Surface Distortions of Asymmetric Line Profiles

by

P. T. Leung and Thomas F. George

Prepared for Publication

in

Chemical Physics Letters

Departments of Chemistry and Physics
State University of New York at Buffalo
Buffalo, New York 14260

December 1986

Reproduction in whole or in part is permitted for any purpose of
the United States Government.

This document has been approved for public release and sale;
its distribution is unlimited.
Surface Distortions of Asymmetric Line Profiles

P. T. Leung and Thomas F. George

Fano line profiles for a molecular system above a metallic grating surface are investigated within a simple model. A double-peak feature as well as a shift of the profile window are observed due to the surface plasmon mode.
SURFACE DISTORTIONS OF ASYMMETRIC LINE PROFILES

P. T. Leung and Thomas F. George
Departments of Chemistry and Physics & Astronomy
State University of New York at Buffalo
Buffalo, New York 14260

Abstract

Distortions of asymmetric Fano profiles for a molecular system above a metallic grating surface are investigated within a simple model. A double-peak feature as well as a shift of the profile window are observed due to the surface plasmon mode.
I. Introduction

Recently, there has been great interest in the study of surface effects on photoabsorption and photodesorption line shapes for an adspecies on a surface. This includes the treatment of vibration and vibration-rotation spectra of chemisorbed and physisorbed molecules. In addition, line profiles involving electronic transitions leading to direct photodissociation of a molecule physisorbed on a rough metallic surface have also been studied for the cases of a metallic spheroid and a shallow sinusoidal grating as the substrate. Furthermore, the distortions of the spectra of a dipole on a randomly rough metallic surface have been studied in a fully quantum mechanical approach. Aside from adsorption spectra, the line shape of the photodesorption yield has also been examined for physisorbed molecules. However, in most of the previous investigations, the line profile for the free molecule (i.e., in the absence of the surface) has almost always been assumed to be symmetric, often of a Lorentzian type, so that asymmetric distortions are brought about by the presence of the surface. One very interesting example is the Langreth line shape which describes the distortion of a vibrational Lorentzian towards a Fano profile, due to energy transfer between the molecule and the surface via the electron-hole-pair mechanism. Nevertheless, among these surface distortion phenomena there remains one case uninvestigated, which is that when the line profile for the free molecule case is already asymmetric in nature. This would include, for example, processes like autoionization or predissociation in molecular systems. It is the purpose of the present letter to present a model study of the surface distortions of such "intrinsic" asymmetric profiles. Specifically, we shall study the dipole
photoabsorption spectra on top of a metallic grating, which is considered as a prototype of rough surfaces.

II. Theory

Instead of calculating exactly the line shape function in a quantum mechanical manner, we shall simulate the absorption process by a classical mechanical model and then look for relative profile distortions due to surface effects. This is in the same spirit of the previous work by our group7 and others6 in which the free Lorentzian profile for direct photodissociation processes is simulated in the context of the "driven damped oscillator model", and then profile distortions are found by introducing the surface effects into the process via terms including the external driving field and the damping constant.

To describe a "free asymmetric profile", we adopt the mechanical model recently proposed by Sorbello4 to describe the Fano effect in atomic physics.11 The model consists of the coupling of a normal mode (ω_o) to a lossy broad-band system such as a viscous bath, with both the oscillator and the bath being described by one degree of freedom. The line shape function obtained in this model can be reexpressed12 in the form

$$I_o(\omega) = \frac{(q + \epsilon_o)^2}{1 + \epsilon_o^2} \sigma_o(\omega),$$

where q is the asymmetric profile index depending on the ratio of the driving force on the oscillator to that on the bath, and $\sigma_o(\omega)$ is the background intensity due to direct excitation of the bath. In case of actual molecular processes, q is defined as the ratio of the transition matrix elements from the initial state to two states whose linear combination gives the final state of the system,11,13 and $\sigma_o(\omega)$ corresponds
to the cross section for direct excitation of the continuum. The reduced
ergy variable ε_o in Eq. (1) is expressed as

$$
\varepsilon_o = \frac{2(\omega - \omega_o - \Delta \omega_o)}{\gamma_o},
$$

(2)

where $\Delta \omega_o$ and γ_o are the level shift and decay rate of the system,
respectively. In general, $\Delta \omega_o << \omega_o$, and hence

$$
\varepsilon_o \approx \frac{2\Delta \omega}{\gamma_o}
$$

(3)

with $\Delta \omega \equiv \omega - \omega_o$.

To investigate the distortions of $I_o(\omega)$ due to the presence of a rough
metallic surface, we shall consider the oscillator as a point dipole
oriented perpendicularly on top of a shallow sinusoidal grating, a case
which we have formulated before for a Lorentzian $I_o(\omega)$.7 Analogously, we
have the surface line shape function expressed as

$$
I(\omega) = \frac{(q + \varepsilon)^2}{1 + \varepsilon^2} |\hat{n}_\mu \cdot [1 + A] \cdot \hat{n}|^2 \sigma(\omega),
$$

(4)

where quantities without the subscript 'o' refers to those at the surface,
and ε is now defined as

$$
\varepsilon = \frac{2\Delta \omega}{\gamma}.
$$

(5)

We have in this approach neglected the surface effects on q and ω_o; this is
justified since, for the former, the effects enter into the ratio of two
transition matrix elements which may be regarded as approximately cancelling
each other, and for the latter such effects have been found to be small.14
In this way, surface effects will only enter via the decay rate γ in Eq. (5)
and the field enhancement factor A in Eq. (4), the latter including both of the Fresnel reflected and the surface plasmon fields. \hat{n}_μ and \hat{n} in Eq. (4) are the unit vectors of the molecular dipole and the incident field, respectively. For a dipole located at $(0,0,d)$, it has been found that

$$|\hat{n}_\mu \cdot [1 + A] \cdot \hat{n}|^2 = |1 + \Re e^{-k_z d} + \Se - k_z \Gamma g |^2 \sin^2 \theta,$$

(6)

where θ is the angle of incidence of the laser light, and the quantities R, S, k_z and Γ are defined as in Ref. 7. Furthermore, the surface-induced molecular decay rate can be expressed as

$$\gamma = 1 + \frac{3}{2} \frac{\alpha}{k^3} \Im G^R (1 + \frac{\Im G^R}{\Im G^F}),$$

(7)

where again all symbols are the same as in Ref. 7.

With the results in Eqs. (6) and (7) substituted into Eqs. (4) and (5), we can calculate the line profile for a molecule on top of a metallic grating by assuming some reasonable form for $\sigma_0(\omega)$. Within the present model study, we have considered the following three different cases with the surface always taken to be a sinusoidal silver grating whose dielectric constant as a function of photon energy is available in a numerically-fitted form.

Case (i) $\sigma_0(\omega) = \sigma(\omega) = \text{constant}$.

In this case, $I_0(\omega)$ may simulate certain atomic autoionization processes (e.g., the photoabsorption line shape of helium in the neighborhood of the first $^1P^0$ resonance). 11,15 In Fig. 1, we show both the line shapes $I_0(\omega)$ and $I(\omega)$ for some hypothetical profile constants (see the figure caption). We see that the frequency corresponding to the zero of the
absorption cross section shifts towards a larger value. This is because \(q < 0 \) in this case and \(\gamma > \gamma_o \) as in Eq. (7).

Case (ii) \(\sigma_o(\omega) = \sigma(\omega) = 1/\omega^2 \).

In this case, \(I_o(\omega) \) simulates a molecular predissociation process (e.g., the predissociation of the \(D^1\Pi_u^+ \) levels by the \(B^1\Sigma_u^+ \) continuum in the photodissociation experiment of hydrogen molecules\(^16\)). The result is shown in Fig. 2, where we see that the 'window' at the steep edge at the low frequency end of the original profile is broadened due to the enhancement effect by the surface plasmon field. At the high frequency end of the distorted profile, the surface plasmon resonance leads to a new window.

Case (iii) \(\sigma_o(\omega) = \frac{\gamma_o}{(\omega - \omega_o)^2 + \gamma_o^2/4} \).

For the above Lorentzian, \(\sigma(\omega) \neq \sigma_o(\omega) \) since \(\gamma_o \) is replaced by \(\gamma \) in Eq. (7). The effects of the surface distortion of the profile \(I_o(\omega) \) are similar to case (ii) (Fig. 3), except that the original window is not broadened as much.

III. Results and Discussion

In all cases (i) to (iii), the dipole is fixed at a distance of 500 Å from the grating, which has a spatial period of 8000 Å and an amplitude-to-period ratio of approximately \(10^{-2} \). In addition, the angle of incidence is fixed at 0.6 rad and the surface plasmon resonance occurs at about 2.9 eV photon energy. We observe that the "double peak" feature\(^6\) appears in all cases, corresponding to the resonance of the molecular system and that of the surface plasmon, respectively. Furthermore, a surface enhancement effect is in general observed, implying that enhanced molecular photopredissociation may also be possible, provided the molecule is not located
too close to the surface and the resonant plasmon field decays very slowly in the direction perpendicular to the surface. 7, 17

Acknowledgments

One of us (P. T. L.) wishes to acknowledge Professor Y. C. Lee and Dr. Daniel A. Jelski for very useful discussions. This research was supported by the Air Force Office of Scientific Research (AFSC), United States Air Force, under Contract F49620-86-C-0009, the Office of Naval Research, and the National Science Foundation under Grant CHE-8519053. The United States Government is authorized to reproduce and distribute reprints notwithstanding any copyright notation hereon.
References

12. We have changed some of Sorbello's original notations from Ref. 4. Here we denote every quantity which refers to the free molecule case in the absence of the surface with the subscript 'o'.
Figure Captions

1. Distortion of the Fano profile with \(\sigma_0(\omega) = \text{constant} \). The profile
 constants are: \(\gamma_0 = 5 \times 10^2, \omega_0 = 1.6 \times 10^4 \) and \(q = -2.65 \). Note that
 the scales for \(I_0(\omega) \) and \(I(\omega) \) are different. The y-axis quantities are
 in arbitrary units for all three figures.

2. Distortion of the Fano profile with \(\sigma_0(\omega) = 1/\omega^2 \). The profile constants
 are: \(\gamma_0 = 4 \times 10^3, \omega_0 = 1.17 \times 10^4 \) and \(q = +3.0 \).

3. Distortion of the Fano profile with a Lorentzian \(\sigma_0(\omega) \). The profile
 constants are the same as in Fig. 2.
<table>
<thead>
<tr>
<th>No.</th>
<th>Copies</th>
<th>No.</th>
<th>Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Office of Naval Research</td>
<td>2</td>
<td>Dr. David Young</td>
<td>1</td>
</tr>
<tr>
<td>Attn: Code 1113</td>
<td></td>
<td>Code 334</td>
<td></td>
</tr>
<tr>
<td>800 N. Quincy Street</td>
<td></td>
<td>NORADA</td>
<td></td>
</tr>
<tr>
<td>Arlington, Virginia 22217-5000</td>
<td></td>
<td>NSTL, Mississippi 39529</td>
<td></td>
</tr>
<tr>
<td>Dr. Bernard Ouda</td>
<td>1</td>
<td>Naval Weapons Center</td>
<td>1</td>
</tr>
<tr>
<td>Naval Weapons Support Center</td>
<td></td>
<td>Attn: Dr. Ron Atkins</td>
<td></td>
</tr>
<tr>
<td>Code 50C</td>
<td></td>
<td>Code: Chemistry Division</td>
<td></td>
</tr>
<tr>
<td>Crane, Indiana 47522-5050</td>
<td></td>
<td>China Lake, California 93555</td>
<td></td>
</tr>
<tr>
<td>Naval Civil Engineering Laboratory</td>
<td>1</td>
<td>Scientific Advisor</td>
<td>1</td>
</tr>
<tr>
<td>Attn: Dr. R. W. Drisko, Code L52</td>
<td></td>
<td>Commandant of the Marine Corps</td>
<td></td>
</tr>
<tr>
<td>Port Hueneme, California 93401</td>
<td></td>
<td>Code RD-1</td>
<td></td>
</tr>
<tr>
<td>Defense Technical Information Center</td>
<td>12</td>
<td>U.S. Army Research Office</td>
<td>1</td>
</tr>
<tr>
<td>Attn: Dr. H. Singerman</td>
<td></td>
<td>Attn: CRD-AA-IP</td>
<td></td>
</tr>
<tr>
<td>Applied Chemistry Division</td>
<td></td>
<td>P.O. Box 12211</td>
<td></td>
</tr>
<tr>
<td>Annapolis, Maryland 21401</td>
<td>high</td>
<td>Research Triangle Park, NC 27709</td>
<td>quality</td>
</tr>
<tr>
<td>DTNSRDC</td>
<td>1</td>
<td>Mr. John Boyle</td>
<td>1</td>
</tr>
<tr>
<td>Attn: Dr. H. Singerman</td>
<td></td>
<td>Materials Branch</td>
<td></td>
</tr>
<tr>
<td>Applied Chemistry Division</td>
<td></td>
<td>Naval Ship Engineering Center</td>
<td></td>
</tr>
<tr>
<td>Annapolis, Maryland 21401</td>
<td></td>
<td>Philadelphia, Pennsylvania 19112</td>
<td></td>
</tr>
<tr>
<td>Dr. William Tolles</td>
<td>1</td>
<td>Naval Ocean Systems Center</td>
<td>1</td>
</tr>
<tr>
<td>Superintendent</td>
<td></td>
<td>Attn: Dr. S. Yamamoto</td>
<td></td>
</tr>
<tr>
<td>Chemistry Division, Code 6100</td>
<td></td>
<td>Marine Sciences Division</td>
<td></td>
</tr>
<tr>
<td>Naval Research Laboratory</td>
<td></td>
<td>San Diego, California 91232</td>
<td></td>
</tr>
<tr>
<td>Washington, D.C. 20375-5000</td>
<td></td>
<td>Dr. David L. Nelson</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chemistry Division</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Office of Naval Research</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>800 North Quincy Street</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Arlington, Virginia 22217</td>
<td></td>
</tr>
</tbody>
</table>
ABSTRACTS DISTRIBUTION LIST, 056/625/629

Dr. J. E. Jensen
Hughes Research Laboratory
3011 Malibu Canyon Road
Malibu, California 90265

Dr. C. B. Harris
Department of Chemistry
University of California
Berkeley, California 94720

Dr. J. H. Weaver
Department of Chemical Engineering
and Materials Science
University of Minnesota
Minneapolis, Minnesota 55455

Dr. F. Kutzler
Department of Chemistry
Box 5055
Tennessee Technological University
 Cookeville, Tennessee 38501

Dr. A. Reisman
Microelectronics Center of North Carolina
Research Triangle Park, North Carolina 27709

Dr. D. DiLella
Chemistry Department
George Washington University
Washington, D.C. 20052

Dr. M. Grunze
Laboratory for Surface Science and Technology
University of Maine
Orono, Maine 04469

Dr. R. Reeves
Chemistry Department
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. J. Butler
Naval Research Laboratory
Code 6115
Washington, D.C. 20375-5000

Dr. Steven M. George
Stanford University
Department of Chemistry
Stanford, CA 94305

Dr. L. Interante
Chemistry Department
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. Mark Johnson
Yale University
Department of Chemistry
New Haven, CT 06511-8118

Dr. K.J. Klaubunde
Department of Chemistry
Kansas State University
Manhattan, Kansas 66506

Dr. Irvin Heard
Chemistry and Physics Department
Lincoln University
Lincoln University, Pennsylvania 19352

Dr. W. Knauer
Hughes Research Laboratory
3011 Malibu Canyon Road
Malibu, California 90265
ABSTRACTS DISTRIBUTION LIST, 056/625/629

Dr. G. A. Somorjai
Department of Chemistry
University of California
Berkeley, California 94720

Dr. R. L. Park
Director, Center of Materials Research
University of Maryland
College Park, Maryland 20742

Dr. J. Murday
Naval Research Laboratory
Code 6170
Washington, D.C. 20375-5000

Dr. W. T. Peria
Electrical Engineering Department
University of Minnesota
Minneapolis, Minnesota 55455

Dr. J. B. Hudson
Materials Division
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. Keith H. Johnson
Department of Metallurgy and Materials Science
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Dr. Theodore E. Madey
Surface Chemistry Section
Department of Commerce
National Bureau of Standards
Washington, D.C. 20234

Dr. S. Sibener
Department of Chemistry
James Franck Institute
5640 Ellis Avenue
Chicago, Illinois 60637

Dr. J. E. Demuth
IBM Corporation
Thomas J. Watson Research Center
P.O. Box 218
Yorktown Heights, New York 10598

Dr. M. G. Lagally
Department of Metallurgical and Mining Engineering
University of Wisconsin
Madison, Wisconsin 53706

Dr. Arnold Green
Quantum Surface Dynamics Branch
Code 3817
Naval Weapons Center
China Lake, California 93555

Dr. R. P. Van Duyne
Chemistry Department
Northwestern University
Evanston, Illinois 60637

Dr. A. Wold
Department of Chemistry
Brown University
Providence, Rhode Island 02912

Dr. J. M. White
Department of Chemistry
University of Texas
Austin, Texas 78712

Dr. S. L. Bernasek
Department of Chemistry
Princeton University
Princeton, New Jersey 08544

Dr. D. E. Harrison
Department of Physics
Naval Postgraduate School
Monterey, California 93940

Dr. W. Kohn
Department of Physics
University of California, San Diego
La Jolla, California 92037
ABSTRACTS DISTRIBUTION LIST, 056/625/629

Dr. F. Carter
Code 6170
Naval Research Laboratory
Washington, D.C. 20375-5000

Dr. Richard Colton
Code 6170
Naval Research Laboratory
Washington, D.C. 20375-5000

Dr. Dan Pierce
National Bureau of Standards
Optical Physics Division
Washington, D.C. 20234

Dr. R. Stanley Williams
Department of Chemistry
University of California
Los Angeles, California 90024

Dr. R. P. Messmer
Materials Characterization Lab.
General Electric Company
Schenectady, New York 22217

Dr. Robert Gomer
Department of Chemistry
James Franck Institute
5640 Ellis Avenue
Chicago, Illinois 60637

Dr. Ronald Lee
R301
Naval Surface Weapons Center
White Oak
Silver Spring, Maryland 20910

Dr. Paul Schoen
Code 6190
Naval Research Laboratory
Washington, D.C. 20375-5000

Dr. John T. Yates
Department of Chemistry
University of Pittsburgh
Pittsburgh, Pennsylvania 15260

Dr. Richard Greene
Code 5230
Naval Research Laboratory
Washington, D.C. 20375-5000

Dr. L. Kesmodel
Department of Physics
Indiana University
Bloomington, Indiana 47403

Dr. K. C. Janda
University of Pittsburgh
Chemistry Building
Pittsburgh, PA 15260

Dr. E. A. Irene
Department of Chemistry
University of North Carolina
Chapel Hill, North Carolina 27514

Dr. Adam Heller
Bell Laboratories
Murray Hill, New Jersey 07974

Dr. Martin Fleischmann
Department of Chemistry
University of Southampton
Southampton 509 5NH
UNITED KINGDOM

Dr. H. Tachikawa
Chemistry Department
Jackson State University
Jackson, Mississippi 39217

Dr. John W. Wilkins
Cornell University
Laboratory of Atomic and
Solid State Physics
Ithaca, New York 14853
Dr. R. G. Wallis
Department of Physics
University of California
Irvine, California 92664

Dr. J. T. Keiser
Department of Chemistry
University of Richmond
Richmond, Virginia 23173

Dr. D. Ramaker
Chemistry Department
George Washington University
Washington, D.C. 20052

Dr. R. W. Plummer
Department of Physics
University of Pennsylvania
Philadelphia, Pennsylvania 19104

Dr. J. T. Keiser
Department of Chemistry
University of Richmond
Richmond, Virginia 23173

Dr. E. Yeager
Department of Chemistry
Case Western Reserve University
Cleveland, Ohio 44106

Dr. J. C. Hemminger
Chemistry Department
University of California
Irvine, California 92717

Dr. N. Winograd
Department of Chemistry
Pennsylvania State University
University Park, Pennsylvania 16802

Dr. T. F. George
Chemistry Department
University of Rochester
Rochester, New York 14627

Dr. Roald Hoffmann
Department of Chemistry
Cornell University
Ithaca, New York 14853

Dr. G. Rubloff
IBM
Thomas J. Watson Research Center
P.O. Box 218
Yorktown Heights, New York 10598

Dr. A. Steckl
Department of Electrical and
Systems Engineering
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. Horia Metiu
Chemistry Department
University of California
Santa Barbara, California 93106

Dr. G. H. Morrison
Department of Chemistry
Cornell University
Ithaca, New York 14853

Dr. W. Goddard
Department of Chemistry and Chemical
Engineering
California Institute of Technology
Pasadena, California 91125

Dr. P. Hansma
Department of Physics
University of California
Santa Barbara, California 93106

Dr. J. Baldeschwieler
Department of Chemistry and
Chemical Engineering
California Institute of Technology
Pasadena, California 91125
END
2-87
DTIC