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1. INTRODUCTION AND SUMMARY

This technical report describes research performed on the distributed pro-
cessing of sensor data for situation assessment in a distributed sensor network
(DSN). Thia research was performed at Advanced Decision Systems under the
contract entitled ‘‘Distributed Hypothesis Testing in Distributed Sensor Net-

works”.

1.1 DSN PROBLEM DESCRIPTION

We assume a system structure as in Figure 1-1. There is a system of distri-
buted sensor/processor nodes. Each node may have one or more sensor types,
and the sensors from different nodes may have overlapping coverage. The sensors
collect data from the environment and pass them on to the processors (processing
nodes). The processing nodes process the sensor data and communicate with
other nodes through the communication network to obtain an assessment of the
state of the world. It is generally assumed that no single node possesses complete
information and each node may have a different world model. The processing
nodes may also control the sensors to improve on the performance of the overall

system.

A distributed sensor network can be used for many applications. We are
particularly interested in a DSN which is used for the tracking and classification
of multiple targets. The target environment is assumed to be dense, so that
determining the origins of the measurements in a particular sensor report is not
always easy. The problem is further complicated by the presence of false alarms
and missing target reports. In such a network, tracking and classification is
highly dependent on identifying the right data association hypotheses. Since the
nodes in general have access to different information, communication among the
nodes can greatly improve the performance of the system. The problem is thus
one of distributed hypothesis formation and evaluation, which we can abbreviate

ag distributed hypothesis testing.

In our previous DSN project we initiated research on the distributed track-
ing of multiple targets by the nodes of a distributed sensor network. In the fol-

lowing we shall review a model of the processing node that has been studied.
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l 1.2 PROCESSING NOD = 'ODEL

> The processing nodes are the main information processing units in the DSN.
> Each processing node collects measurements from a set of sensors. Its functions

are to process the local sensor data to form an assessment of the state of the

Pt

world, to combine the information obtained from other nodes with the local infor-

IO (S ol

Sl L VN

mation to update its assessment, to distribute information to other nodes, and to

performs these functions effectively. Thesz functions are performed in four

e e

separate modules within each processing node (see Figure 1-2). In the following

we shall discuss the modules in more detail.

)
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N &JJ o

R

TR DR e i) . | P

1.2.1 Generalized Tracker/Classifier

This module is responsible for the local data processing before any com-

: munication with the other nodes takes place. Since the objective of the system ‘.
: under consideration is the tracking and classification of multiple targets, this ;:.}
h: module is a multitarget tracker. In the previous project, we developed a general i
theory for multitarget tracking which is implemented in the form of the General- )
} ized Tracker/Classifier (GTC). The GTC has the structure shown in Figure 1-3 ‘1
and itself consists of four modules. The hypothesis formation module forms mul- E}“
' tiple hypotheses from the sensor data, each consisting of a collection of tracks to :
explain the origins of the measurements in each data set. These hypotheses are H
.‘1 then evaluated by the hypothesis evaluation module with respect to their proba- E§
:: bilities of being true. The filtering and parameter estimation module generates .-E
s state estimates and classificatiors for each track. It is essential for hypothesis
3 evaluation and can thus be viewed as a submodule. To stay within the computa-
tional constraints of each node, the hypotheses are pruned, combined, clustered,
s etc. This takes place in the hypothesis management module. The result of this
processing is a set of hypotheses and their probabilities, a collection of tracks
g corresponding to possible targets and the state distributions of these tracks.
: These quantities together constitute the information state for multitarget track-
g ing. R
Y 1.2.2 Information Fusion
.

This module combines the local information with information obtained from

the other nodes to obtain a new situation assessment. The information from the

Rl e ]

local nodes consists of the information described above. The information from

other nodes is also similar. Information fusion then consists of the following steps

eV e
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(see Figure 1-4):

1. Hypotﬁeﬁ's Formation - Given a set of hypotheses from other nodes, this
submodule generates new global hypotheses. Tracks from the
hypotheses of different nodes are associated in all possible ways, whether

they correspond to the same or different targets.

2. Hypothesis Evalu . - Dach of .he hypotheses [ormed above is then
evaluated with respect to its probability of being true. The statistics of
the tracks from different hypotheses are used in this evaluation. For
example, if two tracks are widely apart in their position or velocity dis-
tributions, they are more likely to have come from different targets than

the same target.

3. Hypothesis Management - This is again needed to make computation

feasible within the available resources.

1.2.3 Information Distribution

This module decides what information is to be transmitted, who gets the
information, and when it should be communicated. It thus specifies the informas
tion available to each node at any time, i.e., the information structure of the sys-
tem. Informaticn distribution can be fixed a priori for simple systems, or it can

be higt ly adaptive to the information needs in the system.

1.2.4 Resource 2llocation

This module allocates the resources under the control of the processing node
to maintain or improve the performance of the system. Some typical resources
include sensor resources and processing resources. Both resource allocation and
information distribution can affect the information available in the network.

Thus their activities should be coordinated.
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1.3 PROJECT GOALS

Many technical issues have to be addressed before DSNs can be designed,
built and ol;erated to achieve their military potential. Such issues include the
representation and processing of hypotheses, information fusion, communication
strategies, resource allocation, adaptation, system architecture, etc. In our previ-
ous DSN project, we successfully addressed some of these issues. The goal of our
current effort was to further advance the state of the art in distributed
hypothesis testing techniques in DSNs. This would provide more insight as to
how a DSN should be designed. Specifically, we intended to accomplish the fol-

lowing technology goals:

1. Develop intelligent distributed algorithms applicable to a wide range of
situations such as different network configurations, sensor types, target
models; such algorithms should also be adaptive to changing network

conditions and make efficient use of sensor resources.
2. Evaluate and adapt these algorithms for real-time implementation.

3. Design experiments to test and evaluate the algorithms in a more realis-

tic scenario such as that used by the Lincoln Laboratory test-bed.

Along with these technology goals, our plan was to develop a simulation environ-

ment to test the algorithms experimentally on different scenarios.

1.4 PROJECT ACCOMPLISHMENTS

There were two parts to our research effort. The first consisted of develop-
ment of algorithms for a DSN and the other was concerned with the development
of a simulation environment to test the algorithms and to evaluate the perfor-
mance of the system experimentally. In the following we discuss both the

theoretical and experimental results.

We extended the results of our previous DSN project and
developed information infusion algorithms for DSNs with arbitrary
communication patterns among the nodes. The key problems are the for-

mation of possible (or meaningful) global hypotheses from a group of local
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hypotheses and the evaluation of their probabilities. A set of local hypotheses
can be inconsistent so that they cannot be fused to form a global hypothesis.
The local proba_bilities of the local hypotheses may depend on common informa-
tion which neéds to be identified. In the previous project, we developed fusion
algorithms assuming broadcast communication. In the current project, we
obtained fusion algorithms for arbitrary communication. The algorithms are
based on modeling the events in the DSN by means of an information graph. To
use these algorithms, the histories of the hypotheses and tracks have to be part of
the information communicated. Then each node can determine the fusability of
the hypotheses and tracks and the common information which has to be removed
in evaluating the hypotheses. Information distribution strategies were also con-
sidered. These include strategies which depend only on the local information

state and those which model the behavior of other nodes.

The theory of multitarget tracking was extended to handle targets
with a structured state space and dissimilar sensors which observe
different components in the target state. The resulting GTC for processing
of local sensor data and the information fusion algorithms are very similar to the
usual case. However, a multilevel hypothesis formation and evaluation processing
architecture is often possible. Consider a network with two nodes. Each node
would form hypotheses based on the local measurements and the tracks would be
described in the local feature space. During the fusion process, knowledge on the
relationship between the features would be used to generate higher level target
tracks from the local feature level tracks. Hypothesis evaluation would then be
carried out. As an example, consider the tracking of vehicles. Suppose one sen-
sor node measures only the tread /wheel feature and the location. Feature tracks
from this node would consist of wheeled or tread vehicles over time. Suppose
another sensor node measures only the location and whether the vehicle has gun
or no gun. Tracks generated would consist of gunned or gunless vehicles over
time. During fusion, one would use the fact that a vehicle with a gun and tread

is a tank, a vehicle with neither gun nor tread is a truck, etc.

In the previous DSN project, we concentrated on independent targets. In
this project, we investigated multitarget tracking on structured sets of
targets. These include targets which move in groups. One example would be
planes flying in formation. Another more complex example consists of military
force structures. A division would consist of regiments each of which consists of
battalions, and so on. The tracking and identification of such structured targets

is important but not much systematic treatment is available. The problem is
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also interesting in a distributed framework since the observatiuns at different

[

nodes may be at different levels and targets are no longer independent. We

PR —

f‘ developed models for structured sets of targets, and the notions of multilevel i
) tracks and hypotheses. They are generalizations of our previous work on multi- E
! target tracking which may be viewed as having « single level of targets. Central- q
- ized algorithms for evaluating multilevel hypotheses were obtained. When res- g
39 tricted to two levels with targets moving in independent and identically distri- ;
t; buted groups, our results resemble those in single level tracking except the tar- %
= gets in the level are the groups themselves. The main difficulty in implementing !
SE: these algorithms is in the combinatorics, which becomes more severe with more i
. levels. Tt  more practical methods for hypothesis evaluation have to be found. 5
-g: These results can serve as a starting point for finding distributed versions of the g
algorithms. !

o !
o As part of the DARPA DSN program, M.L.T. Lincoln Lab. has performed §
" research on the tracking of low flying aircraft using acoustic sensors. A DSN ;
E: test bed has been developed and used to test and demonstrate DSN i
L

techniques and technology. The emphasis of the research at Lincoln has been

to demonstrate that a DSN is feasible via the construction of a complete

e gie
2 »
Bt i

(hardware and software) system. Our emphasis, on the other hand, has been the

development of general algorithms to detect and track targets in difficult

~

scenarios involving high target density, high false alarm rates, and poor detection

conditions. To illustrate the applicability of this general multiple hypothesis to

acoustic tracking, we considered to design of experiments using the Lincoln Lab.

acoustic tracking scenario. Possible system architectures, and simulation

s |

scenarios were investigated with inputs from Lincoln Lab. In addition, we

adapted the general distributed tracking aigorithm to acoustic tracking. Because

o of the special features of acoustic sensors (such as azimuth only measurements,
acoustic propagation delay), some modifications were made to the general algo-

5 rithm.

N

o The other part of our research effort was concerned with the development

of the simulation environment. Since an analytic evaluation of the algorithms
and the system performance is difficult our approach is to perfoi:1 simulation
. studies. We developed a simulation system consisting of four DSN nodes

with communication patterns which can be specified arbitrarily. Our

W W W NN e e e wr~ M R CERTEEEEE B W & K f  h e TRASEEEEEr— g g g G R MR e e e g e e e Rl < w - a pm_e

g eventual goal for the simulation environment is that it should allow rapid con-

o struction of scenarios and rapid development of the DSN system design itself.

t"i Also, the environment should be flexible enough to handle various types of ’

\.}
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processing within each DSN node, including the Bayesian analytic algorithms
such as the GTC which have been developed thus far as well as other Artificial
Intelligence (.AI) based algorithms. Some limited experimentation on this system
was performed. The results demonstrate that the nodes can perform better

through communication.

1.6 REPORT ORGANIZATION

The rest of this report is organized as follows. In Section 2, we present
information fusion algorithms assuming arbitrary communication among the
nodes. The algorithms are based on an information graph model of the DSN.
Section 3 contains results on tracking using dissimilar sensors. Section 4 presents
some algorithms to handle structured sets of targets. In Section 5 the design of
experiments for acoustic tracking is discussed. The modification of the general
algorithms to handle acoustic sensors is described. Section 6 presents some exper-

imental results with our simulation system.
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2. INFORMATION FUSION FOR ARBITRARY COMMUNICATION

In this section we present algorithms used by each node to fuse the infor-
mation received from the other nodes with the local information to obtain an
updated situation assessment. In [1] fusion algorithms for a broadcast communi-
cation pattern were presented. The results of this section extend those algo-
rithms to arbitrary communication patterns. In Section 2.1 we describe the infor-
mation fusion problem in the context of hypothesis formation and evaluation in
multitarget tracking. In Section 2.2 a model for information fusion in terms of
an information graph is given. Section 2.3 describes the hypothesis formation

and evaluation algorithms assuming arbitrary communication.

2.1 THE INFORMATION FUSION PROBLEM

In the following we state the information fusion problem faced by each
node in the DSN with emphasis on the relevant issues in multitarget tracking.
The formalism is based on the theory of multitarget tracking developed in the
previous DSN project (1], [2], and [3].

2.1.1 Local processing

The basic unit of information in the DSN is a sensor report z(t,s). This is

the output of a sensor s at a time ¢ and is denoted as

((y; (t,s )),-N;‘l(‘ "’),Nm (t,8),t,s). The index k =(t,s) identifies the sensor report (by

time and sensor) uniquely and is called the sensor report index or data indez.
N, (k) is the number of measurements in the report and (y,-(k))jN;‘l(k) is the
actual measurement vector. At any given time, let Z be the date set consisting
of a set of sensor reports and K be the associated data inder set, i.e, the set of
the indices for all the sensor reports contained in Z. The measurement inder set

corresponding to Z is defined as

Je= kLéK {1,...,Ny (K )} X {k }. (2.1)

Each element (j,k)=(j,t,s) in this set represents the j-th measurement gen-
erated at time ¢ by sensor s. The specific value of the measurement is y; (t,s).
According to the system model introduced in Section 1, each node processes the

sensor data as they arrive using the Generalized Tracker/Classifier (GTC). The
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output of the GTC when the data is Z consists of the information state £(Z)
defined as

Z) = (T(Wpe(z | 72))er(sy BT ), (P (A=N] Z )renpsy UK )

where

AR

e T(J), the set of possible tracks defined on J. Each track ris a subset of

J, ie., 7CJ and represents the measurement indices coming from a single

':’f L ]

target. It is usually assumed that a track cannot have two measurement
indices in the same sensor report, or the sensor resolution is such that

there are no split measurements. Such tracks are then said to be possi-

ble.

© ]

¢ p;(z | 7,Z) is the state distribution for a track. Given the track r, the set

o of measurements in Z for a hypothesized target is known. From this the
[ distribution of its state z (position, velocity, classification, etc.) at a time
t can be found and is a traditional estimation problem. Normally this
Kﬂ would be given in terms of a probability distribution; but if the state can
be approximated by a Gaussian random vector, the distribution can be
i expressed in terms of its mean and covariance.
z'f\ e H(J) is the set of possible data-to-data association hypotheses defined on
w J. Each data-to-data association hypothesis )\ is a possible explanation
F about the origins of all the measurements in Z. Each hypothesis consists
5 of a set of tracks, i.e., A = {r,,....}. The number of tracks in )\ is the

number of targets hypothesized to have been detected in the data set Z.

r
E‘; Each track ris the set of measurement indices from a hypothesized target
- and any measurement index not included in the hypothesis is
t::; hypothesized to be a false alarm. We assume that the sensor resolution is
: such that there are no merged measurements and thus there are no over-
E lapping tracks in the same hypothesis. The set of hypotheses satisfying
this property is said to be possible. This represents all mutually ezclusive
o and collectively erhaustive explanations about the origins of the measure-
T ments in 7.
E ¢ P(A=X|Z) is the probability of that the true data association A is a
o hypothesis X\ given all the measurements in Z. Its computation is the
& key operation in any multiple hypothesis approach to multitarget
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tracking and recursive algorithms were given in (1], [2], and [3].

¢ (K ).is the expected number of undetected targets up to and including
K. It is important for initiating new tracks. If »(K) decreases, the likeli-
hood of any measurement coming from a previously undetected target

also decreases.

The information state defined above constitutes a state for multitarget
tracking since it contains all the relevant information present in the cumulative
data set Z. As long as the information state £(Z) is known, the GTC can con-
tinue to process any new sensor report even though the actual data Z is no
longer available. When a report is received from a local sensor, the local tracking
data sire updated. There are three submodules corresponding to the functions of

hypc:hesis formation, hypothesis evaluation, and hypothesis management.

The hypothesis formation submodule forms new hypotheses from the old
hypotheses and the data. Consider a report z(t,s) from sensor s at time ¢.
Each measurement y;(¢,s) in the report may come from a previously detected
target, from a new target or a false alarm. At the same time, a previously
detected target may be missed (undetected) in the current sensor report.
Hypothesis formation thus consists of generating these possibilities starting from
the old hypotheses. Constraints imposed by the measurement values and possible
predicted states of the old tracks should be used to reduce the number of
hypotheses formed whenever possible. As a result of this step, sets of possible
tracks T(J) and possible hypotheses H(J) are formed.

The hypothesis evaluation module is responsible for computing the state dis-
tribution p,(z | r,Z), the probability of each hypothesis P(A=X|Z) and the
expected number of undetected targets (K ). Recursive algorithms have been
developed for computing these. Suppose k = (t,s) represents a new sensor
report and the quantities just before the arrival of this sensor report are denoted
by Z, K and J respectively. Then

P(A=X1|2) = C7'P (X=X | Z)Lrs (k M) IIL (v (k,97 (2.2)

where C is a normalization constant, y(k,r) is the measurement in the sensor
report z (k) associated with track . The right-hand side of the equation depends
on the following likelihoods:
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o Likelihood of false alarms Lg, (k,))

e Likelihood of a previously detected track 7 detected again as measurement y

L(y(k,)D) = [ puly | 2) pp(2) P (2 |7Z) u(dz) (2:3)

e Likelihood of a previously detected track 7 missed in the current report

L(y(k,D7A) = [ (1-pp(2)) p (2 | ,Z) p(dz) (2.4)

o Likelihood of a target newly detected as y

LiykND=7 [ puly | 2) pp(z) pi(z |9,Z) p(dz) (2.5)

In the above the target state z is a hybrid variable with a continuous part to
model geolocation variables and a discrete part to model classification informa-
tion. For convenience, we define a hybrid measure u on the state space to be the
direct product of a continuous measure and a discrete measure. Then any
integral with respect to this hybrid measure is a sum of integrals over the con-
tinuous part of the state space. These likelihoods can be computed at the same
time as updating the statc estimates of the tracks. When the target and sensor
models are such that the linear and Gaussian assumptions are satisfied, most of
the quantities involved are available from the Kalman filter calculations. As a
result of these calculations, probabilities of hypotheses and track state distribu-

tions can be obtained.

The hypothesis management submodule controls the growth in the number
of hypotheses to make the algorithm implementable. This step is crucial for the
successful of the multiple-hypothesis approach. Hypothesis management tech-
niques include pruning away low-probability hypotheses, combining similar

hypotheses and decomposing the hypothesis set into independent clusters.
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2.1.2 Information Fusion Problem

We assume that each node communicates the information state to the other
nodes. Suppose a node receives some messages from the other nodes. It has to
fuse or integrate this information with the local information to improve on the
local estimate. There are many ways of performing fusion. In our work fusion is
based on the following philosophy. The ideal case with the highest performance
(but also the highest communication cost) is when the nodes communicate the
actual sensor data through the network instead of the processed information. In
this case a node would be able to generate an optimal information state based on
all the data available. Since 1. a more realistic DSN only the information states
are communicated, an appropriate objective for fusion is to reconstruct the
optimal information state based on the information states received from the other
nodes. To facilitate further discussion, we call the data available to each node
before communication takes place as local data and the maximum data set avail-
able after communication as global data. Local and global information states,

hypotheses, tracks, etc. are all defined analogously.

There are thus two steps to the fusion process. The first step in the fusion
process consists of generating the possible track and hypothesis sets based on the
global data from the local tracks and hypotheses. Since the local data are the
part of the global data available to the nodes at the given times, the global
tracks and hypotheses when restricted to the local data should give the local
tracks and hypotheses. This implies that a certain combination of local tracks
and hypotheses should not be fused, i.e., there may not exist global tracks and
hypotheses for given sets of local tracks and hypotheses. In Figure 2-1, the two
tracks r, and 7, are two local tracks maintained at two different nodes. They
cannot be fused since the resulting global track would have two different meas-
urements in the same sensor report 1, thus violating the no split measurement
assumption. On the other hand, r, and r; can be fused to yield a global track
rUr,. The interpretation of this global track is that the measurements in hoth
tracks r; and r; come from the same target. Tracks r, and r, can also be fused.
However, they do not have to be and in that case the two tracks correspond to
two different targets. The fusability question also needs to be addressed at the
hypothesis level. Each local hypothesis is a possible explanation about the origins
of the local measurements. Thus if the local hypotheses are incompatible, they
cannot be fused to form a global hypothesis. This is illustrated in Figure 2-2
where each node : has two local hypotheses A/, j =1,2 derived from the two

common hypotheses M7, j=1,2. Since ! and A% are mutually exclusive, the local
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Figure 2-1: Fusability of Tracks

hypotheses A% and )\, are not fusable.

The second step in the fusion process consists in generating the state distri-
butions of the global tracks and the probabilities of the global hypotheses using
the local distributions and probabilities. If the nodes communicated in the past,
the local statistics would not be independent. A key problem in fusion is to iden-
tify the common information shared by the nodes and make sure it is not used

more than once in generating the global statistics.

2.2 INFORMATION GRAPH

In performing information fusion, it is necessary to identify the information
available to the nodes in the network at various times and how the information
of one node at one time is related to that of another node at a different timc.
For example, whenever two nodes communicate some common information is
shared between the nodes. The existence of this shared information would have
to be recognized in any future information fusion. Specifically, before any global

hypothesis can be generated, the fusability of the local hypotheses have to be



a8 A AAA S SR LT T AN AT W N3N T

S

T VLA < L S IR T TR e

-

W

S

-

VR T I LA K W TR e et M R A A ey T R L)

>
>~

W
&

.-< - "

(s

-.n?—.

-~

e ]

o

[
[ ]

-
{'J'
&
ﬁ Figure 2-2: Fusability of Hypotheses
';; checked based on their histories. Furthermore, when the probabilities of the
hypotheses are to be evaluated, the common information should only be used
§ once. This necessitates tracking the histories of the communication and can be
(5]
accomplished conveniently using the information graph. The information graph
r’; introduced below can also be viewed as an abstract mcdel for a DSN.
"
I" 2.2.1 Information graph model
-
: We assume that there is a set of processing nodes called N. Each node n in
& N receives data from a set of sensors called S, such that S,NS,'=0 for n #n',
~ i.e., each sensor s only reports to one processing node. Let S= UNS" be the set
~ n€
ﬁl‘.:‘ of all sensors. If a sensor s generates a report at time ¢t with value z, the report
e is denoted as (z,t,s) or simply z(t,s). Each sensor report is the basic unit of
i% information and the set of all sucl reports is denoted by Z called the total infor-
mation or data set. Each sensor report is indexed by k =(t,s), i.e., the time ¢
f\'-'i when it is generated and the sensor s responsible for ite gencration. The set of
4 all such indices is called the total data indez set and denoted as
E K={(t,s) | (z,t,s )EZ for sone z} (2.6)
&‘3 At any one time, a node’s information may consist of only a subset Z of Z. Such
a
= 2.7
=
%2
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a 7 is called a partial information set or partial data set, or simply information

set or data set. For each Z there is a K corresponding to the data indices in Z.

The sensors send the data instantaneously to the nodes as soon as they are
generated. The communication among the nodes can be characterized by the
communication schedule C which is a subset of TXTXNXN. An element
(¢,6",n,n') means that the communication transmitted at time ¢ by node n is

received at time ¢' by node n'.

The information at each sensor or node in the DSN is affected by four types
of events. The nature of the events, the times at which they occur and the nodes

affected are given below:

1. Sensor observation and transmission -- I;p = K X {ST}
2. Sensor data received at node -- I =K X {SR}

3. Transmission of communication by node --
Iop = {(n,t,CT)|(t,t',n,n')EC}

4. Reception of communication by node --
Icg = {(n,t,CR)|(t't,n'; JEC}

Let I be defined as

[-=Ig0 Ulgp Ulpr U lgp (2.7)

I constitutes all the significant events in the network and forms the set of infor-
mation nodes (not DSN nodes) in the information graph. To represent the rela-
tion between these nodes, we define a partial order (antisymmetric, reflexive and
transitive binary relation) < on I as follows: for any ¢+ and i’ in I, i <i’ if ¢ =i’
or there is a communication path from ¢ to i'. The information graph on the
system is then the ordered set (I,<). By using the graph we can determine how
the information in tb= system flows. In particular, it is easy to find the history of
the information at a certain node. As we shall see later, this is useful for the pur-

pose of information fusion.
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Figure 2-3 show the information graph for broadcast communication. At a
given time all the nodes communicate to each another so that they all have the
same information after that. Figure 2-4 shows the information graph for a cyclic
communication system. The system consists of three nodes N={(1,2,3} collecting
data from the three sensors $={1,2,3}, respectively at the times ...,tsr ,ts7 +t; ...
The nodes transmit to the other nodes periodically according to the pattern
shown in Figure 2-4 at times ...tcp,tcr +t4,.. and the messages are received at

the times wulor yter SR7RT It is assumed that tST <ter <tcg -

For each information node i in the information graph, the maximum
amount of information available is the sensor data that would be raceived if they
had been communicated in the network. Thus associated with each node i the

(mazimum) data indez set K; and the (mazimum) information set 7; are defined

as follows:
K, = (k€K | (k,ST)<i} (2.8)
Z, = {(z k€L | kEK, ). (2.9)

As stated before, our philosophy is to assume that each node tries to reconstruct
the best estimate as if all sensor data are transmitted. Thus from now on tne

information available at each node i is assumed to be Z; with the data index set

K;.

The following observations are quite obvious from the definitions:

1. K, = {keK | (k,SR)<i}for all i inL

2. K, CK; if i <i'. (The information of a node always includes that of any

predecessor node.)

3. K, = U< K;: for all i in I. (The information at a node is the union of that of
i<y

the predecessors.)

4. K, = L}i K; for all i in I, where i'{+i means that i’ is the immediate prede-
i'ps

cessor of i. (One needs only - consider the immediate predecessors of ¢ in

generating the information available to i.)
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Since there is a one-to-one correspondence between K and Z, a similar set

of observations can be made for Z.

1.2, ={Z€Z|(Z,SR)<i}foralli inL
9.2,CZ i i<i.

3. Z, = .’<.Z,~, forall ¢ inL

4. Z; = \J Z for all 1 in L

Consider an information node i(€lgcg. This represents the event that com-
munication from other nodes is received. Let I be the sec of i nmediate predeces-
sor nodes for i, The fusion problem is to find the information state of iy using
the information states of the nodes in I (and those of other predecessor nodes of
I, if necessary). As mentioned before, it is important to identify the common

information in the data represented by I. This turns out to be

NK, = U K; (2.10)
Vel i'eC ()
where
C(I)={i'el | i'<i for v i€l} (2.11)

is the set of common predecessors for all the nodes in I. Equation (2.10) states
that the common information shared by the nodes in I is the union of the infor-
mation of the common predecessor nodes of I. In fact, based on the observation
(4) above, C (I} can be replaced by C . (I) which is the maximum set in C(I)
with respect to the set-inclusion partial order whereby I,<I, when I,CI, and
i;<ig for all i,€l, and i;€],. Then the union needs to be taken only over the
set C matll), i-e., equation (2.10) becomes
NK, = U K, (2.12)
i€l V1€C pall)
If necessary, we can regard C (/) as [ in equation (2.12) and repeat the process
to find the common information shared by all the nodes in C (). This would

be used in the following section to develop distributed estimation algorithms.
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2.2.2 Distributed estimation

We now consider the distributed estimation problem to illustrate the use of
the information graph. Any uncertainty in the origins of the measurements is
ignored for the time being. The results would be useful in the next subsection

when we consider distributed multitarget tracking.

The state to be estimated is a random vector z. The a prior: probability
density (or distribution) is p(z). The observation generated by a sensor s at

time ¢ is z(¢t,s). The following additional assumptions are needed:

o Both the sensor schedule K and the communication schedule C are independent
of the state z.

e Given z and K, each element in Z is conditionally independent from each other
and has an absolutely continuous transitional probability from state z to meas-

urement.

The distributed estimation problem is then to compute p(z | Z;) for each i €L
From the definition of I, this needs only to be carried out for the sets Isz and
I,z since the only activities at the other nodes involve transmission. For an
information node in Iy, we have a traditional Bayesian update problem where
the conditional probability is updated using the sensor report. We are primarily
interested in a problem involving information nodes in I,;. Suppose the infor-
mation node of interest is i, and that the immediate predecessors of i, form the
set 7. Then

7 ='%z,. (2.13)

The objective is the computation of p(z | UIZ‘) in terms of the predecessor pro-
i€

babilities p(z | Z;);<;. Ideally, one would like to use only the probabilities

defined on I, but as we shall see, this is not always possible.

In the appendix of [4], we showed that

P10 2)=c I (I pz|nz)"" (2.14)

i=1 i=1 NeNp JE€

where - is a normalization constant and
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NP = (N C{Ln } | # (N)=i) (2.15)

is the set of all subsets of {1,.,n} with i elements. In equation (2.15), # (N)
denotes the number of elements in the set N. For n =2, this yields the fusion

formula for two nodes:

plz | Zy)p(z | Z,)

Pz 1202, (2.168)

p(z | Z\UZsy)=c

Equation (2.15) can be interpreted as follows. Since the probabilities p(z | Z,)
and p(z | Z,) both utilize the information contained in Z,NZ,, the division by
p(z | ZNZ,) is needed to remove the common information so that it is used only
once. Equation (2.14) is just a general form where the probabilities from multiple
nodes are to be fused. Unfortunately, in both (2.14) and (2.16) there are still
terms involving intersections of the Z;’s. If all these intersections are of the form
Z; for some information node j or empty corresponding to the common a priori
information, then equation (2.14) or (2.16) serves as a fusion algorithm. In this
algorithm, the conditional probability at the fusion node is a product and ratio of
the conditional probabilities defined on a set of predecessor nodes. From the
definition of the information graph, all these probabilities can be communicated.
If there is an intersection jQNZj which is not equal to Z;: for some j'€l,
then by (2.10) the intersection can be expressed as the union of the information
of some information nodes again. Equation (2.14) can then be applied to evalu-

ate the probability p(z | _QNZ,- ). The process can be repeated until all the pro-
j

babilities are either conditioned on the information at the individual information
nodes or the a priori information. For notational convenience, we represent the a
priori information by adding an element iy to the set I of all the information
nodes and let T=IU{iy}. Then the extended information graph (I,<) is con-
structed by letting iy be the immediate predecessor of all the minimum nodes in

the original information graph (I,<). Then we have Z,=K;=0. With this
definition it can be shown (see Appendix of [4]) that

p(z |UZ)=0C Ilp(z |20 (2.17)
1€l vel

where T<I is a subset of T, (a());.; is some index tuple such that of) is a

nonzero integer for each 7, and C is the normalizing constant. The set I con-
tains all the information nodes which are relevant to fusion at node 14 off)

decides whether the information at node i should be added (ofi)=1) or removed

(of1)=-1).
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To illustrate the use of this algorithm, let us first consider a broadcast com-
munication pattern of Figure 2-3. For notational simplicity, we would suppress
the type of the node in naming the node. Consider the information node (t¢p ,n ).
We have
ﬂNZ(tCT,n)=Z(tCR—td,n ) (2.18)

n€

Thus, the fusion algorithm for a node n at time tgpis

(x| Z(ter i)
(zIZ(tCR’n) b,llsjp(zIZtCR“tdiz))

p(z | Z(tcr-tam))  (2.19)

where C is a normalizing constant. Each term in the product is the new infor-

mation contained in the sensor report z (s ,i).

For the cyclic communication system shown in Figure 2-4, consider node 1
at time t;p. The immediate predecessors of the information node (tcp,1) are
(ter,1) and (t¢cr,2). Equation (2.16) can thus be used to find p(z | Z(tcg 1))-
From the information graph of Figure 2-4, the common predecessors of (t;r,1)
and (t.r,2) consist of the two nodes (tcr-2¢4,1) and (tor -t;,2). Thus

Z(ter YN Z (te7,2) = Z (tor -2t4,)U Z (tor ~ta,2), (2.20)
and equation (2.16) can be used to find the probability of the right hand side
again. From the information graph,

Z (tor-2t4,NZ (ter —t4,2) = Z (ter -3ty , 1)U Z (bcr -3¢y ,2) (2.21)
= Z(tcp -3t3,1).
Thus, the algorithm gives for general 1 =1,2,3

p(z | Z(ter,i)) plz | Z(tor,[i+1])
plz | Z(ter-2t4,i)) p(z | Z(tor—t4,[i+1])

p(z | Z(tcr,i))=C

Xp(z | Z(tcp -3ts,1)) (2.22)

where [i] is ¢ modulo 3.

This is in the form of equation (2.17) with five nodes in the set I. Thus, in
addition to its current conditional probability p(z | Z(t¢r,1)), and
p(z | Z (tcr,2)) which comes from node 2, node 1 has to store three other proba-
bilities. Note that p(z | Z(tcr -t4,2)) is available to node 1 from earlier commun-

ications. This indicates that in a distributed sensor network, knowing the most
2-16
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r~~ent estimate may not be sufficient if one wants to recover the globally optimal

e. .mate.

Our discussion above assumes the fusion algorithm for each node is pro-
vided by a system designer based on the information graph. Alternatively, we
may assume that the informatioiu graph is known to all the DSN processing nodes
who then compute the algorithms in a distributed manner. Still another possibil-
ity is for each message to contain a history of the nodes and times that it has
passed through. Then a fusion node can use the histories of the messages
received to construct a partial information graph so that fusion can be per-
formed. This philosophy would be useful for fusion when the communication
pattern is not fixed a priori, such as when nodes can vary their communication

strategies or have to adapt to system failures.

2.3 FUSION IN MULTITARGET TRACKING

In this section we consider the fusion algorithm for multitarget tracking
assuming arbitrary communication pattern. The algorithm is based on the
theory of multitarget tracking developed under the previous project [1] and the
concept of the information graph. In the previous project (1], the information
fusion in multitarget tracking was investigated primarily for broadcast type com-
munication pattern. In this section, we treat the same subject assuming an arbi-

trary communication pattern which is defined in terms of an information graph.

2.3.1 Problem formulation

In Section 2.1 we introduced the fusion problem in general terms. We now
state it more formally in terms of an information graph. Given the communica-
tion pattern of the network, an information graph is defined. For each informa-
tion node i in the graph, there is a data index set K; and an information set or
data set Z; as defined before. Since we are now interested in multitarget track-
ing, we have to deal with measurement index sets on which tracks and
hypotheses are defined. A measurement index set J; at an information node i is

defined as
Jo ={(s,k)ET | kEK;}.

The activities in a DSN can be represented by the expansion of the nodes in the
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information graph. Two types of nodes, namely those in Ig; and Iz, involve
only communication. For the other two types, namely the ones in I, and I.p,
information -processing is involved. At a node in Ig;, the data received from the
local sensors are processed hy each node using the GTC, producing an informa-
tion state for the node. For a node i,€l;,, messages are received from other
nodes in the DSN and fusion takes place. Let I be the set of immediate prede-
cessor nodes of 1. For any node ¢ in I, assume the possible tracks T(J;) and the
possible hypotheses H(J; ) are known. In addition to these, the local probabilities
of the tracks and hypotheses are also given. From the information graph, the

measurement index set for the information node ¢ is J=U1J,~. The two specific
i€

subproblems in information fusion are then the following:

¢ (Hypothesis formation) How should node i, construct the possible (global) track
set T(J) and the possible (global) hypothesis set H(J) ?

o (Hypothesis evaluation) Suppose the global sets of tracks and hypotheses are
formed. How can we evaluate the probability of each hypothesis using the pro-
babilities of the predecessor nodes? Also, how should the state distributions of

the tracks be computed?

The two problems would now be discussed separately.

2.3.2 Hypothesis formation

As we discussed before in Section 2.1, not all local tracks and hypotheses
can be fused to form meaningful global tracks and hypotheses. OQur philosophy
behind information fusion is to reconstruct the information state £(Z) starting
from the information states £(Z;). This means that two tracks can only be fused
if there exists a global track which is consistent with them. This is also the idea
behind the fusion of hypotheses. The following are some definitions needed to

formalize this concept.

Consider any two measurement index sets J, and J, with J,CJ,. For each
track 7 in T(J,) the restriction of the track r on J, is defined as M J,, ie., the
track consisting of only those measurement indices in J,. We usually say that

the track ris a successor of its restriction M J, or conversely, M J, is the prede-
2-17
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cessor track of 7. Similarly, for each hypothesis A in H(J,), the restriction of the

hypothesis X\ on J, is defined to be
| Jg = {MJy | FEN}BS {0} (2.23)
i.e., a hypothesis whose tracks are those of \ restricted to J,. The concepts of

predecessor and successor hypotheses can be defined as in tracks.

Let (J;);¢; he an arbitrary tuple of measurement index sets where I is an

arbitrary nonempty set. (I does not have to be related to the information graph
at all.) Then any tuple (7, );¢; of tracks in HIT(.L) is said to be fusable if there
i€

exists a track rin T(UIJ:‘) such that
s €

nd =7, (2.24)

ior all 1€]. ris a track obtained by fusing the tracks in the tuple. Similarly any
tuple (X\;);¢; of hypotheses in HIH(J»‘) is said to be fusable if there exists a
3

hypothesis X in H(UIJ,-) such that
i€

N Go=\ (2.25)

for all i €l. Fusability of tracks thus means that there exists a possible global
track such that each of the local tracks represents a restriction of the global track
to the local measurement indices. Similarly the fusability of the hypotheses
means there exists a global hypothesis such that each local hypothesis is a restric-
tion of the global hypcthesis to the local measurement index set, or more
specifically, the nonempty restrictions of the tracks in the global hypothesis are
the local hypotheses.

If the measurement index sets (J;),c; do not intersect, fusability of tracks
and hypotheses is trivially assured. When the measurement index sets do over-
lap, we have to be concerned about the consistency in the tracks and hypotheses.
The following rather intuitive conditions for checking fusability are proved in the

appendix.

1. Any track tuple (r;);¢; in HIT(.L) is fusable if and only if
3

NN = NGNdg) (2.26)

for all (1,,1,)€l XI.
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2. Any hypothesis tuple (\;);¢; in I;IIH(.L) is fusable if and only if
N, N = N L (G NY) (2.27)

for all (i,ig)€l XI.

These two conditions state that a tuple of tracks (or hypotheses) is fusable if and
only if they share common predecessors (in tracks or hypotheses) in the overlap-

ping measurement index set
T =U{L N, | (1)€ XTI such that 5515} (2.28)

To check the conditions described by (2.27) or (2.28), we need to have tracks and
hypotheses defined on the set J. In general, these are not directly available since
there may not be any information node with J as its measurement index set.
However, by using the decomposition algorithm of equation (2.10), we can express
the set J as the union of the measurement index sets of some predecessor nodes
in the information graph. The two fusability conditions of equations (2.26) and
(2.27) can be further reduced to the following.

Let i, be a communication receiving node and I be the set of all the
immediate predecessors of it. For each (i,{,)€l XI, let T(i,,i,) be a set of infor-
mation nodes i such that i <i, and 7 <i,, i.e., their common predecessor nodes.

Then, we have

1. a necessary and sufficient condition for any track tuple (7; )¢, EHIT(J,-) to be
3

fusable is that, for any (1,,15)€! X1,
T.-lﬂ J(,‘) == T"zn J(‘—) (229)

for any 1 €1(1,,i5), and

2. a necessary condition for any hypothesis tuple (X\;);¢; GHIH(J,-) to be fusable
i€
is that, for any (i ,,i)€l X1,
Mol Ty =M, 1 (2.30)

for any 1 €I(i,t,).
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i
: 0
! In general, for any two distinct nodes ¢, and i,, their common predecessor 5
) set I(i,i,) may not be unique. However, to use the above conditions to test the i.'_f
"I‘ fusability, we need only to consider the set of all the maximum elements in the E
) set {i€l| <i,andi <i,}, i.e,, the maximum common predecessor set. Thus in [

’ the cyclic communication example of Figure 2-4, a track from the node (t;p,1)
and one from the node (¢{;p,2) are fusable if and only if they have the same

predecessor (or restriction) tracks in both the nodes (t¢r -2,1) and (¢cr -1,2).

ez v " gy

TNt

The test defined by (2.29) provides a necessary and sufficient condition for

A
Ry

Lo R

P T

track fusability but equation (2.30) only provides a necessary condition for

=
" k"

hypothesis fusability. This is due to the fact that a fusable tuple of tracks pro-

7

P AL ATER

e x4

duces only one fused track but a fusable tuple of hypotheses may produce more

than one hypotheses. The counterexample in Figure 2-5 shows that (2.30) is not

! a sufficient condition for the hypothesis fusability. In this example, the two
hypotheses (A\;,\,) are to be fused. The common predecessors of the nodes ! - .d
2 are nodes 3 and 4. It is obvious that X\, | J3=X; | J3 and also X\ | J,=Xs | Jy,
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thus satisfying the necessary rondition of (2.30) for hypothesis fusability. In fact,
this is true since both X\, and X, are the results of fusing A\; and X\,. However,

since
M TaNTeF# N | SN T, (2.31)

the hypothesis fusability condition of (2.27) is violated. This is again obvious
since X\, and X\, are mutually exclusive. A\, hypothesizes that r, and r; are from

the same target whereas \, hypothesizes that r, and r; are from different targets.

Although it is not sufficient to determine hypothesis fusability by consider-
ing only the predecessors of the hypotheses in the predecessor nodes, the condi-
tion (2.30) can be used to eliminate hypotheses for further consideration if they
do not have the same predecessor hypothesis in a common nredecessor node.
Furthermore, the following equivalence condition (proved in the appendix of [4])

relates hypothesis fusability to track fusability.

Hypothesis Fusability Condition. Let (J;);¢; be any tuple of measurement index
sets and J=Lélj,-. Then, any (N\;);¢; EHIH(J,-) is fusable with fused hypothesis
i i€

A\€H(/) if and only if

L. for any 7 in X, there exists a fusable track tuple (r;);¢; EHI()\,- U{@}) such that
i€
T=U Ty and
iel

2. for all 1 €] and for all r; €);, there exists a unique 7 in X\ such that r; Cr.

Condition 1 states that every track r in the hypothesis X is formed by taking the
union of the fusable tracks in the local hypotheses. Condition 2 states that every
r; belongs to a unique global track in any given global hypothesis.

Hypothesis formation thus consists of the following steps:

1. Use the necessary condition of (2.30) to reduce the candidates for fusable
hypothesis tuples
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2. Use the track fusability condition of (2.29) to further determine hypothesis
fusability

3. Exhaust all possible fusable hyaothesis tuples, and for each fusable hy;othesis
tuple, generate all possible fused hypotheses.

The last step is concerned with the actual hypothesis formation and consists of a
two-level procedure. The first level performs hypothesis-to-hypothesis associa-
tion. The second level carries ou' the actual track-to-track association to form

global tracks from the fusable track tuples.

2.3.3 Hypothesis evaluation

Given the global hypotheses and global tracks constructed from the local
hypotheses and local tracks, the objective of hypothesis evaluation is to comp::te
their probabilities and state distributions using the communicated local informa-
tion. In terms of the information graph, the problem is as follows. Le”
ip=(t,n,CR) be a communication receiving node in I;z and I be the set of all

the immediate predecessors of 1,. Let Z=U!Z,- with K and J be the associated
Ve

index set and measurec.ent index set. We need to compute the probabilities of
all hypotheses, (P(A=\|Z)),ens) the state distributions of the tracks,
(pi(z 1 72))erys) and the expected number (K') of undetected targets.

We make the standard assumptions on the target and sensor models (see [1]
or [2]). In particular, the target models are assumed to the independent and
identically distributed Markov processes and the number of targets is Poisson dis-
tributed. The sensor measurements generated by sensors at different times are
conditionally independent given the target state. In addition to these, we also
make the special assumption that the target state is either static or bidirection-
ally deterministic (which makes it equivalent to a static process). This assump-
tion is needed to make the algorithm more implementable. Later in this section,
we should briefly discuss how this assumption can be relaxed. The target state is
in a hybrid variable with a continuous part to model geolocation type variables
and a discrete part to model classification type information. For convenience, we
define a hybrid measure u on the state space to be the direct product of a con-
tinuous measure and a discrete measure. Then any integral with respect to this

hybrid measure is a sum of integrals over the continuous part of the state space.
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With these assumptions, the following hypothesis evaluation results are
derived in the appendix. Let (I,a) be the pair which satisfies the condition (2.17)
of Section 2.2.2. Suppose for each €I, the probability p(\|Z;) for each
hypothesis X in H(J;), the track state distribution p(z | 7,Z;) for each track rin
T(J), and y(K;), the expected number of undetected targets are all known.

Then for every hypothesis A€H(J ), the probability of the hypothesis being true is

given by
P(A1J)=N[2)=CV L PN J5) | )2 T L(n(Z);)  (2:32)
vel €M /)
where C is a normalization constant, and
L(nlZer) = [ o | 2o J5) " Oude) (2.33)

is the likelihood of the global track 7. The expected number of undetected tar-
gets is given by

vK) =L 0(Z)e) = [TLo (e 10,2)0uar) (234)
where
?(z | nZ;)=p(z | r,Z;)u(K;)e'T(r), (2.35)
L i nE=0
€lr) = {0 otherwise ° (2.36)

The state distribution of the track r can be updated by

p(z [2)=c" Lo (e | (N )20 (2:37)
ic
where ¢ is a normalization constant.

We note first of all that hypothesis evaluation depends only on the statis-
tics at the information nodes in the set . This is the same set used in distri-
buted estimation and represents the nodes which are relevant for fusion. The
function a determines whether the information at a node should be added or sub-
tracted. The hypothesis evaluation formula of (2.32) has a two-level structure.
At the higher level, the product of the local hypothesis probabilities evaluates the
probability of associating the given set of local hypotheses. The next level con-
sists of the likelihoods of the individual tracks.
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Each L (r,(Z )rer) is a track-to-track association likelihood, i.e., the likeli-
hood of associating all the tracks in the local track tuple (M J;);.; with one tar-

get represented by the global track r which is their union. Its evaluation depends
on the state distributions of the local tracks. If the tracks have similar state
descriptions then the integrand in equation (2.33) will be large, thus resulting in a
high likelihood. On the other hand, if the local tracks have state descriptions
which are very different, the integrand in (2.33) will be small, resulting in a low
likelihood. In equation (2.33), the function 7 (z | r,Z;) is identical to p(z | r,Z7),
the state distribution for track r, when the track r has a nonempty restriction at
the node 1. When this is not the case, i.e., the track 7 has not been detected yet
at 1, the function 7 is scaled by the expected number of undetected targets and
is no longer a probability distribution. It represents some kind of density for

undetected targets.

Equation (2.34) computes the expected number of undetected targets by
fusing the local track state distributions of the undetected targets. Equation
(2.37) is the fusion formula for the global track state distribution. Note that it
has the same form as (2.17). This is not at all surprising since given a particular
track, computing the state distribution of the target is the usual estimation prob-
lem. Thus the fusion algorithm for distribution estimation is an integral part of

fusion for multitarget tracking.

2.4 CONCLUSION

In this section, we have described the results of our research on information
fusion for multitarget tracking. We have identified two main problems in infor-
mation fusion assuming arbitrary communication. The first is how to generate
meaningful tracks and hypotheses starting from a set of local tracks and
hypotheses. The second is how to compute the statistics on these tracks and
hypotheses when the local quantities may contain common information due to

past communication.

We have developed an abstract model of the DSN in terms of the informa-
tion graph. Using this graph, algorithms for information fusion have been
developed. The two problems of hypothesis formation and evaluation all require
keeping around histories of the tracks and hypotheses in the system. Using this
history, the fusability of tracks and hypotheses can be determined. At the same
time, any common information shared by their statistics can be identified so that

it would not be double-counted. When specialized to broadcast communication,
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]
! we can show that the general fusion algorithms for arbitrary communication

reduce to those developed in the previous project.

The hypothesis formation algorithms for fusion do not depend on the target

models. For hypothesis evaluation, we have assumed that the targets are static
g or that their motions may be approximated by ‘‘deterministic” process models.
. When the target models are assumed to be general Markov processes, the
E: hypothesis evaluation algorithms have the same form as in (2.32) to (2.37). How-

ever, the state of a track would have to be a trajectory sampled at various times
':‘ and computing its probability distribution would be difficult. Thus the difficulty
- of extending the results to treat general Markov models is more related to imple-
5 mentation issues. On the other hand, as long as the target motion is fairly regu-
B

lar, the deterministic process models we have assumed may be quite adequate.
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3. DISSIMILAR SENSORS AND ATTRIBUTE BASED TRACKING

The algorithms presented in Section 2 are quite general and apply to arbi-
trary target models as long as the target motions are independent. In this sec-
tion, we consider the case when the different nodes in the DSN have sensors of
different types. For example, one node may have sensors which observe a certain
set of features while another nodes may have sensors which observe a different set
of features (e.g., radar versus acoustic). In general, the sensor produces data
which contain attribute information as well as kinematic information. Typical
attributes may include wheel or tread type of ground vehicles, radar images of

ships, engine type of aircraft, and different types of electronic emissions.

This tracking problem with dissimilar sensors is both interesting from a
theoretical and practical point of view since correlation of results from multiple
sensors can often yield useful information not available from a single sensor. In
particular, by considering attributes from multiple sensors, it may be possible to

determine the type of the target.

In this section, we consider the problem of tracking and classifying targets
when the nodes in the DSN have sensors of different types. Such targets usually
have states which contain some structural information (e.g., a given target type
may contain certain features which in turn contain other subfeatures). The rela-
tionship between targets with structured states and general structured set of tar-

gets will be discussed in Section 4.

3.1 TARGET AND SENSOR MODELS

We assume that the sensors at various DSN nodes have different capabili-
ties and in particular, no single node can classify the target type uniquely. Thus,
the nodes have to cooperate to achieve the overall mission. If this is not the case,
then the results of Section 2 apply. Each node performs its local tracking and
classification. Cooperation among the nodes, while it may improve the quality of
the results, is not really necessary. There are also other situations when the
nodes have identical sensors (e.g., acoustic or infrared) but the targets are not
observable from a single sensor. In this case, cooperation among nodes is also

needed. An example of this acoustic tracking will be presented in Section 5.
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3.1.1 Target Models

We assume that each target has a state z(¢) at time t which evolves
according to ‘some dynamical model. The state z(¢) is represented by
(z°(t)z?(t)), where £°(t) is the continuous part representing its geolocation
quantities such as position, velocity, etc., while z%(t) is the discrete part
representing other attributes. z°(t) is usually modeled by means of dynamical

equations such as:
2 (t)=Fz°(t)+ w(t) (3.1)

where w(t) is a white driving noise. The components of z? usually have some

d

internal structure. For example, ¢ may consist of:

d (1401141,142) (3.2)

where

e 299 is the type of the vehicle (tank or armored personnel carrier (APC), or
truck)

o z%1is the attribute corresponding to the wheel type (tread or wheel)

e z¢% is the attribute corresponding to the weapon carried on the vehicle {gun or

no gun)

The discrete states are related as in Figure 3-1 where the state z?? determines
the states %! and z %% i.e., the type of the vehicle determines the wheel type and
the presence (absence) of guns as in Figure 3-1. In some cases, the relationship
between the discrete states may also be probabilistic as given by p (z¢',z4?| z¢9).
For example, one type of vehicle may have a given radio with certain probability.

The probability of the attributes is sometimes conditionally independent, i.e.,
p(e412 4 24 = p(e*} [ £*)p (242] =) (3.3)

which may simplify the processing considerably. In other cases, some discrete
states themselves (other than the target type) may evolve with time and depend
on other states, e.g, the electronic emission of a target. The dynamic behavior

may be modeled by a Markov process.
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Figure 3-1: Example of Structured State
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In general, the discrete target state may be hierarchical with more than two
levels as given in Figure 3-2. Each attribute may assume different values depend-
ing on the target type. Frequently, the probability distribution of the attributes
satisfy some Mﬁrkov property, i.e., the probability of the attributes conditioned
on all higher level attributes is the same as that conditioned on the attribute

immediately above it. For the example in Figure 3-2, this implies that

xd31,xd32 I 1421’1‘“1 dO) = p(xd:!l,deZ I xd?l) (34)

p( =

3.1.2 Sensor Models

The sensors at the different DSN nodes may have different capabilities.
Some sensors may measure the kinematic quantities while others may measure
attributes (e.g., the wheel type or the absence or presence of guns). Still others
may measure the target type directly. The sensors are subject to false alarms
and mis-detections. For a detected target, the measurement model is given by
Pm(y; | ) where z is the target state and y; is the measurement for sensor j.
To represent the presence of both kinematic and attribute measurements, the

measurement model can be stated as
yi(t) = Hyz*(t) + v;(t) (3.5)
p(3(t) | z(t) = p(sf(t) | 2% ie4;) (3.6)

where

e y/(t) and yX(t) are the continuous and discrete components of the measurement
of sensor j

o A; is the set of attributes observable by sensor j

® v;(t) is the measurement noise

In the above, we have assumed that the continuous and discrete measure-
ment models are independent. Sometimes this may not be the case; for example,
a poor kinematic measurement may be correlated with a poor attribute measure-

ment. The coupled measurement model then has to be used.
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3.2 LOCAL PROCESSING

Local processing follows the algorithms presented in Section 2.1.1, using the
appropriate sensor model for each node. Each node has an information state
represented by the set of tracks, set of hypotheses, track state distributions and
hypothesis probabilities. Equation (2.2) is used for hypothesis evaluation with
the likelihoods given by (2.3) to (2.5). Since not all the states of the targets are

observable from the sensor j, the state z should be replaced by:
zi = (2°,2%) (3.7)

where z° is the continuous (geolocation) state and z% is the discrete state of
attributes observable from sensor j. The relevant tracks state distribution is

then (with some independence assumptions on the states and measurements)

P (zj |nZ;)=p(z° |Z;)p (:cdj | nZ;) (3.8)

When the target and sensor models for the continuous state satisfy linear
and Gaussian models, the geolocation component of the track state description
can be computed by means of the Kalman Filter. The discrete component is

computed using a Bayesian updating formula. Assuming z% is static, then
P(Idj | nZ;) = C-lpm(yjdl ¥ )p(z N |?,Zj) (3.9)

where C is a normalization constant, p,(-) is the discrete measurement model

and p (z% | 7,Z,) is the predicted discrete state given the previous measurements.

For the example of Figure 3-1, each hypothesis from the wheel type sensor
node will contain the number of targets detected, their positions and velocities
and possible classifications into wheel and tread vehicles (with probabilities).
Similarly, the gun type sensor generates hypotheses with tracks described by gun

type as well as locations and velocities.

3.3 INFORMATION FUSION

When sensor nodes have the same type of sensors, communication among
nodes serves primarily to reduce the uncertainty associated with the situation
assessment at each node. For example, nodes 1 and 2 may have different esti-

mates of a target given by £, ,p;(z%)), { = 1,2, where
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- 2 is the geolocation estimate by sensor node :
- ¥, is the error covariance of sensor node i, and

- p;(z?) is the probability distribution of the discrete state z? estimated by sen-

Sor 1.

Then when the nodes communicate, the estimate of the target can be improved
and becomes (£°,Z,p (z¢)) through fusion of the track state estimates. In addi-

tion, the nodes can also improve on their estimates of the number of targets.

When the nodes have sensors of different types, each node produces track
state estimates for the attributes which are observable to the node. Communica-
tion between nodes then not only improves the geolocation estimates but also
produces estimates of other attributes not observable from the individual nodes.
This will usually require knowledge of the relationship among the attributes in
the structured state. For example, if Node 1 concludes that the target is a vehi-
cle with thread and Node 2 concludes that it has a gun, then through communi-
cation each node may conclude that it is a tank. If the individual nodes’ esti-

mates are probabilistic, then the fusion results will also be probabilistic.

In the following, we consider information fusion for nodes with dissimilar
sensors. Hypothesis formation and management follow the general algorithm
given in Section 2. For example, fusability conditions will have to be checked
before tracks and hypotheses are fused. Our discussion will thus focus on fusion
of track state estimates and hypothesis evaluation. Since the fusion results for
arbitrary communication can be derived from fusion of two nodes, we assume the
structures in Figure 3-3. In Figure 3-3(a), the fusion node can be a different node
from nodes 1 and 2. It collects information from Node 1 and Node 2, performs
fusion and broadcasts the results back to the nodes, thereby performing the coor-
dination. Alternatively, the fusion node may reside with each of the two nodes in
a broadcast situation. Figure 3-3(b) is the case with no coordination or feedback

from the fusion node to Nodes 1 and 2.

3-7

XLL”j

e |

gy
'»

W

e

Sl

L s TR TR A

p

’6‘:.46: ‘L & &Y

1
L
¥
!

e

A IEEE

AR =
>

..
R %

) I

ST e

-
-

o )

o

s

e

WY i S

Ak Il

.
3
e F g
i



.

T 2

.; 3
: S
" 4

s
\ 7
: "

L

POCI75.2,)
P(Ao12Z,)

px'| 71, Z;)
P(A41Z4)

Ll I 2

¥
3
B

X
] Y
) b
4 :‘:
«
4
b

(a) With Coordination

- —— P

px'| 74,2,) p0é| 75, Z,)

g P(241Z,) P(3,12,) 3
I.' ':' ‘
g : :
y A
} }'4_-"
{ !
-
! ¢
(b) Without Coordination f
N Lﬂ}q‘

a
s B

At

3 Figure 3-3: Communication Structure .
3-8 o
' 5
4 >
# '\l
AT T P TR B RGP T TN A P R T F e e T T R R S G N LR R R A N T R N T T T T N N,



L

£ AT ™ ¥ o

Aal ik b

TP

" e

3.3.1 Fusion of Track State Estimates

Since fusion of track state estimates is for tracks which have been associ-
ated, we do not represent the track explicitly in the following discussion. Sup-
pose the observable state for Node i is ' which includes the continuous state z°

and the discrete state z%, i.e.,
' =(z°z%) (3.11)

For a given target, the track state estimate by Node i given the cumulative data
Z; is given by p(z'|Z;/). As discussed before, this may contain a continuous
part (mean and covariance) and a discrete part (probability distribution). For

the example of Figure 3-1,
p(z' |Z)=p(= 2% | Z)=p(z" | Z)p(z¥ | Z) (3.12)

where p(z° | Z;) will be characterized by a mean and covariance. Let Z be the
cumulative data of the fusion node when it last broadcast and Z be the cumula-
tive data after it receives communication from the nodes, then the complete state

estimate of the target after fusion is given by:
p(z2%2% 24| Z) =p(2° | Z)p (z%%2% 2 %% | 7) (3.13)

where the continuous and discrete state estimates are computed as below.

Fusion with Coordination

The fusion of the continuous state estimate is given by

Pz 1Z)p(2° | Zy)
p(z°|2)

p(z° 12)=c (3.14)
where C, is a normalization constant. The fusion of the discrete state estimate is
given by

-1 P(Id’ | Zl)P(IHIZZ)

40 _d1 _d2 40 _dl _d2) 7
z* % Z)=20C — — z* %z Z

4 Pt Z)p (247 Zy)
= C, i1, 7 12, 7
p(z* | Z)p (2% 2)

(3.15)

p(zdl,zd2| Ido)p (Idol Z)
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where we have assumed that the attributes z¢! and z¢? depend only on =z

C, is a normalization constant.

Equatibn' (3.14) is the standard equation for fusing two probability distribu-
tions of the same random state. Equation (3.15) fuses the probability distribu-
tions of different attributes to obtain that of all attributes. The last factor in
(3.15) represents the a priori estimate of the attribute z¢? (vehicle type) based on
Z. It is the marginal probability of p(z¢%z¢%,z¢%| Z) computed from an earlier
fusion. The factor p (z%!,2¢%| z%?) is the model of the structured state. For the

example in Figure 3-1, we may have

dl 2

p(z?' = tread, 2% = gun | %% = tank)=1

p(z¢! =tread, z°2 = nogun | z¢® = APC)=1

p(z¢! = wheel, 2 =nogun | ¢ = truck)=1 (3.16)

and zero otherwise. The last two factors in equation (3.15) together predic. the
target attributes from the previous communication time. The first two factors in
the numerator represent the estimates of the two attributes from the two nodes.
Since these estimates share some information with the predicted values through
Z, the factors in the denominator are used to remove any redundant information.
To obtain an estimate of the target type, one needs only to sum over the possible

values of ¢! and z %% to obtain p(2¢°| Z).

Fusion Without Coordination

If there is no feedback from the fusion node to the other nodes, then Equa-
tion (3.14) should be replaced by

p(1:°|Z)=C{1 p(I‘:l]—’l)p(Icl{?)p(rc'Z) (317)

p(c° | Z2)p(z" | Zo)

where C, is a normalization constant, Z; is the cumulative data of Node i before
the last communication to the fusion node. This fusion formula is a special case

of the general Equation (2.17).
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Similarly, the fusien formu!s i the dizcrete state estimate is given b
y g

40 _d1 _d2 V= ¢l p(z“lZﬂp(z“lZz)
P2 2| Z) = Oy i1 7 iz 7
SR p(z | Z)p(°°] Z))

(3.18)

p(z¢129% 240 (2401 Z)

where C, is another normalization constant. This equation is similar to (3.15)
except for the terms in the denominator which now depend on Z, and Z, instead
of Z. The reason for using the different terms can be seen by drawing the infor-

mation graphs.

So far we have assumed that the fusion node does not have any measure-
ments of its own. If this is not the case, as when the sensor measures the type
z 9 discrete, then the fusion equations can be modified appropriately. The distri-
buted hierarchica! Bayesian Approach of [5| can also be used to estimate the
attributes in the target state. Alchough such an approach also has a distributed
implementation, it is not as convenient as the approach used here if data associa-

tion also has to be considered.

3.3.2 Hypothesis Evaluation

In the previous section, we have consic.red the fusion of state (both con-
tinuous and discrete) estimates for the individual target tracks. In multitarget
tracking, the main problem is data association and track association in the case
of multiple sensor nodes. Thus, we - sed to evaluate the probability of each
track-to-track association hypothesis. ‘I'he general hypothesis evaluation formula
(Equation (2.32)) is applicable to this special case. We again illustrate the algo-
rithm with the example of Figure 3-1.

Fusion with Coordination

The hypothesis evaluation equation is

4 PN ZYP (M| Zy)
P(X|Z) rex |

P(\|Z)=C (3.19)

where the probabilities P(\; | Z;), A\ = 1, 2, are communicated from nodes 1 and

2 to the fusion node, P(X\|Z) is the a priori probability of the predecessor
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hypothesis at the fusion node, and C is a normalization constant.

v
S g
i K

The track-to-track association likelihood L, can be derived from Equation
(2.33) and is given by

1 )T A -—

1r=f Pz |T~1 1)p_(ilfz 2) u(dz ) (3.20) ;b

bz [7.2) %

B

where r, and r, are tracks where are fused t n r and p(:) is as defined in Dy
Equation (2.35). The likelihood [, can be further decomposed into two likeli-
hoods r’-;}
oY

I, =17 18 (3.21) 'f}

;:"\-

P

»

where [¢ is the likelihood computed from the continuous state and /¢ is com-

puted from the discrete state. The continuous likelihood is given by:

- -
sgqg s
44‘1 ; B

o

Ty

dr® (3.22)

Ic ___f —i’(zc lTI’Zl).b(IC ITZ,ZZ)
' p(z° |7Z)

and depends on how close the geolocation state estimates of the two tracks are.

The discrete likelihood is given by

14— P(’v’“|"1,Z1)P(I“[T2,Zz)
’ £40 g d1 42 p(Idll?,Z)p(zdzlﬁZ)

p(z“,z“|zd°)p(zd°|?,2) (3.23)

and depends on how well the attribute estimates from the two nodes match the

prior estimate of the target type according to the model of the structured state.

Note that the likelihood computation is closely coupled to the fusion of the
track state estimates from the similarity between Equations (3.14) and (3.22), and
between (3.15) and (3.23). In fact, the normalization constants in Equations
(3.14) and (3.15) are the likelihoods. Thus, likelihood computation and track

state fusion are usually performed at the same time.

Fusion Without Coordination

In the case where there is no feedback from the fusion node, the hypothesis

evaluation equation is given by

4 PN Z)P (M| 2y P(x|Z) le (3.24)

P\|Z)=C MEEU el 2
P(X1|Z1)P(>\2|Zz) ren

f 3‘12
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where P ()\; | Z;) is defined as before, X; is the restriction of the hypothesis ); to
Z; and P()\; | Z;) is the probability of the hypothesis k; before communication to

the fusion node:

The track-to-track association likelihood I, again can be decomposed into:
lo=1° 18 (3.25)

where the continuous likelihood is given by

7 c T 7Z >
| 7 Z p(zf |74,
and the discrete likelihood is given by
lf — 2 p (1’“ | 71,2 1)p (1’“ | 72,2 5) (3.27)

249 791 zd2 p (z“ |?1,21)p (z“ |72,22)
p(zh2?? 2% (24 Z)

As in the fusion with coordination case, the likelihood computation and track
state fusion operations can be performed together. Note the similarity of these
equations to those used for fusion with coordination. Equations (3.23) and (3.27)
are almost the same except for the conditioning of the information in the denomi-
nator. In both cases, the structural relationship between the discrete states is

used to evaluate the likelihood of association.

3.4 CONCLUSION

In this section, we have applied the general results of Section 2 to the case
of nodes with dissimilar sensors. When an individual node can only observe cer-
tain attributes of the target state, cooperation among nodes observing different
attributes can improve the performance of the system significantly. By exploiting
knowledge on the structured state, the receiving node can assess some missing

attributes such as the target type.

We have presented the fusion results via a specific example and communica-
tion structure. The algorithms for handling more general cases cn be developed
along the same principles. The fusion algorithms consist of two closely coupled
operations: fusion of target state estimates and evaluation of association likeli-
hoods. For the continuous states (position, velocity) these operations are the

same as the case of similar sensors. The discrete states, however, involve
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operations which make use of the knowledge of the structured state. Therefore,
there is no theoretical difficulty to treat targets with structured states and dis-
similar sensers with measurement at different levels. In practice, however,
classification trees for the discrete attributes may be very complicated and the
number of terminal nodes may be simply too many to handle in a straightfor-
ward way. In such a case, we need additional tools to effectively store and
update the probability distributions on the entire terminal nodes. In [6] and (7],
a set of procedures to soive such problems is shown by means of an example of
ocean surveillance. Many of hypothesis management procedures devised for con-
trolling data-to-data hypotheses (e.g., those described in [6] and being developed
in the current project) can be extended to provide useful tools, e.g., hypothesis
pruning, hypothesis combining and clustering. Furthermore, effective representa-
tion of probability distributions must be developed in order for such management
systems to work effectively. For example, track state distributions of tracks may
have different representations depending on their status. Distributed processing
on different levels may also be an effective procedure. Some of the results in (5]

may also be applicable.
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4. TRACKING AND CLASSIFYING STRUCTURED TARGETS

By structured targets, we may mean two different concepts in multitarget
tracking:

(1) targets with structured states
(2) structured sets of targets.

Since each individual target may be represented on an individual target space,
concept 2 is one-level higher than 1. In a model based on the above concept 1,
targets are still treated as individual objects although correlation among them
can be considered and targets may be governed by a common state as a group of
targets. This kind of models is necessary, when a multilevel identification process
for each target is used or when a target has structured features. Such issues are
related to the problem of treating dissimilar sensors which generate measure-

ments corresponding to different levels of the structured target state space. This
problem has been discussed in Section 3.

On the other hand, concept 2 is essential when targets are in fact organized
and structured in units at various levels. A typical example can be found in mili-
tary units such as army — division — regiment — battalion — company, etc., in
the military hierarchy. In such a case, the number of targets is typically very
large and, if they are treated as independent objects, we may not be able to
assess a global situation based on the outputs from any reasonably functioning
target tracking system. This is so because, since grouped targets are usually
closely spaced, the data-to-data association (or scan-to-scan correlation) may
become very difficult with limited computational resources. This difficulty may
be overcome only when the unit structure of targets is understood and taken into
account in a tracking system. Moreover, the global assessment of all the targets

as a single structured object is itself an important task in many applications.

Our emphasis has been the development of a general theory upon which we
may produce effective algorithms in many different applications. This should
serve also as a basis for developing distributed algorithms. Sectior 4.7 discusses a
general model for structured set of targets. In Section 4.2, we will present our
first-cut analysis on structured sets of targets. An algorithm is derived for two-
level structured targets, i.e, tracking groups of targets. The future direction of

our algorithm development effort will be discussed in the concluding Section 4.3.
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4.1 MODEL FOR STRUCTURED SETS OF TARGETS

A typical example of a structured set of targets is shown in Figure 4-1 n
which a division in an 'army is shown in a simplified way. Depending on the type
of the division, the composition and the number of subordinates, i.e., battalions
have a certain pattern. The same kind of dependence is also present in the rela-
tionship between the subsequently lowe. levels. This kind of structure produces
another dimension to the multitarget tracking problems. There are only very few
theoretical results on tracking and classification of structured sets of targets.
Besides a few documents referred in [8], we can only refer to a couple of technical
references, [9] and [10], both of which are concerned with two-level tracking, i.e.,
tracking of groups of targets, but treat issues pertaining multiple groups in a
rather ambiguous manner. On the other hand, Al (Artificial Intelligence) -type
approaches were used in much more complicated environments in [11] and [12]
which are concerned with ocean surveillance and battlefield unit identification,
respectively. [11] uses a single-hypothesis propagation combined with a
backtracking-like recovery scheme while [12| adopts a multi-hypothesis approach.
The systems described in [11] and [12] may be viewed as hierarchical systems
which may be illustrated as in Figure 4-2. The procedures represented by
upward arrows are often called bottom-up or induction processes and those

represented by downward arrows top-down or deduction processes.

While the decomposition illustrated by Figure 4-2 is certainly a key to suc-
cessful implementation of the systems described in [11] and [12], each hypothesis
evaluation cannot be performed independently in general. For example, in track-
ing groups of targets, we must hypothesize possible group formation from input
data while, at the same time, the states as a group must be determined and then
the estimation of the states affects the evaluation of lower level hypotheses. Even
if the bottom-up/top-down updating is clearly defined, iterations may be neces-
sary for such processes to converge. Moreover, in some cases, a simple bottom-up
type process may easily be overwhelmed by combinatorics. Therefore, at least
for the few lower levels, we may need an integrated approach rather than a
decomposition approach taken in [11] and [12]. In the subsequent subsections, we
will try to establish a first-cut analysis which treats the whole structure of targets

in an integrated manner.
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Figure 4-1: Structured Sets of Targets
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i 4.1.1 A Model for Structured Sets of Targets
A When we focus on each node in Figure 4-1 and its immediate successors
2 rather than the whole picture, we notice the tree is composed of building blocks

each of which has the same structure. Such a building block ran be identified

B i o ond i’ 00 3 O B 400 i i Ju A AN NS UGN AW S AR W ¢ AW

‘s with a structure of a state representing a group of targets, as shown in Figure 4-
. 3a. In tracking and classifying a group of targets, the totality of targets can be
E':: represented by (1) [level 1| the total number of targets plus a common target
‘ state component for the group, and (2) [level 0| the states of individual targets.
EJ (1) is one-level higher than (2) since (2) cannot be defined unless the number of
* targets is given by (1). This structure can be extended to the cases where multi- N
:.‘j- ple groups of targets are present. Such 2 case may be represented by a tree ,
M which may be illustrated in Figure 4-3b. Each level of nodes in Figure 4-3b "
4 represents: (1) [level 2| the total number of groups plus a common state com-
2 ponent for all the groups, (2) [level 1] the states of individual groups including,
_ for each group, the number of targets in the group and a common state com-
E ponent for all the targets in the group, and (3) [level 0] the states of individual
‘ targets in each group. w
3
Fe This approach can be extended to an arbitrary level | of structures. We ‘i
call such a structure a level-l target structure or simply a level-l target. As seen i
H in Figure 4-3, when a tree represents a level-I target structure, the nodes in the !
_ tree can be labeled as level 0, level 1, ...... , level . There is always only one node :j
ﬁ at the highest level, i.e., level . The nodes at the lowest level, i.e., level 0, :;
represents the set of all the targets which we may call level-0 targets. In a formal i
;{ description, we define a level-I’ state for a level-l' target + as ‘ﬂ

P T

I'.(l N — (N, (“),3;'8“) 2 &l -1) S ,:cﬂf,“;ﬁ)l) ) (4.1)

-
=

where N;!'") is the number of the level-(I'~1) targets in the level-1' target i, z;§"

= is the state component common to all the level-(I'~1) targets contained in level-i'
[::' target ¢, and each :c,-,(‘ 1) is the state of the j-th level-(1'-1) target. Unless {'=1
v in (4.1), every :c,-,("") is defined similarly with [’ being replaced by {'-1. When
E ['=l, there is no need to use index ¢ in (4.1). Each level-I' target when I'<! is
o therefore indexed as

£

> = (4 _pyeemiy) (4.2)

According to an alternative view of this approach, we are first given a set of

= Ter S 1 @ THrnr SR AP o I 0 v W TR el BN B el L0 b

targets, then a partition of the targets into multiple groups, then a partition of

Z“-(’,&‘J
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the groups into multiple super-groups, and so forth. In other words, a level-1'

target is an element of a partition of the set of all the level-(I'-1) targets. The
partition is a trivial one when I'=I[. In typical battlefield units as shown in Fig-
ure 4-4, each unit has its headquarter (division command post (DCP), regiment
headquarter (RH), battalion headquarter (BH), etc.) besides its subordinates (R =
a regiment, B = a battalion, C = a company, etc.). These headquarters may be
considered either (1) as a part of the common state of each level-I' target or (2)
as special targets which do not have any subordinate. When we adopt the latter
consideration, we may simply extend each headquarter node to the lowest level,
i.e., level 0. As mentioned before, as a first-cut analysis, we ignore such prob-
lems. There will be no problem in rectifying the formulation to treat headquar-

ters in appropriate ways in the future.

4.1.2 Sensor Models and Multi-Level Tracks and Hypotheses

We can extend our target-sensor model for multitarget tracking from
single-level cases to multi-level cases in a rather straightforward way as follows:
Let S be a finite set of sensors which observe the targets. For each sensor s, the
measurement value space Y, in which measurements from sensor s take values is

assumed to be a hybrid space. Each output from sensor s is a data set

(¢ - Um m,t,s) which is an element of

oo
U U (Y,)™ X{m }X[te00)X{s}
m=0s€S
and represents m measurements, yy,.....,,, , generated by sensor s at time ¢. (tg

is the time before which no sensor outputs any data set.) A collection of data sets

available up to a certain time is called a cumulative data set. We assume that all

the data sets are indexed by positive integers as z(1),z(2),......, where
Ny (k)
z2(k) = ((y; (k)21 N (k )ste 5% ) (4.3)

for each positive k£ such that t, <t,» whenever k <k'. A cumulative measurement

set up to kis defined as

J¥) = kgl {1,000 Nig (k") X {k "} (4.4)

For the sake of simplicity, we assume that possible origins of measurements
in any data set are only level-O targets. Let Iy be the set of level-O target

indices. For each data set k, we assume an assignment function A, defined on a
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subset of the level-0 target index set Iy taking values in J(k) 8 {1, Ny (K )}
When j =A; (§ _j,--ig), We say level-0 target (§_, ..., i) is detected by sens~r
sy at time t, and generates the j -th measurement, or the j-th measurement ori-
ginates from lev'el-O target (f_y, - - ., ig). With the no-split/no-merged measure-
ment assumption, such an A; is a well-defined one-to-one function. Then, given
a cumulative data set, we can define the trace of a level-/' target in it in the form
of a subset of the cumulative measurement index or a collection of such subsets
at the given level. We call any possible realization of such a trace a level-!’
track. Thus a subset of the measurement index set is a level-0 track if it contains
at most one measurement index set for each data set. A level-{' track is a collec-
tion of nonoverlapping level-(I'~1) tracks. A level-l' hypothesis is then a collec-
tion of nonoverlapping nonempty level-I' tracks and hypothesizes all the set of
measurements originating from level-I' targets. According to this definition, a
level-1 track is also a level-0 hypothesis, and vice versa, although its interpreta-

tion as a track is completely different from that as a hypothesis.

Multi-level hypotheses defined above may be illustr.ted in Figure 4-5 in
which =3 and a level-2 hypothesis is represented by a tree depicted by solid
lines. In Figure 4-5, the level-2 hypothesis consists of two level-2 tracks each of
which hypothesizes a group of detected groups of targets, {{rm,r},{rs7(}}
{{rs},{rs,77}}, Where r; to r are level-0 tracks each of which hypothesize: a
detected level-0 target. Given such a hypothesis, we must further hypothes.ze
the existence of undetected targets and the overall structure, as shown in Figure
4-5 by broken lines. The process to group given level-0 tracks r, to r; in a level-0
hypothesis into a level-1 hypothesis and then into a level-2 hypothesis can be
viewed as a bottom-up procedure. While the process to add hidden targets and to
complete the overall structure can be viewed as a top-down procedure. The
evaluation of hypotheses may not be, however, deccmposed in such a manner.
The discussion of hypothesis evaluation in a general level-l case may be very
complicated. Therefore, in the following sections, we will restrict ourselves to the

cases where [ =2, i.e., where tracking of multiple groups of targets is concerned.

Remark: In the above discussion, we only considered the cases where each
measurement from each sensor is based on a l!evel-0 target. The definitions of
tracks and the hypotheses may be altered so that measurements from different
levels may be treated. At this moment, however, the exact form of the appropri-

ate modification is not very clear.
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4.2 EVALUATION OF TWO-LEVEL HYPOTHESES

In this subsection, we will extend our general theory of multitarget tracking
from single—level' cases to two-level cases, i.e., tracking multiple groups of targets.

The issues pertaining to implementation will be briefly discussed in terms of an

example.

4.2.1 Two-Lev ' Multitarget Tracking

When the target structure level is two, i.e., /=2, the overall target state

can be written as
z = (Ng,2gZ1ye0e0s2N,) (4.5)

where N is the total number of groups, z, is the state component common to
all the groups, and each z; is the i-th group’s individual state. Each z; is there-

fore in form of

z, = (M 1 Z5 09 %5 1yeeeee 9ziN-) (46)

where N; is the number of (level-0) targets in group {, z;, is the state component
common to all the targets io group i, and z;; is the individual states of the j-th

target in group i. Let the level-1 target index set be [g={l,..,Ng} and the
Ng

level-0 track index set be ,Ul{i}X{l,---,N.'}- Then the trace of level-0 target
=

(11,8 g), i-e., the io-th target in the ¢;-th group, in a cumulative data set up to k is
TdNiyig) = {(5 4') | T=Ar(ipio) 1Sk <k} . (4.7)
The trace of level-1 target ¢, is then
Tel(iy) = {Tipio) | 1SS} (4.8)
Then a level-0 hypothesis is a possible realization of
MO = { T i) | TeOi i 0)#0,(1 18 0)€ET } (4.9)
and a level-1 hypothesis is a possible realization of
MY = {T,W(iy) | T(i A0}, 1€l ) (4.10)

We can extend the concept of target-to-track hypothesis from single-level tracking
to two-level tracking as follows: A level-1 target-to-track hypothesis is a possible

realization of a one-to-one random function from A" to I; defined by
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a(1,M6)) =i (4.11)

and a level-0 target-to-track hypothesis is a possible realization of a one-to-one
function from T:,(¥(:) to {1,...,N; } (given T,)(i)) defined by

Qk(o)( Tk(o)(iliio);Tk(l)(il)) =1, . (4°12)

As in the theory of single-level multitarget tracking, whenever we must distin-
guish a realization of A{') from that of Q,'), we call the former data-to-data

hypothesis.

4.2.2 General Results

We will derive a recursive formula for calculating each level-1 hypothesis.
The results are an extension of the single-level tracking results. For the rest of
this section, we make the standard set of assumptions: (1) Targets are inter-
changeable a priori. (2) The data sets are conditionally independent given the
target states. (3) The assignment functions are totally random. The first step is

a straightforward recursive formula

Pz | ZE-0 A1)

(1) | z(k-1)
P(z(k) | Z(k-l)) P(Ah | Z2Y70) (4.13)

P(AY | 2%) =

The numerator on the RHS of (4.13) can be expanded in a way similar to that

used for the single-level tracking (as described in [1] and [2]) and yields

P (A |zt
P(Z®)| Z-1)

P(AM | 2%) = (4.14)

(N -# (A{M))!
Ne=# (M) (Ng —# (AM)!

(Nn‘(l)(,)"# (?))'
NE A (N g yy=# (7))}

P(Ng | A, 20D

P(NC® | Ng QAN ZED L, (2(k)| 4, NC,ZEY)

where
NS = (Ng,Ny...uNy,) (4.15)

and

Npa (k)

L (= (ke Ne | 2479) = s

(4.16)
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[P )28 1 A4 Nag (k)2 (8 LN C) PNy (k) | Doz (k)2 (4 )N )

P (Ipp (k)| 2(&),NC) P(dz () | NC 00,250l

The updating formulae for P(dz ()| N¢ QOAW zK),
P(NC | Ng , QW AM,Z2%)) and P (Ng | A{Y,Z1*)) can be derived in a similar way.

4.2.3 LI.D.-Poisson Groups

In single-level tracking, an appropriate set of independence assumptions
enables us to reduce a general form into a more implementable form. We will
repeat such a process for two-level multitarget tracking. The additional assump-

tions are as follows:

: N, .
(1] Given the number N of groups, the group states tuple (z; ); 5, is a system of
independent Markov processes which share common joint probabilities.
Thus the state component z, ccmmon to all the groups is ignored. The

number N; of groups has a Poisson distribution with mean v,.

. g : N,
2] Each z; =(;,2;1+---1Zi, ), given Ny, is a stochastic process such that (z;;); %,

is a system of interchangeable Markov processes.

(3] The detection is target-wise independent, i.e., the detection of target (i,,io) t:\g

depends only (z; 0,2 ;,) 2nd we have S

P(Ipr (k)| z(6).NC) = (4.17)

2
.
ay N i

831, o). 1-68(iy,
T w0 (ot | N =y (502, | £) 7 2000

LS A :
o 2w .

i L
’.'J'-
P (4 5 Ew e

F o

with a common detection probability function pp .

(4] Measurement errors are also target-wise independent, i.e., the value of a
measurement originating from a target (iy,i,) is correlated only to (z; o, ;).
The number of false alarms and their values are independent of the targets

and from data set to data set. Thus we have

f
Y
<

VN
R

'y

4-13

i o

13‘4

1
.3

T e N T R e e e e et e T e e o T G W L T L L L AT A A A LA T A TA AR LY

3

-



e . aniiheid

O T R P e TN B N e T S R N S R T Y S b B N T e O Dt Y T T N T R TR TR R O O e

P(Ny (k)| Ipr (k)2 (4 »N ) = pn,, (Ny (k )-# (Ipr (k) | k) (4.18)

and -

P ((y; (k)" | Ag Ny (k)2 (8, NC) = (4.19)

Pt (9, i)k ) 1 2ot )z ()6 ) TT - pra (yj (k) | £))

I .
(1,80)€ Dom (A,) j€Jpa (k)

with a number-of-false-alarm probability function py,, , a target-state-to-

measurement transition probability density function py, and a false-alarm-

value probability density function pg, .

Under these assumptions, we can derive results which are very analogous to
those in single-level tracking (described in [1] and [2]) and are summarized as fol-

lows: (1) Given a level-1 target-to-track hypothesis, the posterior distributions of

the group states (z; ),-N=°1 are independent, (2) the posterior distribution of
undetected groups becomes Poisson, and (3) the hypothesis evaluation can be

reduced to the evaluation of level-1 track-to-measurement likelihood as

P Z2% D) exp(vy -1 _y)

P 1 28) = S omy 7w Ny k) (4.20)
Lia ,EIAI@L (y{rlk}|Z D)
where Ly, is the falee alarm likelihood,
y{r|k}={y;(k)|(5,k)eUr} (4.21)

is the set of measurements assigned to level-1 track r and L(-|Z ";“)) is the
level-1 track-to-measurement likelihood. The forms of the above likelihood func-
tions are very similar to that of the hypothesis evaluation formula for the single-

level tracking of dependent targets.

4.2.4 An Example

A straight forward extension of single-level tracking to two-level tracking is
possible using the results shown in the previous two subsections. In two-level
tracking, however, the combinatorial problem is even more severe, which may

make a straightforward extension of single-level trackers infeasible in many
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applications. For this reason, we may have to develop new techniques for over-

- -

5

coming the additional combinatorial burden inherent to two-level tracking. In

“~
this subsection, we will discuss this aspect of the problem in terms of a simple ;:'.EE
example. ' :‘\,

We consider tracking of groups of ground vehicles moving on a road net- "Q:
work. By a two-step transformations to take care of (1) the route selection by K-'.z;.

Y
each group and (2) the curvature of each road segment, the problem can be b},é

by

reduced to that of tracking groups of targets moving on a straight line. Let u; be
the 1-dimensional position of the lead vehicle of the i-th group and v; be its
velocity. Then the position and the velocity of the j-th vehicle in group ¢ can

be modeled as
u; = uy = (J-1)e;v; + & (4.22)
and

Vij = Y + N (4.23)

where ¢, v; is the expected distance between two vehicles in group i, &, and n;;
represent randomness in position and velocity of each vehicle in the group. We
assume that the randomness can be modeled by independent gaussian random
variables. The group dynamics are then assumed to be a simple almost constant
velocity model with an appropriate white gaussian driving noise. Thus we may
have a very simple target model in which the state component common to all the

targets in group 1 is

-
»
i
»
“
)

{
3

i — (ui 'Yy ’ai) (4.24)

_Av--
Yy 'r‘r:“r'

=

where q; is a discrete variable representing the type of group ¢. The individual

»
[T
-

target state of the j-th target in group ¢ is then simply its type q;; .

P 4E
'y
w: 4

""" -
o
y

v =

“h

For each possible type of group, we assume that we have a sufficient
number of templates of the group including composition of different types of vehi-
cles and their order when moving on the road. Each template can be represented
by

e
o

A
Pa

PP s
LA P

L ]
»

e = (a,N,b...,by) (4.25)

where @ is the type of a group, N is the number of vehicles in the group and b,
is the type of the i-th vehicle in the group. Therefore the level-1 track distribu-

tion, i.e., the group state distribution, is a distribution on (~00,00)2X E, where E v&'
4-16
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is the set of all the templates. In general, we may assume at least in an approxi-

mated sense the independence of motion from the type component as
P (du ,dv,de )=P (du ,dv )P (de ).

When a data set is received from a sensor, each group hypothesis is given a
set of measurements which may be associated to it. Then the set of measure-
ments is ordered linearly and, for each template, the level-1 track-to-
measurement likelihood is calculated after template-to-measurement matching as
shown in Figure 4-6. In such a process, we must use a very effective method for
determining a likely level-1 track-to-measurement assignment. For example, for
each template, we first estimate the most probable distance between targets
based on the velocity estimate and then spread the vehicles in the template
accordingly. Then, by an effective assignment algorithm, we can find a feasible
assignment between the given set of measurements and the vehicles in the tem-
plate. After determining the assingment, we can calculate the level-1 track-to-

measurement likelihood.

4.2.56 Distributed Hypothesis Formation and Evaluation

As shown earlier in this report, distributed hypothesis formation is a pro-
cess of creating a logically consistent set of hypotheses from a collection of local
sets of hypotheses. This process amounts to the consistency checking on the
overlapped pieces of information in the past. It is also determined purely by the
definitions of tracks and hypotheses and independent of their probabilistic
nature. Therefore it is expected that we may extend the single-level tracking
results to the two-level or in general level-/ tracking cases. The results may be a
similar type of consistency checking on the predecessors of tracks and hypotheses.
However, although the final results are fairly simple in single-level tracking cases,
complicated steps were necessary to derive implementable results. It is hence
expected that the logical arguments involved in two-level tracks and hypotheses

may well be very complicated.

On the other hand, distributed hypothesis evaluation involves the distri-
buted estimation and is highly dependent on the structure of the global
kypothesis evaluation formula. In the single-level tracking cases (with the i.i.d.
Poisson assumption), the hypothesis evaluation equation is, in essence, a product
of track likelihoods and each track likelihood is an integration of a product of
state-to-measurement transition probability densities. Thus each track likelihood

can be decomposed using distributed estimation theory. In two-level tracking
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cases, however, the level-1 track-to-measurement likelihood involves summation

over many possible numbers of targets in each group, which may cause difficulty
in decomposing the track likelihood into the independent components. We may
well need a kina of aggregation of tracks and hypotheses in order to produce a
workable algorithm for distributed hypothesis evaluation for the two-level track-

ing. The dynamic behavior of groups may also complicate the discussions.

4.3 CONCLUSION

A first-cut analysis on multitarget tracking concerning a structured set of
targets has been discussed in this section. The discussions in this section are
summarized as follows: (1) Structured sets of targets may be treated in an
integrated form and concepts of tracks and hypotheses can be extended from the
single-level cases in a straightforward way. (2) Two-level multitarget tracking
hypothesis evaluation can be done by extending the single-level tracking results.
(3) Practical methods for implementing two-level hypothesis evaluation needs
however further investigation. (4) Distributed hypothesis formation and evalua-
tion for two-level tracks and hypotheses may be possible by extending the single-
level results but we need more time to clear this problem. The future efforts per-
taining to the topics covered in this section may include: (1) effective implemen-
tation of single-level tracking with correlation among targets, (2) implementation
of two-level multitarget tracking algorithms, and (3) development of distributed
level-1 hypothesis formation/evaluation algorithms.
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5. ACOUSTIC TRACKING EXPERIMENTS AND ALGORITHMS

As part of the DARPA DSN program, M. L. T. Lincoln Lab. has performed
research on the tracking of low flying aircraft using acoustic sensors. A DSN test
bea has been developed and used to test and demonstrate DSN techniques and
technology. This section describes how the general distributed tracking algo-
rithms developed at ADS can be applied to the acoustic tracking scenarios used
by Lincoln Lab. We first present some candidate experiment scenarios. Then we
discuss the development of acoustic tracking algorithms based on the multiple

hypothesis approach.

5.1 ACOUSTIC TRACKING EXPERIMENTS

This section describes the kind of DSN systems and scenarios for which new
distributed acoustic tracking algorithms are to be developed and evaluated. It
describes a family of systems and scenarios that will result in a range of tracking
problems; from easy to quite difficult. The system and scenarios are essentially
those which Lincoln had considered in a more informal way during its earlier
algorithm development effort and which have been used as the basis for the
evaluation of existing Lincoln algorithms. Much of the information in this sec-

tion has been provided by Lincoln Lab.

The system follows that of the Lincoln test bed and is a multiple node
acoustic system for low flying aircraft surveillance. The sensors at each node are
small acoustic arrays that provide lists of possible target detections along with
azimuth, accuracy and power level estimates every few seconds. The scenarios
range from single aircraft with straight flight paths operating under low back-
ground noise conditions to more difficult scenarios involving several maneuvering
aircraft. Basic communication service consists of an unacknowledged radio
broadcast service in which nodes can receive broadcasts only from a limited set of

neighbors.

b.1.1 Acoustic Sensors

The acoustic sensors in the DSN test bed are sinall microphone arrays
which detect possible targets, measure acoustic azimuths and provide signal-to-

noise estimates that can be used to ascribe accuracy values to the azimuth
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measurements. Measurements are nominally made every two seconds and the

measurement (after signal processing) corresponds to an average target azimuth
over a two second interval. The sensors provide no target elevation information.
The development of tracking algorithms will emphasize acoustic arrays with
capabilities comparable to those that Lincoln had been using, with at most a lim-

ited consideration of arrays with different performance characteristics.

The azimuth accuracy of the acoustic arrays is on the order of two degrees
and, depending upon target type and background noisc ronditions, the detection
range for a single target is from a few to a few tens of kilometers. A good nomi-
nal value to use is five kilometers. Target detection probability and azimuth
accuracy depend upon signal to noise ratio. For a given signal source strength
the signal-to-noise ratio depends upon range although it is also influenced by
topography and propagation conditions. Detection probability will be low at long
range and increase as the target comes closer to the sensor. Topographic features
such as hills may introduce quiet zones within which this increase of signal level

with decreasing range does not hold.

The number of targets within the detection range of a sensor that can be
simultaneously detected and isolated in azimuth depends upon many factors.
These include array aperture, number of sensors in each array, noise level, signal
level and the azimuthal separation of the targets. For existing DSN arrays and
signal processing algorithms the number of targets that can be simultaneously
isolated is on the order of three to five, assuming they are sufficiently separated
in azimuth and do not have excessively disparate power levels. A nominal value
for the required azimuthal separation for targets with roughly equal power is 20

degrees.

The number of targets that can be isolated by a single acoustic sensor lim-
its the local target density for target tracking but does not limit the total number
of targets for the entire system. For a fixed spatial density of DSN nodes the
number of targets that can be individually tracked will scale up linearly with the
geographic area of the network. In addition, clusters of unresolved targets can be

tracked if not isolated from each other.

In the absence of targets, the number of false detections generated by the
sensor and its associated signal processing algorithms is on the order of three to

five for each measurement interval.
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| Measurement intervals other thai two seconds might be used to improve
azimuth measurement accuracy for fast-moving uearby targets or to improve
accuracy and. detectability for very distant targets. If this is a controllable vari-
able, it may used for tracking maneuvering targets. Also, the sampling rate may

be decreased when the tracking performance is adequate or when the algorithm
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cannot keep up with the arrival of the measurements.
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b
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4 A lower limit to azimuth accuracy is imposed by propagation physics, not
by acoustic array size or processing techniques. A reasonable value for this lower

limit is probably about one degree. Azimuth errors larger than a few degrees

e 129

might be obtained from arrays that are smaller than the five meter arrays used L{‘?&
Ly

i by Lincoln or for signals with only very low frequency signal content. Errors of :{-ﬁ

P

more than about ten degrees p:obably should not be considered unless very poor
1 location accuracy is acceptable. In genera!, we will be concerned with systems

which can locate aircraft to within a kilometer or less in the horizontal plane.
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; Specific and detailed statistical sensor models will be formulated and refined A
as needed to support the development of tracking algorithms. H
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5.1.2 System Deployment ‘34

There are two primary DSN deployment options: barrier and area. The 5

) barrier concept is to deploy a thin DSN wver a long linear extent and is appropri- ; j
: ate for early warnirg situations. In this case, the primary interest is in target t :
l acquiziiior and {ransient “beaomena as the targets approach and pass through .
" the barrier. Area deployment is needed to provide continuous surveillance over ¥

large areas and steady-stute performance for targets internal to the network is a fi::]

more important issue. Both transient and steady-state performance issues come :',':%

together in the outer layers of an area DSN or in a barrier system with more than :.‘

E one layer of thickness. Transient behavior will dominate as targets approach the E_':c
" outer layer of nodes and steady-state behavior should dominate by the time the ‘;ﬁ:
;‘ second or third layer is reached. The DSN systems of interest contain many ::g
5 nodes but it should be possible to investigate and test algorithms with from two ﬁ
: to six node configurations. f,j
' Examples of barrier and area DSN systems are shown in Figure 5-1. The .:‘
:' deployment shown in the figure is on a regular grid but in general deployments E;
will be more randomized and algorithms should be designed with that in mind. :._

1 Depending upon the specific system and deployment, the number of nearest ‘
4‘ neighbors at about the same distance will range from two to six. ',:E
he
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Figure 5-1: DSN Deployment Configuration
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Sensor detection range, distances between nodes, and the broadcast com-

munication range are very important DSN network parameters. Lincoln tracking
algorithms have been developed for the case when the sensor range and the dis-
tance between sénsors are about equal and the nominal broadcast range is twice
the distance between sensors. This situation appears to be optimal. For smaller
broadcast ranges, the nodes will become information poor unless additional com-
munication mechanisms are added to distribute information to more remote
nodes. For smaller sensor ranges, the nodes become information poor but the
problem is more fundamental since that lack of information is because not
enough sensors detect each target at the same time. The new algorithms should
also emphasize the nominal case but may offer performance improvement possi-

bilities under one or both of the information poor situations.

5.1.3 Internodal Communication

The nominal internodal communication is a limited range unacknowledged
“yroadcast. Ideally a broadcast is received without error by all nodes within

-ange. The nominal broadcast area is a circle defined by the broadcast range.

Algorithms must also operate under other than idealized situations. There
may be “‘dead areas” within the nominal broadcast disks. Those dead areas may
be known and accounted for by tracking algorithms. They may be unknown and

the algorithms should be designed to be robust in their presence if possible.

Communications may also be subject to errors in the form of lost messages.
Algorithm development should consider how to treat randomly lost broadcast
messages. Note that the messages will be lost upon reception, not broadcast, so
that a message may be correctly received by auy number of nodes within broad-
cast range. The system should be designed to handle at least a few percent of
lost messages. In general the performance may degrade with increasing percen-

tages of lost messages, but the system should not catastrophically fail.

5.1.4 Target Scenarios

The number of possible target scenarios is very large. The scenz . to be
used in the experiments will be selected based upon Lincoln's past experience
with trackers and our best judgement concerning interesting or critical situations.
To be consistent with the Lincoln scenarios, we will assume the targets to be low

flying at about 500 meters above ground level.
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The scenarios are described in terms of the local density of targets. One,
two, and three target situations are emphasized. Satisfactory local performance
for resolved and unresolved targets will translate directly into satisfactory perfor-

mance for manyﬂ more targets and clusters of targets in a large DSN system.

Initially we will consider single target scenarios. This is primarily for test-
ing the basic algorithms and the communication between nodes. Both maneuver-
ing and non-maneuvering situations should be considered. Maneuvers include
changes of speed and direction. For non-maneuvering targets, we should consider
both direct and angled approaches to the DSN boundary and with targets passing
very near to nodes as well as between nodes. At least some consideration should
be given to high speed (Mach 0.9) cases to be certain that there is no unexpectad
behavior. The case of Mach 0.6 is probably more typical of low flying aircraft or
long range cruise missiles. Mach 0.1 is representative of 2 very slow target such

as a helicopter.

Since our algorithms are supposed to handle multiple targets effectively, we
will consider two-target scenarios of varying complexity. We will use a set of
two-target scenarios covering three distinct target configurations. These are the
in-line formation in which the two targets follow one behind the other, the paral-
lel formation i which they follow parallel tracks and the crossing formation in
which their tracks cross. In most cases, the targets will have the same speeds but
some situations with targets at two different speeds are included since a fast tar-
get overtaking a slow one may cause some problems for tracking algorithms. The
crossing scenario will be most stressing when targets reach the crossing point (at

different altitudes) at the same time.

One and two target scenarios may not adequately stress track initiation and
data association algorithms although they should be adequate for most other pur-
poses. Thus we will experiment with a few additional three-target scenarios that

will provide additional stress.

5.1.6 Measures for Performance Evaluation

In this section, we discuss suitable measures for evaluating the performance
of distributed acoustic tracking algorithms. The evaluation is complicated by the
presence of multiple nodes, multiple targets, and multiple hypotheses since at any
particular time, the tracking performance depends on the node, the hypothesis,
and the target of interest. In addition to local measures, more aggregate meas-

ures for the entire system are also desirable. The system performance also
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depends on the sensor and target characteristics in addition to the system
configuration. Contributions to the performance from these parame:ers should be

isolated for a fair evaluation of the algorithm performance.

5.1.5.1 Evaluation of Tracking performance

We first discuss measures which evaluate how well the algorithms track.
Since a multiple hypothesis approach is used, the tracking performance can be
divided into two levels: hypothesis level and track level. These will be discussed

separately in the following:

1. Hypothesis-level measures include the number of false targets and the number
of missed targets. A hypothesis is a collection of tracks. Using appropriate
thresholds, the tracks can be identified with the actual targets in the scenario.
The missed targets and the false tracks can thus be enumerated. This can be
performed for the best hypothesis (one with the highest probability) or it can
be evaluated for ali hypotheses to obtain an expected number of missed tar-

gets and false tracks.

2. Track-level measures include the estimation error (e.g., RMS error) for the
detected targets. The presence of multiple targets implies that some average
over the targets has to be considered unless individual target errors are to be
represented explicitly. For multiple hypotheses, the error for each target may
be that of the best hypothesis or it can be evaluated over all hypotheses to

obtain an expected error.

Both of the measures discussed above may be evaluated for a given time for
each node. In fact, it is frequently desirable to consider these measures as a func-
ticn of time for each node to see how each node performs with time. A node’s
performance may fluctuate with the quality and quantity of data available to the
node at a particular time. The average performance of the node can be calcu-

lated by averaging these measures over time.

The performance of the overall system depends or that of all the nodes in
the system. One may want to assume a fusion pode which collects information

from all the DSN nodes and use it to measure the performance of the overall
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system. As discussed before, the sensor and target characteristics are also impor-

tant variables affecting the system performance. If poor sensors are used with a
difficult target scenano, then the performance of the system would be expected to
be poor inspite of a good algorithm. Thus a reference should be used in evaluat-
ing algorithm performance. A suitable reference is the performance of the cen-

tralized algorithm and that of distributed algorithm can be compared with it.

5.1.6.2 Cost measures

The cost measures reflect the amount of resources used to produce the
measured perforrnance. Relevant resources include the local computation time,
the memory size and the amount of communication. The effectiveness of a pro-
cessing node or the total system can be measured by the amount of resource it
needs to produce a fixed level of performance. When there is a constraint on the
resource, a good system is one which uses the resources to produce the best per-

formance.

In a simulation of the DSN, ways should be devised to measure the rusource
utilization, e.g., the computation time, the memory size profile, the amount of
communication, etc. The computation time required may be recorded by means
of a system clock. The memory size can be expressed in bytes or in terms of the
number of hypotheses or tracks stored at each node. The amount of communica-
tion can also be measured in various ways. These quantities can be expressed for
each node at each time, or for each node over an interval. From these system

level measures can be computed.

Such data may provide vital information on possible refinements or
improvements of the various modules. If necessary, resource allocation modules
may be developed to meet the hard constraints at each DSN node. For example,
a way for the processing to keep up with the arrival of data is by skipping sensor

scans when the processing lacks behind arrival of data.

All the measures described above can be evaluated using simulated or real
data. Monte Carlo simulations can be performed when the data are synthetic.

tatistics on the various measures can then be obtained.
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: E
. 5.1.6 Data Sources g
: | ;
C': Real and -s..im.ulated acoustic data will be used to test algorithm components -
as they are developed. '?_'a

’! Real data will provide stressing clutter situations for simple scenarios with :‘i
% only a few nodes and with poor to good knowledge of ground truth. Data a:‘
"W recorded at Lincoln Laboratory and at test ranges and air bases in the Western H
= U.S. are available. E
- Many scenario variations will require use of simulated data. That data will ;
o) be generated using a previously developed acoustic data simulator that operates i::f
3] under VAX/UNIX developed by Lincoln Lab. Given system parameters and a h.u
o description of the target scenario, it simulates the clutter and azimuth measure- E
‘{(' ment outputs from the nodal signal processing subsystems. Using this tool we :__
. will, under very controlled conditions, generate algorithm development data for :\
g situations that would otherwise be very difficult to obtain. We plan to imple- :2
ment this data generator on the same machine as the algorithms to facilitate E

i experimentation. ;:
N .
E

i 5.2 ACOUSTIC TRACKING ALGORITHMS i
0 Although the general methodology developed in our research is in theory E”
- applicable to the acoustic tracking problem, the acoustic scenario raises technical :':
issues which need to be addressed before algorithms can be developed to perform E}

& satisfactorily. In the following sections we discuss these issues and relevant E!
models and how the general algorithms can be adapted for acoustic tracking. -E

3 ;
" 5.2.1 Issues and Models in Acoustic Tracking E1
:
- Some special features of acoustic tracking and the associated technical Z
g.ij issues are: E"
' K
3 :
W e Azimuth-only measurements. Each acoustic sensor measures only the azimuth Fj
of the target. Thus from a single node, the target location is not very observ- E

a able from the azimuth measurements. From a pair of nodes, however, a target, i
becomes more observable. An important question is thus the types of process- :

&ﬁ ing to be performed locally by one node and jointly by a pair of nodes. One ‘
" possibility is to use different representations such as azimutii tracks for local §
B .
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processing and position tracks after fusion.

e Propagation delay. Acoustic signals generated by a target do not reach a node
instantaneously. Since the target speed is substantial compared to the speed of
sound in the air, the delay has to be considered explicitly in any information
processing. For example, the true bearing of a target at a node can be quite

different from its apparent bearing at the node.

e Poor sensor resolution. Due to the poor sensor resolution (20 degrees separa-
tion needed before two targets can be distinguished), two targets which are
close together may be detected as a single target. Our previous discussion has
largely ignored this possibility. New techniques will have to be developed to

handle this situation.

o Range dependent detection. Since target detection depends on the range, and
range affects the sound pressure received at a node, some useful information
may be present in the sound pressure. On the other hand, the acoustic propa-
gation characteristics in air may be too complicated and unreliable. The ques-
tion is whether this intensity information can be exploited or not, and if yes,

how it can be exploited.

Based on the scenarios described in Section 4.1, we have assumed the fol-
lowing target and sensor models. Since the targets are assumed to be flying low,
their altitudes are ignored and they are modeled as objects moving in the 2-
dimensional space. The motion is modeled by constant velocity or constant
acceleration (and if necessary constant jerk). The target maneuvering is modeled

by additional white noise excitation to the target dynamics.

The sensor model follows that of [13] which documents the synthetic data
generator developed and used for simu'ation by MIT Lincoln Laboratory. Let a
target position viewed from a sensor (located at the origin) at time t be z(t).
The sound wave received at time ¢ by the sensor originated from the target at

time t —6, where the time delay 6 is determined by
e (t-8) = e 6 (5.1)

where
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g

- ||l is the Euclidean norm of a vector

L 2=

- ¢ is the speed of the sound in the air (See Fig. 5-2).

Equation (5.1) has a unique solution § provided z(-) is differentiable and

J |z (¢)ll<c (subsonic). It determines the acoustic azimuth (measured clockwise
! from the north) ¢ of the target with respect to the sensor. The measured acous-
n tic azimuth ¢,, contains measurement error as
J 3
o ol
¥ s
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oy =0+ w (5.2)

where w is modeled by an independent zero-mean gaussian random variable (r.v.)

whose variance'is yet to be specified.

Let the sound pressure at the 1-meter distance from the target be so. Then

the sound pressure measurement s,; at the sensor is

where r is the acoustic range, i.e., r =c¢ §, and G is the sensor gain. To account
for irregular propagation and other random factors, either additive or multiplica-
tive noise should be added to (5.3). The sensor also measures ambient noise sy .
Thus when the measured sound pressure exceeds a given thieshold syy, the sen-
sor generates a measurement y =(¢ys .Sy ,Sy ) consisting of the acoustic azimuth

and the signal/noise sound pressure levels.

The azimuth measurement error standard deviation (SD) o, (of w in (5.2))

is determined by

where

- 6¢ is the sensor resolution (about 20 degrees)
- SNR =5y [sn

- T(SNR )=min{max{1,VSNR },10}.

The number of false alarms is modeled as a Poisson random variable independent
from scan to scan. The delayed azimuth value of a false alarm is distributed uni-
formly on [0,27] and the sound pressure value has an exponential distribution

biased by the threshold value.

When two acoustic azimuth measurements, qSA} and qSAz{, are close enough,
ie., | op—ok | <64, they are merged into a single measurement. The merged

acoustic azimuth measurement is modeled as
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o = q6u + (1-q)d4 (5.5)
where
1 it sy > 5s)f
7= s otherwise ! {8.6)
le +st

and sA"{ is the unmerged sound pressure measurement corresponding to qﬁf;. The

merge 1 sound pressure measurement becomes

syt if s} > 5s)f

m
M 1, 1 otherwise (8.7)
Sy + —2—SM

In Equations (5.5) to (5.7), we have assumed that s,} >s,?. Otherwise we should
exchange the indices 1 and 2. Note the nonlinear nature of the merged measure-
ment model. When one measurement is much stronger than the other one, the

merged measurement is dominated by the stronger measurement.

5.2.2 Nodal Structure and Tracks

The general nodal architecture of Section 2 applies to acoustic tracking
without much modification. Figure 5-3 shows a more detailed functional archi-
tecture of each node and results from integrating Figures 1-2 to 1-4 in Section 1.
Each node contains a local data base of hypotheses which is updated whenever
new information arrives. This can happen in either one of two ways: data arriv-
ing from the local sensors or messages arriving from the other nodes. The two
corresponding updating functions are then local information processing and infor-

mation fusion.

The hypotheses in the tracking data base are the same as defined in Section
2. Each hypothesis consists of a set of tracks and represents a feasible explana-
tion of the origins of the measurements. Each track 7 is accompanied by a target
state distribution (TSD) which represents the distribution p (z; | ,Z ) of target
state z; conditioned by the track 7 and the cumulative sensor information Z.
Because of the nature of acoustic sensors, these track state descriptions depend
on the number of sensors involved. For tracks formed from the measurements of
a single sensor, the TSD is not very informative since the target state is not very
observable from one acoustic sensor. On the other hand, more information about

the target can be extracted from the measurements of multiple sensors.
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Each target state distribution (TSD) consists of geolocational TSD (GTSD)
component(s) and a sound pressure TSD (SPTSD) component. A TSD com-
ponent is called local if the distribution can be derived from the measurements of
a single sensor.;':ot.herWise it is called global. Thus a GTSD component is either
global or local while a SPTSD component is always local. In general GTSD or
SPTSD components may be represented as sum-of-gaussians (i.e., multiple gaus-
sian terms with a probabilistic weight attached to each term). A track may have
only a local GTSD compouent. In such a case, a track is said to be local. Ora
track may have a global GTSD component or both global and local GTSD com-
ponents. Then the track is said to be global. Figure 5-4 shows a taxonomy of the

target state distributions.

A local GTSD component is a gaussian distribution on the (local) acoustic
azimuth of a target and its derivative, (¢,<;S), and possibly higher-order
derivative(s). Local GTSD components are used to allow each sensor to initiate
tracks locally from acoustic azimuth measurements. As a local track accumulates
acoustic azimuth data, the acoustic azimuth rate ¢ is estimated with increasing
accuracy as indicated by the decreasing variance matrix in the local GTSD com-

ponent terms. A global GTSD component term is a gaussian distribution on the

LOCAL (ACOUSTIC AZIMUTH,

AZIMUTH RATE)

GTSD COMPONENT
(GEOLOCATION)

\ GLOBAL (POSITION, VELOCITY)
TSD

SPTSD COMPONENT

(SOUND PRESSURE) LOCAL

Figure 5-4: Target State Distributions
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global coordinates, i.e., the target position and the velocity in the north-east

coordinate, and possibly their higher-order derivatives. A global GTSD com-

ponent term.is formed from two local tracks when different sensors communicate.

A SPTSD component tracks the change in the measured sound pressure. It

serves the following functions:

e to provide an additional discriminant (particularly from false alarms)
¢ to predict when a target leaves the sensor coverage

e to predict the merged acoustic azimuth measurement when measurement merg-

ing is likely.

This component is also used to estimate the targets’ noisiness. A SPTSD com-
ponent term is a gaussian distribution on the (fictitiously noiseless) received
sound pressure s and its derivative, and possibly higher-order derivative(s). The

actually measured sound pressure s, is modeled by
SM — S + w, (5.8)

where the artificial noise termm w, (modeled by independent zero-mean gaussian
r.v.) accounts for scan-to-scan fluctuation of the sound pressure measurements.
It may be argued ihat a multiplicative noise term is more appropriate. In such a

case, (5.8) remaing valid #fter taking the logarithm of each variable.

The updating of eack I %D component is performed simultaneously with the
hypothesis evaluation (describzd in the next section). Or the other hand, the
extrapolation of each TSD comoonent term is performed with the help of
appropriate target dynamic models, i.e., counstant-velocity or constant-
acceleration linear models with an 2pprop-iaiec white noise input. For example,
in order to update a local GTSD compc.ent « <., we ina; use the following sim-

ple set of differential equations:

% é = white noise (5.9)

-

Since the acoustic azimuth dynamics are in fact nonlinear, the intensity of white
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S each representing one possuble merglng of tracks. Mathematically, track merging

m hypothesis is a partition Am of X\ such that # (T )<2 for any TEA where

. # (A ) is the number of members in a set A .

t:; Each track merging hypothesis is then expanded by the set of measiri»-

S ’ . . 19 o IGE
ments as in tlie usual case when there is no measurement merging. Fig. £.5 4 /:-

N trates this two-step hypothesis expansion: first by track merging an’ next ry the

S measurements. In the figure, a hypothesm i\ having three tracks is ¢xanded mto

N four track merging hypotheses, Am to A,:, each of which is ‘urther cxpaniled kv

E’: the measurements (shown by shaded triangles in Fig. 5-b). i.";. 56 .hows the

" expansion of the hypothesis A,,I, by the two measurements in tie - ronl senser
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noise must be chosen to compensate such nonlinearity in addition to any target

maneuvering if necessary.

5.2.3 Local Processing

As discussed in Section 2, as new measurements arrive from the sensors, the
local tracking data base is updated by hypothesis processing. In the following we

discuss how hypothesis formation and evaluation are adapted fo: acoustic sensors.

5.2.3.1 Hypothesis Formation

Our assumption in Section 2 was that no two tracks can share the same
measurement. Due to the poor resolution of acoustic sensors, this assumption is
no longer valid. In general, two or more targets may give rise to only one merged
measurement when they are close to each other (within 10 to 20 degrees). To
simplify the discussion here, we assume only two-way measurement merging as

modeled in Section 5.2.1.

Consider the arrival of a sensor report. The hypothesis X\ at the node is
then to be expanded with the measurements in the new sensor report to form
new hypotheses. Before making use of the measurements in the new data set, we
must consider the possibilities of some tracks in the hypothesis i\ being merged.
Thus the hypothesis is first expanded into the set of track merging hypotheses,
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5.2.3.2 Hypothesis Evaluation

After expanding all the hypotheses X in the old cluster the resultant collec-
tion of new hypotheses forms an updated cluster. Each new hypothesis A has a
unique parent X and a unique track merging hypothesis Am , from which X is gen-
erated. Then evaluation of hypotheses, with the possibility of measurements
merging, can be done by replacing N by A,, in the general hypothesis evaluation
formula (4], and probablhstlcally assessing the joint event of ‘‘two tracks merged

and generating a single measurement.”” The results may be summarized as

Prob. {\| 2} =C" ! Prob. {X\Z}
(H{L (y | T) \ TcA,, U{9} and T is assigned measurement y }}
(H{L 0| {rpym}) \ r,EX and TpEX but they did not merge})

(H{L 617 \ €\ but not assigned any measurement, i.€., ?=T}) (5.10)

where

- 7 is the cumulative data set including the current sensor scan
. 7 is Z minus the current sensor scan

- C is the normalizing constant

- @ is the symbol used to represent ‘‘no measurement’”.

The L (- | *)'s are likelihood functions defined below.

Newly Detected Target Likelihood (L (y | 0)). When Tis® Ly |0)

is the likelihood of measurement y originating from 2 target undetected before

and is given by
L(y | 9) = Bnr (Sm)/Bra (5.11)

where Oy () is the expected density of undetected targets, translated into the

acoustic azimuth space, i-¢, 0,27]. Bra 18 the density of the false alarms over the

[0,27] interval, i.e.,

5-20




Bra =Vpa /27 (5.12)

where vp, is the expected number of false alarms (about from 1 to 3) per scan.
Equation (5.11) also assumes that the sound pressure measurement distribution of

a target “heard” (detected) for the first time is equal to that of a false alarm.

Old Track Measurement Likelihood (L (y | T), T#0) When T 40,
L(y | T) is the likelihood of measurement y originating from an existing track
T={7} or jointly from two existing tracks T={7,7,} and is defined by
= Loy IT) L(su | T)

Ly |T)= (5.13)

Bra pF4(sp)

where

- L y(onm | ’f) is the azimuth measurement likelihood
- L, (sp | ’-i‘_) is the sound pressure likelihood
- pSF 4 is the probability density of the false alarm sound pressure.

For simplicity, we assume that the GTSD and SPTSD components of each track

are both single-termed. There are two different cases.

Case 1: No Merged Measurement. In case # (’f)zl, i.e., whe: there is

no merging, we have

Ly(oy | {T}) = \/2—17r_0¢ exp(—%( d’f{—; )2) (5.14)

with E being the acoustic azimuth prediction by a local or global GTSD com-
ponent of 7 and ?74,2 being the corresponding innovations variance given by

ol =04 SNR)* + 0, (5.15)

where 0,(-) is the azimuth measurement error standard deviation as a known
function of signal-to-noise ratio SNR =sy /ny, and 34,2 is the expected error

variance of the azimuth estimate by track 7.
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. Ly(sy | {T}) = \/2_:(03 exp(—%( 3{4—3—)2) (5.16)

where

- 5 is the sound pressure measurement predicted by the track 7

~ 2 —2 . e A :
-0, /=0, +0l is the corresponding innovations variance.

=2
g,

predetermined artificial sound pressure measurement error variance.

. . . 1 . 9 .
is the sound presure measurement prediction by track 7 while o,” is a

The likelihoods (5.14) and (5.16) are commonly used in many multitarget
tracking algorithms and become extremely small if |¢M—$ | or |sy—s | is
large. In such a case, the likelihood is set to be zero rather than a very small but
still positive value. This is done by thresholding as |¢M—$|/'o¢<g¢ and
| spe—s | /o, <g, with appropriate thresholding levels ¢, and ¢,. Such levels

may be determined from the x? table.

Case 2: Merged Measurement. In order to calculate the likelihood func-
tion in case of # (T)=2, i.e., when measurement merging occurs, we must make
some approximations. First we approximate ¢ in (5.6) by

3 otherwise

Q|
I

(5.6")

51+
where s, and s, are the sound pressure predictions of the two tracks. Likewise,

we approximate (5.7) by

Su if s, > 55,

Sy = .
M 1 otherwise

(5.7
S‘Ml + ESM

We denote the right hand side of (5.7') as h™(sy},53f ; 51,55). With these

approximations, we have
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Lo(oy | {Tma}) = 9 (o4 —h T (80,025 7) 3 74" (5.17)
[e,.f(écg_-_é;«z) _ erf(M)]
On¢ Oa¢

“!H re

SRy TR T+ (1-7)ds

-g (¢ 0)A exp(—¢?/2)/(v2n0) is the probability density of a zero-mean gaussian

variable
z
-erf(s )9 f g (€)d ¢ is the error function, and
-00

o VieodF+ 1= 00l + BT + g (5.18)

with o/ being the SD of the measurement noise in (5.2), and 5; being the SD of
th: acouistic azimuth prediction error determined by 7; for each #. The other

perawters are

_ P -(-])P,

Ap =6y - b2 + == ———(ou —h§ ($1$55 7)) ,  (5.19)
QP+ (1-q)P,
att
. PP, 555
0A¢ = s T ’ q
¢°Py +(1-q)P,
where g;,. is the acoustic azimuth prediction by the local or global GTSD com-

ponent of track 7; and P; = [5;]2 + [0 )3, for each 1.
For the sound pressure part, we have

Ly(sy | {rome}) = ¢ (SM — k(51,555 51,5 2) ;bsm(;v;z)) (5.21)
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o (5u52) = V0o Gt + [0, P + [0, (5.22)

531 is the SD of the sound pressure prediction error determined by the SPTSD
component of track 7; for each ¢, and o,"(s,5,) is either V5/20, or o,
depending on the condition in (5.7’), with o, being the SD of the noise term in

(5.8). The derivation of (5.17) and (5.21) is described in the appendix.

Tracks Not Merging Likelihood. L (8| {7;,7}) is the likelihood (proba-

bility) of tracks, 7, and 7y, not being merged, i.e.,

L(0] () = 1-Prob. { 7i 7} } (5.23)

with

Prob. {{71,?2}} = erf(_ié_—_gq_ﬁ_) - erf(ﬂ) (5.24)

VP + P, VP, + P,

being the probability of the two tracks being merged, where A¢ = 51 - 52.

Missed Target Likelihood. The target detection model yields likelihood
(probability) of a target hypothesized by the track 7 being undetected in the

current scan, i.e.,

LO|F)=1- erf( L 'E) (5.25)

O

Thus the evaluation of the newly expanded hypotheses is equivalent to the
calculation of all the likelihood functions defined above. Therefore, it is con-
venient to store all the above likelihoods in a table. We call such a table an
extended (because it includes merged measurements) track-to-measurement

cross-reference table.

Parallel to the calculation of each likelihood, we can update each track
according to the assumed measurement assignment. When a measurement is
assigned to a single track, both the GTSD and SPTSD components of the track
can be updated by the Kalman filter or the extended Kalman filter. The latter
filter is used for the global GTSD component. The necessary partial derivative
calculation can be found in [14]. When a measurement is assigned to two merged
tracks, using the approximate joint measurement equations, Equation (5.5) with
¢ being replaced by g (for the GTSD component) and Equation (5.7") (for the
SPTSD component), the GTSD and SPTSD components can be jointly updated.

The resulting cross-correlation between two tracks is then ignored for simplicity.
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When no measurement is assigned to a track, the TSD components are not
updated. When a measurement is assigned to the null track, i.e., a single meas-
urement is used to initiate a new track, a single-term local GTSD component and

a SPTSD component are generated using the appropriate variance matrices.

5.2.3.3 Hypothesis Management

Updated clusters are then subject to hypothesis management operations
including 1) hypothesis pruning in which low-probability hypotheses are cut off,
2) hypothesis combining in which similar hypotheses are combined, and 3) cluster

splitting in which confirmed or nearly confirmed tracks are split from a cluster.

5.2.4 Information Fusion

When hypotheses are received from other nodes, they are fused with the
hypotheses at the node to form new hypotheses. As discussed in Section 2, the
basic steps include hypothesis formation, evaluation and management. The dis-
tributed nature of the processing necessitates operations for checking that only
consistent hypotheses are formed and removing redundant information in
hypothesis evaluation. These operations are facilitated by means of the informa-
tion graph (also discussed in Section 2) which is an abstract model of the com-
munication and processing in the DSN. In the following discussion, we use the
terms home and foreign to represent the information present the node and that

coming in from an external node.

Although we discuss hypothesis formation and evaluation sepérately, in
actual implementation, they are usually performed simultaneously so that no
unnecessary hypothesis expansion is included. For example, it is possible that a
hypothesis pair (Xl,iz) satisfies the necessary condition for the fusability but
yields zero probability.

5.2.4.1 Hypothesis Formation

The key problem in hypothesis formation is in identifying the [usible
hypotheses and tracks from the home and foreign hypotheses and tracks.
According to Section 2, the entire fusion problem can be defined in terms of the
information graph. Both the home and foreign information states (tracks and
hypotheses, etc.) are defined at information nodes i, and ¢,. Then consistency

checking in hypothesis formation starts by finding the minsmum set of common
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predecessors of i, and 7, in the information graph. By tracing back the graph to

this minimum set, fusability can be determined.

For two i:lzac.ks, a home track 7, and a foreign track 7,, are fused whenever
they are fusable. The two tracks are fusable if and only if they share the same

predecessor track on each information node in the common predecessor set.

5.2.4.2 Hypothesis Evaluation

Each fused hypothesis is evaluated using equation (2.28) of Section 2. Let X
be the fused hypothesis and Z be the cumulative data at the fusion information
node, then

PN[Z)=C I P(\, | 2 IT 1(r) (5.26)

1elp el

where C is the normalizing constant, (I ,a) is the information redundancy indi-
cator, \|; is the predecessor of X on the information node i, and I(r)=L (11,72)
with (7,,7,) being the pair of tracks uniquely determined by a fused track 7.
(Ig ya) has been defined in Section 2 (where it is denoted as (I ;) and represents
the redundant information at the two information nodes 7, and 1,. Ip is the set
of information nodes which afect the common information and «, a function
which takes on value of +1 or -1, indicates how the redundant information can

be removed.

A key step in hypothesis evaluation is the computation of the track-to-
track likelihood L (r,7,) for every fusable pair (ry,7,) of home and foreign tracks.
For each of the tracks in the given pair, the last time when the track was
updated is examined. If the updating times are different, the TSD of the track
which has not been recently updated is extrapolated so that the two TSD’s
correspond to the target state at the same time. Then the track-to-track likeli-
hood is calculated from the GTSD factors of the two tracks.

Whenever the likelihood is positive, the fused track r=rUr, is created.
Each fused track 7 is then associated with a fused TSD (target state distribution)
which is created by fusing the TSD’s of the tracks from which it is fused. The
GTSD component for the fused track is created from the GTSD components of
the tracks from which it is fused. The SPTSD component of the fused track is
the same as that of the home track in the track pair to be fused.
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A track is called local if it consists of measurements from only one DSN

sensor node; otherwise it is global. A global track always has a global GTSD
component (i.e., a geolocational distribution in the global cartesian coordinate).
A local track usﬁally only has a local GTSD component (i.e., a geolocational dis-

tribution on the acoustic azimuth and its derivative(s)). The SPTSD component

is always local.

Since the home and foreign tracks may be local or global or even empty,
the computation of the track-to-track likelihoods has to consider all these possi-
bilities. The different types of track-to-track likelihoods are shown in Figure 5-7.
The calculation of the track-to-track likelihood and the fused GTSD component
for each fused track is described in the following subsections for all possible com-
binations of home and foreign GTSD components. Because of symmetry, some of
the combinations are the same. Note also that we have ignored the case of
empty home track and local foreign track since the DSN node would not know
how to use the azimuth information coming it. The track-to-track likelihood is
thus set to zero. To simplify the notation, we assume that each GTSD com-

ponent only has a single term. The results can be generalized to the case of

sum-of-gaussians.

FOREIGN TRACKS

EMPTY GLOBAL LOCAL

EMPTY 1 4 IGNORE
HOME
TRACKS
GLOBAL 4 2 3
-
LOCAL 6 3 5

Figure 5-7: Possible Track-to-Track Combinations
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5.2.4.2.1 CASE 1: Empty Home Track/Empty Foreign Track

The density ﬂ,fm of the undetected targets at each information node i in
the set Ip is either stored in the current information node before the current
message is received or contained in the received message. The updated density

fxp for the current information node is calculated as

Byp =L (0,0) = M(0,0)= IT (8fp )" (5.27)

i€lp
where (Ip ,a) is the information redundancy indicator and M(-,") is defined as
M (77) = [H{(B4p )20V | 7€lp (L U T) i =0) (5.28)

with 7, is the restriction of a track 7 to an information node 1, i.e.,

T ;=7 J; where J; is the cumulative measurement index set at the informa-

tion node 1.

5.2.4.2.2 CASE 2: Global Home Track/Global Foreign Track

Suppose both the home and foreign tracks 7 and 7, are global. The infor-

mation nodes in the set Ip consists of two types:

- Those where the common predecessor of 7; and 7, have a global GTSD factor

- Those where the common predecessor of 7, and 7, have a local GTSD factor

Let
I§ = {i €l | (nUry) |, has global GTSD component} (5.29)
The predecessor track at each 1 €1 RG has a global GTSD component (position and

velocity) with mean #; and variance matrix X;. Then the part of the track-to-

track likelihood concerning with I RG is given by

11 det(S,) | 2
Lg (ry,79) = (i—;—et(—z—)— —) eXp(—-%ERGHi -3 11g.) (5.30)

The mean # and variance ¥ of the (global) GTSD component of the fused track

7, U7y are given as
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(5.31) E

3 3
{
4
g
=
5]
e
8

L lc ‘
le R :b
o
and - ! Ej-}‘
i'-‘
2=(X% a(i)1) (5.32)
ielf

In Equations (5.28) - (5.31), (I ,) is the information redundarcy indicator. Let

If =I5 \I§, i.e., the set of common predecessor nodes where the tracks have local

R
GTSD components. For each ¢ in 1§, define

p; (rym) = p(®0) 2 (V) J(2) (5.33)
where

- (&,;S) is the pair of the estimates of the acoustic azimuth and its derivative cal-

~
-
L.

£
5

!
|

culated from Z,

- (f’,{b) is the target speed/heading estimated by Z,

-

. PiL(°") is the density of the GTSD component of the predecessor track at 1
(marginal to (¢,9)),

<>

- EV(-,-) is the density of the a priori distribution of the target speed and the
heading, and

- J(-) is the appropriate Jacobian. §
.

:

Define .!
Ly (ry,mp) = H 4 (7'1’7'2)0(') (5.34) ::;‘

1 EIA‘ h‘,:

3

Then the track-to-track likelihood is calculated as f!
— i

L (1,m) = M(TI’TZ) Ly (7'1’7'2) Lg(m,m) (5-35) ,.

4

-
o,

J BT

When the GTSD component of the fused track is multiple-termed, (5.15) is calcu-
lated for each term and the weighted sum becomes Ly (,7) with the new

weights for the fused track. The SPTSD component of the fused track is identi- *.:

-

cal to that of the home track. g

I‘&‘

I.-‘

™
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5.2.4.2.3 CASE 3: /' bal Home Track/Local Foreign Track

When the foreign track 7, is local, every predecessor track (r;Urp) ; is
empty for every i €I, except for i, and #,. If the foreign track has a global
GTSD, the calculation of the likelihood and the fused GTSD can be done as in

CASE 1.

Suppose the foreign track has a local GTSD component. Then the GTSD
component of the fused track 7.\Jr, has the mean # and variance matrix %,

which are calcvlated by the extended Kalman filter equations:

:E - il + K((AD2 - (Dl) (5.36)

where

- £, is the mean of the GTSD of the home track 7,

- ‘52 is the vector of the means of the acoustic azimuth and its derivative in the

GTSD component of the foreign track 7,

- 51 is the azimuth and its derivative of the target at i predicted by the z .

K in (5.36) is the ilter gain defined by

K =x,HTs! (5.37)

where

S=H%,HT +R (5.38)

- El is the variance matrix of the GTSD component of the home track 7,

- F is the variance submatrix of the local GTSD component of the foreign track

Ty, and
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- H is the derivative of the transformation function A which transforms the glo- %
bal target state into the local coordinates used for the GTSD component of the &’C:
foreign track. oY

The variance I of the fused track is then given by g;{g

L= ( -KH), (5.39) i

The track-to-track likelihood is calculated as

L (ry9) = M (ry,79) Ly (r1s7) (5.40)

where

L _ -
Loy (rm) = (2m)det(5))? exp(-316-0l,4) 5V (7,9) J(2)  (541)

where
- EV(-,-) is the density of the a priors distribution on the target speed and the
heading,

-J(+) is the Jacobian and (V,d) is the the target speed and the heading
estimated by z. - L

- s 2 TR Ly
LY l— é X 3 [. . 3
v Biey*s Pd " a

"'-"*v

5
s
e o

5.2.4.2.4 CASE 4: Global Home Track/Empty Foreign Track

-
B3 -

&
‘0
L

When the foreign track 7, is empty, all the piedecessor track (r,Ur,),, is

-
»

Fox -2

;-;I, o

empty except for i,. Therefore, we have L (r,,7,)=M (7,7,) and the TSD of the
home track becomes the TSD of the fused track.

I_.}"

et 06
XX |

5.2.4.2.6 CASE 5: Local Home Track/Local Foreign Track

This is the case when two local tracks from two sensor nodes are used to

Y

initiate a global track. When the home track 7, and foreign track 7, are both .tﬁ.:-
local (r;U") ;=0 except for i; and +,. The fused GTSD component is created ::?
N\ LE,

po
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first. This is done by using the ‘‘position” track initiation equation described in
[15). As before, we assume that both home and foreign tracks have single-termed
GTSD components. Then, using the means and the variances of the of the two
local azimuth v:;.lﬁes and their first-order derivatives, the global GTSD distribu-
tion is obtained by solving a multidimensional algebraic equation. The algebraic
equation is quadratic and may not have any solution. In such a case, the track-
to-track likelihood is zero and the fused track is not created. Otherwise we have
two GTSD components with means and variances, (£,,£,) and (Z,X%,),

corresponding to the two soluticns to the algebraic equation.

Then, for each k €{1,2}, we calculate

1

a, = (det(X;)) ? (5.42)
and
1 1 R
by = (det(E,4)) 2 (det(E,)) * P (Ve e (&) (5.43)
where

- X4 and I, are the variance of the local (azimuth, its derivative) vector

attached to the home and the foreign tracks,
- (f’k,;b* ) is the target speed and heading estimated by Z; ,

- EV(-,-) is the density of the a priori distribution of the target velocity vector,

and

- J is the appropriate Jacobian

The weights w, and w, are then calculated by

w b, a
___1_ =) & 4 (5'44)
W2 by a,
with w,+w,=1. The GTSD component of the fused track r,{ry is given as a
sum-of-gaussian distribution with weights w, and w,. The track-to-track likeli-

hood is calculated as
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(riyre) = M (r,7) a Wy + aqi, (5.45)

5.2.4.2.86 CASE 8: Local Home Track/Empty Foreign Track

As in CASE 4, L (rl,(b)————]\?(rl,(b). The TSD of the fused track is identical
to that of the home track.

5.2.4.3 Hypothesis Management

The hypothesis management procedures used in the information fusion pro-
cess are almost identical to those used in the local data process, and include

hypothesis pruning, hypothesis combining and clustering.

5.3 CONCLUSION

In this section, we have presented acoustic tracking scenarios which can be ;_.-:;j

T

used to evaluate the multiple hypothesis approach to distributed tracking algo- :—'ﬁj
g

rithms. These scenarios were derived from the experimental set-up at the Lincoln o

Lab. DSN test bed so that the experiments can be performed on the actual

. . 3 3 B3

testbed if resources permit. The general algorithms of Section 2 have been Y
adapted to handle acoustic sensors. Because of the characteristics of acoustic ti‘_f_'
L eyt

sensors, such as azimuth-only measurements and propagation del2ys, special *ech- -\"-,.:

niques have been developed for hypothesis formation and evaluation, especially at

the t-ack level. However, the overall architecture of Section 2 still applies.
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6. SIMULATION EXAMPLES

The complexity of the algorithms in a DSN precludes analytic approaches
to performance evaluation. Thus we have developed a simulation environment as
a research tool for developing algorithms, evaluating their performance, and
understanding the general issues associated with a DSN. In this section, we give
a brief description of the simulation environment and present some examples

simulated in this environment.

6.1 SIMULATION ENVIRONMENT

We first present the hardware and software used in the simulation environ-
ment. This will be followed by a description of the user interfaces and capabili-

ties of the software.

68.1.1 Hardware and Software

The current DSN code was first implemented on a VAX 11-780 under the
UNIX operating system. It was then moved to the Symbolics 3600 Lisp Machine.
LISP was chosen since the data structures for hypotheses and tracks can be
represented conveniently in the fcrm of property lists or def-structs in LISP.
Furthermore, since the size of the data structure is dynamic, being driven by the
sensor data and commurication, efficient memory allocation and deallocation are
desirable. Garbage collection is automatic in LISP, thus simplifying the coding
task.

The LISP machine also provides a good environment for program develop-
ment, including the use of multiple windows and utilities to support coding in
LISP. It also allows graphical displays tor hypotheses, and with the use of a

second monitor, displays for the target movements.

In the interim report [4], we presented an architecture for a general test bed
environment within which a DSN system may be designed and prototyped. This
architecture, called Schemer, has since evolved into a programming environment
called SOPE (System Oriented Programming Environment). A SOPE system is
an object-oriented realization of a ‘‘system’’ as it is thought of in general system
theory. Fundamentally, a system is an object that performs a specialized set of

computations and interacts with the rest of the world sending and receiving
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messages. lhe current DSN simulation was bullt using some ol the SUIML capa-

bilities.
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6.1.2 User Interface

An interface has been provided for controlling the experiment as well as

=

o
o

displaying the simulation results to the user. This interface has also proved to be

useful in program development.

e |7

Two kinds of displays have been developed for the DSN simulation: a situa- S
tion display for the scenario and a hypothesis display. The situation display is on ."w
a color monitor and the hypothesis display is on a black and white monitor. :-:.\
Various display functions are controlled by means of menus and the mouse. The "?
two displays are shown in Figure 8-1 and 6-2. 5

}'J

The hypothesis display (Figure 6-1) on the current system shows all the
hypotheses for all the nodes (four at present). For each node, the evolution of
the hypotheses are shown. Each circle denotes a hypothesis and the number in
each hypothesis is the probability of the hypothesis. The parent and children of
each hypothesis within the node are connected by lines. By pointing the mouse
to a hypothesis which results from fusion, one can also identify its predecessors

from other DSN nodes. In the figure, the predecessors for a fused hypothesis are

X
T

e T

S D 9% PP
[

P A

h
darkened. 2
L3 .Fl\

o

The situation display (Figure 6-2) on the current system shows the scenario

under consideration, and the semsor characteristics. For each time, the target
locations and the measurements can be displayed. By pointing the mouse to each
hypothesis, one can also display the target locations according to the hypothesis.
Thus, the evolution of the situation becomes obvious as one moves the mouse

within each node. Furthermore, by considering the hypotheses from multiple

(\f:'(
.l

& o A
£ AR

.J:];», "

A

DSN nodes, one can identify how information is being fused.

N

6.1.3 System Capabilities

-

The current simulation focuses on the processing within each node and a :S:
perfect (noiseless) communication model is assumed. Each node in the network is E‘{'
equipped with a GTC (Generalized Tracker/ Classifier) which processes the local :
sensor data and an information fusion module which fuses the information sent !

from the other nodes with the local information. The current simulation has the

. .
P el
2 a " F

2
w3 W

following capabilities:
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¢ The maximum number of nodes which can be handled in the network is four.
There is no conceptual difficulty in ir.creasing the limit on the number of nodes
but simulation time will increase su’stantially since a single computer is used

to simulate a distributed system.

¢ The communication between any two nodes can be specified arbitrarily. By
using the information distribution module, adapiive time-varying communica-

tion strategies can be handled.

e The processing of the local sensor data is by means of the GTC developed in
the previous project [1]. Information fusion is based on algorithms for

hypothesis formation and evaluation described in Section 2.

For scenarios with average target density, false alarm rate, detection proba-
bility, and measurement accuracy, the algorithm runs reasonably fast. However,
the fact that a single machine is used for data generation, communication simula-
tion, and simulation of multiple nodes makes it difficult to evaluate the actual
performance in terms of speed. Furthermore, the garbage collection of the LISP

machines sometimes interferes with the processing.

In order to handle arbitrary communication patterns among the nodes, the
information fusion algorithm includes mechanisms to trace the histories of the
tracks and hypotheses in the information graph. Without any loss of generality,
information fusion from multiple nodes is carried out sequentially in a binary
form, i.e, to fuse the information from node A, B and C, we first fuse that of A
and B, and then the result is fused with the information from C. This simplifies

the implementation of the fusion algorithm considerably.

6.2 DISCRETE ROAD NETWORK EXAMPLE

We now present some simulation results for a four-node sensor network to
illustrate the performance of the DSN fusion algorithm. We use a simple
discrete-state road network scenario where the target dynamics are assumed to be
Markov with the road-segments as the possible states. The main reason for using

the simple target dynamics and scenario was to minimize any unnecessary
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numerical complexity due to target motion and to concentrate more on issues
resulting from arbitrary communication pattern. The simulation program, how-
ever, is capable of handling more complicated scenarios if the appropriate algo-

rithms are 1ncluded

6.2.1 Target and Sensor Models

The underlying models in the scenario are:

a. Targets move along the road network with discretized straight-line segments.
b. The target dynamics are Markov with a given transition matrix.

c. Each sensor measures position (segment number) along the road with some
uncertainty due to the bearing and range measurement noise. Each sensor

also has certain masked regions which it cannot observe.

d. The probability of detection of a target in each road-segment by a sensor is a

function of sensor masking and the relative sensor location.

In addition to this, independent and identically distributed target models have

also been assumed in the current simulation.

Ve

There are four nodes in the DSN, with a sensor at each. node. The sensors
observe the same road network although they have different fields-of-view. The
road network and the location of the sensors are shown in Figure 6-3. Each indi-
vidual target position is represented by the <crment number and its evolution is
assumed to be a Markov process. The t: e at any time is thus character-
ized by a probability distribution on th -gment. Because of the terrain
and other masking (due to foliage, etc) the sensors have masked regions. When
the carget moves into these regions, it will not be seen by the sensor. A sensor
can fail to detect a target in the unmasked region because the probability of
detection is less than one. Figures 6-4 to 6-7 show the detection probabilities of
the four sensors. Each sensor generates a measurement in the following way.
The detection of a target at state z; by a sensor depends on the detection proba-
bility which is 0 whenever the target is in a masked region relative to the sensor.

For any detected target located at z, the measurement y, which is also a

6-6
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segment number, is generated according to the following conditional probability

distribution function: (see Figure 6-8)

p(y12)~ 2o (u)U(y) (6.1)

where

r mae( ¥ )0mn(yi ) J

ai(wi)= [ [ a(rir()ef0]6(z))drd0 (6.2)

F in(Ys ) Omin( 91 ) iy

h

U(y;) is a uniform function on segment y; with unity value and g, (r | 7 (z)) I
Y - . \

and g4(0 | 6(z)) are sensor characteristics corresponding to the the measurement 5

uncertainty in range and bearing given the average range and bearing of a partic-

WP

ular target location r. False alarms are also added according to the semsor

50 e g

model.

The total number of targets is constant but unknown and its a priori distri-
bution is Poisson with mean v,. The number of false alarms in each scan is also
Poisson with mean vp, for each sensor. The target positions are independent

and identically distributed with the a priori distribution uniform over the road

SR TR X RN ey T,

network states, and targets are expected to move into the field-of-view from the
edges at any time. The parameters used in the simulations are given in Table 6-
1.
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Figure 6-8: Conditional Probability Distribution p(y|z)
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Table 6-1: Simulation Parameters

e t!

by

<

<

s

::J

Expected number of targets Vo 4 !
2

!

-

Expected number of false alarm Via 1/scan E
Probability of detection Ppmax | 0.9 n
;

range o 0.5 (km) i

Measurement error bearing oy 0.2 (radius) E
lM

radial velocity o 0.1 (km/min) .

E

Pruning threshold € 0.05 i

-~

6.2.2 Communication Schemes

Different kinds of communication patterns were experimented. The first
(decentralized case) consists of no communication among the nodes. The second

is hierarchical communication with the following features:

1. At every odd scan NODE 1 sends information to NODE 2, and NODE 3 sends
information to NODE 4.

2. At every even scan NODE 4 sends information to NODE 2.

NS 2o mies aal ww warae AE . Nl igl Bn gt GO WK . LSS

g

i.e, node 1 and node 3 only transmit information to other nodes, node 4 is an
intermediate receiver/processor/transmitter and all information is thus collected

by node 2 with communication delays. The hierarchical communication pattern

T nTa g s N T

and the information graph are shown in Figure 6-9 and Figure 6-10. The third

case considered is broadcast communication.
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6.2.3 Simulation Results

In each simulation, all the hypotheses were examined and compared to the
true traject(;ries of targets according to the measurement-to-target association
histories. The hypothesis best matched to the ground truth is defined as a true
hypothesis. The most likely hypothesis (highest probability) is called the best
hypothesis.

The results of a simulation run are shown in Figures 6-11 to 6-12 where the
probabilities of the true and best (with highest probability) hypotheses are plot-
ted versus time for each of the four DSN nodes. Note how the probabilities of
the hypotheses change with time. In general the true hypothesis and best
hypothesis are not the same when the data quality is poor. This argues for the
multiple-hypothesis approach since if only the best hypothesis is selected, an
incorrect hypothesis may result. The probabilities of the best hypotheses and
true hypotheses for each node for the no communication case are shown in Figure
6-11. Note that because of their data quality, the best hypotheses for NODES 1,
2 and 4 are not the correct hypotheses. NODE 3, however, tracks the targets
correctly. In the hierarchical case (Figure 6-12), the hypotheses of NODE 1 and
NODE 3 behave the same as in the case with no communication since they do
not ‘eceive any information from other nodes NODE 4 now has the help of
NODE 3 and performs much better, acquiring the correct hypothesis after a
while. NODE 2 performs best since eventually it gets information from all nodes.

In the broadcast case, the nodes all find the true hypothesis in a short time.

Figures 6-13 and. 6-14 show the hypothesis trees for the two cases discussed
above. The number of hypotheses for each node varies with time, depending on
the complexity of the current situation. For example, in Figure 6-13, NODE 3
starts out with four hypotheses around scan (tick) 3, with the true hypothesis
having a fairly low probability. As it collects more data, the situation clears up
so that there are only two hypotheses at scan 8. This phenomenon is even more
pronounced in Figure 6-14 where NODE 4 starts with four hypotheses with
nonzero prcbability at scan 2 and 3. With communication from NODE 3, only

one hypothesis has nonzero probability at scan 8.

6.3 CONTINUOUS STATE EXAMPLE

Figures 6-15 and 6-16 present some results in continuous state tracking.
The network consists of two nodes (denoted by 1 and 2) which broadcast their

hypotheses periodically. The azimuth measurement nf each sensor is inore
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accurate than the range. Initially for scan 1 and scan 2, each sensor has only one @
hypothesis consisting of two tracks. The trecks of Sensor 1 are denoted by solid _1
lines with ellips__es' being the error covariances while the tracks of Sensor 2 are :j
denoted by dotted lines. At time 3, the sensors broadcast to each other and :;
information fusion takes place at each node. Because of the overlapping error P

P

ellipses, multiple hypotheses are formed. Figure 6-15 shows one hypothesis with

two tracks and Figure 6-16 shows the other hypothesis. The pairs of tracks :{\
which are associated by the hypothesis can be traced from the centers of the E
fused tracks at time 3. From the two fusion hypotheses at time 3, each node 5
processes additional measurements at scans 4 and 5. The two branches of the 'Q
hypothesis tree are shown in the two figures. At time 8, the two nodes communi- :3‘
cate again. Since in Figure 6-15, the ellipses of the same target according to the {;
two nodes have little overlap, the probability of this hypothesis goes to zero. On g
the other hand, the hypothesis in Figure 6-16 is still valid and the track state h]\
estimates from the two nodes are fused to obtain an improved estimate. :*

-

i 4%

6.4 CONCLUSION

=

We have found the simulation environment to be very useful in developing

-

and evaluating algorithms and in studying the various issues associated with a 3y
DSN. The information fusion algorithms developed in Section 2 have been tested !
via simulations using various examples. The results demonstrate that the perfor- ;"
mance of the DSN nodes can be improved through communication. We have also ;f
shown that the multiple hypothesis approach developed in this research works !
better than the traditional (single hypothesis) approach when the scenario is com- E
plicated. Various communication schemes with different number of nodes have :::
been examined. The simulation results have shown that the algorithms produce S

i

the expected performance.
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7. CONCLUSIONS

'The goals of our research were to further understand the issues associated
with a distributed sensor network and to develop a general theory of distributed
multitarget tracking to provide some guidance in building a DSN. This theory
should be general erough to encompass arbitrary network structures, target and

sensors models. For tlie theory to be relevant, it should also lead to implement-

able algorithms.

In our previous effort, we developed a general theory for tracking multiple
targets. In the current effort, this theory was extended to the distributed situa-
tion. Information fusion algorithms were developed for fusing or integrating the
information from other nodes with the local information. For general communi-
cation patterns, these information fusion algorithms insure that only consistent
hypotheses are formed and that no information is double counted (which would
lead to inconsistent conclusions). To the best of our knowledge the algorithms
we have developed are the first to address these issues. The algorithms make
heavy use of the so called information graph which can be viewed as an abstract
model of the DSN commuaication structure. They also become the more stan-

dard algorithms with the appropriate assumptions.

In many military applications, targets frequently have special structures.
For example, the state of a target may have different attributes such as location
and velocity, a consistent set of features, etc. The sensors at the various DSN
nodes may not be the same. One node may observe a certain set of features
while another node may observe a different set of features so that the nodes need
to cooperate to obtain a more global view and perhaps classify the target. By
using the general results for distributed tracking, we have obtained algorithms for
dissimilar sensors and targets with structured states. This is a2 case where our

general theory applies quite readily.

Targets may also move in groups. This is another case where there is some
structure on the targets. 1'he knowledge about the group can be used in tracking
since the individual targets no longer move independently. The key research
issue is how to exploit this knowledge and avoid the combinatorics associated
with tracking the members of the group. We have developed a mathematical
framework for treating groups of targets. The results obtained to date are

mostly for the centralized situation. Development of the distributed algorithms
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can follow the same approach used for independent targets.

To further evaluate the generality of our approach and also relate to the
work undertaken by Lincoln Lab. on acoustic tracking, we applied our algorithms
to acoustic sensors tracking low-flying targets. Because of the special characteris-
tics of acoustic sensors (azimuth only measurements, propagation delays, etc.)
some modifications had to be made to the track-level algorithms and likelihood
computations. However, the general overall framework is still applicable. We
also looked into the design of experiments using scenarios similar to those used
by Lincoln Lab.

We have developed an environment for developing and demonstrating the
algorithms. Scenarios for which we developed algorithms for include tracking
land vehicles over a road network using MTI (moving target indicator) sensors
and tracking air targets with sensors which are more accurate in azimuth meas-
urements than range. Although not included in this report, the same algorithms

were also used to track submarines.

In summary, we believe we have developed a theory which is applicable to
general DSN problems. The theory has a sound theoretic basis and has also been

demonstrated through simulation studies for different scenarios.
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APPENDIX A. MERGED MEASUREMENT LIKELIHOOD
" CALCULATION

The likelihood of a measurement y originating from two existing tracks, 7
and T,, is the joint mixture of probability density of y with the probability of
event M of track merging and that of event D of target detection, and is

expanded as
P(y,M,D |?11F2) = fP (v | M,D 731’332;1’?2) PM|D,z 1’32’?11?2)(“\1)

P(D | 5'51"'52’?1’72) P(z,|m)P(z, | 7p)dz 1dz

When we identify D with the event in which s;{és (Fw>spy for i=1and 2,

we have
— = STH_SI W
P(D | z1yZgmpy7g) = P(D | s1y8,) = [1 - erf(—;—)_
8
Spgr—Sg\|
[1 - erf(—T—Ha——2) (A2)

L)

The track merging event is written as M = { | ¢y — ¢jf | <64}, and hence we

have

o — - —b¢ — -

bolhm0)) (B Bod))
(09) +(0g)? V(04 +(05)

where 04," the standard deviation determined by Equation (5.4) for each ¢. The

first factor in the integrand in (A1) is then written as

P(M | D,z,,zq,7,T3) = erf(

Py |[M,D,z,z pTpTy) = P (6t | M ,6,,6;) P sy | D ysyy5 2) (A4)

where ¢;7 and s} are defined by Equations (5.5) - (5.7). In the first factor of the
right hand side of (A4), the condition D was dropped because ¢ i can be defined
as being independent from the detection event D . Similarly, in the second fac-
tor, the condition M has been dropped because sy can be considered to be
defined by (5.7) regardless of whether or not the actual merging occurs. When
we approximate (5.7) by (5.7'), we have

A-1

=
§
¥
|
[
¥
)
E
I
[
;
:
.-
!
.‘
’
|
:
|
|
)
|
I
s
g
[

J
|
|
|

B LR LA T L 0TS M ST RS SR T T Tk P KT e 2 T T T T LT B L L T T T L TR L T A LA T ST T T AT T



g (sﬁ'fn = k(s 15 95 15 ) ; 03'"(5_1,5_2))

P (SA'{" | D,s 1S 2:.‘1_) = (A5)

STH — hsm(s 1’52;51752)
1 -—erf

05 1,59)
The denominator of the right hand side of (A3) is necessary because the range for
syf is [spg,00). Furthermore, we may approximately equate the right hand side
of (A2) with the denominator of the right hand side of (A5). Then, since the
GTSD component and the SPTSD component of a track are independent from

each other, we have

P(y7M7D |?1’?2) = fP(d’I{{n | M7¢1’¢2) (Aﬁ)
[ECELENIWE L)
(04)"+(0g) (04) +(ag)

o (557 = b5 05 57079) 5 0MF u52)) Play|m) Plag] ra)dayds,

- fP(¢Iv'{n | M’¢1’¢2)

[ b6 — (6, - ¢5) ~6¢ — (¢1 - ¢,) ] _ —
erf - erf P(¢,| ) Pldy|7o)d d1d o,
e o) ’

f.‘l (s,{," = h™(s 1,5 535 1S ) Usm(s_v;z)) P(sy| 1) P(sy|7y)ds ds,

The last integral in (A6) can be easily calculated and yield to (5.21). On the
other hand, since ¢, and the track merging event M are correlated, the calcula-
tion of the first integral in the last expression of (A6) is not so straightforward.

But, according to [16], we have

f” 68 | M Suds) [erf( 56 — (1 - ¢) ) ot ~66 — (91 = ¢9) )] (A7)

(09)"+(04)* (04)*+(0,)"

P ()| 1) P(dy]| 5)d ¢d ¢,
- - i im i 6 — A 66 - A
— g (6 - hT Bt 7);50) [ert( B229) o 2= 0)]
OA¢ Oa¢

which yields (5.17).
A-2
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