
-A177 229 ON-CHIP INSTRUMENT CACHES FOR HIGH PERFORMANCE
- PROCESSORS(U) STANFORD UNIV CA COMPUTER SYSTEMS LAS

A AGARAL ET AL 1987 MDA903-83-C-9335
UNCLASSIFIED F/O 9/5 NI

llEEEEEEEEEEEE

"o

1111111.6

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 963-A

" Contract MDA-903-83-C-0335

On-chip Instruction Caches
for High Performance Processors

N Anant Agarwal, Paul Chow, Mark Horowitz,
John Acken, Arturo Salz, and John Hennessy T

Computer Systems Laboratory ISLECT- F
Stanford University FEB 2 4 1987
Stanford, CA 94305

1 Abstract

@ Continued increases in clock rates of VLSI processors demand a reduction in the frequency
of expensive off-chip memory references. Without such a reduction, the chip crossing time
and the constraints of external logic will severely impact the clock cycle. By absorbing a
large fraction of instruction references, on-chip caches substantially reduce off-chip com-
munication. Minimizing the average instruction access time with a limited silicon budget
requires careful analysis of both cache architecture and implementation. This paper exam-
ines some important design issues and tradeoffs that maximize the performance of on-chip
instruction caches, while retaining implementation ease. Our discussion focuses on the in-
struction cache design for MIPS-X, a pipelined, 32-bit, reduced instruction set, 20 MIPS
peak, CMOS processor designed at Stanford. The on-chip instruction cache is 2K bytes
and allows single-cycle instruction accesses. Trace driven simulations show that the cache
has an average miss rate of 12% resulting in an average instruction access time of 1.24
cycles. 4

2 Introduction

With the rapid improvement in processor architecture, led by the RISC processors, and
with advances in VLSI technology, the cost of off-chip communication has not kept pace
with improvements in the clock rates of VLSI processors. Consequently, the performance
of current high-performance VLSI processors is memory bandwidth limited. Including
memory on the processor chip to reduce the cost of memory accesses becomes imperative
to attain higher performance (1,2,3].

The RISC approach [4,5,1] advocates shifting functionality to software and using hard-
ware resources to support features that clearly improve performance. An on-chip instruc-
tion cache is just such a feature. Furthermore, by achieving reasonably high hit rates
in an on-chip instruction cache, we can eliminate the major disadvantage of a RISC ar-
chitecture: decreased instruction density. As we show, the silicon freed up by the lack
of microcode more than pays for itself in the amount that it compresses the off-chip in-
struction density. Several current VLSI processor designs have observed these facts and
employed on-chip instruction caches, including the MIPS-X project at Stanford [6], the
Berkeley SPUR project [7], the Motorola 68020 [8] and the 68030 (9].

With current technology, small instruction-only caches are attractive for VLSI imple-
mentation for a number of reasons:

1. An on-chip instruction cache provides an extra port to memory and allows simulta-
neous fetches of both instructions and data with a single set of external address and

87 2 - 108
3 1

data pins. The I/O pins do not see most of the instruction fetches. The importance
of dual porting becomes apparent from peak bandwidth requirements. MIPS-X [6]
requires a peak of 40 million words per second, 20 million each for instructions and
data. With a minimum cycle time of 50 nanoseconds, the off-chip bandwidth would
be inadequate without using a large number of pins. A combined on-chip instruction-
data cache would also be insufficient, unless a much larger dual-ported cache could
be built.

2. Streamlined machines require a high instruction bandwidth that can be over twice
the data bandwidth. For example, in MIPS-X, instructions comprise 70% of all
memory references, and in the Berkeley SPUR processor, which includes a large
register file, instructions comprise 82% of all memory references for C benchmarks
and 75% for Lisp benchmarks [10]. Given the 50ns cycle time, and the current CMOS
technology, only an on-chip cache can sustain the required instruction bandwidth.

3. Because instructions show a much higher degree of locality than data, especially for
well structured programs, small instruction caches yield lower miss rates than com-
bined instruction-data caches, and considering the net performance gain achievable,
the limited silicon resources are best exploited by an instruction cache. Achieving
a high hit rate in the on-chip cache is even more important when an off-chip cache
is present (as in MIPS-X), and the miss penalty is small enough that a small on-
chip cache with a high miss rate can actually be detrimental to performance due to
overhead in cache management.

4. Instruction caches are simpler to implement than a combined instruction-data cache
because the the cache need not support writes. The architecture can disallow writes
into the instruction stream. In addition, a read-only instruction cache does not have
cache consistency problems for multiprocessor configurations.

This paper examines the design of integrated instruction caches from a practical stand-
point. The goal is to minimize the average cost of an instruction fetch. This cost is a
function of the cache hit rate, the miss penalty, and the cache access time. A number
of VLSI specific implementation issues, such as available area, cache aspect ratio, timing,
and ease of implementation, must also be addressed. Because many of these constraints
are specific to the design of a given processor, much of our discussion is in the context of
the MIPS-X instruction cache. However, the methodology, and the trade-offs and opti-
mizations that we discuss are relevant to other designs as well.

The next section reviews cache performance evaluation methodology and terminology.
Section 4 analyzes various cache organizations to assess their performance and see how
suited they are to VLSI implementation. Then, following a discussion of MIPS-X cache
miss timing, we look at a number of schemes (including prefetching) to improve the average
access time of an instruction. In section 5, we examine several replacement algorithms,
handling context switches, and discuss the tradeoffs and optimizations made.

3 Methodology

3.1 A Cache Performance Metric

A cache design involves optimizing cache performance with respect to a number of cache
parameters. Cache performance is usually based on the cache miss rate, or the fraction of

2

AJLAQ 11111

cache requests not satisfied by the cache, and traffic ratio, or the ratio of memory references
made by the cache to the number of cache accesses made by the processor. A more
important metric is the average memory access time because some cache organizations
achieve a lower miss rate at the cost of increasing the miss service time. Moreover, both the
miss rate and the traffic ratio do not consider implementation. This omission is significant
because, as we show later, performance is often more sensitive to the implementation than
to the cache architecture.

In this paper we will concentrate predominantly on the average instruction access time
which depends both on the miss rate and the miss penalty. If the cache miss rate is m,
and the miss service time is T,,,a cycles, then average instruction access time, T,,e, is
1 + mTmis, cycles; we assume an instruction access takes one cycle if it is present in the
instruction cache.

3.2 Cache Design Parameters

The cache parameters that are of interest in instruction cache design include the cache size,
set size, block size, sub-block size, and replacement algorithm [11]. Note that write policies
are not relevant to us because we disallow writes into the instruction stream. The number
of sets has also been called the number of rows; the set size is the scope of associative
search, and has also been called degree of associativity or number of columns. Block size is
defined as the amount of storage associated with an address tag and is sometimes referred
to as line size. Sub-block placement is also called sector placement [12]. A sub-block
(or transfer block [3]) is the portion of a block transferred from memory on a cache miss.
Since a block can simultaneously have invalid sub blocks in addition to valid ones, each sub
block must have a valid bit associated with it. The replacement algorithm is the process
used to select one of the blocks in a given set for occupation by a newly referenced block.
The important schemes include LRU (least recently used), random, and FIFO (first in
first out).

Cache size is limited by the amount of chip space available for both storage of instruc-
tions and the address tags. The choice of set size, block size, and sub-block size depends
on a number of factors including (1) the miss rate achievable, (2) the timing of a cache
access and how it fits in with the timing of the rest of the machine, and (3) implementation
ease.

3.3 Evaluation methodology

Initially, we investigate the miss rates of various cache organizations. Then, from an
implementation standpoint, we analyze the cache access timing and the miss penalty
associated with each organization. Finally, we determine the average instruction access
time from the miss rate and the cost of servicing a miss.

Trace driven simulation (TDS) is used to obtain the cache miss rates. Because of its
flexibility and ease of use, TDS is a popular technique for cache performance evaluation
[13,14]; however, TDS does have some drawbacks. It may not be as accurate as hardware
measurement because traces seldom reflect true workload behavior. TDS results are often
optimistic because large applications, usually with poor cache performance, are hard to
trace; moreover, the effect of multiprogramming, another cause of cache performance
degradation, is hard to include in TDS studies.

Fortunately, these problems are not very serious in studying small instruction caches.

Since small caches self purge after a few thousand references, multiprogramming has little

3

effect on performance. For example, if the miss rate of a 512-word cache is 20% without
multiprogramming, and if the cache is flushed every 20 thousand references, the worst case
miss rate will now be 22.5%, which is a degradation of less than 15%. Even simple models
for multiprogramming, such as starting with an empty cache every few thousand refer-
ences, are sufficient. In some cases (e.g., MIPS-X) this simple model can be an accurate
representation of an actual virtual address cache, where the cache is flushed every time a
new user process is started. Our initial analyses ignore the effects of multiprogramming.
Later, to study the impact of context switching, we flush the cache every few thousand
references.

In the initial phases of the MIPS-X processor design we did not have either a running
software system or an instruction simulator for MIPS-X. Much of the design was based on
traces obtained using the MIPS system (MIPS [15] is the predecessor to MIPS-X) assuming
a similar behavioral trend for MIPS-X. The MIPS-X software system and a simulator
have since been developed and we have corroborated our earlier findings, with the only
difference being that the performance of the MIPS-X cache turned out to be slightly worse
than predicted because MIPS-X code is less dense, and our current benchmarks are larger.

In this paper, we present the results using large MIPS-X benchmark traces obtained
from a MIPS-X instruction level simulator. The simulator takes an object module and
generates an address trace by interpretively executing the program. Each address is tagged
as an instruction read, data read, or data write. Ten Pascal and Lisp benchmarks are used:

Bigfm Fiduccia-Mattheyes graph partitioning algorithm (Pascal).
Dnf Converts logic equations to disjunctive normal form (Pascal).
Hopt A simple global optimizer for Pascal (Pascal).
Simu Operating system paging simulator (Pascal).
Upas Pascal compiler front end (Pascal).
Comp First pass of the PSL compiler (macro expand) (Lisp).
Fri Frame representation language (Lisp).
Gc Deduction with garbage collection (Lisp).
Rat Rational expression evaluator (Lisp).
Opt Compiler - data flow and optimization (Lisp).

These programs are fairly large, ranging from 50,000 to 800,000 bytes in static code
size, and we feel they provide realistic cache performance numbers.

4 Cache Organization

This section discusses tradeoffs in the selection of cache parameters including number of
sets, set size, and block size. The basic question is how to best utilize a given amount
of chip area of a particular aspect ratio to obtain the maximum performance in terms
of iverage instruction access time. Early cache studies, including those of Kaplan and
Winder [16], Strecker [17], and Smith [11], compared cache performance for various cache
organizations assuming a fixed amount of data storage. Alpert [18] stressed that for
integrated microprocessor caches the total circuit area associated with the cache, including
both tags and data, must be considered. Our experience shows that in addition to area,
the aspect ratio is also important.

To reasonably limit the number of variables, we explore the design space available
for the MIPS-X processor. We encourage the reader to concentrate on the evaluation
procedure rather than on the final result, which may well be different given other basic
constraints.

4

Although the total cache size is fixed, a wide variety of organizations exploiting various
features of program behavior are possible. These alternatives, specifically relevant to
VLSI processor caches, must be analyzed for their performance, feasibility, and ease of
implementation. We also present possible floor plans to make the most effective use of
available area. We will consider in turn a conventional cache or a c-cache, a buffer, and
what we call a hybrid buffer.

A c-cache, for the purpose of this analysis, is an organization that uses about half the
available memory space for the tags. Each block consists of one to four words (each word
is 4 bytes). A possible 512-word c-cache organization could have 512 sets (rows), set size
or associativity one, and block size one word. A portion of the address first indexes into
a cache set, followed by an associative tag compare against the blocks in that set.

A buffer is a set of a few large blocks, block size being eight words or more. For
example, a 512-word buffer could be organized with set size eight, and block size 64
words. Since a buffer has only one set, the associative search can be started without the
indexing operation. This organization has the minimum number of tags.

A hybrid buffer is also investigated because the more straightforward organizations
typically used in instruction buffers (e.g., CRAY-1 [19],VAX-11/780 [201), or in previous
VLSI processor instruction caches (e.g., Motorola MC68020 [8], Zilog Z80,000 [18]), are
not optimal in our case. As the name suggests, a hybrid buffer has the features of both a
c-cache and a buffer. Like a buffer it has a large block size and few tags; consequently the
tag store is small. It is similar to a c-cache and differs from a buffer because it has more
than one set, typically two or four. A typical 512-word hybrid buffer could have two sets,
set size 16, and block size 16 words.

We assume a sub-block size of one word. In other words, a single instruction is fetched
into the cache on a miss.1 Each word in the cache or buffer is associated with a valid bit.
The replacement algorithm (discussed in detail later) is pseudo-random.

4.1 Technology Constraints

The technology, organization, and performance of MIPS-X greatly constrained the cache
design. The most important constraint was size. Roughly half of the interior die area was
allocated to the cache, giving it a space of 4mm by 6mm. The floorplan of the processor
fixed the aspect ratio. The datapath was expected to be at least 6mm long and the
cache had to fit above the datapath. In our design riles, the area of a 6 transistor static
memory cell was 30pom by 40pm, which allowed us to build roughly a 16K-bit memory
in the available area. We considered using dynamic memory cells, but decided it was not
worth the technology risk.

From preliminary design and layouts for the sense-amplifiers, column multiplexers
and tag compare logic associated with the cache, the column multiplexers and the sense-
amplifiers were estimated to require around 3001im of space below the cache RAM array,
and the tag logic an additional 300pzm. The large space for the tag logic was a result of
the 24 wires needed to provide the comparison address for the tags. The wire pitch was
about 10pm (second-level metal).

In addition to the area constraints, MIPS-X also constrained the access time of the
cache; an instruction fetch had to complete in a single 50ns clock cycle. To meet the
cycle time constraint, we felt the cache would only have time for a single RAI access per
cache access. Thus, we were concerned about implementing a set-associative cache since

1Many previous papers support sub-block placement in small on-chip caches [18,3,21].

5

p - --- ,' 4

56 - Aggregate
m Pascal

-52 - Usp

44

40 -

36 "

32

24

20J
1 2 4 8 16

Assocatlvlty

Figure 1: Miss rate of a 2K-byte instruction c-cache with block size = 4 bytes. The
aggregate miss rates are calculated as the average miss rate of all benchmarks weighted
by the number of references.

we would need to first fetch the tags and then fetch the correct data word. To alleviate the
need for sequential fetches, we organized the cache so that the tag information could arrive

late in the cycle. The tags were only used for the column decode. In this organization,
when the word-line rose, all possible data words were fetched onto the bit-lines. The tag
information was used to select the correct set of bit-lines to the sense amplifiers. The
delay from the tag becoming valid to output valid was short since it bypassed the delay
incurred in driving the bit-lines. The limitation of this technique was that it required 32
bit-lines for each degree of associativity used. A 4-way set-associative cache would need
128 pairs of bit-lines.

The cache designs described below attempt to meet both the size and organizational
constraints described in this section.

4.2 C-cache

For the c-cache study we initially use a block size of one word (4 bytes). Therefore, half
the area is taken up by the tags; the data store consists of 256 words. To reduce the area
required by the tag store, we also try caches with a larger cache block size. We assume that

if the block size is greater than two words, we can squeeze in 512 words for instructions.

Figure 1 shows the miss rate for an instruction c-cache with associativity ranging
froin one through 16. The number of sets correspondingly range from 256 to 16. The

best possible aggregate miss rate of 32.26%, interestingly enough, is achieved by a direct
mapped c-cache. We felt that some anomaly in the replacement scheme (pseudo-random)

caused the miss rate to go up with associativity for the small cache. A later simulation
with LRU replacement also showed this behavior for all the Pascal benchmarks with

the exception of Upas. This behavior can be explained by examining the reference and
collision pattern in a small cache, and is further discussed in [22,23]. Lisp benchmarks

do not show this anomalous behavior to the same extent as Pascal, because Lisp tends

to have a higher frequency of procedure calls and shorter bodies of sequential code. This
causes an increased probability of interference that can be reduced by, associativity.

6

2560 600 320 300
960 . . .

64 tags

tag mux
TAGS compare DATA

(a) Size: 6040 by 3840 pm.

TAGS DATA

64I
78 ags 96 25 ;0

,0 tag imux"

(b) Size: 6960 by 3160 um.

Figure 2: Possible floorplans of a c-cache with 1K bytes of data store. Number of sets is

64, associativity is four, and block size is four bytes; all dimensions are in /m.

A c-cache seems more effective for Lisp benchmarks than for Pascal. As we will see,
the converse is true for a buffer. The reason is that a buffer exploits code sequentiality,
while a c-cache is preferable when many short non-scquential lccalities of code are present,
as in Lisp.

Possible floorplans for a four-way set-associative c-cache are shown in Figure 2. Note
that lesser associativity caches can use the same basic floorplan; there is no reason to
change the organization. For the floorplan in Figure 2(a), the dimensions are 3480 by 6040
pm and for the floorplan in Figure 2(b), the dimensions are 3160 by 6960 /im. The actual
dimensions are slightly greater when the precharge and decode logic is added. Although
both arrangements have the same area, only the former was suitable to our purpose due
to the aspect ratio constraint.

We have assumed, thus far, that half the area is occupied by tags. Other c-cache types
with larger block sizes and a fewer number of tags are also possible. For instance, a c-cache
with a block size of four would have the tags occupying only a fourth as much area as the
data portion. For these large block sizes we thought that we might be able to squeeze in
2K bytes of data (the same as for a buffer scheme) with the corresponding tags.

The miss rates for block sizes of 4, 16, and 32 bytes are given in Figure 3, and a floorplan
in Figure 4. While the area occupied is much larger for this configuration because a full
2K bytes of instructions are stored, the miss rate is reduced substantially (from 32.26%

7a j

"" i " U -

56 - Bloc-size - 4 bytes, 1K data bytes
* - Block-size -=16 bytes, 2K data bytes

52 Block-size -=32 bytes. 2K data bytes

~44

40

36

2

28

24

20

16L
1 2 4 a

Associativity

Figure 3: Effect of large cache-block size.

960 DATA

64
word 2560

.300 mux

320

00 1tag
__~~ colii _ mpareL 16 4 1

TAGS

Figure 4: Floorplan of a c-cache with 2K bytes of data store, 16 sets, associativity eight,
and block size 16 bytes. Size: 7680 by 4420 pm.

8

56 Aggragate
* Im Pascal

2 IUsp

52

44

40
36

2

24

201
16 32

Assoclatlvlty

Figure 5: Miss rate of a 2K-byte instruction buffer.

to 23.28% for a direct mapped cache). Clearly, for ca-hes as small as 2K bytes, size is
the single most important parameter affecting the miss rate. Other parameters play only
a secondary role; e.g., doubling the associativity for the 2K byte cache, with block size
16 bytes, causes the miss rate to decrease slightly from 23.28% to 22.16%; and doubling
the block size causes the miss rate to marginally increase from 23.28% to 24.91%. Some
parameters, however, affect the cache timing. For instance, an associative cache requires
tag access, compare, a select and a drive; while a direct mapped cache requires just the
access, compare, and drive. A c-cache with sixteen sets, degree of associativity eight,
and block size sixteen bytes achieves the lowest miss rate of 20.96%. The combined area
occupied by the tags and data is 4420 by 7680 lim, which exceeds the space we had
available.

4.3 Buffer

Alpert [18] showed that reducing the number of tags is desirable when the area available
for the cache is small and fixed. Our experiments show that this is true even to a greater
extent for instruction caches. Instructions tend to show high spatial locality, which large
block sizes can effectively exploit. Large block sizes are particularly attractive for reduced
instruction set computers because of poorer code density and the correspondingly larger
basic block sizes in the code. Buffers are attractive because they minimize the number of
tags, and have the added advantage that they are well suited to prefetch schemes such as
load forward, 2 as well as the MIPS-X prefetch scheme outlined later.

Because a buffer needs few tags, most of the area is used for storing instructions.
Hence, we do not show tags in our buffer floorplans. Access time can be made lower by
(1) eliminating the indexing operation to choose a set, and (2) decreasing the tag access
time by using fast circuits 3 and placing the few tags and the valid bits close to the address
generation logic. For example, in MIPS-X the tags are located in the datapath itself.

We studied instruction buffers ranging from a block size of 1024 bytes and associativity
2The load forward scheme was implemented in [24] and also studied by Hill and Smith [21].3Although faster circuits are larger and consume more power, the overall size and power increase is

small because of fewer tags.

9

two to a block size of 64 bytes and associativity 32. Figure 5 shows the miss rates. The
most striking feature of the graph is the importance of block size. Smaller block sizes
allow a larger associativity. Clearly, the miss rate can be very high for large block sizes.
The reason is that for low associativity and a correspondingly large block size, major
portions of blocks tend to be left unused. The lowest miss rate is 22.79% for a 32-way
set-associative buffer, which is substantially lower than that for a direct mapped c-cache,
and very similar to the best miss rate achieved for a c-cache (20.96%). It achieves this
miss rate at a smaller silicon area than the comparable c-cache because it uses a smaller
number of tags.

As mentioned before, a buffer is more effective for Pascal benchmarks than for Lisp
benchmarks, while the opposite is true for a c-cache organization. Because Lisp code has
on average shorter bodies of sequential code than Pascal, large buffer blocks tend to be
under-utilized resulting in poorer cache performance for Lisp. Table 1 provides empirical
evidence of this behavior by showing the average number of words utilized per block in a
fully-associative 2K-byte buffer with block size 16 words for both Pascal and Lisp. The
block utilization by Pascal benchmarks is roughly 25% more on average than the Lisp
benchmarks.

Pascal Words Lisp Words
Benchmark Utilized Benchmark Utilized
Bigfm 12.2 Comp 8.4
Dnf 11.3 Frl 8.9
Hopt 10.7 Gc 9.4
Simu 10.1 Opt 8.5
Upas 9.8 Rat 8.8
Average 10.9 Average 8.8

V Table 1: Average number of words of Pascal and Lisp benchmarks utilized per block in a
2K-byte buffer with block size 16 words.

Possible floorplans for the various buffers are given in Figure 6. A set size of eight is
.implementable using the layout shown in Figure 6(a) with dimensions 3840 by 6040 Am.
The layout shown in Figure 6(b), has dimensions 3180 by 7680 pm, and is too long in one
dimension. Unfortunately, larger set sizes requfred to achieve reasonable performance are
hard to implement. Figure 7 shows the floorplan for an associativity of 16. The layout is
wider because of the extra bus routing channels required. When the area required by the
decode and precharge logic for each of the banks is added, the dimensions along the width
become much larger than we can allow.

4.4 Hybrid Buffer

A c-cache suffers from the drawbacks that tags occupy valuable space and tag access
requires a RAM access. A buffer reduces these problems by reducing the number of tags
and using special structures to reduce the effective tag access time. A pure buffer requires

a high degree of associativity, making the actual RAM harder to design (it needs to have a
large number of bit lines). Since the large associativity is required only to keep the block
size down, we will provide the same block size with a lower associativity in a structure
called a hybrid buffer.

A hybrid buffer simulates a higher associativity in the following manner. Consider

10

2560 300 320
960 .

64 words

mux mux

(a) Size: 6040 by 3840 jum.

64
words 25609__V

300 Ii ux

(b) Size: 7680 by 2860 pm.

Figure 6: Possible floorplans of an 8-way set-associative buffer, with block size 256 bytes.

•300 320 300

mux

Figure 7: 16-way set-associative buffer with block size 128 bytes. Size: 6960 by 3840 pm.

11

56 m Aggregate
52 Pascal

cc 52 - Lisp

48

44 :

40

36

32

28

24

20
16

Assoclatlvlty

Figure 8: Miss rate of a 2K-byte hybrid buffer with two sets.

two regular buffers where instructions map to either one of the buffers depending on the
value of a bit in the address. This is similar to a c-cache with two sets indexed by a bit
in the address. If each set (or buffer) has equal probability of being the target of a block.
the number of instructions that will fall into any one buffer is halved, which effectively
doubles the available associativity. Thus, this scheme provides the benefits of a higher

associativity without implementation problems.

Figure 8 shows the miss rate of a hybrid buffer with two sets for various associativities.
As expected, the miss rate for a hybrid buffer with two sets and a given associativity, is
similar to that for a buffer with twice the associativity. In particular, the miss rate for
a hybrid buffer with associativity 16 is 22.48% which is very close to 22.79% for a buffer
with'associativity 32.

From an implementation point of view, associativity of 16 is still hard to achieve.4 A
hybrid buffer with associativity 8 is implementable; unfortunately the miss rate is about
15% worse (26% vs. 22%'. The solution is to extend the number of sets to four with the
assumption that the probability distribution of blocks into the four sets is uniform. Two
bits are now used to index into one of four sets. The miss rates for a hybrid buffer with
four sets are plotted in Figure 9.

In this case the miss rate for a hybrid buffer with degree of associativity eight is

slightly worse than for the buffer with associativity 32: 23.17% compared to 22.79%. The
difference is because our assumption that each set is equally likely to be the target of a
block is not quite true. The variance in the number of instructions that map to any one
set causes a higher number of misses.

A floorplan for an eight-way set-associative hybrid buffer is shown in Figure 10. Two
bits index into one of four sets, four bits form the block offset, and the rest of the word
address forms the tag. The size of 3840 by 6040 pim can comfortably fit in the available
silicon area.

4 Note that at this point we are assuming that the valid bits are in the cache array. In a later section
we will show how this associativity can be achieved.

12

t -mI Aggregate
* m Pascal52 - Usp

-=48 -

44

40

36

24

26 i i 8 16

Figure 9: Miss rate of a 2K-byte hybrid buffer with four sets.

Address

1 26 12 4

TAG set word
select offset

2560 300 320

960

II I I I

16i

4 sets

Figure 10: Floorplan of an 8-way set-associative hybrid buffer. Size: 6040 by 3840 pm.

13

IF- 1 01 Compute PC
42 Drive PC onto PCBus

IF 01
02 Instruction fetch

RF 01 Instruction and register decode

462 Register fetch
ALU 01 ALU or shift operation for compute instructions;

address computation for load or store instructions;
destination and condition computation for branches

2 Drive address to pads for load or store
MEM 01 Wait for external cache memory access

_02 Drive data to pads for stores;
Data arrives at pads late in this phase for loads

WB 01 Write result into the destination register

Figure 11: MIPS-X pipeline stages.

4.5 Timing Considerations

Now that we have determined several possible cache organizations based on their hit ratios
and on their physical layouts, it is necessary to examine how they fit in with the timing
of the rest of the machine. The only timing specification used so far has been that the
cache access must be within the 50 ns cycle time of the machine. The other important
timing consideration is how cache misses can be handled. To understand how various cache
organizations affect the instruction cache miss timing of MIPS-X, we will first describe the
MIPS-X pipeline.' Then we will show how the timing of the cache hit detection affects
the number of cycles needed to service a cache miss. We will also use these timings to
show how two instructions can be fetched back on a cache miss to decrease the miss rate
by a factor of almost two.

4.5.1 The MIPS-X Pipeline

MIPS-X is heavily pipelined so that one instruction can be issued every 50 ns. Each
instruction is divided into five pipeline stages and each stage is divided into two 25 ns
phases called 01 and 42. The pipeline stages and their functions are described in Figure 11.
It is conceptually easier to understand the pipeline if you think of an additional stage called
IF-, that occurs before the IF stage. During IF- 1 , the Program Counter unit generates
the address of the instruction to be fetched on the following IF. To denote an inserted
caehe miss cycle we will use CM,, where n is the number of the cache miss cycle.

4.5.2 Instruction Cache Miss Timing

Hit detection timing affects the number of cache miss cycles that are needed to service
an instruction miss in MIPS-X. The short cycle time, coupled with the necessary chip
crossings, means that external memory fetches take longer than one cycle. The address
must be presented to the processor pads sufficiently early to ensure it is valid on the
external pins by the time 02 falls (see Figure 11). This means that the datapath must

"A detailed discussion is presented in (6,25].

14

.... .iL M . .." ' i.. il 'i'

IF- 1 01i Compute PC
4'2 Drive PC onto PCBus

IF 01 Start tag access
.02 Detect miss

CM1 01i
02 Drive PC out to external cache

CM 2 4i
402 Instruction back from external cache

CM 3 461

412 Write instruction into c-cache and instruction register
RF 01 Miss sequence completed

Figure 12: Miss Timing for a C-cache

drive the address bus early in 2 to start a memory fetch on the following cycle. The
external cache memory then drives the processor pins with the required word by the end
of 2 of the following cycle. Thus, a memory access takes one and a half cycles from the
time the address is computed.

For the c-cache configurations, the tags and tag comparison have to be put in the cache
array to make the implementation feasible. This means the critical path for miss detection
involves driving the address up to the cache array, fetching the tags, doing the comparison,
and then getting the hit or miss result back to the datapath. Referring to Figure 12, the
instruction address is generated during 02 of IF-,, driven to the cache array during 01 of
IF, the tag fetch begins late in 01 of IF, and the comparison is computed and driven to
the datapath during 02 of IF, too late to start an external fetch in the same cycle.

If the number of tags is small, as in the buffer or hybrid buffer schemes, the tags can
actually be placed in the datapath close to the PC unit, making hit or miss detection in
the tags much quicker. Tag compare is simply achieved by doing an associative compare
of the tags to the PC bus and "OR-ing" all the match lines. However, the critical path
for miss detection still involves driving the address to the cache array to fetch the valid
bits. 6 Therefore, as for the c-cache, the miss signal arrives at the datapath by the end of

02 of IF.
The miss penalty for the c-cache or buffer schemes with valid bits stored in the cache

array is three cycles. The timing of an instruction cache miss for the c-cache is shown
in Figure 12. Because the miss signal arrives at the datapath late in 02 of IF, the PC
can be driven out to the external cache only in the next cycle. Three cache miss cycles
were inserted at this point: CM1 to drive the instruction address out to the external cache
(under normal circumstances a data address is potentially sent out), CM2 for the external
cache access, and CM3 to write the instruction into the instruction cache and instruction
register.

A three cycle penalty, with a miss rate of over 20% degrades processor performance
by over 60%. A cache miss penalty of two cycles, which reduces the loss to 40%, can
be achieved by combining CM2 and CM3 into one cycle. The critical path now involves
accessing the external cache memory, getting the data to the processor pads, and writing
into the instruction cache. Since the data from the external cache arrives late in the cycle,
this approach can easily affect the cycle time of the machine. Although it decreases the

'Note that our sub-block size of one word requires a valid bit for every word.

15

IF- 01 Compute PC
42 Drive PC onto PCBus

IF 01 Do tag compare; detect miss
02 Drive PC out to external cache

CM 1 01
_2 Instruction back from external cache

CM 2 1
02 Write instruction into cache and instruction register

RF 01z Miss sequence completed

Figure 13: Miss Timing for a Buffer

miss penalty, it might increase the average cost of a fetch by increasing the cycle time of
every instruction.

Clearly, if we require a minimum of two cycles to access the external cache and write
the instruction into the instruction cache, the only way to reduce the miss penalty is to
detect the miss sooner. If a miss can be detected before the end of -01 of IF, the PC can
be driven out right away, eliminating one cache miss cycle. In the buffer scheme, driving
the address to the cache array to fetch the valid bits causes the miss signal to appear late.
The solution is to move the valid bits into the datapath along with the tags. Then, tag
comparison and valid bit checking can be done a phase earlier.

There is one problem, however. To know which valid bit to fetch, we need to know
which tag matched. Instead of doing the valid bit access after the tag comparison, we
fetch all possible valid bits in parallel, one for each tag, along with the tag compare. The
result of each tag compare is "AND-ed" with its corresponding valid bit. A cache miss
occurs if none of these outputs is true.

Figure 13 shows the miss timing for a buffer with the valid bits and tags stored in the
datapath. The miss penalty is now reduced to two cycles.

An interesting and important side effect of moving the tags and the valid bits into the
datapath is that the cache array becomes strictly a RAM array. With the valid bits in
the cache array, the array would need to be customized to our specific cache configuration
becaue the valid bits must be cleared when a new tag is written into that block. Now,
the valid bit circuitry is independent of the RAM and also simpler to implement.

With a two cycle penalty, and a 20% miss rate, the performance loss is 40% which is
still significant. We can reduce the miss penalty to one cycle by combining CM1 and CM2
into one cycle. As mentioned before, this extends the machine cycle time. An alternate
solution is to use the extra cycle wisely to prefetch another word.

4.5.3 Prefetching

A side effect of the two cycle miss penalty in MIPS-X is that the timing allows fetching
back not only the instruction that missed but also the next instruction (not the next
sequential one, but the instruction to be executed next) during the extra cache miss cycle.
This means that the worst miss rate for the cache is 50%, and the average miss rate is
about half of what it would be without fetching back two words on a miss.

The method of prefetching an extra word can be explained with the aid of the cache
miss timing in Figure 14. In the phase following miss detection for the current instruction

16

IF-, 4 Compute PCm,,,
02 Drive PC onto PCBus

IF 01 Do tag compare and detect miss; Compute PCnext
42 Drive PCmto° out to external cache

CM 1 01
02 Instructionnio back from external cache

Drive PCnext out to external cache
CM2 01

02 Write instruction,,,, into cache and instruction register
Instruction,ezt back from external cache

RF 01 Miss sequence completed
02 Write instruction,,zt into cache and instruction register

Figure 14: Fetching Back Two Words on a Miss

(whose address is PCmiss), the address of the next instruction (PC,, t) has already been

calculated. This address would have been sent to the instruction cache in the normal
sequence. While the external cache is being accessed, the next instruction address is
set up on the address pads (in CM1); and while the missed instruction is written into
the instruction cache during CM2, the external cache is accessed for the next instruction.
Then, in the following phase (RF), when execution of the missed instruction is commenced,
the next instruction is simultaneously written into the instruction cache and instruction
register. Thus, the timing of the pipeline allows the prefetch to occur quite naturally.

Prefetching the extra word has a tremendous performance impact. For the MIPS-X
hybrid buffer, the miss rate drops from 23.17% to 11.85%, or performance degradation
drops from about 40% to 20%. Note that this scheme has the effective performance
impact of a one cycle miss penalty, but without the risk of increasing the machine cycle
time. Implementation is also simple because fetching the second word fits in with the
natural flow of the cache miss sequence. This shows that careful matching of the cache
miss timing to the pipeline of the machine can give significant performance benefits.

Other prefetching schemes that exploit the available excess bandwidth were also con-
sidered. For example, in MIPS-X, when the processor is not fetching data, the I/O pins
are free and instructions could be prefetched into the cache without affecting any other
activity of the processor. Load forward is another prefetch scheme where instructions are
prefetched up to the end of the current cache block, a variant of which is used in the
SPUR multiprocessor [7]. However, these schemes could not be used in MIPS-X because
the instruction cache does not have sufficient bandwidth. MIPS-X uses 100% of the in-
struction cache bandwidth for fetches, preventing a prefetcher from using the cache. The
instruction cache is only free during instruction cache misses. Thus, no prefetch scheme
can do better without dramatically changing the cache organization.

4.6 Summary of Organization Choice

Table 2 summarizes the cache performance statistics for the various schemes assuming that
two words are fetched back on a miss. Appendix A presents the individual benchmark
miss rates for the four organizations in Table 3. Conventional cache organizations perform
worse than buffers because of their high miss penalty. Note that the lowest miss rate does
not yield the best performance. A hybrid buffer with four sets, associativity eight, and

17

block size 64 bytes performs best with an access time of 1.24 cycles, and is used in the
MIPS-X design.

Cache Implement- Num. Set Block Miss Miss
type able Sets size size rate(%) penalty T,,e

C-cache YES 256 1 4 16.74 3 1.50
C-cache NO 16 8 16 10.90 3 1.33
Buffer YES 1 8 256 14.78 2 1.30

Hybrid buffer YES 4 8 64 11.85 2 1.24

Table 2: Summary of cache performance. Block size is in bytes; miss penalty and access
time are in cycles.

5 Selection of Other Cache Parameters

5.1 Replacement

The replacement algorithm has traditionally been very important in cache design. Of
the feasible schemes, least recently used replacement is considered to perform the best,
although Smith and Goodman [22] show evidence that it might be inferior to random
replacement for instruction cache design. After considering a number of replacement
strategies we came to the conclusion that the replacement algorithm is not critical to the
design when the cache size is small. We summarize our results in Figure 15 showing the
performance of the MIPS-X hybrid buffer for five replacement schemes: LRU, RAND,
FIFO, RING, and RING-M.

LRU (least recently used) is where the least recently accessed block in any given set is
replaced. In random replacement (RAND), a truly random choice of block to be replaced
is made. FIFO is first in first out, where the block present the longest in any given set is
replaced first. RING, is a pseudo-random replacement scheme where a ring counter with
the same number of states as the set size is maintained. The counter points to the block
in each set that must be replaced on a block miss or if an address tag does not match any
of the cache tags. The counter is bumped one state after every block miss. RING-M is a
modification of the above scheme. The difference is that the ring counter is also bumped
one state if the counter points to a block that matches the most recently addressed tag.
This optimization reduces the probability of a recently used block being replaced.

Figure 15 compares the relative performance of our hybrid buffer for the various re-
placement schemes. RAND, FIFO, RING, and RING-M have about equal performance.
LRU is slightly (10.91% vs. 11.85%) better than the other schemes. For the MIPS-X
design, we chose one of the RING schemes because of its simpler implementation. The
RING-M scheme was used to solve a subtle problem with the double fetch on instruction
cache misses. As stated before, two instructions, Isa and 'next, are fetched on a cache
miss. The problem arises when the first word ('mis,) hits in the tags, but is not valid
yet, and the next instruction ('next) misses in the tags.' In the RING scheme, if the ring
counter points to the block that 'mis, will occupy, then that block will be replaced by the
tag corresponding to ',ext, causing Imi,, to have nowhere to go when it is received from
the external cache. To avoid this state, we bump the counter if it points to a cache block
corresponding to the most recent address tag.

TInest is not constrained to be in the same block as/,,,,.

18

14

I13
U

12

11

10

9

S

7

6
LRU RAND FIFO RING RING-M

Replamment Algorithm

Figure 15: Comparison of replacement schemes.

5.2 Context Switch Mechanisms

Virtual caches, or caches addressed using the virtual address generated by the processor,
have the advantage that virtual to physical translation is removed from the critical path.
However, they have other multiprogramming related problems. For one, the integrity of
a process address space is harder to maintain. A simple solution is to flush the cache on
every process switch. The performance degradation due to cache flushes is not serious for
small caches.

14

13

12

11

10

g

7

5K 1OK 20K 30K 40K 50K
Fush Interval

Figure 16: Effect of cache flushing on context switches.

Figure 16 shows the miss rate for a hybrid buffer flushed every Q instructions, where
Q ranges from 5000 to 50000. A higher frequency of flushing is expected in time sharing
workloads while batch jobs will be much lower.

Flushing the entire cache is easily achieved in VLSI by providing a cache reset signal.
However, a cache flush would require a special instruction. To avoid defining another

19

instruction, we decided to use a simple software technique and trade off a little perfor-
mance. The virtual address space is half system and half user. To flush the cache of user
instructions, we cause the processor to jump to 32 specific system addresses making all
the tags be in system space. This requires 32 extra instructions or 64 extra cycles' every
cache flush. Even if cache flushing takes place, say, once every 20000 cycles, the miss rate
would go up from 11.85% to 12.33%.

5.3 Testability Features

We have included a number of features into the design to enhance the testability of the
instruction cache and the processor. The instruction cache and the rest of the processor
have separate power supplies making it possible to power the processor independent of
the cache. An external signal (ICacheDisable) forces the processor to always cache miss
on instruction fetches allowing the processor to run even if the cache is not completely
functional.

The size of the instruction cache forced us to include a method to directly access the
RAM. When an external signal called ICacheTest is asserted, the PC is forced to generate
sequential addresses. These addresses will initially miss in the cache, and data will be
loaded from the data pads. After filling up the cache, the processor can be reset and the
entire cache read. Although this interface does not allow us to perform random reads and
writes into the cache, it does let us directly test the basic functionality of the cache before
we use it for supplying instructions to the processor.

6 Conclusions

Cache design has already been studied in great detail but only recently has it been feasible
to implement caches on the same chip as a processor. We have shown that for on-chip
caches other considerations besides hit rate are important. These include the total usable
area, the timing of cache accesses, the physical organization of the cache, and the aspect
ratio of the resulting design. Minimizing the average instruction access time is the key
goal. The average instruction access time is a combination of both the miss rate and the
number of cycles needed to service a miss. We have shown that given several physical
organizations that satisfy the space and size constraints, the resulting miss rate can vary
considerably, and the organization with the lowest miss rate does not necessarily result in
the best performance.

We have shown the importance of the tradeoffs between cache architecture and imple-
mentation by describing the design of a real on-chip cache for MIPS-X. Given an initial
set of constraints for the physical dimensions and the cycle time of the desired cache, we
used trace driven simulations to measure the performance of three basic cache configu-
rations, varying several parameters such as associativity, set size, and block size. With
these results, we computed the average instruction access times by taking into account
the number of cycles needed to service a miss for each of the configurations, and made
our choice based on the minimum average instruction access time. The result was a cache
organization that is a hybrid between a conventional cache and an instruction buffer. This
organization has a miss rate of roughly 12% for a set of large benchmarks, and results in
an average instruction access time of 1.24 cycles. This penalty is roughly 3 times smaller

'Note that only 16 of the 32 instructions suffer cache misses.

20

than the penalty of our first cache organization, although the basic cache organization
(cache size, block size, etc.) remained unchanged.

7 Acknowledgements

The MIPS-X research effort was supported by the Defense Advanced Project Research
Agency under contract No. MDA903-83-C-0335. Paul Chow was partially supported by
the Natural Sciences and Engineering Research Council of Canada.

We also gratefully acknowledge the contributions of Malcolm Wing, Karen Huyser,
Scott McFarling, C. Y. Chu, Steve Richardson, Steve Tjiang, Richard Simoni, Don Stark,
Glenn Gulak, and Steven Przybylski.

A Individual benchmark cache miss rates

Table 3 presents the individual miss rates for all the benchmarks. Miss rates for Dnf, Gc,
and Opt, are lower than average because in Dnf, the program kernel is small; Gc spends
about half its time in the garbage collector which is a small body of code; and Opt is very
iterative.

Miss rates %
Instr. C-cache C-cache Buffer H. buffer

Benchmark refs. (256,1,4) (16,8,16) (1,8,256) (4,8,64)
Bigfm 3042360 14.47 9.03 14.90 10.00
Dnf 1150743 15.57 2.52 23.23 3.96
Hopt 2595403 18.12 10.93 15.38 11.33

Simu 3095037 16.90 12.90 16.47 12.42
Upas 1680149 20.05 15.62 26.45 17.91
Comp 230240 20.45 13.98 22.17 16.48
Frl 1221133 27.13 20.18 28.11 23.28
Gc 1324951 9.46 8.10 8.74 5.48
Opt 3055475 12.53 6.80 16.71 8.64
Rat 673256 28.12 18.93 35.73 22.71

Average 16.74 10.90 18.46 11.8

Table 3: Summary of cache miss rates for individual benchmarks. Cache type is specified
as a triple (S,D,B), where S is number of sets, D is degree of associativity, and B is block
size in bytes.

I

References

[1] J. L. Hennessy. VLSI Processor Architecture. IEEE Transactions on Computers,
c-33(12), December 1984.

[2] R. L. Sites. How to Use 1000 Registers. In Proceedings, ist Caltech Conf. VLSI,
January 1979. California Institute of technology, Pasadena, CA.

21

l' ' "'e: ' -¢'f " "" ¢ t " ¢;¢" " "," ,'----------------------"---- "--------- ,----- ; '€

[3] James R. Goodman. Using Cache Memory to Reduce Processor-Memory Traffic. In
Proceedings of the 10th Annual Symposium on Computer Architecture, pages 124-131,
June 1983.

[4] D. A. Patterson and C. H. Sequin. Design Considerations for Single-Chip Computers
of the Future. IEEE Transactions on Computers, C-29(2):108-116, February 1980.

(5] G. Radin. The 801 Minicomputer. In Proc. SIGARCH/SIGPLAN Symp. Archi-
tectural Support for Programming Languages and Operating Systems, pages 39-47,
March 1982. ACM, Palo Alto, CA.

[6] M. Horowitz and P. Chow. The MIPS-X Microprocessor. In Proc. WESCON 85,
1985. IEEE, San Francisco.

[7] M. D. Hill, S. J. Eggers, J. R. Larus, G. S. Taylor, G. Adams, B. K. Bose, G. A.
Gibson, P. M. Hansen, J. Keller, S. I. Kong, C. G. Lee, D. Lee, J. M. Pendleton,
S. A. Ritchie, D. A. Wood, B. G. Zorn, P. N. Hilfinger, D. A. Hodges, R. H. Katz,
J. Ousterhout, and D. A. Patterson, SPUR: A VLSI Multiprocessor Workstation.
Computer Science Division 86-273, University of California, Berkeley, December 1985.

[8] Doug MacGregor, Dave Mothersole, and Bill Moyer. The Motorola MC68020. IEEE

Micro, 101-118, August 1984.

[9] First Look at Motorola's Latest 32-Bit Processor. Electronics, September 18, 1986.

[10] George S. Taylor, Paul N. Hilfinger, James R. Larus, David A. Patterson, and Ben-
jamin G. Zorn. Evaluation of the SPUR Lisp Architecture. In Proceedings of the 13th
Annual Symposium on Computer Architecture, pages 444-452, June 1986.

[11] Alan Jay Smith. Cache Memories. ACM Computing Surveys, 14(3):473-530, Septem-
ber 1982.

[12] J. S. Liptay. Structural Aspects of the System/360 Model 85, Part II: The Cache.
IBM Systems Journal, 7(1):15-21, 1968.

[13] Alan Jay Smith. Cache Evaluation and the Impact of Workload Choice. In Proceed-
ings of the 12th Annual Symposium on Computer Architec.ure, pages 64-73, June
1985.

[14] Anant Agarwal, Richard L. Sites, and Mark Horowitz. ATUM: A New Technique
for Capturing Address Traces Using Microcode. In Proceedings of the 13th Annual
Symposium on Computer Architecture, pages 119-127, June 1986.

[15] J. L. Hennessy, N. Jouppi, S. Przybylski, C. Rowen, and T. Gross. Design of a ligh
Performance VLSI Processor. In Proceedings, Third Caltech Conf. VLSI, pages 33-54,
March 1983. California Institute of technology, Pasadena, CA.

[16] K. R. Kaplan and R. 0. Winder. Cache-Based Computer Systems. Computer,
6(3):30-36, March 1973.

[17] W. D. Strecker. Cache Memories for PDP-11 Family of Computers. In Proceedings of
the 3rd Annual Symposium on Computer Architecture, pages 155-158, January 1976.

22

[18] Donald Alpert. Performance Tradeoffs for Microprocessor Cache Memories . Corn- 4-
puter Systems Laboratory 83-239, Stanford University, December 1983. 4-

[19] CRAY-1 Computer Systems, Hardware Reference Manual. Cray Research, Inc.,
Chippewa Falls, WI, 1979.

[20] VAX-ll Architecture Reference Manual. Digital Equipment Corporation, Bedford,
MA, 1982. Form EK-VARAR-RM-001.

[21] Mark Hill and Alan Jay Smith. Experimental Evaluation of On-Chip Microproces-
sor Cache Memories. In Proceedings of the 11th Annual Symposium on Computer
Architecture, pages 158-166, June 1984.

[22] James E. Smith and James R. Goodman. A Study of Instruction Cache Organiza-
tions and Replacement Policies . In Proceedings of the 10th Annual Symposium on
Computer Architecture, pages 132-137, June 1983.

[231 Anant Agarwal, Mark Horowitz, and John Hennessy. An Analytical Cache Model.
Computer Systems Laboratory 86-304, Stanford University, September 1986.

[24] D. Alpert, D. Carberry, M. Yamamura, Y. Chow, and P. Mak. 32-bit Processor Chip
Integrates Major System Functions. Electronics, 56(14):113-119, July 1983.

[25] Paul Chow. MIPS-X Instruction Set and Programmer's Manual. Computer Systems
Laboratory 86-289, Stanford University, May 1986.

OTI/h

-opy

1¢INS3

23

Al

9 r7

