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Jﬁ Summary. The crossing intensity of a level by a shot noise process with f
‘ﬁ ' a monotone impulse response is studied. It is shown that the intensity '
can be naturally expressed in terms of a marginal probability. Also some

o0 examples are given to illustrate how the marginal probability can be ob- "
O tained. \
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A 1. Introduction.

Consider the shot noise process

% X(t) = ¥ h(t-1), tER,

Y 1<t

. -

g where the T's are the points of a stationary Poisson process on R with

mean rate A > 0, and %, the impulse response, is a non-negative function
) on [0,») such that
\ i) h 1is non-increasing,

ii) h 1s finite except possibly at zero, and

;4 i11) f: h(z)dx < © for some large u.

3 By Daley (1971), Theorem 1, the conditions (ii) and (iii) ensure that

" X(t) <= a.s. for each t.

?{ ’ Observe that the sample function of X 1increases only at the points
:‘ of n. Thus it is unambiguous to define that X upcrosses the level u
,. at t, where u >0, {if X(t-) <u and X(t) >u. For u >0, write
;3 Nﬁ for the point process (cf. Kallenberg (1976)) that consists of the

E points at which upcrossings of level ¥ by X occur. Thus for each

; Borel set B, Nu(B) denotes the number of upcrossings of « by X i1in B.
4

4

Nu is a stationary point process, which may be viewed as a thinned process

* of n. The purpose of this paper is to derive the following result.

. Theorem 1. For each u > 1, ENu[O,ll = WP[u ~ h(0) < X(0) < u].
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by
Note that the "downcrossing' intensity of a level by X is also ;
Ui
given by Theorem 1.

[* . !
It is worth mentioning that similar problems were treated by Rice :g

|

A

(1944), and Bar-David and Nemirovsky (1972) in other settings. A result :
. mf
in the latter paper can be reduced to one which is similar to Theorem 1. -
D

However, our assumptions on A are considerably simpler. . ?:
l‘-
(0

We prove Theorem 1 in Section 2 using an approach which appears to :$

"
be most natural for the present purpose. In Section 3, we illustrate the _
‘f_
manner in which Theorem 1 can be made useful for a number of situations. é
3
8

2. Derivation. 2
It is convenient to enumerate the points of n in (-,0) by N
letting P; be the Zth largest point of n to the left of zero for t
. .
1=1,2,... . The p; are well-defined with probability one (w.p.l), X}
and “Pys Py " Pys Py = Pgy... are independent and identically distributed L‘
- “
(i.1.d.) exponential random variables. The following result is useful. ﬁé
?

o

Lemma 2. For each % = 1,2,..., P[X(Oi-) = L hip, - pj)] =1 -
J>i+1 o
where X(pi-) denotes the left-hand limit of X at Pse From this, it 5

follows immediately that X(pi-) is independent of Pis and X(pi-) has

the same distribution as X(0).

. RS
X Proof. Let 1 > 1 be fixed. Since h 1is monotone, it is almost every- ‘ i:
» Ry

E where continuous. Using the continuity of Py - pj, J z_i + 1, we obtain A

. e,

8 lim h(p -€) =h(p., - p.) wop.l for J>1 + 1. ¢

[} C"O J 1 J - -"

1y oy

i -

1 20

) Also by the monotonicity of A, h(pi - pj - €) :_h(pi+1 - pj) for i,
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0<e<p,-p. s J2%+2, vhere j>£+2 h(pi+1 - pj) is equal in :
distribution to X(0) which is finite wa.l. Thus it follows from dom-

inated convergence that w.p.l,

ik - o £

lim X(p. ~€) =ltm T  h(p. -p.-€)= I  hip.-p:) . DO
gv0 ¢ ev0 g2ier © Y >ier ¢ Y

Proof of Theorem 1. By stationarity, it apparently suffices to show that

:
s
j
|

ENu(B) equals Am(B)P[u - h(0) < X(0) < u] for each Borel set B in
(==,0), where m(B) denotes che Lebesgue measure of B. Since X(pi) =

h(0) + I  hi(p; - p.), it follows from Lemma 2 that w.p.1l,
J>i+1 J

N (7) = i}>:1 L(u - h(0) < X(p.~) < u, o€ B),

where 1(-) is the indicator function. Applying the facts that X(pi-)

is independent of p. and X(oi-} is equal in distribution to X(0/,

we get

EN (B) = I ElMu - h(0) < X(p.-) < w)EL(p. € B)
Uu i)l 1 -_— 1

= Plu - h(0) < X(0) < u]wm(B). O

3. Marginal Distribution.

The usefulness of Theorem 1 obviously depends on the availability of

the marginal probability Plu - A(0) < X(0) < u]. The Laplace transform

2
:r of X(0) 18 (cf. Gilbert and Pollak (1960))
S
K
» -8X(0)

= gxp{-A f; (1 - e'eh(x))dx}, e > 0.

(3.1) L(s) = Ee
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;"" For some impulse responses A, the distribution of X(0) can be ex-

. pressed analytically, while for a class of others, a recursive method

X} )

o

i3 due to Gilbert and Pollak (1960) is applicable. If it is of interest to

x'|‘:

':‘:! study the asymptotic crossing intensity for increasingly high levels,

e certain Tauberian theorems (cf. Embrechts et. al. (1985)) are useful.

() »

4».: We consider three examples.

3 _ L
!::'. @® 'Y X = 0 i

(a) Suppose Ah(x) =4 -logzx, 0<x <1 Then [

W o, z>1

R -

B

Sk -

;:;3 L(s) = exp{-\ [ (1 - &) dx}, s >0,

A

{

; which is the Laplace transform of the Bessel density (cf. Feller (1971)):

Y -

> flx) = e (z+)) g Il(z/E), xz > 0.

o *
oy (b) For h(z) =e™, =z >0, Gilbert and Pollak (1960) showed that the

Y . -
3 density f of X(0) can be obtained recursively as follows:

(S

R

i (e 2

RN
o Tog & 2 0<E <L
Wy
i
e flz) =

L

_XY

g A= -

! x 1ie -Aftf(y-l)y)‘dy, xz > 1,

Wy T(X) 1 -

Y ': .
ig

" where Y is Euler's constant.
¥a (c) Assume that h 1s boundedly supported, say, on [0,1]. Then by a ’
W™ «

I

o change-of-variable, (3.1) becomes
[} )
fv.‘.
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L(s) = exp{-A + A [ ) e % udy))

(0,

AR [y

where u 1s a probability measure on [0,®) such that

H(B) = Lebesgue measure of {0 <z <1 : h(z) € B} N

%

for each Borel set B in [0,®»). Thus X(0) has a compound Poisson .

-

. distribution. For h satisfying certain regularity conditions, Embrecht +3
*

et. al. (1985) showed that

A\ §
P{X(0) > x) ~ exp{-A1 - y(t)] -e -tz - 1)} as x + @ &
tJZan"?f) N
3
where y(8) = [ P u(du), and t satisfies Ap'(t) = z. "
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