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- Abstract

P Consider, a multinomial population with k( _ 2) cells and the associated probability

vector'.p = (pl,... ,Pk). Let P[k] = max pi.-A cell associated with pll is called the most!<i<k

probable event. We are interested in selecting the most probable event. Let i denote

the index of the selected cell. Under the loss function L(p, i) = P[k] - pi, this statistical

selection problem is studied via a parametric empirical Bayes approach. Two empirical

Bayes selection rules are proposed. They are shown to be asymptotically optimal at least

of order 0(exp(-cin)) for some positive constants ci, i = 1,2, where n is the number of

accumulated past experience (observations) at hand.
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1. Introduction

Consider a multinomial population with k > 2 cells and the associated probability

k
vector - (p,... ,pk) where i pi = 1. Let PIll < . plki denote the ordered values

of the parameters Pl,...,Pk. It is assumed that the exact pairing between the ordered

and the unordered parameters is unknown. Any event associated with p{k] is considered

as the most probable event. A number of statistical procedures based on single samples or

sequential sampling rules have been considered in the literature in the classical framework

for selecting the most probable event. Bechhofer, Elmaghraby and Morse (1959) have

considered a fixed sample procedure through the indifference zone approach. Gupta and

Nagel (1967), Panchapakesan (1971) and, Gupta and Huang (1975) have studied this

selection problem using a subset selection approach. Cacoullos and Sobel (1966), Alam

(1971), Alam, Seo and Thompson (1971), Ramey and Alam (1979, 1980) and Bechhofer

and Kulkarni (1984) have considered sequential selection procedures.

We now consider a situation in which one repeatedly deals with the same selection

problem independently. In such instances, it is reasonable to formulate the component

problem in the sequence as a Bayes decision problem with respect to an unknown (or

partially known) prior distribution on the parameter space, and then, use the accumu-

lated observations to improve the decision rule at each stage. This is the empirical Bayes

approach due to Robbins (1956, 1964 and 1983).

Empirical Bayes rules have been derived for subset selection goals by Deely (1965).

Recently, Gupta and Hsiao (1983) and Gupta and Leu (1983) have studied empirical

Bayes rules for selecting good populations with respect to a standard or a control with the

1
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underlying populations being uniformly distributed. Gupta and Liang (1984, 1986) have

studied empirical Bayes rules for the problem of selecting the best binomial population

or selecting good binomial populations. Many such empirical Bayes procedures have been

shown to be asymptotically optimal in the sense that the risk for the nth decision problem

converges to the optimal Bayes risk which could have been obtained if the prior distribution

was fully known and the Bayes procedure with respect to this prior distribution was used.

Note that the above mentioned empirical Bayes rules use the so-called nonparametric

empirical Bayes approach. That is, one assumes that the form of the prior distribution

is unknown. However, in many cases, an experimenter may have some prior information

about the parameters of interest, and he would like to use this information to make ap-

propriate decisions. Usually, it is suggested (for example, see Robbins (1964)), that the

prior information is quantified through a class of subjectively plausible priors. In view of

this situation, in this paper, it is assumed that the parameters of interest in a multinomial

distribution follow some conjugate prior distribution with unknown hyperparameters. Un-

der this statistical framework, two empirical Bayes selection rules are proposed. They are

shown to be asymptotically optimal at least of order O(exp(-cin)) for some positive con-

stants ci, i = 1,2, where n is the number of accumulated past experience (observations)

at hand.

2. Formulation of the Problem under the Empirical Bayes Approach

Consider a multinomial population with k(> 2) cells, where the cell 7r, has probability

pi, i 1,... ,k. Let X, denote the observations that arise in the cell ir, based on N(> 2)

2
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independent trials. Thus, for givenp = (p,...,p),X = (Xi,...,Xk) has the probability

function

N! ~k(2.1) f ._'
k
1~1 (Xi!)
i=1

k
where, xi 0,1,...,N and xi = N.

Foreach.p, letpiqj <- --- <- Plkl denote the ordered parameters pl,...,p k. It is assimrid

that there is no apriori knowledge about the exact pairing between the ordered and the

unordered parameters. Any cell iri associated with p[k] is considered as the most probable

event. Our goal is to derive empirical Bayes rules to select the most probable event.

k
Let 0 {8[= (p,...,pk), 0 < pi < l and >jpi = 1} be the parameter space. It is

assumed that V has a Dirichlet prior distribution G with hyperparameters a = . ,

where all a, are positive but unknown. That is, V has a probability density function of th.'

form

(2.2) g(P) k Pi < 1, <pk=<1,
H r(a1 i= 1='

ij=1

k
where ao Z a,.

€ i=1

Let A {ili = 1,... ,k} be the action space. When action i is taken, it means that

the cell ir, is selected as the most probable event. For the parameter V and action i, the

loss function L(p,i) is defined as

(2.3) L(,i) , - Pi,

..'3
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the difference between the most probable and the selected event.

Let X be the sample space of X = (X,,... , Xk). A selection rule d = (di,..., dk) is a

mapping from X into [0, 1l such that for each xiEX, the function d(F) = (di (),... dk (T))

kis such that 0 _< d,()<1 i = 1,. .. ,k, and di() 1. Note that di ( ), i = 1,...k
i~ l

is the probability of selecting cell xir as the most probable event given X = x.

Let D be the class of all selection rules as defined above. For each dED, let r(G, d)

denote the associated Bayes risk. Then r(G) = inf r(G, d) is the minimum Bayes risk.
deD

. For each z X, let

(2.4) A(.) = {iJ1, + ai = max (xi + aj)).

*. Consider the selection rule dG = (dG,..., dkG) defined below: for each i k1,... ,

(2.5) dic = diG(z) = 0otwiseA(),

where IAI denotes the cardinality of the set A.

A straightforward computation shows that the selection rule do is a randomized Bayes

selection rule in the class D. Since the values of the hyperparameters (Ci,... ,f) are

unknown, it is impossible to apply this Bayes selection rule do for the selection problem

at hand. As we mentioned above, we study this selection problem via empirical Bayes

approach.

For each j =1,2,..., let X = (X 1i,. .. , Xki) denote the random observations arising.

from N independent trials at stage j. Let Pi = (P1 ,,...,Pkj) denote the (random)

parameters at stage j. Conditional on Pi, Yi has a probability function of the form i)(

4
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(2.1). It is assumed that independent observations X1, ..... ,X" are available, and P , 1 <

j < n, have the same prior probability density function of the form (2.2), though not

observable. We also let Xn 1 IX = (Xt,..- . , Xk) denote the present observations.

Two empirical Bayes selection rules are proposed depending on whether the value of

the parameter aco is known or unknown. Note that cf0 is the sum of all the parameters

cti, I1< i < k. bi. -ase that ao is known, the individual values of cei, 1 < i < k, are

still unknov

I..First, foreach i= 1,...,k, and each n =1,2,..., we let

Xi (n) n F, Xi,,Mi(n) X?~ X,

(2.6) Z1 (n) = I N Xi(n) - M(n)IX91 (n), and

L. Y(n) = [M, (n) - Xi (n)]IN - (N - 1 fi()

When ao is known, let

(2.7) Oli = aoX1((n)N',

and Ict

(2.8) At(X7) = {i + Ctin = max (x, + ain)}.

* ~We then define an empirical Bayes selection rule 4 = (d4ft,... , dkn) as follows: for

each i 1,. k, xcX,

(2.9) d4i(x = ' An(T)K 1  if ifAn(z),
10 otherwise.

When a0 is unknown, we first let

(2.1) An~xi xi+ Z(n/ n)if (Z1 (n) > 0 and Y1 (n) > 0),
(210 t~(x) ~ ,()/ 1(i otherwise.

'U%
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I
Also, let

(2.11) A (x) = {ilAi.(x,) max Aj(Xj)l.

We then define an empirical Bayes selection rule d, = (d!,..., d,) as follows: for

each i =1,...,k, xEX,

(2.i2) = 0 L)l -  otherwise.

In the next section, we will study the optimality of the two sequences of empirical

Bayes selection rules {dn} and {d }.

3. Asymptotic Optimality of Selection Rules {d,,} and {dn}

Consider an empirical Bayes selection rule dn(z). Let r(G,dn) be the Bayes risk

associated with the selection rule d,(.). Then r(G,dn) - r(G) > 0, since r(G) is the

minimum Bayes risk. The nonnegative difference is always used as a measure of optimality

of the selection rule d.

Definition 3.1. A sequence of empirical Bayes rules {d,},_ 1 is said to be asymptot-

ically optimal at least of order On relative to the prior distribution G if r(G, dn) - r(G) <

0(f,,) as n --- oo, where {n} is a sequence of positive values satisfying lim On,= 0.
nt-*0o

3.1. Asymptotic Optimality of {dn}.

We first consider the case where ao is known. Note that a, is an unbiased estimator

k
of ai; also Olin =ao for each n =1,2,.

1=1
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L7.1

For each x(!, let A(x) be as defiaed in (2.4) and let B(x) ={1,2,...,k}\A(). Thu.j.

for each xz X, iSA(.), jtB(x), xj + a, > xi + a. Following straightforward computation.

we can show

0 r(G, d) - r(G)

* (3.1) P{z1 + a,,":5 z,+ a,".
ZE X icA(X) jeB(T)

Now, for iuA(x), jEB(x),

P{x + ai, < x + acxp}

-f 1{ ~(I(Xim~ m'aa) <z~ijja'= -, E -xn - Xj. ) - -(,, - Cfj) < -(X, + a, - xj - aj)ao}
n l

(3.2) < P{ n- 1(Xim - Xjm.) - 1(i-a) 6
m=1 Na 0

< exp{-n2-'?,}

< exp{-ncl},

where

Eij =min{lxi + ai - xj - ajlao-l i, xj 0 , 1,... ,N,O < xi + xj < N,

(3.3) x, + ai - x - aj 0}

> 0 since N is a finite number .

and

(3.4) c= 2- min {ci1Ii,J 1,...,k, i 5 j} >0.

7
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In (3.2), the second inequality is obtained using the fact that

E[ (Xim - ~)- -a) 0,

and then making use of Theorem 2 of Hoeffding (1963).

By noting that X is a finite space, from (3.1) and (3.2), we have the following theoremi.

Theorem 3.1. Let {d,,) be the sequence of empirical Bayes selection rules definied

in (2.9). Then r(G,d,,) - r(G) :5 0(exp (-cln)) for some positive constant cl.

3.2. Asymptotic Optimality of {d*}.

For each xEX, let A(x) and B(zT) be as defined in the previous sections. For thc

-lection rule d,*, one can obtain the following result

0 r(G,d*) - r(G)

(3.5) P{Z Z Z P{Ain(xj) <
XeX icA(X) jB(.T)

Since X is finite, we only need to consider the behavior Of P{Ain(xi) - Aj,n(i )} for-

each xcX. Now

(3.6)z P{An(xi) - A,,n(x) and (Z,(n) 50 or Z,(n) < 0 or Y,(n) < 0 or Y (n) 0)}

+ P{Ain(xi) !5 A,,(x,) and (Zi(n) > 0, Z,(n) > 0, Y,(n) > 0 and I' (n) Li)}

-. 8



Beoewe gfutetosdyheassociated asymtotic behaviors of the above proh-

abilities appearing on the right hand side of (3.6), we need some notation and a lemma.

Let i = E[X1j(n)] and Ai2 = E[M1 (n)]. Then, following a direct computation.

we have pil = Naiao1 I A1 2 =Naja I + (N 2 - N)ai(ai + 1)aU '(ao + 1)-i. Hence,

cei- Li L-j 1, where Li I (Nii,1 - iL2hpii1, Li 2 =(Ast2 - jj)N - (N - Ipj

Note that Lil and LO2 are both positive, which can be verified directly by the definition

* of pi,1 and AO.~

Lemma 3.1. Let b > 0 be a constant. Then,

a) P{Z,(n) - Lil < -b} :S O(exp(-bin));

b) P{Z1 (n) -Lil > b} O(exp(-bin));

c) P{Y1 (n) -Li 2 < -b} :S O(exp(-bin));

d) P{Y1 (n) -LO 2 > b} < O(exp(-bin));

where bi b 2 [2N 4(N + I,s1)21-1 > 0.

Proof: The techniques used to prove these four inequalities are similar. Here, we give the

proof of part a) only.

Note that Zi(n) =[NXi(n) - M,(n)}Xj(n) >0. Hence, P{Z1 (n) - Li < -b}) 0 if'

Lil b < 0. So, we assume that b > 0 is small enough so that Lil - b > 0. Then,

A, 9



P{Zi(n) - L,1 < -b}

= P{N[(Xh(n)) - oA1 - [Mdn)XfCn) - iP2 ,il < -b}

< P{X,(n) - ,u < -b(2N(N + lui)) 1 }

(3.7) + P{Xi(n) - jiI > b(4N 2 ) - 1 } + P{Mi(n) - 1i2 > b(4p.j) - 'j

< exp{-nb2 [2N 4 (N + AI)2]-I)

+ exp{-nb'[8N4 ]1- } + exp{-nb2[8N 4t&,1 - 1 }

<O(exp(-nbi)).

Note that in (3.7), the first inequality is obtained from the fact that 0 < X,(n) < N, 0 <

Mi (n) < N 2 and an application of Bonferroni's inequality; the second inequality follows

from an application of Theorem 2 of Hoeffding (1963) and the last inequality is obtained

from the definition of bi.

Hence, the proof of part a) is complete.

By the positivity of Li and L 2 , and by Lemma 3.1,

P{Ain(xi) _< Aj,(xj) and (Z1 (n) _< 0 or Zi(n) _< 0 or Y(n) _ 0 or Y(n) < 0)}

(3.8) < 0(exp(-n min(b,bj)))

- 0(exp(-nbj)), where bi . = min (b,b,).

Therefore, we then only need to consider the asymptotic behavior of ){A,,(.r,)

An(xj) and (Z1 (n) > 0, Z,(n) > 0, Y(n) > 0 and Y,(n) 0)}.

10
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Let Qji (xi - xj)Li 2 Lj 2 + Lj 1Lj 2 -Li 2 L,1 . Then Qij > 0 if icA(z) and j'cB(.T).

Therefore,

P{Aj,'(x,) < Ajp,(x,) and (Zi(n) > 0,Zi(n) > O,Y,(n) > 0 and Y(n) > 0))

(3.9) < P( - xj)[Y1(n)Y,(n) - Li 2 L, 2] < -Qij 33

+ P{Z1 (n)Yj(n) - Lj1 L, 2 < -Qi,/3}

+ P{Yifrt)Zj(n) - Li 2Lj 1 > Qjt 33.

With repeated applications of Bonferroni's inequality, we have the following inequali-

ties:

Pxi- xj)[Y,(n)Yj(n) - Li 2 L, 2] < -Qij 33

*(3.10.a) < P{Y,(n) - Li 2 < -Qij(6N 4 )- 1} + P{Y,(n) - L,2 < -i(Ni)'

if Xi > j

or

P( - xj)[Y1 (n)Yj,(n) - Li 2L 21 < -Qi,/3}

(3. 10. b) < P{Y,(n) - Li 2 > Qjj(6N 4 )-1} + P{Y,(n) - L2> Qi(6NLi2 )-I}

if Xi < j

or

(3.10.c) P( - xj)[Y(n)Yj(n) - Li2Lj 2] < -Qij/3} 0 if xi j

P{Zi(n)Y,(n) - L11I.j 2 < -Qij/3}

*(3.11) < P{Z,(n) - Ldj < -Qj(6N 3 )-1} + P{Y, (n) - Lj 2 <- j(6,1



and

P{Y(n)Zj(n) - Li2Ljl > Q,,/3)

(3.12) P{Yi(n) - Li2 > Qij(6N) - 1 } + P{Z,(n) - Ljj > Qij(6L,2)-I}.

Then, by Lemma 3.1 and from Equations (3.9) through (3.12), we conclude that

P{An(xi) !5 Ai.(xi) and (Z1(n) > o, Z,.(n) > o, Y(n) > 0 and Y,(n) > 0)}

(3.13) <_ O(exp(-nai)) for some ai- > o.

Now, from (3.6), (3.8) and (3.13), for each zeX, ieA(z) and jeB(z),

(3.14) P{A, (xi) A,.(x,)} -_ 0(exp(-n min(b,,,aj))).

Now, let c2 = min{min(bj, a,,) ) . Then C2 > 0.

Based on the preceding, we have the following result.

Theorem 3.2. Let {d.} be the sequence of empirical Bayes selection rules defined

in (2.12). Then r(G,dn) - r(G) 0(exp(-c 2n)) for some positive constant c2.

Remark: One of the selection problems related to multinomial distribution is to select

the least probable event; that is, to select the cell associated with p[i]. If we consider the

loss function

(3.15) L i, ) = pi - Pill,

12
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the difference between the selected and the least probable event, then under the statistical

model described in Section 2, a uniformly randomized selection rule is dG = (dIG,... dkG),

where, for each i =1,..., k,

(16(X)I -i if iEA(z),

(3.16) dt = dic( ) = 0 otherwise,

and

(3.17) A(.) = {illx + a - mn (a, + xj)}.

Let CtiAin(Xi) be defined as in (2.7) and (2.10), respectively. When ao is known,

we let

(3.18) An(z) = {il, + alin = min (xz + aCtn)},

and define a randomized selection rule d-(z)n (d,, (-) ,.. ,dk,(f)) as follows:

(3.19) d 1,n(x) -- if icAn(X),

{in0 )V otherwise.

When a is unknown, we let

(3.20) ,A*(z) - (iIAin(X,)= min A,()},

and define a randomized selection rule d,(z) = (d-,,(f),..., d~n(f)) as follows:

.. (3.21) d{ II(() 1- if ifA,(),
t0 otherwise.

13
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Following a discussion analogous to that given earlier for the most probable event,

we can see that {dR} and {d*} are both asymptotically optimal and have the following
0n

convergence rates:

0 < r(G,,n) - r(G) _ O(exp(-c 3 n)),

0 _ r(G,d*) - r(G) _ O(exp(-c 4n)),

for some positive constants C3 and c4 , where r(G) now denotes the minimum Bayes risk

with respect to the loss function (3.15).
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