
1,N-M00 INLEIWITATIGI OF N IBN-PC/AT AS A OPID (GEIERAL vi1
7-I6 PURPOSE INTERFACE BUS) CONTROLLERMU NAVAL POST4MDTE

UNCRSIFIDF10 SCHOOL MONTEREY CA 0 H SELF DEC 86

UNLSSF7 F/0 144 M

2- E28

L --

11 1.25 111111'.4 16

M CROCOPY RESOLUTION TEST CHART

00

NAVAL POSTGRADUATE SCHOOL
Monterey, California

DTIC

THESIS E*--A
IMPLEMENTATION OF AN IBM-PC/AT

AS A GPIB CONTROLLER

by

George H. Self, Jr.

December 1986 A-

Thesis Advisor: Prof. J. P. Powers.

Approved for public release; distribution is unlimited ~

109'

un-- lass fied A\ 7
iCURItY CLASSIFICATION OF TW-1r=PAG 7 't

REPORT DOCUMENTATION PAGE
la REPORT SECURITY CLASSiFICATION 1b. RESTRICTIVE MARKINGS

U na s ::i -*ed_____________ _____

2a SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION,/AVAILABILITY OF REPORT

A1pproved for publi:, re-lease;-
Zt) DEC, ASSFICATION. DOWNGRAING SCHEDULE Distribution isulim2.t'

4 PERFORMING ORGANIZATION OrDORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

6a %AME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION
(if applicable)

..a val ?o stg -raduate So hoo o ~ NvlPsgraduate School
6- ADDRESS (City, State, anid ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

.. ontr , Cairr.i a 9394'3-5000 otey Cazona :43 00

Sa %AME OF FuNOING, SPONSORING I8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (it applicable)

Bc ADORE SS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK ,jNIT
ELEMENT NO NO NO ACCESS:ON NO

";'L- (include Security Classificatiorn)

7_M) -EMENTA:ICN 01F AN IBM-PC/ATr AS A 'FIB CONTROLLER
2PERSONAL AUTHOR(S)

I 3,ti TY~PE OF REPORT, 13b TIME COVERED 1 AE-FRPR YaMnh a) ON
FROM __ TO __ Ii96December

6 SLPPI-EV.ENTARY NOTATION

COSAT CODES 18 SUBJECT TERMS (Continue on reverse if necessary ndidentify by block number)
GROUP SUB-GROUP 3TP153 controller, 3PIB, dat-a collecticon- sisten,

:-ns'trument:atsonr, c-omputer ::3ntrole__

'I !3S7RACT (Continue on rev-erse if necessary and identify by block number)
miD t si ineres a n i E-P "A T -n r o o o ut er -wit -ie r is

s ta-noardo ia a ry t-e s t equ icmne nt vi1'a a >E. eu-rvn rP~
o r) c s -the me o-cc ratee test ecoclo 1ment from tcckybar,-c

m-e - e :an izerform a ;:~ ariety of tasks with' this program and -

gram7 ca e m o .---. otnher soecifi tasks desred
iwo scco: tirs ere evelored -,: demontrae th-e uocysoe .

-me~~ Ih n'o~-' n uiene s tha j were J-e e J ±.
t':o~et ;1&e::m acs :rom a d aloscill!osc:one adt

a ai -ir rec.;rt n ie o :e e -a o e aE'

-'Q3'j' ON AVAiLABILiTy OF ASSRAC' 1 ABSTRACT SECURITY CLASSIFICA 7IO

-a O.'F 0 RESPONSiBLE ADIVIDUAL PT 22b TELEPHONE (include Area Code) 12c OFF CE SMB0OLj77J '?S IKD N - SAM AS .1 ./ .- _. - , - -, -:11.'
DO FORM 1473, 84 MAR 33 APR ed't'on may be wsed jnt1l exhaustedSEUIYCA:FT' O- SAE

All oth'er edt,ons are cosolete

Approved for public release; distribution is unlimited

Implementation of an IBM-PC/AT as a GPIB Controller

by

George H. Self, Jr.
Lieutenant, United States Coast Guard
B.S., U.S. Coast Guard Academy, 1979

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
December 1986

Author: -/

Georg- H. Self, ir. '/

Approved by: K i -i
ohP. Powers, Thesis Advisor

Sherif Michael, Second Reader

Harriett B. Rigas, Chairman,
Department of Electrical and Computer Engineering

John b. Dyer,
Dean of Science and Engineering

2

ABSTRACT

This thesis integrates an IBM-PC/AT microcomputer with five pieces

of standard laboratory test equipment via a GPIB. A menu-driven program

prompts the user to operate the test equipment from the keyboard on the

PC. The user can perform a wide variety of tasks with this program and

the program can be modified to perform other specific tasks desired by

the user.

Two subroutines were developed to demonstrate the utility of this

system and the use of the programming guidelines that were developed. A

subroutine to collect waveform data from a digital oscilloscope and to

plot the waveform with a plotter and a subroutine to generate a Bode

plot of the transfer function for a two port network were developed.

Accesslon For

e s

r

6

3

7-.

TABLE OF CONTENTS

I. INTRODUCTION ... 7

II . HARDWAR E 9

A. IBM-PC/AT MICROCOMPUTER .. 9

B. NATIONAL INSTRUMENTS MODEL GPIB-PC2 10

III. SOFTWARE .. 14

A . DOS HANDLER ... 15

B. INSTALLATION, CONFIGURATION, AND START-UP 15

C. IBCONF ... 16

D . U SE O F IB IC ... 18

E. PROGRAMMING LANGUAGE INTERFACE 20

F . PLOTTING PACKAGE .. 24

IV. DEVELOPMENT OF THE SYSTEM CONTROLLER 25

A . DESIGN GUIDELINES ... 25

B. EARLY EFFORTS WITH BASICA 26

C. SELECTION OF FORTRAN 77 26

S

D. THE DEVELOPED PROGRAM - GPIBX 27

E. PROGRAMMING PROBLEMS ENCOUNTERED 28

V. DEMONSTRATION SUBROUTINES .. 33

A . BODE PLOT SUBROUTINE .. 33

B. WAVEFORM RECORDER SUBROUTINE 36

VI. PROGRAMMING GUIDELINES ... 40

A. OUTLINE THE TASK ... 40

B. MODEL TASK WITH IBIC ... 40

a . . '. -<. -. ,".',' '<% .%. '. -, .', .,. t"'" " " " "

C . GENERATE CODE ... 41

D. INTEGRATE NEW CODE INTO GPIBX 42

VII. CONCLUSIONS AND RECOMMENDATIONS 43

A . CONCLUSIONS ... 43

B. RECOMMENDATIONS ... 44

APPENDIX A: DECL.FOR PROGRAM LISTING 48

APPENDIX B: GPIBX PROGRAM LISTING 52

LIST OF REFERENCES ... 77

B IB L IO G RA PHY78

INITIAL DISTRIBUTION LIST ... 79

5

I.

-~~.-- - - - - - - - - -

LIST OF FIGURES

2.1 National Instruments GPIB-PC2 Circuit Board11

2.2 GPIB-PC2 Functional Block Diagram................................. 12

2.3 i: Diagram of Developed System................................. 13

3.1 First Menu in IBCONF.. 17

3.2 Second Menu in IBCQNF................................... 18

5.1, Block Diagram of Bode Plot Test.................................... 34

15.2 Low-Pass Filter.. 35

5.3 Bode Plot of the Low-Pass Filter Circuit........................... 35

5.4 Plot of 1 KHz Sine Wave Shown on O'SCOPE........................... 38

5.5 Plot: of I M.Hz Square W;ave Shown on O'SCOPE......................... 39

7.1 Proposed Student W;ork Station...................................... 46

7.) Proposed Time Shared System....................................... 47

5'6

5%%

I. INTRODUCTION

This thesis investigated the use of an IBM-PC/AT microcomputer as

a system controller for a set of programmable test equipment. It is the

third in a series of theses that address the subject of using programma-

ble test equipment for simple lab tests. The PC controls the equipment

via a General Purpose Interface Bus (GPIB). Previous theses written at

the Naval Postgraduate School (NPS) iRefs. 1 and 23 give detailed infor-

mation about the GPIB and the test equipment used.

The HP-85 microcomputer used in the previous theses was replaced by

the IBR-PC. The HP-85 is programmed to control via its Hewlett Packard

Instrument Bus (HPIB) in BASIC. This limits the use of the HP-85 to

programs developed on it in its particular version of BASIC. The pro-

grams written for the HP-85 are not transportable to different com-

puters. The use of peripheral equipment such as printers and plotters

is also restricted, making the HP-85 less flexible and powerful.

The PC can be programmed in a variety of languages, such as FORTRAN,

PASCAL, and C to control equipment on a GPIB. The PC can also be used

with a variety of peripherals to print, plot, store, manipulate, and

display data. The use of the MS-DOS operating system also gives the PC

a lot more flexibility as programs developed for the PC can be run on

many similar computers that use MS-DOS.

The project undertaken here was to establish control of the various

pieces of test equipment and operate them using an interactive nenu-

driven program running on the PC. The scope of control was to enable

7!

-. I%

the simple electronic engineering laboratory exercises taught at NPS to

be imnlemented on the system. The user steps through a series of device

menus to operate the test equipment and rarely has to adjust controls on

the test equipment.

%

8

II. HARDWARE

This study made use of the following test equipment:

1. TEK PS 5010 Programmable Power Supply

2. TEK DM 5010 Programmable Digital Multimeter

3. TEK DC 5009 Programmable Universal Counter/Timer

4. TEK 5223 Digitizing Oscilloscope

5. WAVETEK MODEL 270 Programmable Function Generator

Detailed information about these five pieces of equipment is

able in Ref. 1 and Ref. 2 as well as the manufacturers' technici

documentation for the equipment.

This equipment was connected to the PC via a National Instruments

IEEE-488 Instrument Interface. This chapter describes the pertinent

hardware issues of the computer and the control board as they relate to

this thesis.

A. IBM-PC/AT MICROCOMPUTER

In this study a PC was used as the GPIB controller. The lar:e

megabyte capacity of the hard disk is needed to support the storaye f:

a full featured programming language compiler. Without it. compi ln7

large program in a high level language degenerates into floppy si p i

and becomes a real burden during the dEvelopment of a large appicarL:

program.

9

The PC does not have a GPIB connector and the required circuitry as

q standard equipment. It does come wi:h several I/O slots that can accept

a nLmber of GPIB interfaces made by such companies as Tektronix, Capital

Equipment Corporation, Hewlett Packard, and National Instruments to name

a few.

B. NATIONAL INSTRUMENTS MODEL GPIB-PC2

A National Instruments Model GPIB-PC2 interface board was used to

Drovide the hardware and software interface between the PC and the test

equipment on the GPIB. Figure 2.1 is a photograph of this circuit

board. It fits into one of the small slots of the PC and enables the PC

to communicate with devices on the GPIB. Figure 2.2 is a functional

'-block diagram of this circuit board.

The switches and jumpers on the card are used to configure it to

work in a particular PC environment. The factory default setting of a

base I/O address of 2B8, DMA Channel 1, and Interrupt Line (IRQ) for a

GPIB TLC (Talker/Listener/Controller) of 7. These can be changed as

needed when other devices already using these settings have been pre-

viously installed in a PC. The GPIB-PC User Manual contains detailed

information on how to change these settings.

This circuit board can support up to sixteen devices on the GPIB and

work in conjunction with another GPIB-PC2 card installed in the same PC

-o centrol another sixteen devices. This gives the PC the capacity to

:ntrol up to thirty-two devices without another computer in tnie system.

FiL,3re 2. is a block diagram of how this system was confi'ngred.

1

d

i10

77.

- - . V- - -

0O21

G I

Figure 2. GPIB-P Functioal BlockDiga (Frm ef 3

000 12

SIGNAL COUNTER Dcr POWER
C SCOPE GENERATOC TIMER ,C.LTh-4- SULPPLY

I:{

GPIE3I

U

L.

PERSCNAL COwvVUTER

Figure 2.3 Block Diagram of Developed Svstern

13

,',,.- .''. ,.,'- ' ;.,.,,:'2- '-% ..',- .","- " ''.,.%."-- -% " '..":""' , , '

III. SOFTWARE

The circuit board provided by National Instruments (NI) comes with a

software package that provides the DOS handler, language interface,

installation package, and system configuration programs. The following

programs were provided by NI:

1. GPIB.COM

2. IBSTART.BAT

3. MKCFG.EXE

4. IBSTA.EXE

5. IBSTB.EXE

6. IBDIAG.EXE

7. IBTEST.BAT

8. IBIC.EXE

Additional files are delivered for each language support option

requested. To support programs written in Microsoft-FORTRAN 3.2 the

following files were provided:

I. MFIB.OBJ

2. DECL.FOR

3. DFSAMP.FOR

4. BFSAMP.FOR

This chapter describes how these programs work and how software '.was

developed to enable the PC to act as a GPIB controller.

~14

i . 7 7 .

A. DOS HANDLER

The file called GPIB.COM is loaded when the PC boots up. GPIBO.O'

is required to reside on the default boot drive to enable it to be

installed during boot up. The term 'handler' is used by National In-

struments to refer to a loadable device driver. DOS uses the DEVICE=

command in a file called CONFIG.SYS to load the desired device drivers

when the PC first boots up. GPIB.COM contains the software needed to

operate the GPIB-PC2 circuit board as a GPIB I/0 device.

B. INSTALLATION, CONFIGURATION, AND START-UP

The file IBSTART.BAT is a DOS BATCH command file that installs the

software provided by NI. It copies the needed files off the floppy disk

from NI and puts them on the desired disk. In this study the default

disk drive is the PC hard disk, C:\, and the NI files were copied to a

sub-directory, C:\GPIB-PC. GPIB.COM and IBCONF.EXE were then copied to

the default drive C:\ as these files must reside in the default drive to

operate properly. IBSTART.BAT adds the DOS command DEVICE=GPIB.COM to

CONFIG.SYS by using the file MKCFG.EXE. The file IBDIAG.EXE is used to

test the hardware before the associated software is installed.

Once the hardware and handler are installed, the file IBTEST.BAT is

used to test both the hardware and software for proper installation and

operation. This test is done in two parts by running IBSTA.EXE and

IBSTB.EXE. All the tests are menu-driven and take only a few minutes to

execute.

15

"." L "- " .""--.." :-"-" '.''.' ".""- .-'.-,- "_'. " .-:.:.-':.''.' ." .' - -'-'.' ,' - . -'' i i~. <!. 4."'.
"' ' -.

C. IBCONF

The file IBCONF.EXE is very useful even after the system is initial-

ly installed, as it allows devices to be added and deleted from the GPIB

very easily. This routine helps to handle the specific details of

setting up such things as GPIB addresses, system mnemonics, and end of

instruction characters.

IBCONF runs as an interactive menu-driven program that has the user

specify the device characteristics needed by the handler to properly

address and communicate with a device on the GPIB. Figure 3.1 shows the

first menu that is displayed when the program is run. Once a device on

the bus is selected, the second menu (shown in Figure 3.2) is displayed

and the user can change the GPIB attributes of device as required. If a

change is made to a device's attributes in IBCONF, the PC must be

rebooted so that the modified handler can be re-installed by DOS.

16

%!

* Use cursor control keys to select a device or board
_GPIBO * Use function keys below to select desired action

, z * Use PgUp/PgDn to display maps for other boards

z

PS -SIGGEN _DEV9 _ E1

DM!M _~DEV6 _ E1 E1

DC5009 i-DEV7 DV1 E1
U

oOSCOPE DEV8DE1DV6
0~

Fl: Help F4:Rename ES: (Dis)connect F8: Edit F9: Exit

Figure 3.1 First Menu in IPCONF

17

%I

-. k nw. ' .

National Instruments Device Characteristics IBM PC-AT

Device: PS Access:GPIBO SELECT (use right/left arrow keys):

Primary GPIB Address 16H OOH to lEH
Secondary GPIB Address NONE
Timeout setting TlOs

W EOS byte O H
Terminate Read on EOS no
Set EOI with EOS on Write .. no

Type of compare on EOS 7-bit
Set EOI w/last byte of Write yes

z Fl: Help F4: Explain Field F6: Reset Value F9: Return to Map

> Figure 3.2 Second Menu in IBCONF

< D. USE OF IBIC

U IBIC is the Interface Bus Interactive Control Program (IBIC). This

0 program provides keyboard control of the CPIB and connected equipment.

IBIC functions include most IEEE-488 commands, the functions supplied

for specific language interfaces, and some functions specific to IBIC.

The functions allow the user to send a specific command to a device,

to receive data (in the form of character strings) from the devices, and

to display the data received on the PC screen. Data can also be saved

to a file named in DOS path name convention. This allows a user to

generate the correct command sequence to perform a specific task. It

was used extensively in this study as the commands for each device are

peculiar to that specific device. Practice is required for a user to

become familiar with a device's command structure and IBIC is a good

practice tool.

18

When IBIC is running, messages appear on the screen pro:ptin the

user to enter commands, data, or request help as neede IS

used most are IBFIND, IBWRT, IBRD.

IBFIND is used to select a device on the GPIB. For exampLe, to

select a digital multimeter with the device mnemonic DM.M installed 'La

IBCONF the user could enter the following at the colon prompt:

IBFIND DKM

IBWRT is used to send command strings to devices over the GPIB. To

have the multimeter read resistance the following command migh- be

entered at the DMM: prompt:

DMM: IBWRT "OHMS"

IBRD is used to read data from a device over the GPIB and display it

on the screen. The number of bytes to be read are specified when the

command is used as shown in the following example to read fifty bytes:

DMM: IBRD 50

The previous command results in the following display when the

multimeter is measuring the resistance of an open circuit:

[2900] (end rqs cmpl)
count: 9
31 2E 45 25 39 39 3B OD l.E+99;*
OA
DMM:

The first line of the above message is the status ord IBSTA that

describes the status of the GPIB in two forms: a hexadecimal value

followed by a mnemonics list. The second line contains the actual

number of bytes received from the device over the GPIB, in this case 2.

19

,"4 ". " , " ' " . ' . . ,7'"" . W " - - : ''' "' ' ""'''''' .-. °," ". " ,-,- " " • " '

-/

The next two lines contain the received characters and their ASCII

codes. In this example I.E+99 represents the infinite impedance of an

open circuit. The two asterisks represent the two small diamond

characters that actually appear on the display. These represent the

carriage return and line feed indicated by the ASCII codes OD and OA in

the third line of the display. The fourth line is the prompt, DMM:, for

the next command.

More specific information and additional examples are contained in

Reference 3 Section 5.

E. PROGRAMMING LANGUAGE INTERFACE

MFIB.OBJ is the Microsoft FORTRAN 3,2 language interface that en-

ables that particular version of a FORTRAN application program to use

subroutine calls that make use of the handler supplied by NI Programs

compiled with MS-FORTRAN 3.2 are linked with MFIB.OBJ to produce an

executable file. MFIB.OBJ must not be the first file named in the link

list when linking the application program.

Similar to IBIC, the most commonly used subroutines and functions

are IBFIND, IBWRT, and IBRDF.

IBFIND is a function used to find the address of a device that has

been installed on the GPIB via IBCONF. The integer returned is assigned

to a variable that must be used in all references to that device in GPIB

subroutine and function calls. The following is an example of how to

use IBFIND in a FORTRAN program to assign the acddrEss of the m 'tie ter

to the integer variable DHM:

DMM - IBFIND ('DM14 ')

20

-~~~~ I. a -.

(The software provided by NI requires the last character in a string be

a blank to indicate the end of a string.)

IBV'RT writes data to a GPIB device. It has three parameters: the

device address, the data to be sent contained in an integer vector, and

the number of bytes to be sent. The following is an example to command

a digital multimeter to read resistance from a FORTRAN program:

T-RT(l) = ICHAR('O') + ICHAR('H')*256

VRT(2) = ICHAR('M') + ICHAR('S')*256
CALL IBWRT (DMM,WRT,4)

NI requires character strings to be entered as shown to be compati-

ble with the handler GPIB.COM. Characters are represented in FORTRA-N

programs run on the PC in memory as two bytes in low order byte then

high order byte convention. The first two lines above squeeze to

characters into one sixteen bit word and convert the characters to high

order byte then low order byte convention. This word is transmitted

over the GPIB as two sequential eight bit bytes that contain the charac-

ter codes in the correct order to be used by devices on the GPIB.

Writing code in this way for every command string is very tedious.

The subroutine STRING, shown in the following FORTRAN program listing,

A13 written o put character strings into the integer array format

- 'med with IBURT. An explanation of this subroutine

S.'n "' NE STRIN G ' INPUT,LENGTH,,'RT)
.- U'>'R '..PAtTER STRINGS INTO REQUIRED FG-4 FOR IBY'RT .

:TAP C EF-: 1 P T 30)

urT~ip, LENGTH,,J.KRT 512

D" "e 1=LEN;GTH.)

1+1
IP7TJ= [CHAR IN;PTI)) + (ICHARI'PUTGK) 2 56)

21

. . .t. .,- - ,, . .- , ...- -- . - . - -- . -
,,

.

J- J+1
10 ECONTINUE

10 RETURN
END

The code:

SUBROUTINE STRING (INPUT, LENGTH,WRT)

CHARACTER* INPUT (30)
INTEGER LENGTH,I,J,K,WRT(512)
J- 1

establishes the subroutine STRING with the formal parameters: INPUT,

LENGTH, and WRT. INPUT is the character string to be modified and

LENGTH is the number of characters in the STRING. WRT is the integer

array returned by STRING to be used with IBWRT. I, J, and K are the

indices of the arrays INPUT and WRT.

The code:

DO 10 I=1,LENGTH,2
K- I+1
WRT(J)- ICHAR(INPUT(I)) + (ICHAR(INPUT(K))*256)
J- J+1

10 CONTINUE

takes the elements of INPUT in pairs and performs the operation needed

to generate the elements of WRT.

IBRDF reads data to a file. It has two parameters: the device name

and the filename under which the data is stored. An example of how to

read a resistance value from the multimeter at address DM I and store it

in a file called DATA on the A: disk in a FORTRAN program follows:

CALL IBRDF (DM>U,'A:DATA ')

The DECL.FOR is a file of FORTPA variable declarations recommended

for use by NI and is included as Appendix A. The three global vai~h2es

22

%i

:BSTA. :BERR a m e used i. a I RTRA, programs to enable

"?. P -: -1" ... "- ' .- :: : : ! i' : u:ter of Ovtes trons-

.. : - , . :-:r :ne andler. These

' -.' : - " ..- . to reflect the status

• " : - t .";s -, the GP .

:.. : :::i ::: Ti.s contains

: • . :- :::- - : -~ A de r rec'es-s

4BE.RRs>.-rr,:- :-:-,: - e c.n:apt~in-.g -ie error code when an error

us cete:tro .-- : , - :<s i.,:Ce such prohlems DOS errors, invalid

srrzrernts to :Tin r. - : or tfie svstem er-ror's.

Tn~e 1,6T vart: I is urdated after each read or write is executed.

It contains the number of bytes transferred during the last read or

write.

The program listing in Appendix B -uas generated making use of these

variables and functions. There are many more functions and variables

available. A user can also write new functions and specify new vari-

ables if needed.

The two files DFSAMPFOR and BFSAMP.FOR are example programs provide

bv NI that show how to write application programs that make use of the

subroutines provided in !FIB.OBJ.

23

.p.

F. PLOTTING PACKAGE

The plotting package Slide.rite Plus produced b%" Ad'.anced Graphics

Software was used for all waveform and data plots in this study. 7-t is

one of the many plotting packages available for use with the PC.

2.

24 I

.-- '- .' . " - -' - - - -- - ' - '- -" ' ' - - '-- - -.-'. . .." - . .a . . "

IV. DEVELOPMENT OF THE S' STEH C'--ROLTL--

The goal of this study was to develop a system for use in student

laboratory environment as a teaching aid. Students at NPS could rur

programs on a computer connected to various pieces of lab test equip-

ment. The student would perform circuit tests and demonstrat:ions of

class room theory through menus displayed on the computer monitor.

Students would set up and control instruments by tpnc in restouses o-

the computer keyboard. Previously written and stored programs could put

waveforms on the monitor or the digitized oscilloscope, check data

values at test points for correct values, and record and store data

automaticaliv for later use. Off-the-shelf software would be used for

analyzing and plotting the recorded data.

With these goals in mind a set of design guidelines were developed.

This chapter describes these guidelines and details the software that

was developed.

A. DESIGN GUIDELINES

Design of this system was undertaken as a top-dow-n, structured

programming implementation. A top-down structure was chosen early in

the study. This enabled a gradual system development starting with the

most essential program features first and then prosressinc to more

complicated functions. To this end, steo-vise re f1.tement v,:s used

extens ive lv.

The concept of modular programinc vwis foo.e. , e; fnctior.

were added as subroutines that would not affect the code prevously

! !5

written and tested. These new functions were kept simple so as to be

short. This limited the size of a program module that had to be writ-

ten, tested, and debugged to a manageable size.

All control of the test equipment was to be via the computer key-

board. The student would not have to adjust the equipment by hand.

Menus on the computer monitor would give instructions to the student as

required.

B. EARLY EFFORTS WITH BASICA

National Instruments provides a handler package to be used with

BASICA. (BASICA is an enhanced BASIC written for the IBM/PC by Micro-

soft.) Early in this study, this handler was used with some simple test

programs written in BASICA. These programs were found to be very slow

during run time since BASICA is an interpretative language. In addition

these BASICA programs were not transportable to all IBM/PC compatible

computers. Due to these limitations another programming language was

selected.

C. SELECTION OF FORTRAN 77

A language having separate compilation was desired to facilitate the

modular programming style desired. It was anticipated that the analysis

on data collected by the system could be handled most advantageously by

using the some of the many subroutines already developed and available

in FORTRAN libraries. A FORTRAN 77 subset compiler suitable for use on

an IBM/PC was available in the lab for use and was selected as the

system development language. This was Microsoft-FORTRAN 3.2.

26

4 .,- -.-..- 4*..:..-.-*-....- 4

D. THE DEVELOPED PROGRAM - GPIBX

The final program developed, GPIBX, is included as Appendix B. Once

compiled as an executable file it requires around LOOK bytes of RA.

Execution of most commands appears to be immediate to the user. The

demonstration subroutines entail some delav due to the number of opera-

tions being performed sequentially and the disk 1/0 for storage being

performed.

The program presents the user with a series of menus that enable the

user to remotely operate most of the front panel controls available on

the different pieces of test equipment. After a piece of equipment is

selected, a new menu specific to that piece of equipment is presented.

The user can then select a particular operation to perform or setting to

adjust. Specific values for voltages or frequencies can be entered via

the PC keyboard. Numbers can be entered in scientific notation to save

time.

The program only accepts certain responses depending on the menu

selections available. It prompts the user to try again when invalid

responses are entered. Settings outside the range of the equipment are

ignored.

Control of the different pieces of equipment is accomplished one

level at a time. First, the device is selected from a main menu, Then

the user selects a particular feature of the device to adjust or oper-

ate. The menus presented to the user proceed in one le.-el of control

each time. The user can back-up one level of control at an. time. To

switch devices a user must back out to the main menu level and then

select another device. This prevents a user from jumping around the

27

% %

"".- .. e . ' - . ~-

menus and inadvertently adjusting the wrong piece of equipment. A

single point of return for each subroutine enforces this run time

operation.

E. PROGRAMMING PROBLEMS ENCOUNTERED

MS-FORTRAN 3.2 was not the best language to use for development of

this system. The bulk of the programming required character string

manipulations. A full featured ANSI FORTRAN 77 compiler may have been

satisfactory but MS-FORTRAN 3.2 is a subset and does not have some of

the FORTRAN 77 character string handling features that were needed.

The first programming problem found was the lack of substring sup-

porz. Device commands are typically a string of characters specifying

an operation and a data value to use. Building these strings could be

handled in FORTRAN 77 by concatenating substrings. Since neither sub-

strings nor string concatenation is available in MS-FORTRAN 3.2, blocks

of code had to be written for each operation similar to the following

listing of a subroutine in GPIBX. An explanation follows:

SUBROUTINE FREQ
C***** THIS MAKES THE SIGGEN OUTPUT A SPECIFIED FREQUENCY *****

INTEGER DVM,I,WRT(512)
CHARACTER*I FREQ(13),INPUT(lI)

C
FREQ(1)- 'F'
FREQ(13)= 'I'

C
DVM- IBFIND ('SIGGEN ')
WRITE (*,10)

10 FORMAT('O' ,9X,'ENTER DESIRED FREQUENCY AS XX.XEX (.OIHz-12MHz)')
C

READ (*,20) INPUT
20 FOR.MAT(llAl)
C

DO 30 I- 1,11
FREQ(I+I)= INPUT(I)

30 CONTINUE

28

- ".... .. . A

C
CALL STRING (FREQ,13,'WRT)
CALL IBWRT (DVM,WRT,13)
RETURN
END

The code:

SUBROUTINE FREQ
INTEGER DVM,I,WRT(512)
CHARACTER*l FREQ(13),INPUT(II)

establishes the subroutine FREQ and declares the variables used in the

subroutine. DVM (DeVice Mnemonic) is a variable used to contain the

integer representation of a device address on the GPIB. I is a variable

used for the index of the arrays declared. WRT is the integer array

containing the command string to be sent over the GPIB by the subroutine

IBWRT. It has 512 as its upper dimension limit to enable it to accept

as large a string as needed.

The code:

FREQ(l)- 'F'
FREQ(13)- 'I'

puts a *F' in the first element of FREQ and an 'I' in the last element

of FREQ. The WAVETEK MODEL 270 Programmable Function Generator has a

command string format for selecting frequencies that require the first

character to be a 'F' followed by characters that specify the desired

frequency, such as '100000' or 'IE5' for 100 KHz. If the last character

in the string is an 'I' then the command is executed immediately.

The code:

DVM- IBFIND('SIGGEN ')

uses the function IBFIND to place the integer representation of the

address of the device SIGGEN (signal generator) in the variable DVM.

29

-. .

The code:

WRITE (*,i0)
10 FORMAT('0',9X,'ENTER DESIRED FREQUENCY AS XX.XEX (.0lHz-12MHz)')

READ (*,20) INPUT
20 FORMAT(llAl)

generates an on-screen menu that requests the user to enter a frequency

via the keyboard.

The code:

DO 30 I- 1,11
FREQ(I+l)- INPUT(I)

30 CONTINUE

builds command strings using previously stored characters and those

entered by the user.

The code:

CALL STRING (FREQ,13,WRT)
CALL IBWRT (DVM,WRT,13)
RETURN
END

uses the subroutine STRING to put the command string FREQ in the form

required for use with the subroutine IBWRT. IBWRT sends the integer

array WRT that represents the command string in FREQ to the device

identified by the variable DVM. The 13 is the number of bytes to be

transferred and is required for both STRING and IBWRT.

The subroutine IBWRT has three parameters. It requires the GPIB

address of where the message is going, the integer vector to be passed,

and the number of characters represented in the integer vector being

passed. MS-FORTRAN 3.2 does not have an intrinsic function to return

the length of a string. The programmer must keep track of the length of

strings being passed. In some cases the length of a string depends on

run-time input from the user. To cover all the possible cases the

30

. ,, .% -. .° - -. . .. -.,. . .. -, .'o.. - .--. -'.'' ' - ...€ .""%

:k~~~~~ ~ ~ ~ .7 -V :W* -7 ' WV I

character string variables used to input command strings are larger than

always needed. This adversely affects both memory requirements and run-

time efficiencies.

The most difficult problem encountered was reading data returned

from a device. The subroutine IBRDF reads data from a device into a

file. If the file did not previously exist, a new one is created. Once

the data has been copied into the file, IBRDF closes the file.

The book, Structured FORTRAN 77 For Engineers And Scientists (Ref.

4), was heavily relied on as a FORTRAN 77 reference. It does not list

binary files as one of the file types supported. After many unsuc-

cessful attempts of reading the data from one of these files a call was

made to the Microsoft Users Hotline. A Microsoft representative recom-

mended opening the file as a BINARY type of file explaining that MS-

FORTRAN 3.2 does support binary files. The following is an example of

FORTRAN code that was used to successfully open files for use in the

system controller program:

OPEN (l,FILE-'A:DATA',STATUS-'OLD',FORM-'BINARY')

These BINARY files contained numeric data that could not be read

with formatted read statements. Characters have to be read out one at a

time into arrays before the data is available for numeric processing.

Some data files can have over 5,000 characters and take a lot of time to

be read into arrays.

The data format used by specific devices can cause problems as -.:eil.

The waveform data from the TEK 5223 Oscilloscope comes over the GPiB as

a string of numbers separated by commas. The numbters aro ore, or

31

. . .

~'S* -' ~ 5*. ,~- .. * .. .* ,. . % -- 'S

three digits long and can have a minus sign in front. It is not possi-

ble to read this string of characters with a formatted read statremen. to

pull out: the separate data values. A great deal of code wcas wrirr-en

just to get this data in a usable form.

4.

7. DEMONSTRATION SUBROUTINES

Once the basic objectives of this study were met, further work was

done to investigate the issues involved with developing software modules

to perform a sequence of the basic operations already developed. To

this end a subroutine to generate a BODE plot of a two port network and

a subroutine to plot the waveforms shown on the digitizing oscilloscope

:ere written. This chapter discusses these two subroutines and hick-

lights some of the problems encountered.

A. BODE PLOT SUBROUTINE

The BODE plot subroutine is selected in the SIGNAL GENERATOR MENU.

This subroutine generates and records the data necessary to make a plot

of input frequency vs. gain magnitude for a two port network. The user

can select the starting and stopping frequencies to be swept while data

is being recorded. The user also selects the number of points to be

taken, up to 400. More points could be taken but the plotting software,

Slide;rite Plus, can plot a maximum of only 400 total data points on a

graph. This corresponds to one line of 400 points or two lines of 200.

etc

The rms voltage of the output and the corresponding input frequencv

are recorded for each frequency 4enera:ed. Figure 5.1 is block diagram

o! ,ow the svstem is conflgl' red -o -ond,_ct this test. The manitude of

the transfer Fain is caculae, as -IongoV " and recorded in
0' c rT~s

tr rqle-v Tllis (ILI-"i is theIl p o

ei ewith teS ct,.r te P ndin in nc pick;!_"• c i3 sh.n i

.
-e1

Figure 5.2 was examined with this subroutine and the corresponding Bode

Plot is shown in Figure 5.3. The input signal is assumed constant over

all frequencies of the sweep.

43 TWO
" PORT

I~j2 NETWORK 4

LOW HGH

SIGNAxUL DIc4-rAL
GENERTOR NUTZAEFI* -4

-<

U

0

-

PUSOAL COfMJ7T

Figure 5.1 Block Diagram of Bode Plot Test

The Bode Plot shown in Figure 5.3 appears to represent the response

of a Low-Pass Filter. The circuit is made up of passive elements so the

gain is always zero DB or less. The circuit gain decreases as the input

frequency increases. There appears to be a resonant frequency up at

around I U1z. This is probably due to some stray reactances present in

the circuit components that have little effect at the lower frequencies.

34

%,.

-~TY - I P I I. T 0 1- -A-S 5-. . -

I OK O siS

Figure 5.2 Low-Pass Filter

U 10

0* 0
a.

1 ~ -10

-20

-3

z
* -40

-50

-60

-70

I E2 1E3 1E4 1E5 IE6 1E7

FRECUENCY (HZ.7-

Figure 5.3 Bode Plot of the Low-Pass Filter Circuit

35

II
Caution must be used when using this Bode Plot subroutine as some

circuits tested were observed to load the signal generator at various

frequencies and cause the input voltage to fall off. The change in

input voltage may be very slight and not visible on the oscilloscope.

The input voltage should always be checked with a voltmeter to be sure

it remains constant. This problem could be corrected by using two

voltmeters connected to the GPIB or by using a multiplexer to enable one

voltmeter to take two different readings at the same frequency.

B. WAVEFORM RECORDER SUBROUTINE

The waveform recording routine is selected in the OSCILLOSCOPE MENU.

The oscilloscope samples the input signal on either input channel and

digitizes the amplitude. The number of sample data points generated

depends on the sweep rate selected and the number of channels being

displayed. For one dual trace amplifier in use and a sweep rate of not

less than .1 msec/div, 512 points are taken representing a period of

time equal to ten time divisions (one full oscilloscope screen). For

sweep rates less than .1 msec/div, 1024 points are taken. The increase

in the number of points is to avoid aliasing by under-sampling.

The plotting software, SlideWrite Plus, can plot a maximum of 400

points. The waveform recording subroutine selects 400 out of 512 or 341

out of 1024 points for plotting. The 400 out of 512 are selected by

taking the first four of every five points up to 500 points and ignorirz;

t-he last twelve points. The 341 points are selected by taking the first

of every three data points up to 1024 points. Either number of points

36

.'.-.. v .,.. -""- • •- " . -. ;--.'v '. ,.....-- - - - - -.. '.,..-.. ...-". " ' "' . . -- ,.- -

do a fine job of representing a five inch wide oscilloscope trace with a

few cycles of a waveform displayed.

No scaling information is available from the oscilloscope via the

GPIB. The user must enter the volts/div and time/div to allow the

subroutine to properly scale the data. The numbers from the oscilloscope

represent only the voltage amplitude information. Each vertical scale

division is 100 units, so a value of 250 represents 2.5 divisions above

the y-axis and a value of -320 represents 3.2 division below the y-axis.

The waveform recorder subroutine uses the volts/div to scale the numbers

transferred from the oscilloscope into volts.

This subroutine also calculates the time scaling information .v

using the time/div entered by the user and the user's response to ques-

tions about how many waveforms are being displayed. Both pieces of

information dictate how many data points are sampled by the oscilloscope

during one display trace.

More expensive oscilloscopes have the scaling information available

over the GPIB.

Figure 5.4 shows a plot of a I KHz sine wave output by the 'AVETEK

MODEL 270 into Channel I of the TEK Oscilloscope. The signal has a peak

amplitude of five volts. The volt/div is set on five volts/div and the

timeidiv is set on .2 msec/div. This waveform is represented by 512

points sent from the oscilloscope and has been plotted with ¢00 points.

The plot is a very smooth sine wa.e.

Figure 5.5 is a plot of the waveform shown on the osciloscope when

a i Hz sq ar wve is output from the si na! <enerator into Chruine1 1

of the os,:illoscope, The v - 5 o o oi S d-i :

37

A

r ivy..-.a

time/div is set on 0.5 microseconds/div. The plot is a very accurate

4P representation of the waveform shown on the oscilloscope. The slight

distortion of this high frequency signal is clearly visible in the plot.

4.-

20r

15

10

-5

1.10

TIME (SEC)

Figure 5.4 Plot of I K1-lz Sine Wave Shown on O'Scope

38

20 I

15 t

5E 5

TiME (SEC)

Figure 5.5 Plot of 1 MJ-z Square wave Shown on O'Scope

39

,.'.', -,'.-.'.''..'.. ...'..'-'. , ,, •-. .,-. , -,* *,.
, --""'> ' ' 'mr - - . . .'-*" .. -. _ ,

VI. PROGRLMING GUIDELINES

While developing this system certain steps of the development were

repeated. A set of steps evolved to be performed every time a new

function was implemented in software. This chapter outlines these steps

* ! and details items to watch for when developing modules to use in the

system.

A. OUTLINE THE TASK

The task to be performed was outined or. caper This included

drawing a schematic diagram i' .- -r ach test point

was labeled to indicate the - connections

of the test equipment to be .s-" . •.,"n. gh. and

Guard were indicated Labe.s f r- .- -. .. .-: i.sgned variable

names in the system development a .- - "r or.nect-.on points

were labeled in FORTRAN 77 as -H -A. H'A. a JARD

Sketching a block diagram of tre process to be performed is very

helpful. This can be done usinz standard fLow dhartLng techriques. A

block diagram of the process helps to show how control in the program

flows and where data flows during execution.

B. MODEL TASK WITH IBIC

The program IBIC was run to develop the command strings necessary to

perform the task outlined. These command strings are unique for each

piece of equipment and are detailed in each equipment's technical

.40

!$h ::: . -. :i ; . .::- . - ; .: ,: i:': -;.'.. - ,- ,, i ' , - .

reference manual. Using IBIC allows for interactively entering command

strings, executing them, and observing the results.

C. GENERATE CODE

Once the necessary command strings have been generated, program code

in the programming language of choice can be written. This study used

Microsoft FORTRAN 3.2, a subset of ANSI FORTRAN 77. Many of the issues

discussed apply to other languages as well.

Globally scoped variables were avoided. The handler from N;I uses

three global variables: IBSTA (status word), IBERR (GPIB error code),

and IBCNT (the number of bytes sent). These should be the only globally

scoped variables used. Using only locally scoped variables avoids the

problems of side-effects and indiscriminate access that global variables

are subject to. This speeds program development time, improves program

readability, and facilitates software maintenance.

Program modules were developed separately from the existing system

program. This kept the amount of text to review with the editor being

used to a minimum. For this study Wordstar was useQ as the text editor

and allowed the user to view twenty-five lines of programming code in

one screen. The program modules under development were written as

subroutines. This ensured the proper identification of formal parame-

ters required to be passed back and forth when the module was integrated

into the existing system program.

Previously developed subroutines were used when applicable. The

editor can then copy blocks of text into files. The MS-FORTRAN Metacom-

mand $INCLUDE can be used to include other files for compilation with

41

T7 . . -. 7. . .

the one under development. This helps to keep the size of the file

being edited to a minimum.

Once the module is written and compiled, it should be tested exten-

sively. By using the windowing environment of DESQview the system

program GPIBX, IBIC, and the developed module were run in parallel.

This facilitated testing the module as it allows observing the real time

interaction of the module with the system program without actually

changing the system program. The two programs are still separate and

cannot change the operation of either's code.

D. INTEGRATE NEW CODE INTO GPIBX

"hen the new module performs correctly, it can be implemented in the

system program, GPIBX.FOR. The editor moves the necessary block of code

from the developed module file into the GPIBX.FOR file. The necessary

modifications were made such as the text of menus, additional function

options, the addition of subroutine calls and returns, and the addition

of comment lines to document the new subroutines.

All subroutines developed in this study have a single point of

return. This gives up some flexibility in programming but helps program

readability. This is why menu selection proceeds in one level at a time

and out one level at a time.

42

L%* -1 1._1

-IV .7 -.. .

VII. CONCLUSIONS AND RECOmMENDATIONS

This thesis took a close look at the GPIB interface circuitry and

software made by National Instruments to enable an IBM-PC to be a GPIB

system controller. Software was developed to implement interactive

control of the test equipment from the computer keyboard. A subroutine

to enable waveform data acquisition from the TEK 5223 Digitizing Oscil-

loscope and to plot the data using software provided by Advanced Graph-

ics Software Inc. on a HP740A plotter was developed. Another subroutine

to generate a Bode Plot for a two-port system was developed.

A. CONCLUSIONS

The basic electronic laboratory equipment used at NPS are manual

versions of the test equipment used in this study. This study has shown

how an interactive program could be developed to allow automation of

several of the processes involved in executing basic laboratory exer-

cises such as data acquisition, waveform plotting, and Bode Plots. The

results obtained point out several concluding points:

1. Selection of a system development language is key. MS-FORTRAN 3.2
doesn't support enough of the FORTRAN 77 extensions to make de-
velopment as straight-forward as possible. The bulk of pro-
gramming involves string manipulations. A language such as C is
probably better suited to this application.

2. Selection of an IBM-PC based computer enabled use of several
different software packages for the IBM-PC and its compatibles.
Editing the software was performed with WORDSTAR bv MICROPRO.
Operating the computer as a development system was done with
DESQVIEW by QUARTERDECK. Plotting of data was done with
SLIDEVRITE PLUS by ADVANCED GRAPHICS SOFTWARE. Using a widely
supported computer such as the PC makes an extensive amount of
software available giving any system development undertaken a lot
of tools to use.

43

3. Use of a window based operating system such as Desqview allowed
for several different IBIC sessions to be run at what appears to
be the same time to the user; they actually run one at a time.
This allowed for quick investigation of the necessary command
strings to have a specific task performed by a particular piece of
test equipment. Several pieces of equipment can be operated at
the same time this way. The developed program, GPIBX, can also be
run and the interaction of the GPIBX and the test equipment can be
observed. A windows environment greatly speeds system
development.

4. Great care must be used when selecting software packages to be
used with the system. A plotting/graphics package written by
Enertronics was first tried to handle the plotting requirements.
This software was not able to generate logarithmic plots as adver-
tised. It also did not plot as many data points per line as
stated in the manual. These deficiencies led to the use of
SlideWrite Plus for plotting.

5. Similar caution must be used when selecting GPIB devices as well.
The TEK oscilloscope sends back graphic data as a string of ASCII
characters. It requires a lot of program code to put these char-
acters in a form usable in FORTRAN to express numeric data.

6. Developing a program that is menu driven and allows the user to
specify a series of operations, tests , and measurements for the
GPIB controller to perform is beyond the scope of what a student
can do as a thesis assignment. Such a system is technically
feasible. NI recently began marketing just such a
software/hardware package called Labview. It is written for an
Apple Macintosh computer and may not have the I/0 flexibility
nmeded to make use of the different peripherals required for a
specific development.

7. The GPIB connector is made to allow stacking several connectors at
the same connection point. As a result, the cable feeds in at a
right angle to the connector. On the IBM-PC the arrangement of the
connector in the back of the computer is such that the cable binds
up against the computer housing. A GPIB socket extender would
eliminate this annoying problem.

B. RECOMMENDATIONS

Further thesis work should be done evaluating some of the new soft-

ware packages available at this time or this system could be developed

into a fully interactive lab teaching aid for the elementary labs taught

at NPS. As work progressed more sophisticated labs could be automated.

44

L. -L- Y' ' 'Y ' ' " ": -"" ". . ' ":',' . :. ..2 ,';',, J¢* J .'".. . -i '-'..1-

The development language should be changed to one having good char-

acter string handling primitives. Selection of a language should be

based on an evaluation of the documentation available, portability of

compiled programs to run on different but compatible computers, run time

speed of compiled programs, and the programming experience of the

programmer.

The local operation of devices on the GPIB should always be avail-

able to allow students the opportunity to investigate their circuits

outside the control of the computer program. Too much automation would

be detrimental to a student's understanding of how an instrument works

and what its capabilities and limits are. Observation of the operation

of test equipment provides a lot of real world experience in applying

concepts developed in different classes.

A proposed student work station that could be used in an automated

lab environment is shown in Figure 7.1. The block diagram shown in

Figure 7.2 shows how these work stations could be connected to a single

computer, printer, and plotter. The cost of personal computers used for

this application may be low enough to have a dedicated personal computer

for each work station. Having a computer at each work station would

prevent a single computer failure from stopping the work of all

students.

45

. -'D'lii lji• % %** * '",',",
"

" - ...- . • "t ." . .) * ."j.;".- - "% ' '° " . .' -'- % " '#%

TES7

MULTIPLEXER

3Q4AJT UCJIiTER POWER

O'SCOPE TMRWLWEE SUPPL -Y

0 GRIBx

P& SQNAL COAJU

Figure 7.1 Proposed Student Work Station

46

STUDENT STUDENT STUDENT STUDENT
NCRK WCRK WOR4K vVCORP

*STATION STATION STATION STATION

-U

0

PRIN'TER TIME SHARE
d COWUTER

Figure 7.2 Proposed Time Share System

47

APPENDIX A

DECL.FOR LISTING

This is a listing of the Fortran variable declarations recommended
for use and provided by National Instruments. This listing was provided
by National Instruments with the exception of the list of variables
appearing as all capital letters.

c Microsoft FORTRAN Declarations

$storage:2

c You must include the following common declarations
c in your program.
C
c status variables declared common by the language interface
c ibsta - status word
c iberr - GPIB error code
c ibcnt - number of bytes sent

common /ibglob/ ibsta, iberr, ibcnt

c Optionally include the following declarations in your
c program.

c
c GPIB Commands and meanings
c UNL - GPIB unlisten command
c UNT - GPIB untalk command
c GTL - GPIB go to local
c SDC - GPIB selected dev clear
c PPC - GPIB ppoll configure
c GET - GPIB group execute trig'r
c TCT - GPIB take control
c LLO - GPIB local lock out
c DCL - GPIB device clear
c PPU - GPIB ppoll unconfigure
c SPE - GPIB serial poll enable
c SPD - GPIB serial poll disable
c PPE - GPIB ppoll enable
c PPD - GPIB ppoll disable

integer UNL, UNT, GTL, SDC, PPC, GET, TCT
integer LLO, DCL, PPU, SPE, SPD, PPE, PPD

c GPIB status bit vector :
c global variable ibsta and wait mask
c ERR (hex 8000) - Error detected
c TIMO (hex 4000) - Timeout
c END (hex 2000) - EOI or eos detected
c SRQI (hex 1000) - SRQ detected by CIC

48

c RQS (hex 800) - Device needs service
c CMPL (hex 100) I/O completed
c LOK (hex 80) Local lockout state
c REM (hex 40) - Remote state
c CIC (hex 20) Controller-in-charge
c ATN (hex 10) Attention asserted
c TACS (hex 8) Talker active
c LACS (hex 4) - Listener active
c DTAS (hex 2) Device trigger state
c DCAS (hex 1) Device clear state

integer ERR, TIMO, END, SRQI, RQS, CMPL, LOK
integer REM, CIC, ATN, TACS, LACS, DTAS, DCAS

c Error messages returned in common variable iberr
c EDVR - 0 DOS error
c EGIC - 1 Function requires board to be CIC
c ENOL - 2 Write function detected no Listeners
c EADR - 3 Interface board not addressed correctly
c EARG - 4 Invalid argument to function call
c ESAC = 5 Function requires board to be SAC
c EABO - 6 I/O operation aborted
c ENEB 7 Non-existent interface board
c EOIP - 10 I/O operation started before previous operation completed
c ECAP - 11 No capability for operation
c EFSO - 12 File system operation error
c EBUS - 14 Command error during device call
c ESTB - 15 Serial Poll status byte lost
c ESRQ - 16 SRQ remains asserted

integer EDVR,ECIC,ENOL,EADR,EARG,ESAC,EABO
integer ENEB,EOIP,ECAP,EFSO,EBUS,ESTB,ESRQ

c EOS mode bits
c BIN (hex 1000) Eight bit compare
c XEOS (hex 800) - Send EOI with eos byte
c REOS (hex 400) Terminate read on eos

integer BIN, XEOS, REOS

c Timeout values and meanings
c TNONE - 0 Infinite timeout (disabled)
c TlOus - I Timeout of 10 us (ideal)
c T3Ous - 2 Timeout of 30 us (ideal)
c TlOOus - 3 Timeout of 100 us (ideal)
c T300us - 4 Timeout of 300 us (ideal)
c Tlms - 5 Timeout of I ms (ideal)
c T3ms - 6 Timeout of 3 ms (ideal)
c TlOms - 7 Timeout of 10 ms (ideal)
c T30ms - 8 Timeout of 30 ms (ideal)
c TlOOms - 9 Timeout of 100 ms (ideal)

49

c T300ms - 10 Timeout of 300 ms (ideal)

c Tls - 11 Timeout of I s (ideal)

c T3s - 12 Timeout of 3 s (ideal)

c TlOs - 13 Timeout of 10 s (ideal)

c T30s - 14 Timeout of 30 s (ideal)

c TlO0s - 15 Timeout of 100 s (ideal)

c T300s - 16 Timeout of 300 s (ideal)
c Tl000s - 17 Timeout of 1000 s (maximum)

integer TNONE,TlOusT30us,Tl00usT300us
integer TlmsT3msTlOms.T30msTlOOms
integer T300ms ,Tls,T3s, T0s, T30s

integer Tl00s,T300sTl000s

c Miscellaneous
c S specifies sense of PPR
c LF - ASCII line feed character

integer S,LF

c Variables passed in to GPIB function examples

c cmd command buffer
c rd read data buffer
c wrt write data buffer

C bname - board name buffer
c bdname board or device name buffer
c flname file name buffer

r. bd - board or device number
c dvm device number
c v -"value" parameter
c cnt byte count for transfers
c mask events to be waited for

c spr serial poll response byte

c ppr parallel poll response byte

integer cmd(l0),rd(512),wrt(512)
character*8 bname, bdname

character*50 flname
integer bd,dvm,v,cnt,mask
integer spr,ppr

C***** THESE DECLARATIONS ARE NEEDED TO RUN GPIBX
C ---SOME DECLARATIONS...
C SELECTION: OPTION SELECTED BY USER

ERROR2SELECTION: ERROR MESSAGE FOR INCORRECT SELECT-10 " BK:
C PS: POWER SUPPLY SUBROUTINE
C DLMM: DIGITAL MLLTIMETER SUBROUT0 = ,E

C COUNTER: COUNTER/TIMER SUBROUT I'E
C SIGGEN: SIGNAL GENERATOR SUBRO1UT.I,
C OSCOPE: OCCILISCOPE SUBROUTINE
C

CHARACTER*1 SELECTION

50

......... ." .."..-.. -.. ..,'" .'.. i....

CHARACTER*50 ERROR2SELECTION
ERROR2SELECTION - 'ERROR .. . INTVALID SELECTION, TRY AGAIN;.'

C
C
c GPIB Commands: values

data UNL/63/,UNT/95/,GTL/Ol/,SDC/04/,PPC/05/
data GET/O8/,TCT/09/, LLO/17/,DL/20/PP',/21/
data SPE/24/,SPD/25/,PPE/96/,PPD/112/

c GPI3 status bit vector: values
c To check for error in ibsta - if (ibsta .LT. 0) ...
c data ERR/-32768/

data TIMO/l6384/,END/8192/,SRQI/4096/
data RQS/2048/,CMPL//256/,LOK/128/RE-/'64,'.CIC,3i2
data ATN/16/,TACS/8/,LACS/4/',DTAS/2 /,DCAS/l/

" Iberr error messages: values

data EDVR/O/, ECIC/l/, ENOL/2/,EADR/3/, EARC/4/
data ESAC/5/,EABO/6/,E.NEB/7/,EOIP/10/,ECAP,/II/
data EFSO/l2,EBUS/14/, ESTB/15/, ESRQ/l6 1

c EOS mode bit values

data BIN/4096/ ,XEOS/2048/ ,REOS/1024/

c Timeout values

data TNONE/O/, Tl~us/l/,T30us/2/, TlOOus/3/, T300us/4/
data Tlms/5/,T3ms/6/,TlOms/7/ ,T3Oms/8/,TlOOms/9/
data T300ms/lO/,Tls/ll/,T3s/12/TlOs/13/,T3Os/14/
data TlO0s/15/,T300s/16/,TlOOOs/l7/

c Miscellaneous values

data S/08/,LF/lO/

-, . t , . • .- , - . --. .. . • -, -- - . ._-- .;' ' . . f '-. --. -. -- .
-

APPENDIX B

• 'GPIBX PROGRAM LISTING

This is a listing of the developed system controller program called
GPIBX.

$INCLUDE: 'DECL.FOR'
C
C GPIBX.FOR
C

, C IBM-PC/AT GPIB CONTROLLER PROGRAM

C
C MAIN PROGRAM
C
C*,**** THIS CALL INITIALIZES THE GPIB BUS *****

CALL IBINIT (IBSTA)

C
1 CALL CLEAR
2 CALL MAINMENU

READ (*,10) SELECTION
10 FORMAT (IA1)

IF (SELECTION EQ. 'P') THEN
CALL PS

ELSEIF (SELECTION .EQ. 'D') THEN

CALL DMM
ELSEIF (SELECTION .EQ. 'C') THEN

CALL COUNTER
ELSEIF (SELECTION EQ. 'S') THEN

CALL SIGGEN
ELSEIF (SELECTION EQ. '0') THEN

CALL OSCOPE
ELSEIF (SELECTION .EQ. 'F') THEN

CALL FUNCMU
ELSEIF (SELECTION NE. 'X') THEN

WRITE (*,20) ERROR2SELECTION
20 FORMAT ('O',1A50)

GOTO 2

ELSE
STOP

ENDIF
GOTO I
END

SUBROUTINE CLEAR
THIS CLEARS THE SCREEN '

S--- SOME DECLARATIONS....

CHARACTER*1 Cl, C2, C3, C4

52

-. " C %. -. .-. % - /%. .% . , N.- .%%- .% .- .- .%-.-% . %- % .% ,%

INTEGER*2 IC(4)

EQUIVALENCE (CIIC(1)),(C2,1C(2)),(C31C3)<.4,14))
DATA IC/16=IB,16-5B,16=32,16=4A/

C
WRITE (*,I) CI,C2,C3,C4

1 FORMAT (IX,4AI)
RETURN
END

C
C

SUBROUTINE MAINMENU

C* -*** THIS PUT THE MAIN MEN'U ON THE SCREEN **-**

C --- SOME DECLARATIONS..
C MENUDIS: MENU DISPLAY

CHARACTER*50 MENUDIS,PS5010,DM5010,DC5009, A..TET .KEKIT.7J

MENUDIS - ' **-* AINE >*'
PS5010 'P POWER SUPPLY'

DM5010 'D DIGITAL MULTIMETER'

DC5009 'C COUNTER/TIMER'
WAVTEK 'S SIGNAL GENERATOR'

TEK '0 OSCILLOSCOPE'
FUNC = 'F special FUNCTIONS'

EXIT = X........ EXIT PROGRAM'
C

WRITE (*,10) MENUDIS
10 FORMAT ('O',IA50)

WRITE (*,20) PS50O
20 FORMAT ('O',IA50)

WRITE (*,20) DM5010
WRITE (*,20) DC5009
WRITE (*,20) WAVTEK
WRITE (*,20) TEK
WRITE (*,20) FUNC
WRITE (*,20) EXIT
WRITE (*,30)

30 FORMAT ('O',9X,'ENTER YOUR SELECTION.')
C

RETURN
END

* C

SUBROUTINE PS
* THIS IS THE DRIVER FOR THE PCWER SUPPLY

- --- SOME DECLARATIONS...

* - PSSELECT: POWER SUPPLY MENU SELECT I

CHARACTER*1 PSSELECT

CALL CLEAR
2 WRITE (,10)

*4 ~4..- -. 4 .4

..... WRITE (*20)--

WRITE (*320)
WRITE (*,40)
WRITE (*540)
WRITE (*650)

WRITE (*,65)
C
10 FORMAT ('O','*** POWER SUPPLY MENU**)
20 FORMAT ('O','1 SET VOLTAGES')
30 FORMAT ('O','2 SET CURRENT')
'40 FORMAT ('O','3 ENABLE OUTPUT')
50 FORMAT ('O','RET RETURN TO MAIN MENU')
60 FORMAT ('O','X EXIT PROGRAM')
65 FORMAT ('O',9X,'ENTER YOUR SELECTION.')

* C
READ (*,70) PSSELECT

*70 FORMAT (lAl)
IF (PSSELECT .EQ. '1') THEN

CALL SETVOLT
ELSEIF (PSSELECT .EQ. '2') THEN

CALL SETCURRENT
ELSEIF (PSSELECT .EQ. '3') THEN

CALL OUTONOFF
ELSEIF (PSSELECT EQ. ')THEN

RETURN
ELSEIF (PSSELECT .EQ. 'X') THEN

STOP
ELSE

WRITE (*,80)
80 FORMAT ('0',' INVALID INPUT, TRY AGAIN')

GOTO 2
ENDIF
GOTO 1
END

Cp

C

SUBROUTINE DMM
C**-*** THIS IS THE DRIVER FOR THE DIGITAL MULTIMETER **

CHARACTER*l ACDC(4),ACV(3),DCV(3),DIODE(5),OMS(4),DMMSEL
INTEGER WRT(512),DVM

C
ACV(1)- 'A'
ACV(2)- 'C'
ACV(3)- 'V'

C
ACDC(1)- 'A'
ACDC(2)= 'C'
ACDC(3)- 'D'
ACDC(4)- 'C'

DCV(1)- 'D'

54

DCV(2)- 'C'

DCV(3)- 'V'
C

DIODE(l)- 'D'
DIODE(2)= 'I'

DIOLE(3)- '0'

DIODE(4)- 'D'
DIODE(5)- 'E'

OHMS(1)- '0'
OHMS(2)- 'H'
OHMS(3)- 'M'

OHMS(4)- 'S'
C

1 CALL CLEAR

2 WRITE (*,10)
WRITE (*,20)
WRITE (*,30)
WRITE (*,40)
WRITE (*,50)
WRITE (*,60)

WRITE (*,70)
WRITE (*,80)
WRITE (*,90)

C
10 FORMAT ('0', '*** DIGITAL MULTIMETER MENU ***')
20 FORMAT ('O',' DC VOLTS')
30 FORMAT ('0','2 OHMS')
40 FORMAT ('0','3 AC VOLTS rms')

50 FORMAT ('0','4 AC+DC VOLTS rms')
60 FORMAT ('0' '5 DIODE TEST')
70 FORMAT ('0','RET RETURN TO MAIN MENU')
80 FORMAT ('V 0 'X EXIT')
90 FORMAT ('O','ENTER YOUR SELECTION')
C

READ (*,100) DMMSEL
100 FORMAT (lAI)
C

DVM- IBFIND ('DM.M '

IF (DkMSEL .EQ. '1' THEN
CALL STRING (DCV,3,RT)
CALL IBWRT (DVM, WRT,3)

ELSEIF (DMIMSEL EQ. '2') THEN

CALL STRING (OHMS, 4 ,,RT)
CALL IBwRT (DVMjRT, 4)

ELSEIF (D.MMSEL EQ. 3' THEN
CALL STRING (AC,3,,;RT)
CALL IBWRT (DVM,'RT, 3)

ELSEIF (D.4MSEL EQ. '4') THE;
CALL STRING (ACDC, .ART
CALL IBWRT (D'-, RT,

ow u ' ----- 7P-w7I

ELSEIF (DMMSEL EQ. '5') THEN
-' CALL STRING (DIODE,5,WRT)

CALL IBWRT (DVM,WRT,5)

ELSEIF (DMMSEL EQ. ')THEN

RETURN
ELSEIF (DMMSEL .EQ. 'X') THEN

STOP
ELSE

WRITE (*4110)
110 FORMAT ('O','INVALID SELECTION, TRY AGAIN')

ENDIF
CT

GOTO 1
END

C
C

SUBROUTINE COUNTER
C***** THIS IS THE UNDEVELOPED DRIVER FOR THE COUNTER/TIMER***
C --- -SOME DECLARATIONS ...
99 RETURN

* END
C
C

SUBROUTINE SIGGEN
p C***** THIS IS THE SIGNAL GENERATOR DRIVER *-*

C --- -SOME DECLARATIONS ...
C SIGSEL: SIGGEN MENU SELECTION
C

CHARACTER*l SIGSEL
C
1 CALL CLEAR
2 WRITE (*410)

WRITE (*,20)
WRITE (*,30)
WRITE (*,40)
WRITE (*,50)
WRITE (*,60)
WRITE (*,65)
WRITE (*,70)
W;RITE (*,80)
WRITE (*,90)

FORMAT ('O','*** SIGNAL GENERATOR MENU**'
FORMAT ('0',l '.........FREQUENCY')
FORMAT ('0', '2......... AMPLITUDE')
FORMAT ('O','3FUNCTION')
FORMAT ('O','4OFFSET')
FORM'AT ('0', '5OUTPUT ENABLE')
FORMAT ('0', '6.........SWEEP FREQUENCIES')
F 0RMA.-\T ('0', 'RETRETURN TO MAIN MENU'

* FPYT 'D' , 'XEXIT')

56

90 FORMAT ('0',9X,'ENTER YOUR SELECTION')

C
READ (*,100) SIOSEL

100 FORMAT (lAl)
C

IF (SIGSEL .EQ. '1') THEN
CALL FREQ

ELSEIF (SIGSEL .EQ. '2') THEN
CALL AMP

ELSEIF (SIGSEL .EQ. '3') THEN

CALL FUNC
ELSEIF (SIGSEL .EQ. '4') THEN

* CALL OFFSET
ELSEIF (SIGSEL EQ. '5') THEN

CALL SIGOUT
ELSEIF (SIGSEL .EQ. '6') THEN

CALL SWEEP
ELSEIF (SIGSEL .EQ. ')THEN

RETURN
ELSEIF (SIGSEL .EQ, 'X') THEN

STOP
ELSE

WRITE (*,11O)
110 FORMAT ('O','INVALID RESPONSE, TRY AGAIN.')

GOTO 2
END IF
GOTO 1
END

C
C

SUBROUTINE FREQ
G***** THIS MAKES THE SIGGEN OUTPUT A SPECIFIED FREQUENCY **

INTEGER DVM,I,WRT(512)
CHARACTER*l FREQ(13) ,INPUT(11)

C
FREQ(1)- 'F'
FREQ(13)- 'I'

G
DVM- IBEIND ('SIGGEN '

WRITE (*,10)
10 FORM4AT ('0' ,9X, 'ENTER DESIRED FREQUENGY AS X.XX.XEX (.OlHz-12MHz)')
C

READ (*,20) INPUT
20 FORMAT (11Al)
C

DO 30 1- 1,11
FREQ(I+1)= TNPUT(I)

30 CONTINUE
C

GALL STRING (FREQl3,'WRT)
GALL IBWRT (DVMt4RT,13)

57

RETURN
END

C
C

SUBROUTINE AMP
C***** THIS MAKES THE SIGGEN OUTPUT A SPECIFIED AMPLITUDE

INTEGER DVM,I,WRT(512)
CHARACTER*1 AMP(13) ,INPUT(11)

* C
AMP(l)- 'A'
AMP(13)- 'I'

C
DVM- IBEIND ('SIGGEN '

WRITE (*,1O)
10 FORMAT ('O',9X,'ENTER DESIRED AMPLITUDE AS XX.XEX (FREE FORMAT)')

WRITE (*,15)
15 FORMAT ('0',9X,'SIGNAL AMPLITUDE IS Vpp FROM l~mV TO 1O.OV')
C

* READ (*,20) INPUT
20 FORMAT (1Al)
C

DO 30 I- 1,11
AMP(I+1)- INFUT(I)

30 CONTINUE
C

GALL STRING (AMP,13,WRT)
GALL IBWRT (DVM,WRT,13)
RETURN
END

* C
* C

SUBROUTINE FUNG
C***** THIS MAKES THE SIGGEN OUTPUT A SPECIFIED WAVEFORM***

* INTEGER DVM,I,WRT(512)
CHARACTER*l INPUT,CO(3),C1(3),C2(3),C3(3),C4(3)

C
COM1- 'C'
CO(2)- '0'
CO(3)- 'I'

C
C1(1)- 'C'
Cl(2)- '1'
Cl(3)- 'I'

C
C2(l)'- 'C'

*C2(2)- '2'
C2(3)- 'I'

C
C3(l)- 'C'
C3(2)- '3'
C3(3)- 'I'

58

0 C

G4(l)- 'C'
0 C4(2)- '4'

C4(3)- 'I'
C

DVM- IBFIND ('SIGGEN '

C
1 GALL CLEAR
2 WRITE (*,1O)

WRITE (*,20)
WRITE (*,30)
WRITE (*,4O)
WRITE (*,50)
WRITE (*,60)

0'WRITE (*,70)
WRITE (*,80)

10 FORMAT ('0' ,'*** SIGNAL GENERATOR FUNCTION MENU**)
20 FORMAT ('O','1 SINE WAVE')
30 FORMAT ('0','2 TRIANGLE WAVE')
40 FORMAT ('O','3 SQUARE WAVE in phase with sync output')
50 FORMAT ('O','4 SQUARE WAVE out of phase with sync output')
60 FORMAT ('O','5 DC OUTPUT VOLTAGE')
70 FORMAT ('0','RET RETURN TO SIGNAL GENERATOR MAIN MENU')
80 FORMAT ('O','X EXIT PROGRAM')
C

READ (*,90) INPUT
90 FORMAT (lAl)
C

IF (INPUT .EQ. 'l-) THEN
GALL STRING (GO,3,WRT)
GALL IBWRT (DVM,WRT,3)

ELSEIF (INPUT .EQ. '2') THEN
GALL STRING (cl,3,WRT)
GALL IBWRT (DVM,WRT,3)

ELSEIF (INPUT .EQ. '3') THEN
GALL STRING (G2,3,WRT)
GALL IBWRT (DVM,WRT,3)

ELSEIF (INPUT EQ. '4') THEN
GALL STRING (G3,3,WRT)
GALL IBWRT (DVM,WRT,3)

ELSEIF (INPUT .EQ. '5') THEN
GALL STRING (G4,3,WRT)
GALL IBWRT (DVM.WRT,3)

ELSEIF (INPUT EQ. ')THEN

RETURN
ELSEIF (INPUT EQ. 'X') THEN

STOP
0 ELSE

WRITE (*,100)
100 FORMAT ('O',9X,'INVALID ENTRY, TRY AGAIN')

GOTO 2

59

END IF

EN D

SUBROUTINE OFFSET

C***** THIS ENTERS A DC OFFSET FOR THE SIGGEN OUTPUT **

INTEGER DVM,I,WRT(512)
CHAP.ACTER*1 D(6),INPUT(4)

C
D(l)- 'D'

D6-'I'

C
DVM- IBEIND ('SIGGEN '

WRITE (*,10)
10 FORMAT ('O',9X,'ENTER DESIRED OFFSET AS -5.00 TO +5.00 VOLTS')

C
READ (*,20) INPUT

20 FORMAT (4A1)
C

DO 30 I- 1,4

D(1+1)- INPUT(I)

30 CONTIN UE

CALL STRING (D,6,WRT)
CALL IBWRT (DVM,tJRT,6)
RETURN
END

C
C

SUBROUTI 7 SIGOUT

* ~C***** THIS TOGGLES THE SIGGEN OUTPUT***

* CHARACTERkl PO(3),P1(3),INPUT
INTEGER JvRT(512),DVM

C
DVJM - IBFIND ('SIGGEN '

C
P0(1)- 'P'
P0(2)- '0'

P0(3)- 'I'

C
P1(1)- 'P'
P1(2)- '1'
P1(3)- 'I'

I WRITE (*,10)
10 FORMAT ('O' 9X, 'SIGNAL GENERATOR OUTPU.T ON? ENTER Y OR

READ (*,20) INPUT
20 FORMAT (1A1)

IF (INPUT EQ. 'Y') THEN

60

GALL STRING (P1,3,WRT)
CALL IBWRT (DVM,WRT,3)

ELSEIF (INPUT .EQ. 'N') TH-EN
CALL STRING (P0,3,WRT)
GALL IBWRT (DVM,WRT,3)

ELSE
WRITE (*,30)

30 FORMAT ('O','INVALID RESPONSE, TRY AGAIN')
GOTO 1

END IF
RETURN
END

C
C

SUBROUTINE SWEEP
C***** THIS SWEEPS THRU A RANGE OF FREQUENCIES

CH-ARACTER*8 INPUTA, INPUTB
GHARAGTER*1 FREQ(10) ,TEMP(8) ,INPUTG
INTEGER I,J,K,L,DVM,STEPS,WRT(512),TEMPA
REAL STARTF,STEPF,VALUE

C
FREQ(1) -'F'

FREQ(1O) -'1I

C
DVM - IBFIND ('SIGGEN '

C
GALL CLEAR
WRITE (*,10)

10 FORMAT (101,' SWEEP FREQUENCIES FUNCTION')
WRITE (*,20)

20 FORMAT ('O','ENTER STARTING FREQUENCY AS XXX.XEX (.OlHz-12t4Hz)')
READ (*,30) INPUTA

30 FORMAT (1A8)
WRITE (*,40)

40 FORMAT ('0','ENTER FREQUENCY STEP SIZE AS X-XX.XEX (O0lHz-12H1-z)')
READ (*,30) INPUTB
WRITE (*,50)

50 FORMAT ('O','ENTER NUMBER OF STEPS 1-99')
READ (*,60) STEPS

60 FORMAT (112)
C

READ (INPUTA,65) STARTE
65 FORMAT (BNF8.0)

READ (INPUTB,65) STEPF
C

READ (INPUTASO0) TEMP
80 FORMAT (8A1)
C

DO 70 I1,STEPS
DO 90 J-1,8

FREQ(J+1)-TEMP(J)

61

Nll< -wpu - b - h -.- -qR wll 1...V

90 CONTINUE
CALL STRING (FREQ,10,WRT)
CALL IBWRT (DVM,WRT,1O)
WRITE (*,95) STARTE

95 FORMAT ('0','FREQUENCY IS NOW ',FIO.2,' Hz')
WRITE (*,100) 1

100 FORMAT ('O','STEP #',12,
+ 'COMPLETE. ENTER RET TO CONTINUE OR ANY OTHER KEY TO END')

READ (*,110) INPUTC
110 FORMAT (lAl)

IF (INPUTC .NE. ')THEN

RETURN
ELSE

STARTF -STARTF + STEPF
VALUE - STARTF
DO 120 K-1,8

TEMPA - INT(STARTF/(10**(8-K)))
TEMP(KM CHAR (TEMPA + 48)
STARTF -STARTF -(TEMPA*10**(8-K))

120 CONTINUE
STARTF - VALUE

70 CONTINUE NI

RETURN
END

* C
C

SUBROUTINE OSCOPE
C***** THIS IS THE OSCOPE DRIVER **

DVM - IBEIND ('OSCOPE '

C
1 CALL CLEAR
2 WRITE (*,1O)

WRITE (*,20)
WRITE (*,30)
WRITE (*,40)
WRITE (*,50)
WRITE (*,60)
WRITE (*,70)

C
10 FORMAT ('O','*** OSCOPE MENU**'
20 FORMAT ('0',l 1........ RECORD WAVEFORM DATA')
30 FORMAT ('O','2 GO TO LOCAL')

*40 FORMAT ('0',13 REMOTE ENABLE')
50 FORMAT ('0','RET RETURN TO MAIN MENU')
60 FORMAT ('0','X EXIT')
70 FORMAT ('O','ENTER YOUR SELECTION')
C

READ (*,100) SELECTION
100 FORMAT (lAl)
c

62

IF (SELECTION .EQ. '1') THEN
CALL RECORD

ELSEIF (SELECTION .EQ. '2') THEN
CALL IBLOC (DVM)

ELSEIF (SELECTION EQ. '3') THEN
DVM - IBFIND ('OSCOPE ')

ELSEIF (SELECTION .EQ. ' ') THEN
RETURN

ELSEIF (SELECTION EQ. 'X') THEN
STOP

'ELSE
WRITE (*,110)

110 FORMAT ('O','INVALID SELECTION, TRY AGAIN')
GOTO 2

END IF
GOTO 1
END

C
C

SUBROUTINE RECORD
C***** THIS IS THE WAVEFORM RECORDING DRIVER *****

CHARACTER*1 SEL, ACCESM(4), ASCII(2), RECORM(13), RELAI1(7)
CHARACTER*15 REC, ACCESS, RELALL,FILNAM
INTEGER WRT(512) ,DVM
REAL TIMDIV,VOLDIV

C
ASCII(l) - 'A'
ASCII(2) - 'S'
REC - 'SEL SAVE.R;C?'
RELALL - 'REL ALL'

C
DVM - IBFIND ('OSCOPE ')

I CALL CLEAR
C

WRITE (*,800)
800 FORMAT ('0','THIS PROGRAM CREATES A DATA FILE THAT CAN BE')

WRITE (*,810)
810 FORMAT (' ','BE USED WITH THE SLIDE WRITE PLUS PROGRAM TO')

WRITE (*,820)
820 FORMAT (' ','PLOT THE WAVEFORMS ON THE OSCOPE. ADJUST THE')

WRITE (*,830)
830 FORMAT (' ','SCOPE FOR A PROPERLY TRIGGERED TRACE, NO JITTER')

WRITE (*,840)
840 FORMAT (' ','USE THE HORIZ CONTROL TO LEFT JUSTIFY THE TRACES')
C
2 WRITE (*,10)
10 FORMAT ('O','SELECT WAVEFORM DESIRED')

WRITE (*,20)
20 FORMAT ('0',' RIGHT COMPARTMENT CHANNEL 1')

WRITE (*,30)
30 FORMAT (' ','2 RIGHT COMPARTMENT CHANNEL 2')

63

WRITE (*,40)
40 FORMAT ('O','ENTER YOUR SELECTION 1 OR 2')

READ (*,50) SEL
50 FORMAT (lAl)

IF (SEL .EQ. '1') THEN
ACCESS - 'A Ri'

ELSEIF (SEL .EQ. '2') THEN
ACCESS - 'A R2'

ELSE
WRITE (*,60)

60 FORMAT ('O','INVALID SELECTION, TRY AGAIN')
GOTO 2

ENDIF
C

READ (ACCESS,70) ACCESM
70 FORMAT (4A1)

CALL STRING (ACCESM,4,WRT)
CALL IBWRT (DVM,WRT,4)

C
CALL STRING (ASCII,2,WRT)
CALL IBWRT (DVM,WRT,2)

C
C

READ (REC,80) RECORM
80 FORMAT (13A1)

CALL STRING (RECORM,13,WRT)
CALL IBWRT (DVM,WRT,13)

C
CALL IBRDF (DVM,'SCOPE '

C
WRITE (*,300)

300 FORMAT ('O','ENTER TIME/DIV AS X.XXEX')
READ (*,310) TIMDIV

310 FORMAT (1BNF1O.7)
TIM4DIV - TIM4DIV * 10. 0
WRITE (*,320)

320 FORMAT ('O','ENTER VOLTS/DIV AS X.XXEX')
READ (*,330) VOLDIV

330 FORMAT (1BNE12.6)
C

CALL SCALER (TIMDIV,VOLDIV)
C

READ (RELALL, 110) RELALM
110 FORMAT (7A1)

CALL STRING (RELALM,7,WRT)
CALL IBWRT (DVM,WRT,7)
CALL IBLOC (DVM)
WRITE (*,900)

900 FORMAT ('O','YOU CAN NOW USE SLIDE WRITE PLUS TO PLOT YOUR')
WRITE (*,910)

64

910 FORMAT C ','DATA FILES. HIT ENTER TO CONTINUE')
READ (*,920) SEL

920 FORMAT (1A1)
RETURN
END

C
C

SUBROUTINE SCALER (TIMDIV, VOLDIV)
C***** THIS SCALES THE DATA RECEIVED FROM THE OSCOPE **

CHARACTER*6 CURVE
INTEGER I,J ,K,MINUS,L,COUNT,END,NOPTS
CHAPACTER*1 OSDATA(5000),COMMA
REAL YDATA(1016) ,YTEM'P(3) ,TIMDIV,VOLDIV,XDATA,OFFSET
CHARACTER*12 FILINAM

C
COMMA-'''

C
NOPTS - 508

CIF (TIMDIV .LT. 0.000075) NOPTS - 1016
'IC

OPEN (1,FILE-'SCOPE ',STATUS-'OLD',FORM-'BINARY')
C

READ (1) CURVE
C

I-
1 READ (1,ERR-30,END-40) OSDATA(I)

I - 1+1
COTO 1

30 WRITE (*,5O)
50 FORMAT (C ',' ERROR IN READING FILE')
40 CLOSE (1)
C

COUNT - I
END -COUNT-3

C
I-
K-I

MINUS -0
100 IF (OSDATA(I) EQ. '-)THEN

MINUS - 1
I - +1

ENDIF
YTEMP(KM FLOAT(ICHAR (OSDATA(T)'))
YTEMP(KM YTEMP(KM 48.0
I - +1
K -K+1

IF (K .GT. 7) STOP
IF (OSDATA(T) NE. ')THEN

COTO 100
ELSE

65

GOTO 118
ENDIF

118 K - K-i
IF (K EQ. 3) THEN

YDATA(J) - (100.0*YTEMP(K-2))+(10.0*YTEMP(K-I))+YTEP(K)

ELSEIF (K EQ. 2) THEN
YDATA(J) - (10.0*YTEMP(K-I))+YTEMP(K)

ELSEIF (K EQ. 1) THEN

YDATA(J) - YTEMP(K)

ENDIF
IF (MINUS .EQ. 1) YDATA(J) - 0.0-YDATA(J)

YDATA(J) - ((YDATA(J)+5.0)/100.)*VOLDIV
J - J+l

I - I+l
MINUS - 0
IF (J .EQ. NOPTS) GOTO 120

K - 1
GOTO 100

C
120 WRITE (*,400)

.400 FORMAT ('O','ENTER DOS FILE NAME TO STORE WAVEFORM DATA IN')

READ (*,410) FILNAM

410 FORMAT (IAI2)
OPEN(2,FILE-FILNAM,STATUS='NEW',FORM-'FORMATTED')
I-i
K-i

XDATA - 0.0
IF (NOPTS EQ. 508) THEN

420 WRITE (2,220) XDATA,COMMA,YDATA(I)
220 FORMAT (E10.5,A1,FI0.3)

XDATA - (TIMDIV*I)/508.0

I-I+l
K-K+I
IF (K .EQ. 5) I-I+l

IF (K .EQ. 5) K-i
IF (I .EQ. 501) GOTO 300

GOTO 420
ELSE

OFFSET - TIMDIV/10I6

DO 500 1-1,1016,3
XDATA - OFFSET * (I-i)
WRITE (2,220) XDATA,COMMA,YDATA(I)

300 CONTINU]E

ENDIF
300 CLOSE(2)

RETURN
END

C
C

SUBROUTINE SETVOLT

C***,-* THIS SETS THE POWER SUPPLY OUTPUT VOLTAGE

66

3-J

No " . . m |7.i

CHARACTER*I SVOPT
C
I CALL CLEAR
2 WRITE (*,0)

WRITE (*,20)
WRIIE (*,30)

WRITE (*,40)
WRITE (*,50)
WRITE (*,60)

WRITE (*,65)
10 FORMAT ('0','*** VOLTAGE SETTING MENU ***')
20 FORMAT ('0','I VPOS')
30 FORMAT ('0','2 VNEG')
40 FORMAT ('0','3 VLOGIC')
50 FORMAT ('O','RET RETURN TO POWER SUPPLY '4EN U')
60 FORMAT ('O','X EXIT PROGR.XI')
65 FORMAT ('O',9X,'ENTER YOUR SELECTION.')
C

READ (*,70) SVOPT
70 FORMAT (IAI)

IF (SVOPT EQ. '1') THEN
CALL VPOS

ELSEIF (SVOPT EQ. '2') THEN
CALL VNEG

ELSEIF (SVOPT EQ. '3') THEN

CALL VLOG
ELSEIF (SVOPT .EQ. ' ') THEN

RETURN
ELSEIF (SVOPT .EQ. 'X') THEN

STOP
ELSE

WRITE (*,80)
80 FORMAT ('0' INVALID INPUT, TRY AGAIN')

GOTO 2
ENDIF
GOTO 1
END

C
c

SUBROUTINE SETCURRP'T
C****k THIS SETS THE POWER SUPPLY CURRENT LIMITS

CHARACTER*1 SCOPT
C

I CALL CLEAR
'WRITE 1*,0)
WRITE (,20)
WRITE (*,30)
' WRITE *,*4Q)
WRITE (*,50)
WRITE *,60)
WRITE (*,65)

67

.
N

C0 FORMAT ('0',*** CURRENT SETTING MENU ***')

20 FORMAT ('O','I IPOS')

30 FORMAT ('0','2 INEG')
40 FORMAT ('0','3 ILOGIC')
50 FORMAT ('O','RET RETURN TO POWER SUPPLY MENU')

60 FORMAT ('O','X EXIT PROGRAM')
65 FORMAT ('O',9X,'ENTER YOUR SELECTION.')

C
READ (*,70) SCOPT

70 FORMAT (lAl)
IF (SCOPT .EQ. '1') THEN

CALL IPOS
ELSEIF (SCOPT .EQ. '2') THEN

CALL INEG
ELSEIF (SCOPT EQ. '3') THEN

CALL ILOG
ELSEIF (SCOPT .EQ. ' ') THEN

RETURN
ELSEIF (SCOPT .EQ. 'X') THEN

STOP
ELSE

WRITE (*,80)
80 FORMAT ('0',' INVALID INPUT, TRY AGAIN')

GOTO 2
ENDIF
GOTO 1

END
C
C

SUBROUTINE OUTONOFF
C***** THIS TOGGLES THE POWER SUPPLY OUTPUTS ****

CHARACTER*1 ANSWER, MSGYES(6), MSGNO(7)
INTEGER I,J,K,WRT(512),DVM

C

MSGYES(1) - '0'
MSGYES(2) - 'U'
MSGYES(3) - 'T'
MSGYES(4) - ' '
MSGYES(5) - '0'

MSGYES(6) - 'N'

C
MSGNO(1) - '0'
MSGNO(2) - '
MSGNO(3) - 'T'
MSGNO(4) - O
MSGNO(5) - '0'
MSGNO(6) - 'F'
MSGNO(7) - 'F'

DVM - IBFIND ('PS

638

C

1 VRITE (*, 10)
10 FORMAT 'C' 'POWER SUPPLY OUTPU:.

READ (*20) A.NSWER
20 FORMAT ' Al)

IF (ANSWER EQ. 'Y') THEN
CALL STRING MSGYES,6,-]R:
CALL I BVRT DVM."RT,

ELSEIF (ANSWER E CT ''..
CALL STRING MSCNO,.

CALL lBWRT)D,M 'RT.

ELSE

FCR.AT :RRE '

END

77'5 - .: E "i.

'?,S -P

I-----

"1 "*,, "*', ,d, ,'t~~~~~~~~~~~~d.. ,.,." - ll ' 1 '1 i i '' 1 I'": i

~A. -/

.1 CHARACTER*1 INPUT(4)

:NT-EJ_,ER 1 K..AR 5112 DVM

E G,

R.M-A T ENTER LESIRED NEGATIVE VOLTAGE AS'

F -~t T -A.

:ALL STRING VNBG.<W'.RT)
-),' 1BFTND '?)

t ~~~A:." ?4T 'M P

HARA:TB;-R*: INPIUT

-- E

- -- - -. 1 C. -- -r -r 4 - --

C
CURUIEIO
C** THSUBOTINE PPOS CRETMX-U
CC*HATi RT A S T E PSPOS C R EN AX M M * *

CHARACTER*1 INPS()
IHRNTE ER* I NPUWT(41),V
INEEC,,,R(1)DI

CPSl I

IPOS(2) - 'P'
IPOS(3) - '
IPOS(4) - '0'
IPOS(4) -''
IPSC

CRT (,0
10 FRT (,0) NE EIE OIIECRETMXMM

A0 F O R M A (' .0' , A N E R D S REaO I IVxU R ET'). I I M
R A X.XX0 INPUTmx'

20FRA (,20)INU
20 DORMAT 1-6,9

DO -6, 5
K-IS)-IPT

3P0(I CONNPUTUE
30L CO TUE IPS,,WT

CALL STRBIN (IPS,9W)
CAL IBFIND ('PS 'T,)

CALETUTRDNRT9
RETND
EN

C
CU R U I E I E
C** THSUBOTINTE PSINEGRETMAIU
C*** HS SES THINEG CREN AXMM *

CHARACTER*1 INEC()
CIN T ER I NPUWT(41),V
INEE ,,,WT52,V

CNGl I
INEG(2) - 'N'
INEG(2) - 'N'
INEG(3) -'G

INEG(4) -''

INGC
CRT (,0

W0FR T (,1NEOD S R D NE A I E CU RN)A: I T M
AS FORMA ('.0',ANTRDEIEDNGTIECURNTMXI)I
RA XXX20 INPUTmx)
RED(*20 NU

20 FORMAT (4A1)
DO 30 1- 6,9

K- 1-5
INEG(I) -INPUT(K)

30 CONTINUE

71

CALL STRING (INEG,9,tJRT,
DVM - IBFIND ('PS ')
CALL IBWRT (DVM,WRT,9)
RETURN
END

C
C

SUBROUTINE ILOG
C***** THIS SETS THE PS LOGIC CURRENT MAXIMUM***

CHARACTER*l ILOG(9)
CHARACTER*1 INPUT(4)
INTEGER I,J,K,WRT(512),DVM

C
ILOG(l) - 'I'
ILOG(2) -'L
ILOG(3) - '0'
ILOG(4) - 'G'
ILOG(5) -

C
WRITE (*,1O)

10 FORMAT ('0', ENTER DESIRED LOGIC CURRENT',
+' MAXIMUM AS X.XX (1.6OAmax)')

READ (*,20) INPUT
20 FORMAT (4A1)

DO 30 1- 6,9
K- 1-5

* ILOG(I) - INPUT(K)
30 CONTINUE

GALL STRING (ILOG,9,tJRT)
DVM - IRFIND ('PS ')
CALL IBWRT (DVM,WRT,9)
RETURN
END

C
C

SUBROUTINE STRING (IN-UT,LENGTH JRT
C***** THIS CONVERTS CHARACTER STRINGS IN'To RFCVIPED FnR-M FOR IBVRT -

CHARACTER*1 INPUT(30)
INTEGER LENGTH,I,J,.KART 512

J- I
DO 10 I-1,LENGTH,2

K- 1+1
'vRT(J)- IC11AP,% :NP'T
J- .J+l

*10 CONTINUE
* RETURN

END
C

SUBROUTINE FINDER
C***'-* THIS HELPS TO FIND GPIB ERR,-RS

COMMON /IBGLOB/ IBSTA, IBERR, IBONT
WRITE (*,1O)

10 FORMAT (' FIND ERROR')
RETURN
END

C
C

SUBROUTINE ERROR
C***** THIS WRITES THE STATUS, ERROR CODE, AND BYTE COUNT

COMMON /IBCLOB/ IBSTA, IBERR, IBONT
WRITE (*,10) IBSTA, IBERR, IBCNT

10 FORMAT (' ERROR',16,I6,I6)
RETURN
END

C
C

SUBROUTINE CHKSTATUS
C**-*** THIS SUBROUTINE CHECKS IBSTA AND WRITES IT TO THE SCREEN. IF AN
C***** ERRROR IS FOUND IBSTA, IBERR, AND IBCNT ARE WRITTEN TO THE
C***** SCREEN.
C

WRITE (*,10) IBSTA
10 FORMAT ('O','IBSTA IS ',16)

IF (IBSTA .LT. 0) CALL ERROR
RETURN
END

C
C

SUBROUTINE FUNCMU
tC****k THIS IS THE SPECIAL FUNCTION MENU DRIVER ***

C --- SOME DECL.ARATIONS...
C

CHARACTER*1 SELECT
C
C
1 CALL CLEAR
2 WRITE (*,10)

WRITE (*,20)
C WRITE (*,30)

CWRITE (*,40)
WRITE (*,50)
TWR ITE (*k.60)

WR IT E (*,65)

V FORMAT ('Q' .'*** SPECIAL FUNCTIO M4ENU '

21 FORMAT U'O','I .. . BODE PLOT')
3 FORMAT ('O','2 ... SLAxNK'~

4FORMAT '0)' 3 BLANK'
5) FOR-MAT ('0' 'RET RETURPN TO MAIN; MENU')
61 FORMAT ('0' , 'X EXIT PRoGPRAM,')
6) FORMAT ('0' ,9X, 'ENTER YOU-R SELECTION.'

C
READ (*,70) SELECT

70 FORMAT (lAl)
IF (SELECT EQ. '1') THEN

CALL BODE
C ELSEIF (SELECT EQ. '2') THEN
C CALL BLANK
C ELSEIF (SELECT .EQ. '3') THEN
C CALL BLANK

ELSEIF (SELECT EQ. ' ') THEN

RETURN
ELSEIF (SELECT EQ. 'X') THEN

STOP
ELSE

WRITE (*,80)
80 FORMAT ('0',' INVALID INPUT, TRY AGAIN')

GOTO 2
END I F
GOTO 2
END

C
C

SUBROUTINE BODE
C***** THIS IS THE BODE PLOT DRIVER *****

COMMON /IBGLOB/ IBSTA, IBERR, IBCNT
CHARACTER*12 RDDAT(400)
INTEGER DVM,COUNT(400) ,LENGTH
CHARACTER*16 FMT
CHARACTER* 14 FLNAME

C
CHARACTER*8 INPUTA, INPUTB
CHARACTER*1 FREQ(1O),TEMP(8).INPUTC ACV(3)
INTEGER I,J,K,L,STEPS,.RT 512 ,TEMPA
REAL STARTF,STEPF,VALUE,Y(400) ,LASTFVOLTINVIN.DB, -00 '

C
I-I

C
FREQ(1) - 'F'
FREQ(I0) - 'I'

C
C

CALL CLEAR
WRITE (*,

10 FORMAT '0' BODE PL,T DA - :E'-*-V7 P
WRITE *)2

20 FORMAT 0' 'ENTEP T.,,P :.' : .. ".
READ * 30 % l'PVTA

30 FORMAT LA8
WRITE

RA0 FOF) 'TAT.
READ .3f) I ::;p"Ti

WRITE (*,50)
50 FORMAT ('O','ENTER NUMBER OF DATA POINTS TO TAKE (1-400)')

READ (*,51) STEPS
51 FORMAT (11)

WRITE (*,52)
52 FORMAT ('O','ENTER PEAK AMPLITUDE OF INPUT SIGNAL AS X.XX')

READ (*,53) VOLTIN
53 FORMAT (1F10.3)

VIN - .707 * VOLTIN
C

WRITE (*,55)
55 FORMAT ('O','EXECUT:NG...')

READ (INPUTA,65) STARTE
65 FORMAT (BNF8.O)

READ (INPUTB,65) LASTF
STEFF - (LASTF-STARTF)/STEPS

C
READ (INPUTA,80) TEMP

80 FORMAT (8A1)
C

DVM - IBEIND ('DM'

ACV(1)- 'A'
ACV(2)- 'C'
ACV(3)- 'V'

C
CALL STRING (ACV,3,W.RT)
CALL IBWRT (DVM,WRT,3)

C
CALL IBRD (DVM.RDDAT(I),12)
Do 70 1-1ISTEPS

DO 90 J-1,8
FREQ(J-I)-TEMP(J)

CONTINUE
-'' IBFIND i'ST GCEN

CALL STRING (FRFQ O,'RT)
CALL IBVRT D.M.T

STA-RTV

A:.: .-

70 CONTINUE
CALL CLEAR
WRITE (*,71)

71 FORMAT ('O','ENTER NAME OF FILE YOU WANT DATA STORED IN,')

WRITE (*,72)

72 FORMAT (' ','USE A DOS NAME AS <c:xxxxxxx.yyy>')
READ (*,73) FLNAME

73 FORMAT (IA14)
OPEN (1,FILE-FLNAME, STATUS-'NEW',FORM-' FORMATTED')
DO 300 I-1,STEPS

LENGTH - COUNT(I)-3
IF (LENGTH .EQ. 9) FMT - '(Fl0.2,'','',1A9)'
IF (LENGTH .EQ. 8) FMT - '(F10.2,', IlA8)'

IF (LENGTH .EQ. 7) FMT - '(FlO.2,'','',1A7)'
IF (LENGTH .EQ. 6) FMT - '(F10.2,'','',1A6)'

IF (LENGTH .EQ. 5) FMT - '(F10.2,'','',IA5)'
IF (LENGTH .EQ. 4) FMT - '(FIO.2,'','',IA4)'
IF (LENGTH .LE. 3) FMT - '(FlO.2,'','',lA3)'

WRITE (1,FMT) Y(I),RDDAT(I)
300 CONTINUE

REWIND I
DO 400 I-1,STEPS

READ (1,410) VOUT
410 FORMAT (11X,BNE9.3)

DB(I) - 20 * LOG10(VOUT/VIN)
400 CONTINUE

REWIND 1
DO 420 I-1,STEPS

WRITE (1,430) Y(I),DB(I)
430 FORMAT (FI0.2,',',E12.5)
420 CONTD'UE

CLO>. E (1)
WRITE (*,500) FLNAME

500 FORMAT ('O',IA16,' NOW CONTAINS YOUR BODE PLOT DATA.')
WRITE (*,501)

501 FORMAT (' ','COLUMN 1 IS THE FREQUENCY DATA, COLUMN 2 IS THE')
WRITE (*,502)

502 FORMAT (' ', 'GAIN IN DECIBELS. THE INPUT VOLTAGE IS ASSUMED')
WRITE (*,503)

5,03 FORMAT (' ','TO BE CONSTANT OVER THE FREQUENCIES SWEPT.')

RETURN
END

V.6

LIST OF REFERENCES

1. Taylor, T., Use of the GPIB for Data Collection and Display, M.S.
Thesis, Naval Postgraduate School, Monterey, California, June 1985.

2. Beasley, H. A. Electronic Circuit Testing Via the GPIB, M.S. Thesis,
Naval Postgraduate School, Monterey, California, December 1985.

3. National Instruments, GPIB-PC User Manual, Austin, Texas, 1984.

4. Etter, D. M., Structured FORTRAN 77 For Engineers and Scientists, The

Benjamin/Cummings Publishing Company, Inc., Menlo Park, California, 1983.

77

4
%I

-. - . . 1 . 1 . - .

BIBLIOGRAPHY

Advanced Graphics Software, Inc., SlideWrite Plus, Sunnyvale, Califor-
nia, 1986.

Fairley, Richard, Software Engineering Concepts, McGraw-Hill, Inc.,
1985.

International Business Machines Corp. , Disk Operating System Version
3.10, Boca Raton, Florida, 1985.

Kreitzberg, Charles B. and Shneiderman, Ben, FORTRAN Programming: A
Spiral ApDroach, Harcourt Brace Jovanovich, Inc. , New York, New York,
1982.

Microsoft Corporation, Microsoft FORTRAN Compiler, Redmond, Washington,
1984

zi78

"- " " " " " " - ' ".... "-.....-......- -;.-.-.-.-.-........ ,--"
fl -.-

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station

Alexandria, Virginia 22304-6145

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93943-5002

3. Chairman, Code 62
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California 93943-5000

4. Professor J.P. Powers, Code 62Po 2
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California 93943-5000

5. Professor S. Michael, Code 62Mi
Department of Electrical and Computer Engineering
Naval Postgraduate School

Monterey, California 93943-5000

6. Commandant (G-PTE) 2
U.S. Coast Guard Headquarters
2100 2nd Street SW

Washington, DC 20593

7. Lieutenant George H. Self Jr., USCG
Commandant (G-NRN)
U.S. Coast Guard Headquarters

2100 2nd Street SW
Washington DC 20593

* .

1.40.~
- . .-

7a j .

