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I. INTRODUCTION

During the deformation and ultimate failure of crystalline materials due
to imposed loads, the elastic strain energy stored within the material or
structure can be released in a number of ways. One form in which this energy
release phenomena manifests itself is as elastic waves which radiate from
regions of rapid strain relaxation. When these elastic waves reach the surface
of the body they cause displacements that can be detected by various types of
sensors and are termed acoustic emissions.

Kaiser is credited with the first serious work in the field of acoustic
emission.! He conducted studies on polycrystalline zinc, steel, aluminum,
copper and lead. Emissions were found in all the materials studied and Kaiser
presumed that grain boundary motion induced by the applied stress was the
source of the emissions. While this hypothesis has since been discounted,
Kaiser did definitively demonstrate that acoustic emission is intimately
related to deformation processes. Schofield conducted subsequent experiments
and expanded the work of Kaiser. His prime purpose was to determine the source
of the emissions and his single crystal work showed conclusively that grain
boundary effects were not the only source of emissions. Schofield was the
first to make a real distinction between burst type (discrete) and continuous
type emissions .2

As the name implies, continuous type emissions are the component of the
acoustic signal occurring sufficiently often during deformation to be regarded
as continuous. It has been generally associated with plastic deformation
occurring at relatively small plastic strains.“ It increases in amplitude as
the load is applied during a tensile test and appears as an increase in the
noise level. Researchers have shown a decrease in this component with increas-
ing strain after yield.

The second component of the acoustic emission signal does not occur con-
tinuously but in bursts.® It is usually of higher amplitude than the continu-
ous component.

There are a number of excellent review articles describing the gamut of
scientific investigations conducted and the technological applications of the

1y. Kaiser, PhD. Thesis, Tech. Hochsch., Munchen (1950).
2B. H. Schofield, AF 33(616)-5640, Lessells and Associates, Inc., Boston, 1960.

38. H. Schofield, Proc. of Symposium on Physics and Nom-Destructive Testing,
63-82, 1963.

“R. G. Liptai, D. 0. Harris, R. B. Engle, C. A. Tatro, Int. 4. of NDT, Vol. 3,
215-275, 1971.

TNt Ay AT T
w Al v N

SR R N A TSP
“» \\.\ b S e S S e R

PR

[

B m -

L VLS

EALL L A

s
y

e e
v v e e

R, (AR

>

]

n ( {.-."""""

A RO

FEIPPAPH,




;r

v e T T, "l e e L T
L OO RV R PR Ny

--------

phenomena spanning more than 20 years work.> 32 Acoustic emission has had the
distinction of being employed extensively in the field of non-destructive test-
ing to confirm that structures or components are fit for use. Yet, its utility
as a non-destructive test tool is often over-shadowed by a lack of knowledge as
to the underlying mechanisms producing the signals. Many mechanisms have
been offered as possible sources, some of the principles ones are:!3

e Twinning

® Phase transformations

® Mobile dislocation motion

® Grain boundary sliding

e Slip band formation

® Dislocation unpinning

® Plastic deformation at a stress concentration

® Void initiation

® Crack growth

® Fracture of inclusions and second phase particles

°H. L. Dunegan, A. S. Tetleman, Research/Development, May 1971, p. 20.

64. E. Lord, "Physical Acoustics,'" W. P. Mason and R. N. Thurston (Editors),
Vol. 11, p. 289, 1878.

74. A. Pollack, Acoustics and Vibration Progress, R. W. B. Stephens and
H. G. Leventhall (Editors), Vol. 1, p. 53-84, 1974.

8p. H. Hutton, R. N. Ord., "Acoustic Emiseion”, R. S. Sharpe (Editor),
Research Techniques in NDT, P. 1-30, 1970.

%Rr. G. Liptai, D. 0. Harris, C. A. Tatro (Editors), ASTM STP 505, ASTM, Phila.,
Pa., 1972.

197, ¢. Spanmer, Acoustic Emission, Techniques and Applications, INTEX Publ.
Co., Evanston, Ill., 1874.

4. E. Lord, Phystical Acoustics, W. P. Mason and R. N. Thurston (Editors),
Vel. 11, p. 289, 1876,

127, ¢. Spanner, J. W. McElroy (Editors), Monitoring Structural Integrity by
Acoustic Emigsion, ASTM STP 571, ASTM, 1975.

13M. Arrington, British J. of NDT, 17, p. 10, 1975.
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Several different techniques are available to the researcher to character-
ize recorded events. These are:

J ‘o“f'(' ‘l'
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e Event Counting - This is the simplest measure of emission activity
where each emission contributes one count irrespective of the
magnitude of the event. The greatest shortcomings of this tech-
nique are the assumption that all events are equally damaging to
the structure, that all damaging events will produce acoustic
emissions of sufficient amplitude to be counted, and that each
event will cause an acoustic emission which will be counted only
once and not overlap with other signals.
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® Amplitude Sorting - Each emission is characterized by the amplitude
of its largest cycle. These amplitudes are then sorted into ranges
typically 2-20 db wide. This technique, a modification of event
counting, suffers from the same deficiencies as event counting.

® Threshold Crossing -~ The importance of an emission is character-
ized by the number of times the ring-down counts trigger a preset
threshold. This gives an indication of the energy contained in
the stress wave. The difficulty with this approach is that a
structurally damaging event may occur but the emissions associated
with it may be too weak to cross the threshold or propagate away
from the detecting transducer or even be of the wrong frequency
to be detected.
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e Event Characterization - Or waveform analysis has the greatest
potential of exposing the mechanisms of acoustic emission. How-
ever, this potential is difficult to exploit because of a lack of
broadband equipment capable of capturing acoustic waveforms with-
out altering the characteristic frequency spectra of the source.

In recent years, increased attention is being given to the correlation of

" microstructural changes to acoustic emission response. However, in many cases

direct metallographic or other independent evidence was not presented to verify

microstructural features as the source of acoustic emission. This statement

is not meant to fault those investigators. The interaction or accommodation

required between instrumentation limitations and material sample size (i.e.

dimensional restrictions) force the experimenter to compromise his desire to

conduct the most definitive test with his ability to gather valid data.

This restriction on running the '"ideal' test has been caused in the past
by available instrumentation. The piezoelectric transducer has been the
primary means of gathering acoustic emission information. Seeking to make the
specimen small to eliminate selected filtering of the waveform by the specimen
itself results in problems of transducer response. This is because an acoustic

emission source has a small extension in space. If the transducer were essen- O
tially placed in contact with it, the transducer would respond abnormally. sy
Reliable representation of a signal by the transducer assumes that the stress :}:f?
acting over the sensitive face of the transducer is uniform. That is, it is -:‘:f
assumed that the transducer is excited in a one-dimensional stress mode. If AN

the transducer is excited only over a small region of its sensitive face, it
will be operating in a more complicated stress mode." Additionally, with 5
these type sensors the problem of waveform modification results from the use
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of an acoustic couplant as a transfer medium for transferring the specimen
surface displacements to the sensitive area of the transducer.

Of particular interest for frequency analysis of the acoustic emission
waveform is the resonant nature of the piezoelectric transducer. No matter
how well damped, the frequency response will not be flat but exhibit regimes
of variable frequency sensitivity,

In recent years, flat frequency response sensors have come into use.
These sensors eliminate two of the more serious deficiencies of the piezo-
electric types: (1) Non-uniform frequency response, and (2) direct contact of
the sensor with the specimen surface. These sensors fall into two categories:
(1) Air gap capacitance, and (2) optical interferometer.

The air gap capacitance transducer is non-contact and exhibits a flat
frequency response, !4 Its biggest shortcoming is a lack of sensitivity rela-
tive to the piezoelectric type. Consequently, its use has been limited to the
characterization of the more energetic events. While its response may be true,
it does effectively filter out certain waveforms. Since source identification
is often inferred from models of deformation processes or after the fact
examination of the failed specimen, the fact that certain waveforms may not be
represented may make the matching of signal to source difficult or impossible.

The last method of sensing acoustic emission signals to be discussed is
the optical method. The adaption of optical interferometry to the detection
and characterization of acoustic emission waves has been recently accom-
plished  15-18 The important advantage of the optical detector, as with the
capacitance sensors, is no direct contact with the specimen, very broad flat
frequency response and no requirement for an impedance matching couplant.

Over and above the piezoelectric and capacitance sensors, the optical detector
is free from mechanical resonances; can be absolutely calibrated; can probe
internally in transparent media; and, can be used over a wide temperature
range and in hostile environments. Since the focused beam of the interferom-
eter can be typically only a few hundredths of a millimeter, it can be used to
probe very close to twins, slip bands, cracks or other defects. For this
reason, it is more accurately referred to as an optical probe.

As stated previously, the acoustic emission event is essentially a point
source phenomena. Its amplitude decreases with increasing distance from the
source due to simple geometric considerations of an expanding wavefront and as
a result of various energy loss mechanisms such as thermoelastic effects, grain
boundary scattering, acoustic diffraction, dislocation damping, interaction

Yy, N. G. Wadley, C. B. Seruley, Acta. Met., Vol. 27, p. 623, 1979.
155, E. Fick, C. H. Palmer, Applied Optics, Vol. 17, No. 17, ,. 2686, 1978.
16p, A. Kline, R. E. Green, C. H. Palmer, J. Acoust. Soc. Am., 64(6), 18978.
. K. Palmer, S. E. Fick, Proc. of Southeasteon '79, p. 191, 1979.

18- 4. Palmer, R. E. Green, "Optical Probing of Acoustic Emiagiom Waves, '
Final Report, U.S. Army Research Office, North Carolina, 1973.

12

o s
s _o_ ¢

e e

AR PR

[N

P AL




with ferromagnetic domain walls and scattering due to point defects. In prac-
tice, one also finds that acoustic emission sources produce signals composed
not of a single frequency and amplitude but, rather, of a spectrum of fre-
quencies and amplitudes. To properly characterize the signals this entire
spectrum should be detected. Each of the above loss mechanisms attenuates the
higher frequency signals more than the lower frequency components. Conse-
quently, the sensor must possess flat frequency response and high sensitivity.
These are met with the optical detector.

Many factors effect the frequency and amplitude distribution of the
recorded signal and it is highly desirable that the detector be situated as
close as possible to the source. By localizing the volume of plastically
deforming material sufficiently, the sensor will be in close proximity to the
source. As described later, the tensile specimen geometry chosen limits the
deformation to a rectangular volume of approximately three cubic millimeters.
The optical probe with a focused beam diameter of fractions of a millimeter is
ideally suited for probing immediately adjacent to this volume. For all these
reasons, the optical probe was the sensor of choice.

As previously mentioned, two factors limit the information that is present
or can be extracted from the waveform. The use of the optical probe addresses
the extraction of information. The loss mechanisms within the material itself
account for the loss of information in the waveform. These mechanisms can
never be eliminated because no material can ever be the ideal linear elastic
homogeneous isotropic solid of continuum mechanics. However, it is possible
to minimize these effects. Schofield was the first to show that acoustic
emission is a volume phenomena3 James and Carpenter19 showed that acoustic
emission count rate is proportional to the volume of the deforming specimen.
Reducing the size of the gage volume would offer the following advantages:

e Reduce the number of potential loss or attenuation sites present;
® Allow placement of the sensor close to the source;

® Reduce the number of potential sites for acoustic emission genera-
tion;

e Reduce the overlap between signals since fewer will be generated.

The microtensile specimen in concert with the optical probe has the potential
to exploit these advantages.

II. EXPERIMENTAL CONSIDERATIONS

The primary goal of this study was to employ a unique detection system
and specimen geometry in an attempt to identify and characterize the sources
of acoustic emission. The acoustic emission investigator operates in much the
same manner as the forensic scientist in a criminal investigation. He is pre-
sented with a corpse with a bullet hole in it. He is then asked to identify
the bullet that made the hole; the cartridge it was fired from; the gun used

19p, R. James, S. H. Carpenter, Scripta Met., Vol. 10, p. 779, 1976.
13




g A J "alie Al & Al Al A S it LA e e LA A Saab i da . N R ROl

to fire the cartridge; and who was holding the gun when it was fired. To be
successful in his investigation, he would like to have as few different paths
as possible to follow from the bullet hole to the killer. In a sense, the
efforts taken in this study were pointed towards limiting the number of possi-
ble suspects who could have committed the crime to minimize the number of paths
one could take to get from the bullet hole to the killer.

To this end, the acoustic emission investigator would like:
1. The spectrum of possible sources to be as limited as possible,

2. As accurate a description of the signature of the acoustic event as
modern instrumentation allows,

3. The events to be spread out in either time or space to minimize the
overlapping of events and increase the likelihood of obtaining a true signature
of the event.

A. Material Selection.

A judicious choice of the material investigated provided the desirable
characteristic of limiting the potential sources of acoustic emission. A full
spectrum of choices was available all the way from single crystals up through
complicated engineering alloys. It was decided that an engineering alloy
should be chosen since the ultimate goal of acoustic emission is to inspect
engineering structures under service conditions. The alloy chosen was 304L
stainless steel. 20

This material falls within the general category of an austenitic stainless
steel. These stainless alloys enjoy the greatest usage of all the stainless
steels. They are characterized by a low yield strength, excellent ductility
and relatively high ultimate tensile strength at room temperature. They are
not hardenable by heat-treatment but harden to a degre. when cold worked.

Type 304L stainless steel, in particular, was developed with a low carbon
content to minimize the formation of chromium carbides at the grain boundaries.
Segregation of the Cr,C particles at the grain boundaries was found to be
deleterious when the material was welded and reduced its resistance to inter-
granular attack in corroding media. Its nominal composition is:

C Cr Ni Mn Si,max Pmax Smax
0.03 max 18.00-20.00 8.00-12.00 2.00 max 1.00 0.045 0.030 .

To meet the goal of minimizing the possible sources of acoustic emission, 304L
is single phase (metastable austenite) and contains a limited number of hard
carbide particles located at or near the grain boundaries. Microstructural
interpretation of the sources of the acoustic emission signals from this
material are, therefore, not complicated by multi-phases, in which any of the
phases can be a source of noise, nor by a number of different intermetallic
inclusions highly dispersed throughout the matrix.

20W. ¢. Rion, "Stainless Steel Information Manual for the Savanmah River
Plant," Vol. 1, Dupont Report DP-860, 1964.
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Not only do the above features of 304L limit the potential sources, they
also contribute to the third of our "likes' list: Limiting the sources should
also contribute to spreading out the events in time or space so that the
signature of the event can be better characterized.

B. Specimen Geometry/Preparation.

It has been demonstrated by other investigators that acoustic emission
counts per unit time is a function of the volume of deforming material. As
the volume decreases, the count rate also decreases. Reducing the specimen
volume then, in concert with limiting the potential sources of acoustic
emission, will accomplish the goal of spreading out the events and minimizing
signal overlap to allow a proper characterization of the signals.

To this end, a micro-tensile specimen with button-head grip ends was
chosen. The sample gecmetry is shown in Figure 1. The specimen is composed
of the button-heads, a gage section and a sub-gage section. During tensile
loading, plastic deformation was limited to the sub-gage region. From the
specimen dimensions, it can be seen that this comprises a volume of material
of about three cubic millimeters. In addition to minimizing the count rate,
this also served to identify the location of the events and aid subsequent
metallographic and fractographic analysis of the failed specimens.

The button-head configuration was chosen to minimize the number of signals
possibly due to mechanical interference caused by misalignments of tensile
loading and specimen axis. In the case of ideal alignment, the top and bottom
grip centerlines are precisely in line with one another and with the centerline
of the other components of the load train. Moreover, they are precisely in
line with the specimen centerline. Departures from the ideal situation are
caused by poor alignment of the top and bottom grip centerlines and inaccurate
machining of the test specimen itself. A combination of these sources of mis-
alignment always operate in any tensile test.2! From an acoustic emission
viewpoint, misalignment could significantly influence test results especially
at low strains because it affects the average stress at which the transition
from elastic to nonelastic deformation occurs and may introduce spurious
sources of mechanical noise associated with the specimen and grip centerlines
being forced into alignment during loading.

The button-head configuration chosen minimized misalignment by giving the
specimen two-degrees of freedom by virtue of the square-shouldered bearing
surface. Alignment of the specimen and loading axis for the third-degree of
freedom was controlled by precise machining of the specimen shoulders to be
flat and parallel. Additionally, the square-shouldered button-head was prefer-
able to either tapered or spherical buttons because it minimized the contact
area between the specimen and grips. The square shoulders eliminated the
possibility of slippage between grips and specimen which could be present with
the other shape ends and be a source of noise. Also, the inherently smaller
contact area of the square-shoulder lessened the likelihood that spurious
signals would be generated in the load system and detected as an acoustic
emission event. Figures 2 and 3 show a specimen inserted into the grips.

2lB. W. Christ, S. R. Swanson, J. of Test and Eval., Vol. 4, No. 6, p. 405,
1976.
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Figure 1. Dimensional Drawing of the Microtensile Specimen




,
;
:
5
:
s

-
1 | AR

il
s\'.'_.‘ .

S R

Ce .
K 4

N I

7,
-

Figure 2. Microtensile Specimen Partially Ingserted into Grips
(viewed from Side Opposite Optical Probe)
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Figure 3. Microtensile Specimen Fully Inserted into Grips (Viewed
from Same Side as Optical Probe) -

17

Y v -
A -.."'5'\ N -.‘s
LA

-'.v"
I. II( e

\\'

l'."-’-f-J‘q"'

RN T A T TN,
SSRGS S T T T



As previously mentioned, inaccurate machining of the test specimen itself
can lead to misalignment problems and additional sources of noise. For this
reason and because the specimens were extremely small, particular care was
taken to ensure that dimensions were true and the specimen was symmetric about
the centerline. One-quarter inch thick plates of 304L stainless steel in the
as-received condition were used to fabricate the specimen. All specimens were
cut with their axes parallel to the rolling direction of the plate. The
sequence of operations followed, starting with the initial plate stock to
finished microtensile specimen, is shown in Figures 4 through 6. The sequence
was as follows:

1. Plates were cut into 1.5 x 6.0-inch pieces and milled on both sides
to a final thickness of 0.20-inch with all faces flat and parallel.

2. The specimen plate was placed in the milling machine and the gage
section cut in one side only.

3. The sub-gage section was then milled into the gage.
This completes the machining of one-half of the specimen plate.

4. A block of aluminum was milled such that one face of the block had
the negative contour of the specimen plate. The specimen plate was then placed
in contact with the block. (Figure 4.) This was done to provide support while
milling the opposite side of the specimen to minimize bending and resultant
work hardening in the sub-gage section and to insure that the specimens were
symmetric after completion of the milling operation.

5. A milling saw was then used to slice specimens from the plate as
required. A final specimen plate is shown in Figure 5 prior to specimen cut-
off.

Optical probing to detect acoustic emission places additional requirements on
specimen preparation over and above careful machining practices. At least one
surface must be flat and highly polished. This added the following steps to
the specimen preparation operations:

6. Each specimen was mounted in a room temperature setting epoxy (Epo-
Kwick). Adjacent to each side of the specimen was placed a bearing plate to
eliminate rounding of the specimen face due to any rocking motion during
polishing or preferential removal of the epoxy during the grinding and polish-
ing operations. A mounted specimen is shown in Figure 6.

7. Specimens were then given a fine metallographic polish.

8. The mounted polished specimens were then placed in a bath of DECAP
which dissolved away the epoxy mount leaving a finished specimen.

C. Load Frame.

A number of load frames/load systems were either tried or considered.
These included conventional and non-conventional screw or hydraulic machines

where the control variable is cross-head displacement. These machines had the
disadvantage that significant noise was generated by the mechanical gearing or
18
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Figure 4. Microtensile Specimen Plate Shown Attached to Aluminum
’ Milling Block
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Figure 5. Finish Machined Microtensile Specimen Plate Prior
to Specimen Cut-off
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the pumping of fluid through valves and orifices. These problems were over-
come by using an Allied Research Associates pneumatic test machine modified to
be compatible with testing of microtensile specimens and incorporating an
optical interferometer. A general sketch of the basic load frame is shown in
Figure 7. Load is applied by the action of pneumatic pressure on a pair of
pistons. The operation of the system is analogous to the application of
weights to a specimen: The control variable is load. That is, it is a dead-
weight loading machine.

Figure 8 shows a cross-sectional schematic of the actuator cross-head.
Piston-cylinder friction is kept to a minimum by the rolling piston seal. As
can be seen, the pistons were not in contact with the cylinder walls, they were
essentially free and self-centering in the cylinders. There was no metal-to-
metal or sliding contact to act as a source of noise. The cylinders were
pressurized using a 2500 psi tank of Argon gas regulated to yield a 50 psi
maximum input pressure. This allowed for testing in the load range of 0-200
l1bs., more than adequate for the microtemnsile specimens,

D. Optical Probe.

The use of an interferometer to detect acoustic emission was pioneered at
The Johns Hopkins University. Early studies centered on the detection of
acoustic emission in relatively large mass specimens undergoing primarily
brittle type failure, e.g. stress-corrosion cracking in steel, thermal crack-
ing in glass, etc. For the present effort a new interferometer was designed
based on Fizeau optics to measure acoustic emission during tensile tests.l8
The intention was to produce a system less sensitive to room vibrations and
atmospheric disturbances than the previously used Michelson designs. Addi-
tionally, the Michelson design was sensitive to torsional vibrations of the
base plate and the Fizeau optics eliminated this problem. Figure 9 is a
diagram of the improved Fizeau optical arrangement. An expanded laser beam is
incident from the left and is focused by the lens on the specimen surface.
Approximately half of the incident light is reflected by the beam splitter and
focused on the reference mirror R. The two beams, one reflected from the
specimen and one reflected from the reference mirror, are recombined at the
beam splitter and produce a fringe pattern at the output which is focused on
the photodetector.

Figure 10 shows details of the reference mirror drive. The mirror itself
is mounted on a 1/8-inch diameter, 1/2-inch long piezoelectric tube and pro-
vides possible correction of vibrations with amplitude up to about 6 fringes,
with a 1 msec response time. The PZT tube in turn is mounted on a spring steel
strip which can be magnetically moved to provide a low frequency correction of
about 6000 fringes. This large range of correction was designed to compensate
for dimensional changes in the tensile specimen. A photograph of the mounted
interferometer is shown in Figure 11. When actual testing was begun, it was
found that correction electronics produced sufficient feedback noise that the
signal recorder would be triggered. Consequently, it was necessary to run
the tests without the correction electronics at all. To accomplish this,
certain modifications had to be made to the load system to eliminate spurious
vibrations. First, the load frame with the interferometer attached was placed
on a rigid optical table. BRetween the load frame and table was placed a four-
inch thick foam rubber pad two feet wide by four feet long. On this pad was
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placed a three-quarter-inch thick sheet of plywood. The load frame was then
placed on the plywood. The entire arrangement can be seen in Figure 12.

The second, and perhaps most important, modification was the elimination
of any flexural vibrations that could be picked up along the tensile axis.
This was accomplished by attaching a piston between the load cell and the
tensile drawbar and attaching a thick-walied polyethylene cylinder to the
actuator cross-head. As a load was applied to the specimen, this tightly
fitting piston was drawn through the polyethylene cylinder (or stabilizer).
The piston and cylinder were hand-honed and lubricated to provide a smooth
sliding contact.

When these modifications were completed, it was found that the interfer-
ometer was extremely stable. Random fringe motion due to room vibrations and
atmospheric disturbances was not more than about 0.1 fringe under normal con-
ditions.

E. Event Recording and Waveform Analysis.

Output from the optical probe photodetecter was fed into a 20 db amplifier
and from these into a Nicolet Explorer Digital Oscilloscope. When a sweep
trigger signal (an acoustic emission event) is received, the scope's analog-
to-digital convertor measures the signal at intervals and transfers the infor-
mation to its buffer memory. Full-scale voltage was set at 200 mv and the
sampling interval was 50 nsec per point. On each trigger signal, 4096 points

were captured. This provided a signal window of approximately 0.2 milliseconds.

On completion of each sweep, the waveforms were transferred to a magnetic disk
memory for later analysis.

The data stored in the magnetic disk memory was transferred at a later
time to a Hewlett-Packard 9845A computer for waveform analysis. Computer pro-
grams were written to produce graphic output of the captured signals and Fast
Fourier transform analysis of the time domain data. The option of analyzing
either the whole waveform or only selected regions of interest was also avail-
able. The scope sampling rate permitted the identification of signal fre-
quencies as high as 10 MHz. Since this top frequency is higher than that seen
in previous spectrum analysis studies, particular care was taken to be sure
that any signal components received in the upper frequency realm were not an
artifact of the optical probe, digital oscilloscope or Fast Fourier transform
analysis. Various calibrated test signals (since waves and saw-tooth ramp
functions) were fed into the system over the full frequency range. In all
cases, the resultant Fast Fourier transform produced the expected frequency
spectrum, centered on the signal frequency with very minimal off-frequency
components, It was concluded that for the actual waveforms captured during
the tensile loading experiments the waveform analysis would truly indicate
the frequencies present in the range of 0-10 MHz.

ITII. RESULTS

Microtensile specimens were tested in the pneumatic loading machine
until failure. The rate of loading was adjusted such that specimen failure
occurred within approximately 10-20 minutes. During each test, load versus
time was recorded continuously until failure. Restrictions due to constraints
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imposed by specimen size and equipment configuration prevented simultaneous
recording of displacement or strain. A series of independent tests was run
using an Instron screw-type test machine. No acoustic emission measurements
were attempted during these tests. Their purpose was to obtain an approximate
engineering stress vs. engineering strain curve for comparison with published
engineering data to determine if the specimens were small enough to result in
anomalous behavior. An average stress-strain curve is shown in Figure 13.
Values obtained from standard engineering handbooks were in general agreement
with this data. This data demonstrated that while the gage section of the
microtensile specimen was extremely small compared to standard engineering
test specimens, it was still relatively large on a microstructural scale and
thus it can be inferred that the acoustic emission data gathered during the
dead weight loading tests should be representative of the bulk material.

A. Surface Examination.

Prior to, during, and after each acoustic emission test, each specimen
was examined optically. Figure 14 shows the undeformed unetched surface of a
test specimen. Both optical and SEM examinations of the surface failed to
reveal any unusual features such as prior slip, twinning, or broken inter-
metallic particles which could possibly confuse subsequent correlation with
the acoustic emission events. During subsequent loading, the specimen sub-
gage section was observed under low power magnification. During the load
cycle, the subgage lost its polished appearance and became frosted. This was
the reason the optical probe was focused on a spot immediately adjacent to the
deforming area. During the later stages of loading, the reflected beam would
have become weak or have been deflected from the photodetector. Just prior to
failure, a close examination revealed that the specimen subgage had a "Swiss
cheese' appearance. Being a very ductile material, the 304L stainless steel
failed due to void nucleation, growth and coalescence. During the final stage
of deformation, void coalescence and failure of the remaining ligaments was
observed. In each of the tests failure occurred at the mid-plane of the sub-
gage section. '

In addition to the above observation at failure, specimens were removed
from the test fixture just prior to failure. Figure 15 shows an SEM picture
of one such specimen. Note the necking of the subgage at its mid-plane.
None of the observations revealed any evidence of cracks located on the
surface. Failure was due to void coaliescence,

The surface of each specimen was examined optically after failure.
Figure 16 shows the area near the shoulder of the subgage section. Extensive
formation of slip bands can be seen in nearly all the austenite grains. The
number of slip bands is in the thousands when summed over the whole subgage
area. Figure 17 is an SEM picture of the slip bands formed in a single
austenite grain. Figure 18 is an optical photograph closer to the mid-plane
of the gage section. Severe deformation and limited depth of field of the
optical microscope made focusing difficult. However, it can still be clearly
seen that the individual austenite grains have been moved significantly from
their original positions. The beginnings of grain pullout can be seen with a
corresponding contraction of the material between the grains. The surface
grains in the gage section number in the hundreds.
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Figure 14, Surface of Specimen Prior to Tensile Loading
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SEM Photograph of Test Specimen Just Prior to Failure.

Figure 15,
(Area shown is the subgage section) (70X) -
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Figure 16. Optical Photograph of Subgage Region of the Specimen
After Failure (100X)
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Figure 17. SEM Photograph of Slip Bands Formed During Tensile
Loading (500X) =




Figure 18. Optical Photograph of Deformed Subgage Region
Showing Grain Motion (200X)
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B. Fracture Surface Examination.

The fracture surface of each failed specimen was examined in an SEM.
Figure 19 shows the fracture surface of one such specimen at 70X. Even at
this low magnificaticn one can see many relatively large voids on the fracture
surface. At slightly higher magnification (500X), it can be seen that each of
these voids contains a rather large intermetallic particle (Figure 20). Figure
21 is a high magnification photograph of one such particle. At the base of
some of these voids were particles that had failed in a brittle manner (Figures
22 and 23). The surface was scanned and a count made of the number of these
broken intermetallics for later correlation with the acoustic emission signals.
Not all the particles were intact or fractured. Some, as seen in Figure 24,
were only partially failed.

C. Acoustic Emission Waveforms.

On the average, 100-150 waveforms were captured during the load cycle of
each specimen. Invariably the signals fell into two categories. The first,
designated a Type I waveform, had a rise time of approximately 0.25us and a
duration of 0.50us. Figures 25, 28, 31 and 34 show four such waveforms. The
similarity between the waveforms is striking. 1In each, the signal is charac-
terized by a single high amplitude peak. Figures 26, 29, 32 and 35 show the
frequency spectra of each of the waveforms from 0-10 MHz. Figures 27, 30, 33
and 36 show expanded frequency spectra from 0-2.5 MHz. It can be seen that
each of the waveforms has two strong characteristic frequencies present. One
located at 100 kHz and the other at 225 kHz. These signals are indeed repre-
sentative of the hundreds of nearly identical Type I waveforms captured; the
data suggests two things. First, the micro-tensile specimens in concert with
the optical probe permit the recording of the signals with as little micro-
structural distortion as possible. Secondly, the near identical waveforms and

frequency spectra suggest that a single mechanism is the cause of these signals.

The second waveform, designated Type II, is shown in Figures 37 through
64. As stated in the description of the digital oscilloscope used, when a
sweep trigger signal was received 4096 data points sampled at a rate of 50 ns
per point were stored. Consequently, each captured waveform had a duration of
0.2 milliseconds and could contain more than one event. This is evident when
viewing the waveforms. Also shown in the figures, are some of the individual
events extracted from the waveform. Comparison with the Type I event waveform
show the Type Il event to be greater than the Type I in amplitude. Whether
one examines the frequency spectrum of the full waveform or the frequency
spectrum of an individual event, two things are apparent. First, there are
high frequency components of the Type I waveform appearing at approximately
7.5 MHz and 8.5 MHz. Secondly, the predominant frequencies of the Type I
event are still present in the kilohertz regime. This suggests that the Type
IT event is caused by a mechanism which also triggers the occurrence of the
Tyvpe I event.

The appearance of the high frequency components in the signal again
reflect the advantages of the micro-tensile specimen and optical probe. The
broad flat frequency response (0-10 MHz) of the optical probe permit faithful
recording of signals on the 7.5-8.5 MHz region as stated earlier, high fre-
quency components of a signal will be strongly attenuated in a material. Even
with the optical probe near the deforming surface of a standard si:ze
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Figure 20. SEM Photograph of Fracture Surface of Test Specimen
Showing Voids and Intermetallic Particles (500X)
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Figure 21. SEM Photograph of a Particle at the Bottom of a Void
Located on the Specimen Fracture Surface (2000X)
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Figure 23. Typical SEM Photograph of a Fractured Particle (4500%)
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Figure 24. SEM Photograph of Partially Failed Particle (4500X)
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Figure 30. Expanded Frequency Spectrum of the Waveform shown
in Figure 28, for 304L SS
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Typical Type II Event Extracted from the Waveform Shown
in Figure 45, for 304L SS
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engineering specimen, the signals mayv be attenuated sufficiently to not be
observable.

The occurrence of the Type I and Il events were compared to the load vs.
time curves. The Type I events occurred uniformly randomly over the full
loading cycle with a much greater frequency of occurrence than the Type II
event. They were not concentrated either in the pre-yield or post-yield
regimes. The Type II event was concentrated in the transition region between
elastic and fully plastic deformation. Figure 65 shows the bounds withir
which the Type 11 events were witnessed superimposed on the average stress-
strain diagram. In all the tests, there was no sudden increase in emissions
just prior to failure. Each specimen died a quiet death.

One other important point should be mentioned. There was no evidence of
continuous type acoustic emission signals. Both the Type I and II events would
be classically described as burst type emissions.

During the examination of the fracture surfaces of the specimens, a count
was made of the number of fractured particles located in the voids. Only the
larger particles exhibited fracture. The smaller particles decohered from
the matrix and remained intact. A direct count of the number of fractured
particles showed a near one-to-one correspondence of fractured particle count
and the number of Type Il emissions. The number of emissions was always
slightly less than the particle count.

IV. DISCUSSION

The results of this study on the tensile plastic deformation of a material
differ from the observations of other investigators.l® 22 23  Two distinct
signals, as distinguished by their waveforms, were observed. The Type 1
emission occurred uniformly throughout the tensile deformation of the material.
The Type II emissions, with relatively high energy and high frequency content
occurred in the transition region between elastic and fully plastic behavior.

Perhaps the best way to determine the source(s) of the signals is to
first eliminate certain mechanisms and to then concentrate on the remaining
candidates. The first item to discuss is the possibility that the optical
probe is responding to resonant frequencies of the rectangular gage section.
Calculations of resonant frequencies showed that the lowest resonance is at
approximately 600 KHz and the next highest at 1.1 MHz.?“ The predominant
frequencies of the Type I signal are about one-half the lowest resonance. In
some of the test samples and signals captured, there did appear to be a fre-
quency peak in the 1.1-1.2 MHz range suggesting that this was due to reverber-
ations in the specimen. The 7.5-8.5 MHz frequencies of the Type II signal

22y, Ono, H. Ucisik, "Acoustic Emission Behavior of Aluminum Alloys," UCLA
Report ENG-7514, 1876,

23p, A. Kline, PhD. Thesis, Johns Hopkins Univ., 1978.

241, Kinsler, 4. R. Frey, Fundamertals of Acoustics, 2nd Ed., Jchn Wilew Putl.,
New York, 19€C.
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would be such highorder harmonics that their magnitude would be inconsistent
with the observed data.

Another possible source is slip band formation. The number of slip bands
observed was far too large to be reconciled with the total number of Type 1
and II signals received. In an FCC material, no twinning would be expected
and none was observed. The comment applying to the slip bands is also true
for dimple formation and void coalescence (or ligament failure). They were
just too numerous to reconcile with the observed counts. Additionally, voids
coalescence could be observed in the final stage of deformation, but there was

no increase in acoustic emission activity. Crack growth can also be eliminated.

No evidence of crack growth was found either during tensile loading, after
specimen examination just prior to failure or during fractographic examination
after failure. Temperatures and strain rates were not such that any phase
transformations.would be expected.

The motion of mobile dislocations can also be ruled out as a likely candi-
date to produce the signals. The elastic strain energy of a dislocation
responds very slowly to changes in the dislocation's position in the crystal
except at positions very close to other defects. The energy can only change
rapidly for defects in close proximity and suggests one of the most likely
sources of emission is from dislocation pileups.*

The extensive grain boundary sliding which was observed can also be ruled
out as a source. Acoustic emission generation requires the rapid release of
energy. There was no evidence that the grain boundary motion was rapid. The
view is also supported by other authors.<® 27 28 29

The two remaining mechanisms left are fracture of brittle intermetallic
particles and dislocation pileup/unpinning. It is proposed that the Type II
emissions are associated with fracturing of the intermetallics. This is sup-
ported by the correspondence between event counts and fractured particle count
and the relatively high frequency of the emission. It would be expected that
the fracture of a brittle particle on the order of 10u diameter would emit
short duration high frequency signals consistent with the observations. Frac-
ture of intermetallics have been offered by a number of authors in a number of

25p, p. Gillis, Mzt. Res. and Stds., Vol. 11, No. 3, P. 11, 1971.

28R, Frydman, R. Pascual, R. M. Volpi, Seripta Met., Vol. §, p. 1267, 1975.
T. Malis, K. Tangri, Acta Met., Vol. 27, p. 25, 1878.

28y, ». Tandor, K. Tangri, Mat. Sei. and Engin., 20, p. 47, 1975.

. N. Tandor, K. Tangri, Mat. Sci. and Engin., &8, p. 37, 1977.
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materials as the source of emissions.30-32 This is believed to be the first
time that direct counts, rather than statistical counts, and the unique fre-
quency spectrum support this hypothesis.

It is proposed that the Type I emissions are due to dislocation pile-up
breakaway. Any number of sites are present to produce these pile-ups such as
grain boundary triple points, inclusions, intermetallics, interstitials, etc.
Based on the work carried out thus far, it cannot be stated unequivocably
which microstructural feature is the source of the breakaway. Plausibility
argunents can be given for each feature. The existence of the Type I spectrum
within the Type II spectrum also supports Type I emissions being due to disloca-
tion breakaway. Fracture of the intermetallics would most likely release
sufficient energy to allow for the pileups to break away.

The last point to be discussed is the absence of a continuous type acous-
tic emission signal. It is felt that a major source of these emissions is the
rapid motion of great numbers of dislocations into a region of large strain
energy providing a local relaxation in that region. In other words, while a
few dislocations are not of sufficient energy to be detected, the cascading
effect of the motion of great numbers would be., It is felt that the same size
of the tensile specimens used, 1imit the number of these dislocations to the
extent that their motion cannot be detected. Follow-on experiments should be
Tun varying specimen gage volume to determine if this hypothesis is correct.

V. CONCLUSIONS

This work has dealt with the acoustic emission behavior of 304L stainless
steel during tensile deformation. The utility of studying acoustic emission
using an optical probe and a micro-tensile specimen was demonstrated. Analysis
of the signals received during deformation revealed the presence of two differ-
ent waveforms. One containing a heretofore unobserved 7.5-8.5 MHz frequency
component due to fracture of intermetallic particles. The other, a low fre-
quency signal in the kilohertz range were believed due to breakaway of disloca-
tion pileups. The ability to decern these two signals was due to the broad
flat frequency response of the optical probe and the ability to probe immedi-
ately adjacent to the source by using extremely small gage sections in tensile
specimens. The combination of optical probing of microtensile specimens pro-
vides a new unique and powerful tool for studying the mechanisms of acoustic
emission.

30R, Bianchetti, M. 4. Hameted, A. K. Mukherjee, J. of Testing and Evaluatior,
Vol. 3, No. 3, r. 1€7, 1978.
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