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o selection problem is studied via a parametric empirical Bayes approach. Two empirical
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1. Introduction

Consider a multinomial population with k > 2 cells and the associated probability

vector p = (p1,...,pk) where zk:l pi = 1. Let p;jj < ... < pj denote the ordered values
i=

of the parameters py,...,px. It is assumed that the exact pairing between the ordered
and the unordered parameters is unknown. Any event associated with P(k] is considered
as the most probable event. A number of statistical procedures based on single samples or
sequential sampling rules have been considered in the literature in the classical framework
for selecting the most probable event. Bechhofer, Elmaghraby and Morse (1959) have
considered a fixed sample procedure through the indifference zone approach. Gupta and
Nagel (1967), Panchapakesan (1971) and, Gupta and Huang (1975) have studied this
selection problem using a subset selection approach. Cacoullos and Sobel (1966), Alam

(1971), Alam, Seo and Thompson (1971), Ramey and Alam (1979, 1980) and Bechhofer

and Kulkarni (1984) have considered sequential selection procedures.

We now consider a situation in which one repeatedly deals with the same selection
problem independently. In such instances, it is reasonable to formulate the component
problem in the sequence as a Bayes decision problem with respect to an unknown (or
partially known) prior distribution on the parameter space, and then, use the accumu-
lated observations to improve the decision rule at each stage. This is the empirical Bayes

approach due to Robbins (1956, 1964 and 1983).

Empirical Bayes rules have been derived for subset selection goals by Deely (1965).
Recently, Gupta and Hsiao (1983) and Gupta and Leu (1983) have studied empirical

Bayes rules for selecting good populations with respect to a standard or a control with the
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underlying populations being uniformly distributed. Gupta and Liang (1984, 1986) have
studied empirical Bayes rules for the problem of selecting the best binomial population
or selecting good binomial populations. Many such empirical Bayes procedures have been
shown to be asymptotically optimal in the sense that the risk for the nth decision problem
converges to the optimal Bayes risk which could have been obtained if the prior distribution

was fully known and the Bayes procedure with respect to this prior distribution was used.

Note that the above mentioned empirical Bayes rules use the so-called nonparametric
empirical Bayes approach. That is, one assumes that the form of the prior distribution
is unknown. However, in many cases, an experimenter may have some prior information
about the parameters of interest, and he would like to use this information to make ap-
propriate decisions. Usually, it is suggested (for example, see Robbins (1964)), that the
prior information is quantified through a class of subjectively plausible priors. In view of
this situation, in this paper, it is assumed that the parameters of interest in a multinomial
distribution follow some conjugate prior distribution with unknown hyperparameters. Un-
der this statistical framework, two empirical Bayes selection rules are proposed. They are
shown to be asymptotically optimal at least of order O(exp(—c,n)) for some positive con-

stants ¢;, 1 = 1,2, where n is the number of accumulated past experience (observations)

at hand.

2. Formulation of the Problem under the Empirical Bayes Approach

Consider a multinomial population with k(> 2) cells, where the cell m; has probability
pi, t = 1,...,k. Let X; denote the observations that arise in the cell n; based on N (> 2)

2
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independent trials. Thus, for given p = (p1,...,px), X = (X1,..., Xi) has the probability

function

(2.1) f(zlp) = HP
'.I;Il(z") =1

k
where, z; = 0,1,...,Nand ) z; =N

i=1
For each p, let pjy] < ... < p(x denote the ordered parameters py,...,pi. It is assumed
that there is no apriori knowledge about the exact pairing between the ordered and the
unordered parameters. Any cell 7; associated with p(x) is considered as the most probable

event. Our goal is to derive empirical Bayes rules to select the most probable event.

k
Let Q@ = {plp= {p1,.-.,Pk), 0 < p; <1land ) p; =1} be the parameter space. It i«
i=1
assumed that p has a Dirichlet prior distribution G with hyperparameters & = (ay, ..., a,},
where all ; are positive but unknown. That is, p has a probability density function of the

form

r(ao) u oy —1 k
(2.2) g(p) = ——— [[p " 0<pi<1, Y pi=1,
=1

where ag = Z a;.

Let A = {¢]i = 1,...,k} be the action space. When action 1 is taken, it means that
the cell 7, is selected as the most probable event. For the parameter p and action ¢, the

loss function L(p,t) is defined as

(2.3) L(p,1) = pu — i,
3
o
f
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the difference between the most probable and the selected event.

Let X be the sample space of X = (Xy,...,X}). A selection rule d = (d,,...,dx) is a
mapping from X into [0, 1)* such that for each zeX, the function d(z) = (dy(z),...,dk(z))
k
is such that 0 < di(z) <1, i = 1,...,k, and ) di(z) = 1. Note that di(z), i =1,...,k
i=1

is the probability of selecting cell #; as the most probable event given X = z.

Let D be the class of all selection rules as defined above. For each deD, let r(G,d)

denote the associated Bayes risk. Then r(G) = 3nlf; r(G,d) is the minimum Bayes risk.
€

For each zeX, let

(24) A(z) = {ilzi + o = 22x (27 + aj)}.
Consider the selection rule dg = (d;¢,.. .»dxc) defined below: for eacht =1,... k,
_1 . .
2.5 = di(z) = { AT if deA(z),
(25) dic d'G(:E) {0 otherwise,

where |A| denotes the cardinality of the set A.

A straightforward computation shows that the selection rule d¢ is a randomized Bayes
selection rule in the class D. Since the values of the hyperparameters (o;,...,ax) are
unknown, it is impossible to apply this Bayes selection rule d¢ for the selection problem
at hand. As we mentioned above, we study this selection problem via empirical Bayes

approach.

For each j = 1,2,..., let X; = (Xy;,..., Xk;) denote the random observations arising
from N independent trials at stage j. Let P; = (Pyy,...,Px;) denote the (random)
parameters at stage j. Conditional on P, X; has a probability function of the form ol

4
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(2.1). It is assumed that independent observations X,..., X, are available, and P;, 1 <
J < n, have the same prior probability density function of the form (2.2), though not

observable. We also let X1 = X = (Xi,..., Xi) denote the present observations.

Two empirical Bayes selection rules are proposed depending on whether the value of
the parameter ag is known or unknown. Note that ag is the sum of all the parameters
a;, 1 <1<k In ‘ase that ap is known, the individual values of a;, 1 <1 < k, are

still unknov
First, for eacht = 1,...,k, and eachn =1,2,..., we let
Xi(n) = -};é Xij, Mi(n) = %J;:jl X2,
(2.6) Zi(n) = [N X;(n) — M;(n)]Xi(n), and
Yi(n) = [M(n) — Xi(n)]N - (N =~ 1)(Xi(n))?.

When ap is known, let

(2.7) ain = @ X;(n)N 71,
and lct
(2.8) Au(Z-') = {ilz‘- + agp = l?ja%(k(zj + aJ-n)}.

We then define an empirical Bayes selection rule dn = (J;n, - ,J;m) as follows: for

cachi=1,...,k, zeX,

] _ [An(z)|7! if tedn(z),
(2.9) din(2) {0 otherwise.

When ag is unknown, we first let

(2.10)

st = 5 AT 1300w K00




..................

Also, let

(2.11) An(2) = {i|Ain(z:) = max Ajn(z;)}-

T PP dd o g s AN

*

fnse - +sdry,) as follows: for

We then define an empirical Bayes selection rule d;, = (d

eachi=1,...,k, zeX,

(2.12) d (z) = {!A;(as)l“ if ied}(z),
- 0 otherwise.

In the next section, we will study the optimality of the two sequences of empirical

Bayes selection rules {d,,} and {d3}.

3. Asymptotic Optimality of Selection Rules {d,} and {d;}

Consider an empirical Bayes selection rule dn(z). Let 7(G,d,) be the Bayes risk
associated with the selection rule d,(z). Then r(G,d,) — r(G) > 0, since r(G) is the
minimum Bayes risk. The nonnegative difference is always used as a measure of optimality

of the selection rule d,,.

Definition 3.1. A sequence of empirical Bayes rules {d,,}32 , is said to be asymptot-

ically optimal at least of order 8, relative to the prior distribution G if r(G,d,) — r(G) <

0(B,) as n — oo, where {8,} is a sequence of positive values satisfying lim g, = 0. X
n—oo
3.1. Asymptotic Optimality of {J,,} ’ y
We first consider the case where ag is known. Note that a;, is an unbiased estimator

k
of ay; also Y a;n = ap for each n = 1,2,....
1=1

% v
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For each ze X, let A(z) be as defined in (2.4) and let B(z) = {1,2,...,k}\A(z). Thus,

for each xeX, icA(z), jeB(z), zi + a; > T; + a;. Following straightforward computation.

we can show

0< r(G,dy) - r(G)

(3.1) SZ Z Z P{z; + ain < z; + ajn}.

ZeX icA(Z) jeB(T)

Now, for icA(z), jeB(z),
P{z; + oin < zj + ajn}
) Q| 1 -1
= P{- > [ (Kim = Xjm) - ;(—)(ae —o)l < —(zit oy —z; — aj)ag )
m=1

3 <P Ly~ 1 1
(3.2) < P{- m{:lljv(xim = Xim) = oo - o)) < —eij)

< exp{-n2_1e?j

< exp{—nc,},

where

s -1

&ij = min{|z; + a; — z; — ajlag '|z;,2; = 0,1,...,N,0< z; + z; < N,

(3.3) it oy —T; — o # 0}

>0 since N is a finite number .
and
(34) C :Z—Imin {Eijli,]lzls--'akv t#J}>0

7
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In (3.2), the second inequality is obtained using the fact that

1

E{ % (Xim ~ Xjm) - aio(ae —aj)] =0,

1 1 1 1
— 1= ol ) < H(Xim - im) = a—o(ai —og) <1 (e - a;)

and then making use of Theorem 2 of Hoeffding (1963).

By noting that X is a finite space, from (3.1) and (3.2), we have the following theorem.

Theorem 3.1. Let {J,,} be the sequence of empirical Bayes selection rules defined

n (2.9). Then r(G,d,) — r(G) < O(exp (—c1n)) for some positive constant c,.

3.2. Asymptotic Optimality of {d;}.

For each zeX, let A(z) and B(z) be as defined in the previous sections. For the

-iection rule d},, one can obtain the following result

0 <r(G,d;) - r(G)

(3.5) <Y N Y P{an(@) < Ajalz;))

ZeX icA(T) jeB(Z)

Since X is finite, we only need to consider the behavior of P{Ain(z:) < Ajn(z;)} for

each zeX. Now

P{Ain(zi) < Aju(z)}
(3.6) = P{An(z:) < Byn(a;) and (Z(n) <0 or Z;(n) <O or Yi(n) <O or ¥ (n) - 0)}

+ P{Ain(zi) < Ajn(z,) and (Z,(n) >0, Z;(n) >0,Y,(n) >0 and Y,(n) - 0)}.

8
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Before we go further to study the associated asymptotic behaviors of the above prob-

abilities appearing on the right hand side of (3.6), we need some notation and a lemma.

Let uin = E[Xi(n)] and p,2 = E[M;(n)]. Then, following a direct computation,
we have p;; = Nayog!, py = Najag! + (N? — N)ag(ay + 1)eg (a0 + 1)1 Hence.

a; = LiLy,', where Liy = (Npi1 — pi2)pins Liz = (2 — par) N — (N — 1)p?,.

Note that L;, and L,; are both positive, which can be verified directly by the definition

of uiy and p,3.

Lemma 3.1. Let b > 0 be a constant. Then,
a) P{Zi(n) - Lir < ~b} < O(exp(~b:n));
b} P{Z;(n) — Li; > b} < O(exp(—b;n));
c) P{Yi(n) — Li2 < —b} < 0(exp(—b;n));
d) P{Yi(n) — L,z > b} < O(exp(—b;n));
where b; = b2[2N*4(N + )%~ > 0.

Proof: The techniques used to prove these four inequalities are similar. Here, we give the

proof of part a) only.

Note that Z;(n) = [NX;(n) — M;(n)]Xi(n) > 0. Hence, P{Z;(n) — L;; < —b} =0 if

L1 — b<0. So, we assume that b > 0 is small enough so that L;; — b > 0. Then,




3
¢
X P{Zi(n) — Li; < —-b}
{ = P{N((X(n))? = wh] — [Mi(n) Riln) — piapas] < b}
. < P{X(n) — pir < —b2N(N + pi1))~*}
\
N~
~ (3.7) + P{)—(,(n) — KB4 > b(4N2)—l} + P{M;(n) — Wig > 6(4[1,"1)_1}
o
< exp{—nb?[2N*(N + u;1)?™"}

«
“u
N + exp{-nb?[8N*|"!} + exp{-—nb*[8N*u;|"'}
N
' < O(exp(—nb;)).
B
9 Note that in (3.7), the first inequality is obtained from the fact that 0 < X;(n) < N,0 <
' M;(n) < N? and an application of Bonferroni’s inequality; the second inequality follows

from an application of Theorem 2 of Hoeffding (1963) and the last inequality is obtained

from the definition of b;.
. Hence, the proof of part a) is complete.
<
<
:: By the positivity of L;; and L2, and by Lemma 3.1,
2
- P{Ain(zi) < Ajn(z;) and (Z;(n) <0 or Z;(n) <0 or Y;(n) <0or Y;(r) <0)}
y (3.8) < O(exp(—n min(bs,b;)))

= O(exp(—nb,;)), where b;; = min (b;, b;).

1
h Therefore, we then only need to consider the asymptotic behavior of P{A,. () -

A, n(z;) and (Zi(n) > 0,Zj(n) > 0,Yi(n) >0 and Y;(n) > 0)}.

10
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Let Qi; = (xi - Ij)L.'ngz + LiyLjz — Li2Lj;. Then Q¢; > 0 if ieA(.‘_I':) and ]'CB(:}‘).
Therefore,
P{An(z:) < Ajn(z;) and (Z;(n) > 0, Z;(n) > 0,Y;(n) > 0 and Y;(n) > 0)}
(3.9) < P{(z: - z;)[Yi(n)Y;(n) — LizL;2] < —Qi;/3}
+ P{Zi(n)Yj(n) — LaLj2 < —Q:;/3}

+ P{Yi(n)Z;(n) — LizL;1 > Qi;/3}.

With repeated applications of Bonferroni’s inequality, we have the following inequali-

ties:

P{(z: - z;)[Yi(n)Y;(n) — LizLj2] < —Qi;/3}
(3.10.a) < P{Yi(n) — Li» < ~Qi;(6N*)"'} + P{Y;(n) — L2 < ~Q,;(6NLy2) "'}
if z; > zj;
P{(z: - z,)[Yi(n)Y;(n) — LizL;j2] < -Qi;/3}
(3.10.5) < P{Yi(n) — Liz > Qi;j(6N*)"'} + P{Y;(n) — Ljz > Qy;(6NLi2) ™'}
if z; < zj;

or

(3.10.¢) P{(z; — z;)|Yi(n)Yj(n) — LizLj2] < —Qi;/3} =0 if zy = z;;

P{Zi(n)Y;(n) - LiL;j2 < -Qi;/3}
(3.11) < P{Zi(n) - Liy < ~Qi;(6N3) "'} + P{Yj(n) ~ Ljz < ~Qy;(6L) "'}

11
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and

P{Y;(n)Z;(n) — LisLjx > Qi;/3}

(3.12) < P{Yi(n) — L;2 > Q.‘,‘(GNa)_l} + P{Z,-(n) - L > Qt’j(sLiz)—l}'

Then, by Lemma 3.1 and from Equations (3.9) through (3.12), we conclude that

P{An(z:) < Ajn(z;) and (Zi(n) > 0,2Z;(n) > 0,Y;(n) > 0 and Y;(n) > 0)}

(3.13) < 0(exp(—nay;)) for some a;; > O.

Now, from (3.6), (3.8) and (3.13), for each zeX, ieA(z) and jeB(z),
(3.14) P{Ain(z:)) € Ajn(z;)} < O(exp(—n min(b;j, as5))).
Now, let ¢; = I.!:éil_l{min(b"j,aij)}. Then ¢z > 0.
1#£)
Based on the preceding, we have the following result.

Theorem 3.2. Let {d:} be the sequence of empirical Bayes selection rules defined

in (2.12). Then r(G,d;) — r(G) < 0(exp(—czn)) for some positive constant c3.

Remark: One of the selection problems related to multinomial distribution is to select

the least probable event; that is, to select the cell associated with p(;j. If we consider the

loss function

(3.15) L(p,?) = pi — p1}

12
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the difference between the selected and the least probable event, then under the statistical

model described in Section 2, a uniformly randomized selection rule is dg = (dig, - - ., dkG),

where, for eacht =1,...,k,

1 -1 . .
(3.16) ¢ c(z) {0 otherwise,
and
(3.17) Az) = {t]zi + o = lrsr?gk(aj + z;)}.

Let atin, Ain(zi) be defined as in (2.7) and (2.10), respectively. When ao is known,

we let
(3.18) An(z) = {8|zi + @in = lrﬁr};xslk(z,- + ajn)}s
and define a randomized selection rule dy, (z) = (din(2), - - - ,din(z)) as follows:

(3.19) din(z) = { lAn(z)| i iedn(2),

otherwise.

When aq is unknown, we let
(3.20) AL(z) = (118in(z:) = min, Aja(z;)},
and define a randomized selection rule d;(z) = (d}n(2), .., dsn(z)) as follows:

i (o) = [1Aa (@)™t i iedi(2),
(3.21) in(2) {0 otherwise.

13
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Following a discussion analogous to that given earlier for the most probable event,
we can see that {d,} and {d,} are both asymptotically optimal and have the following

convergence rates:

0 < r(G,d,) — r(G) < 0(exp(—ean)),

0 < r(G,d;) — r(G) < O(exp(—cqn)),

for some positive constants ¢z and ¢4, where r(G) now denotes the minimum Bayes risk

with respect to the loss function (3.15).
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