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1. Introduction.

Consider the shot noise process

X(t) = E h(t - T), t E?,

T<t

where the T's are the points of a stationary Poisson process on 1? with

mean rate X > 0, and h, the impulse response, is a non-negative function

on [0,-) such that

i) h is non-increasing,

ii) h is finite except possibly at zero, and

ili) I h(x)dx < - for some large u.

By Daley (1971), Theorem 1, the conditions (ii) and (iii) ensure that

X(t) < - a.s. for each t.

Observe that the sample function of X increases only at the points

of n. Thus it is unambiguous to define that X upcrosses the level u

at t, where u > 0, if X(t-) < u and X(t) > u. For u > 0, write

N for the point process (cf. Kallenberg (1976)) that consists of the

points at which upcrossings of level u by X occur. Thus for each

Borel set B, N (B) denotes the number of upcrossings of u by X in B.

N is a stationary point process, which may be viewed as a thinned process

of n. The purpose of this paper is to derive the following result.

Theorem 1. For each U > 1, EN U[0,1] = XP[u - h(O) < X(O) < u].

1 P If,



Note that the "downcrossing" intensity of a level by X is also

given by Theorem 1.

It is worth mentioning that similar problems were treated by Rice

(1944), and Bar-David and Nemirovsky (1972) in other settings. A result

in the latter paper can be reduced to one which is similar to Theorem 1.

However, our assumptions on h are considerably simpler.

We prove Theorem 1 in Section 2 using an approach which appears to

be most natural for the present purpose. In Section 3, we illustrate the

manner in which Theorem 1 can be made useful for a number of situations.

2. Derivation.

It is convenient to enumerate the points of n in (-,0) by

letting p1  be the ith largest point of n to the left of zero for

i = 1,2,..... The pi  are well-defined with probability one (w.p.l),

and -Pi, P1 - P2 ' P2 - p3 •..• are independent and identically distributed

(i.i.d.) exponential random variables. The following result is useful.

Lemma 2. For each i 1,2,..., P[X(pi-) = r h(pi - p.)] = 1
j2i+l

where X(pi-) denotes the left-hand limit of X at pi . From this, it

follows immediately that X(pi-) is independent of pi, and X(pi-) has

the same distribution as X(O).

.4.

Proof. Let i > 1 be fixed. Since h is monotone, it is almost every-

where continuous. Using the continuity of pi - p., J > i + 1, we obtain

lim h(pi - pj 0 - h(p i - P.) w.p.l for j >i + 1.
C+O .

Also by the monotonicity of h, h(pi - pj - ) h(pi - p.) for

.7.
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Oi P~l i> i +2, where E h(p. - ) is equal in

di t ib t o to * -(O 
j2 i2 Z4

distibuionto (O) which is fin'ite w.p.l. Thus it follows from dom-

inated convergence that w.p.l,

Irn X(P. - E) = urn E h(p. - p. - e) E h(p. - pi) . 0

Proof of Theorem 1. By stationarity, it apparently suffices to show that

(-,0),where m(B) denotes :he Lebesgue measure of B. Since X(p.)

h(0) + E h(p. - p.), it follows from Lemma 2 that w.p.l,
j2 i+i -

N U R) - E V(u - h(0) < X(p.-) < u, p. E B),
U ~ 1

where 1(-) is the indicator function. Applying the facts that X(p.-)

is independent of Pi~ and X(p.-) is equal in distribution to X(O),

we get

EN U(B) = E El(u - h(0) < X(p.-) < u)El(pi E B)
2,>l 2 -2

= P~u - h(0) <~ X(O) < z4])m(B). 0

3. Marginal Distribution.

The usefulness of Theorem 1 obviously depends on the availability of

the marginal probability P[u - h(0) < X(O) < is). The Laplace transform

V of X(0) is (cf. Gilbert and Pollak (1960))

(3.1) LUs) -X(O) e- {- 0 (1 -Bah(x) )dx} a>0o.
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For some impulse responses h, the distribution of X(O) can be ex-

pressed analytically, while for a class of others, a recursive method

due to Gilbert and Pollak (1960) is applicable. If it is of interest to

study the asymptotic crossing intensity for increasingly high levels,

certain Tauberian theorems (cf. Embrechts et. al. (1985)) are useful.

We consider three examples.

{X x=0

(a) Suppose h(x) = - X, 0 < X < 1 Then

0, X>l

L(s) = exp{-X 0 (f - e- )e-xdx}, a > 0,

which is the Laplace transform of the Bessel density (cf. Feller (1971)):

f(x) = e-(X+X) I (2VU), x > 0.

(b) For h(x) = e , x > 0, Gilbert and Pollak (1960) showed that the

density f of X(O) can be obtained recursively as follows:

f(X) =

_X 1 - _ f(Y -'d X > 1,

where y is Euler's constant.

(c) Assume that h is boundedly supported, say, on [0,1]. Then by a

V.. change-of-variable, (3.1) becomes

4
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L(s) - exp{-X + X f e8 9y p (dy)1

where p~ is a probability measure on [0,-) such that

p()- Lebesgue measure of {0 < x < 1 : h('x) E B}

f or each Borel set B in [0,-). Thus X(O) has a compound Poisson

distribution. For h satisfying certain regularity conditions, Embrecht

et. al. (1985) showed that

P[XO) x3 .exp{-X[l - (t)1 - ex - t(x - V}asx 1,c

where p(s) =f e-s pdu), and t satisfies Xup'(t) =x.
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