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FINITE ELEMENT CALCULATIONS OF VISCOELASTIC FLUID FLOW IN A SPINNING AND

NUTATING CYLINDER
1. TINTRODUCTION

In recent years there has been considerable interest in understanding

the onset of instability in liquid-filled shells that are simultaneously

‘spinning and nutating in flight. Field observations by D’Amico and Mil-

ler (1979) indicate that there is an instability which appears in fluids
of very high viscosity, and is therefore unrelated to the instability
associated with the presence of inertial waves in fluids of very low
viscosity (Stewartson 1959, Wedemeyer 1966). Theoretical work by Vaughn
et al (1985) and Herbert (1985), coupled with the experiments of Miller
(1982) performed under controlled conditions, confirm the presence of
this high-viscosity instability, which manifests itself through a rela-
tively large despin moment (leading to a loss in spin rate). It is gen-
erally thought that the despin moment attains a maximum at a fairly high
viscosity value (low Reynolds number) and then decreases as the visco-

sity decreases.

Hitherto all work on this problem, both experimental and theoretical,
has been restricted to Newtonian liquids. There are, however, practical
reasons that make it important to consider the behavior and response of
the spinning-nutating system when the liquid fill is non-Newtonian, and

the present project 1s directed at comprehending and resolving the

issues that arise in that case.

The primary purpose of this project was to determine the liquid-induced
despin moment fur the configuration shown in Figure 1. A right circular

cylinder of length Z2¢ and diameter 2a spins about its axis with angular

speed w. The axls of the cylinder is inclined to the vertical at the
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nutation angle # and rotates about the vertical with angular speed 4.
The cylinder is completely filled with a liquid of constant density p;
this liquid is non-Newtonian, and the implications of this will be dis-
cussed in Section 2 below, but the liquid is taken to have a zero-shear-
rate viscosity u,. The two axes of rotation intersect at the point O on

the center line of the cylinder.

This report is organized in the following way. In Section 2 we discuss
properties of non-Newtonian fluids that could be relevant to the present
study, and describe a number of possible theoretical models that can be
used. The general equations that govern the motion of the liquid, and
the associated boundary conditions, are developed in Section 3, where
appropriate nondimensionalizations ate also incioduced. Thern in Section
4 we derive the expressions for the liquid-induced moments acting on the
cvliinder, and infer a general relationship between two of the components

of the moment.

The work performed in this project has proceeded along two distinct but
related paths. On the one hand we have developed an analytical treatment
of the problem in the case of a cylinder of infinite length, following
the procedure of Herbert (1985) for the Newtonian liquid case. The infi-
nite length model has 'validity when the aspect ratio of the cylinder is
large, which is frequently the case in flight and laboratory tests, and
can predict the flow field except close to the cylinder ends. A reason-
able estimate of the drspin moment can also bhe obtained. The procedure

and results are outlined in Sections 5 and 6 respectively. The method of

analysis utilizes the fact that the nutation angle 6 is generally quite
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small (|0| < 20°), and that the ratio of angular velocities (Q/w) 1is
also quite small. These facts enable the solution of the problem to be

found by aralytic perturbation techniques, as was done by Herbert (1985)

for the Newtonian liquid case. In performing this analysis we were able

to assess the contribution to the despin moment arising from the
liquid’'s viscoelasticity, and to show how this contribution, from a
theoretical point of view, depends on the constitutive model used to

represent the non-Newtonian behavior.

In parallel with the perturbation analysis we have performed a numerical
simulation of the flow in the cylinder shown in Figure 1, and have com-
puted the moments. The computations were done using a task-oriented ver-
sion of the finite-element code FIDAP; this code and the methodology of
the simulations are Jdescribed in Section 7. The properties of the non-
Newtonian fluids to be simulated were deduced from data supplied by
CRDC, as were the parameter ranges of interest. The results of the

computations are presented in Section 8.

The results obtained are reviewed and discussed in Section 9.
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2. NON-NEWTONIAN LIQUIDS

In attempting to model the flows of non-Newtonian liquids the funda-
mental difficulty always is the form of the relationship between the
stress tensor and the deformation-rate (strain-rate) tensor, the so-
called constitutive relation. No constitutive relation has been found, -

either empirically or from theory, that can claim to be appropriate for
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all flows of all non-Newtonian liquids. In fact, it is generally agreced

e
¢ d

that there is no such general <onstitutive relation or, if there is, it

. y ‘e "¢ e T
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i{s so complex that it cannot be used for the solution of problems and

cannot be determined empirically.

¢ .
o

For modeling purposes, therefore, it follows that one is confronted with

the more restricted task of determining a constitutive relation that

applies to a limited class of flows and/or a limited class of fluids If

A AN
R

one asks whether it is possible to find a constitutive relation that

describes all possible flows of one given non-Newtonian liquid, the

S

- .'-
a

;t answer, based on experience, is again negative. It turns out, on the
w

»

<

W other hand, that there are much better prospects of finding a constitu-

tive relation to describe a limited class of flows for a reasonably wide

g {H

ﬁ: range of fluids.

l.':

\I

Y The consequence of this fact is that in studying a particular flow it is
is of primary importance to choose a constitutive relation that is appro-
AN

:\ priate to that flow. One aspect of this approach, howeve., needs to be
~

*
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e, carefully monitored. As will be seen below, constitutive relations
- . . . .

T always contain parameters that measure the viscoelastic properties of a
b

4

¢ .

f} liquid. These parameters have to be determined empirically, but the
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determination has to be from experiments on the same class of flows for
which the model is being constructed, since otherwise they may not be

relevant to the particular constitutive relation being applied.

For example, it is well known that many polymer solutions exhibit shear
thinning in plane, unldirectional shear flows; for such flows, and when

no other fluid behavior is of interest, it is often sufficient to model

N ORERRRS  AnRARAY

shear thinning by introducing a shear-rate dependent viscosity function

o~

Y - -
e

v b= ply) (2.1)
7
& where vy is the magnitude of the rate of shear. Yrom equation (2.1) one
Y

2 deduces a constitutive law

L= 6Ny (2.2)

which is an explicit relation between the stress tensor z and the rate
of strain tensor i. Various functional forms of equation (2.1) have been

proposed, mostly involving algebraic dependence on y; a common form {is

the Carreau model

B Ho _ 2]
P [1 + (A7) ] , (2.3)

L 2

e

rrywvwy

: where By is zero-shear-rate viscosity, u_  Is infinite-shear-ra:e viscos-

: ity, A is a time constant and a a power-law index.

=

N While the constitiitive relation implied by equation (2.2) can of «n he
P Yy eq

- fitted quite well to experimental data on shear thinning in sir~la
shearing flows, it is incapable of predicting ovther common viscoelasti:

effects, in particular normal stress difference and fluid elasticity.
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For these and others it is usually necessary to go to a more sophisti-
cated model. Thus, for exampla, the constitutive relation known as th.

second-order fluid model, typically written in the form
r=ay+ady-oa,33 . (2.4)

where gz,

i are the appropriate tensors, a,, a, and a . are constants, and

1t P2 11
D represents a convected or Jaumann derivative, predicts no shear thinn-
ing but does predict a normal stress difference and a complex viscosity
in reiaxation. Again, it should be emphasized, models such as (2.4) can
bs made to fit experimental observations only in a limited class of
simple flow configurations. An improved version of equation (2.4) is the
CEF model (Criminale et al, 1958) in which the constants a

a a are

1’ 2’ 11

roplaced by (emplrically determined) functions of shear rate.

A class of more widely acceptable models are the differential relations

of cthe form

T4+ ADT = 24, (] + €ADY) (2.5)

whicl: contain a relaxation time constant S,Va zero-shear rate viscosity
#, and a retardation time constant ¢A. The derivative D includes a para-
metexr that changzs the character of the model; the detalls will be dir-
cugsed further below. This model (2.5) is known to be anplicable over a
wider class of flows than any of the others meuri>. r_eviously, but it
{5 also known to be limited, and even unsatisii '~. , *'h¢n applied to

very complicated flows.



In the present project we are dealing with a fully three-dimersional
flow of a viscoelastic liquid. For three-dimensional flows there is vir-
tually no information available, either experimental or theoretical, to
determine whether one or any of the known constitutive rela:ions is ade-
quate to describe and predict the flow dynamics. This is because it is
not known whether shear thinning, normal stress differences, elongation-
al viscosity, stress relaxation, or some combination of all or some of
these, plays the dominant role in any glven three-dimensional flow. On
this account a major thrust of this project has been the testing and
categorizing of constitutive relations, with a view to eventual calibra-
tion against experiments, to ascertain what are the most important char-
acteristics affecting the flow {1 a spinning and nutating cylinder. The
object of this analysis was to arrive at a sufficiently accurate predic-
tive constitutive relation that can be used for large-scale simulation.
In Sections 5 and 6 of this work we describe the results of testing

models such as those mentioned explicitly above, and draw some relevant

conclusions.

The two principal (but by no means ~nliy) measures of the degree of "non-
Newtonianness" of a liquid are the zero-shear-rate viscosity u;, and a
time constant, denoted A. The addition of certain polymers to a Newto-
nian liquid has the effect of increasing the viscosity, sometimes by
orders of magnitude, so that u, refers to the viscosity of the new, non-
Newtonian liquid and is by no means the same as that of the solvent. For
the case of liquid-filled shells at high (Newtonian) viscosity, this

means that the new polymer solution must be regarded as having an even

higher viscosity.
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The time constant A is a measure of the degree of shear thinning under

Loy

deformation, as well as of normal stress and stress relaxation depending

2 n dn T N

~l

on the type of flow under consideration. To estimate how important any
vy or all of these effects are in any given situation, one should compare
the magnitude of X (which has the dimensions of time) with some other
typical time constant of the flow. In the present work an obvious candi-
date for the latter is the period of the spin, in which case we can de-

fine a dimensionless parameter We, called the Welissenberg number, by the

formula

Ve = dw . (2.6)

M
of_

v,
o

"T“ln
4

Elastic effects become important when the elastic time constant is large

v
-
[}

compared with the dynamjc time constant; this may well be the case in

-~

the present situation since the angular velocity of spin is quite large

o (4000-6000 r.p.m.).

o,
.
F g

For estimating the dynamical behavior of the liquid the appropriate

dimensionless parameter is the Reynolds number

2
Re = 222 (2.7)

Hy

Combining equations (2.6) and (2.7) we can define en alternative elastic

paramet: r, called the Deborah number, by the formula
Ap
De = We/Re = —= (2.8)

a‘p

i




which has the virtue that it is independent of spin rate, and represents
the ratio of the elastic time constant to a typical diffusion time

constant,

VA X AN KK T L4 LS4 S & C "

‘The parameters Re, We, De will play an important role in the subsequent

Co .

discussion.
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3. FORMULATION

As pointed out by Vaughn éc al (1985) and Herbert (1985), it is conven-
ient to write the governing equations in a nutating frame of reference,
the so-called aeroballistic frame. In this coordinate system, the z-axis
coincides with the axis of the cylinder, the x-axis lies in the plane
containing the angular velocity vectors w and I, and the y-axis is per-
pendicular to this plane. This constitutes a right-handed cartesian sys-

tem, with the origin taken at the center of the cylinder.

It is also convenient to use dimensionless forms of the governing equa-
tions. Nondimensionalization is achieved by scaling lengths with respect

to the radius a, time with respect to the spin time constant w*

, linear
velocities with respect to the speed aw, the angular velocity vector @
with respect to its magnitude I, the stress and deformation rate tensors
“ith respect to uyw and w respectively, and the pressure with respect to
pa®s?. It is then easy to show that the governing equations for momentum

and mass conservation with respect to the aeroballistic frame are

v, + v Uy + MO X v + n%Q x(Q xr) -—Vp+-1-V.1 (3.1

Re
Vv =0 . (3.2)

The parameters appearing here are the Reynolds number, as defined by

formula (2.7), and the spin ratio 7

n = Q/w . (3.3)
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The dimensionless angular velocity vector §§ with respect to the carte-

sian aeroballistic frame is

Q- -0l + J1-0? k (3.4)

‘where

o = sin 8 (3.5)

is the third crucial parameter of the problem. The boundary conditions
are that the normal velocity component is zero at every rigid boundary
and that the tangential velocity at a boundary is equal to the rigid-
body velocity of that boundary. On physical grounds we require also that

the velocity is bounded on the cylinder axis.

To complete the specification of the problem it is necessary to stipu-
late the constitutive relation between stress and strain rate. We shall
consider a number of typical, representative relations all of which, it
can be shown, are invariant with respect to the transformation from the

inertial frame to the aeroballistic frame.

The dimensionless form of the constitutive relatlon corresponding to the
power-law Carreau model (2.3) is
22

LT o sver o (3.6)

where We is defined by equation (2.6), ¢ = u_ /u0 and is often taken to
be zero, and a is the power-law index. The strain-rate tensor in (3.6)

is defined by '
1 = (Vv + W) (3.7)

and vy is its magnitude.
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The dimensionless form of the second-order fluid relation (2.4) is

7 - Z(i - We Dy + ZKi-i) , (3.8)

where We 1is the Welssenberg number again and ~ is a constant. The dexiv-
ative D appearing in (3.8) 1is defined for a second-order tensor p by the

formula,

Dp = p, + ¥Y'Vp +wp=-pw-~ a(ﬁ-g + B-i) , (3.9

where w is the vorticity tensor
1 T
@ = 3%y - W) (3.10)

and & is a constant that can take wvalues between -1 and +1l. The choices
a = -1,0,+1 reduce equation (3.9) to the lower convected, corotational
and upper convected derivative respectively. It should be noted that
(3.8) predicts no shear thinning in simple shear flow, but does predict
constant first and second normal stress differences. The Weissenberg
number that appears in (3.8), consequently, is a measure of the first
normal stress difference and therefore may need to be interpreted dif-
ferently from the corresponding parameter in (3.6), where it is a mea-
sure of shear thinning. The parameter « in (3.8) is associated with the

second normal stress difference.

A generalization of (3.8) is the Criminale-Ericksen-Filbey model, namely

1= 2@, (1] - Wed, (1D + 2x&,(N1 ) (3.11)

where @1, ¢

,» &, are generally - npirically determined functions of 7.
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In particular, a suitably chosen form of & can describe shear thinning
effects, while the dependence of ®, and ¢, on vy can describe the varia-

tion of first and second normal stress differences with shear rate.

A rather general differential model which we propose to study is

S MBS S EE S SRR RA N WS N A

S

7 4+ WeDr = 2(1 + eWe ) (3.12)

A

where the operator D is defined by (3.9). This model predicts shear
thinning wvhen -1 < a < 1 and a shear-rate dependent first normal stress
difference. It is a modified version of the Oldroyd (1958) 8-constant
model. The Weissenberg number in this model is a measure of both shear

thinning and normal stress, while ¢ = pu_ /“o' as in (3.6).

It is convenient to introduce cylindrical polar coordinates (r,¢,z),

DA A SUACRON 1 2

defined by
X = rcos¢, y = rsivé, Z -2z | (3.13)

<E LA,

In that case the boundary conditions can be written simply as

LR S
~ %

-é onr =1

i<

~-ré4 onzaethb (3.14)

R AAr JLARIH
I<

S
f
-~

ol
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bounded as r »- 0O

<

where b = c/a 1s the aspect ratio, while the angular velocity vector
(3.4) takes the form

0= -ocos¢£ + asin¢§ + ,/1—-;22 (3.15)

This completes the formulation of the problem.
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4. MOMENTS

In this Section we discuss some issues concerning the moment acting on
the cylinder showm in Figure 1, and derive an important relationship
between two components of the moment vector. In the latter part of the
Section we show what modifications are required when the problem of the

infinitely long cylinder is being considered.

RERE.  PamREEE, V. oewln AN AW EVSasal f T

The total moment acting on the cylinder is denoted ﬁ;. Typical units
are gm-cmz-sec'z, and in conformity with the scalings introduced in Sec-

tion 3 we define the dimensionless total moment M, by the formula
M: = paw? M a.1)

where p is fluid density, a is cylinder radius and w is the spin rate.
An expression for the moment can be written down in terms of pressure

and stress fields, namely

1
M, - £; X(=Vp + g= V-r)av (4.2)
or, equivalently,
M. = If-pr x dS + == r X r-dS) (4.3)
bt s\ = = Re & = 7 '

where V denoted the volume of liquid and § the bounding surface. With

the aid of (3.1) it is also possible to write the moment in the form

" ®

ftexwav + [(xxw(x-ds) + 2nfz x@x v)dv
v S v
(4.4)

+ n*fax@xpdv
v
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with respect to the aeroballistic coordinate system. This formula
expresses the fact that the moment is equal to the rate of change of

angular momentum.

Tﬁe fourth term on the right-hand side of (4.4) represents the moment
due to solid-body motion ancd is Independent of the velocity fleld. It is
therefore convenient to remove this term and to introduce the quantity
M, representing the (dimensionless) moment induced by the liquid pay-

load, defined by

M EQ'I I(I X ¥)(x¢-dS) + Zqu x(Q x v)dV (6.5)
v S

The dimensional equivalent of this is given by

M = pa’w? y . (4.6)

The solution being sought 1is time-independent with respect to the
aeroballistic reference frame; this implies that the first term on the
right-hand side of (4.5) is identically zero. Moreover, the boundary
conditions (3.14) imply that v.dS = 0 on the entire bounding surface. It

follows, therefore, that the effective form of (4.5) 1is
M = 2nfr x(@xv)av (6.7)
v

which is, of course, the contribution from the coriolis force.

We refer the moment to a cartesian coordinate system in the aeroball-
istic frame; this is the system described at the beginning of Section 3.

The components of r are (x,y,z), while the components of M are denotec
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YL

M., M, M,. In this terminology M, represents the despin (roll) moment,

M_ the yaw (side) moment and Hy the pitch moment. For the velocity vec-

‘e A"
)

>

tor v it is convenient to write

vy - (—y+u)i+ (x+v)i+w§ , (4.8)

PYer i

) 4
>

so that (u,v,w) are the components of the deviation from rigid-body

L,

rotation. It should be noted that the boundary conditions (3.14) imply

S

: the vanishing of u, v and w on all solid boundaries. The components of
o

A

“ the angular velocity vector {3 are given by (3.4).

Substituting all the various components into (4.7) we obtain

PO R

i M’l - -2r,£(yvsin0 + zwsind + zucosé)dV
N Hy - nonb + 2r;J'(xvsin0 - zvcos#)dv (4.9)
v

:sj M, - 2n_[(stin0 + xucosf + yvcosé)dV
IR} v
‘

5&;. where 6 is the coning angle and b = ¢/a is the aspect ratio. It is note-
worthy that the rigid-body motion of the liquid contributes only to the

pitch moment My.

We now establish an exact relationship between the components M, and M . -

To do this it is convenient to write the first and third of equations

(4.9) in the forms
Mx = —2n(sind I1 + sing I2 + cosé 13)
(4.10)

M = 2n(sind l(1 + cosé K2 + cos/d Ka)

z
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=
<! where the definitions of the I's and K's are self-evident. Consider
:% first
'1
'y I, - £yv dv = fffyvdxdydz - %j]jvd(yz)dxdz
o
;f Integrating by parts and using the fact that v = 0 on the boundaries, we
?\
% have
120V - 1[0y, &
¥ L 2 vyz dy av 2 v"z[ax *az) v o
_2
: by continuity. Now ~e can write
.-
o 1 du 1 aw
: L, =~ ;[[7? [ 55 dxdydz +  [[y* [ 2= dzdydx
. and the interior integrals both vanish since u =0 and w = 0 on the
b boundaries. Hence I, = 0.
N
;E By exactly similar procedures we can show that I,, K, and K, also van-
", -
ish. Thus we bave the result
N
5 I, =-I, =K =K, =0. (4.11)
? This implies that equations (4.10) reduce to
o
}E ’ M = -2ncosf I, M, - 2nsind K, . (4.12)
)
- Next consider
-,
5 I, - .!;zu av = ”'z fudxdydz - —.!;zx g% dav ,

on integrating by parts and using the condition u = 0 on the boundaries.

LI S

)
~
kY,
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By continuity
1
:2\-, I, = xz[é! + Q!] dv
N 3 ~£ dy 4z
3
av aw

i - ‘“xz I 5; dydxdz + _”x fz 3z dzdxdy
o
3
" ~0- fxwdv = K
0
:' on integrating by parts. Hence we have
3
\.“.,
ﬁ I, +K =0 (4.13)
?‘; Applying this result to (4.12) we obtain
;
R sind M_ - cos§ M_ = 0 . (4.14)

This is the relationship between M and M referred to earlier. It

A

should be noted that (4.14) applies to both Newtonian and non-Newtonian

XAN

x

fluids, and that its derivation does not depend on any assumptions

regarding the parameters of the problem.

Lo

'l
.

Seveiral modifications need to be made to the foregoing discussion when

v

\ the problem of an infinitely long cylinder is under consideration. In
E-f the first place it is no longer possible to refer to the moment on the
% whole cylinder, since the volume integrals in (4.2) and subsequent equa-
" tions would be infinite. We can, however, calculate the moment acting on
:t' a cylindrical control volume V, with bounding surface S, which encloses

e X

a cylinder of fluid of radius a and lenth 2c¢. In this case the formulas

~

s

(4.2)-(4.5) become meaningful when V and § are interpreted in this way.
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The mass of liquid inside the control volume is

m - 2ma’cp (4.15)

so that we can conveniently define a liquid-payload-induced moment per

unit mass by the formula

- -

o =M/m (4.16)

this has units cm?.cec’®. A dimensionless moment per unit mass, denoted

m, can be obtained from this by writing

m = a‘w’m (4.17)
and it is then easy to show that m and M are related by the formula

m = M/(2nb) . (4.18)

The quantities m" and m are meaningful for both a finite cylinder and an
infinite cylinder, and therefore can be used when results for the two

problems are being compared.

The second modification is necessitated by the fact that the flat ends
of the control volume are not rigid boundaries, and therefore it is no
longer the case that v-dS = 0 on all boundaries. It follows that the

effective form of (4.5) is no longer (4.7), but rather
M= [(zxv)(yds) + 2nfr x(@xvydv (4.19)
S v

where the first term on the right-hand side of this equation may have

contributions from the flat ends. Precisely what these contributions are
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will becowe apparent in the next Section where the calculations for the

infinitelyllong cylinder axe pre-ented.

Finally, we do not expt~t the realationship (4.14) to holrd in the infin-
ite cylinder casi.. ot orily are the moments affected by the additional

term in {4.16%, tut 8110 the idencities (4.11) and (4.13) <annot  be

~e¢stablishad. Thiv ie because thz proofs of these depend on the fact that

éhc compouents u,v,~v are all zero on all boundaries; but this 1s no
longer true on the flat ends of the control volume. Consequ.ntly the
p-oofs break down and the results do not apply. In the next Sectién w2
shall discuss the relationship between M_and M as it emerges from our

golution,

Ll il




L Sab 18 Sat Bt el DoB R U 2.5 08 el babTias a8 406 aub 3.0 3.5 LU RS RO B S VEI AL Tl FUEN Y 150 B L B0 RVREF. R VYV EU TN P P S SV S N U W I W U ey

-21-

5. INFINITELY LONG CYLINDER

In this Section and the next we shall be considering the special, and
obviously unrealistic, case of an {iufinitely long cylinder. This problem
waé analyzed in considerable detail by Herbert (1985) for the Newtonian
iiquid; we shall adapt Herberxt’s procedures to the non-Newtonian liquid,

and shall indicate similarities andl dissimilarities as appropriate,

There are two reasons for pursuing the infinite-cylinder problem. The
; first is that it 1is possible to obtain an approximate anelytic solution
in the case that the spin ratio /fi/w) 1s small, which does indeed apply
in most situations of practical interest. The second is that the results
obtained should be relevant to the case of a cylinder which is finite
but of 1large aspect ratio. As indicated in the previous Section,
hcwever, and shown further below, some reservations need to be made in
interpreting infinite-cylinder results for the moments when one has the

finite cylinder in mind.

2 ) GRS S WL e 2 .

The governing equations are (3.1)-(3.2), together with one of the con-
stitutive relations listed ir “ection 3. The boundary conditions (3.14)

are modified, however, for infinite aspect ratio to read

V= 3 onr =1

. (5.1)

v bounded as r - 0O

It is assumed that the spin ratio n is small, and a solution is devel-

oped through a regular perturbation procedure.
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We expand the field quantities appearing in the governing equations in

pover series of the following forms,

R LIS S ¢

<

12

- :(0) + ":<1> O AL (5.2)

p - p(0) + ﬂp(l) + 'IZP(Z) +

Associated with these will be similar expansions of the strain-rate and

vorticity tensors,

< (0) VIR I 2.(2) +

1=21 +n n“y (5.3)

w = w9 4 mg(l) + "22(2) +

These representations are substituted into the governing equations (3.1)
-(3.2), the boundary conditions (5.1), and the appropriate constitutive
equations, and the terms corresponding to like powers of 15 are equated.
This results in a sequence of boundary-value problems which are in

principle amenable to analytic solution.

It is easy to show that the leading-order sclution, corresponding to

n =0, is simply the rigid-body motion of the liquid, and this is inde-

pendent of the pavtlicular constitutive equation chosen. In fact we have

that

(5.4)

T e -

It should be noted that the strain-rate tensor 1is zeros, while the

vorticity tensor has components appropriate to rigid-body rotation.

4 A DEER.A "wa"s 4 1 A AENSE .
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At the next order, corresponding to O(n), equations (3.1)-(3.2) become

(1 (1 (1, w _on o 1o
vV Y+ V)rd + 20 x r$ = -Vp + Vs (5.5)

7oy -0 (5.6)
while the boundary conditions (4.1) become

v a0 onr=1
(5.7)

v bounded as r - 0 .

The appropriate approximation for each of the constitutive relations
discussed in the preceding Section can easily be written down. From the

Carreau model (3.6) we obtain

f(1) - 2‘1(1) (5.8)

which is the same a3 for a Newtonian liquid. This 1s due to the fact
that v appears in the denominator of (3.6) in quadratic form, and there-

fore the nonlinearity makes no contribution at this order.

For the second-order fluid model (3.8) we obtain

S0 zi(n _ 2Ue(i:” + I;D + 0. i”) _ i(”' 3(0)) (5.9)

which, it should be noted, does not contain either of the parameters a

or «. The form of the CEF equation (3.11) depends on the functions ¢V

Y LS L IR T FELLO T RANANAS YT 2 2.2 7 5 HRA U " s I BRSO P @ & & ¢ & Sm— o ire o > —m— e e

<

2

03 but if, as 1s usually the case, these are quadratic in 7y, then
the reduced form of the CEF equation is also (5.9), the same as that of !

the second-order fluid equation.

v,

*e

[ !
o
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The differential model (3.12) becomes

SV (1 (1 (0), (1) _ (1), (0
b Welr, v e
(5.10)
- 9L 1(1) (1) ), (1) _ (1), (0
2307+ 2eVely, T + 30 v W d b )

l It should be observed that the parameter a, which determines the extent
' of shear thinning in the model, is absent from (5.10); in this problem

upper conv.cted, lower convected and corotational models all reduce to

the same form in this approximation.

The problem determined by equations (5.5)-(5.6) and one of (5.8), (5.9)

or (5.10) has a time-independent solution with the velocity vector being
of the form

¥V~ [0,0, w(rg) ). (5.11)
The flow 1is purely axial and depends only on the plane coordinates r,é.

With this flow field the strain-rate and stress tensors are respect-

ively,
0 0 w 0 0 T
im - % 0 0 %% Lm - 0 0 L . (5.12)
w, fw, 0 T Ta O

Equations (5.5) and (5.6) now simplify to

L]
~
W
s v mEmE eratA A A A W M e A e U LA L LR

p't - J1=0%. 1 (5.2

and the equation,

T TE RS R B CAAEEN WL S BEER L A W & S 6. OGRS & e ~a . &

LB

1 1
W, 20r cosg = Re [E(rfxa) + (5.14)

r 723,¢]
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with the boundary conditions

o > P PPy T N Y . AW

we(0 onr=1, w bounded at r = 0 . (5.15)

In the case of the (Newtonian) constitutive relation (5.8) we find that

Tia = Woo Ty =W, (5.16)
so that (5.14) becones

w, — 20r cos¢ = -]'-Vzw (5.17)

¢ Re :

where V2 {s the two-dimensional Laplacian operator in the r,¢-plane.

Nt S ARANTY Y AP RALY

W

This is the equation solved by Herbert (1985),

¢ N . ”“‘/‘

In the case of the second-order fluid relation (5.9) we find that

Ty = (w - We w‘)t . T3 = %(w - Ve w‘)‘ (5.18)

which reduces (5.14) to the equation

Wy = 20r cos¢ = ﬁi-vz(w - Ve w‘) . (5.19)

In the case vf the differential model (5.10) we obtain

¥
]
‘: T, t We Tiae ™ (w + eWe w‘)r

(5.20)

r.. + Ve T,

b 1

~ -l

N 23 c(w + eWe w¢)¢
N

.

3.0

Although these equations can be solved for r , and r,,, and the solution
substituted into (5.14), we shall refrain from doing so at this point

since the subsequent development provides an easier way of achieving the

N
N desired result.
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Following Herbert (1985) we solve the problem by writing
w = 20 [f(r)cos¢ + g(r)sing]
(5.21)
- 20-Real [h(r)e™!?]

where h = f + ig. Equation (5.17) becomes

r?h” + rh’ - (1 - iRer’)h = -Rer® . ©(5.22)
Equation (5.19) becomes

r*h” + rh’ -[ {‘ff;e ]h - IE‘K]: . (5.23)

In the third, differential case we find the solutions of (5.20) to be

T - 20.Real[ _(]._—_le_We_L'e"i_’ ]
3

1 - iWe
(5.24)
T,y = 20-Real[ “i§111:w§&2§d° ]
whereupon the appropriate equation is found to be
S R “;eflzjsz)r Jn - 1‘3-‘13%'—1%3 (5.25)
The boundary conditions are
he0atr=1, h bounded at r = 0 . (5.26)

We see that equations (5.22), (5.23) and (5.25) all have the same struc-

ture. In fact they can all be written in the single unified form

2?h” + rh - (1 - iSr®)h = -Sr° (5.27)
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vhere

S = Re (Newtonian and power-law models) (5.28)
Re .

S = T+ive (second-order fluid model) (5.29)
(1-iWe)Re

s T ieWe (differential model) . (5.30)

It is noteworthy that for the second-order-fluid and differential models
the parameter S has the form of a complex Reynolds number. Thus in these
two cases it seems that the non-Newtonian effects are in a sense repre-
sentable by a complex viscosity; this occurs in other flow configura-

tions of viscoelastic fluids, for example in time-dependent flows where

stress relaxation is important.

The solution of (5.27) which satisfies the boundary conditions (5.26) is

I,(qr) ]
- .1
h 1[ r Il———(q) (5.31)
where
g% - -iS$ (5.32)

and I, is the modified Bessel function of order unity. The flow field

. can be completely determined by a simple computation of the Bessel func-

tions.

Before proceeding to discuss the moment acting on the cylinder, we note

that approximate forms of (5.31) for small and large |S| are easily

found.

Ta a0 ' .y
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When |S| << 1 we apply standard formulas for series expansions of the

Bessel functions to obtain

hoeSr -2 + 50 - 3 + 1% + 0(sY (5.33}
8 192 : 33

In the case of a Newtonian or power-law fluid we have that S=Re, so that
|S| << 1 corresponds simply to a small Reynolds number approximation.
The separation of (5.33) into its real and imaglnary parts (h = f + ig)
gives

Re?

R
£ = 8—‘3(: -, g = To3(2r = 32> + 1) (5.34)

to a leading approximation, in agreement with Herbert (1985).

For the second-order fluid (5.29) the condition |S| << 1 1is achieved
when Re << 1. It can also be achieved for very large We, but this isg an
anomalous case since the second-order fluid model is known to be invalid

at large Weissenberg number. The real and imaginary parts of (5.33) are

found to be

Re 3 ReWe 3 5
fowo-——(r=-r’y + ————— (2r - 3r’ + )
8 (1+We?) 96 (1+We?)?
(5.35)
_ 279 a2
____ReWez (r = ) + Re“(1-VWe’) Wez)z (2r - 3 + %)
8(1+We*) 192 (1+We“)

this is significantly different from (5.34) in that the component g now

has a term proportional to Re, whereas there is no such term in equation

(5.34).
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For the differential model (5.30) the condition |S$] << 1 is again
achieved when Re << 1. Provided ¢ » 0 the condition Re << 1 implies that
|S| << 1 for the whole range of values of We. When ¢ = 0, however, it is
clearly necessary to impose the additional requirement WeRe << 1 to en-

sure that |S| << 1. In this case (5.33) gives

ReWe (1—¢) (1+eWe?)

2
£ - Re(l+:We Y(r - £ + = (2r - 3% + 1)
8(1+eWe?) 96 (1+e‘We?) (5.36)
2 2\2_,q_ 2
g - -(l—ezReZWe r - rg) + Re“[(1+eWe®) —2(1 2e)ZZWe L(2r -3 z-5)
8(1l+e“We“) 192(1+e“We”)

Again there 1s a term proportional to the Reynolds number ian the compo-

nent g.

In all three cases (5.28)-(5.30) the limit |S| -~ «» is equivalent to
Re + o, irrespective of Weissenberg number. The effects of elasticity
disappear in this limit and all the cases are effectively Newtonian.

Asymptotic results in the limit Re - « have been provided by Herbert

(1985).

We proceed now to calculate the moment in the present configuration. We
take a control volume V with bounding surface S which coincides with a
cylinder of liquid of dimensionless length 2b and dimensionless radius
1, and whose center coincides with the origin of the coordinate system.
As shown in Section 4, equation (4.19), the liquid-induced acment acting

on this control volume has the form

M= MS + nv (5.37)

R U I WP Ry, A AP ";_-_, .t “Lls -,;-,' “ . -(-‘:\1 " -,?;-‘._--‘.- TR .:-.- A AT I

oy
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where
My = [(xxw)(v-ds) . M, = 2qfrxc@xy)av . (5.38)
S v

As indicated previously, the contribution M, arises entirely from the

fact that the boundaries at the flat ends of the control volume are not

rigid.

We shall compute M, and M, separately for the case of small spin ratio.

First, we write

M = MO+ MY+ p?M o+ (5.39)

Then, substituting (5.2) and (5.39), and equating coefficients of like

powers of n, we obtain

MO = [z x ¥ (¢ ds) (5.40)
S

=
Oy~
=
1
nt—

(xx v (x'ds) + [(x x vy ('-ds) (5.41)
S

MP = Jax v ?-ds) + [z x vy ™ dg)
s ® (5.42)

+ Jax vy (-ds)
S

for the first three terms in the series for MS.

Now 3‘0) is given by (5.4), and it 1is obvious that y(o)-d§ vanishes

everywhere on §. Hence (5.40) gives

M =0 . (5.43)

- A m Mt M A" a-
PO, A4 q o 4w
cama Rahiaam ATe ATeaAts A¥a i A A s Ata )




'
i
b
{
\
i
»
[]
»
]
h
|
.
;
|
H
¢
>
"
!
‘hn
s
¢
b
!
E
~
>
’.
:

-31-

Next consider (5.41). For the reason just stated the second integral on
the right-hand side of (5.41) is identically zero, while the first inte-
gral reduces to an integral over the two flat ends, with (5.11) giving

vi.ds = twrdrd¢ on z = * b respectively. We then obtain
MY = ~2bffriw I drd¢ (5.44)

the integration being over 0 < r < 1, 0 < ¢ < 2x. We express the moment

in terms of its cartesian components by using the transformations
i = cos¢ i + sing i . é = —sing i + cos¢ i (5.45)

and the representation (5.21) for w. Then we obtain from (5.44) non-zero

x and y components,

1
M) - -hnab_!;rzf(r)dr (5.46)

1
M - -lmab{rzg(r)dr , (5.47)

and the z-component is found to be identically zero.
It is easy to show, finally, that
M -0 (5.48)

for the following reasons. Although v'¥’ has not been calculated explic-

) has no

itly, it can be demonstrated with little difficulty that v
component in the z-direction. Hence v‘?’-dS = 0 on the surface, and so

the first in%egral on the right-hand side of (5.42) vanishes. The thira
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integral wvanishes because v®.ds = 0 on the surface. The second inte-

>
.

s

gral can be shown to vaulsh because of symmetry considerations. 1

X,

Summarizing these results we have that

1 A 1 A
Mg = n [—anab_rrzf(r)dri - lmabfrzg(r)drl] + 0(n’) . (5.49)
0 0

We now turn to the contribution M,, which arises from the coriolis

force. Writing
M, = M\(,O) " "Ms(,'l) + ﬂzﬂ\(,” + (5.50)

and substituting into (5.38), we obtain

AR S Y N Y R R ST

O

M =0 (5.51)

Ry

b

D o2 x(@ x ¥°)dv (5.52)
uv v

O IUC

MP - 2frx@xyHav . (5.53)
v

W Using (3.15) and (5.4) we easily show that

‘.'
bl
!. MY = xbo ) (5.54)

»‘ats

TN,
'

and using (3.15), (5.11) and (5.21) we find |

: \

|
1 ) .
E M2 = 8rbo?[rif(r)dr k (5.55) |
N 0
»
\ Thus we have that
- ~ 1 a~
M, = n-mba i + n*-8aba*frff(rydrk + 0(n’) . (5.56)
0

-
.Y
“
b}
<
a
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Combining (5.49) and (5.56) we obtain

A

1 1 S
M - ,,[_a,mb{ rzf(r)dr] i+ n[ﬂba - ‘mboJ; rzg(r)dr] ] (5.57)

1 A
+ qz-SRbUZIrjf(r)dr k + 0(n*)
0

This can be written in an alternative, more convenient, form, By inte-
grating equation (5.27) and using the boundary conditions (5.26) we find
that

ih’ (1)
S

1
[Ph(rydr = (5.58)
0

e

We take the real and imaginary parts of this expression and substitute

into (5.57), which then becomes

M= n--4nob Reel[ih (1)] i + n--b=xbo Imag[lh’(l>] i (5.59)

+ n?-8mbo? Rea1[*h (1)] kK + 0(n)

If the components of M are denoted by MI,Hy,M:, we see from (5.59) that
H, = -anM! (5.60)

which agrees with the result obtained by Herbert (1985) for the

Newtonian fluid.

It is important to note that the despin moment M,, which derives from
the moment of the coriolis force M,, can give a reasonable approximaticn

to the corresponding quantity for a cylinder of finite length (.sith

large aspect ratio). The other two components MM, given Ly (5.59; are
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entirely spurious as far as the finite-cylinder situation is concerned,
since they both contain contributions from surface integrals over the
flat ends. Similarly the relation (5.60), which differs from (4.14), is

also spurious,

From (5.59), therefo.e, we note for future reference that the despin

moment is given by the expression

M = n? 8rbo? Real[i's(—l—)] (5.61)

to leading order.

In the next Section we give numerical results based on the calculations

presented above.
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6. INFINITELY LONG CYLINDER: RESULTS

The purpose of the calculations reported in this Section was to demon-
strate how the inclusion of non-Newtonlan effects modified the flow
field and the despin moment as computed by Herbert (1985). We were
interested primarily in sensitivity to departure from Newtonian behavior
rather than determining even an approximation to the solution that was
applicable to the case of a closed cylinder of finite length. The most
that can be expected of the present calculation would be some qualita-

tive insight into the consequences of including viscoelasticity in the

model.

The results herein are based on equation (5.31), which gives the compo-
nents f and g of the axial velocity in complex form, and on equation
(5.61), which gives the despin moment at leading order. The computation
of the Bessel functions involved is straight-forward, and we have used a

combination of the series and asymptotic formulas for these functions to

cover the required parameter range.

We note first that, according to equation (5.28), the power-law model
predicts the same velocity field and despin moment as does the Newtonian
model. It should be emphasized that this prediction is entirely a conse-
quence of the linearizing expansions (5.2) and (5.3), and would fail to
hold when these expansions break down. This question will be discussed

in more detail subsequently.

For the differential model, with "complex viscosity" S given by formula

(5.30), we show in Figures 2 and 3 respectively the variation of f and g
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with radius at a Reynolds number Re = 15. Included in these Figures are
the appropriate Newtonian curves (We = 0) which are identical with those
presented by Herbert (1985). The three non-Newtonian cases shown in
these Figures correspond to various values of Deborah number De and
retardation parameter ¢, namely, De = 0.1, ¢ = 0.1; De = 0.2, ¢ = 0.1;
De = 0.2, ¢ = 0.2, respectively. It is clear that the velocity fields
are considerably distorted by comparison with the Newtonian case, par-
ticularly for the component f which, from (5.21), corresponds to the
flow in the plane ¢ = 0. There is here a backflow near the cylinder cen-

ter and the appearance of a boundary layer near the wall.

Figures 4 and 5 show the variation of the same quantities, f and g, with
radius for the same parameter ~alues, but at Reynolds number Re = 50.
Again the distortions in the velocity fields for the viscoelastic cases
are self-evident. In a very broad sense the non-Newtonian velocity
fields at Re = 15 are comparable with the Newtonian velocity fields at
Re = 50, which 1is consistent with the shear-thinning nature of the

viscoelastic model.

The despin moment as a function of Reynolds number for this model is
shown in Figure 6. The quantity actually plotted in this diagram is, for -

convenience, denoted M and defined by

3.4 (1)] 6.1)

M i Real

- ———— = Real|———
n2-87rb02 S

from equation (5.61). It 1s therefore possible to compute the despin

moment on a contrcl volume of dimensionless length 2b as well as the de-

spin moment per unit length. The important features observed from Figure
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6 are, firstly, at low Reynolds numbers the despin moment is larger in
the viscoelastic cases than in the Newtonian case; secondly, at large
Reynolds numbers the effect of viscoelasticity is to reduce the despin
moment by comparison with the Newtonian case; and thirdly, the maximum
despin moment occurs at a lower Reynolds number (Re = 5-10) for the vis-
coelastic liquids than for the Newtonian liquid (Re = 15). These suggest
that there can be quite significant non-Newtonian effects in the precise

low Reynolds number regime where the high viscosity instability is of

practical concern.

It is interesting to compare these results with their equivalents for
the second-order fluid, for which S is given by (5.29). In Figures 7-10
we ghow the variation of f and g with radius at Reynolds numbers Re = 15
(Figures 7 and 8) and Re = 50 (Figures 9 and 10). In addition to the
Newtonian curves (included for purposes of comparison) we show the
curves for values of Deborah number De « 0.01 and De - 0.1. It is clear
that the distortions due to non-Newtonian effects are very different
from those in the differential model. Figure 11 shows the quantity M,
defined by (6.1), as a function of Reynolds number for the same para-
meter values De = 0.01 and De = 0.1. Again the differences between the
differential model and the second-order fluid model are striking. In the
latter case, as shown in Figure 11, although the moment increases due to
non-N2vtonian effects, the Reynolds number at which it attalns its peak

is greater then in the Newtonian case.

These results highlight the importance of a proper representation of

non-Newtonian behavior through the choice of a constitutive model des-
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cribing the fluid motion of interest. In part the differences between

the moments shown in Figures 6 and 11 can be understood from the follow-

ing argument. The value of the moment is effectively determined by the
quantity S and how the Bessel functions vary with §. For the second-

order fluid, from (5.29),

PR SNSNREE N

ls| - H—%‘-’—N—J < Re (6.2)
5: while for the differential model (5.30)
3
g
N |s] = Re i-"—i—wil— > Re (6.3)
RS |1 - ieWel
Ei for any value of the Weissenberg number. Thus if we tentatively take the
2 view that |S| is an effective Reynolds number, we sec that the Reynolds
Eé number 1is reduced (viscosity 1is increased: shear thickening) for the
o second-order fluid, while the Reynolds number is increased (viscosity is
:ﬁ decreased: shear thinning) for the differential model. The general
tJ shapes of the curves in Figures 6 and 11 are consistent with these
R

<
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notions.
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7. FINITE ELEMENT METHOD

The problem as posed in Section 3 was solved numerically by a finite
element method, using the software package FIDAP (Fluid Dynamics Analy-
sis Package). FIDAP 1s a commercial, general purpose code for the solu-
tion of incompressible fluid flow problems governed by the Navier-Stokes
equations, and 1including non-isothermal effects. The code applies to
both transient and steady flows, and can handle three-dimensional prob-

lems. It has the capability of addressing flows of non-Newtonian fluids,

In the present work the problem was posed in the aeroballistic reference
frame discussed previously. In this frame the problem 1is three-

dimensional and a steady state solution is required. No thermal effects

are considered.

The essential features of the finite element method as incorporated in
FIDAP are as follows. The domain of interest, the interior of the cylin-
der, is divided into a number of geometrically simple elements, thereby
generating the finite element mesh. Since the code FIDAP works in carte-
sian coordinate systems, the elements are straight-sided even though a
portion of the cylinder boundary is curved. The number of elements used
is a crucial factor in determining the running time of the program, and
this consideration has to be balanced against accuracy requirements. The
finer the mesh, the greater the accuracy and, simultaneously, the cost;
and conversely, coarsening the mesh decreases both accuracy and cost.
The principal criterion in deciding on the mesh is that the associated

approximations should be sufficient to resolve the flow field every-

where. Thiz means, for example, that the mesh needs to be quite fine In
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reglons where boundary layers occur so that large gradients of the velo-
city field can be appropriately taken into account. Thus, flows at low
Reynolds numbers can generally be handled with a fairly coarse mesh,

while high Reynolds number flows require a much finer mesh.

In the present project, after considerable experimentation, a mesh was
designed that was adequate for low and moderate Reynolds numbers, over
the range 0 < Re < 2500 approximately. At the lower end of the Reynolds
number range a coarser mesh would no doubt have sufficed, but it was
decided to retain the rather fine mesh throughout the computations in
the interests of obtaining better accuracy. It should be pointed out
that the Reynolds number referred to here 1is the zero-shear-rate
Reynolds number; in the non-Newtonian situation the actual Reynolds nun-

ber is considerably higher due to shear thinning.

The working mesh had 2240 elements, which were 8-node bricks, and 2541

nodes. The mesh is shown in Figure 12.

In the finite element method the velocity vector is approximated on each
element by a simple polynomial fun:tion. In the present casc the veloci-
ties were approximated by trilinear interpolation functions, while the
pressure was represented by a plecewise constant discontinuous function.
The Galer«in wcthod of weighted residuals reduces the Navier-Stokes and
continuity equations, together with the boundary conditions, to a large
system of nonlinear algebraic equations which then need to be solved by
an appropriate technique. The solution procedure used here was a quasi-
Newton method, which is an iterative method of Newton type invoiving up-

dating of the iteration matrix.
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The procedure adopted in solving the problem with FIDAP can be summar-

ized as follows:

1, An input file was prepared which included,

(a) the specification of the mesh;

(b) the specification of the boundary conditions, namely that
the container is in rigid body rotation in the aeroballistic
frame, by a call to a subroutine that contains the boundary
conditions information;

(c) the specification of the solution procedure, chosen from
among several options available in FIDAP;

(d) the specification of the non-Newtonian properties of the
liquid; this will be described in more detail in the next
Section.

2. The program FIDAP was run on a Hewlett Packard 9000 computer. it

was found that only 3-4 iterations of the quasi-Newton method were

required to achleve convergence, and the typical run time on this

machine was about 12 hours of cpu time. The first run was at a low

Reynolds number, and subsequent runs at higher Reynolds numbers

were performed by restarting from the solution obtained in the

previous run.

3. The output was sent to a post-processor file from which graphical

information concerning the flow field could be extracted.
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4, A subroutine was used to compute the three components of the

moment in accordance with the formula (4.9).

In the next Section we detail the results of the calculatiomns.
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8. COMPUTATIONS

To begin with, in order to test the code and the viability of the mesh,
we performed a sequence of computations for a Newtonian liquid over a
range of Reynolds numbers. The aspect ratio of the cylinder in this case
was b = 4.368, the coning angle was § = 20°, and the spin ratio was n =
1/6. These quantities wecre held fixed and the Reynolds number was varied
over the range Re = 10 to Re = 1000. Figure 13 shows the variation of
the roll moment M, with Reynolds number over this range. It should be
noted that the quantity M_plotted here and in all subsequent graphs is
the dimensionless roll moment as defined by equation (4.9). In accord-
ance with formula (4.6) the conversion to dimensfional form is effected

by the transformation

M, = pa’o’M, . (8.1)

It can be seen from Figure 13 that the maximum roll moment occurs at a
Reynolds number approximately equal to 40. This is larger than the value
predicted by Herbert (1985) but the latter, of course, applied to the
case of an infinite cylinder. The general shape of the curve, however,
is consistent with that obtained from the infinite cylinder approxima-

tion as shown, for example, in Figure 6.

The detailed values of the three components of the moment are shown in
Table 1. The Reynolds numbers listed in the first column are those actu-
ally used in stepping the solutions by restarting from the solution of
the previous run. The quantities M, M, are the dimensionless values

~
defined by equation (4.9), while the quantity My is the pitching moment

due to deviation from solid body rotation, namely
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M, =M, - nomb . (8.2)

In column 5 of Table 1 we have written the ratio M, /M . According to the
calculation presented in Section 4 this ratio should exactly equal
tan f = .3640 when § = 20°. The closeness of the number in column 5 to

this value is one good indication of the accuracy of the computation.

Typical flow fields from this computation are shown in Figures 14-18.
Figures l4(a),(b),(c) show the velocity vector in the transverse plane
defined by z = 4.0 for values of the Reynolds number Re = 20, 300, 1000
respectively, while Figures 15(a),(b),(c) show the equivalent velocity
vectors at the same respective Reynolds numbers in the plane z = -4.0.
These two planes, it should be recalled, are quite close to the cylinder
ends. Figures 16(a), (b),(c) illustrate the contours of constant axial
vr :ocity in the plane z = 4.0. The legends in the Figures show the reg-
ions of upflow and downflow. An especially Iinteresting feature of these
diagrams is the development of the boundary layers at the wall of the
cylinder; the boundary layers are already in evidence when Re = 300 and
are quite strong when Re = 1000. Figures 17(a),(b),(c) show the velocity
vector in the exial cross-section of the cylinder lying in the plane
formed by the vectors w and 1, that is, the plane ¢ = 0, while Figures
18(a), (L), (c) depict the same velocity field in the orthogonal axial
plane, namely ¢ = n/2. These Figures clearly show the formation of two

regions of stroung vortex-like motion as the Reynolds number increases.

Next we performed the calculations for two non-Newtonian liquids of

interest to CRDC. The properties of tliese liquids were presented in the
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form of experimental data in which the variation of viscosity with shear
rate had been measured. Some data on the variation of normal stress with
shear rate was also available, but only for a very limited range of
shear rates. A constitutive relation, for example of differential type,
was not known for either of these liquids, nor was it possible to con-
struct one on the basis of the available data. The measurements, more-
over, were understood to have been performed in simple shearing experi-
ments, in which the nature of the flow was very different from that in

the spinning and nutating cylinder.

In the absence of appropriate data for the liquids under the flow condi-
tions prevailing in the present problem, it was decided to simulate the
non-Newtonian effects by entering a shear-rate-dependent viscosity func-
tion extrapolated from the data provided. This data is shown in Table 2.
One of the liquids, henceforth referred to as Liquid 1, was a relatively
low viscosity 1liquid, with a zero-shear-rate value of about 8 poise,
while the other, Liquid 2, was a high viscosity liquid with 4 = 1300

poise.

The calculations were performed for a cylinder of aspect ratio b = 4.50
and for various values of n, # and Re. This aspect ratio applied to a
test fixture having radius 5.54 cm and length 49.84 cm. Before present-
ing the results of the computations, we note that the Reynolds number
for Liquid 1 corresponding to the given zero-shear-rate viscosity and a
spin rate of 4000 rpm is approximately Re = 1700, and increases to
Re = 2500 for spin rate of 6000 rpm. For Liquid 1, therefore, the calcu-

lations are close to the limits of the chosen mesh. For Liquid 2, the

é
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corresponding (Newtonian) Reynolds numbers range from Re = 10 for

w = 4000 r.p.m. to Re = 15 for w = 6000 r.p.m.

Figures 19 and 20 relate to Liquid 1. Figure 19 shows the variation of
dimensionless roll moment M with Reynolds number in the case @ = 400
rpm, w = 4000 rpm, § = 20°. The solid curve in this Figure depicts the
behavior for the given non-Newtonian Liquid 1, while the broken curve
represents the behavior of the "equivalent” Newtonian 1liquid, that is,
the Newtonian liquid having viscosity equal to the =zero-shear-rate
viscosity of Liquid 1. Figure 20 shows a repeat of these calculations
for w = 4700 rpm, other quantities remaining the same. We see that at
these relatively high Reynolds numbers the non-Newtonian liquid exper-
lences a smaller despin moment than its Newtonian counterpart. This
result is consistent with the predictions of the analytic approximation

for a viscoelastic fluid as shown in Figure 6.

Figures 21 and 22 present the same type of information for Liquid 2.
Figure 21 shows the variation of M, with Re for O = 400 rpm, w = 4000
rpm, § = 20°, while Figure 2 relates to the spin frequency w» = 4800 rpm.
In both Figures we see that the maximum despin moment for the non-
Newtonian liquid (solid curves) is attained at very low Reynolds oaum-
bers, much lower than for the Newtonian case. Although the peak values
are not as great as in Figure 6, the general picture is consistent with

that result.

Figure 23 also relates to Liquid 2 and shows the variation of M with
spin rate for some different values of coning angle and coning rate. The

curve labelled 1 relates to the case 2 = 500 rpm, § = 20°, the curve

o ———
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labelled 2 relates to the case 1 = 300 rpm, § = 20°; and the curve lab-
elled 3 relates to the case i = 500 rpm, # = 10°. The following facts
are apparent from a study of these Figures: the roll moment decreases
with increasing w with the other quantities held fixed; at fixed w and
fixed 6 an increase in coning race from 300 rpm to 500 rpm results in an
increase in Mz; at fixed w and fixed O an increase in ¢ from 10° to 20°

results in an increase in H;'

T -

I ¢ the purposes of detailed analysis, the data shown in Figure 23 is

presented for all three components of the moment in Tables 3-5.




<48-

9. DISCUSSION

In reviewing the work performed in this project we note several salient

features that merit further discussion.

V., T W A B A AL TS BB . S A A .

The first issue is the relationship between the results obtained by the

. B A

approximation technique of Section 5 and the finite element computations

of Section 7. In discussing this question we leave aside temporarily

whether the fluid is Newtonian or non-Newtonian, since the question

arises equally in both cases.

LA MPRE - &

More specifically the point is, how accurate are the results obtained by
the methods of Section 5 as presented in :ection 6? The procedure used
in Section 5 involves two distinct approximations (and consequently two
distinct potential sources of error): it is assumed that the cylinder is
infinitely long, and it is assumed that the coning rate/spin rate ratio

15 50 small as to allow a perturbation in powers of this ratio, n, with

R A LAN . W .

only the leading order terms retained. It should be emphasized that
these two assumptions are completely independent, and a solution could
formally be obtained with only one of these being invoked. The infinite-
length assumptior, as shown in Section 4, directly invalidates any calc-
ulation of the components M  and Hy of the moment because of the loss of
rigid end-wall conditions, but leaves the possibility of a sufficiently
accurate result for the despin moment M, . The assumption that n 1is small
on the other hand, introduces an error in the determination of the velo-

cities and pressura, and hence of all the moments, but thls error tends
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Lo zero as n -+ 0.
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The finite element computation gives an accurate solution provided only
that the physical domain is sufficiently well resolved, that is, that
the mesh is fine enough. The mesh used in our calculations was tested
extensively and found to be adequate for the range of Reynolds numbers
under consideration. Therefore we regard our computational results as

highly accurate, especially at lower Reynolds numbers.

As one indication of the validity of the infinite-cylinder, small n per-

IR PCICILTY PO etral ey  SLPLILIMPCE . s ] e W

turbation solution, we chow in Table 6 wvalues for the despin moment

s,

calculated by the two methods. The results refer to a Newtonian liquid,

.f with b = 4.368, § = 20° and n =~ 1/6. The perturbation results are taken
é from Figure 6, converted using the formula (6.1), while the computa-
i' tional results are those shown in Figure 13. We see from this Table that
ﬁ the values differ by between 5% and 25%, depending on Reynolds number,
EE and that the maximum of the despin moment occurs at about Re = 20 in one
by

case and at about Re = 40 in the other.

-

>

e

The second major issue is that of the appropriate representation of the

-

Py

non-Newtonian behavior of a 1liquid. There are two aspects to this:
selection of a suitable constitutive relation and determination of the

parameters to be inserted in this relation. It is crucial, moreover,

that the relation and the parameters be appropriate for the type of flow
under consideration. In our view, a constitutive relation, with para-

meters, that has been determined and tested fr 1ifferent type of flow
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may well be completely irrelevant for some ot wpe of flow.

This situation poses a major dilemma for the present project. On a gen-

eral level we are unaware of any constitutive relations that have been
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verified (as against postulated) for fully three-dimensional flows of
the type under study here. For this reason we were not in a position to
hypothesize a constitutive law that could be subject to experimental
comparison. On a specific level, for the two liquids of direct interest
the information available regarding their non-Newtonian behavior was
obtained from simple-shear experiments, and may or may not be relevant

to the flow in a spinning and coning cylinder.

As a consequence of this we cannot be certain whether the results
obtained in our computations have quantitative validity. On the other
hand we feel that they do predict correct behavior qualitatively; this
is because there is general qualitative agreement between the computa-
tions based on the experimental data and the approximate analysis in
Section 5 based on a number of different theoretical models. The most
important feature that emerges uniformly is that the maximum despin
moment occurs at a significantly lower Reynolds number in a non-

Newtonian fluid than in a Newtonian fluid.

In order to obtain computational results that could be quantitatively
reliable it would be necessary to determine a constitutive law and para-
meters valid for the flow in gquestion. This would not be easy to do with
any degree of certainty. The analysis of Section 5 can be helpful; it
shows that beginning with various different models one arrives for small
enough n at a relation that involves a complex viscosity. The latter is
a quantity that can be measured from stress relaxation or torsional
rheogoniometer experiments. At the same time 1t must be said that a com-

plex viscosity law, which is a linear law, may be insufficient. The non-
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linear law of shear thinning used in the computations led to significant
effects, which would not have been the case if the response of the
1l‘quid were primarily linear-elastic. This may be attributed to the fol-
lowing fact. A typical dilute polymer solution has a relaxation time of
about 0.05 - 0.1 sec. For a large spin rate of 4000-6000 rpm, the
Weissenberg number as defined by equation (2.6) will lie in the range
20-60, which is very large in terms of standard viscoelastic models. In
fact, the perturbation procedure of Section 5 breaks down at such large
Weissenberg numbers. These observations suggest an appropriate empirical
law should incorporate both the elastic effects giving rise to complex

viscosity and nonlinear effects due to the large Weissenberg number.

In summary therefore, we believe that the finite element method as
implemented in the code FIDAP provides accurate solutions to the problem
of non-Newtonian fluid flow in a coning and spinning cylinder; reliable

quantitative results await the empirical determination of a suitable

constitutive law.




P it TN

- 8 Aa

W WY L S el A RSN A S EEEETTS b A LA LS. -

. o

P &0 ARY S 2 2 P oA £ BTNV R TR AP A A AR AR

.52-

REFERENCES

W.0. Criminale, J.L. Fricksen and G.L. Filbey, Arch. Rat. Mech. Anal.,
1, 410, 1958.

W.P. D’Amico Jr. and M.C. Miller, J. Spacecraft & Rockets, 16, 62, 1979. .
T. Herbert, CRDC Final Report, Contract DAAK11-83-K-0011, July 1985,

M.C. Miller, J. Guidance, Control & Dynamics, 5, 151, 1982.

J.G. Oldroyd, Proc. Roy. Soc. A, 245, 278, 1958.

K. Stewartson, J. Fluld Mechanics, 5, 577, 1959,

H.R. Vaughn, W.L. Oberkampf and W.P. Wolfe, J. Fluid Mechanics, 150,
121, 1985,

E.H. Vedemeyer, B.R.L. Report No. 1325, 1966.




-53.

}

; Re M, H M M_/M,

l .

E 10 .05953 .02807 .02202 .3699
; 20 07791 .06560 .02860 .3671
‘ 30 .08056 .09023 .02946 .3657
§ 40 07982 | .10545 | .02918 3656
E 60 .07654 .12556 .02805 .3665
i 80 .07303 .13854 .02681 L3671
{ 100 .06975 .14793 .02562 .3673
é 120 .06669 .15532 .02450 3674
i 150 .06288 .16327 .02311 .3675
; 175 .05984 .16885 .02200 .3676
i 200 .05729 .17310 .02108 .3680
i 300 .04921 .18448 .01817 .3692
2 400 .04361 .19069 .01619 3712
; 500 .03945 19437 .01472 .3731
4 750 .03244 .19805 .01229 .3789
g 1000 .02804 .19768 .01080 .3852
|

.

2,

by Table 1: Moments for a Newtonian liquid in a cylinder of aspect
E ratio 4.368, coning angle 20°, coning/spin ratio 1/6
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Liquid 1 Liquid 2 }

Sheatr rate Viscosity Shear rate Viscosity
(sec™) (poise) (see™ (poise)
.855 8.011 .017 1307.349
1.707 7.937 .034 1216.849
3.407 7.488 .067 1125.913
6.798 7.271 .135 1022.781
13.564 6.818 .27 942,722
27.064 5.892 .54 797.31
54. 4,872 1.077 651.202
107.744 4.07 2.149 504,397
214.977 3.152 4.289 371.76
428,937 2.49 8.558 257.124
679.819 2.087 17.076 161.551

Table 2: Experimental data for variation of viscosity

with shear rate for two liquids
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rom n Re M, M M,
1000 .5 1.7 .66036 .368902 .24118
2000 .25 3.4 .18870 .195367 .068612
3000 .1667 5.1 .081789 .111845 .029732
4C00 .125 6.8 .043971 .071511 .016001
5000 .1 8.5 .027316 . 049646 .009950
6000 .0833 10.2 .017866 .0362349 .0065039
7000 .07143 11.9 .012591 .027650 .004585
8000 .0625 13.6 .0092860 .0217832 .0033782
9000 .05556 15.3 .0070814 .0175939 .0025752
10000 .05 17.0 .005546 .014488 .002016
Table 3: LIQUID 2 - Coning rate f1 = 500 rpm, Couing angle § = 20°
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rom " Re M, M, M,
1000 | .3 1.7 | .23166 113717 .083304
2000 | .15 3.4 | 067447 .071241 .024475
3000 | .1 5.1 | .028997 0460781 .010542
4000 | .075 6.8 | .015686 .026023 .005706
5000 | .06 8.5 | .009542 .017878 .003479
6000 | .05 10.2 | .0064163 | .0131311 .0023306
7000 | .04286 | 11.9 | .004534 .0099828 .0016464
8000 | .0375 13.6 | .0033457 .0078472 .0012149
2000 | .033% 15.3 | .0025481 | .00631841 | .00092651
10000 | ..3 17.0 | .002003 .005196 .000728

Table 4: LIQUID 2 - Coning rate 0 = 300 rpm, Coning angle 6 = 20°
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E 5.

|

! w -

: rpm n Re M, M, M,

o

:i 1000 .5 1.7 .34027 .160873 | .059135

P 2000 .25 3.4 .10254 .103172 .017882

E 3000 .1667 5.1 .043883 . 0600640 .0077028

i 4000 .125 6.8 .023523 .0383475 .0041432

5000 1 8.5 .014343 .0266239 .0025288

¥ 6090 .0833 10.2 .0095728 .0195625 .0016808

! 7000 .07143 11.9 .0067004 .0149356 .0011818

;. 8000 .0625 13.6 .0049337 .0117658 .000869

¥ 8000 .05556 15.3 .0037631 .009499 .000663
10000 .05 17.0 .0029458 .007813 .000519

w0

Table 5: LIQUID 2 - Coning rate 1 = 500 rpm, Coning angle ¢ = 10°
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LS AL A IR oL SR O

% Re finiteMéylinder 1nf1n1cenéy11nder '
% computation approximate solution
|

2 10 .02202 .02656

3 20 .02860 .03043

5 30 .02946 .02882

i 40 .02918 .02690

i 60 .02805 .02386

i 80 .02681 .02268

3 100 .02562 .01998

5 120 .02450 .01865

i 150 .02311 .01709

% 200 .62108 .01520

Table 6: Comparison of despin moments o>tained from finite element

computation and infinite-cylinder approximate solution
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Figure 2: Variation of velocity function f with vadius
viscoelastic fluid, Re = 1§

1. Newtonian 3. De =GC.2, ¢
2. De = 0.1, ¢ = 0.1 L, De = 0.2, ¢

]

e ek mnwr——. A




FINSWIE R bt e AR Mgt oon Ul nt Rat et

-61-

(.0

g LA it WY W, o W SIS SRR

Figure 3: Variation of veleccity function g with radius r for
viscoelastic fluid, Re = 15

1. Newtonian 3. De=20.2, ¢ =0.1
2. De=10.1, ¢ =0.1 4. De = 0.2, ¢ = 0.2
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o 1. Newtonian 3. De =0.2,
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4
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Figure 5: Variation of velocity function g with radius r for
viscoelastic fluid, Re = 50

1. Newtonian 3, De = 0.2, ¢
2. De =-0.1, e = 0.1 4. De = 0.2, €
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)

Figure 7: Variation of velocity function f with radius r

for second-order fluid, Re = 15

1. Newtonian
2. De = .01
3., De - .1
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Figure 8: Variation of velocity function g with radius r
for second-order fluid, Re = 15

1. Newtonian
2. De = .01
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Figure 9. Variation of velocity function f with radius r
for second-order fluid, Re = 50

1. Newtonian
2. De = .01
3. De = .1
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Figure 10: Variation of velocity function g with radius r

for second-order fluid, Re = 50

1. Newtonian
2., De = .01
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0.2 —

Figure 11: Variation of moment M (equation (6.1))

with Re for second-order fluid

1. Newtonian
2. De = 0.01
3. De =01
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Figure 13: Variation of M, with Reynolds number for a Newtonian liquid,
with § = 20°, n = 1/6, b = 4.368
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Figure 21:

Variation of despin moment M, with Reynolds number
for non-Newtonian Liquid 2 (solid curve) and for an
equivalent Newtonian liquid (broken curve) with

Q = 400 rpm, w = 4000 rpm, § = 20°
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Figure 22:

Variation of despin moment M_ with Reynolds number
for non-Newtonian Liquid 2 (solid curve) and for an
equivalent Newtonian liquid (broken curve) with

Q = 400 rpm, w = 4800 rpm, # = 20°
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Figure 23: Variation of M, with spin rate w for Liquid 2
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