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THE HARMONIC AND ANHARMONIC MODELS 
FOR VIBRATIONAL RELAXATION AND DISSOCIATION 

OF THE NITROGEN MOLECULE 

1.  INTRODUCTION 

In electric, microwave, laser and electron beam initiated discharges in 

nitrogen, a fair portion of the input energy is stored in the N? vibrational 

mode. In discharges where the average electron energy is below 2 eV 

approximately 80? of the energy is stored in the vibrational levels. This 

stored energy has two interesting channels for its dissipation, which are the 

dissociation of the molecule and the vibrational relaxation into thermal 

energy. However, when the vibrational states have radiative channels, the 

vibrational energy is dissipated by radiative means also. 

The energy storage and the development of the vibrational distribution in 

nitrogen discharges occur as a result of the electron-molecule, and molecule- 

molecule collisions. The electron-molecule collisions hereafter called the 

e-V processes, populate various vibrational levels of the molecule. However, 

the molecule-molecule collisions are of two types. One of these, hereafter 

called the V-T process, transfer energy from the vibrational mode to the 

kinetic energy and vice versa. The other type is the V-V collisions where a 

vibrational quanta is exchanged between the collision partners. Under V-V 

collisions energy is also exchanged between the vibrational and kinetic modes 

when the vibrational energy levels are anharmonic in nature. 

Theoretical studies of the vibrational kinetics in nitrogen, other 

diatomic molecules and molecules diluted in atomic species, have been 

numerous   D     These studies were stimulated by interest in the relaxation 

Manuscript approved November 19, 1986. 
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phenomena and  its rate  in laboratory discharges,3^'6'10,11 molecular 

lasers,7'9 chemical reactions, molecular dissociation and recombination and 

ionspheric molecules.5   In these studies harmonic2'13 or ?;» larmonic3 

oscillator models were utilized and a master equation in general, was solved 

largely under steady state conditions, with the main interest in V-T and V-V 

processes.   Recent studies9'11'13 have  included  the electron-molecule 

collisions and time dependent master equations have been solved numerically. 

However, even when time dependent solutions12 of the master equation were 

obtained,  one or more temperatures,  i.e.,  the electron and the gas 

temperatures were kept constant. Such approaches may be appropriate for a low 

degree of ionization and low vibrational temperatures.  Therefore, a self- 

consistent  approach,  where  the  various  temperatures  are  calculated 

simultaneously with thef master equation, is desirable.  In this manner the 

energy flow from one mode to another is accounted for and its effects on the 

rate coefficients and relaxation times will be manifested as a matter of 

course. 

In this paper we discuss the theory of the vibrational relaxation in 

Np. We discuss the physics of two models, a harmonic oscillator (HO) and an 

anharmonic oscillator (AHO), develop the appropriate rate coefficients and 

delineate their behaviour. Specifically we develop a V-T rate coefficient for^ 

temperatures below 2000 0K where the deactivation rate is -.uch different from 

that obtained from extending the rates based on the high temperature 

relaxation data. Such a model where various temperatures are treated self 

consistently should be useful for channel expansions after energy depositions 

and provide the tool for infrared emissions calculations where radiatively 

active molecules (C02, NO, N02 and N20 ) react with the vibpatlonally 

excited N2 molecules. 

WW^r^-,^U.r^ttW:>^ 



2.  THE MASTER EQUATION 

The master eqaation which governs the population density of the v-th 

vibrational level Nv, in an electric, laser or microwave initiated discharge 

in N2 is 

dN 
v w-1,w                                                     w,w-1 
  -IN        N P                              -           ZNNP 
dt        w=1     v+1     w-1 v+1,v                             w-1     v w    v,v+1 

(1) 

w,w+1 w+1,w 
INN? +ZN N P 

w=o    v    w    v,v-1       w=o    v-1     w+1     v-1,v 

+ NZN      X      -NINY 
e w    w      wv        e w    v    vw 

-MZNR +MENS 
V    V    v,   v+1 www,  w-1 

where the appropriate processes are: the electron molecule and the molecule- 

molpcule collisions. The electron molecule collisions comprise excitation and 

deexcitation of the vibrational levels, i.e.. 

e + N ->• e + N (2) 
w +    v 

where the excitation and the deexcitation rate coefficients are disignated by 

Xwv and Yvw, respectively. In a V-V collision i.e. 

N   + N ., ->• N + N (3) 
v+1   w-1 * v   w 

a molecule at the v+1 level loses one vibrational quanta and discends to level 

v while the molecule at the w-1 level gains a quanta and ascends to level w. 

The rate coefficient for this process is designated by P ""]'JJ and the 

corresponding inverse processe is obtained by the principle of the detailed 

balance. 

yXSÖÖSÄO^W^^^ 



In a V-T collision i.e., 

M + N •♦ N  , + M W 
w •<- w-1 

a molecule exchanges a vibrational quanta with the thermal reservoir 

comprising M molecules. The rate coefficient for the V-T deactivation is 

designated by Sw w_1 while the corresponding excitation is given by RViV+i and 

is obtained by detailed balance. 

The number of vibrational levels represented by the master equation 

depends on the model. The HO model with equal energy spacings between the 

vibrational levels of 0.29 eV (see Ref. 15) results in 3^ bound levels while 

the AHO model has M6 bound levels. The energy of the v-th vibrational level, 

Ev. is 

E = 0.29 [(v ♦ i) - 6 (V ♦ i) ] (5) 
v 2 2 

where 6 is the adiabaticity constant with a value of 0.006 (see Ref. 15). 

3.  RATE COEFFICIENTS 

3.1  ELECTRON IMPACT EXCITATIONS OF THE VIBRATIONAL LEVELS 

The electron impact rate coefficients for the vibrational excitation can 

be obtained from the measured cross sections.16'17 These cross sections for 

transitions from v^O to v=8 have been averaged18 with the electron velocity 

over a Maxwellian velocity distribution and the corresponding cofficients are 

shown in Fig. 1. As for excitation between and to levels above v=8 we utilize 

the often used1' relation. 

X     = X A (6) 
v,v+Av   o,Av 

A^^.^^;V.^V/^V.NiM^^^ 



The electron de-excitation rate coefficient Y,. ,, is obtained from the v, w 

corresponding excitation by the principle of detailed balance. The rates used 

for the harmonic oscillator are shown in Fig. 1. On the other hand, for the 

AHO the individual excitation rates should be multiplied by an exponential 

whose exponent is given by the energy defect (AE = 0.29v - E ) divided by the 

electron temperature. 

3.2 THE V-T RATE COEFFICIENTS 

For the harmonic oscillator the V-T rate coefficient, Sy y_^, is related 

to the de-excitation rate of the v-1 state, S^, and the harmonic oscillator 

relation0, i.e.. 

S   .   ■ (v+Av) S4n (7) 
v + Av,v 10 

The V-T excitation rate coefficient is 

R   . = (v+Av) S-, (8) 
v,v+Av 01 

and SQ.J is related to S^Q via detailed balance, i.e. 

soi " sio EXP(- ^ (9) 

where T is the gas temperature. 

\MS'^>lsW±^\'j?.yX\-^AVv\\tf^ 



For the AHO, on the other hand, the V-T de-excitation rate is 

Sv.v-rZPVTT [w7]F(^v.v-1) 
(10) 

here 6 is the adiabaticity constant, F(xv „-) the adiabaticity Cactor which V , V I 

can be approximated-^ by 

where 

F(X ,)   -V2   [3 - Exp  (-2X/3)]  LExp  (-2X/3)3 (11) v, v—1 

v,v-l -  (V2)3/2   [f jV2[1-26v] (12) 

and  e = 5.38X10    for   N2    (see   Ref.    20).       In   Equation    (10)    Z   is   the   rate 

coefficient for the collision of two hard spheres where 

z  . nd2  [8l<Ij1/2=  LYxio"11   /T (13) 

Here, d is the diameter of the molecule (d ■ 3.75 A , see Ref. 21) and y is 

the reduced mass. PVT is the probability per collision that energy is 

exchanged. In order to obtain this probability we must relate the 

deactivation rate (Eq. 10) to the measured relaxation cimes, PT, where P is 

the pressure, generally in units of one atmosphere at room temperature. The 

experimental data compiled by Millikan and White1^ for PT, shown in Fig. 2, is 

valid for 1=2000-9000^ and can be expressed as 4.2 x 10"12Exp (23^.9T~ 3). 

However, data below T-2000K, not given by Milliken and White1 , do not fall on 

this straight line on a log plot vs. T-1'3. This merits further discussion. 

JXWrüjmw&^Wt^KiW^^ 



77 The most recent room temperature data of PT by Kovacks and Mack yields a 

value of (4 ± ' atm/sec. Other data below T = 2000oK are those by 

Henderson2^ (T • K) which yields pi = 1 atm/sec and those of Huber and 

Kantrowitz24 (T = 550 - 760oK), Lukasik and Young25 (T = 770, 1020 and 

o pA 
1186 K), and Hurle . These experimental data are shown in Fig. 2 along with 

the theoretical calculations of Benson and Berend '. These calculations ' 

give the probability for v =1 -»• o deactivation in nitrogen which fits the high 

temperature region very well. Below T = 2000 the pt values from these 

calculations"' (shown in Figure 2) indicate that the px curve in reality can 
0 

be   divided   Into   two  regions.   One   for T ^ 2000 K and   another 

0 
for T S 2000 K where a fit with a different elope is in order. We suggest the 

following fits 

PT - 4.2 x 10"12 Exp(234.9T"1/3) '  (14a) 

for T = 2000 - 9000oK and 

PT = 4.5 x 10~8 Exp (120.3 T 1/3) (1Mb) 

for T = 300° - 2000oK. This last fit differs by many orders of magnitude from 

0 
the extension of the high temperature data to below 2000 K. Utilizing these 

relations we obtain the following expressions, for the vibrational 

translational deactivation rate coefficients, 

3.23 x 10"11 T Exp (-231<.9 T"1/3) 
SV,V-I ■   -  -9/T,:;—500^ h"^ F ^v-V {15a) 

(1-e   ) F (x =  ) 
/T 

{W£^^:v >:V:V:V:V:N-'V:->^^ 



For T - 2000 - 900C K and 

3.02 x 10~15 Exp (-120.3 T ~1/3) T 

Vv-1 "   ^.e-e/T) F (x = M; 

/T 

F (Xv „.J  (15b) [1-6v]   *V,V-1 

for T = 300 - 2000 K. 

3.3  THE V-V TRANSITION RATES 

To develop the appropriate rates we start with the probability of energy 

exchange per collision derived by Rapp and Englander-Golden.     This 

4 ?fi probability is^'^0 

2 2L E 
Arn - Sin^ (MTT M L V^ ü" Uom/h) Sech (-i. ) sm o rn sm v 

(16) 

where Ed is the energy defect, V0 the relative velocity, y the reduced mass of 

the collision partners and L * 0.2 A for N2, which is a characteristic length-' 

in the exponential of the repulsive interaction potential. Urn is the matrix 

element for the harmonic oscillator with 

(U  )2 . (J_)2 JL_ (17) 

Here, M is the reduced mass of an oscillator and v is the vibrational 

frequency. For HO the energy defect is zero and the Sin6 term in Eq. 16 can 

be approximated^ by the square of its argumti .. This results in 

AJ° = 3.8x10"6 T (18) 

^:?>?j<\Kxm>j<v^^^^ ^V-■l'V.\■kl■'nAV\^\^^-»^ s VA-S* 



Hence the V-V exchange rate coefficient is 

pj° = 6.M5X10-17 (T )3/2 (19) 

where we have utilized the collision rate coefficient (see Eq.- 13).  For 

arbitrary levels, one has 

C:;-"*1'«^ (20) 

and 

P
W
'

W
-; = w(v+i) p?i 

v,v+1 10 
(21) 

However, for AHO, the V-V exchange rate' is 

w-1,w r v n r w ,  , w-1,wv 
P  * - 2 P  T [—-] [—-] F(Y  ' ) 
v,v-1     v,v  1-6v  1-6w    v,v-1 

(22) 

where Z is the collision rate coefficient,Pv v the probability for energy v.v 
w*"! w 

exchange, and F(y  ' ) is given by Eq. (11), however, its argument is defined 
v, v—I 

by 

Yw-1'" = TO.19 1^7 (23) 

Using the expression for Z and Eqs. (19) and (22) we obtain 

=W-1'" = 6.5x10-17 (T)3/2 r-I_] CAr] F(YW-1^) 
v,v-1 1-6v  1-6wJ   v,v-1 

(2M) 

J . S    S   .-. J    .■■ ■JJLJ^^.  _ J- 
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3.^ RATE COEFFICIENT COMPARISONS 

A comparison between various rate coefficients and their behavior with 

temperature is useful in delineating the impact of various processes on 

relaxation and dissociation. Figure 3 shows the V-T deactivation rate 

coefficients as a function of the vibrational quantum number for two gas 

temperatures of 300 and 10000K. Two different expressions (see Eqs. 15a and 

15b) were utilized. The difference between these are quite obvious, which 

implies that the extension of the rate^ «bteined from Slifeft temperature PT d»tl 

to regions below 2000 UK will underestimate the vibrational deactivation 

rates. Also shown are the deactivation rates for the harmonic model. We 

observe from this figure that the deactivation rate coefficients are higher 

for higher quantum levels and that these rates increase with increasing gas 

temperature. The deactivation rates for the harmonic model increase with 

increasing v but at a much lower rate compared to the AH0 model. In Figure M 

we show the V-V rate coefficients as a function of v for two gas temperatures 

of 300 and 1000 0K. Again, the V-V rates are higher for higher temperatures 

and in general are much higher than the V-T rate coefficients. The near 

resonance V-V rates increase with increasing v while V-V exchanges for the 

non-resonance decrease with increasing v in contrast to the linear rise shown 

in the HO model. 

The higher rate coefficients for the AH0 model compared to the 

corresponding coefficients for the HO model implies higher relaxation rates, 

which can be tested against experimental results. Furthermore, the V-T rat^s, 

especially for gas temperatures below 2000° K could be verified by a suitable 

experiment. 

10 
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4.0 DISSOCIATION AND RECOMBINATION 

The dissociation of the nitrogen molecule in a discharge occurs through 

three distinct processes. If we designate the population density of the last 

bound state by N(46) then its dissociation rate due to V-V processes, assuming 

a one quantum exchange, is 

Kd(vv) » N(46)  I^6 F^l^NU) (25) 

The corresponding recombination rate is 

Rr(VV) = N2  I46 P^^NCV) (26) 

Where N, without a subscript, devotes the density of the nitrogen atom. 

The dissociation rate due to the V-T process is 

Kd(VT) = N(J46)M Sl46 47 (27) 

and the corresponding recombination rate, using the principle of detailed 

balance, is 

N(46) S 

MVT) -   a    M ' (28) 
r N • N 

Finally, the plasma electron dissociation rate is 

K.(eV) = Ne  f^  N(V) Xv .. (29) 
a v=38     V,Mf 

Thus the total dissociation rate due to these three processes (e-v, V-V and 

VT) is 

11 
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Kd ' Kd(vv) + Kd(VT) + Kd(eV) 
(30) 

5.0 DISCHARGE MODEL 

The equations describing the vibrational model can be used in two ways to 

study vibrational relaxation and dissociation in nitrogen. The finst approach 

is to assume a given temperature or temperatures and an electron density and 

use the model to gain the appropriate understanding of the dissociation, 

vibrational distribution, equilibration time, and so on. The most appropriate 

approach, however, requires the coupling of the vibrational model into an ab- 

inito discharge model that calculates the time development of the electron 

density and the various temperatures. This and more detailed studies of the 

vibrational energy relaxation and dissociation of N2 will be forthcoming. 
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0.2     0,4     0.6     0.8      1.0     1.2      1.4      1.6     1.8     2.0 
Te (eV) 

Fig. 1 — Electron impact excitation rate coefficients for the eight ground state 
vibrational levels. 

15 

"Ji •> •-" '^ ^> •>'" ' rj> TJ» -> -> ->j rj-_'j'J.LfJ'j-Sj:_ ^ft_i.»r •Wjp. »^v^j^'k-jwuvüiAjvu J\,'W'k-L, w j^i: 



(T8r"3 

0.08        0.09        0.10 
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Fig. 2 — Experimental and calculated relaxation n nitrogen; K(Ref. 22), 
B&B(Ref. 27), H(Ref. 23), H&K , L(Ref. 25). 
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4     8    12    16   20   24    28    32   36    40    44 
V 

Fig. 3 — The vibrational-translational deexcitation rate coefficients for harmonic and 
anharmonic oscillators as a function of the vibrational quantum number. 

17 

"Jfc -\J" fi^ P-W. ,. ^ ,'    ■_    -_ ^.   u^ ■ W" i W. I /''■ ;  a*1 . W^   \."    h^ / itT'.' W j ta'V/ >•"',' V.'VJ 'rfT- WI ICL' '«^-J WTJ ITVJ WVJ "«TV." KTJ iTW HTU »TV >r\J JTTJ WVJ «\. WV K u-WU If u 1 



i(r8F 

10 -9 

ID"10 - 

f 

3    tO"11 

> 

10 -12 

10 -13   - 

10 -14 

r                *^\   ^           300OK 

:           >^          ^^^ \x 101 

- 
- 
- 

-      /           S'*' ^00^\ — 

"    /      /^                                                \3(X)0K 

- 

" f 1 

- 
- 
- 
- 
- 

-1 

— 
- 
- 

Ill''  

3 10 -12 

10" -13 

CO 

E 

1 
10' -14 is 

= 10 -15 

4     8    12   16    20   24    28   32   36   40   44 
V 

Fig. 4 — The near-resonance and non-resonance vibrational-translational exchange 
rate coefficients as a function of the vibrational quantum number. 
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