REDUCTION OF RADIATIVE TRAPPING EFFECTS IN X-RAY LASERS
USING AUTOIONIZING TRANSITIONS
NAVAL RESEARCH LAB
WASHINGTON, DC
DEC 12 86
NRL-NR-5966
M R
UNCLASSIFIED
F/G 20/5
NL
Reduction of Radiative Trapping Effects in X-ray Lasers Using Autoionizing Transitions

R. C. Elton
Laser Plasma Branch
Plasma Physics Division

This work was supported by the Office of Naval Research and the Defense Advanced Research Project Agency
Autoluminescent transitions are proposed for reducing the self-quenching in plasma x-ray lasers which is brought about by resonance trapping on the lower laser level when it depopulates by radiative decay. One method involves a buffering plasma sheath which converts the photons to thermalizing electrons. Another involves advanced laser schemes which terminate on autoluminescent levels, such that the photons which are typically trapped are replaced by electrons.
CONTENTS

INTRODUCTION ... 1
SYSTEM A: PHOTON-ELECTRON CONVERSION .. 4
SYSTEM B: LOWER-LEVEL DEPLETION ON AUTOIONIZING TRANSITIONS 5
DISCUSSION .. 6
APPENDIX I .. 8
REFERENCES ... 9
REDUCTION OF RADIATIVE TRAPPING EFFECTS IN X-RAY LASERS
USING AUTONIONIZING TRANSITIONS

INTRODUCTION

Successful gain experiments for plasma x-ray lasers presently operate in a quasi-cw mode, where an upper laser level is pumped to a sufficient population density \(N_u \) to provide a gain coefficient \(\gamma_u \sigma_{\text{stim}} > 1 \text{ cm}^{-1} \), \(\sigma_{\text{stim}} \) being the stimulated emission cross section, and the lower laser level (of population density \(N_L \)) rapidly repopulates by radiative decay in a "depletion" transition.\(^1\)\(^,\)\(^2\) A large gain coefficient is required where cavities are essentially non-existent, i.e., the laser is operated in an amplified spontaneous emission (ASE) single pass mode.\(^3\) Because it is difficult to pump inversion densities higher than about \(10^{-3} N_e \), (where \(N_e \) is the density of the final (usually ground) state), the absorption coefficient \(g_{\text{abs}} \) (inverse photon mean free path) on the lower level depletion \(l-f \) transition (determined by \(N_{\lambda, \text{abs}} + 10^3 N_{\lambda, \text{abs}} \)) and the related opacity for a depth \(d \) can be so large that radiative trapping prevents rapid depletion of \(N_L \) and laser action is quenched. The free parameter here is the diameter \(d \) of the elongated lasant medium; and it is not unusual to require 10's of micron-scale diameters at x-ray wavelengths, depending on the particular method of operation. This dimension becomes shorter with shorter wavelength lasing, sometimes even projected to be submicron.\(^3\)\(^-\)\(^5\)

\(^{*}\)This report was originally submitted in January 14, 1984.
Manuscript approved October 22, 1986.
This requirement for such minute-diameter plasmas is a major reason (along with the required energy density for pumping) that most work to date has been done with laser-produced plasmas of the type used also for pellet fusion, where the energy can be concentrated into such small dimensions in the form of line-focused photons.

This radiative trapping problem for the lower-laser-level population is the most severe obstacle for achieving high gain at very short wavelengths, now that significant ASE extreme ultraviolet (XUV) lasing has been demonstrated. Photoionization of other ions as well as photoexcitation into states depleted by radiative branching and collisional mixing have been considered as solutions. However, the cross section is low for photoionization; and photoexcitation results in at least partial re-radiation at the same frequency and an equilibrium LTE limit for collisional mixing.

One can envision that the elimination of the such radiative trapping could lead to bulk population inversions in plasmas, followed by swept-gain lasing in a particular or multiple directions as determined by a directed-beam master oscillator. This was suggested earlier and demonstrated in the near-uv region by Tomov, et al. Also, with less trapping other more efficient plasma generators with perhaps higher efficiency capable of delivering the required energy density in larger volumes could be used. Indeed, non-radiative destruction of final laser states already exists in uv excimer lasers with the rapid destruction of the quasi-molecules formed.

Two closely-related novel approaches towards reducing the trapping problem will be discussed here: one system (A) involves doping or even sheathing the lasant plasma with a "converter" which transfers the trapping radiation to free electrons. The second system (B) is an advanced class of lasers involving more complex level structures, in which the lower laser level
decays predominantly by broad-band free-electron emission, thereby eliminating the radiation subject to trapping. An enhanced rate of lower level depletion also allows operation at higher than normal density before collisional equilibrium between laser levels is established. This could result in higher gain and improved compatibility with a possibly separate high density pumping plasma. System B could require increased pumping because of some added line broadening and upper level autoionization, and therefore would also accompany proof-of-principle current experiments designed to produce significant net gain, particularly the matched-line "flashlamp" pumped class of x-ray lasers.2,11

Both of these ideas depend on autoionization, a process in which electrons in quasi-bound excited states lying above the normal ionization limit transfer very rapidly into the continuum in an ionization process, as determined by selection rules. The most extensive publications of autoionizing levels including radiative and autoionizing rates are by Safronova and colleagues12-14 for helium-, lithium-, and beryllium-like ions of moderate Z. Excitation of a 1s electron to n=2 is calculated for all three sequences12,13, and to n=3 for the first two14. Obviously, this can be extended to more complicated species, particularly up to fluorine-like for the present discussion and even further, because is K-shell electron excitation is involved. The accuracies of the wavelengths published (corresponding to excitation) are estimated to be as great as 0.3 mA15 for Fe XXIV. Of those calculated to date, both helium-like and lithium-like ions in 1s2l or 1s2l (l being s or p) are considered to be promising as absorbers, with population of the former maintained by 1s2-1s2p resonance trapping. Beryllium-like ions in a 1s2-2s2l or \text-superscript{13}2p2l absorbing state appear from our recent experiments to be much less populous in transient plasmas.
SYSTEM A: PHOTON + ELECTRON CONVERSION

In this scheme diagrammed in Fig. 1, wavelength matches are sought between likely \((l\rightarrow f: 2p
ightarrow s)\) unloading transitions in a lasing ion (shown to the left) and absorption transitions into a converting-ion (right in Fig. 1) autoionizing level which has significant absorption as well as a dominating autoionization rate. Likely laser depletion transitions include \(n=2+1\) or \(3+1\) in hydrogen- or helium-like ions, or \(3+2\) in lithium-like ions, or even \(3s+3p\) in boron- to neon-like (the latter being particularly popular in transient plasmas) ions following \(3-2, 4+3\) or \(3p+3s\) lasing, respectively. The absorption would most likely involve a \(1s+2l'\) transition but could also be \(1s+3l'\) or even double-electron transitions.

System A wavelength matches that hold promise are listed in Tables 1 and 2, grouped according to increasing \(Z\) for the laser unloading transitions.\(^{16,17}\) The emission (laser) \(\lambda_e\) and the absorption \(\lambda_a\) wavelengths in \(\text{A}\) as well as the fractional decrement \(\frac{\lambda_e - \lambda_a}{\lambda} = \delta \lambda / \lambda\) are listed, as are the radiative (\(A\)) and autoionizing (\(\tau\)) rates in units of \(10^{13}\ \text{sec}^{-1}\). Also indicated is the estimated (see Appendix) absorption cross section in units of \(10^{-13}\ \text{cm}^2\) for comparison. A wavelength decrement baseline of \(\delta \lambda / \lambda = 3 \times 10^{-4}\) which is typical for Doppler broadening\(^{18}\) is used as a gauge for a good match; however it should be noted that high autoionization rates can lead to natural broadening exceeding this baseline.
SYSTEM B: LOWER-LEVEL DEPLETION ON AUTOIONIZING TRANSITIONS

In this scheme diagrammed in Fig. 2, an upper laser 3\ell' level (as indicated on the right) is pumped, most likely by photons with matched wavelength; and lasing takes place to a 2ℓ 2(l'-1) level with a high autoionization rate, so that lower-level depletion occurs with electron emission instead of potentially trapped line radiation. Clearly, the 3\ell' level should be chosen with a low autoionization rate (according to selection rules) to prevent undesirable population loss as well as excessive (natural) line broadening, both contributing to reduced gain.

Intense pumping lines such as 2p+ls in hydrogenic and helium-like ions or 3d+2p, 3p+2s in lithium-like ions are primary candidates. Potential line matches\(^\text{16,17}\) with ls-3\ell' absorbing transitions are grouped in Tables 3 through 5 according to the species of absorber for which 3\ell' data exist\(^\text{14}\) (namely helium- and lithium-like ions). The columns are as described for the earlier tables, with the laser transition indicated by -L+, and A,Γ pertaining to the upper laser level. In an additional column, the approximate laser wavelengths \(\lambda_L\) are listed.

Gain coefficients in such a system as this can be expected to be less than values as high as the 100 cm\(^{-1}\) predicted\(^\text{19}\) for ideal line-matched photon pumping; again because of some autoionization losses from the upper laser level itself or through collisional coupling to other autoionizing levels, as well as through increased natural line broadening\(^\text{20}\) given approximately by \(\Delta\nu_N \approx \Gamma/2\pi \approx 10^{14} \text{ sec}^{-1}\). With experience in matched-line-pumped lasing initially involving radiation unloading, and with sophisticated numerical modeling here, such a desirable bulk-plasma lasing system (B) could evolve quite naturally.
DISCUSSION

Proposed here are advanced concepts for reducing the severe problem of radiative trapping and the resulting minute dimensions in lasing at short x-ray wavelengths. Much more analysis and experimentation is needed for detailed evaluation. The potential is enormous, and promises bulk plasma multidirectional lasing with perhaps more efficient pumping power sources.

It must be remembered that, while the emission wavelengths λ_e tabulated here are measured to an accuracy reflected in the last decimal place\(^1\), the absorbing wavelengths λ_a are calculated. While such calculations are estimated\(^5\) to have sub-mA precision for Fe XXIV, comparisons of wavelengths for optical transitions in the same tabulations at lower Z reflect uncertainties in the 10's of mA in spite of the three decimal places tabulated. It appears that the calculated absorbing wavelengths become more exact at longer wavelengths where the measured emission wavelengths are less accurately known.

Increased precision is therefore needed for efficient photon coupling into excitation of such autoionizing states for both A and B here. Emission wavelengths are measurable\(^2\) now to sufficient precision, and some absorption measurements for autoionizing transitions in beryllium laser-produced plasma ions have been made\(^2\) using a continuum backlighting source. More of such precise work should be done on possible matches as suggested by the data collected here. Besides the accurate wavelengths, the absorption cross sections are needed and again are being measured for beryllium ions.\(^2\) This can begin for system A. Autoionization rates\(^13,14\) used here appear to be within a factor of about 4 agreement with experiments\(^23\) at low Z.
System (B) requires extended numerical modeling of the type developed for matched-line optical photon pumping19 to fully evaluate the potential for a self-contained laser scheme. In addition to autoionization rates, collisional rates between such levels must be included. This is within the realm of present numerical capabilities and could be based on a suitable combination such as in the tables here, particularly if one is verified by emission/absorption measurements to have a promising wavelength match.

The potential for system (B) is greatly enhanced now that spontaneous emission on 3-2 transitions between autoionizing levels has been observed22 in Li and Be+ emission. This should be extended to higher-Z ions and higher densities appropriate to x-ray lasing.

Some of the combinations listed in the tables may not be at all suitable because, e.g., of unsuitable autoionization rates or cross sections. They are however included for completeness and further consideration and possibly with numerical modeling. On the other hand, some are particularly desirable for practical reasons. For example, the first three in Table 5 involve emitting and absorbing plasmas from the same element available in gaseous form, which makes them attractive for puffed gas z-pinch devices. Others are more suitable for plasmas created by laser vaporization of solids.

In summary, autoionizing levels offer considerable promise for reducing trapping effects and the payoff could be very great. Precise emission and absorption measurements using the present listings as an initial guide and advancing from low to higher Z, coupled with improved level calculations and the development of sophisticated multi-level numerical codes, will ultimately prove the feasibility of this advanced concept.
APPENDIX I*

For comparison purposes, it is useful to know the approximate line-absorption cross section for the absorbing transition. This depends on the absorbing line strength according to the transition probability A as well as the frequency ν (or wavelength λ) and the line width $\Delta \nu$. It can be written approximately as

$$\sigma = \frac{A \alpha^2}{8\pi \nu^2 \Delta \nu} \quad (1)$$

with the line width expressed as the sum of the Doppler width18

$$\Delta \nu_D = 5.5 \times 10^6 / \lambda \quad (2)$$

and the total natural width20 (from $\hbar \Delta \nu_N \cdot \Delta t = \hbar$),

$$\Delta \nu_N = (A + \Gamma) / 2\pi \quad (3)$$

the cross section as listed in the tables becomes

$$10^{18} \sigma = \frac{4\lambda^2}{55 + \Gamma + A} \frac{A}{\lambda} \quad (4)$$

for λ in \AA and A, Γ in units of 10^{-13} sec$^{-1}$.

* A second classified appendix expanding on this report is in preparation.
REFERENCES

15. U. I. Safronova, private communication, 1984. AD-773872

Table 1. Line Coincidences for Photon/Electron Conversion (System A), with Li-like n' = 2

<table>
<thead>
<tr>
<th>Depletion</th>
<th>λ_e</th>
<th>$10^4 \lambda_v$</th>
<th>Converting</th>
<th>$10^{-13} A$</th>
<th>$10^{-13} \sigma$</th>
<th>$10^{18} \sigma$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[A]</td>
<td>[A]</td>
<td>[cm$^{-2}$]</td>
</tr>
<tr>
<td>Si(Li) [3p+2s]</td>
<td>+40.911</td>
<td>(8.8)</td>
<td>C(Li$^+$) 40.875 [1s22s2] + 1s22s1p2</td>
<td>0.008</td>
<td>11.6</td>
<td>17</td>
</tr>
<tr>
<td>K(He$^+$) [3s+2]</td>
<td>+41.541</td>
<td>(5.4)</td>
<td>C(Li$^+$) 41.563 [1s22p2] + 1s22p1p2</td>
<td>0.034</td>
<td>18.6</td>
<td>55</td>
</tr>
<tr>
<td>K(Li$^+$) [3d+2p]</td>
<td>22.02</td>
<td>(0)</td>
<td>22.02 [1s22s2] + 1s22s1p2</td>
<td>0.28</td>
<td>0.47</td>
<td>210</td>
</tr>
<tr>
<td>K(Li$^+$) [3s+2p]</td>
<td>22.16</td>
<td>(+2.7)</td>
<td>22.12 [1s22p2] + 1s22p1p2</td>
<td>0.2</td>
<td>19</td>
<td>7.1</td>
</tr>
<tr>
<td>Fe(He$^+$) [3s+2p]</td>
<td>17.05</td>
<td>(+47)</td>
<td>F(Li$^+$) 16.971 [1s22s2] + 1s22s1p2</td>
<td>0.53</td>
<td>11</td>
<td>122</td>
</tr>
<tr>
<td>Ni(He$^+$) [3s+2p]</td>
<td>13.768</td>
<td>(+41)</td>
<td>Ne(Li$^+$) 13.711 [1s22p2] + 1s22p1p2</td>
<td>0.41</td>
<td>19</td>
<td>44</td>
</tr>
<tr>
<td>Ne(He$^+$) [3p+1s]</td>
<td>11.5466</td>
<td>(+6.7)</td>
<td>Na(Li$^+$) 11.537 [1s22p2] + 1s22p1p2</td>
<td>0.038</td>
<td>150</td>
<td>0.71</td>
</tr>
<tr>
<td>Zn(He$^+$) [3p+2s]</td>
<td>11.51</td>
<td>(-17)</td>
<td>Na(Li$^+$) 11.537 [1s22p2] + 1s22p1p2</td>
<td>0.020</td>
<td>15</td>
<td>3.7</td>
</tr>
</tbody>
</table>

$\delta
= \lambda_e - \lambda_v$
Table 2. Line Coincidences for Photon/Electron Conversion (System A), with He-Like n^* = 2

<table>
<thead>
<tr>
<th>Depletion</th>
<th>(\lambda_e) [Å]</th>
<th>(\frac{10^4 , \delta \lambda^*}{\lambda_e})</th>
<th>Converting (\frac{10^{-13} , \lambda}{\lambda_e}) sec (^{-1})</th>
<th>(10^{-13} , \Gamma)</th>
<th>(10^{-18} , \sigma) [cm(^2)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na(Li+)((3d+2p))</td>
<td>77.764</td>
<td>(-8.3)</td>
<td>Be(He-)77.829[1s2s+2s2p]</td>
<td>0.14</td>
<td>20</td>
</tr>
<tr>
<td>W(He+)((3p+1s))</td>
<td>24.898</td>
<td>(+6.8)</td>
<td>N(He-)24.881[1s2p+2p(^2)]</td>
<td>0.20</td>
<td>1.5</td>
</tr>
<tr>
<td>Al(Li+)((3d+2p))</td>
<td>25.03</td>
<td>(-46)</td>
<td>W(He-)25.146[1s2s+2s2p]</td>
<td>0.14</td>
<td>20</td>
</tr>
<tr>
<td>Ca(He+)((3s+2p))</td>
<td>15.159</td>
<td>(+8.0)</td>
<td>F(He-)15.157[1s2s+2s2p]</td>
<td>0.39</td>
<td>20</td>
</tr>
<tr>
<td>Cu(He+)((3s+2p))</td>
<td>12.558</td>
<td>(+8.0)</td>
<td>Ne(He-)12.553[1s2p+2s(^2)]</td>
<td>0.24</td>
<td>34</td>
</tr>
</tbody>
</table>

\(\delta \lambda^* = \lambda_e - \lambda_a \)
<table>
<thead>
<tr>
<th>Depletion</th>
<th>λ_e [Å]</th>
<th>$10^4 \Delta \chi$</th>
<th>Converting</th>
<th>$10^{-13} \lambda_a$</th>
<th>$10^{-13} \Gamma$</th>
<th>$10^{-18} \phi$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a Cl(Li-)(3+2)</td>
<td>26.67</td>
<td>(+7.5)</td>
<td>N(Li-)$26.690[1s^22p+1s2s3s]$</td>
<td>0.0013</td>
<td>0.0049</td>
<td>1.8</td>
</tr>
<tr>
<td>1b Ti(He-)3s+2p</td>
<td>26.641</td>
<td>(-18)</td>
<td>N(Li-)$19.794[1s2p+1s2s3s]$</td>
<td>0.0024</td>
<td>0.0047</td>
<td>1.3</td>
</tr>
<tr>
<td>2a Ca(Li-)(3+2)</td>
<td>19.64</td>
<td>(+13)</td>
<td>F(Li-) $14.964[1s^22s+1s2p]$</td>
<td>0.050</td>
<td>0.015</td>
<td>12</td>
</tr>
<tr>
<td>2b F(He)(2p+1s)</td>
<td>14.982</td>
<td>(+12)</td>
<td>F(Li-) $14.990[1s^22p+1s2p3p]$</td>
<td>0.10</td>
<td>0.20</td>
<td>24</td>
</tr>
<tr>
<td>4a Ca(He-)(3+2p)</td>
<td>15.169</td>
<td>(+20)</td>
<td>F(Li-) $15.138[1s^22p+1s2s3d]$</td>
<td>0.0060</td>
<td>0.0012</td>
<td>1.5</td>
</tr>
<tr>
<td>5 Zn(He)(3+2p)</td>
<td>11.76</td>
<td>(-32)</td>
<td>Ne(Li-) $11.804[1s^22p+1s2p3p]$</td>
<td>0.095</td>
<td>0.95</td>
<td>11</td>
</tr>
<tr>
<td>6 Ne(He)(3+2p)</td>
<td>12.132</td>
<td>(+9.2)</td>
<td>Ne(Li-) $12.121[1s^22p+1s2s3s]$</td>
<td>0.0065</td>
<td>0.0046</td>
<td>0.84</td>
</tr>
</tbody>
</table>

$\Delta \chi = \lambda_e - \lambda_a$
Table 4. Line Coincidences for Photon/Electron Conversion (System A), with He-Like n'3

<table>
<thead>
<tr>
<th>Depletion</th>
<th>λ_e [Å]</th>
<th>$10^4 \delta \lambda$</th>
<th>Converting</th>
<th>$10^{-13} \lambda$</th>
<th>$10^{-13} \eta$</th>
<th>$10^{18} \phi$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{O(He-)}[2p+1s]$</td>
<td>21.620</td>
<td>(4.1)</td>
<td>N(He-)$21.611[1s2s+2s3p]$</td>
<td>0.015</td>
<td>0.74</td>
<td>10</td>
</tr>
<tr>
<td>$\text{K(He-)}[3+2]$</td>
<td>22.02</td>
<td>(-73)</td>
<td>N(He)$22.036[1s2p+2p3p]$</td>
<td>0.034</td>
<td>6.2x10$^{-5}$</td>
<td>26</td>
</tr>
<tr>
<td>$\text{Fe(He-)}[3s+2p]$</td>
<td>16.715</td>
<td>(+53)</td>
<td>O(He-)$16.766[1s2p+2p3p]$</td>
<td>0.058</td>
<td>1.0x10$^{-4}$</td>
<td>20</td>
</tr>
<tr>
<td>$\text{Cu(He-)}[3s+2p]$</td>
<td>12.82</td>
<td>(-33)</td>
<td>F(He-)$12.881[1s2s+2s3d]$</td>
<td>0.018</td>
<td>1.0x10$^{-4}$</td>
<td>2.8</td>
</tr>
</tbody>
</table>

* $\delta \lambda = \lambda_e - \lambda_a$
Table 5. Line Coincidences for Li-Like 3\(t\)' Pumping in System B

<table>
<thead>
<tr>
<th>Pumping</th>
<th>(\lambda_e) [(\AA)]</th>
<th>(10^4 \Delta \lambda^*) (\Delta \lambda) [(\AA)]</th>
<th>Pump</th>
<th>Laser</th>
<th>(10^{-13}) [\text{A}]</th>
<th>(10^{-13}) [(\text{sec}^{-1})]</th>
<th>(10^4 \lambda) [(\lambda)]</th>
<th>(\lambda_L) [(\AA)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Li}(\text{He})) (\rightleftharpoons) 14.988</td>
<td>(-1.3)</td>
<td>(\text{Li}(\text{He})) 14.990</td>
<td>(1s^22p+1s2p3p-L+1s2s2p)</td>
<td>0.18</td>
<td>0.40</td>
<td>43</td>
<td>105</td>
<td></td>
</tr>
<tr>
<td>(\text{He}(\text{He})) (\rightleftharpoons) 14.982</td>
<td>(+12)</td>
<td>(\text{He}(\text{He})) 14.964</td>
<td>(1s^22s+1s2s3p-L+1s2s^2)</td>
<td>0.11</td>
<td>0.033</td>
<td>27</td>
<td>115</td>
<td></td>
</tr>
<tr>
<td>(\text{Ne}(\text{He})) (\rightleftharpoons) 12.132</td>
<td>(+9.2)</td>
<td>(\text{Ne}(\text{He})) 12.121</td>
<td>(1s^22p+1s2s3s-L+1s2s2p)</td>
<td>0.0065</td>
<td>0.0045</td>
<td>0.84</td>
<td>87</td>
<td></td>
</tr>
</tbody>
</table>

\(\Delta \lambda = \lambda_e - \lambda_a \)

\(\text{J. G. Lunney, Optics Comm. 53, 235 (1985).} \)

Table 6. Line Coincidences for He-Like 3\(t\)' Pumping in System B

<table>
<thead>
<tr>
<th>Pumping</th>
<th>(\lambda_e) [(\AA)]</th>
<th>(10^4 \Delta \lambda^*) (\Delta \lambda) [(\AA)]</th>
<th>Pump</th>
<th>Laser</th>
<th>(10^{-13}) [\text{A}]</th>
<th>(10^{-13}) [(\text{sec}^{-1})]</th>
<th>(10^4 \lambda) [(\lambda)]</th>
<th>(\lambda_L) [(\AA)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{O(He)}) (\rightleftharpoons) 21.620</td>
<td>(+4.2)</td>
<td>(\text{O(He)}) 21.611</td>
<td>(1s2s+2s3p-L+2s^2)</td>
<td>0.015</td>
<td>0.074</td>
<td>11</td>
<td>138</td>
<td></td>
</tr>
</tbody>
</table>

\(\Delta \lambda = \lambda_e - \lambda_a \)
Fig. 1 — Energy level schematic for \(2p \) — \(1s \) matched-line pumping of helium-like \(1s2\ell \) or lithium-like \(1s^22\ell \) ground state to \(2ln' \) or \([1s2\ell]nl' \) \((n=2,3) \) levels. Rapid autoionization at a rate \(\Gamma \) dominates over radiative decay.
Fig. 2 — Energy level schematic for 2p — 1s matched-line pumping of helium-like 1s2l or lithium-like 1s2l ground state to 2l3l' or [1s2l]3l' levels, respectively, above the ionization potential (I.P.). The lower laser level decays predominantly by autoionization at a rate Γ compared to radiative decay of rate A.
END
3-87
DTIC