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PREFACE

The diffraction of light by ultrasonic waves in water ,ias been

studied in great detail by numerous researchers over the past half-

century. Bragg diffraction of light by ultrasonic waves in liquids has

been studied in some detail as well; but it was as late as 1969 that

Korpel showed that Bragg diffraction of light also produces imaging of

the ultrasonic wavefront in the first diffraction order. In 1971

Franklin Martin in this laboratory showed not only that higher order

Bragg imaging can be observed with finite amplitude waves, but also

that multiple images appear in the higher diffraction orders. The

explanation of the higher order imaging has remained incomplete since

that time.

During the summer of 1986 Professor Leroy from Leuven University

in Belgium was a Visiting Scientist at The University of Tennessee under

sponsorship of the UT-ORNL Science Alliance. Since he and one of his

students recently had completed a theory of Bragg diffraction of light

by ultrasonic waves, we were in a unique position to make progress on

understanding the problem raised by Franklin Martin about higher order

imaging. This thesis is the result of interaction between

Professor Leroy and Jeong Kwan Na.

Diffraction of light by ultrasonic waves in water has beet,

studied in the range of frequencies between 4 MHz and 28 MHz. In the

lower range of frequencies Raman-Nath diffraction is observed. As the .............
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frequency increases the diffraction becomes more and more analogous to

x-ray diffraction by crystalline lattices and hence is referred to as

Bragg diffraction. In the Raman-Nath range diffraction is optimum at

normal incidence. In the Bragg range diffraction is optimum for non-

normal incidence. For light incident at the angle of optimum Bragg

diffraction images of the ultrasonic wavefront appear in the

diffraction orders. One image is observed in the first orders and two

images appear in the second orders. The theory of Blomme and Leroy

(Acustica 59, 182-192, 1986) is used to analyze the Bragg diffraction.

It is adequate to explain imaging in both the first and second orders.

A practical application to flaw detection is made by using

Bragg diffraction to image irregularities inside parallel plates of

metal or glass.

The author expresses his sincere gratitude to Dr. M. A. Breazeale,

who patiently directed this research, for his suggestions, constant

pencouragement, and criticism. Special thanks must be given to

Dr. 0. Leroy for his discussions, insight, and assistance, and to the

UT-ORNL Science Alliance for financial support for his visit.

The author wishes to thank the Office of Naval Research for

financial assistance and for the use of many facilities.

He thanks Maxine Martin for typing this thesis.

He is also grateful to his wife, II Cheon, whose encouragement

has made this work possible.
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CHAPTER I

INTRODUCTION

A theory describing the diffraction of light by ultrasonic waves

was developed in a series of papers by Raman and Nath (1935-36).

Although their paper on the generalized theory of the interaction of

light and ultrasound included equations applicable to Bragg diffraction,

this fact was not generally recognized until Phariseau (1956) used

their equations to calculate light intensities in the diffraction

orders.

In the study of the diffraction of light by ultrasound, one

distinguishes between "regular" diffraction and Bragg diffraction.

"Regular" diffraction, usually referred to as Raman-Nath diffraction,

is analogous to the diffraction of light by a ruled grating. Bragg

diffraction of light by ultrasound is more analogous to the diffraction

of x-rays by a crystalline lattice. Theoretical treatment of Raman-

Nath diffraction can be made by considering the effect of variations

in refractive index caused by the ultrasound. Bragg diffraction, how-

ever, is treated as if it were reflection of light by the individual

wavefronts in a periodic perturbed medium. Thus Bragg diffraction

theory is simply a treatment of the scattering of electromagnetic waves

by a periodically perturbed medium.

Theoretical analysis of the region of overlap of Raman-Nath

diffraction and Bragg diffraction has been greatly simplified by
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Klein, Cook, and Mayer (1965, 1967) who defined a dimensionless
parameter Q whose value allows one to determine which type of

diffraction is dominant. Their Q parameter is used in this thesis to

define the experimental conditions for optimum imaging.

A means of studying Bragg diffraction was developed by Korpel

(1969) who demonstrated that the first Bragg diffraction order contains

an image of the ultrasonic wavefront. He showed that objects placed

in the ultrasonic beam were imaged in the first diffraction order.

In order to explain these observations, he treated the Bragg diffraction

process as analogous to parametric mixing and showed that there is a

one-to-one mapping of the ultrasonic wavefront onto the first

diffraction order.

The existence of multiple images in the higher order Bragg

diffraction was first observed experimentally by Martin (1971). He

extended Korpel's mapping theory of Bragg diffraction to analyze the

existence of two images in the second diffraction order. His result,

however, has proved to be inadequate. His mapping theory predicts

that one point on the diffraction order is mapped from two different

points on the ultrasonic wavefront. Although this may be true, it is

inadequate to describe experimental results, as will be shown.

In this thesis experimental observations of the first- and

second-order Bragg diffraction are reported. These observations are

compared with theoretical predictions using the Nth Order Approximation

(NOA) theory of Blomme and Leroy (1986) which is an approximation

jmethod to obtain analytical solution of the difference-differential

equations describing Bragg diffraction.

I
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Application of Bragg imaging to flaw detection also is reported.

Both parallel glass plates and parallel aluminum plates are used. A

flaw on (or in) the plates is imaged because a solid plate in a liquid

medium transmits a maximum amount of the incident ultrasound at the

angles at which Lamb modes are excited within the plates, but a sraller

amount is transmitted at the flaw. The transmitted wavefront contain-

ing an image of the flaw is imaged in the Bragg diffraction order.

Hence, Bragg diffraction can be used for flaw detection in parallel

plates.

1 1
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CHAPTER II

THEORETICAL CONSIDERATIONS

An understanding of the existence of Bragg imaging in the first

diffraction order does not require a detailed theoretical discussion.

As will be shown, the images and their origin are quite apparent.

Bragg imaging in the second orders, however, is more complicated, and

its origin can only be understood after the theory of Bragg diffraction

is understood. For this reason it is worthwhile to begin with a

discussion of Raman-Nath diffraction and show how the theoretical

analysis changes as one increases the frequency of ultrasound and makes

the transition to Bragg diffraction conditions.

0 1. DIFFRACTION THEORY OF RAMAN AND NATH

V. The diffraction of light by ultrasonic wave was treated by

Raman and Nath (1935). Raman and Nath's diffraction theory is useful

to understand Bragg diffraction. They stated that for a progressive

periodic ultrasonic plane wave with light incident perpendicular to a

sound beam, the light is diffracted a~t angles e n given by

nX = ±x sin e n (1)

where n is an integer representing the diffraction orders, x is the

wavelength of the light, and x* is the wavelength of the sound.

Equation (1) was corrected by Klein, Cook, and Mayer (1965) to

j include the refractive index of the propagating medium:

4

Mm.7-.11W
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nX = ±Po0* sin en . (2)

The refractive index Po enters into Eq. (2) because the wavelength is

given for free space and has to be adjusted for the particular medium

used.

The intensity of the diffracted light in the mth order relative

to the nth order is given by

m 2 (v) 
(3)

in Jn2 (v)

where Jm(v) and Jn (v) are the mth and nth order Bessel function,

respectively, and

v = 27 P, L/A , (4)

is the maximum change of refractive index caused by the sound

pressure, and L is the width of the sound field through which the light

passes.

Raman and Nath (1935) extended this theory to the case of

nonnormal incidence. If the light is incident at an angle on the

ultrasonic wave, the relative intensity of the mth order to the nth

order for low sound intensity is given by

'm IJm [v sec c(sin t)/t) (5)

in Jn2[v sec €(sin t)/t]

I1
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where

~t -A tan 0
•X* 9(7)

and 0 is the inclination of the incident light to the sound waves.

The positions of the diffraction orders when the light is

incident at an angle o on the ultrasonic wave are given by

sin(e + 0) - sin * = nX (8)n Px

where en is the angle of diffraction of the nth order as shown in

S Figure 1. If the diffraction angle for the first order is

o = (9)

conditions for Bragg diffraction are satisfied. Thus, Eq. (8) can be

written as

sin 20 coso + sin € cos 2p - sin 0 = / (10)

If 0 is small enough, then cos 20 1. Thus

sin 20 + sin - sino x (11)

or

x Pox* sin 2o (12)
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This can be written in terms of the Bragg angle *B as

X = 2pox* sin OB (13)

This is the ultrasonic Bragg diffraction analogue to the diffraction

of x-rays by a crystalline plane, where pox* plays the same role as

-A the lattice parameter d. However, additional information exists in

this ultrasonic case. The diffraction orders contain information

about the ultrasonic wavefront, as will be shown.

II. DIFFRACTION THEORY OF KLEIN, COOK, AND MAYER

The theory of light diffraction by arbitrary periodic ultrasonic

waveform, frequency, beam width, and angle of incidence was treated by

Klein, Cook, and Mayer (1965). The optical wave equation is solved by

resolving the light traveling through the ultrasonic beam into a

system of plane waves whose amplitudes are described by a set of

difference-differential equations.

They considered plane, monochromatic light waves incident at

an angle e upon a plane ultrasonic beam of width L as shown in

Figure 2. Before entering the region containing the sound field, the

electric intensity of the light beam can be expressed by
'.m

E = E0 exp[i(wt - 0 )] (14)

where w and are the angular frequency and wave vectors of the light

in free space, respectively, and P0 is the refractive index of the

medium. In the region of the sound field, the refractive index varies
q P

e
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x Ultrasound
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____ ___I
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Figure 2. Diagram of the ultrasonic diffraction grating.
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in time and space in proportion to the localized changes in the

density of the medium. For ultrasonic waves of arbitrary waveform,

"64 the refractive index can be written as

P(x,t) = PO + P' (15)

The small change of refractive index produced by the sound wave, P'

is periodic in (w*t - k*x), where w* and k* are the angular frequency

and wave constant, respectively, associated with the fundamental

Speriodicity of the sound waves.

At any point within the liquid in which the ultrasonic beam

propagates, the amplitude of the light can be represented by

E = A(x,z,t) exp[i(wt - Po "t)] , (16)

where A is a periodic function in the variable k*x. It may thus be

expanded in the complex Fourier series

A(x,z,t) = (z,t) exp[-ink*x] , (17)

n= -0

*. giving

E = 4 tn(Zt) exp[-ink*x] exp[i(wt - 0 ")] , (18)

or

E 0 0 4(z~t) exp[i(wt - n~)(19)
n = -n



i

where the various propagation vectors of the light are given by

=  O + n . (20)

The spatial orientation of these vectors is illustrated in Figure 3.

The propagation of the light through a transparent, nonmagnetic

medium is described by the pseudo-homogeneous wave equation

V2E = [p(xt)]2  2E (21)

C 2  at2

where the refractive index in the region of the sound field

(0 < z < L) is written

m
P(xt) = P0 + j Pj sin[j(w*t - k*x) + 6.] .

Sj=l ~(2

In Eq. (22), pj is the amplitude of the jth Fourier component of the

refractive index distribution, and 6. is its relative phase.

As the electric intensity E is periodic in time and space with

the sound field, Eq. (19) can be expanded by letting tn(Zt) =

"- (z) exp(inw*t)

E = exp(iwt) 0 n(z) exp[i(nw*t - kn ' r)] (23)
n=-0

where

n r = uok(z cos e + x sin e) + nk*x . (24)

N{
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x~ +2

+ I

n 
0On

-1

-2

*1 z
(a)

ax

(b)

Figure 3. Orientation of the wave vectors in light diffracted by an
ultrasonic wave.
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Equations (23) and (24) represent an expansion of the diffracted light

in plane waves where the index n labels the nth diffraction order.

Equation (23) shows that for a progressive wave, the angular frequency

of the nth diffraction order is w + nw*.

By substituting (22), (23), and (24) into (21) and neglecting

second-order terms (G' 10- 5), one obtains a set of coupled,

difference-differential equations which relate the amplitudes in the

plane-wave expansion:

dT j+ l I- o vj[¢n . exp(i6j) - 0n+j exp(-i6j)]

= i L (n-2.)On (25)

where

v= k Pj L (26)

k*2L k*2L (27)Q = u~k Ok cos e (27

IJ0k

a = - sin . (28)

Equation (25) is to be solved subject to the boundary

conditions at Z = 0:

= 1, (29)

n 0 (n 0). (30)



14

For a sinusoidal sound field (25) becomes

d n
n (n = __ - 2c) (31)S L [n-I - n+l: 2L (n n

This expression and its solution are best described by first

considering the significance of the various parameters.

-S Significance of Parameters
-5

The variable v. The acoustical pressure amplitude determines

the light intensity distribution in the diffraction pattern. An

analysis of the light intensity distribution in the diffraction

orders, then, allows one to calculate the pressure amplitude.

The variation in refractive index produced by the sound field,

Wl' can be related to the acoustical pressure amplitude p by

= (P)s p (32)

where (-) is the adiabatic piezooptic coefficient. The values of
P s

3Vp)s have been measured for a limited number of liquids (Raman and

Venkateraman, 1939).

From (26) and (32), v is related to the acoustical pressure by

v = k(Tp) pL (33)

The range of values of the parameter v in the usual experimental

situation is from zero to ten, although it is easy to obtain higher

values at lower ultrasonic frequencies.
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The variable a. The variable a is a measure of the angle of

incident light on the sound field. The negative sign in Eq. (28) is

chosen so that Bragg diffraction into the positive first order occurs

for a = + , and into the negative order when a = - 2 The labeling2 2

of the orders is such that the positive orders are those in the

direction of sound propagation.

The parameter Q. The parameter Q characterizes the transition

from Raman-Nath diffraction conditions to Bragg diffraction conditions.

The quantities on which Q depend (k, k*, p0, and L) are normally

constant in a given experimental situation. The general nature of

the diffraction process in the Raman-Nath region can be described by

this parameter because for very large Q (high frequencies) diffraction

is not found to occur at normal incidence.

The parameter Q is a measure of the differences in phase of the

various partial waves due to their different directions of propagation.

When the phase difference in these waves becomes large (say Q > 1), the

diffracted light tends to remain in the lower orders. Since the amount

of energy transfer between the waves depends on the coupling constants

and the degree of synchronizaticn of the waves, the parameter Q can be

used to express the degree of synchronization of the various waves.

For larger values of Q there is less synchronization. If the waves

are nearly synchronous, i.e., the phase difference between the waves

is nearly constant, energy transfer between the various orders readily

occurs. This condition is found in the Raman-Nath region. If the

waves are highly nonsynchronous the energy transfer is extremely small



16

for all orders except that going from the zero order to the first

order. This phenomenon can be explained by using Eq. (31). By sub-

stituting Eq. (28) into Eq. (31), the right-hand side of Eq. (31)

becomes

i[nk*tan e+ n2Q/2L] n .

Since Q is large when the waves are highly nonsynchronous, the

diffraction effects are found to be asymmetric for oblique incidence.

This term vanishes for (in k*tan 6+ in2Q/2L) = 0. It vanishes

uniquely for the zero order which initially contains all of the light.

It also vanishes when tan O= -nQ/2k*L. By substituting the expression

for Q, Eq. (27), one recognizes tan e= -nQ/2k*L is equal to the Bragg

diffraction equation nX = 2pox*sin 0. This means that synchronism

occurs for those directions e satisfying the Bragg conditions. More

detailed examination reveals that synchronism is most complete for

n = 1, the first Bragg diffraction order. For n = -1 and n = 2, the

waves are partially synchronous, and one also finds a small amount

of light diffracted in these orders.

For the region Q < 0.5, analytic solutions of Eq. (31) which

are equivalent to the results of Raman and Nath was found [Klein et

al. (1965)].

In the region, 0.5 < Q < 10, which is the experimental situation

required for Bragg diffraction, an analytic solution of Eq. (31) has

not been obtained. The Nth order approximation method of Leroy anI

Blomme is used in this dissertation to get expressions for the

9
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amplitudes and intensities of order 0, ±1, and -2 at Bragg incidence

and in the vicinity of the Bragg angle [Blonmne and Leroy (1986)].

Solutions of the Difference-Differential Equations for
q. Raman and Nath Region (Q<< )

As the number of diffraction orders is usually small (10 or

'less), the maximum absolute value of n is also usually small. For

moderate angles of incidence at low frequencies, the numerical value

Jof a can be very large. This permits one to neglect the first term

of the right-hand side of Eq. (31), while the second term which con-

tains the angular dependence must be retained.

V-i Equation (31) thus becomes

jdO n

d-Z 2L n-l n+l LQ c' On"(34)

.0 Using the identity for ordinary Bessel functions,

Jn(x) = 2-T (Jn-l + Jn+l )  (35)

it can be shown that the solution of (34) is

"*~~~a~ [nep- -- J2v z )
exp[-i 2L n['sin( )] , (36)

or at Z = L, the intensity of nth diffraction orders is

n = n12

S nJn2[V sin(Qa/2)] (37)

n Qa/2

', At normal incidence c = 0 Eq. (37) reduces to

P
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In =n (v) • (38)

This result is identical with that of Raman and Nath.

The ultrasonic fields described by the condition Q << 1 are

equivalent to optical gratings which produce only a modulation of the

phase of light passing through them. Exploring the light distribu-

tion at the exit plane (Z = L), one finds

I(x,L,t) = IE(x,L,t)l
2

= J_n (v) exp[in(w*t -k*x)]1 2

n=--

=1 , (39)

which means that there is no amplitude modulation at this plane.

However, the light is modulated in phase as can be seen by investi-

gating the phase of light in a version of (23)

E I J_n(v) exp[in(w*t - k*x)]
n=-co

exp[i(wt - uokL)] (40)

Ignoring the constant phase factor in the last exponential, and

exploring the dependence of the phase angle i of E on the variable

(w*t - k*x), one finds

n J-n (v) sin n(w*t - k*x)

tan 2 = n-, (41)

Jn (v) cos n(w*t - k*x)
nj ODn

.1
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or

tan 1 = -sin[v sin(w*t - k*x)

cos[v sin(*t - k*x) (42)

and the phase of E is

-v sin(w*t - k*x) . (43)

This agrees with the early observation of Raman and Nath that a sound

beam of narrow width and low frequencies could be considered as an

optical phase grating. The parameter v, known as the Raman and Nath

parameter, describes completely the diffraction in this case. It

measures the degree of phase modulation of the light produced by the

sound beam.

The intensities of the first few diffraction orders as a

function of v for a = 0 (normal incidence) are shown in Figure 4(a)

[Klein, Cook, and Mayer (1965)].

Since the value [sin(Qa/2)/(Qa/2)] in Eq. (37) is a symmetric

function in a, the intensity of a particular order as a function of

dngle of incidence is symmetric about normal incidence (c = 0). This

is shown in Figure 4(b) [Klein, Cook, and Mayer (1967)].

11. DIFFRACTION THEORY OF BLOMME AND LEROY

FOR THE BRAGG REGION

Blomme and Leroy defined new parameters which are slightly

different from those of Klein, Cook, and Mayer. The new parameters

m
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which are especially useful in the approximation method of Blomme and

Leroy are defined by

=X 2 Cos26 X2 (44
1JOU IX*2  11O1JlX* 2  

(4

and

b - 2x sin e (45)IlX I•.

With these parameters and v = k p, L, Eq. (31) becomes

2 -on+ (0n+l - n-l) = in(np - b)On . (46)

In order to solve (46) Blomme and Leroy applied the NOA-method

(Nth Order Approximation) by assuming that the ultrasonic power is not

strong enough to excite diffraction orders different from 0, ±l, and

-2 for incidence angles in the neighborhood of the first Bragg angle

(0 < e < 26 and a X

Under these conditions the amplitudes 0-2' *±39 ".. vanish and

(46) reduces to the simple set of difference-differential equations

2D €-1 + €0 = i(o + b)_l , (47)

2D *0- l + 1 = 0 , (48)

2D l "€0 + 2= i(o - b)ol , (49)

and
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2D *2 " 1 2i(2p - b)o2  (50)

where D represents derivation with respect to v. Equations (47)

through (50) can be solved for the amplitudes of the diffraction

orders.

0 = 2D ¢2 - 2i(2p - b)h2 , (51)

00 = 2D €I + 02 - i(p - b)4I , (52)

0- = 2D q0 + I (53)

and

16D 4 02 - 16i(3p - b)D3 02 + 4(3 + b2 + 4pb - 9p2 )D2 02

+ 2i(4p3 - 2p2b - 4pb 2 + 2b3 - llp + 3b)D 02

- (8p2 - 4pb - 1)02 = 0. (54)

The last equation determines 02. The solution of (54) can be written

as

4
02 = j C. exp(i r. v) (55)

where C1, ... , C4 are arbitrary constants which still remain to be

determined and rl, , r4 are the real roots of the characteristic

equation

r4 + ar 3 + a2 r
2 + a3 r + a4  0, (56)

1 2 3 4
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in which

a b - 3p, (57)

a2  9p2 - b2 - 4pb - 3) , (58)

3 (2p2b + 4pb2 -4p3  2b3 + lp 3b) (59)-3 8

a= p b -2p)b (60)

The expressions for the other amplitudes Ol. o0' and o-, from (51)

through (53) and are given by

4
= 2i I c.A. exp(ir.v) , (61)

j=l J 3

4
*0 = "jI cjBj exp(irjv) , (62)

q and

4
*l= -2i Z cjC. exp(ir v) (63)

j=l

where

A. = r. - 2p + b , (64)

B. - 4r.2 - 2(5p - 3b)r. + 4p2 - 6pb + 2b2 - 1 (65)

and

Cj = rj(Bj - 1) + 2p - b . (66)

M3

- - -. V - "''- -.- ". *- , -. -- ' " , . . , . .'" " " " " " " " *j.' ' ' * ** " ' ' . '
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Taking into account the boundary conditions n (0) = 6 a set of

equations is obtained for determining the constants cj:

2 = cj : 0 , (67)
2) j=l 

4
01(0) cjA. = 0 , (68)

j=l J4
0 0  = cB. = (69)

~and

>'0-l(0) __l cjCj 0 .(70)

j=l *

The solution of this system which can be found by applying Cramer's

rule for linear systems of algebraic equations and the relation

rj =-a, is given by

b -p - r.cj = 4(ri-rj)(rk-rr r (71)

- " where i, j, k, and x take on different values from each other from the

set {l, 2, 3, 4). Finally, the intensities of the diffracted orders

follow from In =

I2 = Z cj 2 + 2 cic j cos[(ri-rj)v] , (.72)
-2 i< 1 j

2 2 4

I- = 4 cj2A + 8 1. cic AiAj cos[(ri-r.)v) , (73)
Pij
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I0 = B 2 + 2 1 ci c BiB. cos[(ri-rj)v] , (74)i<j

and

22+8 cc. CCj cos[(ri-rj)v] (75)

11 4 1 c~ C.+ 1 1 .3ii i i<j

The sum of Eqs. (72) through (75) is equal to unity which is the total

input of light intensity.

Numerical solutions of Eqs. (72) through (75) are used in

Chapters III and IV to explain Bragg diffraction. In addition, they
a

are used to explain both first-order and second-order Bragg imaging

which can be observed when Bragg diffraction takes place.

i

b
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5 CHAPTER III

EXPERIMENTAL INVESTIGATION OF BRAGG IMAGING

I. APPARATUS

Raman-Nath Diffraction System

A block diagram of the experimental arrangement for measuring

Raman-Nath diffraction is shown in Figure 5. An RF signal is generated

by a VFO controlled oscillator having a maximum output of approxi-

mately 100 watts. The high voltage, and hence the output power, is

controlled by an external Variac. X-cut quartz transducers were used

and driven at their fundamental frequency as well as their odd

harmonics.

A square quartz transducer is placed in a tank filled with

water. An absorber is located at the end of the tank to reduce the

amplitude of the reflected ultrasonic wave. A helium-neon laser is°0
used as a light source. The wavelength of the light is 6328 A. The

beam passes through the sound field as shown in Figure 5. Since the

width of the laser beam is very small and collimated, a diffraction

pattern is obtained without the addition of a slit and collimator.

A diffraction pattern is formed in the plane of the photomultiplier

which is used to measure the intensity of the diffraction orders.

Bragg Diffraction Conditions

The Bragg diffraction conditions (Eq. (2)) can be demonstrated

*by measuring the distance, D, from the point of emergence, p, of the

26

U



27

>

'4-

41)
____ ____ ___c

'4-

C-

'4-

c.

CD eo

LL..



28

light from the ultrasonic beam (Figure 5) to the screen and the

distance, S1. from the zero diffraction order to the first order.

In the experiment D is 10 m and frequencies of ultrasound are 2, 4, 6,

10, 12, 15, 20, and 28 MHz. Table I shows theoretical and experi-

mental Bragg angles. From this table it is obvious that Eq. (1) must

be changed to Eq. (2), since the theoretical values in Column 2 were

calculated from Eq. (2). In other words, the refractive index -W must

be considered because the wavelength of light must be measured in the

liquid medium (water), as suggested by Klein, Cook, and Mayer (1965).

Intensities of Diffraction Orders

In order to measure intensities of diffraction orders under

Raman-Nath conditions, a photomultiplier is used at a distance of

50 cm from the water tank. The Raman-Nath parameter v is increased

by increasing the output voltage of the transducer. Two different

2 MHz transducers, 2.4 cm and 4.8 cm in width, are used.

Intensities of diffraction orders for different values of v

are shown in Figure 6. In this figure, dots, triangles, and crosses

represent experimental values of the zero, first, and second diffraction

orders, respectively. Q values of the 2.4 cm and 4.8 cm transducers

are 0.1 and 0.3, respectively, at 2 MHz.

By comparing (a) and (b) in Figure 6, one can see that the

lower Q value gives better agreement with Raman-Na~h diffraction

theory in the Raman-Nath region. For frequencies above 12 MHz Q

approaches larger values and the diffraction is no longer in the Raman-

Nath region in which the intensity of light is proportional to the

square of a Bessel function, but is in the Bragg region. From these

*.! N I
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Table I. Comparison of Theoretical and Experimental Bragg Angles

Theoretical Experimental
Frequency (MHz) Bragg Angle (°) Bragg Angle (°) S1 (cm)

2 1.8 x 10-2 1.7 x 10-2 0.3

4 3.6 x 10-2 3.4 x 10-2 0.6

6 5.5 x 10-2 5.7 x 10-2  1.0

10 9.1 x 10-2 9.2 x 10-2 1.6

0 12 1.1 x 10"l 1.2 x 10"1 2.0

15 1.4 x 10l 1.4 x 10l 2.5

20 1.8 x 10-1 1.8 x 10°I  3.2

28 2.5 x 10-1 2.6 x 10"  4.6

I,.

!y
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100 * Zero Order

90 A First Order
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Figure 6. Intensities of diffraction orders plotted as a function of
Raman-Nath parameter v.
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results one can see that the parameter Q defined by Klein, Cook, and

Mayer is a nice parameter to define the transition from Raman-Nath

L4 conditions to Bragg conditions in diffraction phenomena.

Bragg Diffraction System

In the Bragg diffraction region the objective of the experiments

is to understand the origin of certain Bragg images. To do this, it is

adequate to observe qualitative agreement between theoretical pre-

dictions of light intensities and intensity distributions observed in

the images. For this reason the photomultiplier is not used in the

Bragg region. For the purpose of this thesis, photographic recording

of the images is adequate.

A block diagram of the experimental arrangement is given in

Figure 7. The electronics and ultrasonic source are the same as

described in the Raman-Nath Diffraction System; however, several

optical lenses are required. The beam is collimated by a laser beam

expander (1). A cylindrical lens (2) is located to make a wedge of

light converge to a vertical line just beyond the tank. In this way,

the positive and negative Bragg diffraction orders are observed

4simultaneously because light is incident at both +O and -B Lenses

(3) and (4) are also cylindrical lenses which are used to adjust the

width of the diffraction orders on the viewing screen. Photographs

of the diffraction pattern can be made simply by putting a camera

back with a focal plane shutter in place of the viewing screen. A

photograph of this arrangement is shown in Figure 8 in which both

camera and photomultiplier are visible.
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P

Figure 8. Photograph of experimental arrangement of Bragg diffraction
system.

h
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Bragg imaging is obtained by placing an oject to be imaged in

the ultrasonic field between the transducer and the light beam at

* point D in Figure 7 and observing the imaging in the diff.3ction

orders on the viewing screen.

II. EXPERIMENTAL OBSERVATIONS

First-Order Bragg Imaging

The experimental arrangement shown in Figure 8 is used to

observe first-order Bragg diffraction. Objects are placed in the

ultrasonic field between transducer and light beam. Images of the

objects are found within the first diffraction orders. Photographs

of the objects used in these investigations are shown in Figure 9(a)

and Figure 9(b) and are photographs of the first diffraction orders.

A frequency of 20 MHz and transducer width of L = 2.4 cm is used to

obtain these photographs. The images in Figure 9(c) are photographs

of the first diffraction orders taken with 10 MHz and transducer width

of L = 4.8 cm. The imaging in Figure 9(c) is less distinct than in

Figure 9(b). This results from the fact that with 20 MHz (Q = 12.8)

the diffraction is in the Bragg region; with 10 MHz (Q = 6.4) the

diffraction is intermediate between the Bragg and Raman-Nath regions

where conditions are not favorable for imaging.

With imaging observed at the frequencies 2, 4, 6, 10, 12, 18,

20, and 28 MHz, the quality of the images in the first diffraction

orders improves with increasing frequency, with the best images

occurring for 18 MHz and above. For frequencies of 2 and 4 MHz, images

are faint. They are easily masked out by increasing the ultrasound
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(a) hook, spring, and 
nut; (b) frequency 20 

MHz and width

of ultrasound 2.4 cm; (c) frequency 10 MHz and width of

ultrasound 4.8 cm.
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intensity, which increases the intensity of the "regular" diffraction

orders. Above 6 MHz the images are of a quality approaching those in

Figure 9(c). At 28 MHz zero, minus first, and plus first orders are

observed. First order images of a hook, a spring, and a nut taken

at 28 MHz are shown in Figure 10. From this figure one can see that

the quality of first-order Bragg images clearly becomes better with

higher frequency of ultrasound.

The images in the positive orders are always mirror images of

those in the corresponding negative orders. Photographs in Figure 11

are taken to show both the positive and negative first orders. Images

of the hook in these orders are seen to be mirror images.

Second-Order Bragg Imaging

h For frequencies below 18 MHz, it is noted that as the transducer

voltage is increased, higher diffraction orders become visible. These

orders, in general, contain light which has been diffracted both as

"Raman-Nath" and as "Bragg" diffraction. As the frequency is decreased,

these orders are observable for lower transducer voltages, but the

imaging may be less distinct. Multiple images are observed in the

higher diffraction orders. There are two images in the second order

as in Figure 12. The appearance of these images was noted by

L Franklin D. Martin (1971) and an explanation of their origin was

attempted. The explanation given in this thesis differs from that of

Martin. It is based on the theory of Blomme and Leroy and is capable

of more detailed treatment of the subject than Martin's explanation

was capable of.
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Figure 10. Photographs of first-order Bragg images of hook, spring,
and nut, frequency 28 MHz.
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CHAPTER IV

ANALYSIS OF BRAGG IMAGING

The existence of Bragg images in the first order and second

order has been demonstrated in Chapter III. In this chapter Blorire

and Leroy's theoretical equations are used to interpret the quality

of Bragg imaging in the first order and the existence of two Bragg

images in the second order. Before starting the interpretation,

however, it is necessary to point out the relationship between

theoretically defined diffraction orders and those defined experi-

mentally. In making the theoretical definitions one can assume the

light to be incident at the Bragg angle with either a positive or a

negative incident angle. In the experiment the light is incident at

both angles simultaneously. The experimental diffraction orders,

then, can contain light from more than one theoretically defined order.

For example, in Figure 13 the incident light labelled EIis incident

at an angle a. The zero order of the E I component emerges at an

angle a. Likewise, the incident light labelled E2 is incident at an

angle -8, and the zero order of this component emerges at an angle

-.This is the direction of the -1 order of the E I light, however.

In Figure 13 the light intensity in the orders is labelled with two

subscripts: the first identifying the origin (El. E 21 E 3  or E4)

and the second labelling the order number consistent with the theory

of Bloiie and Leroy (1984). As can be seen, illuminating the entire

range of angles gives rise to the possibility of intensity maxima of

.1~ 40
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the constructive interference conditions that give rise to Bragg 42

diffraction. The different directions that are at angles which are an

integral multiple of the Bragg angle 8 may contain light corresponding

to all of the components listed. The situation actually turns out to

be much simpler than indicated in Figure 13, however. As the theory

of Blomme and Leroy shows, many of the diffraction orders in fact

contain a negligibility small light intensit J'. This means that many

of the possible components are masked by the more intense components

that emerge at the same angle. From this point diffraction orders

which are defined theoretically are expressed as "theoretical first

diffraction order," "theoretical second diffraction order," etc., while

diffraction orders which are defined experimentally; i.e., which are

observed on the viewing screen, are expressed as "observed first

diffraction order," "observed second diffraction order," etc. This

makes it possible to speak meaningfully about a situation that

potentially is as confusing as indicated in Figure 13.

A I. FIRST-ORDER BRAGG IMAGING

I, It has been demonstrated experimentally in Chapter III that the

observed first diffraction orders contain images of an object in the

~4. ultrasonic field and that the images become better as the frequency of

ultrasound is increased.

In order to interpret this result Eqs. (72) through (75) are

used. Intensities calculated from the theory of Blomme and Leroy with

values of parameter c which are chosen to match the experimental

situation, are shown in Figures 14 and 15 in which the curves are

4-~~ .tf ~. . . . . ..
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plotted as a function of incident angle. The graphs in Figure 14

(a), (b), (c). are obtained with p = 1.03 (v* 10 MHz), P = 1.48

(V* = 12 MHz), and P= 2.31 (v* =15 MHz), respectively. Figure 15

is obtained with p = 17.48 (v* =28 MHz). The graphs in Figure 15

are shown separately because the diffracted light intensities of the

plus first order and the minus second order are not distinguishable

if they are shown together with the zero and minus first oruer.

From Figure 14 one can see that the intensity of the minus

first order at incident angle 8 becomes dominant as the frequency of

ultrasound is increased and the intensities of the zero, plus first,

and minus second order become lower. This means that the light from

these orders becomes less noticeable in the image. In Figure 15 even

if the intensity of the minus first order at incident angle 6 is

lower than that of Figure 14(c), the other intensities, i.e., plus

first and minus second order, are so low that they are not noticeable.

The zero order, however, does contribute to the illumination at the

angle B. Since the quality of Bragg imaging in the first order not

only depends on the intensity of the minus first order but also depends

on the angular width of the minus first order, a higher frequency gives

better quality of Bragg imaging in the first order.

II. SECOND-ORDER BRAGG IMAGING

[ Second-order Bragg imaging has been investigated at frequencies

of 6, 10, 12, 15, and 20 MHz. The best second-order images wereI

obtained at the frequency of 12 MHz as shown in Figure 12 (p. 39).

This can be explained by the use of Figures 14 and 16.
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P In Figure 14(b), the second maximum of light intensity of the

theoretical zero order appears at about 3a if one extends the curve

and the first maximum of light intensity of the theoretical minus

second order appears at 2a. These two orders have almost the same

intensities at different positions and each order contains its own

information about the ultrasonic wavefronts. The intensities of

these two orders in Figure 14(a) and (c) are quite different and the

positions of the second maxima of light intensities of these orders

are not at 2B and 3B. If the angular positions of these maxima are

too close, the two images in the observed second order overlap.

If they are too far apart, the images are not within the second order.

Figure 14(b) is shown more precisely illustrated in Figure 16 in which

the intensities of zero, minus first, and minus second order are super-

imposed. The unbroken, broken, and dotted l1ine in Figure 16 represents

theoretical zero, first, and second order, respectively. The observed

minus first order is composed of the intensity of the theoretical minus

first order and the observed minus second order is composed of the

intensities of the theoretical zero and minus second order. From this

result one can see that there exist two images in the second order

L because two different theoretical orders contribute to making the

L observed second order.

The qualities of two images in the observed second order are

not the same when the frequencies of ultrasound are 10 MHz and 15 MHz.

From Figures 14(a) and (c) the intensities of the theoretical zero and
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minus second order which contribute to making the observed minus

second order are quite different, which explains the difference in

image quality.

I

h

"!~



CHAPTER V

APPLICATION OF BRAGG IMAGING TO FLAW DETECTING

A unique application of Bragg imaging to flaw detection has been

developed during the course of the research. The technique takes

advantage of the resonance behavior of a parallel metal plate immuiersed

in a liquid. Excitation of the plate by an ultrasonic beam results in

strong transmission of the ultrasound for angles of incidence which

set up Lamb mode resonances in the plate. Such a plate with an internal

flaw does not transmit the ultrasound through the flaw. The result is

an image of the flaw in the transmitted ultrasonic wavefront. The

ability of Bragg diffraction to image ultrasonic wavefronts makes it

ideal for decoding the information contained in the ultrasonic

wavefront.

The principle can be illustrated by use of a 1.1 mim thick plate

of glass mounted in front of a 4 MHz square quartz transducer. First

the transducer is aligned to give optimum Bragg diffraction. Then the

glass plate is inserted between the transducer and the light beam and

rotated until optimum Bragg diffraction again is observed. The experi-

mental situation is shown in Figure 17. The angle of rotation of the

plate for optimum transmission of the ultrasound is approximately 70

at 4 MHz. The glass plate used in the experiment had the symbol

scratched on its surface as shown in Figure 18(a). The plate is

mounted between the transducer and light beam and rotated to give

optimum transmission with 20 MHz of frequency. When the plate is

adjusted so that the symbol is in the ultrasonic beam, the first

49
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Figure 17. Photograph of experimental arrangement for flaw detecting.
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diffraction order appears as shown in Figure 18(b). The symbol appears

as a dark line because the intensity of the transmitted ultrasonic

wave at the symbol is very low, and essentially no Bragg diffraction

occurs in this region. Some of the angles of rotation of the plate

for transmission maxima at 12 MHz are shown in Table II.

The principle illustrated now can be used to image a flaw that

is obscured from view. An aluminum plate, thickness 1.6 nmm, is used

in the same way, except that now a second aluminum plate, thickness

1.6 mmv, is clamped so that it obscures the symbol. With the same

symbol ;j scratched on the inside surface of the first plate, the

plates are inserted into a 20 MHz ultrasonic beam. Figure 19 shows

that the obscured symbol is recognizable in the diffraction order.

W In this figure a small scratch on the lower left corner of the symbol

is also recognizable in the image. This means that a fair amount of

detail can be discerned in the image. In fact, moving the image back

and forth aids in visualizing image details. The same experiment has

been done with two other aluminum plates, thickness 0.9 mm each, to

test the resolution of the technique. Two letters, A and F, are

scratched on the surface of one of them. The letters on the plate

and their images are shown in Figure 20, In this case the image of

F is not as clear as the image of A; however, the general shape of

both letters can be visualized. Finally, although Figures 18, 19,

and 20 show that Bragg diffraction allows one to visualize internal

structures in plates, further testing will be necessary not only to

define resolution limits but also to determine the optimum procedure

for locating a flaw in a given situation.
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Table II. Angles At Which Optimum Bragg Diffraction is Observed With
a Glass Plate 1.1 mm Thick, Frequency 12 MHz

Angle(0

Al5.3 First Maximum to Clockwise

2 ~ '1+ 4.6 9.9 Second

L 3 ;J2 + 3. 13.2 Third

L4+ 2.2 15.4 Fourth

54+ 3.2 18.6 Fifth

'6 5+ 2.7 21.3 Sixth

5.3 First Maximum to Counter-
clockwise

'- '1+ 4.6 9.9 Second

L3 J2+ 2.9 12.8 Third%

+ 2.6 15.4 Fourth

1- '4 + 3.0 18.4 Fifth

-6 - 2.9 213Sixth
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P CHAPTER VI

SUMMARY, CONCLUSIONS, AND SUGGESTIONS FOR FURTHER WORK

I. SUMMARY AND CONCLUSIONS

Bragg diffraction of light by ultrasonic waves has been studied

between 4 MHz and 28 MHz. At the low frequencies the diffraction

exhibits both the Bragg diffraction character and the character of

Raman-Nath diffraction. As the frequency is increased Bragg diffraction

becomes more dominant and imaging of the ultrasonic wavefront in the

diffraction order is observed. The transition from Raman-Nath

diffraction to Bragg diffraction is conveniently described by the

quantity Q of Klein, Cook, and Mayer. Values of Q smaller than 1

signify that the diffraction is predominantly of the Raman-Nath type.

Values greater than 10 correspond to Bragg diffraction. The highest

values of Q correspond to total Bragg diffraction. This is where

Bragg imaging is best.

Optimum conditions for Bragg diffraction have been defined by

the graphs in Figures 14 and 15 (pp. 43 and 44) which show that Bragg

diffraction and the associated Bragg imaging is better and better as

the frequency is increased up to the practical limit set by attenuation

which also increases with frequency. For water as a propagating medium

this limit is near the maximum frequency used in the experiments

described-28 MHz.
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Single images of the ultrasonic wavefront were observed in the

first diffraction orders. They are mirror images in the positive and

negative orders. Multiple images are observed in the higher diffraction

orders. The existence of two images in the second orders was found to

be related to the fact that conditions for diffracted light's arriving

at the position of the second order can be satisfied for light

incident at 3a as well as for light incident at 2a. The best images

in the second orders were obtained at 12 MI-z. This intermediate

* frequency gives the maximum concentration of light in the second order,

as is noted in the graphs in Figure 14 (p. 43).

Finally, it is shown in this thesis that Bragg imaging of an

ultrasonic wavefront can be used to detect flaws inside glass or metal

S plates. For incident angles at which Lamb modes are set up in

parallel plates there is a maximum in the transmitted ultrasonic energy.

At these angles interval flaws in the plate inhibit the passage of the

ultrasonic energy, and hence are imaged as shadows on the ultrasonic

wavefront. The fact that Bragg diffraction images the wavefront

means that the flaw is seen in the Bragg diffraction order as well.

* II. SUGGESTIONS FOR FURTHER WORK

The graphical approach used in this thesis to explain the

existence of two images in the second order could be extended to

describe even higher order images. To do so the NOA method of Blomme

hand Leroy would need to be extended to higher orders and the experiment

would need to be done with a larger angular spread of the convergent

incident light.

p-n e t
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It may be possible to improve the quality of the image of a

flaw inside a parallel plate by using a medium having a lower ultra-

sonic wave velocity than water. One possibility would be carbontetra-

chloride. The shorter wavelength associated with the lower velocity

would result in better resolution. With such a system one might

consider imaging delaminations on printed circuit boards. Such

delaminations are difficult to detect by other means.
It is conceivable that flaws could be detected in more than

a single plate. In principle the technique would work with multiple

layers of liquid and solid. Hence any number of layers might be

examined.
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