/0/ a..} , -
tor associated with X . A, (s) and {X(s)},, are the contribu- S A ' (24) :-.
tions due to the perturbed elements of a(s). From the analytical 1l >t
dependence of A, and (x}, on the elements of a(s). Scheidt and " X
Purkert (1973) showed that expansions (20) and (21) converge + Z A Ela,a,a,a,] .::-.
at least for sufficiently small values of the elements of a(s). The Y Tk ” !
r homogeneous terms A, (s) and {x(s}} , up to fourth order are ’n -
given by Scheidt and Purkert (1983). These terms can then be + T s 1 ( E{a, a,a,a,) Y
used to determine the expectations and correlation relations of W R e
the random eigenvalues and eigenvectors. If the correlation It o~
between the elements of a(s) = [a, ] are only given, then up to Iek o
first-order perturbation the means of the eigenvalues and eigen- -E(a,a,]E{a,a,]. o (Nt
‘ -"'-F
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The analysis is called first order perturbation if first-order
terms in expansions (20) and (21) are retained and higher-order
terms are excluded. It is second order if terms up to second
order are kept. However, second-order perturbation is tedious
and involves multivariate statistical analysis. Most of the
analyses reported in the literature deal with the first-order
perturbation.

Problems involving a random symmetric matrix with mult-
ple eigenvalues of the unperturbed matrix have been treated by
Scheidt and Purkert (1983). The analysis consists in the formu-
lation of a convergence condition for the perturbation expan-
sions.

Collins (1967) and Collins and Thomson (1969) considered
first-order perturbation and derived the eigenvalue and eigen-
vector statistics of a multi-degree-of-freedom system in terms of
the covariance matrix of the system elements, With reference to
the eigenvalue eq. (12) they showed that the variations in the
mass and stiffness matrices result in the following first order
variations in the eigenvalue and eigenvector, respectively:

5

< . - 2 oA, _
A =X =3 —(k, k,)*Zm(m/—ml)*-""(ﬁ)

n dx,

To(k,-%)+ £ 2

(’"/—’"l)"’
J=1 a"’/

(26)

If the elements of the mass and stiffness matrices of eq. ( 12)
are random variables with means k , and m, and variances ¢
and o ,+ then the expected eigenvalues and exgcnvecxors arei

and X,,. respectively, and the variance of the eigenvalue is

n? A\,
oi, = Var(\,) = 2):

. cov(k /)

J=l /=1 3“

i ax, A,
+2 ;1 ,;1 7K -mcov(k,.m,)

7 7

AP W DY

. . 7

+ L LG g cedm.m) (27)

where
x - -
cov(k,, k) -fm/(k, =& )k =%) p(k, . k,) dk dk,

- p/IaA/fokl' (28)

and p(k,, k) is the joint probability density function for K,
and K, and p, is the correlation coefficient for k, and k,.
Expressions for cov( k ,»m,) and cov(m . m,) follow the same
format of relation (8).

For a simple chain of equal springs and masses with uncor-
related random masses or with random uncorrelated stiffnesses,
Collins and Thomson showed that the standard deviation of the
frequency is governed linearly with the standard deviations of
the masses and stiffnesses. The results were confirmed by an
independent Monte Carlo simulation and were very close to
those obtained earlier by Soong and Bogdanoff (1963). How-
ever, these linear relationships disappear when correlation exists
in the masses or stiffnesses and the eigenvalues are not closelv
spaced. Recently Pierre (1985) considered two different discrete
systems and emploved a first-order perturbation to solve for the
statistics of their eigenvalues. The first system is a mass-spring
chain with random mass and the second is a chain of coupled
pendula with random lengths. His results were found identical
to those obtained by Soong and Bogdanoff.

Schifl and Bogdanoff (1972a,b) derived an estimator for the
standard deviation of a natural frequency in terms of second-
order statistical properties of the system parameters. The de-
rivation was based on the mean square approximation devel-
oped by Bogdanoff (1965, 1966).

It may be noticed that the statistical properties of random
eigenvalues are usually based on the assumption of normal
distribution of the system random parameters. However, for
correlated non-Gaussian parameters the analysis can be per-
formed in terms of another set of Gaussian random parameters
which are evaluated by using the Rosenblatt (1952) transforma-
tion. This transformation has extensively been used in reliabil-
ity analysis when the performance function is nonlinear. This
issue will be addressed in detail in section 5.1.

3.3. Random eigenvalues of continuous systems

3.3.1. Methods of analysis
Continuous systems may involve uncertainties from two
main sources. These are (Boyce and Goodwin 1964):

(i) Uncertainties in the geometry and the material proper-
ties. The random variation in space dependent parame-
ters results in variations of the differential operators
governing the free vibrations of the structure.

(#i) Uncertainties in the support mechanism of the system
(or the boundary conditions).

The uncertainties of the first class constitute a random field.
According to Vanmarcke (1984) the behavior of disordered
systems is governed by two general laws. The first is a statement
of “conservation of uncertainty” as measured by the product of
the variance by the scale of fluctuation of the property in the
random field. The scale of fluctuation is taken as the area under
the correlation function. This product remains invariant under
linear transformation that preserves the mean. The second law
states that the degree of disorder of a homogeneous random
field, as measured by the direction-dependent bandwidth mea-
sure, tends to increase when a random field is subjected to local
aggregation.

For the two classes of uncertainties the random eigenvalue
has been determined for a limited class of dynamical svstems.
These include elastic strings and bars (Boyce, 1962: Goodwin
and Boyce, 1964) and elastic beams (Boyce and Goodwin 1964;
Bliven and Soong, 1969: Hoshiya and Shah, 1971; Shinozuka
and Astill, 1972; Vaicaitis 1974). Boyce (1968) outlined a num-
ber of techniques for determining the statistics of the eigenval-
ues of systems described by partial differential equations and
boundary conditions involving uncertainty in their parameters.
These differential equations are of order 2n and usually written
in the form

Lw(x)=Mw(x). (29)
subject to the boundary conditions
¥(w)=0, 1=1.2...2n. (30)

where &, 4, and 4 are differential operators (with respect to
the spatial coordinate x) whose coefficients are random van-
ables. w(x) is the displacement of the svstem at x. Equation
(29) involves values of w and its first 22 — 1 denvatives at the
end points of the interval in which solutions are sought. The
eigenvalue problem defined by egs. (29) and (30) is assumed to
be self-adjoint and positive definite. The investigation of ran-
dom eigenvalues has been carried out via analvtical or numen-
cal approaches. The numerical methods include the Monte
Carlo simulation and stochastic finite element methods. The
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analytical treatment of the random eigenvalue problem of sys-
tems described by egs. (29) and (30) is outlined by Boyce (1968)
and Scheidt and Purkert (1983). The mathematical methods
which have been used to determine the statistical moments of
eigenvalues are classified according to whether the statistical or
nonstatistical part of the analysis is performed first. One class
consists of first expressing the solution in terms of the system
parameters, without regard to whether these parameters are
random or deterministic. Having obtained such a solution. the
statistical properties are then determined. According to Keller
(1962, 1964) this approach is referred to as “honest” and the
solution can be determined by using one of the following
techniques (Boyce, 1968; Scheidt and Purkert, 1983):

(i) Perturbation methods.

(i) Varnational methods.
(1ii) Asymptotic estimate methods.
(iv) Integral equation methods.

The “honest” approach does not provide an exact solution and
-the above four methods are not suitable for every problem. For
example, the variational methods are not suitable for structures
with random boundary conditions. Variational methods and
integral equation methods are limited because they only lead to
statements for the first eigenvalue of the system. Moreover, in
order to apply the integral equation methods, very strong
conditions for the calculation of the mean of the eigenvalues are
required. Under certain conditions pertaining to the spatial
correlation function, the asymptotic methods and perturbation
techniques lead to the same results. The perturbation methods
have less restrictions and are extensively used in the literature.

The approach, on the other hand, is called *dishonest™
(Boyce, 1967) if the statistics of the eigenvalue problem are
directly determined by performing averaging analysis to the
system’s partial differential equation and its associated boundary
conditions. The statistics can be evaluated by using one of the
following methods:

(1) Iteration methods.
(1) Hierarchy methods (Haines, 1965, 1967, Adomian,
1983).

The iteration methods are based on some assumptions for the
correlation relations in order to solve the averaged integral
equations of the random eigenvaiue. The hierarchy methods
take into consideration further equations so that all statistical
functions in question can be calculated.

In a series of papers by Purkert and Scheidt (1977, 1979a.b).
a number of theorems pertaining to functionals of weakly
correlated processes ~ncountered in the eigenvalue problems,
boundary value problems, and initial value problems were
established. They treated the stochastic eigenvalue problem for
ordinary differential equations with deterministic boundary
conditions. The coefficients of the differential operator were
independently weakly correlated processes of small correlation
spatial length. They showed that as the correlation length
becomes very small, the eigenvalues and eigenvectors possess
Gaussian distributions. This result has recently been confirmed
by Boyce and Xia (1983). When the random terms are not small
the perturbation method is no longer valid and the second term
in the Hermite-Chebychev expansion (Ibrahim. 1985) of the
distribution function will not vanish. This implies that the
distribution of the eigenvalue will not be normal. Bovce and
Xia (1985) obtained the upper bounds for the mean of eigenval-
ues through a variational characterization of the eigenvalues.
For stochastic boundary value problems Linde (1969) and

Boyce (1966, 1980) considered a Sturm-Liouville problem with
a stochastic nonhomogeneous term. In their recent monograph
Sheidt and Purkert (1983) analyzed the moments of the ei-
genvalues and mode shapes of random matrices and random
ordinary differential operators. The calculations of these mo-
ments were based on perturbation expansions, and so required
the random terms to be appropriately small. Day (1980) de-
veloped a number of asymptotic expansions for the random
eigenvalues and eigenvectors of continuous systems.

The concept of the Wiener field, which is obtained by
replacing the time variable of the Wiener process by a space
coordinate, was adopted by Wedig (1976, 1977) as a basic
model for randomly distributed loadings or imperfections of
continuous structural systems. The solution of such boundary
value problems may thus be described by integral equations
defined on the Wiener field and thus possesses the Markov
properties. Wedig showed that these integral equations may be
interpreted in the mean square sense via the boundary and
eigenvalue problems of elastic structures with random distrib-
uted imperfections or loadings.

3.3.2. Applications

The random eigenvalue of a column under axial force F,
shown in Figure 1(f), is described by the second order partial
differential equation

3? ,3%w(x,1) 3*w(x.,1) 3 w(x.r)
- F 5 x)———— =0
dx- El(x) ax ax? A(x) ar’
(31)
and the boundary conditions:
*w(x,1) ow(x.t)
E(0) ———5—lieo - Ki——=——|=0=0.
dax dx
0,1) =0:
w(0.1) (32)
2w(x.1) aw(x,1)
E(L)y————|,a; + K,—/—| .., =0.
ax- 3 ¢
w(L.t)=0.

where w(x. 1) is the lateral displacement at distance x and time
1. L is the length of the column, EX{ x) 1s the flexural stiffness.
and pA(x) is the column mass per unit length. K, and K. are
the stifinesses of the end springs. For simple supports K, = K,
=0, and for fixed supports K, = K. = x.

The solution of eq. (31) may be expressed in the form

w(x.t) =Y U(X)exp(iwt). (33)
Introducing the following substitutions
X=x/L,
I(X)=1I{1+a(X)].
A(X) = A[1 +a( X)].
p=FL*/ElL,
A=pAL% /EI,
where a( X) and a( X) are random vanables, eq. (31) and the
boundary condutions (32) for mode ; become:
([1+al XU X)}” ~plU"(X) - A[1+a(N]LU(X) =0,
(34)
[1+a(0)]U"(0) - (K,L/EDL'(0) =0 L(0) =0

[M+a(]U" (1) + (K, L/EDU (1) = 0: U(1) =0,
(35)
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where a prime denotes differentiation with respect to X, and
subscript , indicating the mode number in expansion (33). is
removed.

Hoshiva and Shah (1971) employed the standard perturba-
tion analysis 1o determine the expected value and vanance of
the eigenvalue of the nth mode by using a lineanized perturba-
tion techmque. They found that the variance of the nth natural
frequency is proportional to the variances of the stiffness coetfi-
cients at the boundaries and the axial load. This linear relation-
ship implies that the principle of superposition can be applied
in a modified form. For the buckling case, ie, when A = 0, the
eigenvalue problem is reduced to determine the statistics of the
buckling eizenvalue (August et al, 1981, 1984). Shinozuka and
Asull (1972) considered the case when both K| and K, are
random variables.

The natural frequencies of transverse vibration of elastic
beams were analyzed by Bovce and Goodwin (1964). They
considered the geometry of the cross-section of the beam and its
support mechanism as random variables. The statstics of the
eigenvalues were determined by using three different tech-
niques. These were the perturbation method, the method of
integral equations, and numerical solution. Bliven and Soong
(1969) determined the statistics of the natural frequencies of a
simply supported elastic beam with random imperfections in
the beam stiffness. The beam was modeled as a lumped-parame-
ter model and the properties of the frequencies were derived by
using a perturbation method. The stiffness random variation
was represented by the relation

El =EI/[1 + a(x)],

where EI is the mean value of the beam stiffness and (x) is a
stationary random field process with zero mean and autocorre-
lation function given by the relation

E[“(";)-“("z)]'UZCXP(—IJﬁ = xaj/d), (36)

where d is a non-negative constant known as the correlation
distance.

The standard deviation of the natural frequency of the beam
was obtained in the closed form

ow(n)=5(n)o‘/g(n). (3N
where @w(n) is the nth mode natural frequency of the uniform
beam = n’n* El/mL*,

g(n)= flf()lsin:(nvrxl)sinz(nwx:)
0

xexp| —|x, — x,/d]dx;dx,,

and m is the beam mass per unit length.

Bliven and Soong found that when the stiffness fluctuation
has zero correlation distance d = 0, the natural frequency stan-
dard deviation vanishes. The standard deviation was found to
reach the value of a_(n)=0.5w(n)e when the stiffness van-
ation is perfectly correlated (d = x).

The random cigenvalue of a beam-column supported at its
ends by a rotary springs was examined by Shinozuka and Astill
(1972). The spring supports and axial applied force were treated
as random variables. The distribution of material and geometric
properties were considered correlated homogeneous random
functions. The distributions of these properties were generated
by using a Monte Carlo simulation for multivariate and mul-
tidimensional random processes developed onginally by
Shinozuka (1971). The mean and variance of the eigenvalues
were determined by using the perturbation analysis and Monte
Carlo simulation. It was found that the application of ap-
proximate methods, such as the perturbation technique based
on exact or an assumed mode shape, causes a considerably

greater error for the buckling case than in the vibration case.
Furthermore, the perturbation solution for the eigenvalue van-
ance can be approximated reasonably well by using an assumed
mode shape in place of the unperturbed mode shape. Vaicaitis
{1974) employed a two-vanable perturbation expansion proce-
dure to determine the ejgenvalues and normal modes of beams
with random and /or nonuniform characteristics which do not
dev.ate considerably from the beam mean properties. A Monte
Carlo simulation was used to determine the statistical averages
of beam eigenvalues and mode shapes. Two cases of random
fluctuatons of beam cross section were considered. For one
particular case there was significant deviation attributed mainly
to the fact that gradual change in the beam stiffness was
permitted. In this case the beam is “soft” at one end and
“hard” at the other end.

Hart and Collins (1970), Cotlins et al (1971), and Hasselman
and Hart (1971, 1972) developed a numerical method for com-
puting the variance of structural dynamic mode properties by
using component mode synthesis which was formulated origi-
nally by Hurty (1964, 1965). Numerical solution provided rea-
sonable results for lower modes even when a relatively small
percentage of available component modes is used. Hart (1973)
developed a general algorithm for calculating the statistics of
the natural frequencies and mode shapes of structures acted
upon by an external static loading. This type of problems
involve considerable calculations due to the fact that the pro-
portionate axial load in each member of the structure is depen-
dent upon the structural parameters which are random vari-
ables. For the two-bar truss shown in Figure 3 Hart determined
the first natural frequency's mean and standard deviation. The
influence of the static load on the statistics of the first natural
frequency is shown in Figure 4. It is seen that the standard
deviation of the natural frequency increases with the axial load.
The implication of this increase was further demonstrated in
Figure 5 by using normal probability density function. The
observed flattening shape of the probability density function
with increased compressive loading shows a marked decrease in
confidence with the magnitude of loading.

The random eigenvalue problem of disordered periodic beam
was considered by Lin and Yang (1974). Thev used a first-order
perturbation procedure to derive expressions for the variances
of natura] frequencies and normal modes for different cases of
random bending stiffness and span lengths. The natural fre-
quencies were found to be more sensitive to span vanations
than to bending stifiness fluctuation. It was shown that if the
random variations in bending stifiness for different spans are
uncorrelated then there is no effect on the statistics of the
eigenvalues. The effect exists only when there is a correlation in
the random varation in the individual spans. For a random
variation in the span lengths it was shown that the variance of
the natural frequency is inverselv proportional to the number of

FIG. 3. Two bar truss (Hart, 1973).
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FIG. 4. Variation in fundamental natural frequency statistics with applied load (Hart, 1973).

spans. The random imperfections in spatial periodicity also
resulted in variability in the normal modes. However, due to the
arbitrary choice of modal amplitude the variance of the normal
mode was not a unique function of space.

The statistics of natural frequencies of mistuned blades of a
circumferentially closed packet of turbomachinery were ex-
amined by Ewins (1973) and Huang (1982). When the bladed
disk assembly is tuned and all the blades are identical the
natural frequencies and mode shapes are quite regular. Each
mode may be described as having a particular number of nodal
diameters, just as for an unbladed disk. However, when the
blades are mistuned to a degree which might well exist in
service, the mode shapes and frequencies becomes irregular. In
this case the natural frequencies of the individual blades can be
randomly different from one another. This problem is belonging
to systems with periodic random parameters and such systems
are modeled by a stiff ring supported by transverse springs with
randomly distributed stiffness and mass parameters. Huang
adopted an exponential form for the auto- and cross-correlation
function of the random structural parameters. This form was
originally assumed by Hoshiya and Shah (1971). The analvsis of
Huang was based on a spectral analysis method. He found that
the mean of the natural frequency of the structure with random
parameters is identical to the natural frequency of the structure

with homogeneous parameters. The standard deviation of the
natural frequency of mth mode was expressed in terms of the
(2m)th Fourier coefficients of the random parameters and was
represented as a vector sum of their standard deviations. While
the normal modes of a homogeneous structure have a shape of
harmonic waves with symmetrically located nodal diameters.
for a structure with random parameters the mode shapes are
complicated and the nodal diameters are located unsvmmetn-
cally. It was shown that these modes have a shape involving not
only the main harmonic, but also an infinite number of harmon-
ics. In addition, these random normal modes are orthogonal
despite their complicated form. Another important feature was
that the phase angles of random normal modes are not arbitrary
(as in the case of a homogeneous structure) but are random
variables independent of the initial conditions.

Recently, the stochastic finite element method has been used
by Nakagini et al (1985) to determine the uncertain eigenvalue
of fiber reinforced plastic (FRB) laminated plates. These com-
posite matenals usually exhibit anisotropy and heterogeneity
The elastic constants may fluctuate around the mean values due
to some slackness during the manufactunng process which
causes spatial distribution of the volume fraction. In addiuon.
another parameter known as the stacking sequence 1s usually
used as a major design parameter of the FRB laminated plates
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FI1G. 5. Probability density function vanauon with applied load (Hart. 1973).
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The stacking sequence (Vinson and Chou, 1975) implies a group
of parameters such as elastic constants, layer number, fiber
orientation, and laver thickness. Nakagiri et al considered the
effect of the fluctuation of the overall stiffness due to uncertain
vanation of the stacking sequence. The uncertain stacking se-
quence was treated as a set of random variables for the case of
simply-supported graphite /epoxy plates. It was found that the
eigenvalue is more sensitive to the standard deviation of the
fiber orientation, and the effect of the stacking sequence is more
pronounced for the rectangular plate than for the square one.
3.3.3. Normal mode localization

Penodic structures with slight variations in their periodicity
can exhibit a phenomenon known as normal mode localization.
This phenomenon takes place in a manner that vibrational
energy injected into the structure by an external source cannot
propagate to arbitrarily large distances, but is instead substan-
tially confined to a region close to the source. Hodges (1982)
called this phenomenon as “Anderson localization™ due to
Anderson (1958) who discovered mode localization in solid
state physics in an attempt to understand electrical conduction
processes in disordered solids. The effect of irregularnities has a
similar effect to damping in that it limits the propagation of
vibrations at large distances from the excitation source. This
effect is mainly caused by confinement of the energy close to
the source, not by dissipation of the energy as it propagates out.

The phenomenon of mode localization can be well under-
stood by using the coupled pendula example [Fig. 1(b)] which
was adopted by Hodges (1982). Hodges provided an excellent
explanation of mode localization: If all pendula are identical so
that their individual natural frequencies are precisely equal.
then the normal modes of oscillation when these pendula are
coupled together extend throughout the system, the amplitude
of oscillation of each pendulum varies sinusoidally with its
position in space. On the other hand, if the natural frequency of
oscillation varies from pendulum to pendulum in some kind of
random fashion, then in the limit of zero coupling, normal
modes consist of oscillaticn of individual pendula at frequen-
cies equal to their natural frequencies. For small coupling the
normal modes remain localized close to individual pendula and
the normal mode frequencies approximate the natural frequen-
cies of the pendula. Thus for a particular mode one pendulum is
oscillating close to its natural frequency with a large motion. Its
nearest neighbors, unlike the ordered svstem. are driven off
resonance, and since the coupling is weak thev respond with
much smaller amplitudes. These neighbors in turn drive pendula
further out and so on. but at each step the driving force and
response tend to diminish in magnitude. A typical mode shape
diagram is shown in Figure 6. In terms of forced oscillations,
mode localization implies localization of the response in the
vicinity of the excitation point.

The effect of mode localization was examined by Bendiksen
(1984a,b) and Valero and Bendiksen (1985) who showed that

w(i)

w(l) w(2) w(n)

FIG 6. Schematic diagram of the site amplitude w (1) for a local-
1zed normal mode (Hodges. 1982)

irregularities in shrouded blades of jet engine rotors can result
in a stabilizing mechanism which is closely connected with the
phenomenon of mode localization. In the framework of local-
ization theory, the stabilizing mechanism is explained based on
the fact that the original monochromatic flutter wave is scattered
into waves of different and more stable wavelengths and inter-
blades phase angles. While the effect of mistuning between
turbomachinery blades is favorable in flutter (see also Kaza and
Kielb. 1982) it can lead to an increase in amplitude on at least
one blade in forced vibration situation as will be shown in
section 4.1.2.

For periodic multispan beams Miles (1956) showed that the
natural frequencies are clustered in an infinite number of groups,
or bands, with n frequencies in each band, where n is the
pumber of spans. If a torsionial spring is placed at the n— 1
intermediate support location, then the width of the frequency
bands diminishes as the spring constant k increases. In the
limit as the spring constant goes to infinity, the beam becomes
clamped at the constraint locations and the width of the
frequency bands is reduced to zero. Pierre et al (1986) estab-
lished an internal coupling parameter which is equivalent to the
inverse of the torsional spring constant 1/k,. For k4 =0 the
spans are fully coupled. For large values of the spring constant
and irregular spacing between supports, a multispan beam can
be regarded as a disordered chain of weakly coupled subsvs-
tems. Pierre (1985) and Pierre and Dowell (1986) developed a
theoretical analysis for the mode localization phenomenon and
indicated that the free modes of vibration are susceptible to
becoming localized and the natural frequencies of the multispan
beam are in bands of small width if the spring constant is large.
They proposed a general criterion stating that localization may
occur if the width of the frequency band of the ordered system
is of the order of. or smaller than, the spread ip individual
natural frequencies of the disordered component systems.

Pierre et al (1986) determined the free modes of transverse
vibration of a disordered two-span beam by using a Ravleigh-
Ritz formulation with the constraint conditions enforced by
means of Lagrange multipliers. They developed a modified
perturbation method to analyze the localized modes. Figure 7
shows the mode shapes for tuned and mistuned beam for
torsional spring parameter ¢ = 1000, where ¢ =2/, El. [ is
the length of the beam and E and 7 are the Young's modulus
and area moment of inertia of the beam. respecuvelv. For a
mistuned beam it is seen that mode localization is manifested in
that the peak deflection is much larger in one span than in the
other one.

4. RANDOM RESPONSE

The response of linear structural components with uncertain
parameters can be determined by using standard techniques
such as the impulse and frequency response functions and
perturbation methods. or numencal approaches such as stochas-
tic finite methods and Monte Carlo simulation. The results
reported in the literature will be reviewed in the next two
subsections.

4.1. Standard techniques

4.1.1. Simple structural components

In an attempt to examine certain aspects of the dvnamical
response of statistically defined svstems. Chenea and Bogdanoff
(1958) and Bogdanoff and Chenea (1961) considered a linecar
single degree-of-freedom svstem with independent discrete dis-
tributions in the mass. damping. and stiffness coefficients. The
analysis of Bogdanoff and Chenea was based on a partial
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FIG. 7. First two mode shapes for tuned (—) and mistuned (---) two-span beam: A/=0.01, ¢ = 1000 (Pierre et al, 1986).

differential equation for the response joint density function
(Kozin, 1961). This equation is known as the Liouville equation
(Soong, 1973) and is identical to the Fokker-Planck equation
with zero diffusion coefficient. Small dispersions in the system
parameters were found to result in a considerable dispersion in
the frequency response. The impulse response of the same
system was determined by using the perturbation method by
Chen and Soroka (1973). They considered a linear system
described by the differential equation

X+2w, X+wiX=((1). (38)

where the natural frequency is considered random w, = @, +
€@,, @, is a constant and the perturbation &, is a random
variable with zero mean. ¢ is a small perturbational parameter
and f(1) is an impulse excitation. Chen and Soroka derived the
solution of equation (38) by using a perturbational technique.
Figure 8 shows a sample of the time history response curves for
damping ratio { = 0.05. It is seen that both the mean and
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standard deviation of the response amplitude are nonstationary

and the standard deviation is 90 degrees out of phase from the
mean. The amplitude of the response standard deviation in-
creases with time, and gradually dampens out after it reaches a
certain level. For systems with a very high natural frequency.
the uncertainty in the natural frequency was found to have verv
small effect on the response statistics. However, the effect is
significant if the natural frequency is low. As the damping
factor decreases, the dispersion from the mean became substan-
tial.

The response of multi-degree-of-freedom systems with ran-
dom parameters was examined by Soong and Bogdanoff (1963.
1964) and Chen and Soroka (1974). Soong and Bogdanoff
determined the statistics of the impulse admittance and
frequency response of a linear chain with random masses dis-
tributed in a small range. Chen and Soroka developed a method
which relates the statistics of response parameters to the statis-
tics of the system eigenvalues and eigenvectors. They showed




-2 8 T T T v T T T
w o
n X 2
9,50 s L wncx/owlo |
© X () \
n O
1, 4 F
2 -
0 JANY M A A — A1
' "/ " — —
wnxo(t)llo
-2 | | 1 { 1 ] i
2n 4n 6T 8 10m 12n 14m
C\nt

FIG. 8. Mean and standard deviation of impulse function /,8(¢) for { = 0.05 (Chen and Soroka. 1973).

that the response statistics of disordered systems are higher
than those of purely deterministic systems. The instantaneous
transient response statistics of an undamped linear multi-de-
gree-of-freedom system, with random stiffness, subjected to
arbitrary but deterministic forcing functions was investigated
by Prasthofer and Beadle (1975). For the case of an impulsive
excitation, they found that the growth of the response uncer-
tainty is exponential. As the standard deviation of the stiffiness
increases the response mean square increases rapidly with time.
For a multi-degree-of-freedom system the response decay rate
decreases as the correlation coefficient between the stiffness
elements increases. The influence of damping uncertainty on the
frequency response of a linear multi-degree-of-freedom system
was examined by Caravani and Thomson (1973). They de-
termined the mean and standard deviation of the response by
using a linearization technique and a Monte Carlo simulation.
They pointed out that an accurate estimate of the damping
coefficients for lightly damped systems, in the neighborhood of
a natural frequency, is very important in determining the mean
and standard deviation of the system response.

The means and vaniances of the frequency response func-
tions of a disordered periodic beam were studied by Yang and
Lin (1975). Two types of excitation were considered. These were
a concentrated force (or moment) and a distributed force con-
vected at a constant velocity. It was shown that the magnitude
of the statistical average of the frequency response function can
be considerably greater than the value computed without taking
into account the random variation in the span lengths. In the
neighborhood of resonance frequencies the standard deviation
of the frequency response function becomes quite large, indi-
cating greater uncertainty in such regions. In the case of con-
vected loading the use of a perfect periodic model cannot
account for the response in certain vibration modes while these
modes can be induces in a disordered periodic beam.

4.1.2. Mistuned bladed disks

It bas been indicated in section 3.3.3 that the mistuning of
turbomachinery bladed disks could have beneficial effect in the
case of blade flutter. However, the effect is reversed in the case
of forced vibration (Whitehead, 1966; Ewins, 1969: Stange and
MacBain, 1983). It is believed that Tobias and Arnold (1957)
have made the first attempt to understand the effect of blade
mistuning on the response of stationary waves (modes traveling

opposite to the direction of disk rotation so as to appear
stationary to a fixed observer). An interesting and important
structural phenomenon resulting from mistuning is the splitting
of a bladed disk’s diametral modes of vibration (modes having
1,2...., n nodal diameters) into " twin” or “dual” modes. The
presence of dual modes characteristics in a bladed disk can
significantly affect either or both of its aeroelastic stability and
resonant response characteristics. Whitehead (1966) showed
that there is an upper limit to the effect of mistuning and is
given approximately by the factor of (1 + N)/2, where N is the
number of blades in the row. This upper limit was obtained
under the assumption that the damping forces are substantially
less than the aerodynamic coupling forces. Jay and Burns
(1984) conducted a series of rotating and unrotating test to
identify mistuning, damping, split factors for various diametral
patterns and dynamic strains signatures from resonant tests of
a shrouded fan blade /disk. System mode responses to various
distortion patterns were found to involve standing waves and
traveling waves.

A number of lumped mass models of bladed disk assemblies
have also been used to study the eflects of various blade
mistune distributions on the maximum resonant response of the
blades (Wagner, 1967, Dye and Henry, 1969. El-Bayoumy and
Srinivasan, 1975; MacBain and Whaley, 1984). The nature of
the lumped parameter models used in these studies is such that
individual blade response was studied in terms of single- or
two-degree-of-freedom blade modes whose vibratory response
was altered by mechanical coupling via the disk portion of the
models. Hence, the basis or starting point for these lumped
mass models was the individual blade resonant frequencies. The
results showed how much greater or smaller the individual
blade response would be for a set of mistuned blades compared
to the response of a tuned set of blades. For a given mistuning
distribution and excitation, the response of the mistuned set of
blades was found to be many times greater or smaller (de-
pending upon the disk circumferential location) than the re-
sponse of tuned blades. Ewins and Han (1984) conducted a
sereis of case studies to examine the influence of various param-
eters on the resonant response levels of individual blades on a
disk. They found. for the case of a 33-bladed disk, that mistun-
ing always increases the highest resonant response level from
that experienced by a tuned system but while some blades are
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more highly stressed. others suffered a lower level and the mean
value is roughly constant. It was also concluded that the highest
response is always experienced by a blade of extreme mistune.

Analvtical investigations of mistuning fall into three cate-
gories (Griffin and Hoosac, 1984): determimstc (Dye and
Henerv. 1969: Ewins. 1973; El-Bayoumy and Srinivasan, 1975),
statistical (Huang. 1982), and combined and siatistical ap-
proaches (Sogliero and Srinivasan, 1980; Kazan and Kielb,
1982; Muszynska et al, 1981). Basu and Griffin (1986) used a
deterministic /staustical approach and developed a model in-
volving aerodvnamuc and structural interaction for studying the
effect of mistuning on bladed disk vibration. They found that
the mistuning effect significantly decreases as the density of the
gas flowing through the turbine is decreased. On the other hand
the effect was found to increase linearly with the number of
blades on the disk.

4.2. Stochastic finite element methods

Recent developments of stochastic finite element methods
have promoted the analysis of structural dynamics with uncer-
tain parameters. These techniques could be broadly classified
into statistical and nonstaustical (Liu et al, 1985b). The statisti-
cal approach is based on numerical simulation via Monte Carlo,
stratified sampling, and Latin Hypercube sampling. A compara-
tive discussion of these techaiques is provided by
Mckay et al (1979). All simulation methods require that the
joint probability distnbutions of the excitation and random
parameters be available. However, these distributions are sel-
dom to be available. Instead. one usually may assume that the
input random variables are mutually independent and Gaus-
sian. If these random inputs are non-Gaussian distributed, one
may use the Rosenblatt (1952) transformation to transform
non-Gaussian correlated variables to Gaussian uncorrelated
ones. Nonstatistical approaches include numerical integration
(Liu et al, 1985a, 1986), second moment analysis (Cornell 1972)
and stochastic finite element methods (Nakagiri et a], 1984; Liu
et al. 1985a.b: Hisada and Nakagiri, 1982 Hisada et al. 1983).
A major advantage of these methods is that the multivariate
distribution functions need not to be known but only the first
two moments. Recently several stochastic finite element ap-
proaches have been developed by Vanmarcke and Grigoriu
(1983), Liu et al (1985a,b), Dias and Nagtegaal (1985). and
Mon and Ukai (1986). Linear problems in structural mechanics
with uncertain parameters have been solved by second-moment
analysis (Contreras, 1980: Nakagiri et al, 1984).

Astill et al (1972) examined the problem of impact loading
of structures with random geometric and material properties.
Their approach is a combination of finite element method and a
Monte Carlo simulation. For the case of an axisymmetric
concrete cylinder they assumed spatial distributions of Young's
modulus and density for each realization of the test cylinder.
Each test cylinder was subjected to the same axial impact
loading. The algorithm gave a sample of 100 maximum stress
intensities from which the sample mean and standard deviation
were computed. For a certain intermediate location of the test
cylinder it was found that the axial stress is always different
from the corresponding stress in a uniform cylinder.

Vanmarcke and Grigoriu (1983) developed a stochastic finite
element analysis for solving first- and second-order statistics of
the deflection of structural members whose properties vary
randomly along their axis. The covariance matrix of these
element averages was obtained by simple algebraic operations
on the variance function which in turn depends primarily on the
scale fluctuation. Although this approach was used to determine
the free end deflection of elastic members, Vanmarcke and

Grigoriu claimed that it can be applied to determine the re-
sponse statistics to external dynamic excitations even when the
statistical information about spatial variation of material prop-
erties is limited. Recently Liu et al (1985a.b, 1986) developed a
number of probabilistic finite elements methods for nonlinear
structural dynamics. These methods are applicable for corre-
lated and uncorrelated discrete random variables. For elastic-
plastic bar with end load, they (Liu et al, 1985b) computed the
mean and variance of the displacement at the free end by using
the probabilistic finite element and Monte Carlo simulation.
The solutions of the two methods compared very well, however,
the probabilistic finite element approach required much less
computer time than the Monte Carlo simulation. Unfortunately
these results did not reflect the influence of parameter uncer-
tainties on the random response.

The dynamic response of random parametered structures
under random excitation has been examined in a number of
studies by Paez and his group (Chang, 1985; Bennett, 1985;
Branstetter and Paez, 1986). These studies provide computer
programs in a finite element framework to establish response
moments on a step-by-step basis. These numerical algorithms
evaluate the system response characteristics at an advance time
by using the statistical information about response structural
characteristics, and excitation at a previous time. Branstetter
and Paez (1986) examined their computer programs for several
damped single degree of freedom systems and several un-
damped two degree-of-freedom systems. The responses of these
systems to white noise excitations were obtained for random
stiffness parameters while all other system parameters were
fixed. It was shown that single-degree-of-freedom systems dis-
play greater response variance than systems with deterministic
stifiness. The difference in response variance is found to be
small when the structure initial conditions are zero. The dif-
ference increases and assumes an oscillatory character when the
initial conditions depart from zero. The mean response is non-
zero for structures with nonzero initial conditions and /or non-
zero mean load.

Bennett (1985) considered uncertainties in the stiffness and
damping of single- and multi-degree-of-freedom structural sys-
tems. The random variables of the system parameters were
replaced by a deterministic component (equal to the mean of
the original random variable) and a random component with
zero mean and with variance equal to that of the ornginal
random variable. For a single-degree-of-freedom system
Bennett found that the value of the peak response increases
monotonically with the standard deviation of the stiffness. For
lightly damped systems which do not have zero mean, the
effects of the damping randomness on the response are less
pronounced than those obtained when the stiffness was random.
The standard deviation of the response at the time of peak
response was found to increase with the correlation between the
stiffness and damping.

5. DESIGN OPTIMIZATION AND RELIABILITY

S.1. Reliability-based design

The study of response of disordered systems is very im-
portant for design purposes. These responses can help the
designer to establish acceptable tolerances on system compo-
nents. The main problem which concerns the designer is how to
govern the fluctuations of the system parameters for safe oper-
ations. For example when the values of the elastic displacement
of a structure are significant, the problem is to set up an
optimum standard of manufacturing the structure components.
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Here the permissible fluctuation in the structure parameters
becomes a restrictive condition. Generally, design optimization
of structures subject to reliability requirements is regarded as
the ultimate goal of any design procedure. The basic approach
in most reliability-based structural optimization is to impose a
set of constraints on overall system reliability or probability of
failure (Ang and Tang, 1975, 1984; Moses, 1973; Parmi and
Cohn, 1978). Another approach suggests to minimize the total
cost or weight for a specified allowable overall failure probabil-
ity (Frangopol, 1984a; Hilton, 1960; Moses and Kinser, 1967).

One of the main objectives of the designer is to establish an
acceptable probability of failure. Several procedures for the
analysis of probability of failure of structures have been devel-
oped (Frangopol, 1984a,b, 1985a,b; Frangopol and Nakib,
1986; Kam, 1986; Moses, 1974; Moses and Kinser, 1967; Moses
and Stevenson, 1970). In order to establish a probability of
failure consider a structural system subjected to a number of
external loads. The structure is said to survive if the applied
stress g, in the built-in section due to all external loads is
smaller than an ultimate limit stress o,

9, <o, (39)

The equality sign in eq. (39) corresponds to the state of the
collapse threshold of the structure. In general, for each limit
state, it is possible to establish a critical inequality similar to eq.
(39) and identify, in the space of the relevant parameters, a
“safe region & (or success region)”, where the critical in-
equality holds, and unsafe region % (or failure region), where it
does not hold. These regions are shown in Figure 9(a) according
to Augusti et al (1984), where

S=o, and R=o,. (40)

In most cases the applied load S = S(7) is a random process,
while the resistance R, which is calculated or measured, is a
random variable. For each actual structure, the resistance takes
up a constant value R, although uncertain, and the representa-
tive point (R, §) moves in time up and down the solid line in
Figure 9(a). Figure 9(b) shows a possible realization of the
random loading process S'(r). The limit state is attained when
S(1) violates the threshold R,. The time to failure 7, can be
used as a measure of the structure reliability. Alternatively, one
can consider a time interval (0. ¢) and then check the critical
inequality in the worst possible condition. This can be for-
mulated in probabilistic terms by stating that the probability of
failure P;,; and the complementary probability of success (reli-
ability) r = P, coincide respectively with the probability that
the critical inequality is violated at least once in the interval
(0. 1). In space random variables, the probability that a point
Q. which represents the significant input and system parame-
ters, falls either in the failure region % or in the success region

& . Symbolically, these states are
P, = Prob| Q c #], P, =ProblQcs). (41)

Among the basic formulations of reliability calculations are
the level 1 and level 2 approaches. In level 1 one simply applies
the characteristic safety factor y = R/S. In level 2 one needs to
determine a reliability index # which measures. in units of
standard deviation, the distance between the average point and
the boundary of failure region. This means that larger values of
B imply smaller probability of failure. The probability of failure
is found (August et al, 1984) to be less dependent on the
coefficient fo variation §, = a(S)/E(S] of external excitation if
the corresponding coefficient of resistance 8, = o(R)/E[R] is
relatively large, where §(S) and §(R) are the standard devia-
tions of the applied stress and the resisting stress, respectively.
Level 2 reliability methods include the estimation of the
mimimum distance 8 which is regarded as a safety measure of
the smallest distance of the surface separating the safe and
unsafe regions from the origin in the space of random vari-
ables Q.

Generally the level of performance of any structural system
depends on the properties of the system. Thus, it is possible to
characterize a function g({Q) known as the performance func-
tion such that

2( Q) > 0 = the safe state, and
g( Q) <0 = the failure state.

Geometrically the limit-state equation g(Q) =0 is an n-dimen-
sional surface that is referred to as the “failure surface.” The
performance function could be linear or nonlinear. The evalua-
tion of the exact probability of safety for nonlinar performance
function is generally involved and the determination of the
required reliability index would not be as simple as in the linear
performance function (Ang and Tang, 1984). For correlated
non-Gaussian random variables, the safety index may be
evaluated in terms of another set of independent Gaussian
variables through the Rosenblatt transformation (1952).
Hohenbichler and Rackwitz (1981) developed an algorithm to
determine the safety index by using the Rosenblatt transforma-
tion.

Tanaka and Onishi (1980) developed a method of regulating
the deviations of random parameters and derived a restrictive
conditional formula in terms of the permissible displacement
(or natural frequency) fluctuation. The method is based on the
linear deviation analysis with partial differential analysis to-
gether with sequential linear programming (SLP) for a number
of restrictive conditions. Tanaka et al (1982) treated the optimi-
zation problem of the allowable variance of random parameters
by using a perturbation method and Monte Carlo simulation.
They computed the deviation of the steady state response of

(42)
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structural systems involving random parameters with the pur-
pose of regulating the deviation of the random parameters when
the deviation of the response is specified.

The techniques of mathematical programming have been
extensively used to minimum-weight design of deterministic
structures subject to constraints on stresses, displacements, dy-
namic response, and stiffness (Moses and Kinser, 1967); Moses
and Stevenson, 1970; Moses 1973, 1974). The stochastic pro-
gramming of dynamically loaded structures was developed
originally by Charnes and Cooper (1959) and is well docu-
mented by Rao (1979). The basic idea of this method is to
convert the probabilistic problem into an equivalent determinis-
tic one by minimizing the expected value of the objective
function subject to certain constraints. Davidson et al (1977)
applied the mathematical programming techniques for optimi-
zation of structures subject to reliability requirements. Their
work resulted in a general formulation of the minimum-weight
optimization for indeterminate structures with random parame-
ters. Jozwiak (1985, 1986) applied the stochastic programming
based on expected values in the problem of optimization of
dynamically loaded structures with random parameters. The
mean values of joint displacements and their derivatives were
determined by solving the equations of motion of the structure
under the constraints of minimum weight.

Other techniques such as multi-objective optimization meth-
ods (Rao, 1982, 1984; and Schy and Giesy, 1981) and fuzzy sets
(Zadeh 1965, 1973; Brown, 1980; Brown et al, 1983) have been
employed to the design of simple structural elements and
aeroplane control systems involving uncertain parameters and
stochastic processes. The basic idea in multi-objective design is
to include all important objectives in a vector objective func-
tion. The problem of optimizing structural systems involving
dynamic restrictions, random parameters, stochastic processes.
and multi-objectives has been outlined by Rao (1982). By
considering the imprecision of the restricitons such as use,
design, construction, one may assume that, some of the con-
straints and goals for each of the objective functions are fuzzy
or imprecise in multi-objective fuzzy optimization design. If the
corresponding expectation functions for objective and admis-
sion for constraint are introduced it is possible to quantify the
fuzzy objectives and constraints. Guangwu and Suming (1986)
emploved the concept of multi-objective fuzzy design optimiza-
tion for ship grillage structures.

5.2. Design sensitivity to parameter variations

5.21. Basic concept of sensitivity analysis

The sensitivity of a structural system to variations of its
parameters is one of the basic aspects in the design of struc-
tures. The sensitivity theory is a mathematical problem which
investigates the change in the system behavior due to parameter
variations. The basic concepts of sensitivity theory are well
documented in several books, see, eg, Frank (1978). The sensi-
tivity problem can be stated by defining the actual system
parameters represented by the vector a = {a,, as,..., a,}”
which differ from the nominal value a, by a deviation da.
These parameters are related to a certain vector x which char-
acterizes the dynamic behavior of the system. In structural
dynamics the vector x can be taken as the system response
vector. The mathematical model of the system response can be
written in terms of the first order differential equations

{x(1,)} = {x"}.

(%} = { f(x,a.1,F)},

where F represents the input vector.
Generally a unique relationship between the parameter vec-
tor and the response vector is assumed. However, this is not

(43)

possible in real problems because they cannot be identified
exactly. It is a common practice in sensitivity theory to define a
sensitivity function S which relates the elements of the set of the
parameter deviations Aa to the elements of the set of the
parameter-induces errors of the system function Ax by the
linear relationship

Ax = S(a,)Aa.

This relation is a linear approximation of eq. (43) and is valid
only for small parameter variations, ie, {|Aall ® |jayll. Sis a
matrix function known as the trajectory sensitivity matrix which
can be established either by a Taylor series expansion or by
partial differentiation of the state equation with respect to the
system nominal parameters.

When the system is random, the function S is referred to as
stochastic sensitivity function. Szopa (1984) developed equa-
tions for stochastic sensitivity functions to determine the in-
fluence of changes in the initial conditions on the response.
These functions were ap...d to a stochastic nonlinear oscillator
with a limit cycle. It was found that the mean values and the
variances of the stochastic sensitivity functions converge to
zero. Szopa (1986) used the sensitivity theory to investigate the
influence of changes in system parameters on solutions of
dynamical systems. The statistics of the stochastic sensitivity
functions were found to bave finite values when the response
exhibit chaotic characteristics.

5.2.2. Design dertvatives

Consider the eigenvalue problem given by eq. (15). It will be
assumed that the eigenvalues A, of the system matrix A are
distinct. The elements of A are function of the system parame-
ters a. The sensitivity of the free vibration of the structure as
well as the sensitivity of its relative stability with respect to any
parameter of A can be characterized by the sensitivity of the
eigenvalues A, with respect to the parameters.

The partial derivative

S‘:;'- a\/da,l,,

(44)

(45)

is known as the eigenvalue sensitivity or the eigenvalue deriva-
tive.

The eigenvector sensitivity (or derivative) of the system
matrix is also given by the partial differentiation

S} = dx,/da,,. (46)

The eigenvalue sensitivity has been examined mathemati-
cally by McCalley (1960), Mantey (1968), and Reddy (1969).
Frank (1978) developed a number of formulae to determine the
eigenvalue sensitivity. The derivatives of the eigenvalues and
eigenvectors are very helpful in design optimization of struc-
tures under dynamic response restrictions. They have been
extensively used in studying vibratory systems with symmetric
mass, damping, and stiffness properties (Fox and Kapoor, 1968:
Kiefling, 1970) and in nonself-adjoint systems (Rogers, 1970;
Plaut and Huseyin, 1973; Rudisill, 1974). For distributed
parameter systems, design derivatives of eigenvalues were first
encountered in optimization studies by Haug and Rousselet
(1980) and Reiss (1986). Reiss used a relatively simple method
to determine explicit results for the design derivatives of eigen-
values and eigenvectors. He expressed self-adjoint operator
equations in terms of integral form by using Green's function
(Reiss. 1983). Recently Kuo and Wada (1986) developed the
nonlinear sensitivity coefficients and correction terms. usuallv
eliminated during the linearization process in the Taylor expan-
sion. The nonlinear correction terms were found significant in
problems involving many finite element analyses where the size
of the eigenmatrix is of order 10E06 and the difference in the
eigenvectors may be of order 0.01.
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Lund (1979) developed a method to calculate the sensitivity
of critical speeds of a conservative rotor to changes in the
design using a state vector-transfer matrix formulation. Fritzen
and Nordman (1983) have developed the eigenvalue and eigen-
vector derivatives for general vibratory system (with nonsym-
metric system matrices) and used them in evaluating stability
behavior due to parameter changes in rotor dynamics. Palazzolo
et al (1983) presented a generalized receptance approach for
eigensolution reanalysis of rotor dynamic systems. Their method
has the advantage of accomodating system modificaion of arbi-
trary magnitude and treats the modifications simultaneously.
Rajan et al (1986) developed the eigenvalue derivatives for the
damped natural frequencies of whirl of general linear rotor
systems modeled by finite element discretization. For under-
damped modes, the eigenvalue derivative is complex. The real
part represents the damping sensitivity coefficient while the
imaginary part gives the whirl speed sensitivity. Rajan et al
showed that the combination of design parameter and whir!
frequency sensitivity coefficients may be used to evaluate the
damped critical speed sensitivity coefficients.

In reliability-based design optimization it is useful to ex-
amine the results to sensitivity analysis in order 1o determine
the influence of the statistical parameters on the optimum
solutions. The essential objectives of sensitivity analysis of any
system is to establish a measure of the way each response
quantity varies with changes in the parameters that define the
system (Grierson, 1983). Recently, Arora and Haug (1979) and
Frangopol (1985a) have developed a technique for determining
the reliability-based optimum design sensitivity of redundant
ductile structures. Frangopol investigated the sensitivity of an
optimum design to changes in the statistical parameters that
define the loading and resistance strength of the structure.

6. EXPERIMENTAL RESULTS

The first attempt to measure the statistics of structural
modal frequencies is believed to be made by Mok and Murray
(1965). They carried out a series of free flexural vibration tests
of a bar with a stepped profile and a maximum variation in the
cross section of 50%. The predicted and measured results were
found very close. Twenty years later, Paez et al (1985, 1986)
conducted a series of experimental investigations to measure the
random variation of the natural frequency of a cantilever beam.
One end of the beam was mounted on a fixture through a screw
and two washers, and the other end carries a concentrated
mass. The torque in the screw establishes a preload which
governs the stiffness of the beam at the fixture. Paez et al
conducted 19 experiments each with different values of base
torque and stiffness. The variation of the fundamental frequency
with the base stifiness was obtained experimentally and numeri-
cally (by using a finite element program). It was shown that the
standard deviation of modal frequency increases with the mean
modal frequency. Another interesting feature observed by Paez
et al was that the magnitude of random variation in modal
frequency can become greater than the spacing between modal
frequencies as the frequency order increases.

The phenomenon of normal mode localization was first
examined experimentally by Hodges and Woodhouse (1983).
Their model was a thin high-tensile steel wire stretched between
two supports. Seven small lead weights were securely attached
initially at equal lengths and then were shifted slightly to give a
controlled amount of irregularity. Under a step function force
with repeatable amplitude the string motion was observed and
measurements were taken for the energy transmission from end
to end of the string. Levels of energy attenuation in the dis-
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FIG. 10. Comparison of experimental and theoretical natural fre-
quencies of the first two modes for ¢ = 281.8 (Pierre et al. 1986).

ordered case were found in some cases quite large (99%) with
only 2.4% standard deviation in the mass positions.

Pierre et al (1986) conducted an experimental investigation
to verify the existence of localized modes for two disordered
two-span beams shown in Figure 7. The beam was pinned at
both ends while the third support with variable torsional stiff-
ness was located near the mid-span. This middle support can be
moved to various locations. A pure excitation torque was ap-
plied to the specimen beam near its intermediate support.
Figure 10 shows the comparison between theoretical and experni-
mental natural frequencies of the first two modes versus mistun-
ing parameter 8/ = Al/[, where / is the length of the beam. and
A/ is the variation from the middle of the beam. The coupling
parameter ¢ = 2k4//EI, where k, is the stiffness of the tor-
sional spring, E and 7 are the Young’s modulus and the area
moment of inertia of the beam, respectively. The degree of
localization of a mode is expressed by the ratio A = 4 /A4,
which represents the peak deflection in one span to the peak
deflection in the other span, such that the numerator of this
ratio corresponds to the span with smaller peak deflection. This
peak ratio is shown in Figure 11 for the two modes for two
different values of torsional spring constant ¢. The mode shapes
of tuned and mistuned beams are shown in Figure 12. It was
reported that for 8/ = 2% and ¢ = 281.8, the first mode of the
mistuned beam is strongly localized in the second span, whereas
the one of the tuned beam is collective, that is the peak
deflection is the same in both spans.

A comprehensive experimental and theoretical investigations
were conducted by Ewins (1976) to determine the effects of
turbomachinery blades mistuning. His bladed disk testpiece
model consists of 24 blades. A provision for adjusting the tune
of each blade individually was accomplished by adding a num-
ber of washers to a nut and bolt attached near the tip of each
blade. The test piece was excited by placing an electromagnet
close to its surface and passing an alternating current through
the magnet. The response of the bladed disk was detected by a
set of strain gages fixed near the root of each blade. The natural
frequencies were then measured by adjusting the frequency of
the magnet so as to produce a large response in the strain gage
outputs. The shape of each mode was determined by examina-
tion of the relative amplitudes of all the blades. It was observed
that there was a distinct, though complex, pattern linking the
basic (tuned) mode shape with the mistuned mode shape and
the mistuned pattern, particularly for the lower diametral modes.
Jay and Burns (1986) conducted a series of rotating and non-
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FIG. 11. Comparison of expenmental and theoretical peak rato A
of the first two modes for (a) ¢ = 90.4, (b) ¢ = 281 .8 (Pierre et al, 1986)

tuned

A/*\‘\A\\/-\»

(a) &1 = 0.0

mistuned

M/"\‘i

(b) 81 = 0.02

FIG. 12. Measures first mode shape for tuned (a) and mistuned (b)
two-span beam for ¢ = 281 8 (Pierre et al. 1986).
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rotating tests to idenufy individual blade frequencies. mode
shapes, mistuning, damping. and split factors for diametral
patterns of the 3, 4, 5, and 6 diametral mode families. The first
harmonic of the normalized axial velocity defiait at the proper
mass flow rate was used 1o construct a gust perturbation veloc-
ity. These spanwise gust perturbation velocities muluphed by
the product of the density and the relauve velocity squared
results in the normalized force parameter. It was found that any
increase in the perturbaton force parameter resuits in an in-
crease in the dynamic stress in the bladed disk. In addiuon the
perturbation parameter does account for the interacuon be-
tween the wake and modal response of the system as they are
changed by aerodynamic loading.

7. CONCLUSIONS

Several problems in structural dynamics involving parameter
uncertainties have been treated in the literature. These problems
include the random cigenvalue of disordered systems, normal
mode localization, random response, design optimization. and
reliability. The mathematical theory of the random eigenvalue
has reached the maturity stage, however, this theory has not
been fully implemented to treat real engineering problems. It 1s
observed that some progress has been made towards the devel-
opment of numerical algorithms such as stochastic finite ele-
ment methods and Monte Carlo simulations to determine the
response of structural elements. These developments have pro-
moted the investigation of several problems including mistuned
turbomachinery bladed disks, reliability-based design and de-
rivatives of eigenvalues in design optimization. Few attempts
have been made to employ new approaches such as multi-
objective optimization and fuzzy sets in design optimization
problems. It is believed that these techniques will have new
research avenues in many design problems. Another area of
potential future research is the optimum design sensitivity in
reliability-based design under multileve! reliability constraints
to evaluate the significance of various uncertainties and ap-
proximations on the optimum solutions.

The problems treated in the literature have been restncted
within the framework of the unear theory. The limitations of
the linear formulation need to be defined to provide the struc-
tural dynamicist the influence of nonlinearities as a source of
uncertainty. Future studies should include the influence of
geometric and material nonlinearities. Experimental investiga-
tions are also very important to examine the influence of
parameter uncertainties of composite structures on their dy-
namic performance.
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