Fo & 7

LI alP i o

v

AD-A177 638

g7 1t Vg

~

Contract MDA-903-83-C-0335
Reducing the Cost of Branches

Scott McFarling and John Hennessy

e e o= st

mmmmm“"u'i'Yﬂﬂﬂiﬂiﬂu METMMNY T Ta N e TeMd Sd M T e T T64% wNallairidsgir ™1

Computer Systems Laboratory
Stanford University

Abstract

~ Pipelining is the major organizational technique that
compuicrs use to reach higher single-processor
performance. A fundamental disadvantage of pipelining
is the loss incurred due to branches thai require stalling
or flushing the v'peline, Both hardware solutions and
architectural char;<s have been proposed to overcome
these problems. This paper examines a range of
schemes for reducing branch cost focusing on both
static (compile-time) and dynamic (hardwate-assisted)
prediction of branches. These schemes are investigated
from quantitative performance and implementation
viewpoints. "

A}

Introduction

Branches constitute anywhere from 15-30% of the
instructions executed on typical machines, On higher
performance pipelined machines, such instructions
consume a lirger fraction of time because they cause
pipeline stalls and pipeline flushes. On machines with
powerful instruction sets, the frequency of branches
tends to be very high. RISC-style machines emphasize
very high instruction execution rates, and although
branch frequencies may be lower, the branch penalties
must also be kept lower. In a RISC machine, branches
are the most significant barrier to achieving single-
cycle execution (i.e. initiation of an instruction on every
machine cycle).

There are numerous approaches to dealing with
branches. This paper examines a set of compile-time
and run-time branching schemes, evaluates their
effectiveness, and makes some observations about their
implementation cost. Procedure call and return jumps
are excluded since different tradeoffs exist and special
optimizations may be appropriate. We start by defining
a machine model that we will use for evaluating the
various branch schemes.

IThe MIPS-X project has been supported by the Defense
Advanced Research Projects Agency under contract # MDA
903-83-C-0335.

A Model of Branch Cost

Pipeline structure significantly affects the cost of a
branch. We will examine some alternative pipeline
structures, determine why they impact performance,
and give a method of assigning branch cost. We will
conclude with a pipeline structure that will be the basis
for evaluating the different branch schemes.

We start with a five-stage pipeline that we will later
change to reduce the overall branch penalty, For
simplicity, we assume 2 register-register machine; this
simplifies the pipeline and alsc makes it easier to
quarntify execution time. The evaluation in this paper
can be extended to machines with more complex
pipelines using the data contained in this paper.

Our initial pipeline has the following structure:

IF ID ADDR ALU WB

IF ID ADDR ALU
IF D ADDR
The function of these stages are as follows:

IF Fetch instruction

ID Decode instruction.

ADDR Fetch registers and compute the effcctive
address.

ALU Access data memory or do an ALU
operation.

WB Write into register file either loaded data or
ALU result.

An instructon fetch is assumed to take a single
cycle, For a high performance machine, an instruction
cache may be required to provide instructions at this
rate, We also assume that only one instruction can be
fetched per cycle, Specifically, we ignore schemes that
require multiple inswruction cache ports or multiword
busses that allow instruction decode to get ahead of
execution.

Let’s first consider a branch instruction that includes
a register-register compare, i.e., a compare and branch
instruction. The results of the compare are available at
the end of the ALU phase, and the two possible new
PCs (the branch target and the sequential branch
successor) can easily be computed before then,
However, the pipeline requires that the new PC must be
sent to the instruction cache three stages earlier. Hence,
a three cycle penalty is required whenever the branch is

e
© This d;SEment has be‘en atllepgttgved \
ubliz 1eluast ans sale; s
ic(l)':-tlx)ibulon is unlumted
° "_‘_-."_—’—‘--

e T P DL TR W RN - a- e R TR

PR % e

T e T

.

)
LI

Wl k INICPONPOR

T
.
A 1

T

1

-~

.
P W S

»

L "ﬁ'

v
L

: Y
Faaasys

e

taken. Furthermore, to avoid a penalty on the untaken
case, we must be careful not to commit any state during
the the first three stages of the pipeline. If this is not
possible, we must be able to back-out any state
changes. Additionally, the hardware must be capable of
disabling the three instructions in the pipe when the
branch is taken,

Alternatively, consider a condition-code based
machine, In such a machine, the brench can be done as
soon as the address is evaluated. since the branch
condition is based on siinple masking of the condition
code. This removes one delay cycle, leaving a branch
delay of two. However, the setting of the condition
code must precede the branch instruction. If we assume
that the condition code must be stable by the beginning
of the ADDR cycle of the branch, then the immediately
preceding instruction can set the condition code. For
some other pipeline structures, this may not be possible
and delays will be needed between the condition code
setting and its use by the branch,

In an earlier paper!, condition codes were shown to
rarely set for free i.e. by ALU operations needed for
another purpose. Thus, the branch cost for a condition
code machine with this pipeline structure is two
instructions (the condition code setting instruction plus
the actual branch) and two delay slots. Since delay
slots can be filled more often than the condition code
can be set for free, the condition code approach is more
expensive.

To compare a variety of conditon evaluation
mechanisms effectively, we propose that branch cost be
based on the average cycle count between the start of
condition evaluation and the start of the corresponding
stage of the instruction executed after the branch. This
average cycle count includes the cycles for the register-
register comparison, plus the branch itself, plus the
delay slots that are idle or do not advance the state of
the computation. For the above pipeline, the cost of a
branch for both the condition-code and compare-and-
branch models, assuming that all the delay cycles are
wasted, is four, although the cycle breakdown is
different in the two cases.

The branch cost reduction schemes we will present
all aim at using the branch delay slots to achieve less
costly branches. Since less than 100% of the delay slots
can be effectively used, we would first like to try to
reduce the number of delay slots. The length of the
branch delay is determined by the position of certain
operations in the pipeline, namely evaluating the branch
condition and computing the destination PCs. For a
complex instruction set with multiple addressing modes
for data items and branch destinations, it would be
difficult to improve on this pipeline. However, for a
sirple instruction encoding, the base address
computation that is done during ADDR could be
accomplished during ID. If we attempt to compute the
branch-taken destination during ID, we will need to

know the position and size of the branch displacement
without much decode time (perhaps a half-cycle).
Moving this address calculation will also cost an
additional adder, because the main ALU and effective
address adder are still required by the preceding two
instructions.

Just moving the branch destination calculation does
not reduce the branch delay, because either the
condition code setting instruction or the condition
evaluation in the compare-and-branch instruction force
a total branch delay of three cycles. If we make some
further assumptions about our instruction encoding, we
can reduce this delay to two cycles with either
condition evaluation mechanism. To do this, we need to
move the ALU cycle of the pipeline up to the position
of the ADDR cycle; the resulting pipeline is identical to
the one used in MIPS-X2, a high performance successor
of the MIPS architecture.

IF ID ALU MEM WB
IF 1D ALU MEM
IF ID ALU

This pipeline requires a register fetch during ID,
implying that the instruction format is simple enough (o
access the registers without decoding the instruction
type. While this is possible for a load/store machine, it
is very difficult for 2 machine with complex datatypes
and addressing modes. The decode time of the more
complex instruction format can be pipelined away only
if one disregards branches. For simplicity and
consistency, we will assume that we are dealing with
this streamlined pipeline structure and its worst case
branch cost of three cycles.

Branch Schemes

A longer, more aggressive pipeline requires a more
aggressive branch strategy. On the first generation
Berkeley and Stanford RISC machines, the pipeline
required a branch delay of one instruction and had a
branch cost of 1.3 to 2.5. With a 20% branch
frequency, those machines saw a loss of 6% to 30% of
the machine compared to a machine with a single cycle
branch instruction, The effect of a deeper pipeline with
its longer branch delays is considerable: a two cycle
branch penalty (which equals a three cycle branch)
implies 40% of the machine is wasted in branch delays,
and a three cycle penalty wastes 60%! These
performance losses couid easily wipe out the advantage
of deeper pipelining. Wz would like to keep the branch
cost comparable to th:: incurred on a less deep pipeline.

In the remainder of this paper, we will describe
several techniques t; reduce branch cost and evaluate
their performarc: on our exampie pipeiine. To make a
quantitative comparison feasible, we have measured
performance on a set of benchmarks. These
benchmarks are:

Bigfm Fiduccia-Mattheyses graph artitionin
algorithm; 500 lgles. P 8

Dnf converts logic equations to disjunctive
normal form; 1500 [ines.

Hopt % simple global optimizer for Pascal; 2200
mes.

All these programs are written in Pascal, and while
they are not huge, we believe they are fairly typical of
non-numeric code. For numeric applications the
predictability of branches should be better. Each
program was compiled with an optimizing compiler3.
Optimization tends to increase the relative frequency of
branches, because branch instructions are rarely
eliminated, while loads, stores, and arithmetic
instructions often are. Also, removing redundant
instructions prevents them from being scheduled into
the branch delay slots, artificially improving the
performance of the scheduling schemes we will explore
later. Hence, using optimized code as the basis for a
study of branches is important.

Beyond efforts (0 shorten the branch delay, schemes
to alleviate branch cost focus on the use of the branch
delay slots. To use those slots effectively, we must
predict the outcome of the branch; we will examine
techniques that attempt branch prediction both in
hardware and in softv-are. We first consider three
hardware-oriented Schemes, assume the branch is not
taken, dynamic branch prediction, and a branch target
buffer. These schemes require increasing amounts of
hardware. We then consider more software-orienied
schemes, increasing both the hardware support
requirements and tfie accuracy of software prediction.

Predict Branch Not Taken

The first scheme we consider is what many
architectures do: continue fetching instructions ignoring
the branch. The viability of this approach depends
intimately on the depth of the pipeline and the
arrangement of activities in the pipeline. Most machines
with a pipeline depth of three can easily use this
mechanism with 2 single-cycle delay, since the oniy
activity that will occur before the branch outcome is
known is to prefetch the sequential successor. The
68020 and the VAX 11/780 use this scheme. However,
even when the branch delay is only one, complications
can arise, [For example, fetching the instruction
following the branch may cause a page fault or a
protection violationi. To prevent this fom occurring, the
YVAX 117780 will halt its prefetching if it detects such
an event, until the prressor is sure that the instruction
should be atternpted.

As the branch delay increases, these complications
get moie sevuis, In many complex architectures,
machine state itay Le changed early in the computation.
ot examplc, asto-increment/decrement addressing
modes will cause problems if the register update is
allowed to execute before (he branch is determined.
Our example pipeline can start the tw% uwtructions afier

the branch because no state is committed in the first two
stages of the pipeline.

Execution proceeds without penalty if the branch is
not taken because the sequentally following
instructions have been fetched and initiated. If the
branch is taken, the sequential instructions must be
squashed and the target fetched. Squashing refers w
disabling instructions in the pipeline such that the
instructions do not change the program state, Even
when no state has been changed, squashing can be
difficult. Several actual processors suffer an extra
penalty to squash instructions in the pipeline. This
overhead must be e¢liminated if the predict-not-taken
approach is to have much value.

Assuming squashing problems can be solved,
performance of predict-not-taken is limited by the
percentage of branches taken. We assume that there is
no penalty for not taken branches (the branch cost is
one), and that taken branches cost a full 3 cycles (one
branch instruction and two aborted delay slots). Taken
branches are more common: as Table 1 shows, 63% of
branches are taken on our example benchmarks; other
studies have shown numbers that are slightly higher,
For example, Clark? reported that 67% of all branches
are taken. Table 1 also shows performance for a predict
taken scheme, which would always fetch the target as
soon as a branch is recognized. This means that taken
branches cost two cycles and not-taken branches cost
three cycles. Overall, predict-taken is slightly slower
than predict-not-taken, and it is also more complex to
implement,

Branches Predict Predict
Benchmark Taken Not Taken Taken
Bigfm 07 2.34 2.34
Dnf .54 2.08 2.46
Hopt .67 2.34 2.33
Average .03 226 2.38

Table 1: Assume Taken or Not-Taken Performance

Dynamic Predicticn

The extra cost of branches relative to ALU
instructions can be broken down into 2 parts; condition
evaluation and target fetch, The target fetch must be
delayed until the branch direction is known. If the
direction could be predicted, si:c branch penalty of a
taken branch could be reduced by one cycle. Dynamic
prediction attempts to predict te direcuion us a branch
from its past behavior. Lee and Smith’ evaluated
several hardware prediction methods. We will examine
the technique they found most accurate. In this
strategy, the lower-order bits ¢f the branch address are
used to access a table, yielding two prediction bits.
These bits specify the prediction to he used for all
branches whose addresses are identical modulo the size
of the table. Since no tags are needed. t! & 1able Cun be
quite small.

MO AFTATE TR T RARARDR AT -

LB AL, LW

bt S, WA AT TR TGAAY LR T T RAK T X T d TR W R T WE DL s D= v =

The table entry for a branch is updated whenever that
branch is executed. The update is done according to the
finite state machine shown in Figure 1. If the last two
mapped branches have gone in the same direction, the
FSM predicts this direction. If a branch goes the
opposite way, the FSM will continue predicting its
usual direction on the next mapped branch. Thus, if a
branch goes an unusuval direction one time, the
prediction will only be wrong one time. With a single
prediction bit, the prediction would be wrong twice.
Note, that 2-bit prediction correctly handles loop
branches that are almost always taken but have
occasional, single changes in their behavior.

Predict Taken

Not Taken

Not Taken

Predict Not taken Predict Not Taken

\\N.m Taken

Figure 1: Branch Prediction State Diagram

For the purposes of comparison we will assume a
prediction table of 128 entries. Larger prediction tables
do not generate significant improvements. We will also
assume that squashing is available, so that the next
sequential instruction can be started in case the branch
is not taken, This assumption leaves us with the branch
cost matrix shown below:

Actual Branch

Prediction Taken Not Taken
Taken 2 3
Not Taken 3 1

Table 2 shows the prediction accuracy of this scheme
on our benchmarks together with overall performance.

Prediction Cycles/

Benchmark Accuracy Branch
Bigfin 85 192
Dnf 81 1.97
Hopt L 85 196
Average L2 1.95
Table 2: Dynamic Branch Performance

Branch Target Buffer

Hardware prediction successfully reduces branch
cost because it accurately predicts branch direction,
However, there is still almost a tull cycle wasted per
branch, largely because a correctly predicted, taken
branch wastes a cycle waiting for the target to be
fetched. To drive branch cost down further, a branch
target buffer(BTB) can be used to get the target
instruction early. A BTB acts as a cache of branch
targets: given the address of a branch, it returns the
actual target instruction. If the BTB is small and fast, it
can be accessed during the ID phase of the branch
instruction (before the branch is actually decoded).
With our pipelinc and its delay of two cycles, we need
to retrieve two instructions. Rather than store the
second instruction in the BTB, it can be fetched as in
the previous section if a separate prediction table is
maintained. Because the BTB entries are wider thun
prediction table entries, this will save hardware, Also,
we can miss in the BTB, but correctly predict with the
prediction table, and still lose only one cycle.

There are several variations on the branch target
buffer. For example, we could cache the addresses of
the predicted insti=:ction and access the BTB during IF;
this would be especially attractive for a machine with
multiword instructions. Another variation, which we
will not examine, is to keep the branch target successor
instruction in the BTB, and access the BTB during 1F,
This could yield zero cost unconditional branches, since
we would know from the BTB whether the instruction
is a branch, and the next instruction to be executed,
both at the end of IF. The BTB could just return the
next instruction, eliminating the unconditional branch
execution completely, This last variation has some
implementation challenges that arise from the need 0
keep more instructions in the cache and from the need
to update the BTB on a miss.

In the chart below we give the branch costs for the
BTB scheme:

Buffer Hit Buffer Miss
Prediction Taken Not Taken Taken _Not Taken
Taken 1 3 2 3
Not Taken 3 1 3 1

If we can both predict the branch correctly and find it
in the buffer, the branch costs only a single cycle.
However, it takes a fairly large buffer to obtain a good
hit rate, For example, the MU-556 had an eight encay
buffer and was able to start instructions only 40-60% of
the time, including the instructions following branches
that were predicted not taken. A BTB is basically a
small, selective, instryction cache. A BTB has an
advantage because it only needs to store target
instructions; however, the spatial locality of a BTB is
low, and the amount of tag storage is larger (only one-
word blocks tuanc stuse). 1o our simulations, we

noticed that a direct mapped BTB and an instruction
cache of the same size had about the same hit ratio.

bl T W VLl el o b SN g g I Ry IR

4

=

“x
e

-..l_- 'L_‘ P

AN WL

N

kd
)

[TARAT AR FASEANT)

E] Jrat s

Note also that a collision in a BTB is more damaging
than a collision in a branch prediction table, since a
BTB miss yields nothing of value, while prediction bits
still have some relevance. In fact, since most branches
are taken, a prediction table entry has a greater than
50% chance of predicting correctly, even if the entry
were for a different branch.

Simulation results for the BTB scheme are given in
Tables 3 and 4. We show a variety of sizes for the
BTB, all assuming a prediction table of 128 entries. The
BTB is assumed to be direct mapped; higher
associativity could lead to better hit rates. By
comparison, the hit rates we found are still more
optimistic than the hit rates Lee and Smith obtained
with higher associativity, probably because their test
programs were larger. For large BTB sizes, the average
branch cost is quite good. However, the buffer size is
significant, must be close to the processor, and may be
complex to implement,

Benchmark 16 Entries 64 Entries 256 Entries

Bigfm .54 .83 .94
Dnf 49 .80 92
Hopt 42 85 .94
Average 47 23 .93

Table 3: BTB Hit Rates
Benchmark 16 Entries 64 Entries 256 Entries

Bigfm 1.56 1.36 1.28
Dnf 1.66 1.46 1.40
Hopt 1.65 1.32 126
Average 1.62 1.38 131

Table 4: Branch Performance with BTB
Delayed Branch

From a hardware point of view, the simplest way to
optimize branches is the delayed branch., The machine
continues executing instructions after the branch untit
the condition is determined. The compiler tries to
schedule useful instructions into the slots after the
branch from one of the three locations shown in Figure
2. Instructions from before (a) can not be used if the
branch depends on them. Instructions from after the
branch (b) or at the target (¢) must be safe to execute
whether the branch is taken or not. No live state may
be destroyed and no illegal operations may be done,
such as loading from a null address. Also, (b) and (¢)
only reduce branch cost if the scheduled instructions
would have been executed anyway, i.e. the branch went
the favorable direction. Thus, where there is a choice,
strategy (a) should be used rather than (b) or (c).

Drlayed branches have been used successfully on
several RISC machinzs, incleding the IBM 801, RISC
117, and MIPS8:9. 4. three machines had a on~-cycle
branch delay. For . e machines, brancn costs are in
the range of 1.3 to* ~ The lower number was achieved
on the MIPS de: . - ‘*1.ough the use of compare-and-

branch, which requires only one branch-related
instruction. However, the MIPS number must be taken
with some reservation since each instruction took two
clock cycles.

(a) From before (b) From target (¢) From afier
AuBeC Xm¥ 2 1B >Cthwn

¥B >Cthen
galay slot Xmyez

#B >Cthen 18 > Cthen
>
182G nen XavT

Figure 2: Scheduling a Delayed Branch

The MIPS 1.3 cycle branch cost means that the
single delay slot could only be used about 70% of the
time. Unfortunately, the second slot of our example
pipeline is much more difficult to fill. If both slots
could be used 70% of the time, we would predict an
average branch cost of 1,6 cycles. Table 5 shows a
branch penalty of over 2.2 cycles. The second slot
could not be used over 75% of the time,

Benchmark Cycles/Branch
Bigfm 241
Dnf 2.27
Hopt 1.96
Average 221

Table 5: Delayed Branch Performance

Fast Compare

The delayed branch scheme incurs a delay of two
with our pipeline structure because of the need to wait
until the branch condition is known. The conditivn
requires a full cycle for a full ALU operation.
Katevenis!0 observed that a general ALU operation is
not needed for most compares; these fast compares
include tests for equality, inequality, and any relation
with zero. Other compares can often be converted (o
the fast type. For example, the C loop:

for (i=0;i<10;34+) afi] = b[i]:;
can be converted to:

for (i=0;i!'=10;i++) a[i] = b[i]:
Those compares that can not be simplified can be split:
one instruction can do the compare and put the result in
a general register which can then be compared apainst
zero by the fast co.upae-and-branch instruction.

The fast compare can be done during the 1D phase of
the instruction as soon as the register operands are

7]
-
{4
i)
1

o S

-

i

LR R SR e |

v

S pia abh ot AUl atd oub ot g

fetched. Thus, the branch delay for a fast compare is
reduced to one cycle, which can be used as a delayed
branch. Since only one instruction is needed, we expect
better filling than for the 2-cycle delayed branch in the
previous section. These assumptions imply the
following cost matrix:
Slot Filled _Slot Not Filled

No Compare Needed 1 2
Compare Needed 2 3

Table 6 shows the breakdown of comparisons used in
our benchmarks; compares are classified as full
compares requiring a separate instruction, compares
against zero, or equal/not equal compares. It is
interesting to note the variance in the distribution: Dnf
and Bigfm make heavy use of compare against zero,
while Hopt relies heavily on equal/not equal compares.
In all cases, the compiler has attempted to use fast
compares whenever possible. Table 7 shows the
overall branch cost including the number of full
compares and the number of wasted delay cycles.

Equal/ Compare Full
Benchmark Not Equal Against 0 Compare
Bigfm 22 .69 .09
Dnf 07 .84 .09
Hopt 79 14 .07
Average 36 56 .08

Table 6: Coinpare Types Needed
Wasted Compares Cycles/

Benchmark Slots Needed Branch
Bigfm .54 09 1.63
Dnf 43 09 1.52
Hopt 36 07 1.44
Average 44 08 1.53

Table 7: Fast Branch Performance

Cycle count performance of the fast compare scheme
1s encouraging. However, the compare must be done in
the same cycle as the register fetch, which may present
problems on machines with complex instruction
encodings. Also the timing of the simple compare is a
concern, because it must complete in time to change the
instruction address going out in the next cycle. This
could easily end up as the critical path controlling
instruction cache access and, hence, cycle time.

Delayad Branches with Squashing

The major limitation of delayed branches is the
difficulty of filling the branch delay slots with safe
instructions, An aiternative to the fast compare or
simple delayed branch schemes is to use delayed
branches with controlled squashing of the instructions
in the delay slot. There are four varieties of delayed
branch with squashing that are generated by varying
two characteristics:

Squashing direction: the branch indicates whether it
is likely to be taken and, hence, when the delay slots

WYY IR N TYURAAEARAXCARARAR R IE TR AVALY WAL W I T e LTV T L e m L LW R v WA AU YR e

should be squashed (i.e. when the prediction is wrong).
Of course, setting this bit depends on predicting the
branch at compile-time. Without extra analysis, the
compiler would always guess that branches were taken,
The value of this bit comes when the compiler has
accurate information on taken versus not-taken
frequencies. We will examine the issue of accurite
prediction later; for now, we assume that squashing is
never done when branches are taken,

Squashing control. the branch instruction contains a

-bit specifying whether instructions iniediatcly afier

the branch may be squashed or not. This bit allows the
use of delayed branches if both slots can be filled with
instructions from before the branch, ie. where a
delayed branch would be faster. MIPS-X supports
branches with a squash control bit that squashes only
when they are not taken and the control bit is on. The
value of the control bit is rather limited, since it is
usually on, However, for comparison purposes we will
assume it is available,

Delayed branch with squashing provides the best of
the delayed branch, predict-taken, and predict-not-taken
schemes. If for a particular branch, a delayed branch is
best, it can be used by not setting the squash control bit.
Otherwise, a delayed branch with squashing has the
advantage of predict-taken, in that the instructions most
likely to follow the branch are started. However, like
predict-not-taken the started instructions can begin
immediately because they are positioned sequentially
after the branch. Table 8 shows the resulting
performance. By combining the best features of the
other three schemes, nearly one half cycle per branch is
saved over the best of the three alone. Cycle count
performance is not quite as good as for fast-compare,
but cycle time impacts may well overshadow the
difference.

Probability Cycles/
Benchmark Taken Branch
Bigfin .07 1.64
Dnf .54 1.98
Hopt .67 1.70
Average .63 1.77

Table 8: Squashed Branch Performance

Profiled Branches

The performance of squashing branches is limited by
the assumption that all branches are usually taken.
Performance could be increased further if the compiler
knew which branches are usually not taken. Such
information could be supplied by an execution profiler.
Table 9 compares the prediction accuracy of a profile
with that of dynamic hardware prediction. The profile
predicts slightly better than a 128-entry predictor and
doesn’t require any hardware. Most branches usually
g0 one way or the other throughout the execution of 4
program. Additionally, software prediction does not
suffer any loss of accuracy due to collisions in the

PRV RS LVENLS LN LN SN b O B S P B ok u VR AT L LR PLVAS LN DY eV bt AP MCAL GERERD R Tl - L S N R A AT N R LN

T LIS 5 =

branch prediction hardware,

Profile Hardware
Benchmark Prediction Prediction
Bigfm 83 85
Dnf 82 .81
Hopt _ .8 .85
Average .85 83

Table 9: Branch Prediction Accuracy

Profile information can be used to optimize branches
in several ways. Delayed branch performance can be
improved by filling slots from the predicted successor
basic block. For higher performance, we need to
handle the case where the likely successor is not safe to
always execute, Ideally, the instruction set would
contain branches with the squashing direction bit
described in the previous section. Alternatively, the
compiler can attempt to increase the fraction of taken
branches by modifying the control flow graph, We will
examine two alternatives:

» If-then-else restructuring,
= branch insertion

If-then-else control structures can be optimized by
rearranging the flow graph. If the then clause is more
likely to be executed, the branch corresponding to the if
will usually not be taken. The if-branch can be changed
to usually taken by swapping the then and else clauses
and inverting the branch condition. For a predict-not-
taken machine, this technique could be used to decrease
the number of branches taken. However, swapping the
then and else clauses solves only part of the problem:
on our Pascal benchmarks, only 44% of if's have else
clauses. Plus, the technique does nothing for loop
branches.

The cost of any usually not-taken branch can be
improved without requiring a squash direction bit. We
simply insert an additional branch before the predicted
not-taken branch. The new branch has the inverse of the
original condition and thus is usually taken. The
original branch is made unconditional and the slots for
both branches can be filled with instructions from their
respective targets (requiring only squashing when the
branch is not taken). For example:

bgt rl,r2,labell
becomes;

ble rl,r2,lnew
bra labell
lnew:

If the squash control bit is on and if all squash slots can
be filled, branch costs are as follows:
Actual Branch

Prediction Taken Mot Taken
Taken 1 3
Not Taken 4 1

If profile prediction 1s correct, the branch costs only

a single cycle, If the profile predicts not taken and the
branch is actually taken, there is an extra cycle delay
for the added branch. Thus, the profile prediction must
be fairly accurate or branch insettion could increase
branch cost.

The result~ ~f profile optimization are given in Table
10. Performaance of the fast compare scheme with
profile information is provided as well. Here, the
profile is used to fill the delay slots with instructions
more likely to be useful.

Benchmark Fast Branch _ Squashing Branch
Bigfm 1.59 1.54
Dnf 1.35 1.46
Hopt 1.38 1.30
Average 1.44 1.43

Table 10: Branch Performance with Profile

As Table 10 shows, profile prediction significantly
reduces branch cost. However, the data in the table
assumes that the program will be run on enly one sei of
inputs. To be useful, the prediction must be accurate for
other inputs as well. To measure how severe this effect
is, we changed the inputs to our set of benchmarks and
measured how much slower they were relative to the
same program recompiled using a profile derived from
the new input. Over 98% of the savings due to
profiling was preserved. This high value is quite
encouraging. For other programs the number may not
be this high, but we still expect most of the gain to be
maintained,

Y

3 -
T

o .~y Y
= BRI

o
F 4 a

Conclusion

2

We have presented several schemes for improving
branch cost. The performance results are summarized
in Tables 11 and 12. Table 11 shows performance in
terms of cycles per branch, while Table 12 shows
overall machine speed relative to a hypothetical
machine with single cycle branches. The overall
performance is based on the instruction set of MIPS-X,
Since MIPS-X is a load/store machine, branch
frequencies are somewhat lower than on machines with
fuller instruction sets. The impact of branch cycle
count will be even higher on a machine where branches
are more frequent.

" b 20 T L]
PP LT I o Al ok o

e it

.

L R S

Scheme Performance Average =~ y
Delayed Branch 221 /’..,..,.
Predict Not Taken 226 i T
Branch Target Buffer(256) 131 1 A
Fast Compare 1.53 1 :
Profiled Fast Compare 144)
Saquashing Branch 1.77 T
Profiled Squashing Branch 1.43 T .
Table 11: Branch Performance Summary: 7
Cycles per Branch ce =

adus

1 vall anl/jor
Di t Speci al

AT

DTIC

e M b _a A MY Y

cnpy
INSPECTED

L

L 4

