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4-

4- Diagnostics and Robust Estimation When Transforming

The Rezression Model and The Response

Revised: September 1986

R. J. Carroll and David Ruppert

Department of Statistics

University of North Carolina

Chapel Hill, N. C. 27514

Abstract: In regression analysis, the response is often transformed to

remove heteroscedasticity and/or skewness. When a model already exists

for the untransformed response, then it can be preserved by applying the

same transform to both the model and the response. This methodology,

!which we call "transform both sides" has been applied in several recent

papers, and appears highly useful in practice. When a parametric

transformation family such as the power transformations is used, then

the transformation can be estimated by maximum likelihood. The MLE,

however, is very sensitive to outliers. In this article, we propose

diagnostics to indicate cases influential for the transformation or
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regression parameters. We also propose a robust bounded-influence

estimator similar to the Krasker-Welsch regression estimator.
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1. Introduction

In regression analysis, the response y is often transformed for two

distinct purposes, to induce normally distributed, homoscedastic errors

and to improve the fit to some simple model involving an explanatory

variable x. In many situations, however, y is already believed to fit a

known model f(x,3). / being a p-dimensional parameter. If a

transformation of y is still needed to remove skewness and/or

heteroscedasticity, then this model can be preserved by transforming y

(A)
and f(x,/3) in the same manner. Specifically, let y be a

transformation indexed by the parameter A and assume that for some value

of A

(A) - (A ) +

S)f YXa) +

where 1 .... N are independent and at least approximately normally

distributed with variance 1. Notice the difference between (1) and the

usual approach of transforming only the response, not f(x,3), i. e.,

(A)
(2) y = f(x,/) 0 ..

it should be emphasized that model (1) is not Intended as a substitute

1[

for (2). Both models are appropriate, but under quite different [J

circumstances. Model (2) has been amply discussed by Box and Cox (1964)

and others, e. g., Draper and Smith (1980). Cook and Weisberg (1982) and

Carroll and Ruppert (1981). Y

D1 jr

ll~~Po- r ,,

( <- j ii
I ... ... -- .........
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Typically, in model (2), f(x,3) is linear but in principle

nonlinear models can be used. Model (1). which we call "transform both

sides", has been investigated by Carroll and Ruppert (1984), Snee

(1986), and Ruppert and Carroll (1986) and we will only summarize those

discussions. According to (1), f(x,.) has two closely related

interpretations; f(xp) is the value of y when the error is zero and it

is the median of the conditional distribution of y given x. In Carroll

and Ruppert (1984). we were concerned with situations where a physical

or biological model provides f(x,3), but where the error structure is a

priori unknown. Examples by Snee (1986), Carroll and Ruppert (1984),

Ruppert and Carroll (1985), and Bates, Wolf, and Watts (1985) show that

transforming both sides can be highly effective with real data, both

when a theoretical model is available and, as Snee shows, when f(x,A) is

obtained empirically.

" By estimating A, a, and p simultaneously, rather than simply

fitting the original response y to f(x,A), we achieve two purposes.

First, A is estimated efficiently and therefore we obtain an efficient

estimate of the conditional median of y. Second, we model the entire

condtional distribution of y given x. and, in particular, we have a

model which can account for the skewness and heteroscedasticity in the

data. Carroll and Ruppert (1984) discuss the importance of modeling the

conditional distribution of y in a special case, a spawner-recruit.1

analysis of the Atlantic menhaden population. In section 6 we discuss

the estimation of the conditional mean and conditional quantiles of y

given x.

.- - " -.. ,- -,, ,- . ." _-., ' J -. " '.'.. . -.- . .' . , "-. . .-. . ."-"". ",. "-. . .
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Many data sets we have examined have had severe outliers in the

(A)
untransformed response y, but not in the residuals e(.A) =[y

(A)f (x,A)]; the transformation has accommodated, or explained, the

outlying y's. There is still the danger, however, that a few outliers

in y can greatly affect p and A. Outliers should not be automatically

deleted or downweighted, especially when they appear to be part of the

normal variation in the response, but it should be standard practice to

detect and scrutinize influential cases.

When influential cases are present and they have an unacceptable

effect on the MLE, then the best remedy is not simply to delete these

cases but rather to apply a robust estimator. There are several reasons

why this is so. First, as Hampel (1985) illustrates, robust estimates

are generally somewhat more efficient than outlier rejection along with

a classical estimator such as the MLE. Moreover, outlier rejection

affects the sampling distribution of classical methods in ways that have

-" not been fully studied. In contrast, the large-sample distribution of

most robust estimators, in particular M-estimators which will be used

here, can be easily calculated.

In this paper we propose a case-deletion diagnostic and a

"bounded-influence" estimator.

Case deletion diagnostics for linear regression are discussed in

Belsley, Kuh, and Welsch (1980) and Cook and Weisberg (1982), and have

been extended to the response transformation model (2) by Cook and Wang

(1983) and Atkinson (1986). The last two papers approximate the change

in A as single cases or subsets of cases are deleted.

@4 %,*'

. . . . . . . 1 '
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4'...'

, Anothe-r approach to influence diagnostics Is measuring changes in

the statistical analysis under infinitesimal perturbations in the model.

" "Cook (1986) gives an introduction to this theory, which he calls "local

influence". We will not consider local influence for transformation

models, but this seems a promising area for research.

When the response transformation model is used, / depends heavily

on A, and it seems better to examine influence for C only after A has

been determined. In constrast, under the "transform both sides" model /

-. and A are only weakly related, with 0 determined by the median of the

untransformed response, and A determined by the skewness and

heteroscedasticity. Therefore, influence for p and A can be treating

"- " simultaneously.

-j For the "transform both sides" model we propose two approximations

T T
to the changes in a = ($T ,A) as cases are deleted. As shown in the

.

next section, the MLE can be found as the least-squares estimate of a

certain "pseudo-model". Both approximations start by linearizing this

pseudo-model around the full-data estimate, and for each case take one

step of an iterative procedure for finding the estimate without that

case. The first approximation takes one step of the Newton-Raphson

procedure, in effect using an accurate approximation to the Hessian

matrix of the sum of squares for the pseudo-model. The second

approximation is based on Atkinson's "quick estimate", and is equivalent

to using one step of the Gauss-Newton rather than the Newton-Raphson

algorithm. It is considerably less accurate than the first, but is more

easily implemented on standard software and is useful for diagnostic

purposes.

041
•
"
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Subset deletion is simple in theory but can be unwieldly in

practice because of the large number of possible subsets. If

influential subsets are to be detected, some strategy is needed to

search for them. An alternative to subset deletion and a good

supplement to single case deletion diagnostics is to compare the fit of

a highly robust estimator with that of the MLE. In the example of

section 6, a robust estimator reveals an observation whose influence was

masked by another observation and could not be detected by single

case-deletion diagnostics.

Bounded-influence estimators place a bound on the influence

function of each observation. Bounded-influence regression estimators

have been proposed by Krasker (1980), Hampel (1978), and Krasker and

Welsch (1982). The last paper and Hampel et al. (1986) provide a good

overview.

Huber (1983) has questioned the need for bounded-influence

. estimators. They appear to be based on the pessimistic philosophy that

0 nature will place response outliers precisely where they can do the most

harm, on the high leverage points.

We disagree with Huber and feel that such pessimism is justified.

* Apparent response outliers are often due to gross errors in the

measurement or recording of the explanatory variables x. In addition,

response outliers can be caused by model breakdown. Both an incorrect

model for the median response or an incorrect specification of the

variance function, say a constant variance model where the variance

actually depends on the median or mean, will lead to response outliers.

• -°--'"' - " -- • - ,,"- . '-- "' * " -'" -" -. . ." "2 ' " - : : - " -"
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In the latter case, the y may be outlying only relative to the assumed

variance, not the true variance, but this is enough to cause problems.

For all these reasons, outlying y values are more likely at unusual x

values. Huber's objection to bounded-influence estimation follows

logically from his model that the errors are identically distributed

with a heavy-tailed density, but this model is unrealistic in many

modeling situations.

Moreover, even if one accepts Huber's conclusions about regression

modeling, they apply only when there is no need to estimate a

transformation parameter. The analog of leverage for A is the

derivative of the residual e.(0) with respect to A. A response outlier
I

will usually make this derivative large. Therefore, response outliers

can induce high leverage points In transformation models even at x's

that are in no way unusual.

Carroll and Ruppert (1985) proposed a bounded-influence

transformation (BIT) estimator extending the Krasker-Welsch estimator to

the response transformation model (2). In this paper we adapt this

estimator to the "transform both sides" model. We also discuss

computational aspects and propose a simple one-step estimator that can

be implemented on standard software packages such as SAS.

2. Weighted Maximum Likelihood Estimation

All estimators used in this paper are found by maximizing a

weighted log-likelihood. When the weights are identically 1, then the

..A *



Page 9

estimator is the MLE. The robust estimators introduced in section 4 are

weighted MLE's with the weights less than 1 for influential cases and

equal to 1 otherwise. Let w1  w be fixed weights. For now, they

T T
will depend on the y's but not the parameter 9 (jC , A) In section 4

the weights will depend on 9, but 9 will be fixed at a preliminary

estimate 9
p

(A)
Throughout this paper y is the modified power transformation

family used by Box and Cox (1964);

(A) Ay(A (YA 1)/A if A 0 ,

= log(y) if A - 0.

Our analysis will be conditional on the observed x's. This is

appropriate both for fixed and random x's. Let 9 T ,A) T be the

vector of the transformation and regression parameters, and let

g.(y. ,.,o) be the conditional density of y. given x.. The

log-likelihood for y. is

tl i 8,o) log gi(Y. , ,o) =

2 2 -1 2
- (1,2) log(2Ko (A 1) log(y i ) (20 [ei(9)]

where

(A) (A)

y f (xi./).*i i "

Sq

.

. . . . .. . . . . . . . . . . . . . . . . . . .
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The weighted log-likelihood for y,.., N is

(3) L(9,o) =Z N v w i C

For fixed e

-2N 2N
(9) 1= S WI (e.(9)) (Z / = w

maximizes L(9,a) over 9. Let y be the weighted geometric mean of

....... -N defined by

N N
log(y) Z~ WI log(y}/ (Z. i= w.

The weighted M'LE of 9 maximizes

max(9

N2
(4) z .{ (1/2)log(27ro ( 1)log(y. - 1/2)

-(1/2) Z N lo1 g[ 5 N W (e(9) / -1

Since the weights wv. are fixed, 9 minimizesS

(5) SS(9) Z N iv [e.(8)/ y AI
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Following Box and Cox (1964). 9 can be computed as follows. For fixed

A, minimize SS(9) in p by ordinary (typically nonlinear) least-squares

and call the minimizer A(A). Plot L (p(A),A) on a grid and maximize
max

graphically or numerically. This technique is particularly attractive

when f is not transformed and f(x.A) x TA for then (5) can be minimized

in )0 by linear least-squares. When transforming both sides, this

technique is less attractive computationally but for the unweighted MLE

it does give the confidence interval

2S(A: L (P(A) A) > L (P(A) A) (1 2) (1
max max 1

2

where 1(1 a) is the (I a) quantile of the chi-square distribution

with one degree of freedom. Minimizing (5) simultaneously in A and 9 is

straightforward with standard nonlinear regression software. One first

creates a dummy variable D. which is 0 for all cases. Define

A (A) (A) *A
z.(9) e.(19 y [y f (x.,/ , y

One fits the "pseudo-model"

(6) D. = z.(19
1 1

1with "response" D., "regression function" z.(9). "regression parameter-
, a

9, and "independent variable" (yix ). The dummy variable D. is created

"V

S:;

'E -
-~..*m
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because nonlinear least squares software typically does not allow the

response to depend on the parameters. In (6) the real response is

incorporated into the model so that is can be transformed by A.

The standard error of A that is output when fitting (6) with a

least-squares package should not be used. It is not that same as the

standard error from the inverse Fisher information and it does not

consistently estimate the large-sample standard deviation of A; see

section 5.

3. Diafnostics

A simple and easily interpreted way of measuring the influence of

the ith case is to recompute 0 with this case deleted. Since nonlinear

estimation can be computer intensive, we will describe two simple

approximations to these case-deletion diagnostics.

Let 9 and 9(1 ) be the MLE of 9 with and without the ith case, and

E E E
let 4, ('4 4A A) 9 9 be the exact change in 9 upon deletion1 1 i (i)

2of this case. Let vz (0) and v z.(9) be the gradient and Hessian of
I

z.(9. The first step in the approximation to A will be to ignore the

change in y when yi is deleted. From the previous section. 9 is the

solution to

17) H - Z z (9) vz.(9) 0.
W) j~ij j

_ejI-
4.. .: j : . :. : . : ._ . , - . - .. :- , - . - ... . -. - ..- - - - : - . - -_-.,=

- - . -; "-" ". . - ,-. . " , , , . . .. - . '-" " -". ,:
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4. An approximate solution to (7) is obtained by taking one step of the

Newton-Raphson algorithm beginning at 9. This requires the differential

of the left-hand side of (7) which is

(8) vH (z)() I Zztvz (a) vTzj(9) + z.(9) ,2z (9)}.

Then the one-step approximation to 9 is

' 11 : O vH~t)O) ] (I) (O

', 4 -1

9 = [vH (a)(9 1 (z (l) Vzj()), since

Nzj= 1 z (9) Vzj(9) 0.

To simplify vH(i)(9) we first note that by the law of large numbers

N1

yN expfE[pEi1llog(y )/N I x1 ...- xN = p, say.

If y is replaced by p in zi)(9, then C/ C/3 zi(0) does not depend on

... 'y Thus, only the lower right-hand element of v 2z.() depends

2on y so that z(0) is independent of all other entries of v z.(9).ony. ota 3 .3

Therefore, letting 9 be the true parameter we have
0

2 2 2
EI~z (9) z (a diag{0,.0, E[z (9) (d C' A z (9 )j0 J0 1  0 0

since Ez (90) 0.

°.

'
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Therefore, letting

T
(9) Vz(9) ) + D ()), where..'. j J i J '

2 2p

D Dj(e) = diag(O. .O, z (0) (a2/a A2 zj(9))}

,'_, we have VH (J)8 ( B Y

The approximate influence diagnostic for the ith case is

A i 4A' AA A = -B vz (9) Z - (a)).

The inverse of B can be easily computed using the well-known

identity [Rao (1973. page 33)]

(10) (A - uv = + A- uv A- 1/(1 v Au),

which holds for nonsingular p x p matrices A and p-dimensional vectors u,-1T

and v such that v TA- u # 1 (so that A - uv is nonsingular).

Let

N T 2
C = = {vz.() z(9) + z () v zj(0

J=lj j j j

T
C = C - vz.(9) v z.(9),

2 1/2
uj (0,...,0, zj(9) V z.(9)I / ), and

'"-'

'N%. *~ --..- -. . ..................

%~,~
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v= sign[z(0) v 2 j(0)] Uj.

T T
Then Dj = u v. so that B. = C - u v.. Using (10) twice we have

(11) C-1 -1+ C-Vzj(T)v z()C-/(1 - Tzj()c-lvzj(9))

and then

-1 - 1 T -1 T-I
(12) B 1  C + C u v C /(l-u C v)

3 ji ii

-1 -1
Using (11) and (12) allows us to compute B. ..... B using only the

1 N
-1 A•

single matrix inversion needed to calculate C If we ignore the D ()

in (9). then we obtain an even simpler, but less accurate, approximation

Q Q Q T -1
4 (4 A A "  [) = -

( ) 9 vz i ( z (9)Vz.(0).

A Q is analogous to the "quick-estimate" diagnostic used by Atkinson
1

(1986) for the response transformation model. The advantage of 4. is
i

ithat it can be computed using standard software packages that calculate

linear regression diagnostics. To do this, one creates a linearized

model with

(z (9 ) (.... (9 ))
T

- 1 N

-)
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as the vector of dependent variables and

(vz I ....( 9vzN

as the design matrix. Then J i = 1..., N, are the diagnostics DFBETA
i'

of Belsley, Kuh, and Welsch (1980, page 13). Some software packages

compute a scaled version DFBETAS, which is equally useful for

diagnostics. Cook's D or DFFITS from the linearized model can be used

as measures of total influence for A and A.

If we used one step of the Gauss-Newton, rather than the

QNewton-Raphson, algorithm when solving (7) then we would obtain 4., not

4 A The difference between the Gauss-Newton and Newton-Raphson
j

algorithms is that the former uses an approximate Hessian which in the

N 2
present notation consists of ignoring the term Z (9)v z (9) in the

j j i

Hessian of the sum of squares. For regression models without a

transformation parameter, the residuals are uncorrelated with their

Hessians and the Gauss-Newton approximation is acceptable.

In the example of section 6 and in all other examples that we have

Q E A
examined, IA. I substantially overestimates large values of JA l I while A i

E
is a good approximation to A The overestimation results from positive

2 2correlation between z (9) and d /CA z (0) causing

N2 2
Z z (9) [d idA z (a)1z j=l 1

to be positive and of the same magnitude as Z N [CIOA z()12

d

!J-1
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If we use A only as a diagnostic, then the overestimation of 14AE
j Il

is not a serious problem and it does not prevent us from detecting

influential cases.

E
The diagnostic 4. or its approximations are vectors showingI

influence separately for each parameter. An overall measure of

influence of the ith case is the exact likelihood distance defined by

Cook and Weisberg (1982, section 5.2) as

E E T 2 E
(13) LD. =

2 fLma (9) L ~a (9 H~) a (ak (V L a(9 )-4.

The approximation in (13) is also found in Cook and Weisberg (1982) and

follows from a Taylor expansion using vL (9) = 0. We can define an
max

accurate approximation, LDA by replacing 4E in (13) with 4 A As a quick

approximation one can use

QT NT Q
LD (Id)[ N z(9' z.(9)I'd

LI i ()~ i=1 i i 1'

which is a constant multiple of Cook's D from the linearized model.

From the above discussion we can expect that LD will not be an accurate

E
approximation to LD.

zp

4. Robust Estimation

once influential cases have heer, identified, we must decide how

they should be treated. In some situations, the statistician will feel

. . . - .
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that they are valid data, that they do not indicate model deficiencies,

and that they should be allowed full influence on the analysis. Then

the MLE can be used.

In other situations, the influential cases will be suspected as

gross errors. Alternatively, the influential cases may indicate a model

deficiency, but either the sparsity of data near their x values will not

" - allow a better model to be developed or the data analyst will hesitate

to add complexity to the model merely to accommodate one or at most a

few observations. Then a robust estimator should be used.

This section is concerned with the robust estimation of 9. The

scale parameter o can be estimated separately with a robust scale

functional, e. g. the median absolute deviation (MAD) applied to the

residuals from a robust fit. Let si(Yie) = vi (Y ,9,o(e)) be the score

function, i. e. the gradient of the log-likelihood for yi The weighted

MLE satisfies

N w si(Y ) 0.

The ordinary (unweighted) MLE is sensitive to cases with large values of

s in particular, to cases with large values of residual el(/3,A), 0/0)

(A)
(f (x ,8)), or d/dA si(Yi,9), corresponding to response, high leverage

points, and points having high influence for A. respectively.

A robust bounded-influence estimator can be found by letting w

decrease as some norm of sl(y. 9) increases. To do this the weights

04

=...,--" .. i..'..-..-......... ,.'.."..... ---.-... -...-. ........-.......- '-'-".."--.-..-..... .... "..'.-" --* *.4 * * * * 4 , - . " =..; -,. .k , 'K, ,.'.'. X, - " - -. " "" " "",° " " " " " " "" " . . . . . . .. " " "
" '

" "
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must be allowed to depend on 9. Thus we define the estimator 9 as the

solution to

(14) 1 IN1  9) si(Y , C(e)) 0,

where w. is a suitable scalar weighting function and, as in section 2,
2

o (9) is the weighted variance of the residuals.

Let i(y,G) = wi(y,9)si(Y,9). The minimum requirement for

robustness is to have 0i(y,9) bounded as a function of i, y , and 9.

Otherwise, a single outlier can cause an arbitrarily large change in 9.

It should be mentioned that a bounded-influence estimators may not

have a high breakdown point. The breakdown point is the largest

percentage of contamination that an estimator can tolerate before it can

be overwhelmed by the contaminants. This means that if the percentage

of contaminants exceeds the breakdown point, then the estimate can be

forced to take an arbitrary value by choosing the contaminants in a

sufficiently nasty way. The estimators that we define here are related

to the Krasker-Welsch regression estimator, and like that estimator they

-l
will have a breakdown point at most (p+l) , where (p+l) is the total

number of parameters.

In the case of the linear model, Rousseeuw (1984) and Rousseeuw and

Yohai (1984) have proposed estimators with near 50% breakdown points,

the best possible. However, these estimators have poor efficiency.

Yohai (1985) shows how to achieve both high asymptotic efficiency and a

near 50% breakdown point, but again only in the case of linear
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regression. In the future, we hope to develop similar estimators for

transformation models. A major difficulty will be computational

complexity.

When choosing w, asymptotic efficiency measured by the covariance

matrix of 9 must be balanced against robustness measured by the supremum

of some norm of 0l(y,G), the so-called gross-error sensitivity. For

univariate parameters there Is a unique optimal w I which minimizes the

asymptotic variance subject to a given bound on the gross-error

sensitivity (Hampel 1968, 1974). For multivariate parameters such as 9

the balancing of robustness and variance raises philosophical questions,

since there are many ways of comparing covariance matrices or of norming

vector functions. Different norms on 0i(yi9) give rise to different

definitions of gross-error sensitivity.

The approach we take generalizes the Krasker-Welsch (1982)

bounded-influence regression estimates. Whether the Krasker-Welsch

" .estimator optimizes the asymptotic covariance matrix in any meaningful

sense is an open question, but its efficiency at the normal model is

usually close to that of the MLE (Ruppert 1985). Krasker and Welsch

(1982) bound the so-called self-standardized gross-error sensitivity,

which we denote by 12Y We will describe -2 only briefly and the

interested reader is referred to the original paper of Krasker and

Welsch or to Hampel et al. (1986, chapter 4) for further details.

First we note that the influence function of 9 satisfying (14) is

IF -)8""'IF.(yi,.9) B B-.(Y. ,9), where

1 1.1-1
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B - N-I N T
B N IZ NVT O(Y0]1=1 1 1iY~).

This definition of the influence function is conditional on x .. XN

but coincides with the usual definiton when the x's are independent and

identically distributed and summation over i is replaced by expectation

with respect to the x's. The definition of B is analogous to that on

page 5 of Carroll and Ruppert (1985) where w is incorrectly squared.

- 1 -iTThe asymptotic covariance matrix of G is B A(B-) where

-_1 ZN E( Y8T Y )]
A - N-I I [ iY,1* l ie }

1=1 1 1 1 1

An i uitively reasonable way to norm influence function is to use the

asymptotic covariance matrix of the estimator. See Krasker and Welsch

(1982) for further motivation and discussion. The resultant measure of

influence is the so-called self-standardized gross-error sensitivity

defined as

sI5  max I1 IF(Y 1 ,6) 11 = max I w(Y.. ) s(Y i a) ,
1 1

T -1 1/2
where II v (v M v) for any vector v and positive definite matrix

M. This definition of i is analogous to equation (15) of Carroll and
s

2
Ruppert (1985) where w has been incorrectly omitted from the last term.

To robustify the MLE, we will choose the weights so that 7 does
s

1/2not exceed a predetermined bound. v must be at least (p+1) (Krasker
s

°o ° - - ° " " , ° ' ° "" "- "- "° " " " • , " - " - " ° " " - "' "" ° ' " ° S"
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and Welsch 1982). From experience with this and other prublems we

1/2
suggest bounding Y by a(p+l) where "a" is between 1.1 and 1.6. The

choice a = 1.5 worked well on the data set in section 6.

If an observation has low influence then it should not be

downweighted. Otherwise, it should be downweighted just enough to keep

I below the given bound. Therefore the weights should be
s

(15) wi(yi, ) min {1, a(, 1) 1/2/11s (y 9)11 .

In (15) A must be replaced by an estimate A.

To calculate 9 we used a simple iterative scheme:

(1) Fix a > 1. Let C be the total number of iterations that will be

used. Set c=l. Let 9 be a preliminary estimate, possibly the MLE.
p

Set w. = 1 for all i.

" (2) Define
-i=N z 2 T

i I si ~p)Sil 1 p .A y =9p) yi p

(3) Using (15) update the weights:

1,2
w mln(1, a(p-1) ills / (y., 1p)A}.

4 1 I

(4) Using the methods of section 2. find the weighted MLE with these

weights, and call it 6.

(5) If c < C. set 6 = 6. c c 1, and return to step (2).
p

Otherwise, stop.

It is possible to implement this algorithm on standard software

packages, in particular SAS. Steps (2) and (3) can be computed with a

- 7A

- . K. .. : . - - " " " ... . ' " ' -" " "..
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matrix language such as PROC MATRIX on the 1982 version of SAS. Step

(4) can be performed using a weighted nonlinear least-squares routine

such as PROC NLIN on SAS. By using macros on SAS or a similar package,

it is possible to put the matrix computations and the least-squares

routines into an iterative loop. We initially used SAS, but now prefer

the matrix programming language GAUSS.

One or two iterations seem adequate for diagnostic purposes, but

this algorithm sometimes converges slowly, particularly when there are

extremely influential points. This was the case with the example in

section 6 where the algorithm did not stabilize until ten iterations.

Unfortunately. the slow convergence gave the appearance that the

algorithm had converged after only two or three iterations.

We found that a fully iterative version of the algorithm could be

easily implemented with the GAUSS on an IBM PC-AT, and computation time

for ten or more iterations was acceptable.

Although bounded-influence estimation limits the effect of any case

on the estimdite, all cases regardless of how deviant from the bulk of

the data will have some influence. Hampel el al. (1986) discuss the

need for robust estimators that completely reject extreme outliers. For

estimation of a location parameter, this can be done with a redescending

psi function".

We can define an analog to a redescending psi-function here. Let

P(x) be an odd function with -P(x) a 0 for x 0 0. and define the weights

(16) wIYi.9 ) s(1 S y ( Y )t ) Is. ( y 9 CI
1 i ' A 1 A
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4Equation (16) reduces to (15) if is the Huber psi-function

" ?" (x) X x :5 €  b

= b sign(x) otherwise.

1/2
, with b a(p+l)

If for some R > 0, P(x) 0 for all xJ > R, then extreme outliers

are completely rejected. In the example we use Hampel's three-part

redescending psi-function

(x)=x 0 x b1

(17) =b b S x S b
1 1 2

= (b 3  x)/(b3 b 2) b2 Sx : b3

=0 b : x,
3

1with (bI V b2 , b3) (p+1) 1/2(1.5, 3.5, 8.0).

In section 6, the redescending estimate was computed by the same

x-., algorithm used to calculate the bounded-influence estimate. In step 1,

w and 9 were from the last iteration of the bounded-influence

estimate. In step (3) the weights were calculated using (16) and (17)

instead of (15).

.P

, "
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5. Estimating The Covariance Matrix of 9

The asymptotic covariance matrix of the MLE can be found by (i)

inverting the Fisher information matrix or (it) using the covariance

matrix of the influence function, the covariance being with respect to

the empirical distribution of (yi ,x), i=l ..... .. Method (ii) is based

on the asymptotic theory of M-estimation; see for example Hampel et al.

(1986, section 4.2c), One advantage of (ii) is that the asymptotic

covariance is consistently estimated even if the fi are not normally

distributed (Huber 1967) or do not have a constant variance. In fact.

method (ii) is similar to the jackknife which Wu (1986) advocates as a

consistent estimate of the least-squares covariance matrix under

heteroscedasticity. Moreover, method (ii) can be used for the

bounded-influence and redescending estimates as well.

Method (i): The observed Fisher information matrix for (9,o) is

2
(18) v L(9.o).

2
where the weights in (3) are all unity and v means the Hessian with

respect to (9a). We could invert (18) and then take the upper left

2
(p - 1) corner corresponding to ., but by Patefield (1977. 1985) this

2
is equivalent to the easier computation of inverting the (p-1) matrix

2

max

2where v now is the Hessian with respect to 0 only
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Method (Ii): The MLE, bounded-influence estimator. and the

redescending estimator are all defined by the equation

N N
(19 1 w (y s9 s(y 9) Z *(y. 9) 0

and only differ in the choice of the weights. The asymptotic covariance

matrix of any estimator solving an equation of the form (19) can be

1 1 -lT
estimated by [B A (B )Iwhere

T N
B = 0 (y ,9) and

A Z N .(y..0)0 ( .9

The asymptotic theory of H-estimation also shows that the standard

* error A when fitting the "pseudo-model" (see section 2) are incorrect.

The pseudo-model finds the MLE by minimizing

N 2
z (y,9

* or solving

N
(20) Z* z(y a VZ.(y..9) =0.

When the pseudo model is fit by a nonlinear least squares package the

estimated covariance matrix is
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21) a () {Z vzi(yi,9) vT( -I

The asymptotic covariance of the solution to (20) is consistently

estimated by

(22) BLS ALs(BS

To
where BLS T z ) VZilY 9)]l  and A -

LS I z ii LS
N TZ 7z(y .9) V (y .9). It is not hard to see that (21) and (22)

have different limits so that (21) is inconsistent. In practice (21)

and (22) can be considerably different, especially in the estimated

variance of A

6. An ExaIple From Fisheries Analysis

"n this section we look at an example. Our goals are (a) to see

the type of data analytic information that can come from the diagnostics

and the robust estimators. (b) to see how well the robust estimators

hanlie outlying data. and (c) to compare the accuracy of the "accurate"

approximation A to the quick' approximation AI 1

Whpn managing a fish stock. one must model the relationship between

fhp inniia 1 Qpawning s tock size and the eventual production of new S

4itt h~iri ilied ,!sh (rftlirns or pcrultsl from the spawning. Ricker

ind 1mtln 117 T givp numbers of spawners (S, and returns (RI from 1940
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until 1967 for the Skeena River sockeye salmon stock.

Using some simple assumptions about factors influencing the

survival of juvenile fish, Ricker (1954) derived the theoretical model

R C 1 S exp(P 2S) = f(S,p)

relating R and S. Other models have been proposed, e. g. by Beverton

and Holt (1957). However, the Ricker model appears to fit adequately

and, in particular, gives almost the same fit to this stock as the

Beverton-Holt model.

From Figure 1, a plot of R against S, It is clear that recruitment

is highly variable and heteroscedastic, with the variance of R

increasing with its mean. Several cases appear somewhat outlying, in

particular #5, #18, #19, and #25.

A
An index plot of D was constructed; see Figure 2. Clearly case

#12 stands out as the most influential by this measure, and #5, #19, and

#25 are only moderately influential by comparison. We will examine

*- these cases more closely.

E A
The exact case-deletion statistic d. and the approximations 4 and

Q* 4. are given in table 1 for these four cases.

Case *12 has a high influence on all three parameters. In

E
particular, A = .51, showing that the MLE of A decreases from .31 to

- .2 when # 12 is deleted. Why is #12 so Influential?

To see why, look again at Figure 1.. Observation #12 is not far
rt

". removed from the median relative to the variation in all the data, but

-p
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it is quite far removed relative to the variation in the other data with

similar values of the independent variable S.

The 27 data points besides #12 suggest that the data are extremely

heteroscedastic, with the variation in recruitment increasing very

rapidly with the median recruitment. The effect of #12 is to increase

the apparent recruit variation for low median recruitment and to suggest

that the heteroscedasticity is not so nearly pronounced. Seen in this

ilight, the much more severe transformation (A = -.2 instead of A = .31)

when #12 is deleted is not surprising.

Besides suggesting less heteroscedasticity than seen in the

remainder of the data, #12 has a large negative residual which suggests

less right skewness as well.

To further analyze the influence of #12 on A we will introduce two

alternative estimators of A. These will be discussed fully in a

forthcoming paper by Aldershof and Ruppert. For fixed A, let 10(A) be

T T
the MLE of C and define a(A) = (/(A) ,A)T . The skewness estimator Ask

is the value of A such that the skewness coefficient of the residuals

(e (Q(A))} is 0. The heteroscedasticity estimator Ahet is the value of

A such that the correlation between (ei(9(A))} and (Jog(f(xi,A(A))) is

0.

When case #12 is omitted the value of A only changes from .58 to
sk

.46, but A changes much further, from .16 to -.86. The major effect
het

of deleting #12 is to increase the heteroscedasticity.

Case #12 was the year 1951 when a rock slide drastically reduced

recruitment (Ricker and Smith 1975). For this reason we are quite
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comfortable downweighting it severely. In fact, it seems best to reject

#12 entirely. This, in effect, is what the redescending estimator does;

see below.

Compared to case #12, cases #5, #19, and #25 all have the opposite

effect on A. Deleting any of then decreases the apparent recruitment

variance when the number of expected recruits is large, in effect

E
suggesting less heteroscedasticity. For this reason A. is positive for

i = 5. 19, and 25.

The effect of #12 on A is not as easily analyzed as its effect on

A. Deleting #12 increases A from 3.29 to 3.77 and decreases C from

-7.00 to -9.54. These effects tend to cancel but not completely. As

shown in Figure 3, the net effect of including #12 is a decrease in

f(S,A) for small S and an increase for large S. The former effect is

plausible since #12 has a low value of S and a negative residual. The

increase in f(S,A) for large S is not so plausible, but it Is a

consequence of using the Ricker model for the median recruitment.

Having analyzed the exact changes 4E we turn to the accuracy ofI

A Q Q
the approximations 4A and 4. The accuracy of 4. is poor for cases #5

1 1 1

and #12, especially #12, and these are precisely the cases of interest.

The same is true of the approximations to LD ; the quick approximation

is rather inaccurate.

The quick estimate does better for cases #19 and #25, but this is

merely fortuitious. The overestimation by the quick estimate is small

here and cancels the error from not recalculating y after case-deletion.

To see this we can examine the changes in the MLE induced by

'p'
,-|



Page 31

case deletion with y is kept equal to the geometric mean of all the y's

These changes are - 17, .77. 013, and .Oll for i = 5. 12, 19, and 25.

A
respectively, in all four cases, the change is closer to 4 A than to

JQA

We calculated 20 iterations of the bounded-influence estimate with

the tuning constant a 1 5. and using this as a starting value we

calculated 10 iterations of the redescending estimate with (b . b2, b3 )

(p - 1)1  2(1.5, 3.5. 8.0).

The bounded influence estimate changed rapidly for the first five

iterations, more slowly for the next five, and then was stable for the

last ten iterations. To show the behavior of the algorithm, the value

of 9 and non--unity values of w. are given in table 2 for iterations 1,

2. 3. 4, 5. 10, and 20. It is interesting to examine w 4. This is I for

the first three iterations but eventually decreases to .65, less than

w and w
19 25'

Case #4 is influential, but its influence is masked by *12. Robust

estimation or subset deletion diagnostics seem necessary to detect the

influence of *4.

The values of 9 and nonunity values of w are also given in table 2

for the redescending estimate. Case *12 is completely rejected, e. g.,

w 0, for all iterations. The value of w4 decreases slowly for threew124

iterations and then jumps downward to almost 0 on the fourth iteration.

With #4 nearly deleted the weights w 16 , w19 , and %25 readjust on the

fifth and sixth iterations. The redescending estimate is stable after

the sixth iteration.

. . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . .-
-S .*
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The first iteration of the redescending estimator is nearly

identical to the MLE without *12 After #4 is strongly downweighted, A

decreases to about -.3 which suggests even slightly stronger

heteroscedasticity. As both *12 and #4 are completely or nearly

(:ompletely rejected. #16 becomes influential and is slightly

- . downweighted.

We do not necessarily advocate using the fully-iterated

redescending estimator The bounded-influence estimator or the first

iterate of the redescender give a good fit to the bulk of the data and

reject the outlier #12. Without further Information about these data,

we are not comfortable downweighting *4 and *16 as much as the

ftilly iterated redescending estimator downwelghts them.

- .If forced to choose one estimate, we would choose the one-step

redescender. The residuals {e (9)) from this estimate are plotted in

Figure 4. Ignoring e12 (), the remaining residuals show only slight

heteroscedasticity and almost no skewness.

The redescending estimator completely rejects #12 so there is no

- ."need to refit with this anomalous case removed. However, it is

instructive to see what happens if this Is done. Both the

* bounded-influence and the redescending estimators converge rapidly, with

the first iterate equal for practical purposes to the fully-iterated

estimate. This suggests that the algorithm converges slowly only in the

O4 presence of an extremely influential point such as #12.

.-. r In table 3 we give the standard errors of the MLE by method (i),

inverting the observed Fisher information matrix. We also give the

, ,~~~~~~~~~. .......-.- ,................. ....... ................ ..... ... ...........-.-..... ....- . ..,.-
' ,L ... ,,,Id, 

=
" "" ,, ., ,. ' " '- - • - . . . ' - " , ° ' : -.
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method (ii) standard errors for the MLE, the one-step and iterated

(c = 10) bounded-influence estimator, and the one-step and iterated

(c = 5) redescending estimator.

The method (i) and method (ii) standard errors of the MLE of A are

moderately different, but both are considerably smaller than the

standard error of A for the robust estimators. Downweighting *12 seems

to increase the variability of A, but since *12 is known to be an

unusual year it seems wise to use a robust estimator despite the higher

variability. The standard errors of A and A are smaller for the
1, 2

robust estimators than for the MLE.

At least in this example, robust estimation appears to cause a loss

in efficiency of A but a gain in efficiency of )C. However, this loss in

efficiency for A is only apparent, not real. There are two ways of

looking at this, either conditioning or not conditioning on the event

that a rock slide occurred in 1951. Conditional on there being exactly

one rock slide and it occuring in a year when the number of spawners was

low, the MLE has a small variance but a large bias and consequently a

large mean square error relative to the robust estimators. If we do not

condition on the occurence of exactly one slide, but rather admit that

some other number of slides could have occurred and that these could

have occurred at any years, then it is clear that the MLE is really much

more variable than its standard error shows.

The change in A when *12 is deleted is large relative to the

E
standard errors of A. Notice that 4 A is over twice the standard~12

error of the MLE and about 1.65 times the standard error of the one-step

redescending estimator.

-%..
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Table 1. Deletion diagnostics for the most influential cases. The
superscripts denote the method of calculation: E exact, A =accurate

approximation, Q =quick approximation.

DIAGNOSTIC CASE NUMBER

5 12 19 25

A4 A. -.10 .51 -.034 .033

4 A 1  -.14 .61 -.015 -.015

JQ4A, -.32 1.57 -.036 -.034

4d E 1 a.22 -.48 .08 .12

'A P i-.22 -.45 .11 .15

A.34 -.43 .10 .14

'd E 32.i 1.48 2.54 -1.02 -1.25

A
~ 2i1.47 2.57 -1.14 -1.38

E
LD. .58 9.64 .32 .38

LD A.72 8.7 .27 .34

0ii

LD 1.2 24.3 _27 3
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Table 2. Estimates of 0 and A and the case weights for the robust

estimators. BIE bounded-influence estimator. RE redescending

estimator.

ESTIMATES CASE WEIGHTS

A w w w i

1 2  A 4 w5 w12 w16 w19 w25

MLE 3.29 -7.00 .31 1 1 1 1 1 1

BIE:c=I 3.49 -8.00 .27 1 .71 .58 1 1 1

c=2 3.59 -8.54 .20 1 .63 .34 1 1 1

c=3 3.66 -8.87 .12 1 .62 .20 1 1 .99

0 c=4 3.70 -9.11 .06 .98 .62 .13 1 1 .98

C=5 3.74 -9.31 .02 .91 .62 .087 1 1 .96

L=1O 3.84 -9.71 - .07 .69 .63 .041 .97 1 .91

c=20 3.85 -9.74 -.08 .65 .64 .038 .92 1 .91

RE: c=1 3.91 -10.1 -.21 .65 .64 0 .92 1 .91

c=2 3.93 -10.1 -.23 .52 .71 0 .86 .97 .86

c=3 3.92 -10.0 -.23 .46 .75 0 .81 .94 .82

c=4 3.91 -9.97 -.23 .43 .76 0 .78 .92 .81

e C=5 4.11 -10.7 -.36 .006 .77 0 .76 .90 .79

c=10 4.00 -9.94 -.34 .005 .91 0 .64 .71 .61

U.

01

r s . % * $ ...
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Table 3: Standard errors of c3 and A.

ESTIMATOR

102 A

!4LE (inverse r'lsher .75 3.40 .21
information - method (1))

-- (as an N-estimator -. 66 3.46 .16
method (ii))

BIE: One-step (c=l) .54 3.01 .42

C=10 .61 3.51 .39

RE: One-step (c=l) .51 2.79 .35

Fully iterated (c=10) .43 2.37 .35

%-t.
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LIST OF FIGURES

Figure 1: Plot of returns (or recruits) against spawners with median

recruitment estimated using the one-step redescending estimate. Returns

and spawners are in thousands of fish. Selected cases are identified.

A 1/2, h prxmt
Figure 2: Index plot of (LD.) the square root of the approximate

likelihood distance,

Figure 3: Difference in median recruitment estimated with and without

case *12.

Figure 4: Residuals from the one-step redescending estimator.
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