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Abstract

The effectiveness of the various Radar Cross Section
(RCS) prediction techniques was investigated. The RCS of
square flat plates was analyzed using the Physical Optics
approximation, the Physical Theory of Diffraction, the
Geometrical Theory of Diffraction, the Uniform Theory of
Diffraction, and the Moment Method or Method of Moments. The
RCS predicted by the computational methods was compared to
measurements performed in an anechoic RCS measurement
chamber. Also, the five computational methods were compared
in terms of plate size (in wavelengths), computer (CPU) time
for each computation, and angular regions of computational
integrity.

It was found that although the Moment Method is the most
accurate RCS prediction method, it takes too much CPU time
for large plates (over 2.5 wavelengths). The Uniform Theory
of Diffraction, on the other hand, is accurate for large
plates and takes less CPU time than the Moment Method. The
Geometric Theory of Diffraction is also accurate but fails
near the edge of the plate. Finally, the Physical Theory of
Diffraction and the Physical Optics approximation are

relatively inaccurate.
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A COMPARISON OF COMPUTATIONAL ELECTROMAGNETIC METHODS
FOR 1THE PREDICTION OF RADAR CROSS SECTION

I. Introduction

Background

Since World War II, the prediction of radar cross section
(RCS) for different targets has been a priority (Knott,
1985:252), although, the history of RCS goes back even
further than WW 11. The development of RCS has its roots in
the investigations on the nature of light. Thus, the
development of RCS goes back to the works of Pythagoras,
Aristotle, Ptolemy, and others (Kouycumjian, 1985:1). These
men investigated the nature of light and its propagation.

Geometrical Optics was developed in the early seventeenth
century (Young, 1976:84) and modeled the propagation of light
in terms of rays. According to the theory of Geometrical
Optics, light travels in straight lines in a homogeneous
medium (Young, 1976:84). 1In 1881, Thomas Young was the first
person to try to explain the nature of diffraction by the use
of rays (Kouyoumjian, 1985:2). He demonstrated that light
consists of waves whose wavelengths are small (Young,
1976:84). 1In 1862, Maxwell predicted the existence of
electromagnetic waves and stated that light is an
electromagnetic wave (Kouyoumjian, 1985:7; Young,
1276:84-85).

In 1888, Kirchhoff postulated what is now known as the

Physical Optics approximation. The Physical Optics
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approximation predicts the scattering of electromagnetic

‘.’ waves from a perfect conductor (more on that later). In
1887, Hertz conducted expPeriments concerning on the
reflection of radio waves from metallic and dielectric
objects (Blacksmith, 1985:982; Skolnik, 1980:8). Hectz
demonstrated that radio waves and light waves operate on a
similar principle (Skolnik, 1980:8). Also, Hertz verified
Maxwell's equations experimentally (Kouyoumjian, 1985:7).

In 1894, Sommerfeld calculated the diffraction of a

conducting infinite half-plane (Kouyoumjian, 1965:867) (see
Fig 1l.1).

X |—a/2—|

-wcX <« +00

Fig 1.1. 1Infinite Half-Plane

Incident

o

& g . -
o A s
N | el i
Diffraction wipads.me
from TR
wedge

Fig 1.2. Perfectly Conducting Wedge
qﬁb In 1912, McDonald produced an asymptotic solution for the
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diffraction from a perfectly conducting infinite wedge
(Kouyoumjian, 1965:867) (see Fig 1.2). 1In 1953, Keller
developed the Geometrical Theory of Diffraction (Kouyoumijian,
1985:12). He inrroduced the concept of diffracted rays which
are added to the rays obtained from the Geometrical Optics
model to obtain the total scattering from an object
{Kouyoumjian, 1935:12). Also in the fifties, Braunbek (in
the U.S.) and Ufimstev (in the U.S.S.R.) developed the
Physical Theory of Diffraction (Kouyoumjian, 1985:12). This
method was similar to the Geometrical Theory of Diffraction,
but, it sought to improve the Physical Optics result instead
of the Geometrical Optics result (Kouyoumjian, 1985:12). Aas
will be discussed later, the Geometrical Theory of
Diffraction failed at the shadow and reflection boundary,
where it predicted an infinite result (Kouyoumjian, 1985:7).
To overcome this problem and others which the Geometrical
Theory of Diffraction presented, the Uniform Theory of
Diffraction (due to Kouyoumjian and Pathak) and the Uniform
Asymptotic Theory (due to Lee and Deschamps) were developed
{Knott and others, 1985:134).‘ In the late sixties, ﬁhe
Moment Method, which is a numerical gsolution tc an exact
equation, was implemented thanks to the availability of
high-speed computers (Stutzman, 1981:307). Other
computational methods have been developed after these such as
the Equivalent Current Method, and others (Knott and others,
1985:136) .

Each computational method differs in its approach to a
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particular problem. Also, each method has some advantages
dﬁ; and disadvantages when compared to the others (Skinner,
1985:2-3). The éurpose of this investigation is to explore
to what extent each method is reasonable to use in terms of
RCS pattern prediction and CPU time. Each method will be
compared in terms of frequency of operation, angle of
incidence of the target to the radar, polarization of the

incident wave, and computer (CPU) time.

Problem
The problem is to decide how effective and time consuming
are the computational methods used when analyzing the total

scattering behavior from square flat plates.

@ Basic Theory

RCS describes the "electromagnetic size" of an object
detected by a radar system. The radar emits electromagnetic

(EM) waves.

+E
Direction
Source . , of
/////’ Propogation
“NH

Fig 1.3. Electromagnetic Wave

These waves are conposed of an electric (g) field and a

magnetic (E) field. These fields are perpendicular to each

®




other and to the direction of propagation (see Fig 1.3). The
direction of the E-field determines the polarization of the
electromagnetic wave (Knot: and others, 1985:76-71). (See

Fig 1.4).

H E

Horizontal vertical

E H

Fig 1.4. E-field Polarizations

The RCS is a function of the target's shape, the frequency or
wavelength of operation, the polarization of the transmitter
and receiver, the angle of incidence of the incident wave
with respect to the target, and the materials composing the
target (Knott and others, 1985:48).

When making RCS measurements, it is very useful to
classify the target's dimensions in terms of the operating
wavelength of the radar (Johnson, 1982:2). The wavelength is
obtained by dividing the speed of light (3.0x108 m/s) by the

radar's frequency of operation.

SCOEE

In this thesis, the computational methods will be
compared in terms of their accuracy using different angles
between the incident EM wave and the target, the size of the
target compared to the wavelength of operation, and the CPU
time they require.

The investigation covers five computational methods. The
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methods applied are the Physical Optics approximation, the
Geometrical Theory of Diffraction, the Uniform Theory of
Diffraction, the Physical Theory of Diffraction, and the
Method of Moments.

Square flat plates were used as the targets in this
investigation. The size of the plates varies from half a
wavelength (on one side) to six and a half wavelengths in 6.5
wavelength increments. Also, 08.75 wavelength plate was used.
The plates were measured in the Avionics Laboratory Far-Field
RCS Measurement Facility. The measurements were compared
against the results obtained by the computational methods.
These comparisons provide a good standard on how accurate
each method is as the electrical length of the plates change.
Also, it is possible to predict where each method fails to
produce good results as the aspect angle changes. Finally,
each method was compared in terms of CPU time. These
gquidelines will be useful in the case where the RCS of a more

complex target {s desired .

Summary of Current Knowledge

The Physical Optics Approach (PO) is often a preferred
method because it is easy to use for any geometry (Skinner,
1985:6). This method assumes that electrical currents are
induced by the EM waves on the area that is "seen" by the
radar (illuminated region). It also assumes that no currents
exist in the shadow region (the region that EM waves do not

illurminate directly). (See Fig 1.5).
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Target

e shadow
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Fig 1.5. EM wave illumination

Some of PO's advantages are: it is easy to use, the user does
not need an extensive backgrouad in electromagnetics, and the
PO computer codes require a small amount of CPU time
(Skinner, 1985:6). Unfortunately, PO also has some
disadvantages. Some of these disadvantages are: the target
can only be a good electrical conductor, the target's area
must be much greater than the wavelength, and higher order
scattering effects are neglected (Knott and others, 1985:59).
Higher order scattering effects are effects that are due to
the particular shape or surface characteristics of the
target. Some examples are effec-ts that occur at sharp épots
such as edges, tips, corners, and curved surfaces., The EM
waves from the radar hit these sharp discontinuities and are
re-radiated in all directions. Thus, the radar sees a
different RCS than the PO method would predict on some
targets (Stutzman, 1981:458).

The Geometrical Theory of Diffraction (GTD) is a ray

tracing method developed by Keller (Keller, 1962). Ray




tracing methods assume that electromagnetic waves propagate
in "line-of-sight" directions. Ray tracing methods are more
dependent on exact geometrical description than PO and
provide a better insight of what is happening as the EM waves
bounce off the target (Skinner, 1985:2). GTD provides fast
computations, 1Its results are good for almost all large
targets. It takes into account higher order effects such as
tip, corner, and edge scattering. Also, GTD takes into
account the RCS contribution of the shadow region.
Unfortunately, GTD predicts an infinite result on the shadow
and the reflection boundaries (Knott and others, 1985:133).

The Uniform Theory of Diffraction (UTD) is an extension
of GTD. The first version of UTD was developed by
Kouyoumjian and Pathak of Ohio State University (Knott and
others, 1985:134). UTD solves the problems that GTD has at
shadow boundaries. 1It prevents the KCS from approaching
infinity at the shadow boundary. Except for this, UTD is
practically identical to GTD. The CPU time it requires is
almost the same as that required by GTD. However, the UTD
calculations are more complex (Skinner, 1985:19).

The Physical Theory of Diffraction (PTD) was developed by
Ufimstev of the U.S.S.R. and Braunbek of the U.S. almost at
the same time (Skinner, 1985:12). PTD is an extension of PO
which adds "a correction factor without any physical
significance" (Skinner, 1985:12). This correction factor

increases the accuracy of PO. Otherwise, the advantages and

disadvantages of PTD are the same as those for PO (Skinner,




1985:12).

The Moment Method (MM) is also known as the Method of
Moments. It is a technique that is very accurate in
producing results for targets whose dimensions in wavelengths
are very small (Stutzman, 1981:370). MM presents the
solution to an integral equation which models a particular
target "exactly" (Stutzman, 1981:306-307). The limits of the
integral equation depend on the particular target used. MM
has some advantages which make it very useful in some
applications. Among these advantages are: it can produce an
almost exact solution, it can be used to find all the
electromagnetic properties of the target, and it can
accurately predict all the scattering properties of the
target (Skinner, 1985:16). One of its disadvantages is that 1
it takes too much CPU time to calculate the RCS if the
target's size is greater than 2 to 3 wavelengths (Skinner,
1985:16). Anothar disadvantage is it does not give much
insight on the scattering mechanisms of the target (Skinner,

1985:17).

AEBzoach

l. Computations were performed to predict the RCS of

different sizes of square flat plates using PO, GTD, UTD, !
PTD, and MM. The size of the plates ranged from .5
" wavelengths to 6.5 wavelengths in .5 wavelength increments.

First, the computations were performed using a vertically

polarized incident wave vs the angle of incidence of the
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transmitter. Then, a horizontally polarized wave was used.

2. Measurements were performed on the square flat plates
given by the Avionics Laboratory. Again, the sizes of the
plates ranged from .5 wavelengths per side to 6.5 wavelengths
in .5 wavelength increments,

3. Comparisons were made between the results of the
computations and measurements for each square flat plate.

4. General conclusions were obtained from the comparisons
mentioned above. These conclusions will be helpful in
deciding which of these RCS computational methods is more
useful for a target consisting of perfectly conducting flat

elements.

Materials and Equipment

A VaX 11/788 mainframe computer is available for the
implementation of the computational methods. The targets
were provided by the sponsor. The Avionics Laboratory
Measurement Facility was used for the measurements of the
targets.

The RCSBSC computer code developed at Ohio State
University by Marhefka (Marhefka, 198l) was used to calculate
the RCS of different targets using PO, PTD, and UTD. The ESP
computer code (Newman, 1985) was used to calculate the RCS of
the targets using MM. Both computer codes were available in
the VAX computer.

The GTD calculations were obtained from a program that

was developed for this thesis from formulations developed by
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Ross (Ross, 1966).

In Chapter II, the theory used for the computational
methods is discussed in more detail. In Chapter IIl, the
measurement procedure is explained. In Chapter IV, the

meagsurements are compared to the RCS computational methods.

Finally, Chapter V offers conclusions and recommendations,




II. Theorx

General Theory

Sets of small polygonal flat plates can be used to model
almost any target. This is one reason why flat plates were
used in this investigation as targets. Also, flat plates are
cheap and easy to construct. 1In this chapter, square flat
plates will be discussed in general. Also, each
computational method will be used to see how it calculates
the RCS from the flat plates.

‘Note, A is a general complex scalar, B is a general real

vector, and C is a general complex vector.

RCS is defined by

py
0/=L/ IcmR ————

R oo l 2 (2.1)

where ES and El are the scattered and incident electric
fields respectively (Knott and others, 1985:48) and R is the
distance between the target and the radar. Since R

approaches infinity ané §s decays as 1/R, the RCS does not
depend on the distance of the target from_the radar, as long
as the distance is large (Knott, 1985:252). Typically, the
RCS measurements are made using this approximation (far-field
approximation), although it is possible to measure the RCS

when the target is in the near field. From Eq (2.1), it can

be shown that RCS has dimensions of area. Usually these
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dimensions are given in square meters. Furthermore, the
units of RCS are converted to decibels relative to a square
meter (dBsm) to provide a standard for comparison purposes.
The targets used in the investigation are square flat
plates. Flat plates exhibit three different scattering }

behaviors (Knott and others, 1985:6-7). The first one is

specular or broadside scattering. 1In this case, the plate's
broadside is parallel to the radar antenna's aperture. This
RCS is "proportional to the square of the area of the plate
and the square of the frequency" (Knott and others, 1985:6).
The second type of scattering possible for a flat plate
is when the plate is oriented out of the specular angle, and
having two edges perpendicular to the "line-of-gsight" with
@ the receiver. Now the RCS is proportional to the square of
the length of the edge (Knott and others, 1985:6). This RCS
is independent of frequency, which is similar to the case of
a large sphere or a spheroid (Knott and others, 1985:6-7).
The third type of scattering occurs when the flat plate
is oriented such that the receiver only "sees" the RCS from
the four corners (Knott and others, 1985:7). This occurs at
all other angular positions. These returns are inversely

proportional to square of the frequency of operation (Knott

W F P X

and others, 1985:7).

Each computational method used in the investigation is
good for approximating the specular scattering from the
plates, as long as the plates are large. Only the Moment

esa Method is good for calculating the specular behavior of

-



plates which are small when compared to wavelength. This is
because the other computational methods are good only when
the target's size is greater than the operating wavelength.
The purpose of the investigation is to see how effective and
time consuming each of the computational methods is when
analyzing the total scattering behavior from square flat
plates.

The coordinate system which was used to define the target

is as shown on Fig 2.1.

Target

X

Fig 2.1, Coordinate system u-ed

In the following sections each of the computational
methods used in the investigation will be discussed in

reference to the square flat plate.

Physical Optics (PO)

The basic premise assumed by PO is that the incident

field on the target will produce a current given by

—J:Pa:. n Xﬁhﬂ”:lh Xﬂ: in illuminated region

O 1in shadow region

(2.2)




where n is the unit vector perpendicular to the target's

surface (see Fig 2.2).

egien

Fig 2.2. PO current on a target

Assuming a monostatic case (the radar transmitter and
receiver are co-located), the RCS will always be measured in
e the illuminated region. The vector potential is used to
obtain an expression for the field scattered by the target

(Stutzman, 1981:455). The vector potential is given by

A = .-..J:o exP(-JKR)
ﬁ. ’PLHTR_ dS' (2.3)

where R is the distance between the incremental surface patch

and the radar, and k is the wave number. Assuming that the

target is far away (far-field), the scattered field is given

by




5 ~jn

(2.4)

where » is the permeability constant (in free space w=4= x
1077y,
Using the definition of RCS (Eq (2.1)) and evaluating A

for a rectangular flat plate the following expression is

obtained:

| 2
— . ]
69a*b™m 2 sin{2ka $inB)

% 22 (2ka Sin6) .

where » is the wavelength, k=2r/a, is the aspect angle, and
b=a for a square flat plate (Ross, 1966:338). This equation
is independent of polarization, because the result is the

same in either polarization (Ross, 1966:334).

Geometrical Theory of Diffraction (GTD)

The GTD approach has its roots in the Geometrical Optics
(GO) theory. GO assumes that EM waves travel along ray paths
(Ruck, 1970:39-40). Unfortunately, GO fails to account for
diffraction. Diffraction occurs when the incident wave hits
tips, corners, edges, tangent points, or any discontinuity

(Ruck, 1970:44). The following example will illustrate the




concept of diffraction.

—
Incident Reflection Boundary

Wwa -
ve h“\ak_, -7

I
r;r°°7/ 7 $hadow Boundary
| 00007

Fig 2.3. Diffraction Example.

Considexr the case of a semi-infinite plane which is perfectly
conducting. A radar transmitter emits EM waves which hit the
plane. The transmitter is far away from the half plane so
that the EM waves reaching the plane can be considered plane
waves. Region I is where all reflected rays exist. Region
11 is composed of all rays which don't reach the plane. The
last region is denoted as the shadow region.

GO would only predict a return if the receiver was
located in Regions I or 11. 1In all regions, GTD predicts a
more realistic return than GO (Stutzman, 1981:458). Thus,
GTD i{s more accurate in computing the RCS of a target than
PO, which predicts no return in the shadow region.

To calculate the RCS of a target caused by a point of
diffraction, the diffracted field (gd) must be calculated in
the desired direction leaving the diffraction point. The
diffracted field is proportional to the value of the incident
tield (E,) multiplied by a diffraction coefficient at the

point of diffraction (Stutzman, 1981:459). The diffraction
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coefficients are a local phenomena which depend on the local
point of diffraction (Keller, 1962:117). Diffraction
coefficients have been obtained for canonical problems such

as wedges, half planes, and infinite strips.

H e ar———
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0 e e Pue 0w hJ
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Pig 2.4, EBdge diffraction from an infinite strip of width 2a
(Roas, 1966:331)
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Ross used infinite strips to derive the GTD Monostatic
RCS from a rectangular plate (Ross, 1966:331). He obtained
the backscatter fields from an infinite strip in the X-Y
plane of width 2a (in X} and infinite height (in ¥Y). The
following formulas are the expressions Ross computed for the

backscatter field of the infinite strip. The expressions

derived by Ross are given in the next pages.




For vertical polarization:

/AJ\ _ J& exF)(JJB!“f 1T{D_
el VT 2 ke )

x{[h— _s—‘,'ﬁ]cxp(-jlka sine)
+E-ST'@]QXP(J1KQ sine)}

+§ A exp(Jklr+24])
27 (kr)4 (le)s/" coSe (2.6)

, Aexp (ifk(r+44)-%]
§7 (2ke)% (2Ka

X [ (:i?inee z exp(Ydka sine)

+ d-sine) exp (j2Ka Sineﬂ}

(1+sin6)*

'
X é, _ exP(J!‘lKa-"’/;iE }
8§ (1ka)?

2-8




and, for horizontal polarization the expression is
_ A explu[Kr+" _
o = e 1
X expéj[xa Sin 9]) +[l+ siln e]

x expljf2ka Siné})}
_ {ga_m(iﬁm”/ﬂ)

7 (kr 2ka)*» cos @

_ AAexp(JK(r+42)+*%
27 (Q¥Kr)%4 (2Ka (2.7)

[exgg-Jzuga sine)

|- Sih @

+ exP(JJKa Sine)
|+ Sin @

|
X ’__ exp (i [4a +7%])
27 (2K a)

where s is the azimuth angle measured from broadside to edge

(Ross, 1966:331). The RCS per unit length of the strip is

2-9



obtained by

2

o= lim 21 JA
ax [AF

where s is the backscatter field from the strip. To obtain

(2.8)

the RCS from a rectangular flat plate, the following

relationship is used:

O’(area) J('engﬂm) (2.9)

where 2b is the length of the plate (in Y) (Ross, 1966:331).

Simplification of (2.6) and (2.7) produces the following

formulas:
1 '] Py 0
-4 e N_1.SIn £2Ka Smez

- (4 Jlka—’” F_—L_-+ Jzka_‘W
(27)% (2ka) 72 | €058 7 Y(3u) 5 (2Ka )V

([:+$|ne]cxp(-J1Ka. Sin 6)

(1- s|ne) (2.10)
(1-sing)expli2Ka smj_)
(I1+ sine)?
2

-1
x |-]ex Yka - 7%
g§m(2Ka)?
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- Siné _J

_ 4B : * Sin(2ka sine)_l
0 o -#-I,E:os(ua sing)+

exp('tlzm sine) + exg].izkg Sin_ol
I-Sin & |+ 5ih 6

2
=

(i2Ka + %
o |1- eaelira 2D

which gives us the GTD RCS of a rectangular flat plate of an

area of 2a by 2b (Ross, 1966:332). To obtain the RCS of a
square flat plate assume that a=b. Note that if & is equal to
99° (grazing incidence) the expression for the RCS becomes
infinite. The expression is still very good when near
grazing incidence is avoided. Note that the singularity
occurs in the second and third order terms, i.e., the first

and second term in the second bracket, respectively.

Physical Theory of Diffraction (PTD)

PTD was developed in its original form by Ufimstev (Knott

and others, 1985:14¢). He worked on a way of improving the
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Physical Optics approximation as opposed to Keller who worked
on improving the Geometrical Optics approximation.

The PTD solution was applied in the investigation thru
the use of the frill equivalent current solution (Marhefka,
1981:Ch 2, 11). The diffraction coefficients used in this
method are obtained by subtracting Keller's diffraction
coefficient and the physical optics diffraction coefficient

in the following (Marhefka, 1981:Ch 2, 3,11):

e)m C)m e’m
G; = G - GPO (2.12)
where

G::;m = ‘[T“"(G'e’)/z * Tan (e+ e’)/y,] (2.13)

and

Gé,mz _i_[(—Sec[G-OIJ)/Z + SQC(0+6')/7;| (2.1.4)

The PO diffraction coefficient is defined only for a wedge
angle of zero. This method is used in the same fashion as

GTD (see Geometrical Theory of Diffraction). However, the PO

results must be calculated explicitly and added to this

solution (Marhefka, 1981:7h 2, 11).

Uniform Theory of Diffraction (UTD)

UTD was first developed by Kouyoumjian and Pathak to
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solve some problems presented by the GTD diffraction
coefficient on the shadow and illumination boundaries. UTD
provides a continuous solution on the ttansition boundaries
(Kouyoumjian, 1974:1) unlike GTD, which predicts an infinite
RCS on those boundaries. The form of UTD used in the
investigation is based on the Equivalent Current Method.
This method is an extension to the original form of UTD.

The Equivalent Current method was first used by Millar
(Knott and others, 1985:136). Eventually, it was introduced
into a GTD solution by Ryan and Rudduck (Peters, 1985:2). The
Equivalent Current method is essential when a finite edge or
corner is part of the target (Peters, 1985:1) as in the case
of a flat plate. These currents can be found by finding a
line source that produces the same fields at the observation
point as is diffracted to that point by an infinite straight

edge (Peters, 1985:3) (see Fig 2.5).

CAUIVALENT
LINE souncE Vg

Fig 2.5. 1Illustration of Equivalent Current Concept
(Peters, 1985:17)




For the geometry in Fig 2.5, assume that the incident

. electric field is given by
=i _FI LA =
.E. ’EOCXF‘JKP' r (2.15)
where

o (2.16)

and A is the unit vector normal to the surface. From this,

the following expression for the equivalent electric current

is obtained:




where G% is the soft form (the incident ray polarization is
parallel to the edge) of Keller's Diffraction coefficient
(see Eg (2.13)). 1In the monostatic case, 8g is equal to s
(Marhefka, 1981:Ch 2, 3). ie is an equivalent current
because it is a function of the observation direction
(Marhefka, 1981:Ch 2, 3). The edge diffracted field will

then be given by

E, 7 (2 ) 2x2) eugf ] 82

(2.18)

which in turn is

2.7 Yexe(ks) sin[KI/A(RxRi) 8
o -o 27S Eu/z(?'x?i)'@_: (2.19)

o
O
3

F‘i

Note this result is only the diffraction caused by one of the
edges of the target. Thus, this is only a single diffraction

result for one edge. There is another point in the plate
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that diffracts the wave.

Another important diffraction contribution to the total
RCS of the plate is the corners. Marhefka also includes a
corner solution to its RCSBSC computer code which enables the
code to model multiple plate structures (Marhefka, 198l:Ch
2,8). For a perfectly conducting plate, the Equivalent
Current corner solution is obtained by adding the edge
diffracted fields that come together at that corner
({Marhefka, 1981:Ch 2, 8). 1In the far-field, the corner

diffracted field is given by (Marhefka, 1981:Ch 2, 8-9)

(=] [.C p -
_E_v -- DS(¢’¢) @o,@d) © E\‘/(Qc) (2.20)
_-E-c_ L O D;<¢)¢;€o)6d) g;(@c)

(2.21)




and

€ o sinG, a(t) o]
0, (1= D, (]F | ot |

and

d($)=ZCOSz(6/2) | (2.24) 1

and

Do),,(‘l’)= "CXP_(ﬂ/‘?) COT ;'5(7(-?'7’) (2.25)

2n (27K)"2 Sing,

where

F(x)=1jl(x)'/“|e5‘

Ix

00
_jayz‘
e d‘T (2.26)

e

4

F(x) "is a heuristic function which insures that the
diffraction coefficient will not change sign abruptly when it
passes thru the shadow boundaries of the edge " (Peters,
1985:14). This solution (Eq (2.20)) is self-contained by a
flat plate (Marhefka, 1981:Ch 2, 9). 1In other words, at the
limit of (Eq(2.20)), the specular scattered field will be
obtained for the appropriate region.

Diffractions from edge to corner, corner to edge, and
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corner to corner are known as double diffraction terms (see
Fig 2.6). The UTD solution used for this investigation has a

double diffraction solution built into it.

a. Edge to Corner Diffraction

NV

B. Corner 10 corner aiffraction

Fig 2.6. Examples of Double Diffraction

The double diffraction solution only calculates the component
perpendicular to the edge. 1In other words, only the double
diffraction solution for the horizontally pélarized case is
computed. Por vertical polarization, the double diffraction
solution is practically the same (because of surface boundary
conditions) as the single diffraction solution for the same

case (Marhefka, 1981:Ch 2, 15). The doubly diffracted fields

are given by (Marhefka, 1981:Ch 2, 15)

T




a. corner to edge:
Ect = (87 B)E LD (o84, B, S"sin B, 8,00

. Yo ks ~1Ks =tk (2.
X%DH(SISIHQQO)AO)(S”) 1&"’ eJ se;KS ‘(2 27)

b. corner to corner:
‘Ca - (&', Q)E'pn(o%@d)@“s”sin“éo,o,gi')
x%D:(SCSEHmecc)6“)60)5/3;]\1?.’60)40) (2.28)

\ —jks' _-jKs’ ~iKS
XF_'— e e e
0 c. edge to corner:

El =@ BED, (57 sin6.,6.,0,81)
X% D:(“’)ed pcjsllsi 16&,@4)%0) (2.29)
"KS - Ks "JKS
x () el e

where the edge and corner diffraction coefficients are given

respectively by

Dn(L,ec ,¢)¢I) = [DO(L)Q°)¢‘¢7+ Dn(L )?°)¢ - ¢I)]
@ + [DO(L)eo)ﬁ*ﬂ’)'f Dh<L)Q°)¢+¢’)] (2 30)
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e T¥a FE(L Q(Q‘ 6:) X Dn (L>§¢)¢’¢ )

(2.31)

where

-7
D° n( )€C)‘r) l(lﬂk)'/iSne [/27,«67 @F[L& (2.32)

To get the total RCS, all the contributions of the
diffracted field are added together. Using equation (2.1),

the RCS of the target is obtained.

Moment Method (MM)

The Method of Moments or Moment Method is a numerical

technique used to solve the following integral equation:

z(!‘/) K(f,r,)drla' "E;(r‘) L (2.33)

in terms of the current i(r') (Stutzman, 1981:306)., This
equation is known as an electric field integral equation
(EFIE). The current is ueed to obtain the fields., Then the

RCS is obtained from the fields., 1In Fig 2.7, S is the

surface of the plate and n is the unit vector perpendicula:




to the surface (Newman, 1985:4). The unit vector in this

particulaxr example is -§. Let (ii) be a source that produces

the incident fields (E,).

Fig 2.7. Scattering from a flat plate

The £fields scattered by the plates are given by

—-——
-

_E_,‘__‘_E_; (2.34)

where E is the field in the presence of the target (Newman,
1985:4-5) .

To solve for the unknown current, MM assumes that J(r')
can be approximated as a linear combination of known

functions, which are known as expansion functions. Usually,

the unknown current is given by




<

T(r)=> InEa¢)

(2.35)

where r' is a general position vector to any point on a
scattering source, In is the nth expansion coefficient, and
in is the expansion function (Newman, 1985:8). The simplest
type of expansion function is the pulse function. The

target's scattering surface is broken into N pieces. The

expansion function can then be generally described by

for the nth piece

— i
._En (r'/) - (2.36)

C) otherwise

The pulse expansion function is not very accurate if the N

pulses are too big as can be seen in Fig 2.8.

Z] Error

Pig 2.8. Expansion of a triangular distribution current
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The solution to this problem is to choose a larger N, or
choose another expansion function. The ESP computer code was
used to calculate the RCS of the targets using MM. It offers
three expansion modes. These are the wire-grid, surface
patch, and attachment dipole modes (Newman, 1985:9).

Either the surface patch mode or the wire mode can be
used to model a rectangular flat plate with ESP. The
wire-grid model is easy to implement and produces good
results at the far-field (Wilton, 1981:78). Unfortunately,
its results are not good in the near-field. Also, Wilton
states that the wire-grid models accuracy has been put in
doubt (Wilton, 1981:78). The surface patch code is more
accurate than the wire-grid model at the near field. Also,
it is easier to model a flat plate with the surface patch
model than with the wire-grid model. For these reasons, the
surface patch model was used to model the square flat
plates.

The surface patch mode is implemented by assuming that
the currents on the.rectangular flat platé are expanded in
terms of rectangular piecewise sinusoidal (PWS) surface patch
dipole modes (Newman, 1985:11) (see Fig 2.9). The current

density for Fig 2.9 is (Newman, 1985:7)

= p Psink(z-z) , o P, sin K(z,-2)
Js=% Zwsin K@z-z,) 2w Sin K(Z,-2,)

(2.37)




here B, and Ez are pulse functions given by

_ | 2,2 <2,
P = (2.38)
=i 0 elsewhere

-P- = l zz ¢ Z < 23 (2.39)
-2 0 elsewhere

le - -23
--2;
I
-- 24
= W - Y

Fig 2.9. A PWS rectangular surface patch dipole mode.

1t is time to solve for _3_3 or i(r'). This is accomplished
by using testing or weighting functions (Wilton, 1981:89).
Assume that a test source with (im) is placed on the target
(Newman, 1985:6). This test source will produce the electric
field, (gm). Eecause of boundary conditions, the fields

inside the target must be zero. Then the following is true:



e — S
- (:I- ..E )Js: (‘T ’ M)AV (2.40)

where V is the volume of the source (Newman, 1985:6). Using

BEg (2.35) and (2.40), the following is obtained (Newman,
1985:8):

N
_sz § In_z...m,n; m=12,3 ”')N (2.41)

n=|
° where
=-\\E,* F.ds
.Z.m)n - -E"' (2.42)
n

Vo= (S Tm Erav

are the mutual impedance between the mth and nth mode and the

modal excitation voltage for the mth mode, respectively.

Once the scattered current is obtained, the scattered field

@ is obtained by




y:la x.ﬁ' (2.44)
-—S ——

and

- -V-"E) O’= Surface electrical (2.
E= o’—JuJG) ) conductivity -

(Knott and others, 1985:68; Newman, 1985:4). The scattered
field is obtained by using Eq (2.34). Finally, the RCS is

obtained by Bq (2.1).
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I1II. Measurement Procedure

The Avionics Laboratory Far-Field Radar Cross Section
(RCS) Measurement Chamber was used to perform the
experimental measurements. In this chapter, the measurement
procedure will be explained using documents provided by AFWAL
for their reports (Simpson, 1985).

The chamber is an indoor "far-field" RCS measurement

facility. The far-field criteria is given by

20D,
R > 1 (3.1)

where R is the distance between the target and the radar, D1
is the maximum dimension of the transmit antenna, D2 is the
maximum transverse width of the target measured, and is the
wavelength of operation. Thus, accurate measurements are
limited to targets whose sizes satisfy Eq (3.1). A block
diagram of the system is provided in Fig 3.1l. Fig 3.1 shows
that, the measurement system consists of a source, transmit
and receive antennas, and a computer to control the
operation. The system performs the RCS measurements and then

records it as azimuth angle (¢) versus the target's RCS.
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Fig 3.1. AFWAL far-field RCS measurement facility
(Simpson, 1985:17)
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Fig 3.2. Block diagram of "CW-Nulling Loop" RCS Measurement
System (Simpson, 1985:17)




The measurements are accomplished by using a continuous
wave (CW) radar equipped with a nulling loop. The concept of
"CW-nulling"™ is illustrated in Fig 3.2. The source is a
Backward Wave Oscillator (BWO) which produces a stable
signal. This low power signal is generated at a frequency
within the microwave band (2-18 GHz). The frequency used for
the investigation was 18 GHz (3 cm wavelength). Most of it
is used by the transmit antenna which transmits it to the
chamber. The transmit power is split into two parts. One
portion is sent to the "reference channel”" of a Scientific
Atlanta 1750 series phase/amplitude microwave receiver (see
point C in Fig 3.2). This reference signal is used to
provide a phase reference when the test channel phase is
recorded. Once this is done, the test channel can perform
accurate amplitude and phase measurements. This portion of
the transmit signal also provides the receiver with a signal.

The second portion of the transmit signal is sent to the
microwave "nulling loop" (point A in Fig 3.2). The nulling
is accomplished by adjusting the nulling loop attenuators and
phase shifter. As a result, the receive signal is cancelled
at point "B" (see Fig 3.2) by the output of the nulling loop,
which is equal in amplitude but opposite in phase to the
receive signai. Thus, the test channel signal level is
reduced to the noise level of the receiver.

The target is then mounted on a low frontal RCS support
pole. The targets used were flat plates. The plates were

mcasured from edge to broadside (-45° to 45°) as can be seen
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in Fig 3.3.

Target
0 NN
45 _\\k\\\\\\\
anle \}‘/ \ NN :
of N§>\§§\\\
incidence .

Fig 3.3. Angle of Incidence on Target

The measurements were taken for -45° < o < 45 (edge to
broadside) because the computer software used only can
function for angles ranging from negative to positive (or =-A
< ¢ < +A ). This is equivalent to taking the incidence angle
as going from 8° to 98° (edge to broadside).

The size of the plates ranged from half a wavelength (1.5
cm) to 6.5 wavelengths (19.5 cm) in increments of half a
wavelength. Also, a plate of 3/4 of a wavelength (2.25 cm)
was congsidered., The uncalibrated RCS of the targets are
measured as the targets rotate on the mount. These results
are then stored in the computer.

The receiver amplitude is calibrated next. This is
accomplished by rotating the target to the angle which
produces the greatest backscatter RCS. 1In the case of a
square flat plate, this would be the broadside. Once the
maximum RCS is obtained, a precision calibration attenuator
(in the test channel of the receiver) is adjusted in 5 dB8
steps from @ to -60 dB. The computer stores these results

and calibrates the raw RCS pattern of the target.




The target is then remoQéd and a calibration sphere is
positioned on the mount. Recording the test level with the
sphere on the support column establishes an absolute RCS
level. 1If the target's broadside RCS is greater than the
sphere's RCS, the target is left in the support. The
computer then assigns an absolute RCS scale to the original
target pattern. This is a source of calibration error if the
plate is not properly located on the mount. The plate's
broadside must be perpenuicular to the incident wave to avoid
this source of error. The final result is given by the
computer in decibels per square meter (dBsm).

Vertical polarization (V.P.) measurements are not as
accurate as horizontal polarization measurements (H.P.).

This is due to the low RCS mount which provides a higher RCS

contribution at V.P. than H.P. This RCS contribution is very

low but it is more noticeable at V.P. than H.P.




IV. Comparison of Results

In this chapter, the five computational methods used will
be compared against each other and against the measurements.
The computational methods were Physical Optics (PQ), the
Physical Theory of Diffraction (PTD), the Geometrical Theory
of Diffraction (GTD), the Uniform Theory of Diffraction

(UTD), and the Moment Method (MM).

Vertical Polarization

Half a Wavelength. This was the smallest size measured

in the range. The RCS pattern of this plate has a null at

approximately 45° (see Fig 4.1).
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Fig 4.1. RCS measurement of 8.5 wavelength (1.5 cm) plate
(V.P.)
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Fig 4.2. Calculated RCS for 8.5 wavelength (1.5 cm) plate
(V.P,)

None of the computational methods predict this null (see Fig
4.2). This null may be a result of the small size of the
plate. The plate is approximately equivalent to “wo dipoles
which are half a wavelength apart. It is possible that both
dipoles have the same magnitude but opposite phases, such
that they cancel each other out at an azimuth angle of 45°.
It {8 also possible that the range can not accurately
describe the RCS pattern for this plate at this polarization
because of its small size (see p. 5 in Chapter 3). Other
meagsurenents were performed on the same plate at various

times providing different results. The most gtable

measurement was the one shown in Fig 4.1,




Table 4.1

Comparison of RCS of Half Wavelength Plate (V.P)

Peak Grazing CPU

Incidence Time
(dBsm) (dBsm) (sec)

PO -31.5 -199.9 1.8
PTD -31.5 -41.3 6.6
GTD -31.6 159.7 106.1
UTD -31,9 -41.3 135.9

MM -28.0 -41.2 51.6
Measurement -28.,0 -36.0 N/A

From Fig 4.2 it can be seen that PTD and UTD have
approximately the same RCS pattern. This is what Marhefka
predicted for this polarization (Marhefka, 1981:Ch 2,11,15).
Also by comparing PTD and UTD to Fig 4.1, it is evident that
MM is the only computational method to accurately predict the
specular peak of the plate's RCS (see Table 4.1). MM also
accurately predicts the RCS of the plate near and at
broadside (65° < o0 ¢ 90°). The value measured for this plate
as grazing incidence differs by 5 dBsm from MM, This may be
due to the mounting plataform used in the measurements.

The RCS predicted by GTD increases as the azimuth angle
approaches grazing incidence (0°). This should be expected

because the reflection boundary for this particular situation

occurs at grazing incidence (see Fig 4.3).




Target
° —-—— - ,
Reflection
Boundary

Fig 4.3. Reflection Boundary on Flat Plate (Monostatic PRCS)

The Moment method is the most accurate computational
method to calculate the RCS of a plate that is small with
respect to wavelength.

Table 4.1 shows the accuracy of the methods at specular
(broadside) and grazing (edge) incidence. Also, the CPU time
is included for comparison purposes. Again, MM is the most
accurate prediction method for the half wavelength plate at
this polarization. The MM CPU time is small when compared to
the UTD time. Thus, MM is the preferred computational method
for a target of this size using vertical polarization.

The rest of the graphs and tables will be presented in

Appendix A and B respectively.

Three Quarters of a Wavelength. 1In this case the

measured RCS pattern and the RCS pattern predicted by the
Moment Method are in agreement for a longer range of azimuth
angle (15° < ¢ ¢ 90°) (see Fig A.3 in App. A). MM differs by
approximately 1 dBsm when compared to the actual measutrements
(see Table B.2 in App. B). This difference can be attributed
to measurement calibration error. This calibration error
accounts for the difference between the levels.

The Moment Method is again the most accurate prediction
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method. Also, the CPU time required for computing the MM has
increased (see Table B.2 in App. B). Thus, the CPU time will
increase as the si2e of the plate increases.

Again, UTD and PTD predict the same RCS pattern (see Fig
A.4 in App. A). GTD increases as it approaches grazing
incidence, and PO continues to predict a small return from
the edge.

The PO, PTD, GTD, and UTD predictions for the specular
region are closer to those of MM. All the computational
methods are in close agreement with the measurements for

70° ¢ 0§ 99" (see Fig A.3 and A.4 in App. A).

One Wavelength. PFor this case, MM provides the most

accurate representation of the RCS, It i3 very accurate in
the range of 35° < ¢ < 98° (see Fig A.5 and A.6 in App. A).

PO, PTD, GTD, and UTD predict a higher specular peak than
MM (see Fig A.6). 1In fact, the four methods agree in the
range of 68° ¢ 0 < 98°. Thus, the plate's size is too small
to be modeled by those four computational methods.

The CPU time required tc model this plate with MM is
greater than the time required for the other plates (see
Table B.3 in App. B). The Moument Method is the most accurate
computational method for this plate size. Its CPU time is
smaller than UTD's CPU time. Thus, MM is still the preferred

method for a plate cf this size.

One and a Half Wavelengths. The RCS pattern for this

plate has 3 nulls and peaks (see Fig A.7 in App. A). Thus,
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as the size of the plate increases (in wavelengths), the
number of nulls and peaks also increases.

MM very accurately predicts the shape of the RCS pattern
of this plate (see Fig A.8 in App. A). The levels of the
first 2 peaks computed by MM are approximately egqual to the
measured peaks (see Pig A.7 and A.8). _

As can be seen from Table B.4 in App. B, MM is the
longest running computational method used for this plate.
Also, PO, PTD, GTD and OUTD are more accurate in the specular
region for a plate of this size. For these four
computational methods, the CPU time remains the same
regardless of the size of the plate.

All the methods converge within the range of 74° < 0 ¢ 85°
. For larger sized plates (in wavelengths), the five

computational methods will all converge near the specular

region,

Two Wavelengths. MM predicts the shape of the RCS of

this target very accurately (see Fig A.9 and A.19 in App. A).
The five computational methods converge near the specular
region as expected (76° ¢ ¢ ¢ 98°). A summary of the most

important findings is given in Table B.5 in App. B.

Two and a Half Wavelengths. As mentioned before the

peaks and nulls have increased because of the increase in the
size of the plate (see Fig A.ll in App. A). Again, MM is the
most accurate prediction methed. Also, PTD, GTD, and UTD are

more accurate than they were for the smaller plates (for 37°
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$ ¢ < 98°) (see Fig A.1ll and A.12 in App. A). Thus, as the
size of the plate increases, the accuracy of PTD, GTD, and
UTD increases. All five computational methods converge
between 78° and 98°.

Again, Table B.6 in App. B summarizes some of the most

important aspects of the comparisons.

Three Wavelengths. As expected, MM provides the most

accurate RCS pattern for this plate (see Fig A.13 and A.14 in
App. A). All methods converge accurately near the specular
region (82° < ¢ ¢ 98°). PO is good for predicting the
sidelobe peaks from 65° to 98°. ‘As expected, PTD, GTD, UTD,
and MM converge for an azimuth angle from 36° to 96°.

As mentioned before, the number of peaks and nulls
increase as the plate size increases. Note, that the CPU
time to implement the Moment Method has increased again.

Also note that MM is not very accurate near the edge (see

Table B.7 in App. B).

Three and a Half Wavelengths. MM is again the most

accurate RCS prediction method (see Fig A.15 and A.l16 in App.
A). All the computational methods converge for a greater
range of azimuth angle (78° < ¢ < 90°) (see Fig A.l6). Note
the increasing accuracy of PTD, GTD, and UTD, Also, PO is
good near the specular region.

Note again that the computational methods require the

same CPU time, and MM still requires the most time (sec Table

B.8 in App. B).




Four Wavelengths. MM is the most accurate computational

method for this plate size. All methods converge for an

~azimuth angle ranging from 76° to 90° (see Pig A.17 and A.1l8

in App. A).

The difference between the measured and the computed
specular levels (see Table B.9 in App. B) is caused by
measurement calibration error.

The rest of the cases follow the same pattern for
vertical polarization. The reader is referred to Appendix A
t:2re the rest of the cases are plotted. Appendix B contains

the rest of the tables.

Horizontal Polarization

Half a Wavelength. Because of the boundary conditions,

the edge RCS is lower than it was for the vertical
polarization case (see Fig A.l and A.19 in App. A). The
incident E field is now perpendicular to the edge of the
plate. Thus, when the azimuth angle is zero the radar "sees"
the minimum RCS return possible from that plate. This is the
same for any size plate at this polarization. Note that the
measurements near o 8’ are unstable. This is due to the
chamber's limited ability for measuring an RCS of less than
-60 dBsm.

For a plate of this size, the only accurate prediction
nethod is the Moment Method (see Fig A.19 and A.20 of
Appendix A. The CPU time for MM is very short in this case

(see Table B.l in App. B). All the computational methods
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take the same amount of CPU .ime for a given plate size

regardless of the polarization. Note that PO, PTD, GTD, and

UTD are not good for predicting the RCS of a target of this

size regardless of the polarization,

For horizontal polarization, PTD and UTD do not predict
the same RCS for the same target. This is because UTD's
second order diffraction solution is used when the E field is
perpendicular to the edge of diffraction. For vertical
polarization the boundary conditions are such that double
diffraction of the E fields is small. Thus, the contribution
of double diffraction to the UTD solution is negligible
(Marhefka, 1981:Ch2, 15). The PTD solution, which has only
first order diffraction built into it, is not as accurate.

The tables in Appendix B provide the values of the
specular peakX and CPU time for both vertical and horizontal

polarization.

Three Quarters of a Wavelength. Again, MM is the most

accurate prediction method (see Fig A.17 and A.18 in App. A).
However, PO, PTD, GTD, and UTD seem to converge better near

the specular region (81 ¢ o< 90°).

One Wavelength. MM is the only computational method to

accurately predict the specular peak level (see Table B.1l2 in
App. B). GTD is more accurate than PO, PTD, and UTD. This
can be attributed to the fact that the GTD solution has a
third order diffraction term added to it (see Fig A.l9 and

A.28 in App. A).
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MM is not "exact" because to use it, the user must take
into account the limitations of the computer system itself.
~ The VAX 11/780 is a powerful computer system but it is much
slower than a Cray.computer. In order to speed up the
computing process the user has to reduce the number of modes
as the size of the plate increases (see pp. 20-26 in Ch. 2).
Also, if the number of modes is too large, the computer
cannot handle all the modes. This explains why MM is not

"exact" when compared to the measurements.

One and a Half Wavelengths. As the size of the plate

becomes larger than the operating wavelength, PO, PTD, GTD,
and UTD start to converge within the specular and near
specular regions (71° < ¢ ¢ 98°) (see Fig A.21 and A.22 in
App. A). MM is still the most accurate RCS prediction
method. As in the vertical polarization case, the number of

peaks and nulls increase as the plate size.

Two Wavelengths. MM is the most accurate prediction

method (see Fig A.23 and A.24 in App. A). GTD is more
accurate than UTD because GTD has a third order diffraction
term included in the solution (see Fig 4.4). This third
order term accounts for triple (edge to edge to edge)
bounces. The UTD solution includes only the first and second
order diffraction terms in the solution. Note that GTD
predicts a large RCS as it approaches the edge whereas UTD

does not. If a third order diffraction term were added to

the UTD solution, UTD would more accurately compute the RCS




of a large target at horizontal polarization.
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Fig 4.4. GTD RCS with first, second, and third order
diffraction terms.

Two and a Half Wavelengths. PTD, GTD, UTD, and MM all

converge for an azimuth angle of 55° . The convergence is
excellent for all five methods from 78° to 998°.

The RCS computations have the same type of behavior for
the rest of the plates. The reader is referred to both
appendices A and B for the results obtained for the rest of

the targets.

General Results

Pattern Complexity. One of the results found in the

investigation is that the number of peaks and nulls increase

with plate size (see App. A). This agrees with Ross' results
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(Ross, 1966:332). As a result, the complexity of the RCS

pattern increases as the plate size increases.

Polarization Dependence. Another important result is

that the RCS measurements of the plates exhibit polarization
dependence for ¢< 684°, For horizontal polarization the edge
RCS has a much smaller value than the edge RCS of the same
plate for vertical polarization. GTD, UTD, and 4M are the
only computational methods that were polarization dependent
in the investigation. The polarization dependence of these
computational methods also occurs when is less than
68°.

PTD has only a first order diffraction term built into
its solution. Thus, the RCS appears to be the same for the

same plate at either polarization (see Fig 4.5).
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1f a second order diffraction term is added to the PTD
solution, the PTD RCS pattern would be polarization
dependent. Thus, this implementation of PTD is not a viable
computational method for more complex targets. Higher order
diffraction terms are needed tc make this solution more
accurate.

PO produces the same result for either polarization.
Thus, PO is independent of polarization for any plate size

(Ross, 1966:332).

Specular Region. MM is the most accurate prediction

method in the specular region (broadside) (see Table 4.2).
At 2.5 wavalengths (7.5 cm), the plates are much larger than
the wavelength, This situation leads to High-Frequency

scattering (Xnott and others, 1985:57).
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Table 4.2

Specular RCS (broadisde)

Size PO PTD GTD

(wave.) (dBsm) (dBsm) (dBsm)
6.5 -31.5 -31.5 -31.0
8.75 -24.6 -24.6 -24,2
1.0 -19.5 ~19.5 -19.3
1.5 ~12.4 -12.4 -11.9
2.9 -7.4 -7.4 -7.4
2.5 -3.5 -3.5 -3.6
3.9 -0.4 -9.4 -0.4

3.5 2.3 2.3 2.3



Size
(wave.)
8.5
8.75
1.0
1.5
2.9

3.9
3.5

4.0

5.9
5.5

6.9

!
|

PO

(sec)

1.8

Table 4.3

CPU Time

PTD GTD
(sec) (sec)
6.6 190.1
6.6 108.1
6.6 109.1
6.6 109.1
6.6 109.1
6.6 1008.1
6.6 189.1
6.6 100.1
6.6 160.1
6.6 100.1
6.6 108.1
6.6 109.1
6.6 100.1
6.6 1d9.1
4-15

UTD
(sec)
135.0
135.9
135,90
135.9
135.0
135.9
135.0
135.0
135.0
135.0
135.0
135.0
135.0
135.8

MM
(sec)
51.6
76.9
116.4
163.4
199.4
263.7
386.7
606.90
829.3
1646.9
2219.9
3602.4
4018.6

4032.6



For this type of scattering, the detailed geometry of the
target is important to the scattering process. GTD, UTD, PO,
and PTD are all high-frequency computational methods. Thus,
their accuracy is considerably better in the high-frequency
region (Knott, 1985:57). All the computational methods are
highly accurate in the specular region from 2.5 wavelengths
to 6.5 wavelengths (19.5 cm). Note that MM differs by 1 to 2
dBsm from the measurements because of measurement calibration
error (see p. S in Ch. 3).

CPU Time. The CPU time was estimated thru the use of a
subroutine used by RCSBSC and ESP for this purpose (Newman,
1985:68). The GTD time was an estimate taken over a period
of time by the author. Also, the GTD program works only for
rectangular flat plates. Therefore, the CPU time is not as
accurate as the others. As previously mentioned, MM
computation time increases as the size of the plate increases
(see Table 4.,3). The other computational methods take the
same CPU time regardless of the plate size. UTD's CPU time
for a 2.5 wavelength plate is 135 sec. MM's CPU time for a
plate of the same size is 263.76. MM is still much more
accurate than the other computational methods, but one must
take into account that 4018.5 sec (1 hour and 7 minutes) of
CPU time is required to calculate the RCS of a 6 wavelengths
(18 cm) square flat plate.

UTD takes more CPU time than GTD because its RCS solution

is more complex than GTD's solution.

.




Overall Accuracy. MM is the most accurate RCS

computational method. It accurately predicts the RCS pattern
for almost all of the plates. The levels of the measurements
may differ in some cases (measurement calibration error) but
the shape of the pattern predicted by MM is correct. MM is
more accurate at vertical polarization than at horizontal
polarization. This is because higher order terms that occur
at horizontal polarization are more difficult to model than
the first order terms that occur at vertical polarization.
Also, accuracy is achieved at the expense of CPU time. 1If a
2.0 wavelength square flat plate is modeled using 9.2
wavelength increments, the CPU time would be 1181.3 sec. 1If
a 3.4 wavelength increment is used, the CPU time required by
MM is 114.4 sec. The former case is more accurate than the
latter case. Thus, the accuracy of an MM model is directly
related to the size of the increments or samples.

On the other hand, the accuracy cf PTD, GTD, and UTD
generally depends on the higher order terms added to the
solution. GTD is very accurate because of the addition of
second and third order terms to the RCS solution. As
mentioned before, the higher order terms only affect the
horizontal polarjzation case. Unfortunately, GTD fajils at
grazing incidence where the predicted RCS approaches
infinity. UTD and GTD have a better convergence (predict the
same result) for vertical polarization than horizontal
polarization (see Table 4.4), because the higher order

diffraction terms are negligible on vertical polarization.
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Table 4.4

UTD Versus GTD Convergence

" Size v.P. H.P.
(wave.) (degrees) (degrees)
8.5 60 - 980 2
76.75 66 - 99 73 - 9@
1.0 35 - 90 72 - 99
1.5 12 - 99 76 - 99
2.9 8 - 98 78 - 98
2.5 6 - 90 71 - 99
3.8 6 - 90 71 - 94
3.5 6 - 90 66 -~ 99
4.0 5 - 90 61 - 99
4.5 5 - 90 63 -~ 90
5.0 S - 90 68 - 90
5.5 5 - 99 69 - 94
6.0 4 - 90 65 - 9@
6.5 4 - 90 65 - 99



UTD also is not very accurate at grazing incidence.
‘ID However, the RCS it predicts there does not approach
infinity. OTD's accuracy could be improved if higher order

diffraction terms were added.
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Fig 4.6. RCS of a 4 x 4 inch Plate at 9.227 GHz
(Marhefka, 1981:Ch5, 12)

In Fig 4.6, the RCS of a 4 in square flat plate at 9.227 GHz
is compared against Ross' GTD calculations and against the
UTD with third order diffraction terms (Marhefka, 1981:ChS,
11-12). UTD is much more accurate than GTD for this example.
Thus, UTD's accuracy can be enhanced with the addition of

& higher order terms.
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PTD is more accurate at vertical polarization than
’ horizontal polarization. This is because the PTD solution
. has only a first order diffraction term in it. Thus, the PTD
solution does not take into account the multiple bounces that
occur at the horizontal polarizaticn.
PO is the least accurate of all the computational methods
investigated. However, PO is very gcod for predicting the
RCS at the near specular region (approximately 78° < ¢ < 908°)
in a relatively small amount of CPU time for plates that are

2.5 wavelengths or larger.
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V. Conclusions and Recommendations

Conclusions

The Moment Method is the most accurate RCS computational
technique of the five investigated. MM accounts for
polarization dependence, pattern complexity, and the specular
peak of a plate which is small with respect to wavelength
(smaller than 2 wavelengths). MM is also highly accurate for
larger plates (larger than 2 wavelengths), but its CPU time
increases as the size of the plate increases. Thus, MM is a
poor choice of RCS computation method for plates that are
larger than 2.8 wavelengths due to the CPU time required.

The Geometrical Theory of Diffraction does not predict an
accurate RCS for plates that are smaller than 2.5 wavelengths
on a side. GTD provides a more accurate solution for plates
whose size 18 2.5 wavelength or larger. It is very accurate
for horizontal polarization because of its second and third
order diffraction terms. For a given type of target, GTD's
CPU time remains the same as the plate size increases,
Unfortunately, GTD fails to predict the RCS near and at the
edge of the plate (the reflection boundary of the target).

The Uniform Theory of Diffraction is accurate for plates
that are larger than 2.€ wavelengths, but it is less accurate
than GTD. However, UTD, unlike GTD, does not give infinite
results at the edge. If a third diffraction coefficient was
added to the soclution, UTD would be more accurate than GTD.

UTD's CPU time is greater than GTD's CPU time. This is due
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to the complexity of the UTD mathematical expressions. Also,
the GTD solution was derived specifically only for
rectangular flat plates. However, the UTD solution used for
this investigation can model more complex shapes than flat
plates. Portunately, UTD's CPU time remains the same as the
plate size increases.

The Physical Theory of Diffracticn is not as accurate as
MM, GTD, and UTD. This is because the PTD solution only
takes into account the first order diffraction term. Thus,
PTD is not very accurate at horizontal polarization where the
higher order terms are more important. Therefore, PTD
predicts the same result for a given plate at either
polarization.

The Physical Optics approximation is the least accurate
of the five computational methods investigated. Also, PO is
independent of polarization. Thus, PO predicts the same RCS
for either polarization. PO is accurate near and at the
specular region. The CPU time required to implement this
method is the shortest of the five investigated.

Although MM is the most accurate computational method for
a perfectly conducting flat plate, it takes too much CPU time
to use. Since CPU time is expensive, MM is the most
expensive to use of the five methods. Also, as the size of
the target increases, MM requires more CPU time. Thus, for a
large (when compared to wavelength) perfectly conducting
target, MM results can be very expensive. In general, UTD is

3 better choice for predicting the RCS of a perfectly
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conducting flat plate with a side dimension of at least 2.5
wavelengths. UTD is quick and accurate for computing the RCS
of a target. Finally, PO is a good choice for calculating
the RCS of large targets near and in the specular region

because of its speed and accuracy.

Recommendations

There are more computational methods that could be
investigated. Among these are the original form of UTD
developed by Kouyoumjian and Pathak (Kouyoumjian and Pathak,
1974), the Uniform Asymptotic Theory (Knott and others,
1985:134), and the Spectral Theory of Diffraction |
(Kouyoumjian, 1985:6). Hybrid techniques like MM-GTD and
UTD-PTD could also be investigated. 1In addition, the UTD and
PTD solutions could include higher order terms.

The 8.5 wavelength flat plate should be analyzed at a
different frequency to observe if the RCS pattern varies from
the measurements obtained in this investigation.

Other types of targets (besides square flat plates) could
be analyzed in future investigations using the same five

computational methods.
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Appendix A. RCS Graphs
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Appendix B, Comparison of RCS Computational Methods

Table B.1l

Comparison of RCS of Half Wavelength Plate

Peak CPU
Time
(dBsm) (sec)
PO -31.5 1.8
PTD -31.5 6.6
GTD -31.0 146.1
uTD -31.9 135.9
MM -28.9 S51.6
Measurement -28.0 N/A

® Table B.2

Comparison of RCS of 3/4 Wavelength Plate

Peak CPU
Time
(dBsm) (sec)
PO -24.6 1.8
PTD -24.6 6.6
GTD -24.2 180.1
UTD -24.2 135.0
MM -23.9 76.9
Measurement -24.0 N/A




Table B.3

Qﬁb Comparison of RCS of 1.0 Wavelength Plate

Peak CPU

Tinme

(dBsm) (sec)

PO -19.5 1.8

PTD -19.5 6.6

GTD -19.3 190.1

UTD -19.3 135.0

MM -20.3 116.9

Measurement -20.3 N/A

Table B.4
&

Comparison of RCS of 1.5 Wavelength Plate

Peak CPU
Time
(dBsm) (sec)
PO -12.4 1.8
PTD ~12.4 6.6
GTD -11.9 109.1
MM -12.5 163.4

Measurement -12.5 N/A




Table B.5

Comparison of RCS of 2.8 Wavelength Plate

P~ak CpPU
Time
(dBsm) (sec)
PO -7.4 1.8
PTD -7.4 6.6
GTD -7.4 190.1
uTD -7.4 135.9
MM -7.4 199.4
Measurement -7.4 N/A
Table B.6

Comparison of RCS of 2.5 Wavelength Plate

Peak CpPU
Time
(dBsm) (sec)
PO -3.5 1.8
PTD -3.5 6.6
GTD -3.6 100.1
uTD -3.5 135.0
MM -3.9 263.7
Measurement -3.7 N/A

T



Table B.7

Comparison of RCS of 3.0 Wavelength Plate

Peak CPU
Time
(dBsm) (sec)
PO -0.4 1.8
PTD -0.4 6.6
GTD -0.4 180.1
UTD -0.4 135.8
MM -0.4 386.7
Measurement -8.4 N/A
Table B.8

Comparison of RCS of 3.5 Wavelength Plate

Peak CpPU
Time
(dBsm) (sec)
PO 2.3 1.8
PTD 2.3 6.6
G1D 2.3 168.1
UTD 2.3 135.¢0
MM 2.3 606.0
Measurement 2.3 N/A
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Table B.9

Comparison of RCS of 4.0 Wavelength Plate

Peak CpU

Time

(dBsm) (sec)

PO 4.6 1.8

PTD 4.6 6.6

GTD 4.6 100.1

uTD 4.6 135.0

MM 4.6 829.3

Measurement 4.5 N/A
Table B.19

Comparison of RCS of 4.5 Wavelength Plate

Peak c2u
Time
(dBsm) (sec)
PO 6.7 1.8
PTD 6.7 6.6
GTD 6.7 100.1
uTD 6.7 135.9
MM 6.7 1646.9
Measurement 6.7 N/A




Table B,.1ll

Comparison of RCS of 5.8 Wavelength Plate

Peak CpPU

Time

(dBsm) (sec)

PO 8.5 1.8

PTD 8.5 6.6

GTD 8.5 160.1

UTD 8.5 135.4

MM 8.5 2219.9

Measurement 7.5 N/A
Table B.12

Comparison of RCS of 5.5 Wavelength Plate

Peak CPU
Time
(dBsm) (sec)
PO 1.2 1.8
PTD 10.2 6.6
GTD 10.2 199.1
uTD 18.2 135.0
MM 10.2 3002.4
Measurement 9.2 N/A




Table B.1l3

Comparison of RCS of 6.0 Wavelength Plate

Peak CPU B
Time
(dBsm) {sec)
PO 11.7 1.8
PTD 11.7 6.6
GTD 11.7 140.1

UTD 11.7 135.0 B
MM 11.7 4018.6
Measurement 9.8 N/A
Table B.l4

Comparison of RCS of 6.5 Wavelength Plate

Peak ceu
Time
(dBsm) (sec)
PO 13.1 1.8
PTD | 13.1 6.6
GTD i3.1 16¢.1
UTD 13.1 135.9
MM 13.1 40632.6
Measurement 12.8 N/A




Appendix C. Computer Program to Calculate GTD RCS

This program was developed from Ross' equations for the
RCS of a rectangular flat plate (Ross, 1966:332). The
program computes the GTD RCS versus angle of incidence for a
square flat plate at 18 GHz. The size of the plate and the
degree increments are specified in Logical Unit 5. The
program is written in FORTRAN/77, and the output file is
written in Logical Unit 6. A data file for plotting is
provided in Logical Unit 1.

The Qutput is given in three columns: angle of incidence
in degrees, vertical polarization RCS in dBsm, and horizontal

polarization RCS in dBsmn.

c THIS PROGRAM 1S BASED ON ROSS FORMULAS FOR
c A RECTANGULAR FLAT PLATE
C BY 2D LT ULICE J. MACIAS, AFIT
C A=SIDE OF SQUARE FLAT PLATE
c PaFREQUENCY OF PLATE= 18 GHz
COMPLEX CMEAT,SD,DD,TD,DD1,DD2,DD3,DD4
COMPLEX HMEAT,HSD,HDD,HTD,HDD1l ,HDD2,HDD3,HDD4
OPEN(UNIT=1,FPILE='GTDPLOT.DAT',STATUS='NEW',
FORM=' UNFORMATTED ')
READ(S,*) A
Ch** F= FREQUENCY OF OPERATION
F=10E9
W=3E8/F
PI=3,14159265
K=2*PI/W
SQ=SQRT (2*P1)
HRT=SQ* (K*A) **0.5
RT=SQ* (K*A) **1,5
C***  RI=INCREMENTS OF THETA (THE)
READ (5, *)RI
DO 108 THETA=8,98,RI
I1=THETA
THE=THETA*PI/180-P1/2
IF(THE.EQ.9) THE=#.085
IF(THE.EQ.~PI*.5) THE=-(PI/2-.001)
RTA=K*A*SIN (THE)




N

HDD11l=K*A+P1/4

DD11=K*A-PI/4

HDD1=4 *CEXP (CMPLX (8, ,HDD11) ) /HRT
DD1=CEXP(CMPLX (6.,DD11))/RT
HDD2=HDD1l/2 ;
DD2=DD1/4 g
HDD3= (CEXP (CMPLX (8.,-RTA)) /(1-SIN(THE))) ,

DD3= (Ll+SIN(THE))/((1-SIN(THE))**2) *CEXP (CMPLX (8., -RTA))
HDD4= (CEXP (CMPLX (8. ,RTA)) /(1+SIN(THE)))

DD4=(1l-SIN(THE)}/((1+SIN(THE) ) **2) *CEXP (CMPLX(@.,RTA))
HDD=HDD1* (1 /COS(THE) -HDD2* (HDD3+HDD4))
DD=DD1*(1/COS(THE) +DD2* (DD3+DD4))

HTD= (1-CEXP (CMPLX (8. ,2*4DD11))/(2*PI*K*A) ) **(-1)
TD=(1- (CEXP (CMPLX (6., ,2*DD11))/(8*PI* (K*A)**3)))**(-1)
RSD=COS (RTA)
CSD=-SIN(RTA) /SIN(THE)
HSD=CMPLX (RSD, ~CSD)
SDaCMPLX (RSD,CSD)
HMEAT=HSD-HDD*HTD
CMEAT=SD-DD*TD
HREAT=CABS (HMEAT)
RMEAT=CABS (CMEAT)
SIH=1/PI* ( (HREAT*A) **2)
SIVs1l/PI* ( (RMEAT*A) **2)
SIHDB=1@8*ALOGl@ (SIH)
S1VDB=18*ALOGlA (S1IV)

Crew WRITE AZIMUTH ANGLE, V.P. AND H.P. RCS
WRITE(6,1) THETA,SIVDB,SIHDB

1 FORMAT (1%X,F7.2,F7.2,F7.2)

Crann WRITE DATA FOR PLOTS
WRITE(1)II,THETA,SIVDB,SIHDB

129 CONTINUE

STOP
END
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