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1. INTRODUCTION AND SUMMARY 

This technical report describes research performed on the distributed pro- 

cessing of sensor data for situation assessment in a distributed sensor network 

(DSN). Thn research was performed at Advanced Decision Systems under the 

contract entitled "Distributed Hypothesis Testing in Distributed Sensor Net- 

works". 

1.1  DSN PROBLEM DESCRIPTION 

We assume a system structure as in Figure 1-1. There is a system of distri- 

buted sensor/processor nodes. Each node may have one or more sensor types, 

and the sensors from different nodes may have overlapping coverage. The sensors 

collect data from the environment and pass them on to the processors (processing 

nodes). The processing nodes process the sensor data and communicate with 

other nodes through the communication network to obtain an assessment of the 

state of the world. It is generally assumed that no single node possesses complete 

"IDformation and each node may have a different world irodel. The processing 

nodes may also control the sensors to improve on the performance of the overall 

system. 

A distributed sensor network can be used for many applications. We are 

particularly interested in a DSN which is used for the tracking and classification 

of multiple targets! The target environment is assumed to be dense, so that 

determining the origins of the measurements in a particular sensor report is not 

always easy. The problem is further complicated by the presence of false alarms 

and missing target reports. In such a network, tracking and classification is 

highly dependent on identifying the right data association hypotheses. Since the 

nodes in general have access to different information, communication among the 

nodes can greatly improve the performance of the system. The problem is thus 

one of distributed hypothesis formation and evaluation, which we can abbreviate 

as distributed hypothesis testing. 

In our previous DSN project we initiated research on the distributed track- 

ing of multiple targets by the nodes of a distributed sensor network. In the fol- 

lowing we shall review a model of the processing node that has been studied. 

1-1 
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Figure 1-1: Distributed Sensor Network 
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I? 
11.2  PROCESSING NOD      IODEL ■ 

JK The processing nodes are tue main information processing units in the DSN. 

"^ Each processing node collects measurements from a set of sensors.   Its functions 

are to process the local sensor data to form an assessment of the state of the 

world, to combine the information obtained from other nodes with the local infor- 

mation to update its assessment, to distribute information to other nodes, and to 

performs these functions effectively. Thesa functions are performed in four 

separate modules within each processing node (see Figure 1-2).   In the following 

S we shall discuss the modules in more detail. 

■'j 1.2.1   Generalized Tracker/Classifier 

^ This module is responsible for the local data processing before any com- 

munication with the other nodes takes place. Since the objective of the system 

under consideration is the tracking and classification of multiple targets, this 

module is a multitarget tracker. In the previous project, we developed a general 

theory for multitarget tracking which is implemented in the form of the General- 

0 ized Tracker/Classifier (GTC).   The GTC has the structure shown in Figure 1-3 

and itself consists of four modules.  The hypothesis formation module forms mul- 

i tiple hypotheses from the sensor data, each consisting of a collection of tracks to 

explain the origins of the measurements in each data set. These hypotheses are 

then evaluated by the hypothesis evaluation module with respect to their proba- 

:' bilities of being true.   The filtering and parameter estimation module generates 

state estimates and classifications for each track. It is essential for hypothesis 

evaluation and can thus be viewed as a submodule. To stay within the computa- 

tional constraints of each node, the hypotheses are pruned, combined, clustered, 

% etc.   This takes place in the hypothesis management module.   The result of this 

processing is a set of hypotheses and their probabilities, a collection of tracks 

corresponding to possible targets and the state distributions of these tracks. 

These quantities together constitute the information state for multitarget track- 

» ing. 

1.2.2  Information Fusion 

This module combines the local information with information obtained from 

1 the other nodes to obtain a new situation assessment.   The information from the i 

local nodes consists of the information described above.   The information from 

other nodes is also similar.   Information fusion then consists of the following steps ÜH 

i ij i i 
| 
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(see Figure 1-4): 

1. Hypothesis Formation - Given a set of hypotheses from other nodes, this 

submodule generates new global hypotheses. Tracks from the 

hypotheses of different nodes are associated in all possible ways, whether 

they correspond to the same or different targets. 

2. Hypothesis Evalu > - EaJi of „he hypotheses formed above is then 

evaluated with respect to its probability of being true. The statistics of 

the tracks from different hypotheses are used in this evaluation. For 

example, if two tracks are widely apart in their position or velocity dis- 

tributions, they are more likely to have come from different targets than 

the same target. 

3. Hypothesis Management - This is again needed to make computation 

feasible within the available resources. 

1.2.3 Information Distribution 

This module decides what information is to be transmitted, who gets the 

information, and when it should be communicated. It thus specifies the Informa- 

tion available to each node at any time, i.e., the information structure of the sys- 

tem. Information distribution can be fixed a priori for simple systems, or it can 

be higl ly adaptive to the information needs in the system. 

1.2.4 Resource allocation 

This module allocates the resources under the control of the processing node 

to maintain or improve the performance of the system. Some typical resources 

include sensor resources and processing resources. Both resource allocation and 

information distribution can affect the information available in the network. 

Thus their activities should be coordinated. 

l.-m.LJ-fc. i_-*. L-» L-^.  L-V L.-fc L_-^«   -TV iJ"V LSI L'V :L_^ V. V v. 
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1.3  PROJECT GOALS 

Many technical issues have to be addressed before DSNs can be designed, 

built and operated to achieve their military potential. Such issues include the 

representation and processing of hypotheses, information fusion, communication 

strategies, resource allocation, adaptation, system architecture, etc. In our previ- 

ous DSN project, we successfully addressed some of these issues. The goal of our 

current effort was to further advance the state of the art in distributed 

hypothesis testing techniques in DSNs. This would provide more insight as to 

how a DSN should be designed. Specifically, we intended to accomplish the fol- 

lowing technology goals: 

1. Develop intelligent distributed algorithms applicable to a wide range of 

situations such as different network configurations, sensor types, target 

models; such algorithms should also be adaptive to changing network 

conditions and make efficient use of sensor resources. 

2. Evaluate and adapt these algorithms for real-time implementation. 

3. Design experiments to test and evaluate the algorithms in a more realis- 

tic scenario such as that used by the Lincoln Laboratory test-bed. 

Along with these technology goals, our plan was to develop a simulation environ- m 
ment to test the algorithms experimentally on different scenarios. 

t 1.4  PROJECT ACCOMPLISHMENTS 

QS There were two parts to our research effort.   The first consisted of develop- 

ment of algorithms for a DSN and the other was concerned with the development 

Kg of a simulation environment to test the algorithms and to evaluate the perfor- 
»V 
■ mance  of the  system experimentally.    In  the  following  we  discuss  both  the 

theoretical and experimental results. 

We   extended   the   results   of   our   previous   DSN   project   and 

JMl developed  information   infusion   algorithms  for  DSNs  with  arbitrary 

communication patterns among the nodes.   The key problems are the for- 

KV mation of possible  (or  meaningful) global  hypotheses  from a group of local 

g 
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!; hypotheses and the evaluation of their probabilities.   A set of local hypotheses 

can be inconsistent so that they cannot be fused to form a global hypothesis. 

\-y The local probabilities of the local hypotheses may depend on common informa- 

tion which needs to be identified.   In the previous project, we developed fusion 

1] algorithms   assuming   broadcast   communication.    In   the   current   project,   we 

™ obtained fusion  algorithms  for arbitrary communication.    The algorithms are 

M based on modeling the events in the DSN by means of an information graph.   To 

9! use these algorithms, the histories of the hypotheses and tracks have to be part of 

the information communicated.   Then each node can determine the fusability of 

SJ the hypotheses and tracks and the common information which has to be removed 

in evaluating the hypotheses.   Information distribution strategies were also con- 

M sidered.   These include strategies which depend only on the local information 

state and those which model the behavior of other nodes. 

v' The theory of multitarget tracking was extended to handle targets 

with a structured state space and dissimilar sensors which observe 

different components in the target state. The resulting GTC for processing 

of local sensor data and the information fusion algorithms are very similar to the 

3ji usual case.  However, a multilevel hypothesis formation and evaluation processing 

architecture is often possible.   Consider a network with two nodes.   Each node 

■ would form hypotheses based on the local measurements and the tracks would be 

described in the local feature space.  During the fusion process, knowledge on the 

y' relationship between the features would be used to generate higher level target 

y. tracks from the local feature level tracks.   Hypothesis evaluation would then be 

carried out.  As an example, consider the tracking of vehicles.   Suppose one sen- 

Eg sor node measures only the tread/wheel feature and the location.   Feature tracks 

from this node would consist of wheeled or tread vehicles over time.   Suppose 
■r, 
m another sensor node measures only the location and whether the vehicle has gun 

or no gun.   Tracks generated would consist of gunned or gunless vehicles over 

S" time.  During fusion, one would use the fact that a vehicle with a gun and tread 

is a tank, a vehicle with neither gun nor tread is a truck, etc. 

H In the previous DSN project, we concentrated on independent targets.   In 

this project, we investigated multitarget tracking on structured sets of 

targets. These include targets which move in groups. One example would be 

planes flying in formation.   Another more complex example consists of military 

IB force structures.   A division would consist of regiments each of which consists of 

battalions, and so on.   The tracking and identification of such structured targets 

(-. is important but not much systematic treatment is available.   The problem is 

I 
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also interesting in a distributed framework since the observations at different 

nodes may be at different levels and targets are no longer independent. We 

developed models for structured sets of targets, and the notions of multilevel 

tracks and hypotheses. They are generalizatiom of our previous work on multi- 

target tracking which may be viewed as having u single level of targets. Central- 

ized algorithms for evaluating multilevel hypotheses were obtained. When res- 

tricted to two levels with targets moving in independent and identically distri- 

buted groups, our results resemble those in single level tracking except the tar- 

gets in the level are the groups themselves. The main difficulty in implementing 

these algorithms is in the combinatorics, which becomes more severe with more 

levels. Th more practical methods for hypothesis evaluation have to be found. 

These results can serve as a starting point for finding distributed versions of the 

algorithms. 

As part of the DARPA DSN program, M.I.T. Lincoln Lab. has performed 

research on the tracking of low flying aircraft using acoustic sensors. A DSN 

test bed has been developed and used to test and demonstrate DSN 

techniques and technology. The emphasis of the research at Lincoln has been 

to demonstrate that a DSN is feasible via the construction of a complete 

(hardware and software) system. Our emphasis, on the other hand, has been the 

development of general algorithms to detect and track targets in difficult 

scenarios involving high target density, high false alarm rates, and poor detection 

conditions. To illustrate the applicability of this general multiple hypothesis to 

acoustic tracking, we considered to design of experiments using the Lincoln Lab. 

acoustic tracking scenario. Possible system architectures, and simulation 

scenarios were investigated with inputs from Lincoln Lab. In addition, we 

adapted the general distributed tracking algorithm to acoustic tracking. Because 

of the special features of acoustic sensors (such as azimuth only measurements, 

acoustic propagation delay), some modifications were made to the general algo- 

rithm. 

The other part of our research effort was concerned with the development 

of the simulation environment. Since an analytic evaluation of the algorithms 

and the system performance is difficult our approach is to perfor i simulation 

studies. We developed a simulation system consisting of four DSN nodes 

with communication patterns which can be specified arbitrarily. Our 

eventual goal for the simulation environment is that it should allow rapid con- 

struction of scenarios and rapid development of the DSN system design itself. 

Also,  the environment  should  be  flexible enough  to handle various types of 
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processing within each DSN node, including the Bayesian analytic algorithms 

such as the GTC which have been developed thus far as well as other Artificial 

Intelligence (AI) based algorithms. Some limited experimentation on this system 

was performed. The results demonstrate that the nodes can perform better 

through communication. 

1.5  REPORT ORGANIZATION 

The rest of this report is organized as follows. In Section 2, we present 

information fusion algorithms assuming arbitrary communication among the 

nodes. The algorithms are based on an information graph model of the DSN. 

Section 3 contains results on tracking using dissimilar sensors. Section 4 presents 

some algorithms to handle structured sets of targets. In Section 5 the design of 

experiments for acoustic tracking is discussed. The modification of the general 

algorithms to handle acoustic sensors is described. Section 6 presents some exper- 

imental results with our simulation system. 
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2. INFORMATION FUSION FOR ARBITRARY COMMUNICATION 

In this section we present algorithms used by each node to fuse the infor- 

mation received from the other nodes with the local information to obtain an 

updated situation assessment. In [1] fusion algorithms for a broadcast communi- 

cation pattern were presented. The results of this section extend those algo- 

rithms to arbitrary communication patterns. In Section 2.1 we describe the infor- 

mation fusion problem in the context of hypothesis formation and evaluation in 

multitarget tracking. In Section 2.2 a model for information fusion in terms of 

an information graph is given. Section 2.3 describes the hypothesis formation 

and evaluation algorithms assuming arbitrary communication. 

2.1   THE INFORMATION FUSION PROBLEM 

In the following we state the information fusion problem faced by each 

node in the DSN with emphasis on the relevant issues in multitarget tracking. 

The formalism is based on the theory of multitarget tracking developed in the 

previous DSN project [l], [2], and [3]. 

2.1.1  Local processing 

The basic unit of information in the DSN is a sensor report z{t ,s).   This is N- 

the     output    of    a    sensor     s      at     a     time     t     and     is     denoted     as i 

{(y; {t ,s ))j =1 '' .iV^, {t ,s ),t ,s ).  The index jfe =(« ,s ) identifies the sensor report (by 

time and sensor) uniquely and is called the sensor report index or data index. 
N   Ik)   . "V 

Nm(k) is the number of measurements in the report and (^(*))/«i     is the 

actual measurement vector.   At any given time, let Z be the data set consisting ^ 

of a set of sensor reports and K be the associated data index set, i.e, the set of !% 

the indices for all the sensor reports contained in Z.   The measurement index set ,^ 

corresponding to Z is defined as * 

J = U   {l,...,NM{k)}x{k}. (2.1) I 
in 

Each element {j ,k)={j ,t ,s) in this set represents the j-th measurement gen- S 

erated at time t by sensor s .   The specific value of the measurement is y. {t ,s). | 
■ 

According to the system model introduced in Section 1, each node processes the S 

sensor data as they arrive using the Generalized Tracker/Classifier (GTC).   The A 
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output of the GTC when the data is Z consists of the information state E(Z) 

defined as 

E(Z).= (T{J),{pt{x | r,Z))r6TU)) E{J), (P{A=X | Z))xeH(J), u(K)) 

where 

^ • T(/), the set of possible tracks defined on J.  Each track r is a subset of 

/, i.e., TCJ and represents the measurement indices coming from a single 

R target.   It is usually assumed that a track cannot have two measurement 

indices in the same sensor report, or the sensor resolution is such that 

|£ there are no split measurements.   Such tracks are then said to be possi- 
U ble. 

I • Pti* I T,Z) is the state distribution for a track.   Given the track r, the set 

^ of measurements in Z for a hypothesized target is known.  From this the 

distribution of its state x (position, velocity, classification, etc.) at a time 

t  can be found and is a traditional estimation problem.   Normally this 

H would be given in terms of a probability distribution; but if the state can 

be approximated by a Gaussian random vector, the distribution can be 

^ expressed in terms of its mean and covariance. 

rS • H(/) is the set of possible data-to-data association hypotheses defined on 

/.   Each data-to-data association hypothesis X is a possible explanation 

m about the origins of all the measurements in Z.  Each hypothesis consists 
m 
«B of a set of tracks, i.e., X = {Tvr2,....}. The number of tracks in X is the 

m-, number of targets hypothesized to have been detected in the data set Z. 

^2 Each track r is the set of measurement indices from a hypothesized target 

and any measurement index not included in the hypothesis is 

hypothesized to be a false alarm. We assume that the sensor resolution is 

such that there are no merged measurements and thus there are no over- 

ö lapping tracks in the same hypothesis.   The set of hypotheses satisfying 

this property is said to be possible. This represents all mutually exclusive 

I* and collectively exhaustive explanations about the origins of the measure- 

■ * ments in Z. 

M • P(X—\ \ Z) is the probability of that the true data association A is a 

_« hypothesis X given all the measurements in Z.   Its computation is the 

£■ key   operation   in   any   multiple   hypothesis   approach   to   multitarget 
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tracking and recursive algorithms were given in [l], [2], and [3]. 

• «/(A").is the expected number of undetected targets up to and including 

K. It is important for initiating new tracks. II v{K) decreases, the likeli- 

hood of any measurement coming from a previously undetected target 

also decreases. 

The information state defined above constitutes a state for multitarget 

tracking since it contains all the relevant information present in the cumulative 

data set Z.  As long as the information state S(Z) is known, the GTC can con- 

* tinue to process any new sensor report even though the actual data Z is no 

longer available. When a report is received from a local sensor, the local tracking 

data ire updated. There are three submodules corresponding to the functions of 

hype chests formation, hypothesis evaluation, and hypothesis management. 

i 
The hypothesis formation submodule forms new hypotheses from the old 

X hypotheses and the data.   Consider a report z{t,s) from sensor a   at time t. 

Each measurement y; {t ,3) in the report may come from a previously detected 

S target, from a new target or a false alarm.   At the same time, a previously 

detected   target   may  be   missed   (undetected)   in   the   current   sensor   report. 

Hypothesis formation thus consists of generating these possibilities starting from 

v the old hypotheses.  Constraints imposed by the measurement values and possible 

predicted states of the old tracks should be used to reduce the number of 

hypotheses formed whenever possible. As a result of this step, sets of possible 

tracks T(J) and possible hypotheses H(7) are formed. oi 

■ S' 
•.                                  The hypothesis evaluation module is responsible for computing the state dis- ^ 

tribution pt{x \r,Z), the probability of each hypothesis P(A=X | Z) and the 

expected number of undetected targets v{K).   Recursive algorithms have been 1^ 

developed  for computing these.    Suppose  ik =(<,s)  represents  a new sensor \,* 

I report and the quantities just before the arrival of this sensor report are denoted 
* _   _ _ m 

hy Z, K and / respectively.  Then v 
;>: 

A P(\=\\Z)=C-1P(X=\\Z)LFA(k,\)UL(y{k,r),l) (2.2) 'M 
r6X .> 

V 
■ where C  is a normalization constant, y{k,T) is the measurement in the sensor ■■ 

report z (k) associated with track r.   The right-hand side of the equation depends ^ 

^ on the following likelihoods: H 
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• Likelihood of false alarms LFA (k ,\) 

• Likelihood of a previously detected track 7 detected again as measurement y 

L [y (k ,T)J) = j pm(y \x) pD(x)pt (x | T,Z) n(dx ) (2.3) 

• Likelihood of a previously detected track ? missed in the current report 

L{y{k,T),J) = f {l-pD{X))pt{x \T,Z)ß(dx) (2.4) 

• Likelihood of a target newly detected as y 

L [y (k ,r),T) = V f pm(y \x)pD(x)pt{x \ 0,Z) ß(dx ) (2.5) 

In the above the target state i is a hybrid variable with a continuous part to 

model geolocation variables and a discrete part to model classification informa- 

tion. For convenience, we define a hybrid measure ß on the state space to be the 

direct product of a continuous measure and a discrete measure. Then any 

integral with respect to this hybrid measure is a sum of integrals over the con- 

tinuous part of the state space. These likelihoods can be computed at the same 

time as updating the state estimates of the tracks. When the target and sensor 

models are such that the linear and Gaussian assumptions are satisfied, most of 

the quantities involved are available from the Kaiman filter calculations. As a 

result of these calculations, probabilities of hypotheses and track state distribu- 

tions can be obtained. 

The hypothesis management submodule controls the growth in the number 

of hypotheses to make the algorithm implementable. This step is crucial for the 

successful of the multiple-hypothesis approach. Hypothesis management tech- 

niques include pruning away low-probability hypotheses, combining similar 

hypotheses and decomposing the hypothesis set into independent clusters. 
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Li 2.1.2  Information Fusion Problem 

Z* We assume that each node communicates the information state to the other 

••" nodes.   Suppose a node receives some messages from the other nodes.   It has to 

mm fuse or integrate this information with the local information to improve on the 

\K local estimate.   There are many ways of performing fusion.   In our work fusion is 

based on the following philosophy.   The ideal case with the highest performance 

A (but also the highest communication cost) is when the nodes communicate the 

actual sensor data through the network instead of the processed information.   In 

gß this case a node would be abk to generate an optimal information state based on 

all the data available.   Since n. a more realistic DSN only the information states 

jjjj are  communicated,   an  appropriate  objective  for  fusion  is  to  reconstruct  the 

optimal information state based on the information states received from the other 

nodes.   To facilitate further discussion, we call the data available to each node 

before communication takes place as local data and the maximum data set avail- 

able after communication as global data.   Local and global information states, 

hypotheses, tracks, etc. are all defined analogously. 

•f* There are thus two steps to the fusion process.  The first step in the fusion 

process consists of generating the possible track and hypothesis sets based on the 

K global data from the local tracks and hypotheses.   Since the local data are the 

part of the global data available to the nodes at the given times, the global 

tracks and hypotheses when restricted to the local data should give the local 

pv tracks and hypotheses.   This implies that a certain combination of local tracks 

and hypotheses should not be fused, i.e., there may not exist global tracks and 
n V hypotheses for given sets of local tracks and hypotheses.   In Figure 2-1, the two 
v 

tracks rj and T2 are two local tracks maintained at two different nodes. They 

cannot be fused since the resulting global track would have two different meas- 

urements in the same sensor report 1, thus violating the no split measurement 

X) assumption.   On the other hand, r, and r, can be fused to yield a global track 

™ rjUrj.   The interpretation of this global track is that the measurements in both 

yr tracks ^ and ^ come from the same target.   Tracks ^ and r4 can also be fused. 

fea However, they do not have to be and in that case the two tracks correspond to 

two different targets.   The fusability question also needs to be addressed at the 

';> hypothesis level.  Each local hypothesis is a possible explanation about the origins 

of the local measurements.   Thus if the local hypotheses are incompatible, they 

' - cannot be fused to form a global hypothesis.   This is illustrated in Figure 2-2 

where each node i   has two local hypotheses X/, j =1,2 derived from the two 

/• common hypotheses X', j =1,2.   Since X1 and X2 are mutually exclusive, the local 
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Figure 2-1: Fusability of Tracks 

^ 
hypotheses X]2 and X21 are not fusable. 

The second step in the fusion process consists in generating the state distri- 

butions of the global tracks and the probabilities of the global hypotheses using 

the local distributions and probabilities. If the nodes communicated in the past, 

the local statistics would not be independent. A key problem in fusion is to iden- 

tify the common information shared by the nodes and make sure it is not used 

more than once in generating the global statistics. 

2.2 INFORMATION GRAPH 

In performing information fusion, it is necessary to identify the information 

available to the nodes in the network at various times and how the information 

of one node at one time is related to that of another node at a different tim^. 

For example, whenever two nodes communicate some common information is 

shared between the nodes. The existence of this shared information would have 

to be recognized in any future information fusion. Specifically, before any global 

hypothesis can be generated, the fusability of the local hypotheses have to be 
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Figure 2-2: Fusability of Hypotheses 

checked based on their histories. Furthermore, when the probabilities of the 

hypotheses are to be evaluated, the common information should only be used 

once. This necessitates tracking the histories of the communication and can be 

accomplished conveniently using the information graph. The information graph 

introduced below can also be viewed as an abstract model for a DSN. 

2.2.1  Information graph model 

We assume that there is a set of processing nodes called N.  Each node n in 

N receives data from a set of sensors called Sn  such that Snr\Sn'=<b for n^n', 

i.e., each sensor a only reports to one processing node.   Let S= U Sn be the set 
fjc »EN 

Rk of all sensors.   If a sensor s generates a report at time t with value z, the report 

is denoted as (z,t,a) or simply z{t,s).   Each sensor report is the basic unit of 

l information and the set of all such reports is denoted by Z called the total infor- 

mation or data set.   Each sensor report is indexed by k={t,s), i.e., the time t 

>' when it is generated and the sensor a  responsible for itf generation.   The set of 

all such indices is called the total data index set and denoted as 

K={{t ,a)\{z ,t ,a )GZ for some  z } (2.6) 

»tj At any one time, a node's information may consist of only a subset Z of Z.  Such 
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I a Z is called a partial information set or partial data set, or simply information ^ 

set or <fo^a set.  For each Z there is a K" corresponding to the data indices in Z. 

The sensors send the data instantaneously to the nodes as soon as they are 

■ generated.   The communication among the nodes can be characterized by the 

* communication schedule  C  which  is  a subset  of  TxTxNxN.    An  element 

it.t'n.n') means that the communication transmitted at time /   bv node n   is 

J received at time t' by node n'. 

aj The information at each sensor or node in the DSN is afifected by four types 

of events.  The nature of the events, the times at which they occur and the nodes 

ir affected are given below: 

• 

I 
■5 1. Sensor observation and transmission -- IST = K X {ST } 

2. Sensor data received at node — ISR = K X {572 } 

S 3. Transmission of communication by node — 
8 lCT ={(n,t,CT)|(M',n,n')6C} 

4. Reception of communication by node — 

ICR  =■{{n,t,CR)\[t',t,n,,: )GC} 

V 

Let I be defined as 

I - Isr U ISR U ICT U ICR (2.7) 

I constitutes all the significant events in the network and forms the set of infor- 

mation nodes (not DSN nodes) in the information graph. To represent the rela- 

tion between these nodes, we define a partial order (antisymmetric, reflexive and 

transitive binary relation) < on I as follows: for any t and «' in I, i <«' if t —i' 

or there is a communication path from t to i'. The information graph on the 

system is then the ordered set (I,<). By using the graph we can determine how 

the information in ths system flows. In particular, it is easy to And the history of 

the information at a certain node. As we shall see later, this is useful for the pur- 

pose of information fusion. 
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I Figure 2-3 show the information graph for broadcast communication.  At a 

given time all the nodes communicate to each another so that they all have the 

same information after that. Figure 2-4 shows the information graph for a cyclic 

communication system.   The system consists of three nodes N={ 1,2,3} collecting 

data from the three sensors S={1,2,3}, respectively at the times ...,<sr ,<sr+^ ,  

The nodes transmit to the other nodes periodically according to the pattern 

shown in Figure 2-4 at times ...,tCT ,tCT +ti,.. and the messages are received at 

the times ...,tCR ,tCR +ti,...  It is assumed that tST <tCT <tCR . 

S For each  information  node  i   in  the  information  graph,  the  maximum 

amount of information available is the sensor data that would be received if they 

[5 had been communicated in the network.   Thus associated with each node »  the 

(maximum) data index set A", and the (maximum) information set J?,  are defined 

$J as follows: 

K, ={keK\(k,ST)<i} (2.8) 

i % ={{z,k)ez\keKi}. (2.9) 

:-" 

v  53 

As stated before, our philosophy is to assume that each node tries to reconstruct 

the best estimate as if all sensor data are transmitted. Thus from now on tne 

information available at each node i is assumed to be Z, with the data index set 

Ki 

The following observations are quite obvious from the definitions: 

1. tf. = {* 6K | (k ,SR )<i } for all i in I. 

2. KiQKii if i<i'.    (The information of a node always includes that of any 

predecessor node.) 

3. A"  = U Ksi for all i in I.  (The information at a node is the union of that of 
• '<« 

the predecessors.) 

4. Ki = U Ki* for all i in I, where i'\-*i means that t' is the immediate prede- 

cessor of i.   (One needs only      consider the immediate predecessors of t  in 

generating the information available to i.) 

s 
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" 
Since there is a one-to-one correspondence between K and Z, a similar set 

of observations can be made for Z. 

1. Z, = (ZeZ | {Z,SR )<«■} for all » in I. 

2. Z,CZ,»if i<t'. 

3. Z. = U Z,' for all i in I. 

4. Z. = U Z.' for all i in I. 
t'h« 

{^ Consider an information node t'oelcR-   This represents the event that com- 

" munication from other nodes is received.  Let / be the see of 5 nmediate predeces- 

r.M SOT nodes for «„.   The fusion problem is to find the information state of «0 using 

tx the information states of the nodes in / (and those of other predecessor nodes of 

/, if necessary).   As mentioned before, it is important to identify the common 

U information in the data represented by /.  This turns out to be 

rv ntf. =    U    K.' (2-10) 
ft" 16/ i'ec{i] 

where 

'< C(/)={.'el| t'<i forV t€/} (2.11) 

^ is the set of common predecessors for all the nodes in I.   Equation (2.10) states 

that the common information shared by the nodes in / is the union of the infor- 

\f- nation of the common predecessor nodes of /.  In fact, based on the observation 

(4) iibove, C{I} can be replaced by Cmtx{I) which is the maximum set in C(I) 

r£ with respect to the set-inclusion partial order whereby lyKl^ when /1C/2 an(1 

S ii<ii for all t'iG/i and t2€/2-   Then the union needs to be taken only over the 

^ set C„„(/), i.e., equation (2.10) becomes 

nKi=      U     Kf, (2.12) 

' If necessary, we can regard (7max(/) as / in equation (2.12) and repeat the process ' 

r to find the common information shared by all the nodes in Cmtx{I).   This would ; 

W be used in the following section to develop distributed estimation algorithms. 
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■ 2.2.2  Distributed estimation 

ftK We now consider the distributed estimation problem to illustrate the use of 
ft. 

the information graph.   Any uncertainty in the origins of the measurements is 

n ignored for the time being.   The results would be useful in the next subsection 

IS when we consider distributed multitarget tracking. 

K^ The state to be estimated is a random vector i.   The a priori probability 

density (or distribution) is p (x).   The observation generated by a sensor s   at 

un time t is z{t,s).  The following additional assumptions are needed: 

• Both the sensor schedule K and the communication schedule C are independent 

of the state x . 

• Given x and K, each element in Z is conditionally independent from each other 

and has an absolutely continuous transitional probability from state x to meas- 

urement. 

The distributed estimation problem is then to compute p {x \ Z,) for each t £1. 

From the definition of /, this needs only to be carried out for the sets ISR and 

lCR since the only activities at the other nodes involve transmission. For an 

information node in I^ , we have a traditional Bayesian update problem where 

the conditional probability is updated using the sensor report. We are primarily 

interested in a problem involving information nodes in 1^ . Suppose the infor- 

mation node of interest is t0 and that the immediate predecessors of J0 form the 

set /.  Then 

4=UZ.. (2.13) 
16/ 

The objective is the computation of p (x | U Z,) in terms of thy predecessor pro- 
»6/ 

babilities p (x |/,')i'<i • Ideally, one would like to use only the probabilities 

defined on /, but as we shall see, this is not always possible. 

In the appendix of [4], we showed that 

P(X i u z1) = c n ( n P(X i n/y))1-1'" (2.i4) 

where c is a normalization constant and 
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i i 
' Nr = {NC{lr.}n}\#(N)=i} (2.15) 

fj is the set of all subsets of {l,..,n } with i  elements.   In equation (2.15), # (iV) 

denotes the number of elements in the set N.   For n =2, this yields the fusion 

" formula for two nodes: 

p (x I Z,)p {x I Zo) ,       . 
^ pixlZ.UZ^e^   '   ,;i. '    2J (2.16) 
W; P (a: | Z1n^2} 

Equation (2.15) can be interpreted as follows.   Since the probabilities p(x | ZJ 

1^ and p(z | Z2) both utilize the information contained in Z1nZ2, the division by 

p(x I Z1nZ2) is needed to remove the common information so that it is used only 

once.  Equation (2.14) is just a general form where the probabilities from multiple 

nodes are to be fused.   Unfortunately, in both (2.14) and (2.16) there are still 

Cj terms involving intersections of the Z, 's.  If all these intersections are of the form 

Zj for some information node ; or empty corresponding to the common a priori 

j^. information, then equation (2.14) or (2.16) serves as a fusion algorithm.   In this 

^ algorithm, the conditional probability at the fusion node is a product and ratio of 

,v the conditional probabilities defined on a set of predecessor nodes.   From the 

|| definition of the information graph, all these probabilities can be communicated. 

I If there is an intersection   fl Z,   which is not equal to Z,. for some /'gl, 

then by (2.10) the intersection can be expressed as the union of the information 

of some information nodes again. Equation (2.14) can then be applied to evalu- 

ate the probability p (x |  fl Z.).   The process can be repeated until all the pro- 

babilities are either conditioned on the information at the individual information 

nodes or the a priori information. For notational convenience, we represent the a 

priori information by adding an element i0 to the set I of all the information 

nodes and let r=IU {«"(}}•   Then the extended information graph (T,<) is con- 

[S structed by letting t'^ be the immediate predecessor of all the minimum nodes in 

the original information graph (I,<).    Then we have Z.^A",^.    With  this 

Qj definition it can be shown (see Appendix of [4]) that 

PMUZ..) = C   UP{X iZj-r*) (2.17) 

where /</  is a subset of T, Mö)^ is some index tuple such that a(i) is a 

£ nonzero integer for each T, and C is the normalizing constant.   The set / con- 

^ tains all the information nodes which are relevant to fusion at node J0.   a(i) 

j* decides whether the information at node i should be added (a(i)=l) or removed 

I wr)=-i). 
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I To illustrate the use of this algorithm, let us first consider a broadcast com- -* 

V 
munication pattern of Figure 2-3.   For notational simplicity, we would suppress \ 

IT* 

> the type of the node in naming the node. Consider the information node {tCR ,n). 

We have 

0  Z(tCT,n)=Z(tCR-ti,n). (2.18) 
n6N 

J Thus, the fusion algorithm for a node n at time tCR is 

J> p{x |Z(^,n))=C-II    pL^£lpLp{x IZitcK-t^n))       (2.19) 
-. 

^ where C  is a normalizing constant.   Each term in the product is the new infor- 

■ mation contained in the sensor report z (tST ,i). 

p For the cyclic communication system shown in Figure 2-4, consider node 1 

at time tCR .   The immediate predecessors of the information node (tCR ,1) are 

£ ('cr.1) an<l Ucr«2)-   Equation (2.16) can thus be used to find p(x \Z(tCR,l)). 

■ From the information graph of Figure 2-4, the common predecessors of (*CT,1) 

,I and {tCT ,2) consist of the two nodes (tCT -2td ,1) and (tCT -<d ,2).  Thus 

Z(tcr4m(*cr,2) = Z(<cr-2^,l)UZ(*c:r-^.2), (2.20) 

| and equation (2.16) can be used to find the probability of the right hand side 

again.  From the information graph, 

P Z{tCT-2ti,l)r\Z{tCT-ti,2) = Z(tCT-3td,l)UZ(tCT-3ti,2) (2.21) 

7 =7(^-3^,1)- 
8 

Thus, the algorithm gives for general i =1,2,3 

p(x \Z{tCT,i))       p(x \Z(tCT,[i+l])) 
p(x \Z{tCR,i)) = C 

p(x |Z(^T-2^.0) P(* IZitcr-t^ii+l])) 

Xp(x IZitcR-MiS)) (2.22) 

where [i] is t modulo 3. 

This is in the form of equation (2.17) with five nodes in the set /. Thus, in 

addition to its current conditional probability p (x |Z(tcr,l)), and 

p(x | Z(tCT ,2)) which comes from node 2, node 1 has to store three other proba- 

bilities. Note that p (x | Z{tCT-td,2)) is available to node 1 from earlier commun- 

ications.   This indicates that in a distributed sensor network, knowing the most 
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& 
i r^ent estimate may not be sufficient if one wants to recover the globally optimal 3 

e^ .mate. I 

Our discussion above assumes the fusion algorithm for each node is pro- V 

m vided by a system designer based on the information graph.   Alternatively, we 

0 may assume that the information graph is known to all the DSN processing nodes 

who then compute the algorithms in a distributed manner.   Still another possibil- 

§ ity is for each message to contain a history of the nodes and times that it has 

passed through.    Then a fusion  node can  use  the histories  of the  messages 

V received to construct a partial information graph so that fusion can be per- 

formed.   This philosophy would be useful for fusion when the communication 

i.J pattern is not fixed a priori, such as when nodes can vary their communication 
m strategies or have to adapt to system failures. 

■ 2.3  FUSION IN MULTITARGET TRACKING 

X; In this section we consider the fusion algorithm for multitarget tracking 

assuming  arbitrary  communication  pattern.    The  algorithm  is  based  on  the 

J theory of multitarget tracking developed under the previous project [1] and the 

concept of the information graph.   In the previous project [l|, the information 

m fusion in multitarget tracking was investigated primarily for broadcast type com- 

munication pattern.  In this section, we treat the same subject assuming an arbi- 

pa trary communication pattern which is defined in terms of an information graph. 

V 2.3.1  Problem formulation I 
In Section 2.1 we introduced the fusion problem in general terms.   We now 

S state it more formally in terms of an information graph.   Given the communica- 

tion pattern of the network, an information graph is defined.   For each informa- 

ffl tion node i in the graph, there is a data index set K", and an information set or 
m data set Z,  as defined before.   Since we are now interested in multitarget track- 

ifl ine,   we   have  to   deal  with   measurement   index  sets  on   which   tracks   and 

-•" hypotheses are defined.  A measurement index set J, at an information node i is 

a defined as 

I 
A ={{j,k)<=3\keKi}. 

m 
Jg The activities in a DSN can be represented by the expansion of the nodes in the 
v. 
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i 
I information graph.   Two types of nodes, namely those in 157-  and ICT, involve 

only communication.   For the other two types, namely the ones in ^  and 1^ , 

information -processing is involved.   At a node in 15^ , the data received from the 

local sensors are processed by each node using the GTC, producing an informa- 

I tion state for the node.   For a node «OGICT?» messages are received from other 

nodes in the DSN and fusion takes place.   Let / be the set of immediate prede- 

'> cessor nodes of J0.  For any node i in /, assume the possible tracks T(yi) and the 

^ possible hypotheses H(/i) are known.   In addition to these, the local probabilities 

r of the tracks and hypotheses are also given.   From the information graph, the 

"I measurement index set for the information node i0 is J — \J L.   The two specific 

s subproblems in information fusion are then the following: 

• (Hypothesis formation) How should node t0 construct the possible (global) track 

set T(y) and the possible (global) hypothesis set 'EL(J) ? 

• (Hypothesis evaluation) Suppose the global sets of tracks and hypotheses are 

formed. How can we evaluate the probability of each hypothesis using the pro- 

babilities of the predecessor nodes? Also, how should the state distributions of 

the tracks be computed? 

The two problems would now be discussed separately. 

2.3.2  Hypothesis formation 

As we discussed before in Section 2.1, not all local tracks and hypotheses 

can be fused to form meaningful global tracks and hypotheses. Our philosophy 

behind information fusion is to reconstruct the information state E(Z) starting 

from the information states E(Zt). This means that two tracks can only be fused 

if there exists a global track which is consistent with them. This is also the idea 

behind the fusion of hypotheses. The following are some definitions needed to 

formalize this concept. 

Consider any two measurement index sets .T^ and ^ wi^ JzQJv For each 

track T in T(/1) the restriction of the track r on J2 is defined as Tfl^e, i.e., the 

track consisting of only those measurement indices in Jv   We usually say that 
y 

V the track r is a successor of its restriction rfl^a or conversely, TTI^ is the prede- «j 

8 i 
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• . . ^ | cessor track of r. Similarly, for each hypothesis X in H(y1), the restriction of the .j 

hypothesis X on /2 is defined to be y 

\ \\J2 = {^\J2\T^\)BS{^) (2.23) 

i.e., a hypothesis whose tracks are those of X restricted to ^ The concepts of 

predecessor and successor hypotheses can be defined as in tracks. 

Let (^i),€/ be an arbitrary tuple of measurement index sets where / is an 

arbitrary nonempty set.   (/ does not have to be related to the information graph 

at all.)   Then any tuple (r, ))6/ of tracks in ÜTf/,) is said to be fusable if there 
16/ 

exists a track r in T( U ■/,) such that 
16/ 

rfU =r. (2.24) 

for all »6/. T is a track obtained by fusing the tracks in the tuple. Similarly any 

tuple (X,),^/  of hypotheses in II!!(./,) is said to be fusable if there exists a 

hypothesis X in H( U •/,) such that 
• 6/ 

X I 7, = X, (2.25) 

for all «€/• Fusability of tracks thus means that there exists a possible global 

track such that each of the local tracks represents a restriction of the global track 

to the local measurement indices. Similarly the fusability of the hypotheses 

means there exists a global hypothesis such that each local hypothesis is a restric- 

tion of the global hypothesis to the local measurement index set, or more 

specifically, the nonempty restrictions of the tracks in the global hypothesis are 

the local hypotheses. 

If the measurement index sets (/,),■ g; do not intersect, fusability of tracks 

and hypotheses is trivially assured. When the measurement index sets do over- 

lap, we have to be concerned about the consistency in the tracks and hypotheses. 

The following rather intuitive conditions for checking fusability are proved in the 

appendix. 

I 1. Any track tuple (r, )ie/ in nT(J,) is fusable if and only if 
16/ 

I rlln(/I.in/tJ) = r.1n(/lln/Il) (2.26) 

for all (iV2)6/X/. 
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I                           2. Any hypothesis tuple (X, ),-6/ in nH(/,) is fusable if and only if p 
• €/ ^ 

I                                         xlli(/.1n/<.) = xlf|(jfln/.l) (2.27)               A! 

forallti^iale/X/. ^ 

These two conditions state that a tuple of tracks (or hypotheses) is fusable if and 

only if they share common predecessors (in tracks or hypotheses) in the overlap- 

ping measurement index set 

J = UU/V,, | (ti,«2)€/ XI such that i^ia} (2.28) 

To check the conditions described by (2.27) or (2.28), we need to have tracks and 

hypotheses defined on the set 7. In general, these are not directly available since 

there may not be any information node with 7 as its measurement index set. 

However, by using the decomposition algorithm of equation (2.10), we can express 

the set 7 as the union of the measurement index sets of some predecessor nodes 

in the information graph. The two fusability conditions of equations (2.26) and 

(2.27) can be further reduced to the following. 

Let ig be a communication receiving node and / be the set of all the 

immediate predecessors of it. For each («i,i2)6/X/, let T{ii,i^ be a set of infor- 

mation nodes T such that r<«1 and i<t2> i-e-, their common predecessor nodes. 

Then, we have 

1. a necessary and sufficient condition for any track tuple (r, ),e/GnT(7,) to be 
ig/ 

fusable is that, for any (ii,t8)€/ X/, 

r.in7(r) = r|.|rV(7) (2.29) 

for any tS/^!,«^),    and 

2. a necessary condition for any hypothesis tuple (Xl)lg/€llH(J't) to be fusable 
i 6/ 

is that, for any (»i,«2)€/ X/, 

XM I J(<) = KI ^r) (2-30) 

for any «"€7(t p«^). 
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In general, for any two distinct nodes i1 and J2, their common predecessor 

set 7(«i,«2) may not be unique. However, to use the above conditions to test the 

fusability, we need only to consider the set of all the maximum elements in the 

set {«€l| t <i1andt O'j}, i.e., the maximum common predecessor set. Thus in 

the cyclic communication example of Figure 2-4, a track from the node {tCR ,1) 

and one from the node (tCR ,2) are fusable if and only if they have the same 

predecessor (or restriction) tracks in both the nodes {tCT-2,l) and {tCT-l,2). 

The test defined by (2.29) provides a necessary and sufficient condition for 

track fusability but equation (2.30) only provides a necessary condition for 

hypothesis fusability. This is due to the fact that a fusable tuple of tracks pro- 

duces only one fused track but a fusable tuple of hypotheses may produce more 

than one hypotheses. The counterexample in Figure 2-5 shows that (2.30) is not 

a sufficient condition for the hypothesis fusability. In this example, the two 

hypotheses (X1,X2) are to be fused. The common predecessors of the nodes 1 - id 

2 are nodes 3 and 4.   It is obvious that X! | ./3=X21 J3 and also ^ \ Ji=\2 \ Jk, 

^3 = lTa.Tbl              ^iHTaUTd#TbiTc| 

3 «r £* 1 

^4=lToTdl ^2=iTo.TbUTc.Td| 

1 Figure 2-5: Counter Example 
v 
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thus satisfying the necessary condition of (2.30) for hypothesis fusabiiity. In fact, 

this is true since both X! and X2 are the results of fusing \3 and X4. However, 

since 

Xil ^rv^^l-/srv* (2.3i) 

the hypothesis fusabiiity condition of (2.27) is violated. This is again obvious 

since Xy and X2 are mutually exclusive. Xj hypothesizes that r,, and Td are from 

the same target whereas X2 hypothesizes that ra and ri are from different targets. 

Although it is not sufficient to determine hypothesis fusabiiity by consider- 

ing only the predecessors of the hypotheses in the predecessor nodes, the condi- 

tion (2.30) can be used to eliminate hypotheses for further consideration if they 

do not have the same predecessor hypothesis in a common oredecessor node. 

Furthermore, the following equivalence condition (proved in the appendix of [4]) 

relates hypothesis fusabiiity to track fusabiiity. 

Hypothesis Fusabiiity Condition. Let (/,)i6/ be any tuple of measurement index 

sets and ./ = U •/.•.   T 
«e/ 

XGH(J) if and only if 

sets and J = \JJi.   Then, any (X.-Xg/eUHf/,) is fusable with fused hypothesis 
1 €/ i €/ 

1. for any r in X, there exists a fusable track tuple (rl)lg/€lI(XlU{0}) such that 
•'€/ 

T^ U r,,       and 
• 6/ 

2. for all i €/ and for all r,€Xf, there exists a unique r in X such that r, Cr. 

Condition 1 states that every track r in the hypothesis X is formed by taking the 

union of the fusable tracks in the local hypotheses. Condition 2 states that every 

r, belongs to a unique global track in any given global hypothesis. 

Hypothesis formation thus consists of the following steps: 

1. Use the necessary condition of (2.30) to reduce the candidates for fusable 

hypothesis tuples 
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2. Use the track fusability condition of (2.29) to further determine hypothesis 

fusibility 

3. Exhaust all possible fusable hypothesis tuples, and for each fusable hy x)thesis 

tuple, generate all possible fused hypotheses. 

The last step is concerned with the actual hypothesis formation and consists of a 

two-level procedure. The first level performs hypothesis-to-hypothesis associa- 

tion. The second level carries ou^ the actual track-to-track association to form 

global tracks from the fusable track tuples. 

2.3.3  Hypothesis evaluation 

Given the global hypotheses and global tracks constructed from the local 

hypotheses and local tracks, the objective of hypothesis evaluation is to compute 

their probabilities and state distributions using the communicated local informa- 

tion. In terms of the information graph, tha problem is as follows. LeA 

i0={t,n,CR) be a communication receiving node in 1^ and / be the set of all 

the immediate predecessors of i0.   Let Z = \J Z, with K and / be the associated 

index set and measure ient index set. We need to compute the probabilities of 

all hypotheses, (/'(A=X | Z))xeH(y), the state distributions of the tracks, 

(p, (z | r,/)),^./), and the expected number i4,K ) of undetected targets. 

We make the standard assumptions on the target and sensor models (see [l] 

or [2]). In particular, the target models are assumed to the independent and 

identically distributed Markov processes and the number of targets is Poisson dis- 

tributed. The sensor measurements generated by sensors at different times are 

conditionally independent given the target state. In addition to these, we also 

make the special assumption that the target state is either static or bidirection- 

ally deterministic (which makes it equivalent to a static process). This assump- 

tion is needed to make the algorithm more implementable. Later in this section, 

we should briefly discuss how this assumption can be relaxed, The target state is 

in a hybrid variable with a continuous part to model geolocation type variables 

and a discrete part to model classification type information. For convenience, we 

define a hybrid measure /z on the state space to be the direct product of a con- 

tinuous measure and a discrete measure. Then any integral with respect to this 

hybrid measure is a sum of integrals over the continuous part of the state space. 
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With these assumptions, the following hypothesis evaluation results are 

derived in the appendix. Let (/,a) be the pair which satisfies the condition (2.17) 

of Section 2.2.2. Suppose for each TeT, the probability p (X | Zj-) for each 

hypothesis X in H(^-), the track state distribution p{x | r,Zj) for each track r in 

T(y-), and v{K--), the expected number of undetected targets are all known. 

Then for every hypothesis X€H(y), the probability of the hypothesis being true is 

given by 

P((A | J)=\ | Z) = C-1 UP({\ I JT) | Z-)^)    Ff   l(r,{ZT)-eT)       (2.32) 
iei re(x|^) 

where C is a normalization constant, and 

I WlkeT) = /n.P ^ I Z.,{m JT))a^n(dx) (2.33) 

is the likelihood of the global track T.   The expected number of undetected tar- 

gets is given by 

u{K) = l mZT)jej) = fR'P (x I W&W* ) (2-34) 
• €/ 

where 

p (x | r,Zr)=p (x | r,ZrM/Cr)
6'(r), (2.35) 

^ ifrn^—0 

>W = \o otherwise     ' (2-36) 

The state distribution of the track r can be updated by 

p(i |r>Z) = c-inP(i |(m^),Z7)
a(r) (2.37) 

«6/ 

where c is a normalization constant. 

We note first of all that hypothesis evaluation depends only on the statis- 

tics at the information nodes in the set /. This is the same set used in distri- 

buted estimation and represents the nodes which are relevant for fusion. The 

function a determines whether the information at a node should be added or sub- 

tracted. The hypothesis evaluation formula of (2.32) has a two-level structure. 

At the higher level, the product of the local hypothesis probabilities evaluates the 

probability of associating the given set of local hypotheses. The next level con- 

sists of the likelihoods of the individual tracks. 
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Each 1 (T,{Z-)J-6Y) is a track-to-track; association likelihood, i.e., the likeli- 

hood of associating all the tracks in the local track tuple ('D^lj-g/ with one tar- 

get represented by the global track r which is their union. Its evaluation depends 

on the state distributions of the local tracks. If the tracks have similar state 

descriptions then the integrand in equation (2.33) will be large, thus resulting in a 

high likelihood. On the other hand, if the local tracks have state descriptions 

which are very different, the integrand in (2.33) will be small, resulting in a low 

likelihood. In equation (2.33), the function ~p [x \ T,ZJ) is identical to p (z | T,ZJ), 

the state distribution for track r, when the track r has a nonempty restriction at 

the node i. When this is not the case, i.e., the track r has not been detected yet 

at i, the function p is scaled by the expected number of undetected targets and 

is no longer a probability distribution. It represents some kind of density for 

undetected targets. 

Equation (2.34) computes the expected number of undetected targets by 

fusing the local track state distributions of the undetected targets. Equation 

(2.37) is the fusion formula for the global track state distribution. Note that it 

has the same form as (2.17). This is not at all surprising since given a particular 

track, computing the state distribution of the target is the usual estimation prob- 

lem. Thus the fusion algorithm for distribution estimation is an integral part of 

fusion for multitarget tracking. 

2.4  CONCLUSION 

In this section, we have described the results of our research on information 

fusion for multitarget tracking. We have identified two main problems in infor- 

mation fusion assuming arbitrary communication. The first is how to generate 

meaningful tracks and hypotheses starting from a set of local tracks and 

hypotheses. The second is how to compute the statistics on these tracks and 

hypotheses when the local quantities may contain common information due to 

past communication. 

We have developed an abstract model of the DSN in terms of the informa- 

tion graph. Using this graph, algorithms for information fusion have been 

developed. The two problems of hypothesis formation and evaluation all require 

keeping around histories of the tracks and hypotheses in the system. Using this 

history, the fusability of tracks and hypotheses can be determined. At the same 

time, any common information shared by their statistics can be identified so that 

it would not be double-counted.   When specialized to broadcast communication, 
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I we can show that the general fusion algorithms for arbitrary communication 

reduce to those developed in the previous project. 

i •^ The hypothesis formation algorithms for fusion do not depend on the target 

models. For hypothesis evaluation, we have assumed that the targets are static 

or that their motions may be approximated by "deterministic" process models. 

When the target models are assumed to be general Markov processes, the 

hypothesis evaluation algorithms have the same form as in (2.32) to (2.37). How- 

ever, the state of a track would have to be a trajectory sampled at various times 

and computing its probability distribution would be difficult. Thus the difficulty 

of extending the results to treat general Markov models is more related to imple- 

mentation issues. On the other hand, as long as the target motion is fairly regu- 

lar, the deterministic process models we have assumed may be quite adequate. 
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3. DISSIMILAR SENSORS AND ATTRIBUTE BASED TRACKING 

The algorithrns presented in Section 2 are quite general and apply to arbi- 

trary target models as long as the target motions are independent. In this sec- 

tion, we consider the case when the different nodes in the DSN have sensors of 

different types. For example, one node may have sensors which observe a certain 

set of features while another nodes may have sensors which observe a different set 

of features (e.g., radar versus acoustic). In general, the sensor produces data 

which contain attribute information as well as kinematic information. Typical 

attributes may include wheel or tread type of ground vehicles, radar images of 

ships, engine type of aircraft, and different types of electronic emissions. 

This tracking problem with dissimilar sensors is both interesting from a 

theoretical and practical point of view since correlation of results from multiple 

sensors can often yield useful information not available from a single sensor. In 

particular, by considering attributes from multiple sensors, it may be possible to 

determine the type of the target. 

In this section, we consider the problem of tracking and classifying targets 

when the nodes in the DSN have sensors of different types. Such targets usually 

have states which contain some structural information (e.g., a given target type 

may contain certain features which in turn contain other subfeatures). The rela- 

tionship between targets with structured states and general structured set of tar- 

gets will be discussed in Section 4. 

3.1  TARGET AND SENSOR MODELS 

We assume that the sensors at various DSN nodes have different capabili- 

ties and in particular, no single node can classify the target type uniquely. Thus, 

the nodes have to cooperate to achieve the overall mission. If this is not the case, 

then the results of Section 2 apply. Each node performs its local tracking and 

classification. Cooperation among the nodes, while it may improve the quality of 

the results, is not really necessary. There are also other situations when the 

nodes have identical sensors (e.g., acoustic or infrared) but the targets are not 

observable from a single sensor. In this case, cooperation among nodes is also 

needed.  An example of this acoustic tracking will be presented in Section 5. 
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3.1.1  Target Models " 

We assume that each target has a state x(t) at time t which evolves 

according to some dynamical model. The state x(t) is represented by 

(xc (t),xd(t)), where xc(t) is the continuous part representing its geolocation 

quantities such as position, velocity, etc., while xd{t) is the discrete part 

representing other attributes. xc{t) is usually modeled by means of dynamical 

equations such as: 

ic(t) = Fxc(t) + w(t) (3.1) 

where w(t) is a white driving noise.   The components of i''  usually have some 

internal structure.  For example, zd may consist of: 

x* =(xd0,xil,xd2) (3.2) 

where 

• xd0 is the type of the vehicle (tank or armored personnel carrier (APC), or 

truck) 

• z ^1 is the attribute corresponding to the wheel type (tread or wheel) 

• z ^2 is the attribute corresponding to the weapon carried on the vehicle (gun or 

no gun) 

The discrete states are related as in Figure 3-1 where the state xd0 determines 

the states zd 1 and z- 2, i.e., the type of the vehicle determines the wheel type and 

the presence (absence) of guns as in Figure 3-1. In some cases, the relationship 

between the discrete states may also be probabilistic as given by p(z''1,z''21 xd0). 

For example, one type of vehicle may have a given radio with certain probability. 

The probability of the attributes is sometimes conditionally independent, i.e., 

p{xd\xd*\xd0) = p{xdl\xd°)p(xd2\xd0) (3.3) 

which may simplify the processing considerably. In other cases, some discrete 

states themselves (other than the target type) may evolve with time and depend 

on other states, e.g, the electronic emission of a target. The dynamic behavior 

may be modeled by a Markov process. 
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dO     (TANK OR APC OR TRUCK) 

(TREAD OR WHEEL) (GUN OR NO GUN) 

""""^^TYPE 

ATTRIBUTE"^«^ 
TANK APC TRUCK 

WHEEL TYPE TREAD TREAD WHEEL 

GUN TYPE GUN NO GUN NO GUN 

Figure 3-1: Example of Structured State 
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In general, the discrete target state may be hierarchical with more than two 

levels as given in Figure 3-2. Each attribute may assume different values depend- 

ing on the target type. Frequently, the probability distribution of the attributes 

satisfy some Markov property, i.e., the probability of the attributes conditioned 

on all higher level attributes is the same as that conditioned on the attribute 

immediately above it.  For the example in Figure 3-2, this implies that 

p {xd3\xd32 \ xin,xdn,zd0) = p {xd31,xd32 \ xdn) (3.4) 

3.1.2   Sensor Models 

The sensors at the different DSN nodes may have different capabilities. 

Some sensors may measure the kinematic quantities while others may measure 

attributes (e.g., the wheel type or the absence or presence of guns). Still others 

may measure the target type directly. The sensors are subject to false alarms 

and mis-detections. For a detected target, the measurement model is given by 

PmiVj I x) where x is the target state and y; is the measurement for sensor j. 

To represent the presence of both kinematic and attribute measurements, the 

measurement model can be stated as 

y/(0 = tf;x
c(0 + M0 (3-5) 

p(yd{t)\x(t)) = p{yd{t)\xdi,ieA]) (3.6) 

where 

• y/(0 and yd(t) are the continuous and discrete components of the measurement 

of sensor j 

• Aj is the set of attributes observable by sensor j 

• Vj{t) is the measurement noise 

In the above, we have assumed that the continuous and discrete measure- 

ment models are independent. Sometimes this may not be the case; for example, 

a poor kinematic measurement may be correlated with a poor attribute measure- 

ment.  The coupled measurement model then has to be used. 
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fdO 

.d11 ,d12 

xd21     xd22  xd23       xd24 

xd31     xd32  xd33 xd34 xd35 ,d36 

Figure 3-2: Hierarchical Target State 
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I 3.2  LOCAL PROCESSING 

\ Local processing follows the algorithms presented in Section 2.1.1, using the 

appropriate sensor model for each node.   Each node has an information state 

| represented by the set of tracks, set of hypotheses, track state distributions and 

■- hypothesis probabilities.   Equation (2.2) is used for hypothesis evaluation with 

the likelihoods given by (2.3) to (2.5).   Since not all the states of the targets are 

observable from the sensor j, the state x should be replaced by: 

x ; (x',x") (3.7) 

where x* is the continuous (geolocation) state and x ' is the discrete state of 

attributes observable from sensor j. The relevant tracks state distribution is 

then (with some independence assumptions on the states and measurements) 

pt(x'  \T,Zj) = p{x'  |r,Zy)p(x^ |r,Z;.) (3.8) 

When the target and sensor models for the continuous state satisfy linear 

and Gaussian models, the geolocation component of the track state description 

can be computed by means of the Kaiman Filter. The discrete component is 

computed using a Bayesian updating formula.  Assuming x * is static, then 

p (x "• 1 T,ZJ ) = C'Vn. (y/ h ij )P (« " I 7Jy) (3-9) 

where C is a normalization constant, pm(-) is the discrete measurement model 

and p (x *> | l,Zj) is the predicted discrete state given the previous measurements. 

For the example of Figure 3-1, each hypothesis from the wheel type sensor 

node will contain the number of targets detected, their positions and velocities 

and possible classifications into wheel and tread vehicles (with probabilities). 

Similarly, the gun type sensor generates hypotheses with tracks described by gun 

type as well as locations and velocities. 

3.3  INFORMATION FUSION 

When sensor nodes have the same type of sensors, communication among 

nodes serves primarily to reduce the uncertainty associated with the situation 

assessment at each node. For example, nodes 1 and 2 may have different esti- 

mates of a target given by i,c,E, ,p, (x'')), i = 1,2, where 

3-6 ■ 

I 
:v •.•v.vo.'x-:-/:-.'-.-;-/:-.-:-.':-/-/',":--iv:-.^.-: .i .•:v-:-.-■.-• •. v.i-.''-.-:-,-:•.-:%'•.-:•.•:•.-:••.-:•.-:■.•>.■:■.-:•.•:■/: 



}■ 
I - i/ is the geolocation estimate by sensor node i 'rj 

; - E, is the error covariance of sensor node i, and 

I - p^x4) is the probability distribution of the discrete state xd estimated by sen- 
S 

sor t. 

Then when the nodes communicate, the estimate of the target can be improved 

and becomes {x' X }p (xi)) through fusion of the track state estimates. In addi- 

tion, the nodes can also improve on their estimates of the number of targets. 

When the nodes have sensors of different types, each node produces track 

state estimates for the attributes which are observable to the node. Communica- 

tion between nodes then not only improves the geolocation estimates but also 

produces estimates of other attributes not observable from the individual nodes. 

This will usually require knowledge of the relationship among the attributes in 

the structured state. For example, if Node 1 concludes that the target is a vehi- 

cle with thread and Node 2 concludes that it has a gun, then through communi- 

cation each node may conclude that it is a tank. If the individual nodes' esti 

mates are probabilistic, then the fusion results will also be probabilistic. 

In the following, we consider information fusion for nodes with dissimilar 

sensors Hypothesis formation and management follow the general algorithm 

given in Section 2. For example, fusability conditions will have to be checked 

before tracks and hypotheses are fused. Our discussion will thus focus on fusion 

of track state estimates and hypothesis evaluation. Since the fusion results for 

arbitrary communication can be derived from fusion of two nodes, we assume the 

structures in Figure 3-3. In Figure 3-3(a), the fusion node can be a different node 

from nodes 1 and 2. It collects information from Node 1 and Node 2, performs 

fusion and broadcasts the results back to the nodes, thereby performing the coor- 

dination. Alternatively, the fusion node may reside with each of the two nodes in 

a broadcast situation. Figure 3-3(b) is the case with no coordination or feedback 

from the fusion node to Nodes 1 and 2. 
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Figure 3-3: Communication Structure 
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3.3.1  Fusion of Track State Estimates ^ 

Since fusion of track state estimates is for tracks which have been associ- 

ated, we do not represent the track explicitly in the following discussion.   Sup- 

pose the observable state for Node i is x' which includes the continuous state x c 

and the discrete state x ^ , i.e., 

xi ={xc,xdl) (3.11) 

For a given target, the track state estimate by Node i given the cumulative data 

Z, is given by p{x' | Z,). As discussed before, this may contain a continuous 

part (mean and covariance) and a discrete part (probability distribution). For 

the example of Figure 3-1, 

pfx'  \Z,) = p{x',xdi \Zi) = p(X' |Z.)p(x* \Zt) (3.12) 

where p{xe | Z,) will be characterized by a mean and covariance. Let Z be the 

cumulative data of the fusion node when it last broadcast and Z be the cumula- 

tive data after it receives communication from the nodes, then the complete state 

estimate of the target after fusion is given by: 

I p{x°,xi0,xd\X
d2\Z) = p(x' |Z)p(x'W2|Z) (3.13) 

j where the continuous and discrete state estimates are computed as below. 

Fusion with Coordination 

The fusion of the continuous state estimate is given by 

p(z    \Z) = C1     .   e  . =.  (3.14) 
p(x    I Z) 

where C j is a normalization constant.  The fusion of the discrete state estimate is 

given by 

,^«1^2, ^_   „-i   p(*i'\ZJp(xd2\Z2) 

p{X
dl\Z)p{xd*\Z) 

p\X     ,X     ,x       |Zj— 02 —-——.        d2l  -^    p(x     ,x     ,x       |Z) 

~C2      rTTiTi iTTTITFl ^^ i3'15) 
.!     P(X^UI)P(XJ2|Z2) 

p{xdl\Z)p(xd2\Z) 

.        p(x<il
!x
i2|x('0)p(x('0|Z) ^ 

ä 
\ I 



ni .a 
Iß where we have assumed that the attributes xdl and xi2 depend only on xd0 and 2 

Cj is a normalization constant. y 

"j Equation (3.14) is the standard equation for fusing two probability distribu- Q 

_ tions of the same random state.   Equation (3.15) fuses the probability distribu- I 

tions of different attributes to obtain that of all attributes. The last factor in 

(3.15) represents the a priori estimate of the attribute xd0 (vehicle type) based on 

Z. It is the marginal probability of p{xd0,xdl,xd2 \ Z) computed from an earlier 

fusion. The factor p{xdx,xd2 \ xdQ) is the model of the structured state. For the 

B example in Figure 3-1, we may have 

p (z1*1 = tread, i   2 = gun   |   x l") = tank)=l 

,<n _ .. A   ~d2 i   „rfo p(zil = tread, z4''^ no gun   ]   x',u = APC)=l 

p(iil = wheel, 2I'2 = no gun  |  xd0 = truck)=l (3.16) 

and zero otherwise. The last two factors in equation (3.15) together predV. vhe 

target attributes from the previous communication time. The first two faciors in 

the numerator represent the estimates of the two attributes from the two nodes. 

Since these estimates share some information with the predicted values through 

Z, the factors in the denominator are used to remove any redundant information. 

To obtain an estimate of the target type, one needs only to sum over the possible 

values of x^1 and z^2 to obtain p{xd0\Z). 

Fusion Without Coordination 

If there is no feedback from the fusion node to the other nodes, then Equa- 

tion (3.14) should be replaced by 

p(zc    Z   =(71      = zr—p[x    \Z) (3-17) 
p(zc \Zx)V{x° |Z2r V      '     ' 

where C j is a normalization constant, Z, is the cumulative data of Node i before - 

the last communication to the fusion node.   This fusion formula is a special case 1 

of the general Equation (2.17). ; 
a » 
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I Similarly, the fusion formula for the discrete state estimate is given by H 

PW\X'*\Z)~C?  ^-T^p^L (3.18) 

pix^y^x^pix^^Z) 

where C2 is another normalization constant. This equation is similar to (3.15) 

except for the terms in the denominator which now depend on Zx and Z2 instead 

of Z. The reason for using the different terms can be seen by drawing the infor- 

mation graphs. 

So far we have assumed that the fusion node does not have any measure- 

ments of its own. If this is not the case, as when the sensor measures the type 

xi0 discrete, then the fusion equations can be modified appropriately. The distri- 

buted hierarchical Bayesian Approach of [5] can also be used to estimate the 

attributes in the target state. Alchough such an approach also has a distributed 

implementation, it is not as convenient as the approach used here if data associa- 

tion also has to be considered. 

3.3.2  Hypothesis Evaluation 

In the previous section, we have consir„red the fusion of state (both con- 

tinuous and discrete) estimates for the individual target tracks. In multitarget 

tracking, the main problem is data association and track association in the case 

of multiple sensor nodes. Thus, we - ^ed to evaluate the probability of each 

track-to-track association hypothesis. The general hypothesis evaluation formula 

(Equation (2.32)) is applicable to this special case. We again illustrate the algo- 

rithm with the example of Figure 3-1. 

Fusion with Coordination 

The hypothesis evaluation equation is 

P{\\Z) n\ 
(3.19) 

where the probabilities F(X, | Z,), X = I, 2, are communicated from nodes 1 and 

2 to the fusion node,  P(X|z) is the a priori probability of the predecessor 

y 
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hypothesis at the fusion node, and C is a normalization constant. pi 

The track-to-track association likelihood L r can be derived from Equation v£ 

(2.33) and is given by H-y 

.'       \ M(rfx) (3.20) 
p(x  I T,Z) 

where rj and r2 are tracks where are fused t .n r and p(-) is as defined in 

Equation (2.35).   The likelihood /r can be further decomposed into two likeli- 

hoods 

lr=lc
r  If (3.21) 

where lcr   is the likelihood computed from the continuous state and if  is com- 

puted from the discrete state.  The continuous likelihood is given by: 

= , p^K^P^Kz,) ^ 
J p(x°  \T,Z) 

and depends on how close the geolocation state estimates of the two tracks are. 

The discrete likelihood is given by 

.4 v       P(^dl\Ti^i)p(xd2\r^Z2) 
zd<>a  di p{xil\f,Z)p(xd2\T,Z] 

p(*"V»|x")p(*'W) (3-23) 

and depends on how well the attribute estimates from the two nodes match the 

prior estimate of the target type according to the model of the structured state. 

Note that the likelihood computation is closely coupled to the fusion of the 

track state estimates from the similarity between Equations (3.14) and (3.22), and 

between (3.15) and (3.23). In fact, the normalization constants in Equations 

(3.14) and (3.15) are the likelihoods. Thus, likelihood computation and track 

state fusion are usually performed at the same time. 

Fusion Without Coordination ^ 

VN 

' '• •"' In the case where there is no feedback from the fusion node, the hypothesis >VJ 
'■>■ .1 

evaluation equation is given by ^£ 
TV 

P(X I Z) = C-1 P{111 fl)F(^ ' ta) P{Ji\I) 11/, (3.24) S 
P(X1iZ1)P(X2|Z2)      l   '    ;.xr fi 

$* 
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where F (X, | Z,) is defined as before, X, is the restriction of the hypothesis X, to 

Z, and P (X, | Z,) is the probability of the hypothesis X, before communication to 

the fusion node. 

The track-to-track; association likelihood /r again can be decomposed into: 

lT=rr If (3.25) 

where the continuous likelihood is given by 

and the discrete likelihood is given by 

r p(xc    r1,Z1p(xq    ?,,Z, 
/    =/— '   l'_1^1 i-lLjipU'    r,Z)dxc 3.26 J     p(xc  Ir.ZJplx^ |r,Z2) 

,=      E       P(X     l^Zypjx     \r2,Z2) 
'-",.. p(xil|r1)Z1)p(xi2|r2,Z2) 

p(xdl|'-i^i)p(^2|r2,Z2) 

iao,x  

plx^.x^lx^Xx^lZ) 

As in the fusion with coordination case, the likelihood computation and track 

state fusion operations can be performed together. Note the similarity of these 

equations to those used for fusion with coordination. Equations (3.23) and (3.27) 

are almost the same except for the conditioning of the information in the denomi- 

nator. In both cases, the structural relationship between the discrete states is 

used to evaluate the likelihood of association. 

3.4  CONCLUSION 

In this section, we have applied the general results of Section 2 to the case 

of nodes with dissimilar sensors. When an individual node can only observe cer- 

tain attributes of the target state, cooperation among nodes observing different 

attributes can improve the performance of the system significantly. By exploiting 

knowledge on the structured state, the receiving node can assess some missing 

attributes such as the target type. 

We have presented the fusion results via a specific example and communica- 

tion structure. The algorithms for handling more general cases en be developed 

along the same principles. The fusion algorithms consist of two closely coupled 

operations: fusion of target state estimates and evaluation of association likeli- 

hoods. For the continuous states (position, velocity) these operations are the 

same  as  the  case  of similar  sensors.    The  discrete  states,   however,   involve 
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i 
I operations which make use of the knowledge of the structured state.   Therefore, J 

there is no theoretical difficulty to treat targets with structured states and dis- '. 

similar sensors with measurement at different levels. In practice, however, 

classification trees for the discrete attributes may be very complicated and the 

| number of terminal nodes may be simply too many to handle in a straightfor- 

ward way. In such a case, we need additional tools to effectively store and 

K update the probability distributions on the entire terminal nodes.   In [6] and [7], 

a set of procedures to solve such problems is shown by means of an example of 

ocean surveillance. Many of hypothesis management procedures devised for con- 

trolling data-to-data hypotheses (e.g., those described in [6] and being developed 

in the current project) can be extended to provide useful tools, e.g., hypothesis 

pruning, hypothesis combining and clustering. Furthermore, effective representa- 

tion of probability distributions must be developed in order for such management 

!% systems to work effectively.   For example, track state distributions of tracks may 

have different representations depending on their status.   Distributed processing 

-. on different levels may also be an effective procedure.   Some of the results in [5] 

■ may also be applicable. 
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4. TRACKING AND CLASSIFYING STRUCTURED TARGETS 

I 
By structured targets, we may mean two different concepts in multitarget 

tracking: 

(1) targets with structured states 

(2) structured sets of targets. 
f- 

: 
Since each individual target may be represented on an individual target space, 

;. concept 2 is one-level higher than 1.   In a model based on the above concept 1, 

i targets are still treated as individual objects although correlation among them 

can be considered and targets may be governed by a common state as a group of 

targets.  This kind of models is necessary, when a multilevel identification process 

for each target is used or when a target has structured features.   Such issues are 

- related to the problem of treating dissimilar sensors which generate measure- 

ments corresponding to different levels of the structured target state space.  This 

3 problem has been discussed in Section 3. 

On the other hand, concept 2 is essential when targets are in fact organized 

and structured in units at \arious levels. A typical example can be found in mili- 

tary units such as army -* division -* regiment -* battalion -» company, etc., in 

| the military hierarchy.   In such a case, the number of targets is typically very 

large and, if they are treated as independent objects, we may not be able to 

assess a global situation based on the outputs from any reasonably functioning 

target tracking system. This is 30 because, since grouped targets are usually 

closely spaced, the data-to-data association (or scan-to-scan correlation) may 

become very difficult with limited computational resources.   This difficulty may 

^ be overcome only when the unit structure of targets is understood and taken into 

account in a tracking system. Moreover, the global assessment of all the targets 
33 a single structured object is itself an important task in many applications. 

Our emphasis has been the development of a general theory upon which we 

^ may produce effective algorithms in many different applications.   This should 

serve also as a basis for developing distributed algorithms.   Sectior 4.1 discusses a 

general model for structured set of targets.   In Section 4.2, we will present our -I 
first-cut analysis on structured sets of targets.   An algorithm is derived for two- 
,evel structured targets, i.e, tracking groups of targets.   The future direction of y 

'. our algorithm development effort will be discussed in the concluding Section 4.3. v« 
v' 
■J 
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I 4.1 MODEL FOR STRUCTURED SETS OF TARGETS 

9 A typical example of a structured set of targets is shown in Figure 4-1 in 

which a division in an army is shown in a simplified way. Depending on the type 

of the division, the composition and the number of subordinates, i.e., battalions 

have a certain pattern. The same kind of dependence is also present in the rela- 

tionship between the subsequently lowei levels. This kind of structure produces 

another dimension to the multitarget tracking problems. There are only very few 

theoretical results on tracking and classification of structured sets of targets. 

Besides a few documents referred in [8], we can only refer to a couple of technical 

references, [9] and [10], both of which are concerned with two-level tracking, i.e., 

tracking of groups of targets, but treat issues pertaining multiple groups in a 

rather ambiguous manner. On the other hand, AI (Artificial Intelligence) -type 

approaches were used in much more complicated environments in [11] and [12] 

which are concerned with ocean surveillance and battlefield unit identification, 

respectively. [11] uses a single-hypothesis propagation combined with a 

backtracking-like recovery scheme while [12] adopts a multi-hypothesis approach. 

The systems described in [llj and [12] may be viewed as hierarchical systems 

which may be illustrated as in Figure 4-2. The procedures represented by 

upward arrows are often called bottom-up or induction processes and those 

represented by downward arrows top-down or deduction processes. 

While the decomposition illustrated by Figure 4-2 is certainly a key to suc- 

cessful implementation of the systems described in [11] and [12], each hypothesis 

evaluation cannot be performed independently in general. For example, in track- 

ing groups of targets, we must hypothesize possible group formation from input 

data while, at the same time, the states as a group must be determined and then 

the estimation of the states affects the evaluation of lower level hypotheses. Even 

if the bottom-up/top-down updating is clearly defined, iterations may be neces- 

sary for such processes to converge. Moreover, in some cases, a simple bottom-up 

type process may easily be overwhelmed by combinatorics. Therefore, at least 

for the few lower levels, we may need an integrated approach rather than a 

decomposition approach taken in [11] and [12]. In the subsequent subsections, we 

will try to establish a first-cut analysis which treats the whole structure of targets 

in an integrated manner. 
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Figure 4-1: Structured Sets of Targets 
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| 4.1.1  A Model for Structured Sets of Targets 

P When we focus on each node in Figure 4-1 and its immediate successors 

^ rather than the whole picture, we notice the tree is composed of building blocks 

— each of which has the same structure.   Such a building block m.n be identified 

with a structure of a state representing a group of targets, as shovn in Figure 4- 

3a. In tracking and classifying a group of targets, the totality of targets can be 

[£ represented by (1) [level l] the total number of targets plus a common target 

state component for the group, and (2) [level 0] the states of individual targets. 

K (1) is one-level higher than (2) since (2) cannot be defined unless the number of 

targets is given by (1). This structure can be extended to the cases where multi- 

,-•; pie groups of targets are present.   Such a case may be represented by a tree 

■ which may be illustrated in Figure 4-3b. Each level of nodes in Figure 4-3b 

r* represents: (l) [level 2] the total number of groups plus a common state com- 

'i.-                         ponent for all the groups, (2) [level l| the states of individual groups including, 

for each group, the number of targets in the group and a common state com- 

l; ponent for all the targets in the group, and (3) [level 0| the states of individual 

targets in each group. 

*>) This approach can be extended to an arbitrary level / of structures.   We 

^ call such a structure a level-l target structure or simply a level-l target. As seen 

in Figure 4-3, when a tree represents a level-/ target structure, the nodes in the 

tree can be labeled as level 0, level 1,  , level /.   There is always only one node 

IS at the highest level, i.e., level /.   The nodes at the lowest level, i.e., level 0, 

represents the set of all the targets which we may call level-0 targets.   In a formal 

rp, description, we define a level-l' state for a level-l' target i as 

. ..('') = (AT. «'Uy^xA''-1), .x.»)) (4.1) 

i . 
where N^' is the number of the level-{l'-l) targets in the level-/' target i, z,|p 

£ is the state component common to all the level-(/'-l) targets contained in level-/' 

target i, and each xj'"1^ is the state of the j-ih level-(/'-l) target. Unless I' —I 

-j in (4.1), every x,)''-1^ is defined similarly with /' being replaced by /'-I.   When 

■ /'=/, there is no need to use index i in (4.1). Each level-/' target when /'</ is 

therefore indexed as 

^ i =(«/-!, ,»/')   • (4-2) 

According to an alternative view of this approach, we are first given a set of 

kS targets, then a partition of the targets into multiple groups, then a partition of 

f " I 
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Figure 4-3: Single-Level and Two-Level Targets 
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■ the groups into multiple super-groups, and so forth.   In other words, a level-/' 

target is an element of a partition of the set of all the level-(/'-l) targets. The 

partition is a trivial one when /'=/. In typical battlefield units as shown in Fig- 

ure 4-4, each unit has its headquarter (division command post (DCP), regiment 

i headquarter (RH), battalion headquarter (BH), etc.) besides its subordinates (R = 

a regiment, B = a battalion, C = a company, etc.).   These headquarters may be 

V considered either (1) as a part of the common state of each level-/' target or (2) 

as special targets which do not have any subordinate.   When we adopt the latter 

7, consideration, we may simply extend each headquarter node to the lowest level, 

I i.e., level 0.   As mentioned before, as a first-cut analysis, we ignore such prob- 

lems.   There will be no problem in rectifying the formulation to treat headquar- 

^ ters in appropriate ways in the future. 

I 
t 4.1.2  Sensor Models and Multi-Level Tracks and Hypotheses 

J We  can extend  our  target-sensor model  for  multitarget  tracking  from 
1 single-level cases to multi-level cases in a rather straightforward way as follows: 

Let 5 be a finite set of sensors which observe the targets.  For each sensor s , the 

measurement value space Y, in which measurements from sensor s take values is 

assumed to be  a  hybrid  space.    Each output  from  sensor  s   is  a   data  set 

i {Vi ••    Vm vm )* 's ) which is an element of 

■. U    U (y.)mX{m}X[to,oo)XM 
m =0 i es 

I and represents m measurements, y^ ,ym, generated by sensor s at time t.   {t0 

is the time before which no sensor outputs any data set.) A collection of data sets 

^ available up to a certain time is called a cumulative data set. We assume that all 

\ the data sets are indexed by positive integers as z {l),z (2), , where 

! z(k) = {{yj{k))?»(
l
k\NM{k),tk,sk) (4.3) 

for each positive k such that tk <tk' whenever k <k'.  A cumulative measurement 

i set up to k is defined as 
m 

: /(*)=  U   {l,....,iVM(*')}X{*'} (4.4) si 
* -1 *> s 

I For the sake of simplicity, we assume that possible origins of measurements ^ 

in any data set are only level-0 targets.   Let IT   be the set of level-0 target ;ö' 

', indices.  For each data set ifc, we assume an assignment function Ak defined on a .^ 

i 47 m I 
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m 
subset of the level-0 target index set IT taking values in J(k) 4 {l,....,iVM(*)}. 

When j=Ak{il_l,....,iQ), we say level-0 target (t,^, . . . , i0) is detected by senior 

sk at time t^ and generates the j -th measurement, or the j -th measurement ori- 

ginates from level-0 target {i,_v . . . , i0). With the no-split/no-merged measure- 

ment assumption, such an Ak is a well-defined one-to-one function. Then, given 

a cumulative data set, we can define the trace of a level-/' target in it in the form 

of a subset of the cumulative measurement index or a collection of such subsets 

at the given level. We call any possible realization of such a trace a level-l' 

track. Thus a subset of the measurement index set is a level-0 track if it contains 

at most one measurement index set for each data set. A level-/' track is a collec- 

tion of nonoverlapping level-(/'-l) tracks. A level-l' hypothesis is then a collec- 

tion of nonoverlapping nonempty level-/' tracks and hypothesizes all the set of 

measurements originating from level-/' targets. According to this definition, a 

level-l track is also a level-0 hypothesis, and vice versa, although its interpreta- 

tion as a track is completely different from that as a hypothesis. 

Multi-level hypotheses defined above may be illustrated in Figure 4-5 in 

which /=3 and a level-2 hypothesis is represented by a tree depicted by solid 

lines. In Figure 4-5, the level-2 hypothesis consists of two level-2 tracks each of 

which hypothesizes a group of detected groups of targets, {{ri.^M7^}^ 

{{r5},{r8,r7}}, where ^ to r7 are level-0 tracks each of which hypothesize- a 

detected level-0 target. Given such a hypothesis, we must further hypothes.ze 

the existence of undetected targets and the overall structure, as shown in Figure 

4-5 by broken lines. The process to group given level-0 tracks ^ to T7 in a level-0 

hypothesis into a level-l hypothesis and then into a level-2 hypothesis can be 

viewed as a bottom-up procedure. While the process to add hidden targets and to 

complete the overall structure can be viewed as a top-down procedure. The 

evaluation of hypotheses may not be, however, decomposed in such a manner. 

The discussion of hypothesis evaluation in a general level-/ case may be very 

complicated. Therefore, in the following sections, we will restrict ourselves to the 

cases where 1—2, i.e., where tracking of multiple groups of targets is concerned. 

Remark: In the above discussion, we only considered the cases where each 

measurement from each sensor is based on a level-O target. The definitions of 

tracks and the hypotheses may be altered so that measurements from different 

levels may be treated. At this moment, however, the exact form of the appropri- 

ate modification is not very clear. 
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Figure 4-5: Multi-Level Hypothesis 
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4.2  EVALUATION OF TWO-LEVEL HYPOTHESES 

In this .subsection, we will extend our general theory of multitarget tracking 

from single-level cases to two-level cases, i.e., tracking multiple groups of targets. 

The issues pertaining to implementation will be briefly discussed in terms of an 

example. 

4.2.1  Two-Lei     Multitarget Tracking 

When the target structure level is two, i.e., 1=2, the overall target state 

can be written as 

X =(iVG,io,*i, ,*Na) (4-5) 

where iV^ is the total number of groups, XQ is the state component common to 

all the groups, and each i, is the i -th group's individual state. Each z, is there- 

fore in form of 

where iV, is the number of (Ievel-0) targets in group i, xi0 is the state component 

common to all the targets ID ^roup «, and z,, is the individual states of the j-th 

target in group i.   Let the ievel-1 target index set be /G={1, NG} and the 

level-0 track index set be U {«}X{l,...,iV, }. Then the trace of level-0 target 

(t^io), i.e., the io-th target in the iVth group, in a cumulative data set up to k is 

n(0Wo) = {(>,*') I J=^){.-1,.o),l<A'<*}   • (4.7) 

The trace of level-1 target ix is then 

r*(1,(»i) = {^0\.'1,«-o)|i<.'o<^l} ■ (4-8) 

Then a level-0 hypothesis is a possible realization of 

^ = {rrti,.o) | r;o)(.1,.-o)^0.(tl,.1o)6/r} (4.9) 

and a level-1 hypothesis is a possible realization of 

Ai1) = {T^iJ | rfc(
l)(,-1)^{0},i16/o }   • (4.10) 

We can extend the concept of target-to-track hypothesis from single-level tracking 

to two-level tracking as follows: A level-1 target-to-track hypothesis is a possible 

realization of a one-to-one random function from A^ to IG defined by 
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1 nllW1\i)) = i (4.11) m 

and a level-0 target-to-track hypothesis is a possible realization of a one-to-one 

function from f^i) to {l,...,^ } (given T^l\i)) defined by J?j 

nif
0J{r«(§)(.-|,.,.hr*(l}(»i))-«,o   • (4-12) « 

As in the theory of single-level multitarget tracking, whenever we must distin- .v-..' 

guish a realization of A^''^ from that of tltf'\ we call the former datato-data iS*?' 

hypothesis. i ^ 

4.2.2  General Results 

We will derive a recursive formula for calculating each level-1 hypothesis. 

The results are an extension of the single-level tracking results. For the rest of 

this section, we make the standard set of assumptions: (1) Targets are inter- 

changeable a priori. (2) The data sets are conditionally independent given the 

target states. (3) The assignment functions are totally random. The first step is 

a straightforward recursive formula 

v *   i        ' P(Z(*)| Z(*-1)) 

The numerator on the RHS of (4.13) can be expanded in a way similar to that 

used for the single-level tracking (as described in [l] and [2]) and yields 

1 /■|A.'"|T'")       f(AfV^"'> • (4.14) 

E ^J^in^^0 I^A(1-U(1-U(*-1))L*(.(*)M,,Ar^z(*-1)) 
^cr€At(l)(iVni,l){r)-#(r))! 

where 

and 

NG ={NG,N1 ,%,) (4.15) 

Lh{'{kUklNa\Z^))^^l (4.16) 
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/P((y/{M)i-i*,|^^(M>*('»)^0)PM(%(*)|/i>T(*),«{<»),iV<7) 

The updating formulae for P(^(<t) | iVo,nJk
(0).Ai1U(*)). 

P{NG \NG ,n^\\^\Z{k)) and P(iV0 | Ai1'^1*') can be derived in a similar way. 

4.2.3  I.I.D.-Poisson Groups 

In single-level tracking, an appropriate set of independence assumptions 

enables us to reduce a general form into a more implementable form. We will 

repeat such a process for two-level multitarget tracking. The additional assump- 

tions are as follows: 

N 
[l] Given the number NG of groups, the group states tuple (i, )iJl is a system of 

independent Markov processes which share common joint probabilities. 

Thus the state component z0 common to all the groups is ignored. The 

number NQ of groups has a Pounoo (distribution with mean uQ. 

[2] Each z, ^(x.o,!,!,....,!,^.), given N,, is a stochastic process such that (z,,),^ 

is a system of interchangeable Markov processes. 

[3] The detection is target-wise independent, i.e., the detection of target (»i,to) 

depends only («,• o»*^.) antl we bave 

P{IDT(k)\x{tk),NG)= (4.17) 

,. n ^Ko^v. i *)*(,'1',"o)u- PDKo-^.o i *i)1"6{ti'io) 

(•i,iii)6/r 

with a common detection probability function pD . 

[4] Measurement errors are also target-wise independent, i.e., the value of a 

measurement originating from a target («ut'o) is correlated only to (z.^z,^). 

The number of false alarms and their values are independent of the targets 

and from data set to data set.  Thus we have 
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P(iVM{*)l/or (*),«(** )^0
)-PJV,4(^{*)-#(/W(*))1*)       (4-18) 

and      -     . 

| P({y](k)),Vl
k)\Ak,Nf4(k),x(tk),NG)= (4.19) 

. f. .  n ,    PW(y^(.1,.0)(*)h.1o(^U1.o('*^))(. n    P^ly,^)!*)) 

with a number-of-false-alarm probability function PNrAi * target-state-to- 

measurement transition probability density function pM, and a falst-alarm- 

value probability density function pFA . 

Under these assumptions, we can derive results which are very analogous to 

those in single-level tracking (described in [l] and [2]) and are summarized as fol- 

lows: (1) Given a level-1 target-to-track hypothesis, the posterior distributions of 

the group states (x,), =! are independent, (2) the posterior distribution of 

undetected groups becomes Poisson, and (3) the hypothesis evaluation can be 

reduced to the evaluation of level-1 track-to-measurement likelihood as 

P{Kii) | ,(»)) =   ^ÄIÜ^j  ggOv^i) (4.20) 

LFA    ÜMyir\k}\Z\h^) 

where LFA is the false alarm likelihood, 

y{r\k} = {y,{k)\{j,k]eUT} (4.21) 

is the set of measurements assigned to level-1 track r and L(-\ Z\j'1') is the 

level-1 track-to-measurement likelihood. The forms of the above likelihood func- 

tions are very similar to that of the hypothesis evaluation formula for the single- 

level tracking of dependent targets. 

4.2.4  An Example 

A straight forward extension of single-level tracking to two-level tracking is 

possible using the results shown in the previous two subsections. In two-level 

tracking, however, the combinatorial problem is even more severe, which may 

make  a straightforward extension of single-level  trackers  infeasible in  many 
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applications. For this reason, we may have to develop new techniques for over- 

coming the additional combinatorial burden inherent to two-level tracking. In 

this subsection, we will discuss this aspect of the problem in terms of a simple 

example. 

We consider tracking of groups of ground vehicles moving on a road net- 

work. By a two-step transformations to take care of (1) the route selection by 

each group and (2) the curvature of each road segment, the problem can be 

reduced to that of tracking groups of targets moving on a straight line. Let u, be 

the 1-dimensional position of the lead vehicle of the «-th group and u, be its 

velocity. Then the position and the velocity of the j-th vehicle in group i can 

be modeled as 

«.; 

and 

= «, -(;-l)c,t,,. +e.; (4.22) 

vn = Vi + r,,., (4.23) 

where c, v, is the expected distance between two vehicles in group i, ^,; and TJ,; 

represent randomness in position and velocity of each vehicle in the group. We 

assume that the randomness can be modeled by independent gaussian random 

variables. The group dynamics are then assumed to be a simple almost constant 

velocity model with an appropriate white gaussian driving noise. Thus we may 

have a very simple target model in which the state component common to all the 

targets in group i is 

where a,  is a discrete variable representing the type of group t.   The individual 

target state of the j -th target in group i is then simply its type ai;. 

For each possible type of group, we assume that we have a sufficient 

number of templates of the group including composition of different types of vehi- 

cles and their order when moving on the road. Each template can be represented 

by 

e ={a,N,bl,....,bN) (4.25) 

where o is the type of a group, iV is the number of vehicles in the group and 6, 

is the type of the t-th vehicle in the group. Therefore the level-1 track distribu- 

tion, i.e., the group state distribution, is a distribution on (-oo,oo)2Xi?, where E 
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 i 
is the set of all the templates.   In general, we may assume at least in an approxi- :. H 

mated   sense   the   independence   of   motion   from   the   type   component   as 

P(du,dv,de)=P(du,dv)P{de). M 

When a data set is received from a sensor, each group hypothesis is given a 

set of measurements which may be associated to it. Then the set of measure- 

ments is ordered linearly and, for each template, the level-1 track-to- 

measurement likelihood is calculated after template-to-measurement matching as 

shown in Figure 4-6. In such a process, we must use a very effective method for 

determining a likely level-1 track-to-measurement assignment. For example, for 

each template, we first estimate the most probable distance between targets 

based on the velocity estimate and then spread the vehicles in the template 

accordingly. Then, by an effective assignment algorithm, we can find a feasible 

assignment between the given set of measurements and the vehicles in the tem- 

plate. After determining the assingment, we can calculate the level-1 track-to- 

measurement likelihood. 

4.2.6   Distributed Hypothesis Formation and Evaluation 

As shown earlier in this report, distributed hypothesis formation is a pro- 

cess of creating a logically consistent set of hypotheses from a collection of local 

sets of hypotheses. This process amounts to the consistency checking on the 

overlapped pieces of information in the past. It is also determined purely by the 

definitions of tracks and hypotheses and independent of their probabilistic 

nature. Therefore it is expected that we may extend the single-level tracking 

results to the two-level or in general level-/ tracking cases. The results may be a 

similar type of consistency checking on the predecessors of tracks and hypotheses. 

However, although the final results are fairly simple in single-level tracking cases, 

complicated steps were necessary to derive implementable results. It is hence 

expected that the logical arguments involved in two-level tracks and hypotheses 

may well be very complicated. 

On the other hand, distributed hypothesis evaluation involves the distri- 

buted estimation and is highly dependent on the structure of the global 

hypothesis evaluation formula. In the single-level tracking cases (with the i.i.d. 

Poisson assumption), the hypothesis evaluation equation is, in essence, a product 

of track likelihoods and each track likelihood is an integration of a product of 

state-to-measurement transition probability densities. Thus each track likelihood 

can be decomposed using distributed estimation theory.   In two-level tracking 
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Figure 4-6: Template-to-Measurement Matching 
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cases, however, the level-1 track-to-measurement likelihood involves summation 

over many possible numbers of targets in each group, which may cause difficulty 

in decomposing the track likelihood into the independent components. We may 

well need a kind of aggregation of tracks and hypotheses in order to produce a 

workable algorithm for distributed hypothesis evaluation for the two-level track- 

ing.  The dynamic behavior of groups may also complicate the discussions. 

4.3  CONCLUSION 

A first-cut analysis on multitarget tracking concerning a structured set of 

targets has been discussed in this section. The discussions in this section are 

summarized as follows: (1) Structured sets of targets may be treated in an 

integrated form and concepts of tracks and hypotheses can be extended from the 

single-level cases in a straightforward way. (2) Two-level multitarget tracking 

hypothesis evaluation can be done by extending the single-level tracking results. 

(3) Practical methods for implementing two-level hypothesis evaluation needs 

however further investigation. (4) Distributed hypothesis formation and evalua- 

tion for two-level tracks and hypotheses may be possible by extending the single- 

level results but we need more time to clear this problem. The future efforts per- 

taining to the topics covered in this section may include: (1) effective implemen- 

tation of single-level tracking with correlation among targets, (2) implementation 

of two-level multitarget tracking algorithms, and (3) development of distributed 

level-1 hypothesis formation/evaluation algorithms. 
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5. ACOUSTIC TRACKING EXPERIMENTS AND ALGORITHMS 

As part of the DARPA DSN program, M. I. T. Lincoln Lab. has performed 

research on the tracking of low flying aircraft using acoustic sensors. A DSN test 

beo has been developed and used to test and demonstrate DSN techniques and 

technology. This section describes how the general distributed tracking algo- 

rithms developed at ADS can be applied to the acoustic tracking scenarios used 

by Lincoln Lab. We first present some candidate experiment scenarios. Then we 

discuss the development of acoustic tracking algorithms based on the multiple 

hypothesis approach. 

5.1  ACOUSTIC TRACKING EXPERIMENTS 

This section describes the kind of DSN systems and scenarios for which new 

distributed acoustic tracking algorithms are to be developed and evaluated. It 

describes a family of systems and scenarios that will result in a range of tracking 

problems; from easy to quite difficult. The system and scenarios are essentially 

those which Lincoln had considered in a more informal way during its earlier 

algorithm development effort and which have been used as the basis for the 

evaluation of existing Lincoln algorithms. Much of the information in this sec- 

tion has been provided by Lincoln Lab. 

The system follows that of the Lincoln test bed and is a multiple node 

?coustic system for low flying aircraft surveillance. The sensors at each node are 

small acoustic arrays that provide lists of possible target detections along with 

azimuth, accuracy and power level estimates every few seconds. The scenarios 

range from single aircraft with straight flight paths operating under low back- 

ground noise conditions to more difficult scenarios involving several maneuvering 

aircraft. Basic communication service consists of an unacknowledged radio 

broadcast service in which nodes can receive broadcasts only from a limited set of 

neighbors. 

6.1.1  Acoustic Sensors 

| 
The acoustic sensors in the DSN test bed are small microphone arrays rr 

v                         which detect possible targets, measure acoustic azimuths and provide signal-to- ß 

noise estimates that can be used to ascribe accuracy values to the azimuth 'ls 
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measurements.   Measurements are nominally made every two seconds and the rJ 

measurement (after signal processing) corresponds to an average target azimuth .>'; 

over a two second interval.   The sensors provide no target elevation information. ty 

The development of tracking algorithms will emphasize acoustic  arrays with 

capabilities comparable to those that Lincoln had been using, with at most a lim- ^ 

ited consideration of arrays with different performance characteristics. |$> 

The azimuth accuracy of the acoustic arrays is on the order of two degrees > ■ 
and, depending upon target type and background noise conditions, the detection 

range for a single target is from a few to a few tens of kilometers. A good nomi- 

nal value to use is five kilometers. Target detection probability and azimuth 

accuracy depend upon signal to noise ratio. For a given signal source strength 

the signal-to-noise ratio depends upon range although it is also influenced by 

topography and propagation conditions. Detection probability will be low at long 

range and increase as the target comes closer to the sensor. Topographic features 

such as hills may introduce quiet zones within which this increase of signal level 

with decreasing range does not hold. 

The number of targets within the detection range of a sensor that can be 

simultaneously detected and isolated in azimuth depends upon many factors. 

These include array aperture, number of sensors in each array, noise level, signal 

level and the azimuthal separation of the targets. For existing DSN arrays and 

signal processing algorithms the number of targets that can be simultaneously 

isolated is on the order of three to five, assuming they are sufficiently separated 

in azimuth and do not have excessively disparate power levels. A nominal value 

for the required azimuthal separation for targets with roughly equal power is 20 

degrees. 

The number of targets that can be isolated by a single acoustic sensor lim- 

its the local target density for target tracking but does not limit the total number 

of targets for the entire system. For a fixed spatial density of DSN nodes the 

number of targets that can be individually tracked will scale up linearly with the 

geographic area of the network. In addition, clusters of unresolved targets can be 

tracked if not isolated from each other. 

In the absence of targets, the number of false detections generated by the 

sensor and its associated signal processing algorithms is on the order of three to 

five for each measurement interval. 
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I Measurement intervals other thac two seconds might be used to improve 

azimuth measurement accuracy for fast-moving uearby targets or to improve 

accuracy and- detectability for very distant targets. If this is a controllable vari- 

able, it may used for tracking maneuvering targets.   Also, the sampling rate may 

i be decreased when the tracking performance is adequate or when the algorithm 

cannot keep up with the arrival of the measurements. 

A lower limit to azimuth accuracy is imposed by propagation physics, not 

by acoustic array size or processing techniques. A reasonable value for this lower 

' limit is probably about one degree.   Azimuth errors larger than a few degrees 

might be obtained from arrays that are smaller than the five meter arrays used 

i by Lincoln or for signals with only very low frequency signal content.   Errors of 

more than about ten degrees p.-obably should not be considered unless very poor 

; location accuracy is acceptable.   In genera!, we will be concerned with systems 

which can locate aircraft to within a kilometer or less in the horizontal plane. 

Specific and detailed statistical sensor models will be formulated and refined 

as needed to support the development of tracking algorithms. 

I 
5.1.2  System Deployment 

i 
There are two primary DSN depiovment options: barrier and area. The 

barrier concept is to deploy a thin DSN ever a long linear extent and is appropri- 

ate for early warnirg situations. In ihh case, the primary interest is in target 

acquLiiior, and transient obsnomena as the targets approach and pass through ^ 

the barrier. Area deployment is needed to provide continuous surveillance over 

large areas and steady-state performance for targets internal to the network is a ,>, 

more important issue. Both transient and steady-state performance issues come 

together in the outer layers of an area DSN or in a barrier system with more than j^ 

one layer of thickness.   Transient behavior will dominate as targets approach the 

outer layer of nodes and steady-state behavior should dominate by the time the 

» second or third layer Is reached.   The DSN systems of interest contain many 

• nodes but it should be possible to investigate and test algorithms with from two , 

to six node configurations. ^v 
j f.N 

Examples of barrier and area DSN systems are shown in Figure 5-1.   The £ 

deployment shown in the figure is on a regular grid but in general deployments 

will be more randomized and algorithms should be designed with that in mind. 

Depending upon  the specific system and deployment, the number of nearest % 

neighbors at about the same distance will range from two to six. ,- 

m 
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Figure 5-1: DSN Deployment Configuration 
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Sensor detection range, distances between nodes, and the broadcast com- 

munication range are very important DSN network parameters. Lincoln tracking 

algorithms have been developed for the case when the sensor range and the dis- 

tance between sensors are about equal and the nominal broadcast range is twice 

the distance between sensors. This situation appears to be optimal. For smaller 

broadcast ranges, the nodes will become information poor unless additional com- 

munication mechanisms are added to distribute information to more remote 

nodes. For smaller sensor ranges, the nodes become information poor but the 

problem is more fundamental since that lack of information is because not 

enough sensors detect each target at the same time. The new algorithms should 

also emphasize the nominal case but may offer performance improvement possi- 

bilities under one or both of the information poor situations. 

5.1.3 Internodal Communication 

The nominal internodal communication is a limited range unacknowledged 

broadcast.   Ideally a  broadcast is received without error by all nodes within 

ange.  The nominal broadcast area is a circle defined by the broadcast range. 

Algorithms must also operate under other than idealized situations. There 

may be 'dead areas" within the nominal broadcast disks. Those dead areas may 

be known and accounted for by tracking algorithms. They may be unknown and 

the algorithms should be designed to be robust in their presence if possible. 

Communications may also be subject to errors in the form of lost messages. g 

Algorithm development should consider how to treat randomly lost broadcast 

messages. Note that the messages will be lost upon reception, not broadcast, so 

that a message may be correctly received by any number of nodes within broad- 

cast range. The system should be designed to handle at least a few percent of 'A 

lost messages. In general the performance may degrade with increasing percen- 

tages of lost messages, but the system should not catastrophically fail. ;,^ 

af 
6.1.4  Target Scenarios Hi 

The number of possible target scenarios is very large. The seen? - to be 

used in the experiments will be selected based upon Lincoln's past experience 

with trackers and our best judgement concerning interesting or critical situations. jjjj 

To be consistent with the Lincoln scenarios, we will assume the targets to be low 

flying at about 500 meters above ground level. ^ 

V 
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The scenarios are described in terms of the local density of targets.   One, J 

two, and three target situations are emphasized. Satisfactory local performance 

for resolved and unresolved targets will translate directly into satisfactory perfor- 

mance for many more targets and clusters of targets in a large DSN system. 

Initially we will consider single target scenarios. This is primarily for test- 

ing the basic algorithms and the communication between nodes. Both maneuver- 

ing and non-maneuvering situations should be considered. Maneuvers include 

changes of speed and direction. For non-maneuvering targets, we should consider 

both direct and angled approaches to the DSN boundary and with targets passing 

very near to nodes as well as between nodes. At least some consideration should 

be given to high speed (Mach 0.9) cases to be certain that there is no unexpected 

behavior. The case of Mach 0.6 is probably more typical of low flying aircraft or 

long range cruise missiles. Mach 0.1 is representative of a very slow target such 

as a helicopter. 

Since our algorithms are supposed to handle multiple targets effectively, we 

will consider two-target scenarios of varying complexity. We will use a set of 

two-target scenarios covering three distinct target configurations. These are the 

in-line formation in which the two targets follow one behind the other, the paral- 

lel formation in which they follow parallel tracks and the crossing formation in 

which their tracks cross. In most cases, the targets will have the same speeds but 

some situations with targets at two different speeds are included since a fast tar- 

get overtaking a slow one may cause some problems for tracking algorithms. The 

crossing scenario will be most stressing when targets reach the crossing point (at 

different altitudes) at the same time. 

One and two target scenarios may not adequately stress track initiation and 

data association algorithms although they should be adequate for most other pur- 

poses. Thus we will experiment with a few additional three-target scenarios that 

will provide additional stress. 

6.1.5  Measures for Performance Evaluation 

In this section, we discuss suitable measures for evaluating the performance 

of distributed acoustic tracking algorithms. The evaluation is complicated by the 

presence of multiple nodes, multiple targets, and multiple hypotheses since at any 

particular time, the tracking performance depends on the node, the hypothesis, 

and the target of interest.   In addition to local measures, more aggregate meas- S 

ures for  the entire  system are also desirable.    The system performance also -!■ 

I 
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depends  on the  sensor  and  target  characteristics  in  addition  to  the  system [r- 

configuration.  Contributions to the performance from these parameters should be >" 

isolated for a fair evaluation of the algorithm performance. W 

i 
6.1.5.1   Evaluation of Tracking performance »V 

% 

We first discuss measures which evaluate how well the algorithms track. SJ 

Since a multiple hypothesis approach is used, the tracking performance can be £5 

divided into two levels: hypothesis level and track level.   These will be discussed * 

separately in the following: >j 

1. Hypothesis-level measures include the number of false targets and the number 

of missed targets. A hypothesis is a collection of tracks. Using appropriate 

thresholds, the tracks can be identified with the actual targets in the scenario. 

The missed targets and the false tracks can thus be enumerated. This can be 

performed for the best hypothesis (one with the highest probability) or it can 

be evaluated for all hypotheses to obtain an expected number of missed tar- 

gets and false tracks. 

2. Track-level measures include the estimation error (e.g., RMS error) for the 

detected targets. The presence of multiple targets implies that some average 

over the targets has to be considered unless individual target errors are to be 

represented explicitly. For multiple hypotheses, the error for each target may 

be that of the best hypothesis or it can be evaluated over all hypotheses to 

obtain an expected error. 

Both of the measures discussed above may be evaluated for a given time for ^' 

each node.  In fact, it is frequently desirable to consider these measures as a func- 

tion of time for each node to see how each node performs with time.   A node's 

performance may fluctuate with the quality and quantity of data available to the *l 

node at a particular time.   The average performance of the node can be calcu- <7 

lated by averaging these measures over time. y, 
n 
EX 

The performance of the overall system depends or that of all the nodes in ig 
77 

the system.   One may want to assume a fusion v^ie which collects information ^< 

from all the DSN nodes and use it to measure the performance of the overall ■>" 

I 
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system. As discussed before, the sensor and target characteristics are also impor- 

tant variables affecting the system performance. If poor sensors are used with a 

difficult target scenario, then the performance of the system would be expected to 

be poor inspite of a good algorithm. Thus a reference should be used in evaluat- 

ing algorithm performance. A suitable reference is the performance of the cen- 

tralized algorithm and that of distributed algorithm can be compared with it. 

5.1.5.2  Cost measures 

The cost measures reflect the amount of resources used to produce the 

measured performance. Relevant resources include the local computation time, 

the memory size and the amount of communication. The effectiveness of a pro- 

cessing node or the total system can be measured by the amount of resource it 

needs to produce a fixed level of performance. When there is a constraint on the 

resource, a good system is one which uses the resources to produce the best per- 

formance. 

In a simulation of the DSN, ways should be devised to measure the resource 

utilization, e.g., the computation time, the memory size profile, the amount of 

communication, etc. The computation time required may be recorded by means 

of a system clock. The memory size can be expressed in bytes or in terms of the 

number of hypotheses or tracks stored at each node. The amount of communica- 

tion can also be measured in various ways. These quantities can be expressed for 

each node at each time, or for each node over an interval. From these system 

level measures can be computed. 

Such data may provide vital information on possible refinements or 

improvements of the various modules. If necessary, resource allocation modules 

may be developed to meet the hard constraints at each DSN ':ode. For example, 

a way for the processing to keep up with the arrival of data is by skipping sensor 

scans when the processing lacks behind arrival of data. 

All the measures described above can be evaluated using simulated or real 

data. Monte Carlo simulations can be performed when the data are synthetic. 

Statistics on the various measures can then be obtained. 

6-8 
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m 6.1.6  Data Sources 

^ Real and simulated acoustic data will be used to test algorithm components 

as they are developed. 

Real data will provide stressing clutter situations for simple scenarios with 

^ only a few nodes and with poor to good knowledge of ground truth.   Data 

J^ recorded at Lincoln Laboratory and at test ranges and air bases in the Western 

U.S. are available. 

i.  - 

Many scenario variations will require use of simulated data.  That data will 

be generated using a previously developed acoustic data simulator that operates 

~ under VAX/UNIX developed by Lincoln Lab.   Given system parameters and a 

r description of the target scenario, it simulates the clutter and azimuth measure- 

y. ment outputs from the nodal signal processing subsystems.   Using this tool we 

will, under very controlled conditions, generate algorithm development data for 

^ situations that would otherwise be very difficult to obtain.   We plan to imple- 

ment this data generator on the same machine as the algorithms to facilitate 

[■>■ experimentation, 
i 
| 6.2  ACOUSTIC TRACKING ALGORITHMS 

Although the general methodology developed in our research is in theory 

•£ applicable to the acoustic tracking problem, the acoustic scenario raises technical 

issues which need to be addressed before algorithms can be developed to perform 

satisfactorily.    In the following sections we  discuss these issues and relevant 

models and how the general algorithms can be adapted for acoustic tracking. 

i 
6.2.1  Issues and Models in Acoustic Tracking 

Some  special features of acoustic  tracking  and the associated technical 

issues are: 

H • Azimuth-only measurements.   Each acoustic sensor measures only the azimuth 

of the target.   Thus from a single node, the target location is not very observ- 

tk able from the azimuth measurements.  From a pair of nodes, however, a target 

becomes more observable.  An important question is thus the types of process- 

9 ing to be performed locally by one node and jointly by a pair of nodes.   One 

^ possibility is to use different representations such as azimuth tracks for local 

AS 5-9 
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' processing and position tracks after fusion. 

; 
• Propagation delay.   Acoustic signals generated by a target do not reach a node 

instantaneously.   Since the target speed is substantial compared to the speed of 

I sound in the air, the delay has to be considered explicitly in any information 

processing. For example, the true bearing of a target at a node can be quite 

different from its apparent bearing at the node. 

I • Poor sensor resolution.   Due to the poor sensor resolution (20 degrees separa- 

tion needed before two targets can be distinguished), two targets which are 

close together may be detected as a single target. Our previous discussion has 

largely ignored this possibility. New techniques will have to be developed to 

handle this situation. 

\ 
• Range dependent detection.   Since target detection depends on the range, and 

range affects the sound pressure received at a node, some useful information 

may be present in the sound pressure. On the other hand, the acoustic propa- 

gation characteristics in air may be too complicated and unreliable. The ques- 

tion is whether this intensity information can be exploited or not, and if yes, 

how it can be exploited. 

Based on the scenarios described in Section 4.1, we have assumed the fol- 

lowing target and sensor models. Since the targets are assumed to be flying low, 

their altitudes a e ignored and they are modeled as objects moving in the 2- 

dimensional space. The motion is modeled by constant velocity or constant 

acceleration (and if necessary constant jerk). The target maneuvering is modeled 

by additional white noise excitation to the target dynamics. 

The sensor model follows that of [13] which documents the synthetic data 

generator developed and used for simulation by MIT Lincoln Laboratory. Let a 

target position viewed from a sensor (located at the origin) at time t be i(t). 

The sound wave received at time t by the sensor originated from the target at 

time t -6, where the time delay 6 is determined by 

\\x{t-6)\\=c6 (5.1) 

where 

I 5-10 
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| - i]-|| is the Euclidean norm of a vector H I 
{j - c  is the speed of the sound in the air (See Fig. 5-2). 

Equation (5.1) has a unique solution 6 provided x {•) is differentiable and 

||i(<)ll<c (subsonic). It determines the acoustic azimuth (measured clockwise 

from the north) <i> of the target with respect to the sensor. The measured acous- 

tic azimuth <^w contains measurement error as 

North 

Acoustic 
Azimuth 

Sensor 
Location 

Target 

Trajectory 

►   East 

Figure 5-2: Target Sensor Geometry 
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<i>M =<t>+ w (5.2) 

where Iü is modeled by an independent zero-mean gaussian random variable (r.v.) 

whose variance" is yet to be specified. 

Let the sound pressure at the 1-meter distance from the target be s 0.  Then 

the sound pressure measurement sM at the sensor is 

SM=G  ^ (5.3) 

where r is the acoustic range, i.e., r —c 6, and G is the sensor gain. To account 

for irregular propagation and other random factors, either additive or multiplica- 

tive noise should be added to (5.3). The sensor also measures ambient noise s^. 

Thus when the measured sound pressure exceeds a given threshold sTH , the sen- 

sor generates a measurement y ^i^M ,sM ,sN) consisting of the acoustic azimuth 

and the signal/noise sound pressure levels. 

The azimuth measurement error standard deviation (SD) a^ (of w  in (5.2)) 

is determined by 

6<j> 

*      T{SNR) 

where 

- 6<l> is the sensor resolution (about 20 degrees) 

-SNR=8M/sN 

(5.4) 

- T{SNR )=mm{max{l,V5iVÄ },10}. 

The number of false alarms is modeled as a Poisson random variable independent 

from scan to scan. The delayed azimuth value of a false alarm is distributed uni- 

formly on [0,27r] and the sound pressure value has an exponential distribution 

biased by the threshold value. 

When two acoustic azimuth measurements, <i>M and ({>£[, are close enough, 

i.e., | <j>M-<t>M I <^» thsy are merged 'mto a single measurement. The merged 

acoustic azimuth measurement is modeled as •>%; 
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<t>M = <}<t>M +(1-9)^4 (5-5) 

where 

if      s^1 > Ss^2 2 

s 1 otherwise (5.6) 

sM1+sAf2 

and sjlf is the unmerged sound pressure measurement corresponding to (j)^. The 

mergf 1 sound pressure measurement becomes 

Sf} if    sM
l > SsJ 

M    ' \       ,       ]     2 otherwise ^ * ' 

In Equations (5.5) to (5.7), we have assumed that sltf>sj. Otherwise we should 

exchange the indices 1 and 2. Note the nonlinear nature of the merged measure- 

ment model. When one measurement is much stronger than the other one, the 

merged measurement is dominated by the stronger measurement. 

I 
6.2.2  Nodal Structure and Tracks 

I 
' The general nodal architecture of Section 2 applies to acoustic tracking 

. without much modification.   Figure 5-3 shows a more detailed functional archi- 
I 

tecture of each node and results from integrating Figures 1-2 to 1-4 in Section 1. 

Each node contains a local data base of hypotheses which is updated whenever 

new information arrives. This can happen in either one of two ways: data arriv- 

ing from the local sensors or messages arriving from the other nodes. The two 

corresponding updating functions are then local information processing and infor- 

mation fusion. 

The hypotheses in the t/acking data base are the same as defined in Section 

2. Each hypothesis consists of a set of tracks and represents a feasible explana- 

tion of the origins of the measurements. Each track r is accompanied by a target 

state distribution (TSD) which represents the distribution p (i^ | T,Z ) of target 

state xt conditioned by the track r and the cumulative sensor information Z. 

Because of the nature of acoustic sensors, these track state descriptions depend 

on the number of sensors involved. For tracks formed from the measurements of 

a single sensor, the TSD is not very informative since the target state is not very 

I observable from one acoustic sensor.   On the other hand, more information about 'X\ 

< the target can be extracted from the measurements of multiple sensors. M 

% 
I M 
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LOCAL INFORMATION PROCESSING (GTC) 
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EVALUATION 
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I 
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FORMATION 

HYPOTHESIS 
EVALUATION 

I 
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MANAGEMENT 
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TRACK EXTRAPOLATION 
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TRACKS 
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TO OTHER NODES 
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I 
Figure 5-3: Functional Architecture of Each Node 

5-14 

AÄrtfüy^"ArÄWLf^jtfJA"Arv"^^ v:-.-J
>>>^>>:vr:->J.v'-^.->/r.t 



Each target state distribution (TSD) consists of geolocational TSD (GTSD) 

component(s) and a sound pressure TSD (SPTSD) component. A TSD com- 

ponent is called local if the distribution can be derived from the measurements of 

a single sensor; otherwise it is called 5/060/. Thus a GTSD component is either 

global or local while a SPTSD component is always local. In general GTSD or 

SPTSD components may be represented as sum-of-gaussians (i.e., multiple gaus- 

sian terms with a probabilistic weight attached to each term). A track may have 

only a local GTSD component. In such a case, a track is said to be local. Or a 

track may have a global GTSD component or both global and local GTSD com- 

ponents. Then the track is said to be global. Figure 5-4 shows a taxonomy of the 

target state distributions. 

A local GTSD component is a gaussian distribution on the (local) acoustic 

azimuth of a target and its derivative, (0», and possibly higher-order 

derivative(s). Local GTSD components are used to allow each sensor to initiate 

tracks locally from acoustic azimuth measurements. As a local track accumulates 

acoustic azimuth data, the acoustic azimuth rate <£ is estimated with increasing 

accuracy as indicated by the decreasing variance matrix in the local GTSD com- 

ponent terms.   A global GTSD component term is a gaussian distribution on the 

LOCAL (ACOUSTIC AZIMUTH, 
AZIMUTH RATE) 

GTSD COMPONENT 
(GEOLOCATION) 

GLOBAL (POSITION, VELOCITY) 

TSD 

SPTSD COMPONENT  
(SOUND PRESSURE) LUOAL 

^ Figure 5-4: Target State Distributions 

■ 
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I 
| global coordinates, i.e., the target position and the velocity in the north-east '^$ 

coordinate, and possibly their higher-order derivatives.   A global GTSD com- 

ponent term, is formed from two local tracks when different sensors communicate. 

!A SPTSD component tracks the change in the measured sound pressure.  It 

serves the following functions: 

• to provide an additional discriminant (particularly from false alarms) 

• to predict when a target leaves the sensor coverage 

• to predict the merged acoustic azimuth measurement when measurement merg- 

ing IT- likely. 

This component is also used to estimate the targets' noisiness. A SPTSD com- 

ponent terra is a gaussian distribution on the (fictitiously noiseless) received 

soiind pressure s and its derivative, and possibly higher-order derivative(s). The 

actually measured sound pressure sM is modeled by 

sM = s  + wa (5.8) 

where the artificial noise terra wt (modeled by independent zero-mean gaussian 

r.v.) accounts for scan-to-scan fluctuation of the sound pressure measurements. 

It may be argued that a multiplicative noise term is more appropriate. In such a 

case, (5.8) remains valid j^ter taking the logarithm of each variable. 

The updating of each 1 6D component is performed siimultaneously with the 

hypothesis evaluation (described i^ the MK* action). (V the other hand, the 

extrapolation of each TSD component term is performed with the help of 

appropriate target dynamic D odels, i.e., constant-vtlocity or constant- 

acceleration linear models with an ipprop'iat« wb'te noise input. For example, 

in order to update a local GTSD cojnp^eüt ■ •:.;, w, ma,; use the following sim- 

ple set of differential equations: 

dt9      9 

I d   • . . ^ 
— (j) = white   noise (5.9) ^ 
dt /• 

•' ' . I V Since the acoustic azimuth dynamics are in fact nonlinear, the intensity of white 
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P noise must be chosen to compensate such nonlinearity in addition to any target 

maneuvering if necessary. 

6.2.3  Local Processing 

As discussed in Section 2, as new measurements arrive from the sensors, the 

local tracking data base is updated by hypothesis processing. In the following we 

discuss how hypothesis formation and evaluation are adapted for acoustic sensors. 

5.2.3.1  Hypothesis Formation 

Our assumption in Section 2 was that no two tracks can share the same 

measurement. Due to the poor resolution of acoustic sensors, this assumption is 

no longer valid. In general, two or more targets may give rise to only one merged 

measurement when they are close to each other (within 10 to 20 degrees). To 

simplify the discussion here, we assume only two-way measurement merging as 

modeled in Section 5.2.1. 

Consider the arrival of a sensor report. The hypothesis X at the node is 

then to be expanded with the measurements in the new sensor report to form 

new hypotheses. Before making use of the measurements in the new data set, we 

must consider the possibilities of some tracks in the hypothesis X being merged. 

Thus the hypothesis is first expanded into the set of track merging hypotheses, 

each representing one possible merging of tracks. Mathematically, track merging 

hypothesis is a partition Am of X such that # (T)<2 for any TgA^ where 

# (A ) is the number of members in a set A . 

Each track merging hypothesis is then expanded by the set of measmv 

ments as in the usual case when there is no measurement merging. Fij. f -ö i'i ; - 

trates this two-step hypothesis expansion: first by track merging an." next r/ tbo 

measurements. In the figure, a hypothesis X having three track? is ex' tamlcd mtn 

four track merging hypotheses, A^ to AjJ, each of which Is further txpa' >•*-<■'. by 

the measurements (shown by shaded triangles in Fig. 5-a). F!a. S 6 >fici'Vi 'he 

expansion of the hypothesis A^ by the two measurementb in tu. roni. oenscr 

scan. 
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Merging Track Pairs Measurements 

fast)     {^2^3}     fasi} 
y 1 > > > VAT 
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N M  N 

M = Merged 

. N = Not Merged 
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N 

Tracking Merging Expansion 

Measurement Assignment 
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Figure 5-5: Hypothesis Expansion with Measurement Merging Possibility (l) 
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Figure 5-6: Hypothesis Expansion with Measurement Merging Possibility (2) 
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6.2.3.2 HypothesU Evaluation 

..       ii .1   hvnnthesra X In the old cluster the resultant collec- Afte, expandins all the hypothes s X n ^ ^ ^ 

„„„ 0f ^hypotheses forms an updated «'^ ^ M     ^ x , gen. 
•       oorpnt \ and a unique track merging hypothesis Am , iro unique parent X and a unq .^ of measurernents 

erated.   Then evaluation of hypotheses ^^.^ 

^in«, can be done by replacing X by ^J   ^ ^ ^ ^ merged 

1 formnla W. and probabUlsfically -^11^ sununar.ed as 
and generating a single measurement.    The results      y 

I Prob.{\\Z) = C-lProb.{\\Z} 

(mL [y | f) | Tfim U W and f is assigned measurement y } j 

(nd ie 1 ^}) I n€X  and .2€X but they did not merge}) 

(n{L (« | r) 1 T€X but not assigned any measurement, i.e., r=r})   (5.10) 

.-: 

where 

Z •. the cumulative data set including the current sensor scan 

.Z \sZ minus the current sensor scan 

. C is the normalizing constant 

. 0 is the symbol used to represent "no measurement". 

The L {■ | •)'* are likelihood functions defined below. 

. T -u \'UnnA (Llv \ 0)).  When T is 0, L (y I ®) 
N.wly Dieted Target L^ohhood (t , 1»)) betore 

•«the likelihood of measurement ,  ongmatmg from a targe 

and Is given by 

L(y 10) = /3/VT^M)/^ 

,       ,     (•) is the expected density of undetected targets, translated into the 
where ßNT (•) « the exp the ^^ alarms over the 

acoustic azimuth space, i.e, [0,2^.  ßFA is the y 

[0,2ffl interval, i.e., 
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ßFA =VFA I** (5-12) 

where i/FA is the expected number of false alarms (about from 1 to 3) per scan. 

Equation (5.11) also assumes that the sound pressure measurement distribution of 

a target "heard" (detected) for the first time is equal to that of a false alarm. 

Old Track Measurement Likelihood [L [y \ T), T^0) When T^0, 

L{y | T) is the likelihood of measurement y originating from an existing track 

T=:{T} or jointly from two existing tracks T = (71,r2} and is defined by 

I MM i T) Ls [aM | T) 
ßFA Ps

FA{sM) 
L{y\T)-    IW^Li^^-LlL (5.13) 

where 

- L A^M | T) is the azimuth measurement likelihood 

- Ls [sM | T) is the sound pressure likelihood 

- p[A is the probability density of the false alarm sound pressure. 

For simplicity, we assume that the GTSD and SPTSD components of each track 

are both single-termed.  There are two different cases. 

Case 1: No Merged Measurement.   In case # (T)=l, i.e., when there is 

no merging, we have 

M*M I W) = -7i-exp(4(^) ) (5-14) 

with <j> being the acoustic azimuth prediction by a local or global GTSD com- 

ponent of 7 and ~o% being the corresponding innovations variance given by 

a* = a^SNR )2 + dj (5.15) 

where a^(-) is the azimuth measurement error standard deviation as a known 

function of signal-to-noise ratio SNR —sM /nM, and ä£ is the expected error 

variance of the azimuth estimate by track r. 
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The sound pressure likelihood is calculated as 

■...MSM|R)=-W-i(ip7) 
v/^TTCT, 

(5.16) 

where 

- s is the sound pressure measurement predicted by the track r 

- ~os =o3 +o* is the corresponding innovations variance. 

äl   is  the  sound  presure  measurement  prediction  by track  r while a~  is  a 

predetermined artificial sound pressure measurement error variance. 

The likelihoods (5.14) and (5.16) are commonly used in many multitarget 

tracking algorithms and become extremely small if | ^-^ | or | sM-s \ is 

large. In such a case, the likelihood is set to be zero rather than a very small but 

still positive value. This is done by thresholding as | ^-^ | fo^fy an(l 

| sw-i" | pjs <^ with appropriate thresholding levels ^ and f, . Such levels 

may be determined from the x2 table. 

Case 2: Merged Measurement. In order to calculate the likelihood func- 

tion in case of # (T)=2, i.e., when measurement merging occurs, we must make 

some approximations.  First we approximate q in (5.6) by 

I if      s! > 5s 2 

'       ' J. otherwise ^ "   ' 

where s ^ and s 2 are the sound pressure predictions of the two tracks.   Likewise, 

we approximate (5.7) by 

SM if     sx > 5s 2 

SM ^ { i otherwise (5-7^ 

We denote the  right  hand side of (5.7')  as  h3
m{si},s^ ', s 1,s 2)-   With  these 

approximations, we have 
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[erf(JlzM)_erf(-^-^)] I 
^A^ 0A<t> 

V*\r i't: 

-ä;'(^^2;9)=^I + (1-0^2 

- ff (s I T)Aexp(-^2/2)/(\/27r(T) is the probability density of a zero-mean gaussian 

variable 

i 

- ciT(/ )    j g {£)d $ is the error function, and 

v \/r^.ii2 + [(i-?w]2 +w + wi2 (5.18) 

\si,!i «7^ being the SD of the measurement noise in (5.2), and o^1 being the SD of 

th-   acoustic azimuth prediction error determined by r,   for each i.   The other 

p;: '■■•'nu tecs are 

«?P1-(l-<?)>2 

q2Pl + {l-qfP2 
Ä0 = ^ - ^ + ^ —^-{<i>M - h 7 (^,02 ;(/)),      (5.19) 

/ >1^ 
■^A. = A / ^ ^r^^       - (5-20) 

-g)2/3 

wlirro ^j  is the acoustic azimuth prediction by the local or global GTSD com- 

ponent of track r, and Pi = [öj]2 + [^Jl]2, for each i. 

For the sound pressure part, we have 

^1 {SM I {TvTi}) = g{sM - h/^ätJi; *i>*3); V^i.^))      (5.21) 

wh   X 
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a3
m(i-1,F2) = y/[os

m{svI2)\2 + [ö3
1]2 + [ä/]2     , (5.22) 

0i is the SD of the sound pressure prediction error determined by the SPTSD 

component of track T, for each »', and ^"(F^i^) is either \/5/2<TW
3
 or cr^, 

depending on the condition in (5.7'), with o-JJ being the SD of the noise term in 

(5.8).  The derivation of (5.17) and (5.21) is described in the appendix. 

Tracks Not Merging Likelihood. L [9 \ {fvT2}) is the likelihood (proba- 

bility) of tracks, Fj and r2, not being merged, i.e., 

L [e I ft^}) = l-Prob. {{T^2}} (5.23) 

with 

being the probability of the two tracks being merged, where A^ = ^ - ^2- 

Missed Target Likelihood. The target detection model yields likelihood 

(probability) of a target hypothesized by the track 7 being undetected in the 

current scan, i.e., 

L [d \ {¥}) = I - eJ^^-) (5.25) 
Os 

Thus the evaluation of the newly expanded hypotheses is equivalent to the 

calculation of all the likelihood functions defined above. Therefore, it is con- 

venient to store all the above likelihoods in a table. We call such a table an 

extended (because it includes merged measurements) track-to-measurement 

cross-reference table. 

Parallel to the calculation of each likelihood, we can update each track 

according to the assumed measurement assignment. When a measurement is 

assigned to a single track, both the GTSD and SPTSD components of the track 

can be updated by the Kaiman filter or the extended Kaiman filter. The latter 

filter is used for the global GTSD component. The necessary partial derivative 

calculation can be found in [14]. When a measurement is assigned to two merged 

tracks, using the approximate joint measurement equations. Equation (5.5) with 

q being replaced by 9 (for the GTSD component) and Equation (5.7') (for the 

SPTSD component), the GTSD and SPTSD components can be jointly updated. 

The resulting cross-correlation between two tracks is then ignored for simplicity. 
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When no measurement is assigned to a track, the TSD components are not 

updated. When a measurement is assigned to the null track, i.e., a single meas- 

urement is used to initiate a new track, a single-term local GTSD component and 

a SPTSD component are generated using the appropriate variance matrices. 

6.2.3.3  Hypothesis Management 

Updated clusters are then subject to hypothesis management operations 

including 1) hypothesis pruning in which low-probability hypotheses are cut off, 

2) hypothesis combining in which similar hypotheses are combined, and 3) cluster 

splitting in which confirmed or nearly confirmed tracks are split from a cluster. 

5.2.4  Information Fusion 

When hypotheses are received from other nodes, they are fused with the 

hypotheses at the node to form new hypotheses. As discussed in Section 2, the 

basic steps include hypothesis formation, evaluation and management. The dis- 

tributed nature of the processing necessitates operations for checking that only 

consistent hypotheses are formed and removing redundant information in 

hypothesis evaluation. These operations are facilitated by means of the informa- 

tion graph (also discussed in Section 2) which is an abstract model of the com- 

munication and processing in the DSN. In the following discussion, we use the 

terms home and foreign to represent the information present the node and that 

coming in from an external node. 

Although we discuss hypothesis formation and evaluation separately, in 

actual implementation, they are usually performed simultaneously so that no 

unnecessary hypothesis expansion is included. For example, it is possible that a 

hypothesis pair (Xj^) satisfies the necessary condition for the fusability but 

yields zero probability. 

6.2.4.1  Hypothesis Formation 

The key problem in hypothesis formation is in identifying the fas ibic 

hypotheses and tracks from the home and foreign hypotheses and tracks. 

According to Section 2, the entire fusion problem can be defined in terms of the 

information graph. Both the home and foreign information states (tracks and 

hypotheses, etc.) are defined at information nodes t^ and i2. Then consistency 

checking in hypothesis formation starts by finding the minimum set of common 
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I 
predecessors of »j and »2 in the information graph.  By tracing back the graph to --, 

this minimum set, fusability can be determined. 

For two tracks, a home track r^ and a foreign track r2, are fused whenever 

they are fusable. The two tracks are fusable if and only if they share the same 

predecessor track on each information node in the common predecessor set. 

5.2.4.2  Hypothesis Evaluation 

Each fused hypothesis is evaluated using equation (2.28) of Section 2. Let X 

be the fused hypothesis and Z be the cumulative data at the fusion information 

node, then 

P{\\Z)=C^   I!   P(X,.  |Z,)a(,)n /(r) (5.26) 
ie/Ä reX 

where C is the normalizing constant, (/Ä ,Q) is the information redundancy indi- 

cator, X |, is the predecessor of X on the information node I, and / {T)=L (T^,^) 

with (r"!,^) being the pair of tracks uniquely determined by a fused track T. 

[In ,a) has been defined in Section 2 (where it is denoted as (/ ,a)) and represents 

the redundant information at the two information nodes 11 and 12- IR is the set 

of information nodes which aLect the common information and a, a function 

which takes on value of +1 or -1, indicates how the redundant information can 

be removed. 

A key step in hypothesis evaluation is the computation of the track-to- 

track likelihood L (T^FJ) for every fusable pair (TJ,^) of home and foreign tracks. 

For each of the tracks in the given pair, the last time when the track was 

updated is examined. If the updating times are different, the TSD of the track 

which has not been recently updated is extrapolated so that the two TSD's 

correspond to the target state at the same time. Then the track-to-track likeli- 

hood is calculated from the GTSD factors of the two tracks. 

Whenever the likelihood is positive, the fused track r=r1U''2 is created. g£ 

Each fused track r is then associated with a fused TSD (target state distribution) |^ 

which is created by fusing the TSD's of the tracks from which it is fused.   The 

GTSD component for the fused track is created from the GTSD components of iV 
c 

the tracks from which it is fused.   The SPTSD component of the fused track is 

the same as that of the home track in the track pair to be fused. 55 

I I 
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A track is called local if it consists of measurements from only one DSN 

sensor node; otherwise it is global. A global track always has a global GTSD 

component (i.e., a geolocational distribution in the global cartesian coordinate). 

A local track usually only has a local GTSD component (i.e., a geolocational dis- 

tribution on the acoustic azimuth and its derivative(s)). The SPTSD component 

is always local. 

Since the home and foreign tracks may be local or global or even empty, 

the computation of the track-to-track likelihoods has to consider all these possi- 

bilities. The different types of track-to-track likelihoods are shown in Figure 5-7. 

The calculation of the track-to-track likelihood and the fused GTSD component 

for each fused track is described in the following subsections for all possible com- 

binations of home and foreign GTSD components. Because of symmetry, some of 

the combinations are the same. Note also that we have ignored the case of 

empty home track and local foreign track since the DSN node would not know 

how to use the azimuth information coming it. The track-to-track likelihood is 

thus set to zero. To simplify the notation, we assume that each GTSD com- 

ponent only has a single term.   The results can be generalized to the case of 

sum-of-gaussians. 
FOREIGN TRACKS 

| 

EMPTY 

HOME 
TRACKS 

EMPTY GLOBAL 

GLOBAL 

LOCAL 

LOCAL 

IGNORE 

Figure 5-7: Possible Track-to-Track Combinations 
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6.2.4.2.1   CASE 1: Empty Home Track/Empty Foreign Track 

The density ßfa of the undetected targets at each information node i in 

the set IR is either stored in the current information node before the current 

message is received or contained in the received message. The updated density 

/?vn for the current information node is calculated as 

ßND = L (0,0) - M (0,0) =  I] [ßifD )a(,) (5-27) 

where {IR ,a) is the information redundancy indicator and M(v) is defined as 

M {tvr2) = Umo r{i) I » €/Ä , (F, U F2) |. =0} (5-28) 

with T |, is the restriction of a track r to an information node i, i.e., 

T- , . =T Pi Ji where /, is the cumulative measurement index set at the informa- 

tion node j. 

6.2.4.2.2   CASE 2: Global Home Track/Global Foreign Track 

Suppose both the home and foreign tracks ^ and r2 are global.   The infor- 

mation nodes in the set IR consists of two types: 

Those where the common predecessor of ^ and T2 have a global GTSD factor $ 

Those where the common predecessor of ^ and r2 have a local GTSD factor 

Let 

Ig = {,• 6/Ä | (r1Ur2) | i has global GTSD component} (5.29) 

The predecessor track at each i 6/Ä
G has a global GTSD component (position and 

velocity) with mean x, and variance matrix S,. Then the part of the track-to- 

track likelihood concerning with IR is given by 

ndet(E,)    1 

M™)=(^-NP4J^-**)     ^ 
The mean i and variance E of the (global) GTSD component of the fused track 

^U^ are given as 
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i =E E0(1 ^r1*.- (5-31) H 
«€/sG »S 

and "... 

E = (Ea(i)Er1)'1 (5-32) 

In Equations (5.28) - (5.31), {IR ,a) is the information redundancy indicator. Let 

I^—IR \IR, i.e., the set of common predecessor nodes where the tracks have local 

GTSD components.  For each 1 in IR, define 

Pi{rvT2) = Pt
LCMPV{Vä)Jii) M3) 

where 

- (^,i) is the pair of the estimates of the acoustic azimuth and its derivative cal- 

culated from i , 

- (K ,^) is the target speed/heading estimated by x , 

- p/tv) is the density of the GTSD component of the predecessor track at t 

(marginal to (^,^)), 

- pV {-,•) is the density of the a priori distribution of the target speed and the 

heading, and 

- ./(•) is the appropriate Jacobian. 

Define 

h{TVT2)= ru-(™)a{0 (5-34) 
«eik 

Then the track-to-track likelihood is calculated as 

L {TVT2) = Miw) LL [Tx,r2) LG [TX,T2) (5.35) 

When the GTSD component of the fused track is multiple-termed, (5.15) is calcu- 

lated for each term and the weighted sum becomes LL (r^r,) with the new 

weights for the fused track. The SPTSD component of the fused track is identi- 

cal to that of the home track. 
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5.2.4.2.3  CASE 3:        bal Home Track/Local Foreign Track 

When the foreign track T2 is local, every predecessor track (riUT^i, is 

empty for every i£lR except for tj and t2. If the foreign track has a global 

GTSD, the calculation of the likelihood and the fused GTSD can be done as in 

CASE 1. 

Suppose the foreign track has a local GTSD component. Then the GTSD 

component of the fused track T,[JT2 has the mean x and variance matrix E, 

which are calculated by the extended Kaiman filter equations: 

x =f1 + /iC(*2-*i) (5-36) 

where 

xl is the mean of the GTSD of the home track TV 

$2 is the vector of the means of the acoustic azimuth and its derivative in the 

GTSD component of the foreign track T2, 

$! is the azimuth and its derivative of the target at i predicted by the f l. 

K in (5.36) is the ;ilter gain defined by 

K =E1/fT5-1 (5.37) 

where 

S =HZlH
T + R       , (5.38) 

- Ei is the variance matrix of the GTSD component of the home track r^ 

- E  is the variance submatrix of the local GTSD component of the foreign track 

r2, and 
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- H is the derivative of the transformation function h which transforms the glo- 

bal target state into the local coordinates used for the GTSD component of the vW 

foreign track. '^^ 

The variance E of the fused track is then given by 

E = (/-ä:ä
,
)E1 (5.39) 

The track-to-track likelihood is calculated as 

L {TUT2) = M [TVT2) LGL {TVT2) (5.40) 

where 

LGL {W) = (27r)-1(det(S))2 exp(-|-||#-*||,-.) p v(7^) /(i)     (5.41) 

where 

- p    (•,•) is the density of the a priori distribution on the target speed and the 

heading, 

-./(•)  is  the  Jacobian  and  (V-,^)  is  the  the  target speed  and  the  heading 

estimated by i. 

5.2.4.2.4   CASE 4: Global Home Track/Empty Foreign Track 

When the foreign track r2 is empty, all the ptedecessor track (fjU^)! t 1S 

empty except for iv Therefore, we have L ('■1,r2)=M (r^rg) and the TSD of the 

home track becomes the TSD or the fused track. 

5.?.4.2.5   CASE 5: Local Home Track/Local Foreign Track 

This is the case when two local tracks from two sensor nodes are used to 

initiate a global track. When the home track TJ and foreign track rj are both 

local (fiU^) I i =0 except for «1 and 12.   The fused GTSD component is created 
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first. This is done by using the "position" track initiation equation described in 

[15]. As before, we assume that both home and foreign tracks have single-termed 

GTSD components. Then, using the means and the variances of the of the two 

local azimuth values and their first-order derivatives, the global GTSD distribu- 

tion is obtained by solving a multidimensional algebraic equation. The algebraic 

equation is quadratic and may not have any solution. In such a case, the track- 

to-track likelihood is zero and the fused track is not created. Otherwise we have 

two GTSD components with means and variances, (i^Hj and {x2,^2)^ 

corresponding to the two solutions to the algebraic equation. 

Then, for each k G{l,2}, we calculate 

a,  = (det(E, ))" 2 (5.42) 

and 

i 1 
bk  = (det(E^)) 2 (det(EJ) 2 pv{Vk,i;k )2 J{xk ) (5.43) 

where 

- HA   and  E^   are  the variance of the  local  (azimuth,  its  derivative)  vector 

attached to the home and the foreign tracks, 

- (Vjt- ,^) is the target speed and heading estimated by i^ , 

- p    (•,•) is the density of the 0 priori distribution of the target velocity vector, 

and 

- / is the appropriate Jacobian 

The weights w l and w 2 are then calculated by 

w. 
(5.44) 

with wl
JrW2=l-   The GTSD component of the fused track rjU^ 1S given as a 

sum-of-gaussian distribution with weights w x and w^.   The track-to-track likeli- V 

hood is calculated as i 

s 
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L {TVT2) = M {TVT2)      ~^~r-t (5.45) 
a jit; j + 02^2 

5.2.4.2.6   CASE 8: Local Home Track/Empty Foreign Track 

As in CASE 4, L (rl,0)=M(rl,0).   The TSD of the fused track is identical 

to that of the home track. 

6.2.4.3  Hypothesis Management 

The hypothesis management procedures used in the information fusion pro- 

cess are almost identical to those used in the local data process, and include 

hypothesis pruning, hypothesis combining and clustering. 

5.3  CONCLUSION 

In this section, we have presented acoustic tracking scenarios which can be 

used to evaluate the multiple hypothesis approach to distributed tracking algo- 

rithms. These scenarios were derived from the experimental set-up at the Lincoln 

Lab. DSN test bed so that the experiments can be performed on the actual 

testbed if resources permit. The general algorithms of Section 2 have been 

adapted to handle acoustic sensors. Because of the charactfistics of acoustic 

sensors, such as azimuth-only measurements and propagation delays, special tech- 

niques have been developed for hypothesis formation and evaluation, especially at 

the t-ack level.  However, the overall architecture of Section 2 still applies. 
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8. SIMULATION EXAMPLES 

The complexity of the algorithms in a DSN precludes analytic approaches 

to performance evaluation. Thus we have developed a simulation environment as 

a research tool for developing algorithms, evaluating their performance, and 

understanding the general issues associated with a DSN. In this section, we give 

a brief description of the simulation environment and present some examples 

simulated in this environment. 

8.1   SIMULATION ENVIRONMENT 

We first present the hardware and software used in the simulation environ- 

ment. This will be followed by a description of the user interfaces and capabili- 

ties of the software. 

8.1.1  Hardware and Software 

The current DSN code was first implemented on a VAX 11-780 under the 

UNDC operating system. It was then moved to the Symbolics 3600 Lisp Machine. 

LISP was chosen since the data structures for hypotheses and tracks can be 

represented conveniently in the form of property lists or def-structs in LISP. 

Furthermore, since the size of the data structure is dynamic, being driven by the 

sensor data and communication, efficient memory allocation and deallocation are 

desirable. Garbage collection is automatic in LISP, thus simplifying the coding 

task. 

The LISP machine also provides a good environment for program develop- 

ment, including the use of multiple windows and utilities to support coding in 

LISP. It also allows graphical displays for hypotheses, and with the use of a 

second monitor, displays for the target movements. 

In the interim report [4], we presented an architecture for a general test bed 

environment within which a DSN system may be designed and prototyped. This 

architecture, called Schemer, has since evolved into a programming environment 

called SOPE (System Oriented Programming Environment). A SOPE system is 

an object-oriented realization of a "system" as it is thought of in general system 

theory. Fundamentally, a system is an object that performs a specialized set of 

computations and interacts with the rest of the world sending and receiving 
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messages.   The current DSN simulation was built using some oi tue burt, capa- 

bilities. 

8.1.2  User Interface 

An interface has been provided for controlling the experiment as well as 

displaying the simulation results to the user. This interface has also proved to be 

useful in program development. 

Two kinds of displays have been developed for the DSN simulation: a situa- 

tion display for the scenario and a hypothesis display. The situation display is on 

a color monitor and the hypothesis display is on a black and white monitor. 

Various display functions are controlled by means of menus and the mouse. The 

two displays are shown in Figure 3-1 and 6-2. 

The hypothesis display (Figure 6-1) on the current system shows all the 

hypotheses for all the nodes (four at present). For each node, the evolution of 

the hypotheses are shown. Each circle denotes a hypothesis and the number in 

each hypothesis is the probability of the hypothesis. The parent and children of 

each hypothesis within the node are connected by lines. By pointing the mouse 

to a hypothesis which results from fusion, one can also identify its predecessors 

from other DSN nodes. In the figure, the predecessors for a fused hypothesis are 

darkened. A 

The situation display (Figure 6-2) on the current system shows the scenario 

under consideration, and the sensor characteristics.   For each time, the target 

locations and the measurements can be displayed.  By pointing the mouse to each 

hypothesis, one can also display the target locations according to the hypothesis. tfC 

Thus, the evolution of the situation becomes obvious as one moves the mouse ^ 

within each node.   Furthermore, by considering the hypotheses from multiple 
'.* 

DSN nodes, one can identify how information is being fused. jj| 

i 
6.1.3  System Capabilities * 

The current simulation focuses on the processing within each node and a Vk 

perfect (noiseless) communication model is assumed.  Each node in the network is HJ 

equipped with a GTC (Generalized Tracker/Classifier) which processes the local |j| 

sensor data and an information fusion module which fuses the information sent 

from the other nodes with the local information.   The current simulation has the Sj 

following capabilities: m 
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Figure 6-1: Hypothesis Display 
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Figure 6-2: Situation Display 
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• The maximum number of nodes which can be handled in the network is four. 

There is no conceptual difficulty in ir creasing the limit on the number of nodes 

but simulation time will increase substantially since a single computer is used 

to simulate a distributed system. 

• The communication between any two nodes can be specified arbitrarily. By 

using the information distribution module, adaptive time-varying communica- 

tion strategies can be handled. 

• The processing of the local sensor data is by means of the GTC developed in 

the previous project [1]. Information fusion is based on algorithms for 

hypothesis formation and evaluation described in Section 2. 

For scenarios with average target density, false alarm rate, detection proba- 

bility, and measurement accuracy, the algorithm runs reasonably fast. However, 

the fact that a single machine is used for data generation, communication simula- 

tion, and simulation of multiple nodes makes it difficult to evaluate the actual 

performance in terms of speed. Furthermore, the garbage collection of the LISP 

machines sometimes interferes with the processing. 

In order to handle arbitrary communication patterns among the nodes, the 

information fusion algorithm includes mechanisms to trace the histories of the 

tracks and hypotheses in the information graph. Without any loss of generality, 

information fusion from multiple nodes is carried out sequentially in a binary 

form, i.e, to fuse the information from node A, B and C, we first fuse that of A 

and B, and then the result is fused with the information from C. This simplifies 

the implementation of the fusion algorithm considerably. 

6.2  DISCRETE ROAD NETWORK EXAMPLE 

We now present some simulation results for a four-node sensor network to 

illustrate the performance of the DSN fusion algorithm. We use a simple 

discrete-state road network scenario where the target dynamics are assumed to be 

Markov with the road-segments as the possible states. The main reason for using 

the  simple  target  dynamics  and scenario  was  to  minimize  any  unnecessary 
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numerical complexity due to target motion and to concentrate more on issvies 

resulting from arbitrary communication pattern. The simulation program, how- 

ever, is capable of handling more complicated scenarios if the appropriate algo- 

rithms are included, 

8.2.1  Target and Sensor Models 

The underlying models in the scenario are: 

a. Targets move along the road network with discretized straight-line segments. 

b. The target dynamics are Markov with a given transition matrix. 

c. Each sensor measures position (segment number) along the road with some 

uncertainty due to the bearing and range measurement noise. Each sensor 

also has certain masked regions which it cannot observe. 

d. The probability of detection of a target in each road-segment by a sensor is a 

function of sensor masking and the relative sensor location. 

In addition to this, independent and identically distributed target models have 

also been assumed in the current simulation. 

I 
There are four nodes in the DSN, with a sensor at each node.  The sensors 

observe the same road network although they have different fields-of-view.   The IS 
ff* 

road network and the location of the sensors are shown in Figure 6-3. Each indi- V,. 

vidual target position is represented by th?   • "ment number and its evolution is m 

assumed to be a Markov process.  The t e at any time is thus character- 5j 

ized by a probability distribution on tht egment.   Because of the terrain 

and other masking (due to foliage, etc) the sensors have masked regions.   When 

the oarget moves into these regions, it will not be seen by the sensor.  A sensor p 

can fail to detect a target in the unmasked region because the probability of 

detection is less than one.   Figures 6-4 to 6-7 show the detection probabilities of rl 

the four sensors.   Each sensor generates a measurement in the following way. ^ 

The detection of a target at state i, by a sensor depends on the detection proba- 11 

bility which is 0 whenever the target is in a masked region relative to the sensor. ■*; 

For any detected target located at x ,  the measurement  y , which is  also  a %. i 
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Node 4 Sensor 

Node 3 Sensor 

Node 2 Sensor 

Node I Sensor 

Figure 6-3: A Four Node Network Observing a Road Network 
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Scale 

Figure 6-4: Probability of Detection of Sensor 1 

Figure 6-5: Probability of Detection of Sensor 2 
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Figure 6-6: Probability of Detection of Sensor 3 

Figure 6-7: Probability of Detection of Sensor 4 
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segment uumber, is generated according to the following conditional probability 

distribution function: (see Figure 6-8) 

p(y |*)« Sa,{y,)t/(y,) (6.1) 

where 

(6.2) 

C/(j/,) is a uniform function on segment y, with unity value and gr{r | F(x)) 

and g 9{d \ d{x)) are sensor characteristics corresponding to the the measurement 

uncertainty in range and bearing given the average range and bearing of a partic- 

ular target location x. False alarms are also added according to the sensor 

model. 

The total number of targets is constant but unknown and its a priori distri- 

bution is Poisson with mean uQ. The number of false alarms in each scan is also 

Poisson with mean UpA for each sensor. The target positions are independent 

and identically distributed with the a priori distribution uniform over the road 

network states, and targets are expected to move into the field-of-view from the 

edges at any time. The parameters used in the simulations are given in Table 6- 

1. 

till*) 

Figure 6-8: Conditional Probability Distribution p(t/|i) 
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Table 6-1: Simulation Parameters 

Expected number of targets ^0 4 

Expected number of false alarm »FA 1/scan 

Probability of detection PD max 0.9 

Measurement error 

range 

bearing 

radial velocity 

0.5 (km) 

0.2 (radius) 

0.1 (km/min) 

Pruning threshold t 0.05 

6.2.2  Communication Schemes 

Different kinds of communication patterns were experimented. The first 

(decentralized case) consists of no communication among the nodes. The second 

is hierarchical communication with the following features: 

1. At every odd scan NODE 1 sends information to NODE 2, and NODE 3 sends 

information to NODE 4. 

2. At every even scan NODE 4 sends information to NODE 2. 

i.e, node 1 and node 3 only transmit information to other nodes, node 4 is an 

intermediate receiver/processor/transmitter and all information is thus collected 

by node 2 with communication delays. The hierarchical communication pattern 

and the information graph are shown in Figure 6-9 and Figure 6-10. The third 

case considered is broadcast communication. 
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S3 s4 

si s2 

Figure 6-9: Hierarchical Communication Scheme 

si 

s2 

S3 

S4 

Figure 6-10: Information Graph for Hierarchical Communication 
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6.2.3  Simulation Results 

In each simulation, all the hypotheses were examined and compared to the 

true trajectorifes of targets according to the measurement-to-target association 

histories. The hypothesis best matched to the ground truth is defined as a true 

hypothesis. The most likely hypothesis (highest probability) is called the best 

hypothesis. 

The results of a simulation run are shown in Figures 6-11 to 6-12 where the 

probabilities of the true and best (with highest probability) hypotheses are plot- 

ted versus time for each of the four DSN nodes. Note how the probabilities of 

the hypotheses change with time. In general the true hypothesis and best 

hypothesis are not the same when the data quality is poor. This argues for the 

multiple-hypothesis approach since if only the best hypothesis is selected, an 

incorrect hypothesis may result. The probabilities of the best hypotheses and 

true hypotheses for each node for the no communication case are shown in Figure 

6-11. Note that because of their data quality, the best hypotheses for NODES 1, 

2 and 4 are not the correct hypotheses. NODE 3, however, tracks the targets 

correctly. In the hierarchical case (Figure 6-12), the hypotheses of NODE 1 and 

NODE 3 behave the same as in the case with no communication since they do 

not eceive any information from other nodes NODE 4 now has the help of 

NODE 3 and performs much better, acquiring the correct hypothesis after a 

while. NODE 2 performs best since eventually it gets information from all nodes. 

In the broadcast case, the nodes all find the true hypothesis in a short time. 

Figures 6-13 and 6-14 show the hypothesis trees for the two cases discussed 

above. The number of hypotheses for each node varies with time, depending on 

the complexity of the current situation. For example, in Figure 6-13, NODE 3 

starts out with four hypotheses around scan (tick) 3, with the true hypothesis 

having a fairly low probability.   As it collects more data, the situation clears up ^ 

so that there are only two hypotheses at scan 8. This phenomenon is even more 

pronounced in Figure 6-14 where NODE i starts with four hypotheses with 

nonzero prübability at scan 2 and 3.   With communication from NODE 3, only - j 

one hypothesis has nonzero probability at scan 8. -^ 

ft 

6.3  CONTINUOUS STATE EXAMPLE | 

Figures 6-15 and 6-16 present some results in continuous state tracking. " 

The network consists of two nodes (denoted by 1 and 2) which broadcast their 

hypotheses  periodically.    The  azimuth  measurement  of each  sensor  is  more ',< 
| 
■ 
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accurate than the range. Initially for scan 1 and scan 2, each sensor has only one 

hypothesis consisting of two tracks. The tracks of Sensor 1 are denoted by solid 

lines with ellipses being the error covariances while the tracks of Sensor 2 are 

denoted by dotted lines. At time 3, the sensors broadcast to each other and 

information fusion takes place at each node. Because of the overlapping error 

ellipses, multiple hypotheses are formed. Figure 6-15 shows one hypothesis with 

two tracks and Figure 6-16 shows the other hypothesis. The pairs of tracks 

which are associated by the hypothesis can be traced from the centers of the 

fused tracks at time 3. From the two fusion hypotheses at time 3, each node 

processes additional measurements at scans 4 and 5. The two branches of the 

hypothesis tree are shown in the two figures. At time 6, the two nodes communi- 

cate again. Since in Figure 6-15, the ellipses of the same target according to the 

two nodes have little overlap, the probability of this hypothesis goes to zero. On 

the other hand, the hypothesis in Figure 6-16 is still valid and the track state 

estimates from the two nodes are fused to obtain an improved estimate. 

6.4  CONCLUSION 

We have found the simulation environment to be very useful in developing 

and evaluating algorithms and in studying the various issues associated with a 

DSN. The information fusion algorithms developed in Section 2 have been tested 

via simulations using various examples. The results demonstrate that the perfor- 

mance of the DSN nodes can be improved through communication. We have also 

shown that the multiple hypothesis approach developed in this research works 

better than the traditional (single hypothesis) approach when the scenario is com- 

plicated. Various communication schemes with different number of nodes have 

been examined. The simulation results have shown that the algorithms produce 

the expected performance. 
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7. CONCLUSIONS 

The goals of our research were to further understand the issues associated 

with a distributed sensor network and to develop a general theory of distributed 

multitarget tracking to provide some guidance in building a DSN. This theory- 

should be general enough to encompass arbitrary network structures, target and 

sensors models. For the theory to be relevant, it should also lead to implement- 

able algorithms. 

In our previous effort, we developed a general theory for tracking multiple 

targets. In the current effort, this theory was extended to the distributed situa- 

tion. Information fusion algorithms were developed for fusing or integrating the 

information from other nodes with the local information. For general communi- 

cation patterns, these information fusion algorithms insure that only consistent 

hypotheses are formed and that no information is double counted (which would 

lead to inconsistent conclusions). To the best of our knowledge the algorithms 

we have developed are the first to address these issues. The algorithms make 

heavy use of the so called information graph which can be viewed as an abstract 

model of the DSN communication structure. They also become the more stan- 

dard algorithms with the appropriate assumptions. 

In many military applications, targets frequently have special structures. 

For example, the state of a target may have different attributes such as location 

and velocity, a consistent set of features, etc. The sensors at the various DSN 

nodes may not be the same. One node may observe a certain set of features 

while another node may observe a different set of features so that the nodes need 

to cooperate to obtain a more global view and perhaps classify the target. By 

using the general results for distributed tracking, we have obtained algorithms for 

dissimilar sensors and targets with structured states. This is a case where our 

general theory applies quite readily. 

Targets may also move in groups.  This is another case where there is some ^ 

structure on the targets.  The knowledge about the group can be used in tracking | 

since the individual targets no longer move independently.   The key research '' 

issue is how to exploit this knowledge and avoid the combinatorics associated ':■■ 
with tracking the members of •-he group.   We have developed a mathematical r' 

framework for treating  groups of targets.    The  results obtained to date  are | 

mostly for the centralized situation.   Development of the distributed algorithms J 
; 
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can follow the same approach used for independent targets. 

To further evaluate the generality of our approach and also relate to the 

work undertaken by Lincoln Lab. on acoustic tracking, we applied our algorithms 

to acoustic sensors tracking low-flying targets. Because of the special characteris- 

tics of acoustic seniors (azimuth only measurements, propagation delays, etc.) 

some modifications had to be made to the track-level algorithms and likelihood 

computations. However, the general overall framework is still applicable. We 

also looked into the design of experiments using scenarios similar to those used 

by Lincoln Lab. 

We have developed an environment for developing and demonstrating the 

algorithms. Scenarios for which we developed algorithms for include tracking 

land vehicles over a road network using MTI (moving target indicator) sensors 

and tracking air targets with sensors which are more accurate in azimuth meas- 

urements than range. Although not included in this report, the same algorithms 

were also used to track submarines. 

In summary, we believe we have developed a theory which is applicable to 

general DSN problems. The theory has a sound theoretic basis and has also been 

demonstrated through simulation studies for different scenarios. 
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APPENDIX A. MERGED MEASUREMENT LIKELIHOOD 

CALCULATION 

The likelihood of a measurement y originating from two existing tracks, ^ 

and r2, is the joint mixture of probability density of y with the probability of 

event M of track merging and that of event D of target detection, and is 

expanded as 

P{y,M,D Ir^rjj) = J P [v I M ,D ,x ^x 2ITVT2) P[M \ D }x ^x 2^2){A.\) 

P{D | i1)x2,71,?2) Fix! \T1)P{X2\ T2)dxydx2 

When we identify D  with the event in which sxM=s ^w^s^ for I =1 and 2, 

we have 

/ sTH-s x \] 
P{D \x vx 2,TVT2) = P{D \svs2)=[l- erf^-— JJ 

[i-^Mlfl)] (A2) 

The track merging event is written as M = {\ <t>M ' ^M \ <^}> aild hence we 

have 

where oj the standard deviation determined by Equation (5.4) for each i. The 

first factor in the integrand in (Al) is then written as 

P(y | M,D,xvx2W2) = P{<t>tf\ M ,<j>v<l>2) P [stf \D,svs2)        (A4) 

where off and s^ are defined by Equations (5.5) - (5.7). In the first factor of the 

right hand side of (A4), the condition D was dropped because ^ can be defined 

as being independent from the detection event D . Similarly, in the second fac- 

tor, the condition M has been dropped because s^ can be considered to be 

defined by (5.7) regardless of whether or not the actual merging occurs. When 

we approximate (5.7) by (5.7'), we have 
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PW \D,sll92;q-] -■ g^M {V * y*'  1[_V  2)J (A5) 
y STH -hs [s^s^s^s^]^ 

1 - erf 
°r{svs2) 

The denominator of the right hand side of (A5) is necessary because the range for 
SM is [STH '00)- Furthermore, we may approximately equate the right hand side 

of (A2) with the denominator of the right hand side of (A5). Then, since the 

GTSD component and the SPTSD component of a track are independent from 

each other, we have 

P[y,M,D |71,?2)= J PM|M,<M2) (A6) 

erf( 
6$    i<f>x - ^2) 

)-erf( 
-H - [<i>\ - ^2) 

) 

;rf( )-ert{ 
-(50 - {<I>1 - ^2) 

2  /. 
^(«Ai|r1)F(^2|r2)d01d(A2 

J  ff («M - ^l« Vs 2's Vs 2) I ^m(5 Vs 2)j ^ (« 1 I ''I) ^ (5 2 I r2)^ 1^ 2 

The last integral in (A6) can be easily calculated and yield to (5.21). On the 

other hand, since $$ and the track merging event M are correlated, the calcula- 

tion of the first integral in the last expression of (A6) is not so straightforward. 

But, according to [16], we have 

/ 
P {<!>$ \ M ,<l>v<t>2) erf 

S(ff - [tj,l - <j,2) M -S<l> - (0! - ^2) 

Pfa |?1)P(02|?2M0lrf</>2 

(A7) 

= 9(*M-h? [Kit ; 7) ; K) [erf(^^) - erf(^^)] 
'A<j> 

which yields (5.17). 
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