
AD-A175 352 COST EFFECTIVENESS TRADEOFFS IN COMPUTER 14
STANDARDIZATION AND TECHNOLOGY I.. CU) INSTITUTE FOR
DEFENSE ANALYSES ALEXANDRIA VA A A HOOK ET AL. JUN 86

UCSEEEDAP191 Dhh-8-102hD99hEEEI31FG /2N
mhEEEshmhhEEEI
smmhmhEEohhhE
EhEEEEmhmhhhEI
EEshhmhmhohhEE
mh01h0hE0hhE0hE

I
/

t. -~ - -

11111 1.0 I~~4i&~~ -

limit-

1I11Ii~ EM~
mliii

11w 1.1 a',. -~ /11111
= -

'4 I~I~i~
- 7- ~ g.

* f

I

- -

I- -

cn 17 147

IDA PAPER P-1931

COST EFFECTIVENESS TRADEOFFS IN COMPUTER
STANDARDIZATION AND TECHNOLOGY INSERTION

eN

Audrey A. Hook
Terry Mayfield
Thomas Frazier

Alan K. Graham
David Kreutzer

DTIC
June 1986 0 EC. N-

Prepared for
Office of the Under Secretary of Defense for Research and Development

t -(OUSDRE)

iiibu~a3 n unift&~d

INSTITUTE FOR DEFENSE ANALYSES
1801 N. Beauregard Street, Alexandria, Virginia 22311

C
886 12 22 02 1 ,ALS No.H8-1o.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

REP ORT DOCUMENTATION PAGE f ~/?
Is REPORT sECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

* Unclassified

2a SECURITY CLASSIFICATION AUTHORITY 3 DISTRIDUTION/AVAILABILITY OF REPORT

2b DCLASIFCATON/OWNRADNG CHEULEApproved for public releas; distribution unlimited

4 PERFORMING ORGANIZATION REPORT NUM3ER(S) S MONITORING ORGANIZATION REPORT NUMBER(S)

P-1931

6aNAME OF PERFORMING ORGANIZATION 16b OFFICE SYMBOL 7a NAME oF MONITORIG ORGANIZAIO0N

Institute for Defense Analyses jIDA
6c ADDRESS (City, State, and Zip Code) 7b ADDRESS (City, State, and Zip Code)

1801 N. Beauregard Sarea
*Alexandria, VA 2231

ae NAME OF FUNDING/SPONSORING #b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable) MDA 903894 C 0031

Ada Joint Program Office IJM PO____

* ScB ADDRESS (City, State, and Zip Code) 19. SOURCE OF FUNDIN UBR

The Pentagon, Room 3EI39 (1211 Fen St., C107) PROGRAM IPROJECT TASK IWORK UNIT
WahntoD 231ELEMENT NO. 0N. INO. ACCESSION NO.
Wshigton EC200 I T-DS21S

11 TITLE (Include Security Classification)
Cost Effectiveness Tradeoffs in Computer Standauduition and Technology Insertion

Audrey A. Hook, Terry Mayfield, Thomas Frazier, Alan K. Grahamn, David Kraztzer
* 3mTYPEOF RPORT 13bTIME COVERED) 14 DATE OF REPORT (Year, Month, Day) 51 PAG E COUNT

3a T P F R P R FROM - TO __ _ _ _j 1986iune 30 332

*6 SUPPLEMENTARY NOTATION

17 COSATI CODES fLU SUBJECT TERMS (Continue on reverse It secassatry and Identify by block number)

FIED GOUP QTTA V20U Aa, technolog insertion, modelng, cost effectiveness, APSE, MCCR acquisition.

I I Idecision support tools, software engineering environment, standards

*19 ABSTRACT (Continue on reverse If necessary and Identify by block number)

This document reports on the feasibility of dev~loping a decision support tool that Could aid decision makers in formulating policies for the use of
software standards and strategies for technology insertion. During the furs phase (1983-i984) a "white paperwas completed which provided a conceptuai
framework for examining the role of standards in the MCCR acquisition proess. During the second phase (1985-1986), this conceptual framework was
translated into a prototype decision support tool. This tool provided the ability to simaulate the effect of selected standardization policies on related
technology and Mission Critical Computer resources (MCCR) costs, thus demonstrating the feasibility of modeling the linkages among DoD, standards
policies, industry, technology, amid MCCR costs.

The first scenario simlated the role of the current policy for the use of Ada as the only higher ordier language for the development of MCCR software.
The other two scenarios examined cost effective strategies for inserting Ada and its related software engineering environments into the MCCR software
production and maintenance procss The findings frm these simulations indicate that certain strategiestpoiies concerning the utilization of Ada have
a powerful influence on MCCR software costs.

20 DISTRIDUTION/AVAILADILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
R WUNCLASSIFIED/UNLIMITED C SAME AS RPT. C0 DTIC USERS Unclasatied

22m NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Are Cd 2OFFICE SYMBOL

DD FORM 1473, 54 MAR SECURITY CLASSIFICATION OF TIS PAG'83 APR edition may be used until exhausted
All other editions are obsolete UNCLASSIFIED

6A A

IDA PAPER P-1931

COST EFFECTIVENESS TRADEOFFS IN COMPUTER
STANDARDIZATION AND TECHNOLOGY INSERTION

S

Audrey A. Hook QUALITY

Terry Mayfield
Thomas Frazier
Alan K. Graham
David Kreutzer Accession For

TIS CTAFo
DTIC TAB

June 1986 By
Distribit on/_

Availability Codes

'Avoill and/or
Dist Special

imp

IDA
INSTITUTE FOR DEFENSE ANALYSES

Contract MDA 903 84 C 0031
Task T-DS-215

C
(, ~ %d., ~ v *.'v~ -'.~i.

Acknowledgments

During this project a number of people contributed ideas and effort that were very beneficial
to the outcome of the project. Special thanks to Ms. Janet M. Gould (MIT) for editing the
appendices and to Mr. Michael Saylor (MIT) for editorial work on the finished report.
Others who deserve credit for helping during the construction of the prototype model were

*Dr. Thomas Probert, Col. Ken Nidiffer, Mr. Burt Newlin, Dr. Edward Lieblein, Dr. Jack
Kramer, and Dr. John Salasin.

o

9

li

-C

4. '

'-""

TABLE OF CONTENTS

* 1.0 INTRODUCTION ... 1

2.0 SCOPE .. 2

3.0 BACKGROUND ... 3

* 4.0 APPROACH ... 5
4.1 Modeling Method ... 5
4.2 The Model .. 5
4.3 Cost Sector ... 5
4.4 Infrastructure ... 7
4.4.1 Intensity ... 7

* 4.4.2 Coverage .. 8
4.4.3 Incompatibility .. 8
4.5 Projects .. 8
4.5.1 Development Projects Using the Ada Language 8
4.5.2 Non-Ada Development Projects ... 9
4.5.3 Maintenance Projects .. 9

* 4.5.4 Conversion Projects .. 9
4.6 Language Choice ... 10
4.7 Model Construction ... 10

5.0 FINDINGS 11
5.1 Baseline Scenario ... 11

* 5.1.1 Finding 11
5.1.2 Discussion .. 13
5.1.3 Preliminary Conclusions ... 13
5.2 Commercial APSE Scenario .. 14
5.2.1 Finding ... 14
5.2.2 Discussion 14

* 5.3 Conversion Scenario ... 14
5.3.1 Finding ... 16
5.3.2 Discussion .. 16
5.4 Utility of the Prototype Model .. 16
5.4.1 Finding ... 16
5.4.2 Discussion .. 16

6.0 CONCLUSIONS AND RECOMMENDATIONS 20

ii

rx-.-, - - - 3 % V u VwT...

APPENDIX A - MODEL STRUCTURE

APPENDIX B - MODEL LISTING, OUTPUT, AND POLICY LEVERS

APPENDIX C - AREAS FOR FUTHER INVESTIGATION

APPENDIX D - PROFILE OF INFRASTRUCTURE USED

APPENDIX E - WHITE PAPER CONCEPTUAL FRAMEWORK FOR
EXAMINING THE ROLE OF STANDARDS IN THE
MCCR ACQUISITION PROCESS

APPENDIX F - REFERENCES

Ii,

i,
9I

LIST OF FIGURE

1Organization of Prototype Model.6
*2 Baseline Sc e n a r io.............**.................... 12

3 Commercial APSE Scenario... 15
4 Conversion Scenario 17
5 Three Scenarios in Comparison...................................... 21

COST EFFECTIVENESS TRADEOFFS IN COMPUTER STANDARDIZATION AND

TECHNOLOGY INSERTION

* 1.0 [NTRODUCTION

This paper fulfills requirements for IDA Task T-4-215. This task was initiated in
November, 1983 by the Director, Computer Software Systems, Deputy Under Secretary
(Research and Advanced Technology) to be completed in several phases, each phase being
dependant upon the availability of funds. The purpose of the task was to determine the
feasibility of developing a decision support tool that could aid decision makers in
formulating policies for the use of software standards and strategies for technology
insertion. During the first phase (1983-1984), a "white paper" was completed which
provided a conceptual framework for examining the role of standards in the MCCR
acquisition process. During the second phase (1985-1986), this conceptual framework
was translated into a prototype decision support tool. This tool provided the ability to

• simulate the effect of selected standardization policies on related technology and Mission
Critical Computer Resources (MCCR) costs, thus demonstrating the feasibility of modeling
the linkages among DoD, standards policies, industry, technology, and MCCR costs.
Section 4.0 of this paper provides an overview of the model while Appendices A and B
provide detailed documentation.

* Section 5.0 describes the results of scenario simulations. The first scenario simulated the
role of the current policy for the use of Ada1 as the only higher order language for
development of MCCR software. The other two scenarios examined cost effective
strategies for inserting Ada and its related software engineering environments into the
MCCR software production and maintenance process. The findings from these simulations
indicate that certain strategies/policies concerning the utilization of Ada have a powerful
influence on MCCR software costs.

1

C

lAda is a registered trademark of the U.S. Government, Ada Joint Program Office.

1

2.0 SCOPE

Translation of the conceptual framework presented in the "white paper" required a
modeling technique that can make use of aggregate or anecdotal data to simulate the
interaction of multiple variables over an extended period of time. The lack of detailed data
which could be used to derive mathematical relationships among these variables was a
constraint to be minimized by proper tool selection. We selected the system dynamics
modeling technique as implemented by a commercially available software package.2 The
resulting simulations were based upon a model that was constructed in an iterative fashion
as information was obtained from interviews and a literature search. 3 The scenarios were
constructed to provide plausible answers to the Sponsor's questions concerning the cost-
effectiveness of the Ada language standard and the need for additional standards for Ada
Programming Support Environments (APSE's). The Sponsor's questions were:

* What will be the long term effect of the current Ada policy on MCCR software
costs?

* Should the Government develop a standard for an APSE? If so, what should
be standardized - operating system, tool sets, interfaces?

* Is there a strategy/policy that will accelerate insertion of Ada technology in the
MCCR software acquisition process? If so, what will be the effect on MCCR
costs?

The intended users of the results of these simulations are the Sponsor and those concerned
with the use of standards in the Ada Program. Although the software is easy to learn and
to use, we assume that operators of the model will primarily be analysts who support the
process of policy formulation. The model enhances, rather than replaces, expert judgement
about MCCR software by quantifying many of the considerations surrounding
standardization issues.

Collection of data from the primary sources (i.e., DoD software developers/maintainers)
and calibration of the model was outside the scope of the task.

2 STELLA V 1.l: High Performance Systems Inc., Lynn, NH.

3 See Appendix F for listing of references.

2

3.0 BACKGROUND

DoD decision makers must have both a clear understanding of the general effects of
0 standards in the MCCR acquisition process and the ability to analyze the potential impact

of a particular policy for their use. This impact could be on overall MCCR costs or on the
technology that is available for use in the development and maintenance of MCCR
software. The general problem, facing DoD decision makers, is how to formulate
standardization policies that are goal oriented and cost-effective for each of the life cycle
phases of multiple MCCR programs.

The Ada Language was mandated for use in new MCCR projects by the DeLauer
memorandum (DeLauer 1983). The life-cycle cost of these projects is expected to be lower
than for those MCCR projects that have used older languages such as JOVIAL and CMS2,
but the visibility of these lower costs could be obscured by the larger number of non-Ada
projects that must be maintained for 20-30 years at higher costs per project. This

* underlying limitation on benefits from the Ada policy is the result of decades of non-Ada
programming that is in the pipeline for development and maintenance. Even with the
introduction of Ada for new projects, continuing development and enhancements of non-
Ada applications will make savings from Ada smaller and more distant in time.

Some previous language standardization studies have projected modest savings (Clapp
0 1977) (Jensen 1984), when compared to the projected total cost for DoD MCCR software

(George 1985). Other studies of Ada (Cormier and Alberts 1985) (Foreman 1985a and
Foreman 1985b) (Hook and Fischer 1986) indicate that savings per project can be
significant, with full accounting for the impact of Ada and its related technology on DoD
MCCR software expenditure. However, this projected impact depends upon how quickly
and how widely Ada and its related technology is used for the development and

40 maintenance of MCCR projects.

DoD Sponsorship of additional standards has been considered as a possible risk reduction
strategy that may accelerate the use of Ada. These potential DoD Sponsored standards
include the Common Ada Interface Set (CAIS), an Ada Programming Support
Environment (APSE) developed and furnished by the government, e.g., Army Language

0 System (ALS), Ada Compiler System (ACS), Ada Language System (ALS-N).

Even with the DeLauer memorandum that set the policy for the use of Ada in DoD, there
are questions raised by proponents of other languages about how acceptable Ada will be in
meeting percieved MCCR requirements for real-time, secure, and artificial intelligence
applications. There are, different views about what additional standards are needed to
increase the rate at which Ada will be effectively used for MCCR applications. There are
also different perceptions about how DoD should present Ada-related standards. Some
believe that the government should develop and implement a prototype standard product for
industry to use and improve through use on MCCR projects. Others believe that this
approach would limit industry innovation to minor process improvements by freezing
technological development prematurely to the standard.

If a DoD sponsored standard for a particular technology has been standardized at a level
below the market place technology, DoD project managers may require waivers from that
standard (or portions of it) so as to use a product they perceive as more capable, lower cost
technology available to their contractor. Further, incompatibility among implementations
will almost certainly result from the insertion of technology on a contractor by contractor
basis. Eventually, incentives may disappear for DoD project manager's and contractor's to
use a standard that does not reflect the current state of a technology. It is recognized that
the maturity of the technology and market place incentives play a major role in

3

standardization decision. Finally, if additional standards are selected, should the policy for
their use effect only the development life cycle or should it effect the maintenance life cycle
phase which represents the larger portion (60-70%) of the MCCR expenditure.

Bearing in mind these complexities, we set out to develop a model that would allow
decision makers interested in Ada and its related technology to test the impact of various
assumptions on the total MCCR expenditure over a thirty year period. In essence, the
prime focus of this study is to answer two questions:

" How does standardization affect innovation?

* How can standards best be implemented to obtain both effectiveness and
economy?

W

4

¢2 2'¢2"..-....'.1*-'.°'-..2. J £ .° -g. .2 g 2. °. -.- ".'--
- •

" ' ' ' ' "
'

4.0 APPROACH

The first step in development of the decision support tool was formation of a cross-
disciplinary team who developed the approach. The team members provided expertise in-
economics, computer science, Ada related technology, and simulation techniques. Ad hoc
team members were used, as needed, to provide insight on DoD software development
practices, standardization policies, and industry perceptions of DoD acquisition practices.
The team determined that its efforts should be focused on analyzing and understanding the
issues and on developing a logical model that could be implemented and refined quickly.

4.1 Modeling Method

The problem addressed in this effort can be characterized as determining the variation of
output variables (e.g., cost of DoD MCCR software) over time, based on the dynamic
interaction of multiple input and process variables. Such problems can best be expressed

*1 using a continuous system simulation approach, particularly when many of the variables
are most easily estimated in terms of rates of change.

The system dynamics method was selected as an appropriate technique for defining the
linkages among the variables associated with the MCCR acquisition process, technology,
standards policies, and cost. The team felt that the model should permit a user to examine

0 the underlying structure, the assumptions, and numeric values used during previous
simulations and to change any part of this structure in order to test a new set of
assumptions. The use of rapid prototyping allowed continuous evaluation and refinement
of the model as the simulation was analyzed and new information was collected. The
software of the model provides documentation of the equations used for each variable while
the documentation provided in the appendices includes the rationale and references as to
why particular linkages were established with their associated functions and equations.4

4.2 The Model

The model has been organized as six sectors: .LANGUAGE CHOICE; ADA
INFRASTRUCTURE; ADA PROJECTS; NON-ADA PROJECTS; NON-ADA
INFRASTRUCTURE; and COST. Figure 1 illustrates this organization. The principal
variables in each of these sectors are described in the following sections.

4.3 Cost Sector

The cost sector of the model evaluates the yearly and accumulated costs of MCCR
computer programming under whatever scenario is being simulated. The cost sector
computes the costs on the basis of the programming workload represented by the number
of projects, the computer language being used, and the amount of infrastructure (the
summation of resources a programmer can draw upon when working in a particular higher
order language) available. The cost sector allows for selection of constant dollars or
discounted dollars to be calculated for any given scenario. The degree of discounting of

hi, future expenditures is a parameter whose value can be varied and experimented with.

Although the cost sector does not affect the scenarios, it is crucial in illustrating the impact
of infrastructure on cost effectiveness. The model determines total costs by multiplying the
number of projects by the cost per project. As infrastructure intensity and coverage

4 Appendices A and B provide complete documentation of the model.

5

, ,. o '..'t..e , _'_t'.' ee ,,;,;e.,. e ., :. .;,- .", ", ' €'e e,.,',",'..,.% .,'. '..' ...'. -
.
',,-'.., . ' , .,.,'.,.-

Organization of Prototype Model

Ada infrastructure

ITI

. . Ada

Generaescenros Ass ot

Language pre _
Choce.. CostNon-Ada -

tO" projects

1 Non-Ada infrastructure -

: Generate scenarios Assess costs°

?,Figure
I

, , t. -,- VINO S.. 4MV ' . -l u a- . U- -

increase, the cost per project decreases.5 Because the model sets the size of the standard
project (amount of programming to be done) constant, this means that innovation is taking
place. Not only is a given amount of work being done faster and cheaper, but for a

• constant expenditure, better (or more) work is being done.6

4.4 Infrastructure

Infrastructure denotes the programming support environment which includes not only the
* programming environment proper (operating system, tools, and program libraries) but also

programmer experience and availability, programmer managers, and courses of instruction
(in Ada and non-Ada languages). As the amount of infrastructure for a given language
increases, so does the effectiveness of those projects making use of that language. This
results in better performance as well as lower costs. It is thus crucial that the model
represent the level of infrastructure available for both Ada and non-Ada programming

* separately.

An important input to infrastucture is the number of projects (either Ada or non-Ada)
currently in progress (see Figure 1). Programmers gain valuable experience as they do
more of their work in a certain language. In addition, there is an economic incentive for
private companies to develop auxilary tools and environments. An increasing number of

*g projects creates a market incentive, encouraging business to invest in a language with a
secure future.

Because thorough comprehension of infrastructure is crucial in understanding how MCCR
costs are affected by standardization policies, it has been disaggregated into three separate
variables representing the characteristics of intensity, coverage, and incompatibility. 7

4.4.1 Intensity

The intensity of infrastructure denotes how much infrastructure is available to a contractor
or DoD programming manager. Intensity in the model is a selectable index number used to
characterize whether or not good, efficient compilers are available, whether it is possible to
hire (or train) progrmmers, the size and quality of the tool sets and the program libraries
available to programmers, etc. Intensity is the primary determinate of programming cost
Higher intensity substantially raises programmer productivity.

Within the model, a low intensity index was selected to represent a "bare-bones"
infrastructure which consists of a compiler and a link-loader, along with a few experienced

* systems analysts and managers. The highest intensity level of interest was selected to
represent the conditions envisioned in the Stoneman specification (DoD 1980), assuming
that the non-tool parts of the infrastructure (tool using, management experience, training,
etc.) are equally well-developed.

5 Consider the automobile analogy: the cost as well as the utility of the vehicle over its
lifetime is a strong function of the availability of good roads, spare parts, qualified
mechanics, and plentiful oil/gasoline.

6 Appendix A.3 provides a complete description of the cost sector.

7 See Appendices A.7 and A.8 for details

7

rZW,21-e

4.4.2 Coverage

Coverage of infrastructure denotes the fraction of host/target combinations that are available
for use with a particular programming language and its related tools. Lack of choice in
tools limits creativity, driving up costs and crippling innovation in the programming
process. We assume that the critical term of measurement is the fraction of target machines
for which a compiler is available because the availability of a particular language on a host
is not a significant issue for most MCCR projects.

4.4.3 Incompatibility

Incompatibility of infrastructure denotes the extent to which infrastructure is divided into
parts that do not intermix with one another, languages, operating systems, tools, and even
managment procedures all fragment the programming meta-environments. Compiler
languages usually underly the deepest divisions for programs, program libraries,
programmers, and programming managers. We assumed that incompatibility will exist to
some extent whenever a language is widely used even though there are policies and
mechanisms for controlling the variety of tools and compatibility of tool sets. However,
the rate at which incompatibility is introduced into the Ada infrastructure is assumed to be
lower because it possesses effective mechanisms for controlling incompatibility. One such
effective mechanism is the validation process for Ada compilers which is more rigorous
and comprehensive than for other high order languages. Incompatibility is central to the
analysis of standards policies, for incompatibility inhibits the accumulation of
infrastructure. With markets fragmented among languages and operating systems, for
example, neither programmer nor advanced tools develop rapidly.

4.5 Projects

Projects are the model's fundamental measure of programming work that must be done for
MCCR systems. In reality, projects vary in size and cost. A very large programming task
such as the World-Wide Military Command and Control System (WWMCCS) consists of
many project units which are aggregated for budget and management purposes into groups
that vary widely in complexity, lines of code, and man-hours. The definition of what
constitutes a project unit involved some arbitrary choices in order to create a definition that
would remain consistent over simulations of decades of changes in language, programming
technology, and mission requirements. We divided projects into five categories and
assigned consistent values to their cost-per-year and to the number of years per life cycle
phase.8 The categories of projects are described in the following sections.

54.5.1 Development Projects Using the Ada Language

These are the new development projects started that use the Ada language. Expert
judgement was used to set the average duration of the entire development phase at 10 years.
Some development projects will be completed sooner than 10 years, and some later.9
When the infrastructure available for both non-Ada and Ada projects is equal, yearly Ada

8 Appendix A.9 in the cost sector calibration section explains the procedure.

9 See Appendix A.4, equation #540 for details and references.
d

'S 8

I, n! . '

development costs were defined to be $5-million. Costs for non-Ada projects were set at

$6-million for the reasons described below.

4.5.2 Non-Ada Development Projects

We assumed that some portion of new starts will not use Ada and will initiate a waiver
process because of the project manager's perception of risk and lack of available
infrastructure for Ada. This non-Ada portion of new starts will be influenced by the free
market forces in the Language Choice Sector including the level of both Ada and non-Ada
infrastructure. However, since there is a DoD mandate to use Ada for new starts, the level
of Ada Infrastructure at the time the project starts will be a stronger incentive for DoD
project managers to use it than for a non-DoD project manager. The cost-per-year selected
for non-Ada development projects was $6-million at the intensity of today's (primarily non-
Ada) infrastructure. Non-Ada development projects have the same average time to
complete development (10-years) as that of Ada projects. The slightly higher cost-per-year
for non-Ada development projects is based upon our assumption that the expected benefits
from Ada software engineering practices justifies a lower cost. We selected equal
development time periods for Ada and non-Ada to remove a bias-for-Ada that would have
resulted from using currently available Ada productivity studies based upon small projects.

4.5.3 Maintenance Projects

Ada and non-Ada maintenance projects are treated similarly in the model. Maintenance
projects denotes all projects that have passed out of the development phase and into the
maintenance phase. Any programming done after a project has left the development phase
is accounted for in the model as part of maintenance programming. Although not
consfstent with all service usages, this. definition is convenient for the purposes of the
model. The meaning of the term maintenance differs among DoD constituents. In the Air
Force terminology, large reprogramming projects (usually undertaken because of changed
system requirements) are called redevelopment projects and are distinguished from the,*
more routine fixing of bugs and making small additions to capabilities. In Navy
terminology, as in the model, both redevelopment and bug-fixing are included in the term
maintenance. The time period for a project's maintenance life cycle was estimated at 20
years. Maintenance costs per year for projects defined as above were estimated to be $2-
million for Ada and $3-million for non-Ada, under conditions where the Ada programming
environment is comparable to todays non-Ada environment. As with development, the cost
difference is predicated upon Ada's superior support of software engineering
methodologies.

4.5.4 Conversion Projects

These are projects that undergo major upgrades of functionality at planned intervals. It is
possible to begin the maintenance life cycle of a project with a compiler and tool set for one
language and to end the maintenance life cycle with a compiler and tool set of another
language. During the 20-year period of maintenance, language choices can be made at
intervals of planned project upgrade when there are significant incentives to do so. These
incentives can arise from. market forces and from DoD policies. In the model, we have
provided a "policy lever" that can be activated for a policy that requires project managers to
consider converting to Ada at major upgrade intervals.

The yearly cost for conversion projects includes both the funds for major redevelopment/
conversion as well as those necessary for routine maintenance of the unconverted portion
of the project during this period. This has been approximated in the model to be equal to
the Ada development project cost-per-year.

9

We assumed that if a project is undergoing a major redevelopment and conversion to Ada,
it is doubtful that cost-conscious managers would also want to simultaneously carry on a
major redevelopment in the non-Ada language. Therefore, once conversion work starts on
a piece of software, it is reclassified as a conversion project immediately. When a project
has completed the conversion period (considered to be two years in the model), it becomes
an Ada maintenance project and is treated as such for the remainder of its lifetime.

4.6 Language Choice

We assumed that the world of non-DoD programming is fully functional and operating in
parallel to the DoD programming project work. By making this assumption, we have
created a sector of the model that operates on free market forces with respect to decisions
about programming language and related technology. Implicitly, then programming
decisions for DoD and non-DoD projects will be made from much the same inputs and
incentives. Even with a mandated use of a particular language in DoD, the planned target
for the number of projects using that language could be higher or lower than what actually
occurs. With market forces operating to affect language choices, the actual number of
projects could be lower than planned because of disincentives such as risk, as well as real
or perceived lack of available infrastructure. On the other hand, if there is a perception that
a particular language choice reduces risk/cost and will lead to a sustained business base, the
number of projects using that particular language could be higher than planned. This is the
link represented in Figure 1. The role of the Language Choice sector is to determine the
acceptability of a given language standards policy to both DoD project managers and to the
producers of software for DoD and other markets.

4.7 Model Construction

Construction of the model implementing the system dynamics symbology and mathematics
began in August 1985. This model was refined and expanded through December 1985.
The refinement process resulted in thirty-two software versions of the model which
incorporated the assumptions and reference data that were collected by the team. The team
simulated numerous scenarios to test the "reasonableness" of the model and discussed these
simulations with several knowledgeable DoD project managers. From December 1985
through February 1986, detailed documentation was prepared so that the internal structure
of the model would be visible for any future user.

Three policy scenarios were simulated by the team to demonstrate the feasibility of using an
automated tool to support decision making. These simulations indicated plausable impacts
on MCCR expenditure for each of the policy scenarios. However, the team recognized the
need for collecting data from primary sources to calibrate the model and to re-run these
simulations. A multiple target survey was developed and discussed with Servie
representatives as an important data source for model calibration. 10 Unfortunately, data
collection activity was suspended in January because of a reduction in available funds for
the second phase of this project.

10 This survey is provided in Appendix D.

10

" , , -% ,OL t- -%-%-% ,. -- % - % ". % v " . , . . -. " " " ",, " -',-' - '# , . . ," "'9

M

5.0 FINDINGS

The findings of the team are based upon their research, analysis of available data, and use
* of the prototype model to generate scenarios. Although the quantitative results of the

simulations are open to question and substantial refinement, the qualitative results seem
robust and important enough to the Sponsor that a detailed description is given here.

5.1 Baseline Scenario

* This scenario simulates the effect of continuation of the current Ada policy. In 1981 there
is a moderate initial injection of Ada Infrastructure due to the development of compilers by
the government and private investment. The behavior which follows provides both a
reference point as well as some insight into how the MCCR process develops in the coming
years. 11

* 5.1.1 Finding

Although the current Ada policy will eventually result in decreasing costs and greater
effectiveness, these results will be painfully (if not needlessly) delayed. Figure 2 depicts
this cost curve.

* 5.1.2 Discussion

The increase in Ada infrastructure occurs when there are buyer's choices among validated
compilers for host/target pairs that are useful for MCCR projects. This initial increase in
Ada infrastructure provides increased incentives to use Ada. However, Ada-related
savings are stalled by a large number of non-Ada projects already initiated which are
progressing slowly through their thirty year lifecycle. Therefore, the inventory of Ada
projects is small compared to non-Ada projects until 1996 when the cost-effectiveness of
Ada has been demonstrated conclusively. As companies begin to independently develop
more tools that add to the infrastructure, the intensity of Ada infrastructure increases slowly
but steadily driving down the cost of Ada programming. The overwhelmingly important
difference between Ada and non-Ada is that incompatibility is much more difficult to create
among projects. Ada shows a correspondingly greater accumulation of intensity -- skills,
tools, and reusable software -- that drives down Ada costs. Because of the much higher
incompatibility in the non-Ada world, infrastructure cannot accumulate nearly as
effectively, and intensity of non-Ada infrastructure never moves substantially beyond
today's levels. At approximately 2003, the cost curve (1) indicates that the total yearly cost
of programming peaks and begins to decline, despite increasing numbers of projects. At
the end of this time period, Ada project costs have become 15 times less than those of Non-
Ada projects. Thus, the majority of the cost after the year 2003 is coming from the
maintainence of a minority of expensive non-Ada projects. Total MCCR expenditures for
this scenario are 1.324 trillion dollars. 12

1 See Appendix B.3 for details and plots.
12 By itself, this figure tells us little more than the expected order of magnitude of the of
the actual expenditure. However, when used as a comparison point with which to judge
the performance of scenarios where quite different assumptions have been made, or where
different policies have been enacted, it can be very useful.

11

I-, .,,, ,.,:,, . ,..,, . :: :. .' . " ' , • "' . ' ",.,.. ' ''''''-

a- ' .V . "P - - N- Y. TV 7JF . r - 27 A 7

Baseline Scenario

64

Yearly Cost 7
(Billions) Yearly Cost

32 1

Intensity of Ada /-4/

Infrastructure ,/

-4----- " : - Total Ada Projects

1975.000 1985.000 1995.000 2005.000 2015.000
Time

Curve 1: Yearly Cost (in Billions) : (0-64)

Curve 2: Total Ada Projects (Projects): (0-24000)

Curve 3: Conversion Projects (Projects): (0-3200)

Curve 4: Intensity of Ada Infrastructure (Composite APSE
and other resources): (0-200)

.5.°

Figure 2

12

-0
5..

5.1.3 Preliminary Conclusions

* Given the slow startup process for Ada use, along with the eventual superiority of Ada
infrastucture, two general strategies appear to be particularly beneficial:

(1) Enactment of policies that accelerate the accumulation of Ada infrastructure
(tools, program libraries, environments, etc.) promises to even further
increase cost-effectiveness of MCCR acquisitions.

(2) Enactment of policies which encourage the conversion of the remaining mass
of non-Ada programming to Ada likewise offers considerable potential
savings by "piggybacking" off the benefits of increasing Ada Infrastructure
with its attendant lower costs.

In the following two scenarios, both of these options are explored in a preliminary manner.

5.2 Commercial APSE Scenario

This scenario represents the case where the government selects one or more industry
"standard" operating systems (VMSTm/UNDCXh 13 , for example) for Ada programming,
then proceeds to develop and implement Common APSE Interface Set (CAIS). The most
important consequence of this policy is borrowing substantial infrastructure intensity from
the non-Ada world, but leaving behind many of the incompatibilities caused by numerous
other operating systems and tools used for non-Ada programming. The ability to create
incompatibility in the Ada environment is permanently reduced by operating system
standardization. Inclusion of transportable operating systems in a standard policy increases
the speed with which Ada extends its coverage of hosts and targets. 14

5.2.1 Finding

Ada-related standards policies increase the available infrastructure and reduce overall
MCCR software expenditure when these standards are evolved from technology that is
current in the market place. Figure 3 provides the curves for cost and infrastructure.

5.2.2 Discussion

A strategy that reduces uncertainty about DoD's preference for implementations of
environments will both increase the number of Ada project starts as well as encourage
companies to invest in Ada related tools. This is responsible for a positive trend where
increasing infrastructure drives down, costs.

C

13 VMSTh is a trademark of Digital Equipment Corporation. UNIX TM is a trademark of
AT&T.

14 Appendix B.4 provides all plots, and tables, for this scenario.

13

f,

This scenario assumed that these Ada-related environments could be adopted to the CAIS
and the results would be widely understood within five years so that there would be an
accelerated accumulation of Ada infrastructure within 6-7 years after completion of this
initiative. By 1990 the yearly expenditure on MCCR costs is $1.9 billion less than the base

.scenario and the gap widens steadily. As a result, total costs associated with this scenario
turn out to be $201 billion less than those for the baseline case. It is evident from these
results that measures which serve to focus the development of Ada infrastucture have the
potential to dramatically increase MCCR performance and decrease costs.

5.3 Conversion Scenario

The conversion scenario represents the enactment of government policies to encourage non-
Ada projects already in progress to be converted to Ada. In the model, this policy isimplemented in 1990 and by 1995 it is evident that a significant number of conversions

have taken place. 15

5.3.1 Finding

Conversion of non-Ada projects to Ada during their maintenance phase is instrumental in
reducing total MCCR expenditures and increasing the availability of Ada infrastructure.
(Figure 4 provides these curves.)

5.3.2 Discussion

Due to the greater proliferation of Ada projects, companies are encouraged to develop
auxiliary tools, which results in a significant increase in infrastrucure. The savings in this
scenario come from two sources: (1) the greater cost-effectiveness of Ada programming
over the non-Ada infrastructure, due to the increase in infrastructure and (2) the added
conversion of more expensive non-Ada projects to less expensive Ada projects. Total
MCCR expenditures in this scenario are 1.179 trillion dollars. If we compare this figure to
that of the base case, we note savings of $145 billion. 16 Thus, even with the additional
costs of conversion, this policy results in savings equal to 12% of gross MCCR
expenditure. Given that analysis is likely to continue showing high payoff for a general
policy of conversions, more comprehensive investigation into specific policies and
incentives to encourage non-Ada to Ada conversions is justified.

15. Appendix B.5 provides all output plots and tables for this scenario.
Appendix B.6 is an overview of other policies that could be explored using the levers
in the model.

16. With comparisons of this type, it is not the absolute numbers which are important, but
* - rather the relative difference in performance between the two policies.

14

- e. .'

-lL - -

Commercial APSE Scenario

64

Yearly Cost
*6 (Billions) Yearly--.,.477

Yearly Cost
32 .n

Intensity of Ada 2

Infrastucture 7
Total Ada
Projects44 2 -,-. owq,-, z: ..---- ---- _-3 ,

0 * 1985.000 1995.000 2005.000 2015.000
* T'uie

w Curve 1: Yearly Cost (in Billions) : (0-64)

Curve 2: Total Ada Projects (Projects): (0-24000)

* Curve 3: Conversion Projects (Projects): (0-3200)

Curve 4: Intensity of Ada Infrastructure (Composite APSE
and other resources): (0-200)

Figure 3

15

Conversion Scenario

64

Yearly Cost
(Billions)

Yearly Cost

32 1 Intensity of Ada Total Ada
Infrastructure 4......--rojects

7 Conversion

1 23 23
01975.000 1995.000 199.000 i2005.000201 5.000

Time

*Curve 1: Yearly Cost (in Billions) :(0-64)

4.Curve 2: Total Ada Projects (Projects): (0-24000)

Curve 3: Conversion Projects (Projects): (0-3200)

Curve 4: Intensity of Ada Infrastructure (Composite APSE
and other resources): (0-200)

Figure 4

16

5.4 Utility of the Prototype Model

5.4.1 Finding

The second phase of this study has resulted in the construction of a prototype model which
demonstrates the feasibility of developing a decision support tool to assist policy makers in
considering various standard related issues. This modei not only offers potential solutions
to current problems, but also clearly defines areas of study from which further insight into
these issues may be gained. 17

5.4.2 Discussion

The next step in this task involves calibration of the existing model. One value of the
system dynamics methodology is that in the process of building the model, the researcher is
directed toward the most significant avenues of investigation. Although it was not
immediately apparent during the initial conceptualization of the problem, individual
variables differ widely in their effect upon MCCR expenditures. For example, there is a
substantial difference between the cost-per-year of non-Ada projects and Ada projects. 18

However, when these values were set equal to each other 19 in a run not presented here, it
was discovered that the impact on the final results was negligible. In system dynamics
terminology, the model is said to be insensitive to the cost-per-project, and in further
calibration studies, this variable can probably be ignored.

Some variables then have a great deal of influence over MCCR expenditures, and they
should be examined more closely. For two of these variables, the number of MCCR
projects and the measure of the level of infrastructure, there are no authoritative sources of
information. Two recent studies have been conducted that provide some aggregate
information on MCCR software expenditures and projects. One study (EIA 1985),.
forecasted expenditures on MCCR software from 1985 to 1995. The other study (IDA
1985) reported investigation of MCCR programs that have a substantial software
component but noted that the identification of software within MCCR is not explicit for
DoD.

Projects are the model's fundamental measure of the programming work that exists to do
for MCCR systems, for both development and maintenance. In the DoD environment
projects vary enormously in size from one another. But it is convenient to think (and
model) in terms of a standard project unit. A project cannot be defined in terms of some
number of lines of code, because shifts between, for example, assembler language and
higher-order language would change the amount of apparent programming work to be
done. Similarly, a project should not be defined in terms of man-hours or dollar's worth of

17 Appendix C discusses potential revisions and investigation to improve the utility of this
model.

18 Recall that development costs for non-Ada projects were set at $6-million per year,
while maintenance costs for non-Ada projects were set at $3-million per year (assuming
infrastructure is held constant at its normal value). These values for Ada projects were set
at $5-million and $2-million, respectively.

19 Development costs were set at $6-million, maintenance costs at $2-million.

17

r"I

.• V ~

programming, because improvements in programmer productivity would likewise change
the apparent complexity of the programming tasks currently being worked on. The project
must be defined as an amount of programming to be done, measured with something akin
to the inherent complexity or difficulty of the specification. Of course, the inherent
difficulty can be translated into lines of code, man-hours per year, or dollars per year for a
given language, programmer productivity, and programmer's wages. But the unit that is
created by project starts, exists through the development phase, and endures during the
maintenance phase is the less-measurable, but more fundamental and constant mission the
software is to perform. The next phase of research should focus on more accurately
measuring project units.

There is no source of collected information on the intensity and incompatibility of MCCR
programming infrastructure, which we define broadly to include: programmer experience,
number and quality of software tools and program libraries, educational programs and
materials, and hardware support for programming. In the absence of such information, the
model uses aggregated indices to characterize the infrastructure, which can be tied to
specific information as it becomes available (see Section 4.0 for discussion and references).
For example, consider the software tool component of the infrastructure. (Boehm 1981)
defines five levels of tool intensity as it affects productivity:

0 Very low: basic microprocessor tools
0 Low: basic minicomputer tools
* Nominal: Strong minicomputer or maxicomputer tools
• High: Strong maxicomputer tools, Stoneman MAPSE
0 Very high: Advanced maxicomputer tools, Stoneman APSE

Boehm shows econometrically how tools effect costs. Although the model's calibration
does not yet explicitly use Boehm's results to show how higher intensity of infrastructure
drives down costs, the model curves show the same qualitative effect. In addition, the
model asserts that as infrastructure for both Ada and non-Ada programming rises, Ada
costs will fall more rapidly, on the assumption that for any given level of infrastructure
intensity, Ada's support of modem software engineering methods (which Boehm shows
can reduce costs) will cause those methods to be more widely and effectively used.

Very low tool use corresponds to an intensity index of 20, and very high tool use
corresponds to an intensity index of 100. The model calibration has not yet used this
correspondence and Boehm's cost drivers to estimate the impact of intensity on cost. But
such an estimation procedure may be prematur6, for it is not yet known what a typical

4intensity of tool use in MCCR programming is currently. (The calibration assumes an
intensity index of 40, or roughly Boehm's "nominal" intensity, in 1985; Appendix A.9
gives the details.) Accurate knowledge of the current status must await the survey
described in Section 4.7 and Appendix D.

Some amount of "field work," in the form of surveying and case studies, would fill a large
gap in knowledge about MCCR projects and programming, and allow much more accuratecalibration of the model.

18

6.0 CONCLUSIONS AND RECOMMENDATIONS

Although the results of this investigation are far from definitive, the weight of evidence
suggests that, in general, standardization policies 20 have a payoff two to three orders of
magnitude higher than the costs. MCCR software expenditures over the next 30 years can
total around one trillion dollars. The policies examined offer savings in the tens or
hundreds of billions, and the cost of implementing standards is in the tens of millions.
Figure 5 provides a summary comparison of the three scenarios.

Admittedly, with incomplete information, one might be tempted to move cautiously on
standards until more certainty can be obtained. However, there is a cost associated with
waiting to get all the facts. In one simulation not presented here, delaying the implemention
of the "standardize on commercial OSs, then CAIS scenario" for five years costs an extra
$5 billion. This cost is by itself much larger than the expenses involved with creating and
promoting programming environment standards.

Given the current weight of evidence indicating the effectiveness of standardizing the tool
interface/operating system for Ada, and the very high payoff ratio, the most desirable
course of action for DoD is to proceed aggressively on several fronts, both advancing the
state of knowledge about standardization and continuing along the path of standardization:

Three Scenarios in Comparison

Total Cost Fraction of

(Billions of dollars) Projects in Ada

Baseline Case 1324 78%

Commercial
APSE Scenario

Conversion of

non-Ada to Ada 1179 84%

Figure 5

20 These may be similar to those described in the previous scenarios, or some

conglomeration of various policies.

19

.................................

- . .ft ~.ft -ft. ft-f

1. Continue toward more definitive research on the cost-effectiveness tradeoffs in
standardization.

2. Continue to aggressively develop, prototype, and test CAIS as the eventual
standard operating interface.

3. Proceed toward standardization on a selected small number of portable and non-
portable operating systems, a) as an interim standard, b) as an aid to migrating
programming to CAIS, and c) as a backup if CAIS is delayed or less than
satisfactory.

4. Continue research on automatic translation from non-Ada languages to Ada and
evolve policies and incentives that would spur conversation to Ada and
migration to an APSE.

20

• o

APPENDIX A

MODEL STRUCTURE

a A-i

,4

APPENDIX A

0LIST OF FIGURES

Figure

A. 1-1 Flow diagram example of inputs to Total Cost (Total-cost) A-8

A. 1-2 Example of graphic function for a converter variable: Effect of
- intensity of Ada infrastructure on Ada Cost (EintAda-cst) A-11

A.3-1 Flow diagram of inputs to Total Cost (Total_cost) A-16

A.3-2 Flow diagram of inputs to Cost per year for Ada Development

projects (Cst_yrAda dev) ... A-23

A.3-3 Flow diagram of inputs to Cost per year for non-Ada
development projects (Cst_yr NA_dev) A-30

A.3-4 Flow diagram of inputs to Total yearly cost of conversions
(Totyr cst-conv) ... A-34

A.4-1 Flow diagram of inputs to Ada development projects
(A da dev_.proj) .. A -38

A.4-2 Flow diagram of inputs to Conversion projects (Convproj) A-43

• A.5-1 Flow diagram of inputs to Non-Ada development projects
(NonAda_dev_proj) .. A-50

A.5-2 Flow diagram of inputs to Non-Ada maintenance projects
(NonAda_maintproj) ... A-52

* A.6-1 Flow diagram of inputs to Fraction of development starts in ,kda
(Fr dev_starts_Ada) ... A-54

A.6-2 Flow diagram of inputs to Incentives to use Ada
(Incentiveuse_Ada) ... A-63

A.7-1 Flow diagram of inputs to Intensity of Ada infrastructure
(IntenAdainfr) A-70

A.7-2 Flow diagram of inputs to Creation of intensity of Ada
infrastructure (Crea intAda infr) ... A-75

A.7-3 Flow diagram of inputs to Incompatibility of Ada infrastructure
(IncomAdainfra) .. A -84

-. A.7-4 Flow diagram of inputs to Coverage of Ada infrastructure
(CovAdainfr) A-95

to A.8-1 Flow diagram of inputs to Intensity of non-Ada infrastructure
(IntensN Ainfr) ... A- 106

A-3
I-

.P
4., . . . -.. . .. ,,-. ,... ... , ...:.,.......

A.8-2 Flow diagrams of inputs to Creation of intensity of non-Ada
infrastructure (Crea intNA infr) .. A-107

A.8-3 Flow diagram of inputs to Incompatibility of non-Ada 0

infrastructure (Incom_NAjnfr) .. A-112

A.84 Flow diagram of inputs to Coverage of non-Ada infrastructure
(CovN A -infr) ... A -117

S

A-4

. -..

Appendix A: Model Structure

Appendix A documents the structure of the equations that comprise the model
* discussed in this report.

Appendix A. 1 reviews the system dynamics symbols and terminology used in the
remainder of the appendices.

Appendix A.2 gives abbreviations used within variable names; it may be handy keeping
* track of variables and what they mean.

Appendix A.3 describes the cost sector of the model.

Appendix A.4 describes the Ada projects sector of the model.

* Appendix A.5 describes the non-Ada projects sector of the model.

Appendix A.6 describes the language choice sector of the model.

Appendix A.7 describes the Ada infrastructure sector of the model.

* Appendix A.8 describes the non-Ada infrastructure sector of the model.

Appendix A.9 describes the multiple-variable parameter estimation procedures used in
calibrating the model. Simpler parameter estimations are described with
the equation descriptions above.

A-5

Appendix A.1: System Dynamics Terminology and Symbols

The model described in this report uses standard system dynamics symbols and
* Oterminology to represent diverse types of variables,each having its own dynamic

characteristics. For the convenience of the reader a brief description is provided here. For
further discussion see (Forrester 1961, Part 2) or (Alfeld and Graham 1976, Ch. 1-2).

*Levels

*0 Level variables represent variables the state of the system at any single instant of time,
i.e. the stocks, or accumulations. One rule of thumb determines whether a variable is a
level variable through a thought experiment: If time were to suddenly stand still, and
nothing change, only level variables would be measurable. The amount of water in a
bathtub would be observable and measurable. The amount of water is a level. The rate of
flow out of the drain is measurable only by observing changes over time. The flow of

* water out of the drain would not be a level variable, but a rate variable (see the discussion
below).

Levels accumulate the changes to the system state caused by the rates of inflow and
outflow. The concept is common to many disciplines. Mathematicians would think of
levels as the results of integrating the inflow and outflow rates. Engineers would

0 recognize levels as state variables. Economists would recognize them as stock variables,
and accountants would recognize balance sheet items as levels.

The interconnections among variables in system dynamics models are usually shown
graphically on flow diagrams, which differ somewhat from , e.g., FORTRAN flow
diagrams in showing not sequential flow of control, but simultaneous flow of information.

* Figure A.1-1 shows an example of a system dynamics flow diagram. Levels are
represented by rectangles. The figure shows a level, Total cost, accumulating the inflow
rate, Cost per year discounted. (The meaning and function of this variable are discussed in
detail in Appendix A.3) Total cost is measured in units of dollars while its inflow rate is
measured in dollars/year. Inflow and outflows to levels are always measured in the units
of the level over time units.

The equation below shows how STELLA represents the equation for the level, Total
cost. All STELLA equations are printed with a small version of their flow diagram symbol
at the beginning of the equation, so here, the equation for computing a level variable, Total
cost, begins with a rectangle.

STotal-cost = Total-cost + Cst-yr-dls
INIT(Total-cost) = 0 (Total cost (dollars))

The actual equation STELLA uses for calculation differs from that above if the
simulation proceeds at time intervals other than 1.0 time units (1.0 years). For each time
step of the simulation STELLA computes:

" Total cost (present time) = Total cost (previous time step) +DT * Cst_yr-dis

where DT (delta or difference in time) is the duration of the time step in the simulation. The
level at the present time in the simulation equals the value at the previous time step plus the
net rate of change in effect over the time step, which equals the yearly rate of flow times the
number of years in the time step.

A-7

--# :.K "io'-. 2.,,§' .. .€.€#' € €. r C. I'..:. . * ,. %.-., "% .., .- -,,.% : ...-. *. .-. ." '....' : ."..

.7 *. P.-- -

0

Total-yearly...ost Discountindex

Discountate Start..yr.cst.acqum

Figure A.-I. Flow diagram example of inputs to Total cost (Total-cost).

A-

*1

A-8 N

. % . -. . .~. ~* *. *5*~~ *~ ~~ !

Although STELLA calculates the equation correctly for any value of DT, STELLA
shows the equation as if DT were 1.0 so it can be left out. By leaving out the explicit
representation of DT, STELLA's designers have denoted the possibility of using
mathematical integration methods-in effect, ways of proceeding from one time step to the
next-more sophisticated than the simple arithmetic just described. (choosable under
STELLA's "Specs" main menu item).

Rates

Rate equations define those variables that change the system levels. Therefore, the
rates of change always flow into or out of a level and are always measured in the units of
the level over the time units (years, for the model here). For example, in the figure, the
Cost per year discounted is the flow measured in dollars per year that is accumulated in the
level, Total cost, which is measured in dollars.

* The STELLA symbol for a rate, as shown in the figure, is a circle with a symbolic
V"valve" on top controlling a flow arrow that goes between a symbolic "cloud" (that also
resembles a four-leaf clover) and the rectangle which represents the level. If the rate is an
inflow, the arrow points to the level and the cloud is called a source. If the rate is an
outflow, the arrow points to the cloud which is then called a sink. Sinks or sources just
mean that the flows come from or go to destinations outside the system boundary, i.e.,

V places not influencing the system's behavior. For example, for a simple model of water in
a bathtub, where the water goes after flowing through the drain would not be modelled by
another level, but by a sink.

Converters

* •Converter variables are used directly or indirectly in a rate equation. Rates ultimately
depend only on levels, so it would be possible write very long rate equations as functions
only of the levels. This would be confusing, however, so instead, the rates equations are
broken up into more meaningful sub-equations called converter equations. Converter
variables are then given their own names and are represented with large circles. The small
circles on the converter variables represent information takeoff points where the causal
links go to other variables. These causal links then terminate with arrowheads pointing to
the next variable in the causal chain.

Converter variables take information from levels or other converter variables, does
some computation--"converts it'-and then sends that new information to a rate or another
converter. All chains of converter variables eventually go into rate variables.

The figure shows several converter variables providing information for the rate Cost
per year discounted (Cst_yr dis). The converter variable called Discount index takes
information provided by the converter variables called Discount rate (a percentage per year)
and Starting year for cost accumulation (1986) and computes an index that is then used by
the rate variable Cost per year discounted. This discount index wieghts or discounts future

Cexpenditures, representing the smaller importance of costs in the future as oposed to
immediate costs. (For more detail on the meaning and usefulness of the equations just
described, see Appendix A.3, "Cost Sector.")

"Ghosts"

As with standard FORTRAN flow diagrams, or any other diagram of a complex
system, system dynamics flow diagrams of even medium sized models like the model
being discussed here are too large to fit on a normal page. STELLA allows portions of the

A-9

j l? .I l .. - _|** %

flow diagram to be exhibited through the convention of "ghosts"-variables that are shown
but aren't really there. (They're defined elsewhere on the flow diagram, usually on another
page.) "Ghosted" variable are denoted on the flow diagram by variable symbols drawn
with grey, rather than black lines. Total yearly cost (Total_yearly cost) is shown on the
sample as a ghosted input to Cost per year discounted (Cstyrdis). 'Total yearly cost is the
raw flow of real (FY'86) dollars spent on MCCR programming; its computation is shown
elsewhere.

Graphic functions

Converter variables often use graphic functions because they are a convenient way to
specify a variable's output values for any given input values. If the modeller cannot invent
a simple, plausible equation that will do the proper conversion, the graphic function can
specify the relationship. This is particularly useful for non-linear relationships, where
effect is not strictly proportional to cause.

Figure A.1-2, shows a graphic function from the model. The converter variable, Effect
of intensity of Ada infrastructure on Ada cost, computes a value for the effect for any value
of Intensity of Ada infrastructure. This represents the idea that as Ada infrastructure
increases the cost of doing an Ada project goes down. When the user draws the curve,
only eleven points need to be specified by drawing the curve accross ten intervals.
STELLA uses linear interpolation to calculate the output value for inputs between the
specified values.

DYNAMO versus STELLA terms in literature

For the last two and a half decades the DYNAMO family of simulation languages 0
defined the standard in the field of system dynamics for computer simulations from
mainframes to microcomputers. Newer software, called STELLA, used in this project
breaks with the DYNAMO equation format by organizing the equations around icons. This
iconic representation is possible because of the sophisticated graphics capability of the
Apple Macintosh personal computer. Although STELLA is a software breakthrough in
terms of the style of interaction with the model, the underlying concepts are identical to the
traditional DYNAMO simulation languages for which there is a substantial body of
literature. There are, however, differences in nomenclature between the STELLA User's
Manual (Richmond 1985) and the rest of the DYNAMO-based system dynamics literature.
For the benefit of those familar with that literature and nomenclature, the table below shows
equivalencies between STELLA and DYNAMO. The asterisks denote the terminology
chosen for use in this text.

STELLA Terminology DYNAMO Temio
Stock Level *
Flow and Flow regulator Rate of flow *
Converter variable * Auxilliary variable
Input link Causal link *
Signals Information flow * W

-1

A-10 ..

A-lO

-.:..' ..r.'. :.. .,.,'...'.,......:.,-.........-............-"......'.."......'....................-... '......i..........,...".""..".

13.000

=~~ ~~~

w

10.0 (input) 1000

I nten-..Rd-infra

Figure A.1-2. Example of graphic function for a converter variable: Effect of intensity
of Ada infrastructure on Ada cost (E-int-Ada-cst).

A-li

Appendix A.2: Standard Abbreviations within Variable Names

Variable name length is limited in STELLA, so the names are abbreviated. For
example, "Ada maintenance projects" is abbreviated "Ada maintrj:" "maint" abbreviates"maintenance, and "prj" abbreviates "projects." Such abbreviations are standardized
throughout the model; the following list gives the commonest. Occasionally, a word that
appears in more than one variable will have two abbreviations. For example, when there is
room, "maintenance is abbreviated "maint." When there is not room, the abbreviation is
"man."

AbbrevationStands for
A Ada
ch change in
compi completions
cony conversion
coy coverage
crea or cr creation
cst cost
dev development
dur, or du duration
E effect of or effects on
fr fraction
incen, ince, inc incentive
incom or inco incompatibility
infra, infr, or inf infrastructure
inten or int intensity
maint or mn maintenance
NA non-Ada
nat natural
norm normal
obsol obsolescence
perc perceived
pol policy
proj, or prj project
ref reference
rel relative
t time to or time for
targ target
tot total
yr year

A-13

. r '

"M T-2 T31 4315_7 PV 17 77 -1 i7 : W .. : ,V 71-7 77, 7.W .

Appendix A.3: Cost Sector

Appendix A.3 on the cost sector equations is the first of 6 sections of Appendix A that
describe the model equations. The text accompanying each equation describes what the
variable or parameter means. If the estimation of a parameter value is straightfoward and
relatively simple, the estimation will be described with the equation. For example, all a
priori estimates are described with the respective equations. More complex estimations are
described in Appendix A.9, "Multivariable Model Calibration."

The model is described as it existed in December, 1985. The formulations are still in
the midst of review and revision. The model equation descriptions, for clarity, do not
describe alternative formulations, questions about standard software practices,
inconsistencies in available data, and so on. Such questions and observations are recorded
in Appendix C, "Areas for Further Investigation."

The model equations are assigned unique numbers, and they are described in order. To
facilitate reference to individual equations, below are listed the ranges for equation numbers
in each of the equation description appendices. Also listed are the present numbers of
equations in each sector.

V..

Niimk ran= EsneCunt
1-499 31 A.3 Cost sector
500- 819 19 A.4 Ada projects sector
820- 999 9 A.5 Non-Ada projects sector
1000- 1349 14 A.6 Language choice sector
1350- 1999 39 A.7 Ada infrastructure sector
2000- 2399 24 A.8 Non-Ada infrastructure sector

136 total

The cost sector of the model evaluates the yearly and accumulated costs of MCCR
computer programming under whatever scenario is being simulated. The cost sector
computes the costs on the basis of the programming workload represented by the number
of projects, what computer language they are using, and how well-developed the
infrastructure is. At present, the cost sector has no effect on the scenarios as they are
simulated; its function is purely assessment. Of course, costs are a consideration at many
points in the system that creates scenarios, but these are represented through different
channels, as will be explained in the descriptions of the other model sectors.

Total cost (Equation #10)

Total cost represents the accumulated DoD expenditures on mission-critical software
development and maintenance in discounted 1986 dollars. Total cost is one of the most
important variables in assessing the outcome of alternative scenario simulations. Given that
several policy questions hinge on tradeoffs between short-term expenditures and long-term
benefits, it is necessary that one compare not just yearly expenditures on software between .,
different scenarios, but compare some measure of expenditures that spans many years.
Total cost is that measure.

Total cost (written Total-cost in the model) is a level variable; it accumulates the rate of
flow into it, the Cost per year discounted. Figure A.3-1 shows the flow diagram of the
inputs to Total cost; subsequent figures will show the computation of those inputs.

A-15

" -* * 'o_

90 :F

Cst yr Ada-dev EIAMCCR forec 6

200 EBAECRfoJrec

Cstyr _Ada-mnn~ty -d

Tot..yrcst~conv

Discount rate

Cst..Yr_NA-dev 32-0 Startjr...cst~accumn

Cstjr_NA,_mn

Figure A.3-1. Flow diagram of inputs to Total Cost (Total-cost)

A- 16

[Total-Cost = Total-Cost + Cst.yr.dis
INIT(TotalCost) = 0 {Total cost (dollars)}

Total cost is initialized at zero, since by definition expenses begin to accumulate only atsome point during the simulation. (The details of when the accumulation begins are

discussed shortly.)
a0,

While economic inflation is an important consideration in setting budgets and other
activities that call for predictions in current dollars, inflation is not central to evaluating
standardization policies. Accordingly, Total cost accumulates costs as measured in 1986
constant dollars.

Resources on hand today are worth more than identical resources deliverable
tomorrow. Consequently, dollars with which we can buy resources today are worth more
than dollars available tomorrow. Thus, before we can meaningfully add together dollars
spent or received in different periods we must "discount" future dollars, for they are worth
less than current dollars. Accordingly, Total cost accumulates discounted expenditures, so
that expenditures in the future add only a fraction of their current dollar value to the
accumulated expenditures represented by Total cost. The degree of discounting of future Ile
expenditures is a parameter in the model whose value can be varied and experimented with.

Cost per year discounted (Equation #20)

Total cost accumulates yearly expenditure; Cost per year discounted is that
expenditure. It represents the funds actually spent on software activities (not just
budgeted), discounted by a factor causes a dollar spent earlier to add more to Total cost
than a dollar spent later.

Cost per year discounted (abbreviated Cst__yrdis in the model) is a converter variable,
converting the Total yearly cost to a quantity discounted to weight earlier expenditures more
heavily.

0 Cstyr.dis = Total-yearly-cost*Discountindex
(Cost per year discounted (dollars/year))

Because the discount index is zero any time before the Starting year for cost
accumulation, Cost per year discounted will likewise be zero before that time.

Discount index (Equation #30)

Weighting the importance of present versus future expenditures can be accomplished by
multiplying the expenditures by a factor. This should be 1.0 in 1986, representing full
importance of present expenditures. The factor should decline slightly for each year A

thereafter, representing less weight on later expenditures; the later, the lesser. In financial
jargon, this is known as discounting cash flows. (The term "discounting" came from a
bank's practice of buying mortgages and other financial instruments at a discount from their
face value, because the payment of that face value would be happening in the future; the
"discount" between face value and purchase price represents the value of money later
versus now.) Because the multiplicative factor is dimensionless and passes through 1.0, it
is considered an index, the Discount index.

A-17

The Discount index (written Discount index in the model) is a converter variable,
converting the year into an index through an-algebraic formula.

0 Discount-index = IF TIME . Startyrcstaccum THEN 0 ELSE EXP(-
Discount-rate*(TIME - Start-yr-cst-accum))

The formula implements in STELLA a standard exponentially-declining weight, starting
with a value of 1.0 when TIME equals the Starting year for cost accumulation. The
exponential is expressed within an IF...THEN clause that makes the Discount index zero
before the starting year, and therefore shuts off accumulation of costs before then.

Starting year for cost accumulation (Equation #35)

Costs which have already been incurred at the time of an analysis are "sunk costs."
According to both standard financial analysis and DoD Instruction 7041.3, sunk costs
should not be included in the comparison of alternatives. To exclude sunk costs, the model
measures accumulated costs of software activities, but only after the present, which is
1986. The present year is specified in the model as the Starting year for cost accumulation.

The Starting year for cost accumulation (abbreviated Start.yr_cst accum in the model)
is a converter variable with no inputs, i.e., a constant

o Startyrcstaccum = 1986
{Starting year for cost accumulation (year)}

The Starting year for cost accumulation is written as a separate symbolic constant,
rather than simply a number in various formulas, so that there is just one place in the model
where the assumption about what the present time resides. It wouldn't be desirable to
review and edit the whole model every time a new year passes.

Discount rate (Equation #40)

Any exponentially-declining Discount index can be characterized completely by a single
number, that represents the percentage by which the discount index declines each year.
This number is the Discount rate.

The Discount rate (written Discount rate in the model) is a converter variable, but with
no inputs; it is a constant, or equivalently, a parameter. W

0 Discount-rate = 0 (Discount rate (fraction/year))

The discount rate is set at zero, representing the assumption (at least until the value is
changed) that all expenditures, from the starting year for the policy analysis onward, are
equally important. Setting the Discount rate higher would give less weight to future up
expenditures. DoD Instruction 7041.3 ("Economic Analysis and Program Evaluation for
Resource Management," October 18, 1972) mandates discounting, and suggests a value of
10 percent.

A-18

eJ

The discount rate is an important parameter in evaluating short-term/long-term tradeoffs
in policies. If the discount rate is high, short-term expenditures are weighted very heavily
in Total cost. If a policy to minimize short-term spending is being evaluated against
policies that have a short-term cost and a long term gain, a higher discount rate will favor
the short-term cost minimizing policy. If one believes in policies that invest for the future,
one should therefore evaluate policies using a low discount rate, which gives weight to
long-term issues as well. At least until better information about DoD decision-making is
obtained, the long-term planning orientation is reflected in setting the Discount rate to zero.

'I Total yearly cost (Equation #50)

The Total yearly cost represents expenditures made per year on mission-critical
software development and maintenance, expressed in 1986 dollars. Total yearly cost
includes software activities both in Ada and non-Ada languages.

* liThe Total yearly cost (written Total yearlycost in the model) is a converter variable,
summing the Total yearly cost of Ada projects, the Total yearly cost of non-Ada projects,
and the Total yearly cost of conversions (from non-Ada programs to Ada programs)

o Total-yearly-cost = ToLyr-csL.NA+ToL.yrcsLconv+Tot-yr-cstAda
Total yearly cost (dollars/year))

Even though the accumulation of yearly expenditures is set to zero prior to a starting
year, that setting is accomplished thrbugh the Discount index; Total yearly cost is positive
for the entirety of the simulation.

* EIA 1980-1990 ECR forecast (Equation #60)

For convenience in comparing model output to real data, the model contains time series
drawn from the Electronics Industry Association's forecasts (EIA 1980). The first
forecast, made around 1980, is of yearly expenditures on embedded computer software
from 1980 to 1990. The variable representing this forecast is the EIA embedded computer

* resources forecast.

A-19

&S

The EIA embedded computer resources forecast (abbreviated EIA ECR forec in the
model) is a converter variable, converting the year into the corresponding forecast value for
that year.

4.000e :..........

6W/

.• year

199.00 inut009000
1900 0 0 :i:

1981.000 4.,490e+9
1982.000 5.620e+9
1983.000 7.180e+9
1984.000 8.950e+9
1985.000 1.62e+10
1986.000 1.390e+1 0
1987.000 1.716e+10
1988.000 2.120e+ 10
1989.000 2.815e+1 0
1990.000 3.210e+ 10

A software bug in the present version of the STELLA simulation program prevents
standard display of the equation for the graphic function defining EIA ECR forec. There
are more decimals, including the floating-point exponents than the miodules that display
equation listings can handle. The above table of values is drawn from a display by a
different part of the software.

Due to limitations of the simulation software, the value of EIAECR forec outside of
its defined range of 1980-1990 is just the value of the endpoint: for time before 1980, the
1980 value, and for time after 1990, the 1990 value. The relevant period for comparision
to model output, however, is the 1980-1990 range.

A-20

NN

EIA 1985-1995 MCCR forecast (Equation #70)

The model contains another time series drawn from the Electronics Industry
Association's forecasts. This forecast is of yearly expenditures in current dollars on
mission-critical computer software from 1985 to 1995 (EIA 1985). The variable
representing this forecast is the EIA mission-critical computer resources forecast.

The EIA mission-critical computer resources forecast (abbreviated EIA MCCR forec
in the model) is a converter variable, converting the year into the corresponding forecast
value for that year.

4.000e
......

.................... .

0.0

I19oo000 (inputl Ll95.oo
gear

Input Output
1985.000 .,Z IaM1[
1986.000 1.354e+10
1987.000 1.662e+ 10
1988.000 2.038e+ 10
1989.000 2.311 e+ 10
1990.000 2.559e+1 0
1991.000 2.729e+ 10
1992.000 2.911e+10
1993.000 3.104e+ 10
1994.000 3.297e+10
1995.000 3.566e+10

A-21

A software bug in the present version of the STELLA simulation program prevents
standard display of the equation for the graphic function def'ring EIA ECR forec. There
are more decimals, including the floating-point exponents than the miodules that display
equation listings can handle. The above table of values is drawn from a display by a
different part of the software.

Due to limitations of the simulation software, the value of EIA MCCR forec outside of
its defined range of 1985-1995 is just the value of the endpoint: for time before 1985, the
1985 value, and for time after 1995, the 1995 value. The relevant period for comparision
to model output, however, is the 1985-1995 range.

Total yearly cost of Ada projects (Equation #80)

The total yearly cost of Ada projects represents the amount spent on Ada-based
oftware projects each year, expressed in constant dollars

Total yearly cost of Ada projects (abbreviated Tot_yr_cst Ada in the model) is a
converter variable, which sums the Cost per year for Ada development projects and the
Cost per year for Ada maintenance projects.

0 Totyr-cstAda = Cst-yrAda-mn+CstyrAda-dev
(Total yearly cost of Ada projects (dollars/year))

Cost per year for Ada development projects (Equation #90)

The cost to do computer programming is a fairly predictable function of the size and
complexity of the task undertaken. A "project" as used in the model represents a unit of
programming complexity, so that a yery large programming task in real life would be
represented in the model as several projects. (The definition of a "project" as a unit of
programming work is detailed in Section 5 of this report.) The cost to do computer
programming then becomes just a matter of how much programming work there is to do,
measured in projects, and how much the standard project costs per year. The product of
these two factors becomes the Cost per year for Ada development projects.

The Cost per year for Ada development projects (abbreviated Cst_yr Ada dev in the
model) is a converter variable, converting the number of Ada development-projeRcts and the
Cost per year for Ada development projects into a yearly flow for all Ada development
projects. Figure A.3-2 shows the flow diagram for this computation.

0 Cst-yrAda-dev = Ada-dev-pr*Cstpr yrAda-dev
(Cost per year for Ada development projects
(dollars/year))

Cost per project-year for Ada development projects (Equation #100)

(Boehm 1981) discusses in great detail how much a given piece of software work will
cost, given various assumptions about the tools, people, and procedures involved.
Moreover, there are reasonably good ways of predicting how much of the cost will be
spent in a particular year. Such calculations are for individual projects, but the analogous
concept exists for large collections of programming efforts. For the body of Ada
development projects, that cost is the Cost per project-year for Ada development projects.

A-22
atV

50

Ada dev prj

Incom_ Ada infra 1.60

intenAda infra OW43

vCstjprryr da ev

Cst~yrAda dev

Ada-maint..prj
CstjrAda-mn

C

Figure A.3-2. Flow diagram of inuts to Cost per year for Ada development projects

(Cstjr_Ada-dcv).

A-23 '

The Cost per project-year for Ada development projects (abbreviatedCst_pjyr_Adadev in the model) is a converter variable.

0 Cst-prjyrAda-dev = Ref-cst-Ada-dev*EAda-cost
(Cost per project-year of Ada development projects
(doll ars/proj ect/year)}

The cost equation above is written in a form common in system dynamics for
expressing a single output as a function of multiple inputs. The Reference cost for Ada
development projects defines what the standard unit of software work costs per year to do,
under some set of conditions (tools available, experience of programmers, etc.). The
Effects on Ada costs gives the effect on costs when the current conditions differ from the
reference conditions. This equation form is discussed in (Alfeld and Graham 1976,
Section 5.3) and (Richardson and Pugh 1981, pp. 152-56).

Two sets of equations may be defined with respect to to different sets of reference
conditions, corresponding to two different sets of hypothetical conditions. This usually
happens because the modeller doesn't have good information for all equations under one
consistent set of conditions. When reading the model equations, therefore, it will be
important to notice the reference conditions for each reference constant as a separate entity.

Reference cost for Ada development projects (Equation #110)

The reference cost for Ada development projects is the cornerstone for determining Ada
development costs: it specifies the cost per year for a standard software project under
standard conditions. The standard conditions are defined as the current average intensity
and incompatibility of (primarily non-Ada) infrastructure. (Details of how the current
characteristics of programming infrastructure are measured in the model were discussed in
Section 5 of this report.)

The Reference cost for Ada development projects (abbreviated Ref cstAda dev in the
model) is a converter variable with no inputs, i.e., a constant.

0 RefcstAdadev = 5E6
(Reference cost for Ada development projects
(doll ars/proj ect/year))

It should be reemphasized that all of the costs in the model deal with yearly
expenditures, which are quite different from life cycle costs. For example, it may be that
projects have a life cycle maintenance cost higher than the development cost. But the
maintenance expenditures will usually be spread out over more years than the development
expenditures. In that case, the reference cost (measured in dollars per year) for
development may well be higher than the reference cost for maintenance. The spending per
year is presumably more intense.

The numerical value for the Reference cost for Ada development projects is central to
the policy evaluation process, yet at the current time, highly uncertain. The issue of how
the values are selected will be treated in Appendix A.9.

A-24

IU

S

Effects on Ada costs (Equation #140)

A number of variables influence how much a given amount of programming work
costs. The composite of such influences is represented by the Effects on Ada costs.

The Effects on Ada costs (abbreviated E Ada cost in the model) is a converter variable,
that converts specific influences (intensit-andincompatibility of infrastructure) into a
single aggregate effect.

*l 0 EAdacost = E-infr'_Ada-prj-cst*E-incoA-cst

(Effects on Ada costs (dimensionless))

Effect of intensity of infrastructure on Ada project costs (Equation #150)

- The intensity of infrastructure brought to bear on programming projects has a strong
influence on how much the programming costs. More experienced programmers, ample
computer facilities for programming, reusable code, software tools, and so on all cause the
programming to go faster and more reliably. The aggregate representation of these is the
Effect of intensity of infrastructure on Ada project costs.

The Effect of intensity of infrastructure on Ada project costs (abbreviated
E int Ada cst in the model) is a converter variable, using a graph function to convert the
intensfty of-Ada infrastructure into an effect on cost.

1 3.000 1

9C
.

_-.

-- o~~~o!, .

[0.0] (input) 100.00o

IntenAdaInfra

A

~A-25

i'.;:';': ,..:""' '.:'. ,""""""', .. -. . :. ? ? i?) -'"-."? :

0 E-intAda-cst = graph(IntenAda-infra)

0.0 -> 3.000
10.000 -> 2.850
20.000 -> 2.565
30.000 -> 2.010
40.000-> 1.000
50.000 -> 0.600
60.000 -> 0.465
70.000 -> 0.360
80.000 -> 0.270
90.000 -> 0.200
100.000 -> 0.100

Generally, the graph function causes cost to decrease as infrastructure becomes more
intense. The curve is normalized to a reference condition equivalent to the current intensity
of non-Ada infrastructure. At that point, the effect is neutral, i.e., it has a value of 1.0.
The calibration of this curve is discussed in Appendix A.9.

Effect of incompatibility of infrastructure on Ada project costs (Equation
#160)

Incompatibility of infrastructure has both indirect and direct effects on costs. The
indirect effects occur when incompatibility inhibits the accumulation of intensity of V,
infrastructure, which can keep costs higher than they otherwise would be. Most of the
commonly-discussed ways by which incompatibility increases cost are in this indirect
channel. But there is also a direct effect, where incompatibility of infrastructure effects the
ability to integrate and maintain large systems, where programming may have been done by
several contractors. Systems integration becomes more difficult if programs must be
shuttled between different operating systems or recompiled. Assembling a project team is
also more difficult in the face of incompatible infrastructure. Incompatibility creates
situations where experienced people exist, but are tied up on other projects, and the people
who are available may not be experienced with the language, operating system, or tools
needed. And hiring someone experienced in language A on operating system B with tools
C, D, E, and F is difficult because of the numerous constraints. In essence, incompatibility
adds to the costs of the integrating contractor. This is discussed in (Foreman 1985a, W
Foreman 1985b, and IDA 1985a)

Examples abound of incompatibility raising programming costs in the non-Ada world,
but Ada is not exempt. Incompatibility of operating systems means that tools will not be
transportable, so that even if major subsystems are developed with extensive use of tools,
those may no longer be available during system integration. Even on the same operating
system, compiling programs with a different Ada compiler may change program
behavior-the Ada specification is not totally complete with respect to how features interact.
So use of generics within generics, or tasking within generics may; be handled differently
in different validated Ada compilers. The overall consequence of such incompatibilities is
higher costs. This effect is represented by the Effect of incompatibility of infrastructure on
Ada project costs.

A-26
I

The Effect of incompatibility of infrastructure on Ada project costs (abbreviated
E inco A cst in the model) is a converter variable, using a graphic function to convert the
irdex o-R incompatibility into an effect on cost. Higher incompatibility adds to cost, and

* conversely.

12000 II .780

..................... •....•..

(* ...

.. In.. co... ..:... R..da...:... ..r ..

.... c:st r h(I :o i..nf .. r)..
.0 : :0.0 -:>;0.740

, 10.00 -> 0.70

20.000 -> 0.8 10
30.000 -> 0.860
40.000 -> 0.910
50.000-> 1.000
60.000-> 1.150
70.000-> 1.270
80.000-> 1.400

V 90.000-> 1.490
100.000 -> 1.570

The curve is normalized for a reference condition of today's level of incompatibility of
non-Ada infrastructure. At that point, the effect is neutral, i.e., it equals 1.0. The curve
has a three-to-one difference in yearly cost between zero incompatibility and one hundred
incompatibility (roughly twice the 1985 incompatibility). That is a three-to-one difference
between a situation where everyone has experience in exactly the same language, operating
system, and tools, and beyond that, the same management style, procedures, formalisms,
and so on, and a situation where effectively no one has any of these elements in common

,... with any of the other team members. This is a curve where (IDA 1986) may provide the
basis for a modestly rigorous estimate.

A-27

,,, ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~,...... ,........ ,......,......... .. .,-.....".-...-....-...-..,.o-

P "
Cost per year for Ada maintenance projects (Equation #200)

As with programming done for product development, there is a cost for programming
done for maintenance. The Cost per year for Ada maintenance projects measures those
costs.

The Cost per year for Ada maintenance projects (abbreviated Cst_yr Ada -nn in the
model) is a converter variable, converting the number of Ada maintenance projects and the
Cost per project-year for Ada maintenance projects to a total dollar flow for Ada
maintenance programming.

0 CsLyrAdamn = Ada.maint-prj*Cstprj-yrAda.mn (Cost per year for

Ada maintenace projects (dollars/year)}

Cost per project-year for Ada maintenance projects (Equation #210)

Any individual MCCR system will have an erratic curve of maintenance programming
expenditures versus time. One year, very little may be done with it, apart from fixing
identified bugs. Other years may see a major redevelopment effort due to changed
requirements. The model assumes that, however variable and unpredictable the
expenditures for individual projects may be, the aggregate of many such projects tends to
produce a relatively stable expenditure stream, which is therefore predictable by the law of
large numbers. The Cost per project-year for Ada maintenance projects is in effect that
predicted cost.

The Cost per project-year for Ada maintenance projects (abbreviated V
Cst_pjyr_Adamn in the model) is a converter variable, converting what the cost would
be under a set of reference conditions (the Reference cost for Ada maintenance projects)
and the effect on cost of departing from those reference conditions (the Effects on Ada cost)
into an expected cost per standard Ada maintenance project.

0 Cst-prj-yrAda.mn = Ref-cstAda-mn*EAda-cost t
(Cost per project-year for Ada maintenance projects
(dollars/year))

Reference cost for Ada maintenance projects (Equation #220)
V

The cornerstone for evaluating costs is the idea that a given amount of programming
work, with a given infrastructure, will cost a predictable amount in the average year to
maintain. That "prediction" is the Reference cost for Ada maintenance projects

The Reference cost for Ada maintenance projects (abbreviated Ref cstAda mn in the
model) is a converter variable with no input, i.e., a parameter. w

0 Ref.cstAda.mn = 2e6 (Reference cost for Ada maintenance projects (
Dollars/proj ect/year)}

Appendix A.9 describes the derivation of the value of this reference cost.

A-28

Total yearly cost of non-Ada projects (Equation #260)

The structure of equations that lead up to Total yearly cost of non-Ada projects is
precisely analogous to the structure for Total yearly cost of Ada projects. The parameter
values are also exactly the same, except where explicitly noted and derived in the model
calibration section, Appendix A.9. Therefore, no verbal description will accompany the
equations defining Total yearly cost of non-Ada projects.

46 0 Totyr-cstNA = CstyrNAmn+CstYr_NA_dev

(Total yearly cost of Nonada projects (dollars/year))

Cost per year for non-Ada development projects (Equation #270)

Figure A.3-3 shows a flow diagram of the computation of non-Ada costs; the diagram
is symmetrical with the corresponding diagram for Ada costs.

o CstYrNAdev = NonAda-dev-proj*Cst-prjyrNAdev
(Cost per year for NonAda development projects (dollars/year))

Cost per project-year for non-Ada development projects (Equation #280)

0 CskprjJyrNAdev = Ref-cstNA-dev*ENA-cst
(Cost per proj ect-year for NonAda development projects
(dollars/year))

Reference cost of non-Ada development projects (Equation #290)

O Ref.cstNA.dev = 6E6 (Reference cost for NonAda development projects (

dollars/year)}

Effects on non-Ada cost (Equation #350)

o ENAcst = E-intNA-cst*E-incoNA-cst
(Effects on NonAda costs (dimensionless))

r.

p

A-29

A -

NonAda...dev proj _rN-e

I320

Ref cstNA dev30

C1 N

-36

U'-Aifr 03S

E-in-NA-st C~t 34,

INo-dA-mintpr

Figure A.3-3. Flow diagram of inputs to Cost per year for non-Ada development
projects (CstjyrNAdev).

W

A-30

4

.7 N7

MMS-7- 7 T ... i : 4 17-.7 U TY 'iX- IM. -

Effect of intensity of infrastructure on non-Ada cost (Equation #360)

1 2.000 1

N

0.0 (input) 1000

vI nt...NR-infro

0E-..int-..NA-..cst greph(Int-NA-infra)
0.0 -> 1.970

V 10.000 -> 1.530
20.000 -> 1.270
30.000- 1.120
40.000 ->1.000

50.000 ->0.880

* 60.000 ->0.760

70.000 ->0.630

60.000 ->0.520

90.000 ->0.390

100.000 ->0.300

A-31

Effect of incompatibility of infrastructure on non-Ada cost (Equation #370)

12.000

4w

z
.

...

0.0] (input) L0o.ooo

I ncomNA-infr

EincoNA-cst graph(IncoMNA-infr)
0.0 -> 0.740
10.000 -> 0.780
20.000 -> 0.810
30.000 -> 0.860
40.000 -> 0.g10
50.000-> 1.000
60.000-> 1. 150
70.000-> 1.270
60.000-> 1.400
90.000-> 1.490
100.000 -> 1.570

Cost per year for non-Ada maintenance projects (Equation #320)

O Cst-yrNA-mn = NonAda-rnaint-prj*Cst-prj-yrNA-mn
(Cost per year for NonAda maintenance projects (dollars/year))

Cost per project-year for non-Ada maintenance projects (Equation #330)

o Cstprj-yrNA-mn = Ref-cstNA-mn*ENA-cst
(Cost per project-year for NonAda maintenance (do1ars/year))

A-32

9I. . ,,- . . - ,.,. ,. ,-. ,...: - - . -,.;. .. ,

Reference cost for non-Ada maintenance projects (Equation #340)

0 Ref.cstNA.mn = 3e6 (Reference cost for Non

Ada maintenance projects (dollars/year))

Total yearly cost of conversions (Equation #420)

Programs developed in non-Ada languages do not need to stay that way. Major
redevelopments. are one natural point at which conversion to Ada could be considered.
There have already been proof-of-concept translations of three avionics packages for fighter
aircraft into Ada, with good results: the F4J (DS&E 1985), the F-15 (Stanley 1985), and
the F-20 (Suydam 1985). As experience with Ada accumulates, conversions of operational
software during major upgrades should become more common.

Surprisingly, routine maintenance also offers opportunities to transit into Ada. One
contractor writes routines in Ada, then uses an Ada-to-CMS2 translator to convert the code
into CMS2 code compatible with the rest of the system (Mayfield, 1985). Gradually, more
and more of the "original source" code is in Ada, with all the benefits thereof. Determining
when such conversions are undertaken is represented elsewhere in the model; the cost
section assesses the cost of such conversions, with the Total yearly cost of conversions.
Figure A.3-4 shows the. flow diagram of the computation.

The Total yearly cost of conversions (abbreviated Totjyr cst cony in the model) is a
converter variable, converting the number of standard Conversion projects and the Cost per
project-year for conversions to a total dollars-per-year figure.

0 TotLyr.cstconv = Conv.prj*CstprjyrConv

(Total yearly cost conversions (dollars/year))

Cost per project-year for conversions (Equation #430)

The Cost per project-year for conversions represents the yearly cost of any maintenance
programming (major or minor) that begins with materials that were used to generate non-
Ada source code and ends with Ada source code. This definition therefore excludes
translation activities during the development phase such as translation from a specification
language or program design language (PDL) into Ada source code. The definition would
include, however, retranslation from a PDL into Ada instead of the non-Ada language. So
if a PDL version of a program was used to generate source code in JOVIAL, one way of
converting the JOVIAL program would be to translate from the PDL into Ada.

Cost per project-year for conversions, like the costs per project year of development
and maintenance, is a yearly cost, not a life cycle cost. Even if conversions have a yearly
cost comparable to development costs, the cost of completing a given conversion project
can be much less if it is accomplished more quickly than developments.

A-33

A-33 "

Cs~.pryrAdade -i To Trt coWNyi

-p0.

atiopcnyAddev 40cstr~s-cn

+4

(Totjyrcstconv).

A-34

4-

The Cost per project-year for conversions (abbreviated Cstprj._yrconv in the model)
is a converter variable, converting current programming costs (represented by the Cost per
project-year for Ada development projects) to costs for conversions, using the Ratio of
development to conversion costs.

0 Cstprj-yrConv = Cst-prjyrAdeadev * Ratio.conv.devcst
(Cost per project-year for conversions (dollars/year))

The model formulation assumes that the bulk of conversion costs will be incurred
during major redevelopments or block upgrades, as opposed to smaller-scale and more
routine maintenance. Therefore, the cost of doing such redevelopment/conversion
programming in Ada should be very similar to (and therefore should be based on) the cost
of developing new programs in Ada.

If a project is undergoing a major redevelopment and conversion to Ada, it is doubtful
that cost-conscious managers would also want to simultaneously carry on a major
redevelopment in the original non-Ada language. Therefore, once conversion work starts
on a piece of software, it is removed from the pool of non-Ada projects immediately. (The
projects sector contains the equations that accomplish this.) Of course, routine maintenance
of operational software must continue even if the software is in the process of being
redeveloped; the model includes these costs as part of conversion, just because the project
is accounted for as a conversion project, not included in either the Ada or non-Ada pools of
projects. This assumption about routine maintenance costs may create some slight
inaccuracies if Ada programming costs are dramatically different from non-Ada
programming costs, but the error should still be relatively small if routine maintenance
expenses are substantially smaller than redevelopment expenses.

Ratio of conversion to development cost (Equation #440)

The Ratio of conversion to development cost characterizes the relative cost per year of
working on a software project for the first time (development) versus a second time, third
time, and so forth (redevelopment). As usual, the ratio characterizes averages, rather than
any specific project: the average development project, the average extensiveness of pre-
planned product improvement, mission change, and so on.

The Ratio of conversion to development cost (abbreviated Ratio conv_dev_cst in the ..
model) is a converter variable with no input, i.e. a constant. .

0 Ratioconv.dev.cst = I
(Ratio of conversion to development costs (dimensionless))

At this point in the development of the model, there is little evidence even as to whether
the Ratio of conversion to development cost is greater than or less than 1.0. There are
arguments both ways. For redevelopment, much of the software is already well-tested: the
software operates to the specifications and the specifications are in fact what is needed. But
in the model, conversion costs also include routine maintenance while the conversion is in
process. If the architecture is well-worked out, it may be possible to "fan out"
programming tasks into modules more rapidly than for a development project--more people
involved sooner would give a higher yearly cost, even if the conversion is accomplished
much more quickly than a development. And, although the original software may operate
well, a formal specification may either not exist or be far out of date, which forces the
redevelopment to start almost from scratch. Too, redevelopment is usually triggered by

A3

A-35 ',

substantial changes in either mission or capability, which are new programming problems.
Might developing a system with new capabilities while operating more or less like the old
be more complex and costly than developing a new system without the constraint of
previous user training? In the absence of information on such questions, the ratio is set to
1.0; conversion projects are assumed to cost as much per year as new development
projects.

A-36

156

S."..,= ' . -% . o - % , % % " . - . -, " . - . ,. . - -. -

,df - .,... ,',,' ... ," ,,,,.',' -. % . . ,..,. .',.' -,,.',.-

Appendix A.4: Ada Projects Sector

The Ada projects sector of the model represents development and maintenance
*programming work in the Ada language for all Mission-Critical Computer Resources

(MCCR). (Non-Ada projects are represented in a parallel but separate sector.) Every
MCCR project start that involves software will increase either the number of Ada
development projects or the number of Non-Ada development projects. That choice is
determined in the language choice sector. Ada development projects become Ada
maintenance projects, which usually endure for many years in the language in which they

* were first programmed. There is also a policy option to translate programs in maintenance
phase from a non-Ada language to Ada. During the course of translation, the projects are
classified in a separate category, conversion projects, which is also located in the Ada
projects sector.

The Ada projects sector affects several other areas in the model. The numbers of
I projects in the three Ada categories (Ada development, Ada maintenance, and conversion)

are the basis for calculating Ada software costs in the cost sector. Moreover, the amount of
Ada programming work in progress (as measured by the numbers of projects) also
determines how fast Ada infrastructure intensity, coverage, and incompatibility develop.

Ada development projects (Equation #500)

All MCCR systems in the development phase using the Ada language are classified in
the model as Ada development projects. The only Ada programming not represented here
is in projects already in the maintenance (i.e., post-development) phase, which may include
projects to translate programs in the maintenance phase from a non-Ada language to Ada.
Section 5 of this report discusses the exact definition of a programming project. Figure

* A.4-1 shows the inputs to Ada development projects on a flow diagram.

Ada development projects (abbreviated Ada devjj in the model) is a level variable; it
accumulates the rate of flow into it (Ada projectstarts) and is depleted by the outflow rate
(Ada development project completions).

El Ada-dev.prj = Ada-dev.prj + Ada.devstarts - Ada.dev.compl
INIT(Adeadev.prj) = 0 (Ada development projects

(projects))

Ada development projects is initialized at zero, since the simulation starts prior to the
*definition of Ada as a language and prior to the availability of compilers or any other

infrastructure..

Ada development project starts (Equation #510)

All new MCCR development projects by definition use either the Ada language or some
non-Ada language. The development work started each year in Ada is called Ada
development project starts.

A-37

Ada._devmpl._time

Fr-dev-startsAda LQ Adadv..r V4
... 'Aa_.dev.starts Ada..dev_compl

Total rLstarts

year

Figure A.4-1. Flow diagram of inputs to Ada development projects (Ada dev~po)
The flow exiting to the right goes to Ada maintenance projects. po.

,A-38

kw

- V - a . -I.

Ada development project starts (abbreviated Ada dcvstarts in the model) is a rate
variable, flowing into the level of Ada development projects. A rate variable is a special
variation of a converter variable. Here, Total development project starts and the Fraction of

* development project starts in Ada are converted into a number of projects per year starting
in Ada.

0 Ada-dev.starts = Tota lprj-starts*Fr dev-startsAda
{Ada development (project) starts (projects/year)}

Total development project starts (Equation #520)

All Mission Critical Computer System projects are classified as development projects
until they officially become maintenance projects. The yearly rate at which development
projects are initiated is Total development project starts.

0
Total development project starts (abbreviated Total_.prjstarts in the model) is a

converter variable, using a graphic function to convert a calendar year into the number of
development projects started.

14000.0 1

67

...• ...•".... • .. • •....

A--

." 0.0 1.7.00 (..i.. ..input) 2020000..i
* ea

iii1',11'iii,12122A39iii 21
.. =='==a=========== =====

,I• : • : .

-i i i v i

Total-prj-starts graph(year)
1970.000 -> 15.000
1975.000 -> 50.000
1980.000 - 120.000
1985.000 -> 620.000
1990.000 -> 760.000
1995.000 -> 1020.000
2000.000 -> 1390.000
2005.000-> 1915.000
20 10.000 -> 2360.000
2015.000 -> 2870.000

"d 2020.000 -> 3380.000

The derivation of specific numbers for this variable is described in Appendix A.9,
"Multivariable Model Calibration."

The number of starts is assumed to increase each year. As computer technology, both
software and hardware, continues to advance, more and more applications for computers in
MCCR systems become cost-effective. This study focusses on ways of causing costs of
software production to fall more rapidly. However, it is beyond the scope of this study to
characterize how software costs feed back to influence demand for software. Total
development project starts is an exogenous variable, i.e., its value is not influenced by
other variables within the system.

It is not expected that assumptions about the number of project starts will be critical in
determining which standards policies are most desirable, within a broad range of plausible
values for yearly project starts. In any event, this is the primary candidate for contingency
testing.

Year (Equation #530)

The yearly progression of time from 1975 to 2015 is represented in the variable called,
mnemonically enough, Year.

Year (written Year in the model) is a converter variable, converting the built-in variable
TIME into a model variable complete with a flow diagram symbol.

0 year = TIME {years (years)}

The variable, Year, was created to write as an explicit input to a graph function, since
the STELLA simulation package's syntax does not allow using the TIME variable directly.

The range of time simulated with the model can be changed in the "Specs" menu.
However, if this is done, the tables drawn as functions of time (Year) must be checked to
ensure that they are properly defined over the specified range.

A-40

r.

Ada development project completions (Equation #540)

The transition from a development project to a maintenance project is a clearly defined
and formal event. Sometimes it is marked by handing the project over to a different team;
sometimes its is merely a signing of papers and a transition of budget authority. For a
contractor delivering on a contract obligation this event has important legal and financial
implications. The number of projects each year that make this transition is the rate of Ada
development project completions.

Ada development project completions (abbreviated Ada-dev compl in the model) is a
rate variable; it is an outflow to Ada development projects and an inflow to Ada
maintenance projects.

0 Ada.dev-compl = Ada.dev-prj/Adedev.compl-time
I* (Ada development (project) completion time

(proj ects/year)}

This representation of the rate as the level divided by the average dwell time, Ada
development completion time, will give an average continuous flow of Ada development
project completions.

The completion time is no more than an AVERAGE dwell time in the model, just as in
real life. Some projects will be completed within months. Some will persist for two and
three times the average. The structure of level and outflow rate used here forms what is
known as a first-order delay or lag; the average time a project spends as a development
project is the Ada_dev compltime.w

The mathematics of the first-order delay are such that if a batch of projects were all
started at once (with none starting thereafter), both the number of projects remaining and
the completion rate would decline exponentially. When time equal to the average
completion time has passed, about 70 percent of the projects will already have been
completed. About 30 percent of the projects would still be incomplete. About 30 percent
of those will remain after 2 times the average completion time, and so on. It is these
stragglers that make the average dwell time equal to the Ada dev compltime. For further
discussion, see (Forrester 1969, Sections 2.2 and 10.2; Goodman 1974, Ch. 3; and Alfeld
and Graham 1976, Section 3.5)

Ada development project completion time (Equation #550)

Although projects vary greatly in the time they take to be complete, with a large enough
sample it is possible to think of an average development duration. This parameter is called
Ada development project completion time.

Ada development project completion time (abbreviated Ada_dev_compltime in themodel) is a converter variable with no inputs, i.e., a constant.

o Adadev.compltime = 10 (Ada development (project) completion time (
years)}

A-41

1 % ," .% % % % ',-' " % " %% % % % '% , .% "% '"•"'

The project completion time represents the time it takes from inception of development

the weapons platform or other system of which programming is a part, all the way to
becoming a developed, completed, maintained, and usually deployed system. This time
differs from the time it takes to complete one program module. Before any given module isactually programmed, there are rounds of system definition and specification, and often

layers of calling routines to be written first. After a module is programmed, it will usually
be rewritten, revised, or possibly discarded entirely due to design changes in other parts of
the system, all as part of the development process. The time required for the entire process
is what is measured by the Ada development project completion time.

Conversion projects (Equation #600)

Supposing that Ada and its APSE will eventually become an attractive programming
alternative, the issue arises as to what to do about the non-Ada programs already deployed
and being maintained. As has been discussed in the Cost sector, one alternative is
translation to Ada, either on a module-by-module basis, or as an integral part of major
redevelopments. The projects where such translations are being done Conversion projects.
Figure A.4-2 shows the inputs on a flow diagram.

Conversion projects (abbreviated Convprj in the model) is a level variable; it
accumulates the rate of flow into it (Conversion project starts) and is depleted by the
outflow rate (Conversion project completions).

- Conv.prj = Conv-prj - Convprj.compl + Conv-prjstarts
INIT(Conv-prj) = 0 (Conversion projects (projects))

Conversion projects is initialized at zero; there can be no conversion projects until there f

is Ada.

Conversion project completions (Equation #610)

Once the conversion work is done -- once whatever direct translation is possible is
finished, along with the new Ada programming -- the project (or fraction of a project)
becomes just another Ada maintenance project. The number of such completions per year
is the Conversion project completions.

Conversion project completions (abbreviated Conv_prj compl in the model) is a rate
equation which flows out of Conversion projects and into Ada maintenance projects.

0 Conv-prj.compl = Conv.prj / Convcompl-time
(Conversion project completions (projects/year)}

The rate of Conversion project completions is the outflow rate for a standard
first-order lag, with the time constant being the Conversion project completion time. I

Conversion project completion time (Equation #620)

Some conversions will take a week or two, if they are merely rewriting a subroutine in
Ada. Others will last several years, if they are major redevelopments stemming from
substantial mission changes. But in the aggregate, there is an average, which in the model
is the Conversion project completion time.

A-42
"!

5000

WAda-mnjprj
TotaLNA...prj

AdaL aint..prj
Ada....mnprJ~pbsol

60%) AdaprLmnntimne

Con rsat
FrcnyNmn0p Nonnda~mint...pr

Cony crnp~ft

Figure A.4-2. Flow diagram of inputs to Conversion projects (Conv-proj). The flow
from the left is Ada development project completions. The flow from the bottom comes

from Non-Ada maintenance projects.

A-43

PI

7 .4 .. '

Conversion project completion time (abbreviated Convcompl_time in the model) is a
converter variable with no inputs, i.e., a constant.

0 Convcompl-time = 2 (Conversion project completion time (years))

Conversion project starts (Equation #650)

The moment programmers start specifying the rewriting of non-Ada code that is to
result in Ada code, the project (or part of a project) involved is classified as a conversion
project. The yearly rate at which such projects are initiated is the Conversion project starts.

Conversion project starts (abbreviated Convprjstarts in the model) is a rate equation.
It is the flow of projects out of the Non-Ada maintenance level and into the Conversion
projects level.

0 Conv.prj-starts = NonAde-maint-prj * FrconvNA_mn_pr {Conversion
project starts (projects/year))

Conversion project starts is formulated as a fraction of the remaining pool of Non-Ada
projects. Even if DoD and the services choose a high fractional conversion rate, the 4
absolute number of conversion starts will slow down as the remaining pool of Non-Ada
projects gets smaller. This is a realistic because those remaining projects represent the
more difficult, less cost-effective conversion efforts, which should either be saved for last
when the process is well-understood or not converted, just ignored until they and the
system in which they are embedded obsolesce.

Fractional conversion rate of non-Ada maintenance projects (Equation
#660)

A DoD policy encouraging the conversion of non-Ada projects to Ada is a potentially
powerful lever for influencing how quickly Ada establishes itself. Such a policy is
represented by the Fractional conversion rate of non-Ada maintenance projects.

A4

V

.]

I1

*1

Fractional conversion rate of non-Ada maintenance projects (abbreviated
Fr convNA mnjpr in the model) is a converter variable, which uses a graphical function
to convert the calendar Year into a fractional flow rate.

1.000

cc..................... :

..................

- 0 0. :.... :........ ... :..

I90.0 (input) 22.0

yjear

_,0 FrconvNAmn.....pr grph(ye.r)
1970.000 ->0.0

1975.000 ->0.0

1980.000 ->0.0

1985.000 ->0.0

1990.000 ->0.0

1995.000 ->0.0

2000.000 ->0.0

2005.000 ->0.0

20 10.000- 0.0
20 15.000 ->0.0

2020.000 0 0.0

Conversion policy is a policy lever that is inactive in the base model; the values are set
to zero at all times. The fraction is expressed as a graphical function of time to allow
experiments that create a flow of conversions. But such a flow would be realistic only after
Ada is available as a programming language, i.e., the formulation must provide for zero
conversions before the mid- I1980's and the potential for conversions thereafter.

A-45

1900 -> 0.

Ada maintenance projects (Equation #700)

Ada development projects and conversion projects, when completed, result in software
for developed (usually deployed) MCCR systems. There is still, however, a substantial
amount of work required to both improve the reliability of such systems through routine
maintenance, and to keep the system capabilities up to current military requirements. In the
terminology used here, all such activities are termed maintenance. The number of projects
being maintained that use the Ada language is called Ada maintenance projects.

Ada maintenance projects (abbreviated Ada_maint.prj in the model) is a level variable.
Its inflows are the Ada development project completions and the Conversion project
completions. The outflow from the level is the Ada maintenance project obsolescence.

D AdamainLprj = Ada.maint-prj + Ada.dev-compl - Ada.mn.prj.obsol +
Conv.prj.compl
INIT(Ada.maintprj) = 0 {Ada maintainance projects
(projects))

Ada maintenance projects is initialized at 0.0, since at the start of the simulation in
1975, there were no maintenance projects written in Ada.

Ada maintenance project obsolescence (Equation #710)

After their useful lifetime passes, weapons and communications systems finally become
too old or antiquated to be worth maintaining any longer. When this happens they are
retired from duty, and if computers are embedded in the systems, the software that runs U
them no longer needs to be maintained. Undoubtedly, a similar process happens for non-
embedded systems also -- a given set of programs gets too far from current needs and
acquires too many repairs on top of repairs. Or changes in hardware costs over the years
make entirely new forms of computation desirable. Eventually, it is cost-effective to
develop an entirely new system and scrap the old. There comes a time when every
program is no longer used. The number of Ada programming projects that pass out of use
each year is represented by the rate of Ada maintenance project obsolesence.

4, Ada maintenance project obsolescence (abbreviated Adamnprjobsol) in the model is
a rate equation; it depletes the level of Ada maintenance projects.

0 Ada.mn.prj.obsol = Ad-maiint-prj/Adaprjmn-time (Ada
maintainance project obsolescence (projects/year))

The rate is formulated in the standard first-order delay format, with the Ada project
maintenance time as the time constant.

U

Ada project maintenance time (Equation #720)

The lifetime of a weapon system can be quite long. The B52 as a weapons system,
which first entered limited production in 1952, is therefore 34 years old and still going
(Fahey 1956). On the other hand, many weapons systems would have much shorter
lifetimes. In the aggregate an average of 20 years seems plausible. This time is
represented in the model as the Ada project maintenance time.

A-46

Ada project maintenance time (abbreviated Ada_prj mntime in the model) is a
converter variable with no inputs, i.e., a constant.

0 Ada.prjmrntime = 20 (Ada project maintainance time (years) -- the
time it takes for the system in which the technology is embedded to pass
out of useful service)

Fraction of Ada projects (Equation #750)

The Fraction of Ada projects represents that portion of the total MCCR programming
that is done in the Ada language. This fraction is used in the infrastructure sectors of the
model to represent how much Ada programming (and non-Ada programming) is going on,
which influences how rapidly the intensity of infrastructure is created.

Fraction Ada projects (abbreviated Fr Adaprj in the model) is a converter variable,
converting the Total projects and the Total Ada projects into a fraction.

0 FrAda.prj = TotalAda-prj/Total-projects
(Fraction of Ada projects (dimensionless))

Total projects (Equation #760)

Total projects is a measure of the amount of programming work that is going on at any
particular time. As will be discussed further below, there is a weighted sum of
maintenance, conversion, and development projects, the weightings representing the

- differing amount of programming work implied by a standard project within each of those
categories. For example, a system in the maintenance phase might entail less programming
work per year than would a system of equivalent complexity in the development phase.
(Whether it actually would or not is a matter for further investigation, as discussed
elsewhere in this report.)

qN Total projects (written Total_projects in the model) is a converter variable, summing the
Total Ada projects and the Total non-Ada projects.

0 Total-projects = TotalAdaprj+TotalNA-prj (Total projects (projects))

Total Ada projects (Equation #770)

Total Ada projects represents the total amount of Ada programming going on at any
particular time in all categories of projects: development, maintenance, and conversion.

Total Ada projects (abbreviated Total Ada_prj in the model) is a converter variable,
summing development, maintenance, and conversion projects, with weighting coefficients
on the latter two.

0 TotalAda-prj = Ada-dev-prj+(Ada-maint-prj*WAdmn-prj)+(Convyprj
W-conv.prj)
(Total Ada projects (projects))

A-47

The weighting factors represent the difference in programming effort required for the
different types of programming project. It may take less effort to maintain a project than it
does to either convert it from non-Ada or to develop it from scratch.

Weight for conversion projects (Equation #780)

Weight for conversion projects represents the programming effort required per year toconvert a non-Ada project to Ada, relative to a development project.

Weight for conversion projects (abbreviated W convlr in the model) is a converter
variable with no inputs, i.e., a constant

0 W.conv.prj = I (Weight for conversion upgrades
(dimensionless))

The representation as a constant implies that the relative programming efforts for the
different kinds of programming projects (development, maintenance, and conversion) does
not change much over the span of the simulation. As discussed in Appendix A.3 on the
cost sector, the value of 1.0 indicates that it takes as much effort per year to convert a non-
Ada project to an Ada project as it does to develop an Ada project de novo. (Development
projects take longer to complete, so the life cycle cost of development is higher than that of
conversion.)

Weight for Ada maintenance projects (Equation #790)

Weight for Ada maintenance projects indicates the programming effort required to
maintain Ada projects relative to the effort required to develop them.

Weight for Ada maintenance projects (abbreviated W Ada mn_pj in the model) is a
converter variable with no inputs. Its value is constant thr6ughout the simulation.

o WAdarmnprj = .5 (Weight for Ada maintainance projects (dimensionless

The weighting value of .5 means that the model assumes that maintaining an Ada
standard project takes half as much programming effort per year does developing one.

A4

A-48

Appendix A.5: Non-Ada Projects Sector

The non-Ada projects sector of the model represents development and maintenance
programming work in all non-Ada languages. Every developn'ent project start that
involves software will increase either the number of Ada development projects or the
number of Non-Ada development projects. That choice is determined in the language
choice sector. Non-Ada development projects become Non-Ada maintenance projects,
which usually endure for many years in the language in which they were first programmed.
There is also a policy option to translate programs in maintenance phase from non-Ada to
Ada. During the course of translation, the projects are classified in a separate category,
conversion projects, which are not part of the non-Ada projects sector.

The non-Ada projects sector affects several areas in the model. The numbers of
projects in the two non-Ada categories (development, and maintenance) are the basis for
calculating non-Ada software costs in the cost sector. Moreover, the amount of non-Ada
programming in progress determines how fast non-Ada infrastructure intensity, coverage,
and incompatibility develop.

The Non-Ada projects sector is structurally identical to the Ada projects sector, with
two exceptions, both due to the presence of conversion projects. First, conversion projects
flow out of the Non-Ada maintenance project level and into the Ada maintenance project
level. Second, the summation for Total non-Ada projects has no term for conversion
projects, since at least the coding phases of those projects are conducted in the Ada
language.

The parameters of the Non-Ada projects section are exactly equal to the corresponding
parameters in the Ada projects section. Because of the close similarity of the Ada projects
sector to the non-Ada projects sector, no further verbal description will accompany the
equations for the latter.

Non-Ada development projects (Equation #820)

Figure A.5-1 shows the inputs for non-Ada development projects on a flow diagram.

0 NonAdaedev.proj = NonAda-dev-proj + NA-dev.starts - NA.dev.compl
INIT(NonAda.dev.proj) = 150

(NonAda development projects (projects))

Non-Ada development project starts (Equation #830)

o NA.dev.starts = Total-prj.starts * (1 -Frdev.startsAda)
(Non-Ada development (project) starts (projects/year))

Non-Ada development project completions (Equation #840)

o NA.dev.compl = NonAda-dev-proj/NA-dev-compl-time
(Non-Ada development (project) completions
(proj ects/year))

A-49

IaWW W W-
- -17

WVVW

950

Frtdev.startsAda N dv Lm

NA-dev starts NA dev .ompi

Total~p rLstarts

Figure A.5-1. Flow diagram of inputs to Non-Ada development projects
(NonAda-devjproj). The flow exiting to the right goes into Non-Ada maintenance

projects.

A-50 '

Non-Ada development project completion time* (Equation #850)

0 NA-.devcompl-time =10
{NonAda development (project) completion time
(yeamrs))

Non-Ada maintenance projects (Equation #880)

Figure A.5-2 shows the flow diagram for Non-Ada maintenance projects.

SNonAda..mainL-prj = NonAda-.maint-..prj + NA-..dev-..compl -

NA-..mn-..prj-..obsol - Conv...prj-..starts
INIT(NonAd&..maint...prj) = 90

(NonAda maintenance projects (projects))

* Non-Ada maintenance project obsolescence (Equation #890)

o NA....n-..pry...obsal = NonAd&..maint-prj/NA...pro..mn-time (NonAda
maintainance project obsolescence (projects/year))

Non-Ada project maintenance time (Equation #900)

o NA-proj..mn...time = 20 (NonAda project maintainance time (years))

Total non-Ada projects (an output) (Equation #910)

o Total-NA-prj =NonAda-.dev...proj.((NonAda...maint...prj-Conv...prj)*
w...NA-..mnprj)
(Total NonAda projects (projects))

Weight for non-Ada maintenance projects (Equation #920)

o w-NA...mn..prj = .5

A-51

fe e!C-I e i

NA .pmo mnjlime

NA..mn..prLpbsol

TotaLNA...pr WNA..snnjx

NonAda devproj Conv..pr

Figure A.5-2. Flow diagram of inputs to Non-Ada maintenance projects
(NonAda maintproj). The flow exiting upwards goes into Conversion projects. The

flow entering from the left is the Non-Ada development project completions.

A-52

* .e. W.

Appendix A.6: Language Choice Sector

The language choice sector represents the considerations made in choosing the
* language in which MCCR systems will be programmed. Rather than representing all

language options equally, the sector represents choosing Ada versus the aggregate of all
other languages. The basis for choosing Ada versus another language is coverage and
intensity of infrastructure (i.e., whether sufficient skilled people, software tools, and
modem hardware for programmers are available; and available for the desired combination
of host and target computers), and beyond these characteristics, the incentives that arise

* from the DoD having standardized on Ada.

Fraction of development project starts in Ada (Equation #1000) (an output)

In the aggregate, the various considerations about whether or not to use Ada can be
summarized in the fraction of programming work starting up that uses Ada. In the model
this is the Fraction of development project starts in Ada. Figure A.6-1 shows this variable
and its inputs.

Fraction of development project starts in Ada (abbreviated Fr dev starts Ada in the
model) is a converter variable, combining the Natural fraction of Ada-starts (that would
arise from free market choices, without the influence of DoD standardization) with the

* influence of DoD standardization (the Effect of target on starts).

0 FrdevstartsAda = Nat-fr._Ada__starts * Etarget.on.starts
(Fraction of development (project) starts in Ada
(dimensionless))

Unlike most other sectors, the language choice sector equations are not organized
around a level variable; the function of this sector is to gather information about other level
variables, infrastructure variables in particular, from other sectors and combine them into a
single result. Just as a reminder of this difference with most other sectors, the heading of
the first equation calls the-Fraction of development project starts in Ada an output variable,

li to distinguish it from a state variable.

Effect of target on starts (Equation #1010)

The DoD and Congress have set in motion a number of incentives to use Ada beyond
the free-market considerations of how well it should work in the project. The

WAuthorization Act of 1983 stated:

The Department of Defense should accelerate the implementation of the Ada
higher order language and constrain to the maximum extent feasible service
variations on Ada to ensure the utmost commonality of systems support
software.

Accordingly, the "DeLauer Memo" (DeLauer 1983) of June 10, 1983 from Richard
DeLauer, then Under Secretary of Defense for Research and Engineering (USDRE),
mandated the use of Ada, "consistent with approved introduction plans, in all mission-
critical defense systems that enter advanced development status after January 1, 1984 or
that enter full-scale engineering development status after July 1, 1984." (quote from DoD
Computer Technology (Study Annex): A Report to Congress, 1984). A 1985
memorandum from the current USDRE, Dr. Hicks, confirms this policy (Hicks 1985).

A-53

LWA %e

530

IncentiveL_useAda year

TargjrAd starts
Percjince.,use..Ada.

Nat f _Ada starts

* Time ..perc ince
Target.A _rel-_nat

Ejarget_ onstarts

Fr-dev-startsAda

Figure A.6-1. Flow diagram of inputs to Fraction of development starts in Ada
* (Fr_dcv-startsAda). I

A-54

eW

The policies on Ada use create incentives to use Ada above and beyond strict cost and
effectiveness issues. Obtaining a waiver to use a non-Ada language is time- and resource-

46 consuming. The process may not generate goodwill between the programming organization
and the DoD program officer. Moreover, the chain of evaluations and approvals could
cause substantial delays: The program officer must propagate the request for a waiver up
the chain of command within the service, and large projects must also involve the DoD's
Research, Development, Testing, and Evaluation (RDT&E) approval. Moreover, choosing
a non-Ada language causes an organization to lose the ability to accrue Ada experience for
later projects. Such considerations can increase the use of Ada beyond what would be
indicated by free-market considerations alone. This is represented in the model by the
Effect of target on starts.

The Effect of target on starts (abbreviated E target on starts in the model) is a
converter variable, which uses a graphic function to convert the discrepancy between the

l DoD target fraction and the natural fraction into an effect on starts.

15.000

a.........................

-' I0

mC

................
-- I0 . : :.

I*I .. ; . ,

0o.0 (input) 5.000

TargetAda-rel-nat

A-55

.l",.

FUU~ ~ * ~W~b-719- V- (p-yV17T7Yr.7 - \V.~~'~-

(2 E-targeton-starts graph(TargetAda-rel-nat)
0.0 -> 1.000

0.500-> 1.000
1.000-> 1.000
1.500-> 1.125
2.000- 1.325
2.500 1.575
3.000- 1.950
3.500 ->2.300
4.000 ->2.675

4.500 -> 3.075
5.000 -> 3.500

This formulation allows the fraction of project starts actually using Ada to be a
compromise between the target, or mandated, fraction and the "natural" or free market
fraction. If the mandated fraction is smaller than the natural fraction, the actual fraction
equals the natural fraction. If the mandated fraction exceeds the natural fraction, the actual V

rate will be somewhat higher than the natural rate.

If the mandate to use Ada were completely effective (in the sense of compelling the
actual fraction of starts to equal the target fraction), the curve would slope upwards at 45
degrees for inputs above 1.0. For those inputs, the effect would then equal the Target for
Ada starts relative to natural fraction (Target Ada rel nat). The discussion below will
define this variable as the Target fraction for Ada starts (Targfr_Adastarts) divided by the
Natural fraction of Ada starts (Nat-frAda starts). Starting from equation 1000 and
substituting,

Fr dev startsAda

= NatfrAdastarts * Etarget on starts

= Nat frAdastarts * (TargetAda rel nat)

= Nat frAda starts * (Targ-frAdastarts / NatfrAdastarts)

= Targ frAda starts.

So if the curve were level at 1.0 for inputs below 1.0, and sloped at 45 degrees for inputs
above 1.0, the Fraction of development project starts in Ada would be the natural fraction
or the target fraction, whichever was higher.

The graph does not reach the 45-degree line, however, which represents limitations on I
the extent to which DoD incentives can increase Ada usage above the natural rate. For
example, if the natural fraction is 10 percent and the target fraction is 50 percent, the Target
for Ada starts relative to natural fraction will be 5.0. The Effect of target on starts, from the
table above, will reach 3.5, so the actual Fraction of development project starts in Ada will ,
be 0.10 x 3.5, i.e., 35 percent.

A-56

AI

wW LSWV I . , U i J. U W , L, , .- . ,..- i. -* -Y 1U W h I N .'I --V . UIJ U J IU 'L J ,WW ,Wt I N (c-
' - J

' ~ -
,

IJ
*.

4
' d~ ---

Target for Ada starts relative to natural fraction (Equation #1020)

The goal for the fraction of development starts done in Ada that the DoD aims can
differ from the free market fraction. At first, the DoD target may be higher. If Ada is as
successful as is hoped, the free market fraction some day may substantially exceed the DoD
target. The measure of the difference between the two, a ratio, is called the Target for Ada
starts relative to natural fraction.

Target for Ada starts relative to natural fraction (abbreviated Target Ada rel nat in the
* model) is a converter variable, taking the ratio of the Target fraction for Ada starts divided

by the Natural fraction of Ada starts.

0 TargetAderel-nat = Targ_.frAdeastarts/Nat-frAdastarts (Target for

Ada (starts) relative to natural (fraction) (fraction))

Target fraction for Ada starts (Equation #1030,

The DeLauer memorandum (DeLauer 1983) mandating Ada use defines a category of
projects as requiring the use of Ada: those software projects for embedded computer
resources (ECR). That memo implicitly defines the mandated fraction of projects using
Ada. In the model, the existence of a fraction of MCCR starts for which Ada is mandated
is represented by the Target fraction for Ada starts.

The DeLauer memorandum (DeLauer 1983) requires Ada to be used for all mission-
critical computer resource (MCCR) programming projects starting in 1984 and later. This
is the dejure requirement. Defacto, as a practical matter, there are some systems that will

* be sufficiently more effective written in some other language that waivers to Ada use will
be given. And because experience with Ada builds up gradually, the granting of waivers to
use non-Ada languages will be the rule rather than the exception at first. In fact, such a"rule" was formalized as Navy policy up until 1985: a waiver had to be obtained to use
Ada for embedded applications. The changing set of policies mandating when and how
Ada is to be used is represented in the model by the Target fraction for Ada starts.

Target fraction for Ada starts (abbreviated Targ frAda starts in the model) is a
converter variable, which uses a graphic function to convert the calendar year into the target
fraction.

A-57

". -.'Z e.*~-.**-"....-*.'.* , ''.':€4<' , I[.X : ." - . X. " ;"LL-".-"..." ',?".: -""-"-'-"

11.000 1

..... 7

: :1:: .

a. . :1:

. :.... :......... :.........

.

1970.000 (input) 22.0

year

.Targ.. rAd..st.rts =greph(yer)

1970.000 ->0.0

1975.000 7 0t0.0
1970.000 -> 0.0
1985.000 -> 0.0
1990.000 -> 0.500
1995.000 -> 0.500
2000.000 -> 0.500
2005.000 -> 0.500
2010.000 -> 0.500
2015.000 -> 0.500
2020.000 -> 0.500

The graphic function in the STELLA simulation software allows only limited
resolution in terms of how many data points the graph may contain. A graphic function
running from 1970 to 2020 can only show changes in the graph every 5 years. Therefore,
the Target fraction for Ada will be zero at 1985 and the fuU 0.5 five years later in 1990. In
between, the target is computed by linear interpolation, so it is 0.20 in 1986, 0.40 in 1987,
and so on. This treatment in the model can be thought of as representing the de facto
rather than the de jure mandate: On 1/1/84, there were only two validated Ada compilers,
and waivers on Ada use were the policy rather than the exception. In effect, the true target
for what is proper for a fraction of Ada starts does in fact ramp up gradually, reflecting the
operational swing in policy from non-use to use of Ada over several years.

The post-1990 target for Ada starts is only 0.5 of all MCCR starts, representing a
rather lax enforcement of the DeLauer and Hicks memoranda (i.e., the class of projects
routinely granted waivers is fully half of MCCR projects).

A-58

.',.

t - - -. /,- .. - -,. . . :* ~ - S St
'

"- - -, .. L4 a-,w t \ :. .. , .

Natural fraction of Ada starts (Equation #1040)

* In the absence of any DoD pressure or guidelines Ada. would compete with other
languages entirely on its own merits. As infrastructure intensity develops and Ada
compilers become available on more hardware the fraction of development project starts for
which Ada would properly be chosen would be larger. This concept of free-market choice
of Ada is represented as the Natural fraction of Ada starts.

The Natural fraction of Ada starts (abbreviated Nat frAda starts in the model) is a
converter variable, which uses a graphical function to determine the natural fraction for any
given value of Perceived incentives to use Ada.

1.000 :

z

*3

1-1.000] (input) 1.000

Perc-ince-useRde

SNatfrAdastarts= graph(Perc-ince-useAde)
-1.000 -> 5.000e-3
-0.800 -> 0.025
-0.600 -> 0.055
-0.400 -> 0.120
-0.200 -> 0.260
0.0 -> 0.500

0.200 -> 0.680
0.400 -> 0.780
0.600 -> 0.825
0.800 -> 0.870
1.000 -> 0.910

A-59

-s-5 . ..'

As the Perceived incentives to use Ada increase, higher fractions of development
projects will use Ada. Even when the Perceived incentives get to 1.0, indicating an
overwhelming advantage for Ada and its infrastructure, there will still be special cases
where a non-Ada language, quite possibly specially-developed, will be used to obtain some
functionality not easily available with Ada.

This graphical function indicates that when the Perceived incentives to use Ada are
0.0, half of all development projects will use Ada. This is an assumption that the design of
the Ada language succeeded in its goals: that its features support modern software
engineering practices, especially for embedded systems, better than any established
language, and about as well as is possible given the state of the practical art in languages.
Although this is not the place for a thorough review of the merits of Ada, suffice it to say
here that the more evidence on the subject that accumulates, the more it appears that the Ada
design meets its design goals. Certainly, the three avionics experiments have been
successful (DS&E 1985, Stanley 1985, and Suydam 1985), as well as several other
projects more outside Ada's original application domain of embedded systems. Moreover,
Ada is perceived as making an important contribution to improving software engineering
(SE), and to an extent consistent with the ambivalent reception SE gets within "real"
programming organizations (Rogers 1985, pg. 6)

The input to Natural fraction of Ada starts is Perceived incentives to use Ada, which is
measured in "Incentive units." These are an artificial creation used as an intermediary
between characteristics of the Ada infrastructure viz. non-Ada, and the decision on which
language to use. Really, "Incentive units" have no meaning except that implicit in the

'p response of Natural fraction of Ada starts to the incentives. Incentives of 0.0 are defined as
neutral-a toss-up between Ada and some non-Ada language, so Nat frAda starts equals

"p 0.5. Perceived incentives of -0.5 represent a substantial disadvantage for Ada use, and
consequently the Nat fr Ada starts equals 0.115. Incentives of -1.0 represent more or
less complete imposslbility of usefully employing the Ada language at all;
Nat frAda starts equals 0.005. (It doesn't go to 0.0 for two reasons: first, to prevent
division-by-zero difficulties in the equation for Target for Ada starts relative to natural
fraction, and second, to represent "proof ofprinciple" kinds of projects, especially by
academics, that proceed despite their impracticality.)

On the other side of the coin, incentives of 0.5 represent substantial superiority of Ada
over the body of non-Ada languages used for MCCR programming, and Nat fr Ada starts
equals 0.8025, i.e. roughly 80 percent. Perceived incentives to use Ada equal to 1.0
represents overwhelming superiority of Ada and its infrastructure, with a
Nat fr Ada starts of 0.91. The graphic function is somewhat asymmetrical, in that it is
easier for the non-Ada languages to vanquish Ada (with incentives of -1.0) than it is for
Ada to vanquish the non-Ada lariguages (with incentives of +1.0). The asymmetry arises
from the aggregation of a multiplicity of languages into the non-Ada category. There can
be many specialized languages with well-defined niches that will be very difficult for a
general-purpose language like Ada to displace.

Perceived incentives to use Ada (Equation #1100)

Program and project managers want languages and programming support
p-" environments (PSEs) that are cost-effective (even if for no other reason than satisfying

military customers who want cost effectiveness). Managers also want reliability: software
is but a portion of overall systems development, and delays in software can mean delays in
the entire program. Managers (in collaboration with their customers) will choose languages
and PSEs that meet these goals.

.1'. A-60

.. .

. . ." .- u~ r d % it- - w = .* • " " " . - - * '-° ," ,", •

However, choices of language and infrastructure are not guided by perfect information
about the future, or even about the present; information, especially subjective judgements,
reputations, and "scuttlebut" will always be outdated relative to the actual current state of
affairs. One phenomenon that is holding back Ada acceptance is the lag in people's
perceptions about Ada behind the actual fact. For example, (Rogers 1985) documents
differences between perceptions of the number of members of Ada-related special-interest
groups and the actual numbers. The perception, as opposed to the actual facts, of Ada and
the Ada Programming Support Environment (APSE) usefulness is represented by the
Perceived incentives to use Ada.

The Perceived incentives to use Ada (abbreviated Perc ince use Ada in the model) is
with a level variable, whose only rate, an inflow, is the Change in perceived incentives to
use Ada.

El Perc.ince.useAda = Perc.inceuseAde + Chper-ince
INIT(Perc-ince-useAda) = -2
(Perceived incentive to use Ada (incentive units)}

The meanings of particular numerical values of perceived incentives or incentives are
discussed below.

The Perceived incentives to use Ada is initialized at -2.0, representing for 1975 a
completely undesirable language. What contractor could program in a higher-order
language (HOL) for which there was not only no compiler (and wouldn't be for several
years), but also no defined syntax or semantics?

Change in perceived incentives to use Ada (Equation #1110)

Perceptions are changed by facts only gradually. A reputation, be it of a politician or a
computer language, is built up of many individual anecdotes, scientific findings, personal
experiences, philosophical biases, and more. Today's facts add only increments to the
stew of yesterday's facts, the day before yesterday's facts, and so on. If Ada has the
reputation of being too complex, hard to learn, and an inefficient user of computer
resources, success stories like the F-15 and F-20 avionics experiments or compiler
benchmarks will gradually chip away at that perception. The rate of "chipping away" of
perceptions by current facts is represented by the Change in perceived incentives to use
Ada.

The Change in perceived incentives to use Ada (abbreviated Chperince) is a rate
variable, flowing into the Perceived incentives to use Ada.

o Ch.per-ince = (IncentiveuseAda - Perc.ince.useAda)
/Time.perc.ince

(Change in perceived incentives (to use Ada)
(incentive units/year)}

The overall formulation is the standard first-order lag (or first-order delay). The
Change in perceived incentives to use Ada will increase perceived incentives if the actual

incentives are greater than those perceived, and inversely. In this way, Perceived
incentives to use Ada will always move toward the actual Incentives to use Ada. The speed
of the motion is governed by the magnitude of the Time to perceive incentives to use Ada.

A-61

Because the time to perceive is in the denominator of the equation, a small Time to perceive
means large changes in perception, i.e. perception will approach actuality in a small period
of time. For more description of the properties of the general first-order delay, see
(Forrester 1969, Sections 2.2 and 10.2); Goodman 1974, Chapter 3; or Alfeld and
Graham 1976, Section 3.5)

Time to perceive incentives to use Ada (Equation #1120)

The perceptions about the incentives to use Ada will always be somewhat out of date.
It takes time before breakthroughs become known, trusted, and acted upon throughout the
software community. The length of this delay is represented by the Time to perceive
incentives to use Ada.

Time to perceive incentives to use Ada (abbreviated Time_perc ince in the model) is a
converter variable with no inputs; i.e. a constant.

0 Time.perc-ince = 2 (Time to perceive incentives (to use Ada) (years))

A value of two years indicates how long it take for perceptions to catch up with the
actual incentives to use Ada, plus how long it takes to translate those perceptions into actual
choice of Ada versus any of the non-Ada languages. Taking into account both delays in
perception and delays in influencing ,hoices, two years may be somewhat shorter than the
true average delay.

Incentives to use Ada (Equation #1200) (an output)

When a contractor is choosing between Ada and a Non-Ada language, the criterion is
effectiveness: What language will permit the lowest-cost, fastest, and most reliable
programming? Programming managers and their DoD clients want to choose a language in
which programmers can be most productive. There are considerations beyond simple cost.
If the infrastructure exists to ensure coordination, a rapid "fan out" of programming tasks
allows more programmers to work on a project at once, allowing completion in a shorter
elapsed time, which means less difficulty integrating the programming with the rest of the 6
development effort. Also, there are reliability considerations: managers need to count on
programming being done to ensure success of the overall system being developed.
Managers would like to see experienced programmers, software tools demonstrated to
work well with the language, enough completed projects to have defined the pitfalls, and so
on. Lack of infrastructure means reliability can't be demonstrated, which is a disincentive
to use the language. In the model, all such considerations are combined into a single 6
aggregate measure, the Incentives to use Ada. Figure A.6-2 shows the inputs to this
variable.

Incentives to use Ada (abbreviated Incentive use Ada in the model) is a converter
variable: it combines the incentives from coveragenfritructure intensity, and policy into
an aggregate incentive.

0 IncentiveuseAde = Incerel-int-infr + Ince.rel-cov.infr + Ince.pol
(Incentives to use Ada (incentive units))

The meaning of incentive units is discussed above in the description of the equation for
Natural fraction of Ada starts.

A-62

1*%1

Cov% Adajnfr IncejreLcovinfr

CoyNA infr U

* lnten..AdaJinfra

I nten...NAinfra

year

Figure A.6-2. Flow diagram of inputs to Incentives to use Ada (Incentive_use_Ada).

A-63

Incentive from intensity of infrastructure (Equation #1210)

As described above, the intensity of infrastructure of a language is a major factor in
deciding whether to use it or some other language. People often speak of a "track record"
(especially in the context of.Ada not having one) but the root cause for having confidence in
the cost-effectiveness of a language is not the track record per se, but whether compilers,
experienced people, tools, libraries, and so on (which are by-products of that track record)
can be brought to bear on the project. In other words, the more infrastructure is available,
the more desirable a language and its infrastructure become.

* Incentive from intensity of infrastructure (abbreviated Ince rel int infr in the model)
* is a converter variable, converting the Relative intensity of-Ad infrastructure into a

measure of incentives.

11.000 1

J .I
.=

. . 0 . . .

Rel-int-Rda-infr

2 Ince.rel-int-infr graph(Rel-intAde-infr)
0.0 -> -0.530

0.200 -> -0.400
0.400 -> -0.290
0.600 -> -0.190
0.800 -> -0.100
1.000-> 0.0
1.200-> 0.160
1.400 -> 0.340
1.600 -> 0.540
1.800 -> 0.720
2.000 -> 0.970

A-64

. .. -" %...-...*" ... -. '-'- .-' " .- P", .e . . " - ,, ." - .' , -" , ," ." ,e ,' , ' , ',,,"

Relative intensity of Ada infrastructure (Equation #1220)

Desirability of a language is a relative matter. Contractors can't choose the perfect
language; they can only choose among existing languages and infrastructures (or those
whose construction is straightforward and reliable). Therefore, the model compares the
infrastructure intensity available with Ada to that available for the average of all non-Ada
languages. The result of this comparison is the Relative intensity of Ada infrastructure

Relative intensity of Ada infrastructure (abbreviated Rel int Ada infr in the model) is
a converter variable, dividing the Intensity of Ada infrastructure by -the Intensity of non-
Ada infrastructure.

0 Rel-intAda-infr = IntenAda.infr/IntenNA-infra
(Relative intensity of Ada infrastructure (dimensionless)}

Incentive from coverage of infrastructure (Equation #1230)

Contractors are often constrained as to what host and especially what target machines
are to be used for a given project. If Ada infrastructure is not available in sufficient
quantity for a given host/target combination, Ada is not desirable for that project. In the
aggregate, the narrower the coverage of the infrastructure, the fewer projects will be able to
use Ada, and the smaller will be the fraction that use it. The measure of the desirability of
Ada based on the relative coverage is called Incentive from coverage of infrastructure.

Incentive from coverage of infrastructure (abbreviated Ince rel coy infr in the model)
is a converter variable, using a graphic function to convert the Relative coverage of Ada
infrastructure into an incentive.

1.000

q66

...................
.:. . :.. .:. . :....... :....

J . .

..

0.0 (input)
Ret cou.Jlda-Jnfr

A-65

.....~~ ~ ~ P ... Ad ... e..

1 ,il:. .Z 7:.:. . . .

w

Ince.relcov.infr graph(RelcovAda-infr)
0.0 -> -0.3 10

0.200 -> -0.215
0.400 -> -0.140
0.600 -> -0.080
0.800 -> -0.015
1.000 -> 0.050
1.200 -> 0.095
1.400 ->0.125
1.600 ->0.160
1.800 ->0.180
2.000 -> 0.190

Using the idea that incentives can represent the issues around coverage may seem odd
at first. But lack of coverage just means that there is cost and delay involved in porting the
language and environment to the desired target and host. The smaller the coverage, the
more projects face such costs if they use Ada. In the aggregate, then, low coverage can be
translated to a cost and therefore to an incentive.

Relative coverage of Ada infrastructure (Equation #1240)

In the aggregate, coverage of infrastructure, like intensity, is a relative matter. While
.Ada and APSE may not be available for all potential target machines, neither is UNIX, or
DEC's VMS, or IBM's MVS. Incentives from coverage to use Ada can only come from
comparison of the costs of retargeting or rehosting (or needing to change to a software-
compatible target or host) incurred for Ada to the corresponding costs for an average non-
Ada language. For the non-Ada languages, there is also the opportunity to trade off such
costs against the cost of switching to another non-Ada language whose infrastructure is
present for the desired host and target. In the model, the aggregate result of such
comparisons is represented by the Relative coverage of Ada infrastructure.

The Relative coverage of Ada infrastructure (Abbreviated Rel cov Ada infr in the
model) is a converter variable, converting the Coverage of Ada infrastructure and the
Coverage of non-Ada infrastructure into their quotient

V

0 Rel-covAda-infr = CovAda-infr/CovNA-infr
{Relative coverage of Ada infrastructure (dimensionless))

Incentive from policy (Equation #1270)

There could be many factors other than the relative intensity of infrastructure and the
relative coverage that could influence a project manager's language choice. The language
of contracts might be written with incentives to use Ada. The Ada Joint Program Office
(AJPO) might sponsor marketing actions -- seminars, journals, advertisements, giveaways,
and so on. For the most part, these are actions at a level of detail considerably finer than
those the model is able to represent. But even without the ability to explicitly model such
activities, there is a way to represent their effects, in order to simulate their impact on
acceptance and find out how valuable that might be. The policy lever in the model to be
used for such experiments is the Incentive from policy.

A-66

Akl
a.a

Incentive from policy (abbreviated Ince_pol in the model) is a converter variable,
which uses a graphic function to convert the calendar year into an incentive.

....................... :....:................

,U= - -- --- --- -- -- - :----
I .

..

1197000] (input) 21.0

year

0 Ince-Pol =greph(year)

1975.000 -> 0.0
1979.000 -> 0.0
1983.000 ->0.0

* 1987.000 ->0.0

1991.000- 0.0
1995.000 ->0.0

1999.000 ->0.0

2003.000 -> 0.0
2007.000 -> 0.0
2011.000 -> 0.0
20 15.000 -> 0.0

The Incentive from policy is an exogenous variable, i.e. one not influenced by any
other system variables. Its value for the base scenario is always neutral, set at 0.0.

A-67

m :

Appendix A.7: Ada Infrastructure Sector

The Ada infrastructure sector represents the entire ensemble of things used to carry on
programming in Ada. As discussed in Section 5 of this report, this ranges from the most
basic software tools (e.g., an Ada compiler itself, linkers, loaders, etc.) to advanced
productivity tools (e.g., program libraries and configuration managment tools) to hardware
to speed programming (such as time-sharing and screen terminals), to the "soft"
infrastructure of programmer's experience, programming management, courses of
instruction and instructional literature. The dimensions used to characterize this diverse
collection are: intensity (on average, how much of it is available?), incompatibility (how
many incompatible environments are there?), and coverage (what fraction of host/target
configurations are one of the environments available for?)

The characteristics of the Ada infrastructure affect both the cost of programming in Ada
and the extent to which it is used in MCCR programming. The cost sector represents the
ability of intensity of Ada infrastructure to increase programmer productivity and thereby
reduce software costs. That sector also represents incompatibility of infrastructure (even
Ada can have non-linguistic incompatibilities) increasing costs. The language choice sector
represents the impact of such cost/effectiveness considerations on the frequency of Ada use
-- the extent to which it is used in non-embedded computer applications, and the extent to
which waivers for use of a non-Ada language are obtained for embedded applications.

Intensity of Ada infrastructure (Equation #1350)

The infrastructure supporting Ada has many components and characteristics; some of
which are so obvious that they are taken for granted. For example, does a compiler exist?
How many programmers, textbooks, courses, etc. are there? How sophisticated is the
APSE; and how many programming tools are available? As these components of the
infrastructure develop and become widely available, programming becomes more efficient.
All of these components of infrastructure are combined and represent in the model by the
Intensity of Ada infrastructure. Figure A.7-1 shows the inputs.

Intensity of Ada infrastructure (abbreviated Inten Ada infra in the model) is a level
equation. It accummulates the rates of flow into-it, Creation of intensity of Ada
infrastructure and Injection of government furnished Ada infrastructure. It is depleted by
its outflow rate, Obsolesence of intensity of Ada infrastructure.

[IntenAda-infre = IntenAda-i nfra + Crea-intAda.infr -

Obsol-intAda.inf + InjGFEAda-infr
INIT(IntenAda-infra) = 0
(Intensity of Ada infrastructure (intensity units))

Obsolescence of intensity of Ada infrastructure (Equation #1360)

Ada infrastructure, like all others, gradually and continuously obsolesces. Some of this
obsolescence represents the actual outdating and discarding of out-of-date textbooks, tools,
implementations, etc. Obsolesence also occurs when expert programmers retire or move
on to different endeavers they take with them knowledge and experience that must be I
replaced or infrastructure will decline. Both kinds of loss are represented in the aggregate
by the Obsolescence of intensity of Ada infrastructure.

A-69

Ada~infr-init.Jnj

InLG FE...Adajnfr GEAaif

Add-in' Adainfr

_ne-d-ifa 6 T addAda-infr

Obsoi -...Ada-inf 0
Inter_addAda-infr

* Durajn..,Adajinfr

Figure A.7-1. Flow diagram of inputs to Intensity of Ada infrastructure
(IntenAda-infr). The flow entering from the left is the Creation of intensity of Ada

infrastructure.

A-70

.V t, V vL - L-W tMw u rI-n

Obsolescence of intensity of Ada infrastructure (abbreviated Obsol int Ada inf in the
model) is a rate equation that depletes the level of Intensity of Ada infrastructure.

0 Obsol-intAdeinf = IntenAda-infra/Dura-intAda-infr
(Obsolesence of intensity of Ada infrastructure (units/year)}

The equation for obsolescence is the familiar first-order delay, where, if there is no
inflow, the contents of the level will fall off exponentially, like radioactive decay. When a

4time equal to the time constant (the Duration of intensity of Ada infrastructure) has passed,
approximately 30 percent of the initial value of the level will remain.

Duration of intensity of Ada infrastructure (Equation #1370)

Every component of Ada infrastructure has a finite useful lifetime. For textbooks it
fmay be a decade, for programmers it may be one or two decades before they join

management, retire, or seek other professions. For software tools, the useful lifetime may
vary considerably. Only a year may pass before some software tools are replaced by newer
tools. At the other extreme, some compilers and editors endure for one or two decades
with only minor maintenance changes. Standards for infrastructure endure for even longer;
the fundamental structures of the FORTRAN and COBOL languages have endured from
the early 1950s, with no sign of imminent demise. The average for all the components of
Ada infrastructure is here called Duration of intensity of Ada infrastructure.

Duration of intensity of Ada infrastructure (abbreviated Dura intAda infr in the
model) is a converter equation with no inputs, i.e., a constant.

0 Dura.intAdeainfr = 30 (Duration of intensity of Ada infrastructure (
years))

The duration of intensity is coupled to the total duration of programs during
development and maintenance, which, at 10 and 20 years respectively, sum to 20 years.
The assumption is that only a fraction of the components of the infrastructure will
obsolesce before the programs themselves, especially the programmer's skills. Another
fraction of the infrastructure must be maintained as long as the programs are being
maintained; this includes operating systems, test sets, and other software tools without
which the programs cannot be maintained. The final fraction of the infrastructure will
outlive the programs; for instance, this fraction includes styles and procedures of
programming (assembly language, FORTRAN, or ALGOL-style programming, standards
(ASCII and all the editors that work on ASCII files)), and operating systems (the IBM
360/370 and DEC PDP- 11 are going on twenty years and promise another 20 at least).

In the absence of more specific data, the duration is set equal to the duration of
programs, 30 years.

Injection of GFE'd Ada infrastructure (Equation #1380)

The Injection of GFE'd Ada infrastructure represents a somewhat broader group of
actions than ,aight be indicated by the normal meaning of Government-Furnished
Equipment (GFE). This variable is the conduit for representing several differing additions
to Ada infrastructure. There is an initial surge of infrastructure created by the validation of
compilers as Ada. This surge was certainly done at the behest of DoD, although the
compilers are not literally GFE. There is a policy option to create more infrastructure after

A-71

1" * ,, .,". , J ," e . l . -, .
T

€ , ' .. " " .,' e . " .: , .. , . . ' , .. - " " . """" . " '. . ." . ." - .

the initial surge. That creation could represent literally a GFE'd environment.
Alternatively, such a creation could represent the increase in infrastructure available to Ada
programmers if SVID were adopted as an interim tool interface, such that UNIX tools
suddenly became available and officially acceptable for Ada programming.

Injection of government furnished Ada infrastructure (abbreviated InjGFEAda infr
in the model) is a rate equation that increases the level Intensity of Ada infrastructure.

0 InjGFEAda-infr = Init-injAdainfr + Add.injAdeinfr
(Injection of GFE (government-furnished equipment) for Ada
infrastructure (i nfrastructure units/year))

Initial injection of Ada infrastructure (Equation #1390)

Project work in the official Ada language could not begin until the very first Ada
compilers were validated in 1983. The structure and design of Ada had been discussed in
the computer literature for years. Experience programming in other languages carried over
into Ada to some extent. Combined with these precedents, the validation of compilers
sharply created an available Ada infrastructure. In the model this is represented by the
Initial injection of Ada infrastructure.

Initial injection of Ada infrastructure (abbreviated Init injAda infr in the model) is a
converter equation which uses the special STELLA funciffon called" PULSE to covert the
calendar year into a pulse in the rate of flow into the level of Intensity of Ada infrastructure.

O Init-injAdainfr = PULSE(Ada-infr.init-inj,1981,lel 1I)
(initial injection of Ada infrastructure (infrastructure units/year); the
one-time construction of a few initial compilers, loaders, etc.)

The pulse function introduces a brief (one time unit) increment to a variable. It has
three arguments; the first determines the size of the increment, the second indicates the time
of the first pulse, and the third specifies the interval of any subsequent repititions of the
pulse. By choosing lel 1 (i.e. the interval is 100 billion years) here, we do not get any
repetitions within the time span of the model's policy runs. The 1981 injection date is
somewhat in error, but it should be noted that there was work going on with nonvalidated
compilers and so on before the first official validations.

W
Ada infrastructure initially injected (Equation #1410)

The introduction of the first approved Ada compilers was the first significant and
substantial increase to the intensity of Ada infrastructure. This boost is called Ada
infrastructure inititial injection.

Ada infrastructure initial injection (abbreviated Init inj _Ada_infr in the model) is a
converter variable with no inputs, i.e., a constant.

0 Ada-infr.init-inj = 20
(Ada infrastructure inititially injected (infrastructure units))

The value of 20 assumes that compilers and their closely-associated tools (linkers,
loaders, perhaps debuggers) represent about half of the current infrastructure currently used

A-72
.1

to support non-Ada programming, which is arbitrarily defined as intensity equals 40. See
Section 5 for further discussion of infrastructure units.

16 Additional injection of Ada infrastructure (Equation #1420)

If the DoD adopts SVID, or a small number of commercial operating systems as an
interim standard, this will represent a second major boost to the available infrastructure
intensity. In the model, any such additional boosts after the validation of the compilers is
represented with the Additional injection of Ada infrastructure.

Additional injection of Ada infrastructure is a converter variable that uses a special
purpose PULSE function to add brief periodic increments to infrastructure.

0 Add.injAda.infr= PULSE(AddGFEAdeinfr,T.addAda-infr,
I nter-addAda-infr)
{Additional inection of Ada infrastructure (infrastructure units/year)}

The three arguments specify the size of the increment, the time of the first injection, and

the time interval between injections.

Additional GFE'd Ada infrastructure (Equation #1430)

The relative size of the. injection by the government is called Additional GFE'd Ada
infrastructure.

Additional GFE'd Ada infrastructure (abbreviated Add_GFEAda infr in the model) is
a converter variable with no inputs, i.e., a constant.

0 AddGFEAdainfr = 0
(Additional GFE'd Ada infrastructure (infrastructure units)}

* Time for additional Ada infrastructure (Equation #1440)

Time for additional Ada infrastructure determines when the injection of additional
infrastructure intensity will take place.

4Time for additional Ada infrastructure (abbreviated T_ addAdainfr in the model) is a
converter variable with no inputs, i.e., a constant.

o T-addAdainfr= 1990
(Time for additional Ada infrastructure (year)}

1990 is a ,,lausible, albeit somewhat optimistic, date for adopting a standard CAIS.
((KITIA 1985 even suggests fourth quarter 1988, but the schedule leading up to that date
has already siipped by several months as of February 1986.) In the scenario testing other
times might be be chosen.

A-73

Interval to add Ada infrastructure (Equation #1450)

To explore the possibility that the government might adopt a strategy of successive
injections of Ada infrastructure in order to accelerate its evolution, the model has a variableIa
called Interval to add Ada infrastructure.

Interval to add Ada infrastructure (abbreviated Inter add Ada infr in the model) is a
converter variable without an input, i.e., a constant.

0 InteraddAda.infr lel (I nterval to add Ada inf rastructure (years))

The enormous default value of 1 el 1 effectively turns this facility off.

Creation of intensity of Ada infrastructure (Equation #1500)

The creation of intensity of infrastructure is primarily a free-market process. A
considerable amount of Ada compiler development, for example, has occurred without
direct government funding. Corporations have allocated funds because of the perceived
future benefits of having Ada products. This has happened both in large corporations
preparing for Ada contract work, and in small corporatiohs looking to sell Ada products in
the marketplace. Creation of infrastructure is influenced by many factors. It can be
accelerated by increased use of Ada, by more advanced competing Non-Ada infrastructures
that can be borrowed from, by perceptions that is a potentitially profitable language to
develop tools& for, and by policy declarations. It can be retarded by incompatibility within
the Ada infrastructure, lack of use of Ada, perception by tool developers that Ada is an
inferior language, and by policy declarations. All of these effects are combined in Creation
of intensity of Ada infrastructure. Figure A.7-2 shows a flow diagram of the inputs.

Creation of intensity of Ada infrastructure (abbreviated Crea int Ada infr in the model)
is a rate equation that increases the level Intensity of Ada infrastructure.

o Crea-intadainfr= Norrncr-intA-infr*E-tech-cr-int*
E-i nc-i n tA a-i nfr*E-use-i nt-A-i nfr*E-i nco-i ntA-i nfr*

E-pol-intAinfr*E.reli nfr.intAde
(Creation. of intens. of Ada infrastr. (infr. units/yr.)}

This creation represents both the development of new kinds of infrastructure (i.e.,
creation of a never-before-used tool) and the replacement of infrastructure lost through
normal obsolesence (i.e., replacing retiring programmers.)

The separate effects are multiplied rather than added. A zero in any component is
enough to overwhelm all the other effects even if they are high. For example, if for some
hytoothetical reason absolutely no one used Ada, there would be no more creation of
infrastructure even if the infrastructure had low incompatibility and advanced infrastructure.
The equation format above, with a normal constant multiplied by several variables centered
around unity is useful and common; see (Alfeld and Graham 1976, Section 5.3) or
(Richardson and Pugh 1981, pp. 152-56) for discussion.

A-74 I

AD-flI?5 352 COST EFFECTIYENESS TRADEOFFS IN COMPUTER 2/'4
STANDARDIZATION AND TECHNOLOGY I.. (U) INSTITUTE FOR
DEFENSE ANALYSES ALEXANDRIA YA A A HOOK ET AL. JUN 96

UNCLSSIFIED IDR-P-93 ID/H-96-3152 D93-4-C-631 F/ 9/2 NL

EohhohhhEmhhEI
smEohhhohhEE
mohmhEEohhhhEE

mh~hh~hhEE

/

-- 9

liii - - ~

liii w V.

I liii E911
I liii 1.1
I lull /11111=

I

S..

-S

5201

* ncom_ Ada~infra U qln frNorm_ _ILAj~nfr

ncLEincoAn Ajnfr

Perc ince_useAda

ReUnt..Adajinfr EjreUnfrjlntAda raf aif

i _nfrasrcue

('"S

A-75

I-

*l 1%
. *~ % .. ~ ~ 5 5

~ % 1. % '. -

%b

W " r a,,a.- a, . W .. . , s .7 t - . ,- fLr fl r---'..r W--:" -S " ' d n - " .r '.e "sc-a w 1
'

en
=

-
'

%.. uW .
';

* IqA .P
'

F
;

s .

0

Normal creation of intensity of Ada infrastructure (Equation #1510)

In processes which are influenced by many factors it is often convenient express the
functional relationship as the product of two terms: a normal base rate of activity
(representing what the output value would be if all inputs were at some specified reference
values), and a term giving the effects of the inputs not being at their reference values. Here
the Normal creation of intensity of Ada infrastructure represents the rate of adding to
infrastructure when the other factors influencing that rate are respectively equal to their
reference values.

Normal creation of intensity of Ada infrastructure (abbreviated Norm cr intA infr in
the model) is a converter variable with no inputs, i.e., a constant.

0 Norm.cr-intA-infr = 2.4
{Normal creation of intensity of Ada infrastructure
(intensity units/year)}

The value was chosen on the basis of having a proper relation to the corresponding
parameter for non-Ada, and to give a buildup of infrastructure over a plausible time
horizon. Appendix A.9 on multivariable model calibration provides details of the parameter
estimation.

Effect of incompatibility on intensity of Ada infrastructure (Equation
#1520)

The more incompatible infrastructures there are, the smaller the incentives to create
more infrastructure for any one in particular. Incompatible infrastructures divide the total
market for programming environments into incompatible segments, which reduces the
market size for any particular piece of infrastructure, be it a tool, a program library, a
programmer, or whatever. For example, building tools based on the Pick operating system
for personal computers is a poor investment; there aren't that many Pick OS's being used.
Similarly, building tools for JOVIAL environments, all other factors being equal, would be
less profitable than building tools for a single, transportable Ada environment used in all
DoD work. In the model, such phenomena are represented by the Effect of incompatibility
on intensity of Ada infrastructure.

Effect of incompatiblility on intensity of Ada infrastructure (abbreviated
E inco int A infr in the model) is a converter variable. It uses a graphic function to
convert a given level of Incompatibility of Ada infrastructure into a multiplicative effect on
the Creation of intensity of Ada infrastructure.

A-76

ie

13.000 1

Iii. ..

.... • . .. :....

°".......

._ .

-I

dI • . .

o~joII1 (input) 1l'.00o

I ncomJRda.infra

0 E.inco-ntntAinfr = graph(IncomAda-infra)
0.0 -> 3.000
10.000 -> 2.415
20.000 -> 1.965

* 30.000 -> 1.635
40.000-> 1.290
50.000-> 1.000
60.000 -> 0.675
70.000 -> 0.45.0

* 80.000 -> 0.285
90.000 -> 0.180
100.000 -> 0. 135

Effect of incentives on intensity of Ada infrastructure (Equation #1530)

One motivation for creating Ada infrastructure is the perception of incentives for using
Ada, even if it isn't yet in widespread use. Proof-of-concept programming projects can
create showy successes. APSEs can be created with "technically sweet" tools that promise
great efficiencies in use. If the software community begins to perceive Ada as the wave of
the future because such incentives exist for its use, companies will invest in tool
development even before Ada is being used widely. Such effects are represented by the
Effect of incentives on intensity of Ada infrastructure.

Effect of incentives on intensity of Ada infrastructure (abbreviated E inc int Ada infr
in the model) is a converter variable that uses a graphic function to transiate 'erceived
incentives to use Ada into a multiplicative effect on the Creation of intensity of Ada
infrastructure.

A-77

14.000 i

I I

,..o.... o

I : :

-1.000 (input) 10

Perc-ince..use-fda

0'Li nc-i''nAda'nfr graph(Perc-i...nce-us'°Ada)
--1.000 i t0.380
-0.800 -> 0.400
-0.600 -> 0.460
-0.400 -> 0.560
-0.200 -> 0.700
0.0 -> 1.000

0.200-> 1.380
0.400-> 1.680
0.600-> 1.900
0.800 -> 2.000
1.000 -> 2.020

Effect of relative infrastructure on intensity of Ada infrastructure
(Equation #1540)

Software developers usually try to build on past successes, whether their own or that of
others. Developers of Ada infrastructure will attempt to incorporate features, tools,
programming styles, etc. of any Non-Ada infrastructure that develops that is superior to
what is available, at the time, for Ada. Indeed, for example, the reason that so many of the
current crop of Ada compilers come with debuggers is because of the demonstrated
usefulness of debuggers in past non-Ada programming. In the model, this technology
tranfer is called Effect of relative intensity of Ada infrastructure.

A-78

-JI . I • .. ,
, ',L _ ,'-i--%;', . . , " ".*.' ' , .' .'' '. .,'J'''a'." ,; '' '''P _4 "',*, %.,' ¢ % %% '%Fa. A.,,, Jj % %a%"%''

Effect of relative infrastructure on intensity of Ada infrastructure (abbreviated
E rel inf A int in the model) is a converter variable, which uses a graphic function to
translate any given value of the Relative intensity of Ada infrastructure into the approproate
multiplier effect on the Creation of Ada infrastructure.

, .O i.... i.... i.....
°6w ".... . ".... ".... " .. . " ... : . .." . .

.
...................•....:.... •.... •....

0. . . .

(input) 2.000

Rel-int dainfr

0 ErelinfrintA. Ad graph(RelintAdai nfr)
0.0 -> 1.850

0.200 -> 1.740
0.400 -> 1.5 10
0.600 -> 1.240
0.800 -> 1.080
1.000-> 1.000
1.200 -> 0.940
1.400 -> 0.900
1.600 -> 0.890
1.800 -> 0.870
2.000-> 0.860

Effect of relative use on intensity of Ada infrastructure (Equation #1550)

Ada infrastructure is created by Ada use. Program libraries are continually added to in
the course of use. Programmer's experience accumulates by virtue of programming
activity in Ada. Steady use justifies acquisition of hardware to aid programming such as I
CRT terminals and sufficient system resources to guarantee quick system response time.
Moreover, one can look at the creation of software tools as an economic market driven by
perceptions of opportunities for profit. The opportunities to market Ada tools or whole
environments depend very much on what the future of Ada use is assessed to be. One of

A-79

% %

the most persuasive pieces of evidence about the extent to which Ada wil be used in the
future is the extent to which Ada is used in the present. Here is half of a "bandwagon
effect" where use creates infrastructure. In the model this is represented by the Effect of
use on intensity of Ada infrastructure.

Effect of use on intensity of Ada infrastructure (abbreviated E use int Ada infr in the
model) is a converter variable that uses a graphic function to translate any given value of the
Fraction of Ada projects into the appropriate multiplier effect on the Creation Ada
infrastructure.

10.000
.. :

[o~o J (input) I.o
FrRda._prj

(2) E-use-intA-infr =graph(FrAda-prj)

0.0 -> 0.050
0. I1O0 -> 0.500
0.200 -> 0.770
0.300 ->0.870
0.400 0.920

~0.500 ->0.945
~0.600 ->0.965
I.0.700 ->0.985
]=;0.800 ->0.990 W

0.900 -> 1.000
1.000 -> 1.000

A-80

0 ... s..nLAnr gehFr..A .pj
;,;; ..-.---..-.- , . -'..', 0 .050 %. ...: . :. - . .:'
"J. .',%pd' . .100 -> 0.500P•• # . •• :. ., _ , t - 1

Effect of policy on intensity of Ada infrastructure (Equation #1560)

In addition to all the free market effects discussed so far, there could be effects on the
* rate of creation of Ada infrastructure by policy directives, guidelines, mandates, marketing

campaigns, etc. by the DoD. These effects can be portrayed with the variable Effect of
policy on intensity of Ada infrastructure.

Effect of policy on intensity of Ada infrastructure (abbreviated Epol int A infr in the
model) is a converter variable that uses a graphic function with year as an input. This

* policy facility allows one to specify the magnitude of the effect for any given year.

2.000 1

...:..
I : :

I]@I : a . - ."

1970.000 (input) 22.0

year

SE....pol.in:A..infr greph(yer)
1970.000 ->1.000

1975.000 ->1.000

1960.000 ->1.000

1985.000 ->1.000

1990.000 ->1.000

1995.000 ->1.000

2000.000 ->1.000

2005.000 ->1.000

2010.000 1.000
2015.000 1.000
2020.000 -> 1.000

The default values of this graphic function depict a totally neutral policy condition. The
use of this variable to represent policies is not clear at present; one use considered is part of
representing the evolution of a CATS specification: the hypothesis is that software

A-81

V1300 -

developers would defer heavy investment in Ada software tools if they knew that a
standardized environment would be required and widely used a few years down the
road-who wants their new software tools partially obsoleted by a change in operating
system?

*8 Effect of technology on creation of intensity (#1570)

Things are happening that will make it easier to accumulate infrastructure, which are not
[* in turn controlled by events in DoD programming, infrastructure, and standards policies.

Hardware is getting cheaper, faster, and possessing more memory all the time. The
tradeoff of programmer time versus hardware expense is steadily tilting toward supplying
more equipment to aid programmers. As time passes, it becomes easier to pile up
workstations and time-shared screen-based terminals, user-friendly facilities, and tools.
(Not only do tools cost less to buy or develop, they consume hardware resources; the
cheaper those resources are, the more tools it is cost-effective to acquire.)

But hardware is not the only "external" to be changing, for fundamental conceptual
insights into programming also steadily make it easier to accumulate infrastructure. For
example, structured programming is a conceptual discovery, first enunciated forcefully by
Djikstra (see Dijkstra 1969). By itself, that idea had virtually no impact. But as people
learned how to program in a structured manner, an element of infrastructure was
accumulating that allowed at least the "trendy" programmers that kept up with academic 0
ideas to program more effectively. Gradually, languages evolved that explicitly supported
structured programming, adding another element to the infrastructure. With such
languages available, regular 9 to 5 programmers gradually began to learn the style of
structured programming. Indeed, one of the functions of the Ada language is to make
several of such conceptual advances available and practical for the average programmer. Of
course, structured programming is but one of many conceptual advances that made it easier
to pile up infrastructure, both in programmer's experiences and skills, and features built in
to software. In the model, all the technological changes, including both the conceptual and
the hardware, that increase the ability to create infrstructure is represented by the Effect of
technology on the creation of intensity.

The Effect of technology on creation of intensity (abbreviated E tech cr int in the 0
model) is a converter variable, converting the calendar year into an effec. - -

0 E-tech.cr-int = EXP((yeer - Start-yr-cst-accum) * Rate-techLprog)
Effect of technology on creation of

S
The effect is a simple exponential, with a time constant of the Rate of technological

progress. Because many of the model parameters are calibrated around a reference year in
the middle of the simulated period (as opposed to the beginning), the effect is defined so
that it reaches 1.0 at the Starting time for cost accumulation. As explained in the cost
sector, the model therefore begins accumulating Total cost at the Starting time for cost
accumulation. That time is assumed to be the time that the analysis is taking place, which is WI
therefore the appropriate point about which to defime reference values, such as the Effect of
technology on creation of intensity.

A-82

-., .-..- ...-..- ,. .',.,%' ,' ,\,', ' ,L.¢ ,.-,.',. . -,\ '. t '' . -.L.',._',,''.L- ..\-. ,.' \.d.¢,,'.'','\-..'. '.\. ''.' ': X X X X- -9

Rate of technological progress (#1580)

The preceding paragraphs argue that as time passes, events and discoveries outside the
* sphere of DoD programming projects make it easier to accumulate intensity of

infrastructure. Given that the level of detail of the model (and our lack of foreknowledge
about future advances) prohibits an event-by-event description, the simplifying assumption
is that each year, the creation of infrastructure under a given set of circumstances is some
small fraction greater than it would have been the year before. In the model this fraction is
the Rate of technological progress.

The Rate of technological progress (abbreviated Ratetechprogress in the model) is a
converter variable with no inputs, i.e., a constant.

0 Rate-tech-prog = 0
* {Rate of technological progress (fraction/year)}

The Rate of technological progress was set to 0.0 to simplify the analysis of model
behavior as the model was being developed. As the model calibration section discusses,
parameters should be set during policy analysis at their most likely values, rather than
attempting to guess which diriction to bias the parameter to be conservative. Here, then, a
non-zero setting for the Rate of technological progress is indicated. Over the last 200
years, the nation as a whole has increased the productivity of a given amount of capital and
labor about 2 percent per year. While the quickly-moving computer field may seem as if
the fraction should be much higher, there is a perception that the spread of extensive
hardware support or new programming concepts has been quite slow, on the order of
decades. Although these are not direct indicators of ease of accumulating infrastructure,

Vthey are related. Perhaps a figure of 3.0 percent per year would be plausible. In twenty
years, without compounding, that rate would increase the normal creation of infrastructure
0.03 x 20 = 0.6, or 60 percent, which may even be on the high side.

Incompatibility of Ada infrastructure (Equation #1600)

An inevitable by-product of developing tools on different hardware, and broader
application areas is the creation of incompatibility within the infrastructure. An
environment written for a VAX will not run on an IBM computer without extensive I
adaptation. Students who learn Ada in classes on microcomputers will need some
reorientation when they get jobs that require working on mainframes. When Ada gains in
popularity and is used in broader application areas, new problems may arise that require

textension, or specialized program libraries, all of which will introduce incompatibility into
the infrastructure. In aggregate, the net effect of these incompatibilities in operating
systems, style of use, program libraries, run-time packages, and so on is to reduce
programmer efficiency. (See Section 5 for more detailed discussion.) In the model, these
incompatibilities are characterized in the aggregate by the Incompatibility of Ada
infrastructure. Figure A.7-3 shows a flow diagram of the inputs.

A-83"

L1

£380

yar Jyear

Norm-cr-i coA-infr E~podu incoA int

Ejol-nco- infrNormj_dur in _A-inf

E....poolnco_ _infr

II

Crea co _IncLossJncAdarinf

d.

Incompatibility of Ada infrastructure (abbreviated Incom Ada infra in the model) is a
level variable, which accumulates the inflow rate Creation of incompatible Ada
infrastructure and is decreased be the outflow rate Loss of incompatibility of Ada

*infrastructure.

1: IncomAda-infra = IncomAda-infra - LossincoAda-infr +
Crea.i ncoAdai nfr
INIT(IncomAda-infra) = 2 (Incompatibility of Ada infrastructure (

*incompatability units))

The initial value of 2 indicates a very low amount of incompatibility, since all that exists
at the beginning of the simulation in 1975 is a set of specifications. This contrasts to the
initial value of 40 for Non-Ada incompatibility, representing a great diversity among the

* different Non-Ada infrastructures.

Loss of incompatibility of Ada infrastructure (Equation #1610)

Once incompatibility develops, it is difficult to get rid of. Deployed systems that use a
given piece of hardware and compiler version mean that the environment that supports
programming with that hardware and software must be retained for maintenance. But the
incompatible elements of infrastructure will eventually pass away. At one end of a
continuum, elements of infrastructure just dissappear, and take their incompatibility with
them. Target hardware passes out of use ("undeployed"?). Host hardware may pass out
of use more quickly. The old editors and operating systems associated with the old
hardware may likewise pass on. Programmers skilled in older, less used languages lose

* the skill while programming in newer languages, or retire or move to a different
profession.

At the other end of the continuum, elements of incompatible infrastructure are
overhauled to r"lice the incompatibility. Programs written in variant dialects are gradually
rewritten in standard dialects. (Look at how many dialects of even a standard language like

40 JOVIAL have been used!) Programming and management styles gradually become more
standardized. (Soon, structured programming may even become the norm!) A standard
run-time environment for Ada may develop in a few more years. Market forces may
standardize on tools, and cause, e.g., general-purpose editors or configuration management
software to replace incompatible equivalents. Even though these various processes often
take decades, they do happen. They are represented in the model by the Loss of
incompatibility of Ada infrastructure.

Loss of incompatibility of Ada infrastructure (abbreviated Loss inco Ada infr in the
model) is a rate variable, which is an outflow rate from the level of Incompatibility of Ada
infrastructure.

0 Loss.incoAda-infr= IncomAda-infra/
(Norm-dur-incoA.inf * E.pol-du-incoA-inf)
(Loss of incompatable Ada infrastructure (incompatability units/year))

The form of the equation is the standard first-order delay, except that the effective delay
time, Norm dur inco A inf * Epol duinco_A_infr, has been made variable to represent
possible policies, as explained below.

A-85

Normal duration of incompatibility of Ada infrastructure (Equation #1620)

The average lifetime of a unit of infrastructure incompatibility is called the Normal
duration of incompatibility of Ada infrastructure.

Normal duration of incompatibility of Ada infrastructure (abbreviated
Normdur-incoA inf) is a converter variable with no inputs, i.e., a constant.

0 Norm.dur-incoA-inf = 30 {Normal duration of incompatibility of Ada
infrastructure (years)}

Of the various elements of infrastructure represented by incompatibility, some will
vanish before the programming and hardware with which they are associated, the demise of
some will be simultaneous with that of the hardware and software, and some will endure
longer. Indeed, various characteristics of ECR programs can show all three behaviors. W
Programs written in a specific dialect may be slightly modified to compile as a standard
dialect; here the incompatibility may last only a few years. When the system in which
programs are embedded are mothballed, the programs are lost, along with whatever
incompatible operating system, hardware, tools, libraries, and so on, were used with them.
The language developed for such systems (as opposed to dialects and implementations of
the language) will often endure far longer than any one MCCR system. There is a similar
story to tell with most components of incompatibility. In the absence of better information,
the Normal duration of incompatibility of Ada infrastructure is set equal to the lifetime of
the projects whose infrastructure is being represented. The sum of the durations of
development projects (10 years) and maintenance projects (20 years) is 30 years.

Effect of policy on incompatibility of Ada infrastructure (Equation #1630)

Establishing a standard which must be used in subsequent programming projects
reduces the creation of incompatibility; actively transferring existing projects on to a
standard increases the loss of incompatibility. Just as there are many ways that a given
infrastructure can be incompatible with others, there are many ways that the DoD and
services might use "retroactive" standardization to reduce incompatibility. In the Ada ,
sphere, this might mean standardizing tools, or core program libraries, or just a tool
interface, setting up some program where existing programming projects, either in
development or maintenance phase, are moved over to the standard. In the non-Ada
sphere, retro-standardization could also include translation into standard dialects of non-
Ada languages, which would reduce the linguistic incompatibility of the non-Ada
infrastructure. To provide the model with a policy level to experiment with the
consequences of such policies, there is the Effect of policy on duration of incompatibility of
Ada infrastructure.

The Effect of policy on duration of incompatibility of Ada infrastructure (abbreviated
E_.Pol du inco A inf in the model) is a converter variable, converting the calendar year
into an effect.

A-86
ONI".

*'

14.000

C
c c•:

€ =. ..: . ." . ."

-I

yea

co graph y: :

1° . o o o . o - 10..o.1

119.0710 0 .00 (nu) 22.0

,,...ob u.. i n "g..rph ...:...y r..).

1970.000 ->1.000

1975.000 ->1.000

1965.000 ->1.000

20010.000 ->1.000

2015.000- 1.000
2020.00 0 ->1.000

For every year, the value is set at 1.0, so unless the graphic function is altered for an
experiment, this multiplicative effect has no effect on the loss of incompatibility.

Creation of incompatibility of Ada infrastructure (Equation #1660)

The creation of incompatibility of infrastructure is basically a free market process. With
one exception, incompatibility is a by-product, rather than the primary aim, of new product
development. (The exception is the so-called "vanity standards"--a unique standard
designed to lock customers in to a hardware manufacturer's products.) Incompatibility
otherwise arises as a consequence of introducing an innovative product, for any of several
reasons. The features and formats of other products may not be feasible to use, either
because there are no comparable products, or because new functionality precludes their
use. The "not invented here" syndrome may demnotivate the use of formats and features

A-87

I...

originated outside the organization. The product may simply have not been designed to
work with som4Fother piece of software that users turn out to want to use. (For example,
neither the early microcomputer pioneers nor any major computer/office automation
company anticipated that people would want their word processor documents to contain
graphics.)

Even if Ada has solved some of the linguistic compatibility problems, opportunities still
abound for introducing incompatible products into the programming support infrastructure.
Even within Ada, there are still the matters of linkability and transportability of object code,
the run-time environment, communications protocols, and most of all, calls to the operating
system that are not standardized. Given the lack of any dominant standards in most of
these areas, every new Ada product, even just a compiler, is likely to introduce some
incompatibility into the infrastructure.

Similarly, any software tool is likely to create some incompatibility, through file
formats if nothing else. Were it not for ASCII, the file formats would have gotten out of
hand long ago. But merely having a standard for characters is far short of having
compatibility. For example, it is rare for mainframe databases to be readable by more than
one database program. (In microcomputers, the situation is different by virtue of a small
number of widely-accepted standard database programs, plus the much greater simplicity of
the databases.)

Given some normal free market creation of incompatibility of infrastructure, there are
four major effects that can accelerate or retard the creation of incompatibility. The more
Ada is used the more opportunity there is for creating incompatibility. Also, if it looks like
Ada will be popular in the future developers will have incentives to create new products
(tools, books, etc.) that will again tend to increase incompatibilility. Another influence on
Ada incompatibility comes from the intensity of infrastructure. A higher infrastructure
creates higher barriers to entry thereby reducing the creation of infrastructure. A final
influence on the creation of incompatibility can come from DoD policy. Creation of
incompatibility of Ada infrastructure combines all of these effects.

Creation of incompatibility of Ada infrastructure is a rate equation which flows into the
level of Incompatibility of Ada infrastructure.

0 Crea-incoAda..infr= Norm-cr-inco._A.infr*E-.nc.incoA..infr*
L.i nti ncoAi nf r*..usei ncoAJ nf r*LpolU ncoA-i nf r (Creation of
incompatibility of Ada infrastructure (incompatibility units/year))

The equation follows the standard format of normal constant multiplied by several
multiplicative effects. The normal constant gives what the rate of flow would be under
some reference set of conditions, and the multiplicative effects specify the change to the
flow that occur when conditions depart from the reference conditions.

Normal creation of incompatilibity of Ada infrastructure (Equation #1670)

The rate at which incompatibility will be created under the reference conditions is the
Normal creation of incompatibility of Ada infrastructure.

Normal creation of incompatibility of Ada infrastructure is a converter variable with no
inputs, i.e., a constant.

A-88

- *...,~z . ~ ~ K ,. ... ~*...

0 Norm-cr-incoA-infr = .75
(Normal creation of incompatibility of Ada

- infrastructure (fraction))

The reference conditions for which the normal creation is defined pertain to how much
Ada is being used, the perceived incentives for its use, and the intensity of Ada
infrastructure. There is a multiplicative effect on the rate of Creation of incompatibility of
Ada infrastructure for each of these three conditions. The graph for each effect passes
through 1.0 at some input value; that value is the reference condition for that effect.

Estimation of the normal creation parameters is discussed in Appendix A.9,
"Multivariable Model Calibration."

Effect of relative use on incompatibility of Ada infrastructure (Equation
0 #1680)

Use of Ada indicates market opportunities for new Ada-related products. Therefore, all
other things being equal, the more Ada is used relative to non-Ada languages, the more
motivation there will be to introduce new Ada-related products, and, in the normal course
of events, the more incompatibility will be created. This influence is represented by the
Effect of relative use on incompatibility of Ada infrastructure.

The Effect of relative use on incompatibility of Ada infrastructure (abbreviated
E use incoA infr in the model) is a converter variable that uses a graphic function to
specify an effect of incompatibility for any given "market share" of Ada, represented by the
Fraction of Ada projects.

0

I

h

e 0o.0 J (input) I.o
FrRda-prj

A-89

,t % . ° " . 4° - .' °% % .. - *- " ,C*I% 4% " • • . °..-° " ". ".

Iw

E-use-i nc0_A-inf r =graph(FrAda-prj)

0.0 -> 0.405
0. 100 -> 0.445
0.200 -> .0.510
0.300 -> 0.655
0.400 -> 0.750
0.500-> 0.815
0.600 -> 0.870
0.700 -> 0.905
0.800 -> 0.945
0.900 -> 0.980
1.000 -> 0.995

Using a Fraction of Ada projects as an indicator of market size for Ada products
implicitly assumes some total market size, such that the fraction gives the size of the Ada
part of the pie. The limitations of such an implicit assumption are discussed in the
appendix on questions for further investigation.

Effect of incentives on incompatibility of Ada infrastructure (Equation
#1690)

Perceived effectiveness of Ada, i.e., existence of incentives for others to be using Ada,
also increases the perception of opportunities for introducing new products, and hence new
incompatibility. This is called the Effect of incentives on incompatibility of Ada
infrastructure.

Effect of incentives on incompatibility of Ada infrastructure (abbreviated
E inc inco A infr in the model) is a converter variable that uses a graphic function to
specify the effect of a given degree of Perceived incentives to use Ada

p

A-90

'o %-:-:-;-:Ie

12.000

.... :.. :.. ...

-1.000 I (input) 1.00

Perc-ince-useRda

E.Jnc.JncoA-i nfr groph(Perc-tnce-useAde)
-1.000 -> 0.240
-0.800 -> 0.290

wm -0.600 -> 0.360
-0.400 -> 0.450
-0.200 -> 0.620
0.0 -> 1.000
0.200 -> .280
0.400 -> 1.530
0.600-> 1.700
0.800 -> 1.800
1.000 -> .900

Effect of intensity on incompatibility of Ada infrastructure (Equation
#1710)

How much effort does it take to introduce new, sometimes incompatible infrastucture?
That depends on what the current infrastructure is like. If all that's required is a new
compiler, then many companies have the resources to introduce new products. If
compilers, APSEs with their myriad tools, and people who know how to use the present
infrastructure already exist in abundance, considerably more resources will be required to
create a new viable, and yet incompatible infrastucture. Fewer companies would have such
resources, and therefore, there would be less creation of incompatibility. In other words, a
high intensity of infrastructure constitutes a barrier to entry for new products, so intensity
of infrastructure would reduce creation of incompatibility. This is represented by the Effect
of intensity on incompatibility of Ada infrastructure.

A-91

- - . -. ",- ', . * V" .'", "--
"

- '. .','

The Effect of intensity on incompatibility of Ada infrastructure (abbreviated
E int inco A infr in the model) is a converter variable that converts the Intensity of Ada
infrastructure into an effect on creation of incompatibility.

1.000 1

.... ... ii ... i ..i

I•
, :. . . . ------ N

C

oI

0.0 (input) 20.0

I nteniRda-infra

..E.nt-nco A.infr gr.ph.nten.....Ad.nfr.)
0.0 -> 1.000

20.000 -> 0.980
40.000-> 0.950
60.000 -> 0.9 10
80.000 -> 0.840
100.000 -> 0.735
120.000 -> 0.640
140.000 -> 0.550

160.000 -> 0.470
180.000 -> 0.435
200.000 -> 0.410

Effect of policy on incompatibility of Ada infrastructure (Equation #1720)

In addition to the free market effects described above, DoD policy can also have
significant effects on the creation of incompatibility of Ada infrastructure. The Ada
standard is assumed to reduce the creation of incompatibility. (This is represent by the
normal creation being lower for Ada than for non-Ada.) But beyond the standard for
language, standards for tools or operating system interfaces could significantly reduce the
creation of incompatibility. Supplying a GFE'd APSE and allowing no others would
reduce the generation of incompatibility even more. The policy lever in the model that

.

.% ' A -9 2

' ". .' " ", ". -': "". "''- -." ',-.. ' ." "'. J ' .' r£ ..' _..,: " -' -L.V ' -,-' .,:, .. . , "" . ". 'L-. ".'_':'.."$ - . .• " ." "" U

• ..' .'. . - . - * . - , . - . . ."* , _. . _ ,. I -

represents such policies and their effects on incompatibility is called the Effect of policy on
incompatibility of Ada infrastructure.

The Effect of policy on incompatibility of Ada infrastructure (abbreviated
E ol inco A infr in the model) is a converter variable, converting the calendar year to an
effect on creation of incompatibility.

12.000

.

C L • . . • .. .• . . • .. .• . . : .. .• . . • .. .• . .

190.00 (input) 12020.000

year

0 E..•.poLi nco-A-i .nf r graph(ye•r) •
1970.000 ->1.000

1975.000 ->1.000

1960.000 ->1.000

1965.000 ->1.000

1990.000 ->1.000

1995.000 ->1.000

Q 2000.000 ->1.000

2005.000 ->1.000

20 10.000- 1.000
2015.000 -> 1.000
2020.000 -> 1.000

CI

Coverage of Ada infrastructure (Equation #1800)

The desirability of Ada as a language depends in part on its availability on various hosts
and targets. A contractor is less likely to use Ada when no compiler will produce machine
code for the hardware that's being embedded. Even having only one compiler available is
not a comfortable situation -- the contractor is at the mercy of whoever produced the
compiler to ensure that it works well. (Passing a validation test is NOT the same as

A-93

@ : : :

. i I: .. s. .. . : . .:: . .:

working well!) Moreover, software producers often have heavy investments in host
computers and operating systems up front, which cannot be used if such machines and
operating systems do not yet support any Ada compilers. In the aggregate, the more
available Ada is on common hosts and targets, the more incentive there is to use Ada. In
the model, the measure of that availability is the Coverage of Ada infrastructure. Figure
A.7-4 shows a flow diagram of the inputs to this variable.

Coverage of Ada infrastructure (abbreviated CoyAdainfr in the model) is a level
variable, whose one inflow rate is the Change in coverage of Ada infrastructure.

] CovAda.infr = CovAda.infr + ChcovAda-infr
1NIT(CovAda-infr) = 0 (Coverage of Ada infrastructure
(dimensionless))

Coverage of both Ada and non-Ada infrastructure can range between 0, representing
complete unavailability, and 1.0, representing complete availability on all hosts and targets.
For discussion of the precise meaning of coverage for intermediate values, see Section 5 of
this report. Coverage of Ada infrastructure is initialized at zero, since initially Ada is not
available for any hosts or targets.

Change in coverage of Ada infrastructure (Equation #1810) 0

Like creation of intensity of infrastructure itself, additions to the coverage of host/target
combinations seems to be a free-market affair, with companies creating products for sale,
and contractors creating products for anticipated internal use. Therefore, additions, to
coverage will respond to the market incentives as they appear to potential developers of
new PSEs (usually starting with a compiler). However, there will be a delay before
vendors actually have the products with coverage responsive to those incentives. The
gradual introduction of new compilers and their supporting software tools that extend
coverage of Ada to new hosts and targets is represented by the Change in coverage of Ada
infrastructure.

The Change in coverage of Ada infrastructure (abbreviated Ch cov Ada infr in the
model) is a rate variable, which flows into the level of Coverage of Ada infrastructure.
Rate variables are a type of converter variable; here, the rate variable converts the
difference between an Indicated coverage of Ada infrastructure and the actual coverage into
a rate of change of the actual coverage.

0 Ch.covAda-infr =(IndcovA-infr-CovAda-infr)/
W

(Tch.covA.infr * E-pol-t-ch-covA)
(Change in coverage of Ada infrastructure (fraction/year))

The form of the equation for Change in coverage of Ada infrastructure is the familiar
first-order delay. Here, taking the difference between an indicated and actual coverage
represents the delays inherent in the diffusion process: If economic considerations in the
aggregate indicated that suppliers of Ada compilers and the associated software tools can
make money on a certain fraction of all possible combinations of hosts and targets, it will
take some time for the additional marketing opportunities to be discovered, and Ada
compilers etc. to be written, rehosted, or retargeted.

A-94

Perc InceLus_ a

1600

E~jinco voyA_ r EInc_ vA infr

Fr...Ada.prj

E use..cov...Anfr E-I md A infr

year Sw transp.A..cov

Ind-cov A-infr

E-..poL tch-coy-A Ch coyAda-infr

T....chvcoyA-infr

Figure A.7-4. Flow diagram of inputs to Coverage of Ada infrastructure
(CoyAda-infr).

* A-95

Z4-

Time to change coverage of Ada infrastructure (Equation #1820)

In the aggregate, there will be an average time that it takes for market opportunities to
be filled by products. Market opportunities are not always obvious or easy to realize, for
the evidence of them is diffuse and multifarious. Weapons programs or other programs
might use hosts or targets upon which Ada is not yet available. Reports of ongoing
programming efforts gradually form a perception that Ada is being used more frequently,
indicating a generally larger market and therefore larger niche markets in the less common
combinations of hosts and targets. Announcements of new software tools for Ada and Ada
environments could engender the same type of reasoning. There is also delay in taking
advantage of opportunities once they are perceived. A new company may need to be
formed, or new divisions formed within existing organizations. Then the actual work takes
time to create an Ada compiler and so on, or more frequently, rehosting or retargeting
existing software. The total average time taken for all of these processes is the Time to
change coverage of Ada infrastructure.

The Time to change coverage of Ada infrastructure (abbreviated T ch cov_A infr in
the model) is a converter variable with no inputs, i.e., a constant.

0 T-chcowvA-infr = 5
* (Time to change coverage of Ada infrastructure (years))

Effect of policy on time to change coverage of Ada infrastructure (Equation
#1830)

There are several policies that could potentially influence the time it takes for Ada to
spread to new hosts and targets. One such policy might be use of SVID as an interim w
standard tool interface for Ada-related software. Because of the reservoir of experience in
porting UNIX-like systems to new machines, and the design of UNIX that makes this
straightfoward, transporting the compiler and environment is much less time-consuming.
The mechanism that accomplishes this reduction is the Effect of policy on time to change
coverage of Ada infrastructure.

The Effect of policy on time to change coverage of Ada infrastructure is a converter
variable, converting the calendar year into an effect for that year.

A-96
WI

12.000

. . :.. .:.:. :.........

.... :.... •..: . .:. .. : . .
•00.

0 •-o--c-o- grphy :r

w I

1980.00 1000

1985.000 1.00

0 .000

1975.000 (inut022000

0 o...h...gr.. .. •e...

1970.000 ->1.000

1975.000 ->1.000

0 10.000 1.000

1900 0 .000. :

* 2005.000(inpu-> 2.0000

; 12010.000 -> 1.000

2015.000-> 1.000
* 2020.000 -> 1.000

The effect is set equal to 1.0 at all times in the base scenario model, representing no
* departure by policy from the present as regards propagation of Ada to new machines.

Indicated coverage of Ada infrastructure (Equation #1840)

As a convenient economic fiction, one can conceive of the coverage of Ada
infrastructure that would exist eventually, given that the economic incentives stay as they
are. This equilibrium coverage would represent a balance between the slow spread of Ada
and its software environment into the last, marginally profitable combinations of host and
target, and the "despreading" of host/target combinations no longer being used. In the
model this equilibrium coverage is the Indicated coverage of Ada infrastructure.

Indicated coverage of Ada infrastructure is a converter variable, converting the Effects
on indicated coverage of Ada infrastructure and a switch to the indicated coverage.

A-97

"% .,2'.
°

.' "22-."g.%* '2" .. °J.
.

. 2""" . . .''"* -""'...,, V'.""'. .,%.''/ "'.°'.*". % '.%"" %'
"' ' ' ' * * l *..-*-.** " ' % ° ' ' '" " % '' '- ' '' . . % % * . .' r ' *]'' .. "% % %: "' '' %" '

0 I nd-covA-infr =IF (Sw-transpA-cov=1) THEN I ELSE E-ind-covA-infr
Indicated coverage of infrastructure units (infrastructure units))

The form of the equation for indicated coverage selects between two cases. In case the
operating system and tool interface is standardized and easily transportable, the indicated
coverage is 1.0, i.e., 100 percent: there are no substantial economic barriers to speak of
that prevent implementing Ada and its environment on any viable combination of hosts and
targets. (Viable in this context meaning, e.g., that no one will attempt using a tiny Sinclair S
personal microcomputer as a host.) In case the operating system and tool interface is not
standardized and therefore expensive to transport, the indicated coverage will depend on the
economic indicators that determine how many host/target combinations will be profitable
and how many will not. In the latter case, the indicated coverage equals the Effects on
indicated coverage of Ada infrastructure. The modeller controls which case is represented
by the model at what time by the Switch for transportability on Ada coverage.

Switch for transportability on Ada coverage (Equation #1850)

One policy option to be explored in the model is whether an APSE is made available
(either by GFE or by specification and private development), that is transported easily. The
model represents the effect such an APSE would have on coverage with the Switch for
transportability on Ada coverage.

The Switch for transportability on Ada coverage (abreviated Sw transp Acov in the
model) is a converter variable that uses a graphic function to choose bietween nputs. When
drawn to equal 1 indicated to indicate an infrastructure that is intentially design to be
transportable indicated coverage becomes one. When equal to zero indicated converage 3
equals the endogenously determined Effects on indicated coverage of Ada infrastructure.

1.000

I • . : .

......

0.0• .

190.00 (input) 12020.0007

year

A-98

SSw-transpA.cov graph(year)
970.000- 0.0

1975.000-> 0.0
198.000-> 0.0
1985.000-> 0.0
1990.000-> 0.0
1995.000-> 0.0
2000.000-> 0.0
2005.000-> 0.0

20 10.000 -> 0.0
2015.000 -> 0.0
2020.000-> 0.0

Effects on indicated coverage of Ada infrastructure (Equation #1880)

Many considerations go into a decision about whether to attempt to open a new market,
be it automobiles or software products. There are of course considerations about what type
of product to offer, but for Ada developers a major decision is what host and target
machines the software should work on. The major consideration here is whether there will
be demand for Ada on a particular configuration by projects in the same organization,
contractors, and military programmers. In the aggregate, the future demand for Ada
programming on all configurations cannot be known, only inferred from various
indications, such as current use, cost-effectiveness of currently available Ada compilers and
infrastructure, and incompatibility of existing infrastructure (which limits the market size
for new products). In the model, the composite of these various considerations is the
Effects on indicated coverage of Ada infrstructure.

The Effects on coverage of Ada infrastructure is a converter variable, converting effects
from use, incompatibility, and incentives on coverage of Ada infrastructure into a single

*1 effect.

0 E-ind-covA.infr= Linco-covA-infr*E-inc-covA-infr*
E-use-covA-infr {Effects on indicated coverage of Ada infrastructure)

The multiplicative form of the equation above allows any single indicator to strongly
restrict coverage if it is unfavorable enough. If no one were to use Ada, there would be no
good marketing prospects for making Ada available on more machines. If Ada were
terribly cost-ineffective, that would not be a sign that users would flock to Ada and demand
products, at least not soon. If the Ada infrastructure were splintered into many
incompatible environments, creating products for any one of the environments would
address only a very small market, so the potential return on developing Ada products for
new machines would be very small.

Effect of relative use on coverage of Ada infrastructure (Equation #1890)

Probably the most persuasive evidence that a given language and PSE represent a
marketing opportunity is actual use. The more use of Ada is in evidence, the more
incentives there are to create Ada environments to new host/target configurations (or to
adapt and transport environments from other configurations. In the model, the effect of

A-99

such incentives on the development and spread of Ada products is represented by the Effect
of relative use on coverage of Ada infrastructure.

The Effect of relative use on coverage of Ada infrastructure is a converter variable, 0
converting the Fraction of Ada projects into an effect.

I,.oo 1 : -. i N
1.000 " ' :.... i.... .. .i.i.

....

00

... ~~~..

00 (input) 1 .000

Fr_.Adaprj

(E-usecovA.infr = graph(FrAda.prj)
0.0 -> 0.0

0.100-> 0.895
0.200 -> 0.970
0.300 -> 0.975
0.400 -> 0.980
0.500 -> 0.985
0.600 -> 0.990
0.700 -> 0.995
0.800-> 1.000
0.900-> 1.000 J

1.000-> 1.000

The Fraction of Ada projects is the fraction of DoD MCCR programming currently
going on using the Ada Inaguage. It is a measure of how much Ada is being used.

Effect of incentives on coverage of Ada infrastructure (Equation #1910) -!
Another strong piece of evidence that a language and PSE represent a market for more

products is if the cost/risk incentives indicate that the language and PSE are desirable for

A-100

- ...-... , -. . . -. .,-..,...,.,.......-..-...,,_",,",
%-'. - - .•- -.,. -..,.-q.-,/. ~~~....... .,. . " '.... . .. , . .. - , - ,_' ",.% ', , ,, ,•-... .

programmers to use. Even if use has not yet blossomed, if Ada and APSE show good
results, people will be encouraged to make them available on many machines. Conversely,
if the current state of the APSE is poor, there is little experience with it, and so on, then

.there is considerably less promise in the Ada market (at least in the near future) and
correspondingly less motivation to port APSE to new combinations of machines. The
impact of cost/effectiveness incentives on desire to market Ada products on new host/target
configurations is represented in the model by the Effect of incentives on coverage of Ada
infrastructure

*The Effect of incentives on coverage of Ada infrastructure is a converter variable,
converting the Perceived incentives to use Ada into an effect.

11.000. . .

; ... i

(ipt 1=00Pecineui-d

... •....

* ..-j:

0.0: : : : ::

-1.0oo0 (input) 1.000o

Perc.ince..useA..da

0 E-i nc-covAi nfr = graph(Perc-i nce-useAda)
- 1.000 -> 0.440
-0.800 -> 0.655
-0.600 -> 0.780
-0.400 -> 0.875
-0.200 -> 0.965
0.0 -> 1.000

0.200-> 1.000
0.400-> 1.000
0.600-> 1.000
0.800-> 1.000
1.000-> 1.000

A-101
r'-

- .7,o;;% .-- $: ;; , ..-.% . -: 4. //.%.' * .':...,, .- ,,:. - .',- ,:-,'..-...-,' , -,

J"7

Effect of incompatibility on coverage of Ada infrastructure (Equation
#1920)

Market fragmentation diminishes the marketing opportunities for new products. For
example, if there is one standard Ada environment, creating a product (like a compiler) to
host/target configuration XY means. that it can be sold to anyone who uses or wants to use
that standard environment on XY. But suppose there are 12 incompatible Ada
environments. Creating a product for environment number 6 out of 12 to XY means that
the market is only those using environment number 6 AND who want to use configuration
XY; users of numbers 1-5 and numbers 7-12 would have to convert to a strange
environment to use the new product. Accordingly, when an infrastructure is fragmented by
incompatibility, the incentives to create new Ada products, in particular products for new
configurations is diminished. This effect is represented in the model by the Effect of
incompatibility on coverage of Ada infrastructure.

The Effect of incompatibility on coverage of Ada infrastructure is a converter variable,

converting the index, Incompatibility of Ada infrastructure, into an effect.

1.000
..... oo..... ... °

.... !....

-I

0.0]

00(input) 100.000]

I ncom-Rda-infra

WI

A-102

r .: :.... .

0 E-inco-.cov-.A...infr graph(Incom-..Ad&.infra)
0.0 -> 1.000

* 10.000 ->0.975

20.000 ->0.940

30.000 ->0.900

40.000 ->0.870

50.000 ->0.650

60.000 ->0.830

70.000 ->0.620

60.000 ->0.605

90.000 ->0.795

100.000 -> 0.785

A-0

Appendix A.8: Non-Ada Infrastructure Sector

The explanations given above for Ada will not be repeated for non-Ada, since for the
most part, the formulation and meaning of non-Ada infrastructure exactly parallels those of
Ada infrastructure. The Non-Ada equations lack some policy levers possessed by the
corresponding Ada structures, which requires no further comment. Values of
corresponding Ada and non-Ada parameters have been made exactly equal unless an
argument exists for a difference. Those arguments are given in Appendix A.9,
"Multivariable Model Calibration." The 1975 initial conditions for non-Ada language

* infrastructure differ considerably from those of the (nonexistent) Ada infrastructure of that
time; these differences have been described in Section 5 of this report, and are elaborated
on in Appendix A.9. It suffices, therefore, to give the non-Ada equations and their flow
diagrams.

Figure A.8-1 shows the flow diagram for inputs to the first of the three level variables
in the non-Ada infrastructure sector, the Intensity of non-Ada infrastructure.

Intensity of non-Ada infrastructure (Equation #2000)

• IntenNA-infra = IntenNA-infra - Obsol-intNA-infr + Crea-intNA-infr
INIT(IntenNA-infra) = 35

(Intensity of non-Ada infrastructure
(intensity units))

Obsolescence of intensity of non-Ada infrastructure (Equation #2010)

0 Obsol-intNA-infr = IntenNA-infra / Dura-intNA.infr
(Obsolescence of intensity of non-Ada infrastructure
(intensity units/year)}

Duration of intensity of non-Ada infrastructure(Equation #2020)
--" 0 DureaintNA.infr = 30 (Duration of intensity of NonAda infrastructure (

years))

Creation of intensity of non-Ada infrastructure (Equation #2050)

1 Figure A.8-2 shows a flow diagram of the inputs to the Creation of intensity of non-
Ada infrastructure.

0 CreeaintNA-infr =Norm-cr.intNA-infr *E-tech-cr-int*
...E-use-intNA-infr * E-inco-intNA-i nftr * E-incA-intNA *

E-rel-i nfr-i ntNA
(Creation of intensity of Non-Ada infrastructure
(intensity units/year))

A-105

I%

.Dura._intNAinfr

InteD_NAtinfra_' i

IntejJA.nfra
ObsoUnt_NA_infr

-,

pW

'p

Figure A.8-1. Flow diagram of inputs to Intensity of non-Ada infrastructure
(IntensNA-infr). The rate of flow coming from the left side of the diagram is the Creation

of intensity of non-Ada infrastructure.

A-106

E..tech cr int

Norm cr int_NA__infr

Ca,_jn. Ajinfr

Perc ince-useAda

Rel MtAda infr

Fr-Ada~prj

Figure A.8-2. Flow diagram of inputs to Creation of intensity of non-Ada infrastructure
(Creaint-NA-infr). The rate exits the right side of the diagram and flows into the

Intensity of non-Ada infrastructure.

A- 107e

Normal creation of intensity of non-Ada infrastructure (Equation #2060)

0 Norm-cr.intNA-infr= 1.6
{Normal creation of intensity of non-Ada
infrastructure (intensity units/year)}

Effect of incompatibility on intensity of non-Ada infrastructure (Equation
#2070)

13.000

._ -... i ... i

..i !....
..

E-i nco-i ntNAi nf r =graph(I ncomNAi nf r)
i 0.0 -> 3.000

10.000 2.415

20.000- 1.965
30.000- 1.635
40.000- 1.290
50.000- 1.000

~60.000 ->0.675
~70.000 ->0.450

00.000 0.285
90.000 -> .180
100.000 -> 0. 135

A-108

4000 - 129

" ",' ., "" 50" .00 -> 1.000 ,e ' '" " ' "."'. o .. '','-- . .- " ' , -,/ :'' ' '

Effect of incentives for Ada use on intensity of non-Ada infrastructure
(Equation #2080)

12.000

-I

.......................

-1.00(input) 1.000

Perc.jnce-.use...Rda

(0 E-i n c.A-n.N A graph(Perc-nce-use-.Ada)
* -1.000- 1. 120

-0.800- 1.110
-0.600- 1. 100

-0.400 > 1.07

-0.400 -> 1.070

*0.0 -> 1.000
0.200 -> 0.920
0.400 -> 0.840
0.600 ->0.750

0.800 ->0.680

1.000 ->0.600

A-109

N.'5, *..*

Effect of use on intensity of non-Ada infrastructure (Equation #2090)

1'.000 7
.,.............

z

.. .:........

10.0 (input) 1.0

Fr.Ada.prj

0.E.....usei.nt..NAi :nf r = gr.ph(Fr....dprj)
0.0 -> 1.000
0100-> 1.000
0.200 -> 0.990
0.300 -> 0.975
0.400 -> 0.965
0.500 -> 0.935
0.600 -> 0.915
0.700 -> 0.885
0.800 -> 0.830
0.900 -> 0.715
1.000-> 0.500

11

'.2

: A-I I

•U

Effect of relative infrastructure on intensity of non-Ada infrastructure

(Equation #2110)

12.000

10.0

joo (input) 12.000
Rel-int-Ada-i.nfr

0 E-..rel-infr..nt-.NA graph(Rel-int-.Ad&..infr)
411 0.0 -> 1.000

0.200 ->1.000

0.400 ->1.000

0.600 ->1.000

0.800 ->1.000

40 1.000 ->1.000

1.200 -> 1.050
1.400- 1.120
1.600 ->1.230

0 1.800 ->1.340

2.000 ->1.460

Incompatibility of Non-Ada infrastructure (Equation #2150)

Figure A.8-3 shows a flow diagram of the inputs to Incompatibility of non-Ada
infrastructure.

D Incom-..NA.Jnfr = Incom-..NA-..infr - Loss-inco-NA-..infr +

Crea..1nco..NA.i nfr
INIT(Incom.JlA-nfr) = 40 (Incompatibility of non-Ada infrastructure
incompatibility units))

A-111

I

No _ur icomjjNA

2150

1LossrincoNAfinf

0

* Inten.cqNNAnfra

Perc inejiseL.da

Fr...Ada..prj

Figure A.8-3. Flow diagram of inputs to Incompatibility of non-Ada infrastructure

(IncomNA-infr).

A-I112 00

-, * N,

Loss of incompatibility of non-Ada infrastructure (Equation #2160)

o Loss-incoNA-infr = IncomNA-infr / Norm-dur-incomNA {Loss of
incompatibility of non-

Ada infrastructure (incompatibility units/year))

Normal duration of incompatibility of non-Ada infrastructure (Equation
#2170)

0 Normdur-incomNA = 30 (Normal duration of incompatibility of non-Ada

infrastructure (years))

Creation of incompatibility of non-Ada infrastructure (Equation #2180)

o Crea-incoNA-infr = Norm-cr-incoNA * E-int-incoNA-infr *

EA-use-incoNA * E-incA-incoNA
(Creation of incompatible Nonada infrastructure
(incompatibility units/year))

Normal creation of incompatibility of non-Ada infrastructure (Equation
#2190)

0 Norm-cr-incoNA = 3 (Normal creation of
* incompatibility of non-Ada infrastructure

(incompatibility units/year))

A

'I

A-113

Effect of incentives for Ada use on incompatibility of non-Ada
infrastructure (Equation #2210)

2.000

z ~ ~ --- 7 -7...:. .

........................

'h. 0.0

-1-000 (input) 1.0

P erc-ijn ce-u se-i d

....E. .nc.. A-.nco....NA gr.ph(Perc -ince....use-...... . ..Ad.)

% .i

-1.000 -> 1.000
-0.800 ->1.000

* -0.600 ->1.000

-0.400 ->1.000

-0.200 ->1.000

0.0 -> 1.000 t
0.200 0> .990
0.400 ->0.970

0.600 ->0.930

* 0.800 ->0.690

5' 1.000 ->0.820

A-11

-, I w

955(S:

............-....

Effect of Ada use on incompatibility of non-Ada infrastructure (Equation
#2220)

1.000

-

cc..

*I "

0.0

* [0.0] (input) 1.000

FrAdaprj

0 EA-use-incoNA graph(FrAda_prj)
0.0 -> 0.995
0.100 -> 0.985
0.200 -> 0.955
0.300 -> 0.930
0.400 -> 0.885
0.500 -> 0.780
0.600 -> 0.700
0.700 -> 0.630
0.800 -> 0.570
0.900 -> 0.530
1.000 -> 0.500

IA
-: A-115

a* .---. -.o---.. --

Effect of intensity on incompatibility of non-Ada infrastructure (Equation
#2230)

1.000

z

.... i.... ! ... i"..-

10.0

[0.0 (input) 200.000

IntenNR-infra

* E.int.incoNA-infr graph(IntenNA-infra)

0.0-> 1.000
20.000 -> 0.980
40.000 -> 0.850
60.000 -> 0.800
80.000 -> 0.650
100.000 -> 0.560
120.000 -> 0.510

d, 140.000 -> 0.445
160.000 -> 0.425
180.000 -> 0.405
200.000 -> 0.400

Coverage of Non-Ada infrastructure (Equation #2300)

Figure A.8-4 shows a flow diagram of the inputs to Coverage of non-Ada
infrastructure. W

" CovNA-infr = CovNA-infr + Ch-covNA-infr
INIT(CovNA-infr) .85
(Coverage of non-Ada infrastructure (dimensionless))

A-116

jjOOTLchCcoyAinfr

*Percjince _useAda

E_ue_oy_NA_infr

Inc mNAjnfr

(CoyNAinfr).

A-117

I-f

EN',

Change in coverage of non-Ada infrastructure (Equation #2310)

o Ch cov NA-infr = (Ind-cov NA-infr-Cov NA-infr)/T-ch cov NA-infr
{Change in coverage of non-Ada infrastructure
(coverage units/year))

Time to change coverage of non-Ada infrastructure (Equation #2320)
Vi

0 Tch-covNA-infr = 5 (Time to change converage of
non-Ada infrastructure (years)}

Indicated coverage of non-Ada infrastructure (Equation #2330)

o nd-cov NA-infr = E-use.cov NA-infr*E.inc-cov NA infr*
E-inco-covNAinfr (Indicated coverage of

non-Ada infrastructure (dimensionless)}

Effect of relative use on coverage of non-Ada infrastructure (Equation
#2340)

" ... i ...! ...i !... i ...i.... i
:,."

.... !.... i.... i ... i ... ii i.... !.
-

Az

*. I • :

1.

.... pr j: .. .: ..

€]o~o J (i p ut].1J.00

(0 E-use-.cov-..NA-i nf r =graph(Fr..Ad&..prj)

0.0 -> 1.000
*0.100 -> 1.000

0.200 ->1.000

0.300 ->0.990

0.400 ->0.975

0.500 ->0.965

0.600 -> .935
* 0.700 ->0.880

0.800 ->0.835

0.900 ->0.7 10
1.000 ->0.500

Effect of incentives on coverage of non-Ada infrastructure (Equation
#2350)

* 11.000

..

A-11

__ I

0 E-inc-covNA-infr graph(Perc-ince-useAda)
-1.000 -> 1.000
-0.800 -> 1.000
-0.600 -> 1.000
-0.400-> 1.000
-0.200-> 1.000
0.0 -> 1.000

0.200 -> 0.980
0.400 -> o.910
0.600 -> 0.870
0.800 -> 0.830
1.000 -> 0.800

Effect of incompatibility on coverage of non-Ada infrastructure (Equation
#2360)

.1.000

=z ..

6IJ : : :

(input) 0.0

I ncomN nfr

* A- 120

%._ N..:. . . .:. . . .: . . l

0 Ei nco-covNA-i nfr graph(I ncomNAi nfr)
0.0 -> 1.000

10.000 -> 0.975
20.000 -> 0.940

V.30.000 -> 0.900
40.000 -> 0.870
50.000> 0.850
60.000 -> 0.830

..- 70.000 -> 0.820
80.000 -> 0.805
90.000 -> 0.795
100.000 -> 0.785

fb

-.

S..

.1d

.. 1~

Appendix A.9: Multivariable Model Calibration

The description of state variables and their inputs reports some calibration of the
- Omodel, which is included as a short rationale after the equation is described. This section

completes the description of model calibration, with the instances where calibration is either
fairly involved, or involves several parameters at once. In particular, all parameter
estimations where the respective Ada and non-Ada parameters differ are described here,
rather than in the equation descriptions.

The descriptions below relate to calibrations actually performed. Possible future
calibrations are described in Appendix C, "Areas for Further Investigation."

A note about calibration philosophy is in order. For analyses involving a single
policy, like (Clapp, et al. 1977) on cost-benefits of mandating a standard HOL, it often
suffices to simply make "conservative" assumptions in the model or calculation and report

* the results. However, in an analysis that scritinizes multiple policies, making"conservative" assumptions is tricky at best, and distorting at worst. This is because what
may be a conservative assumption for one policy may be not only not conservative, but
exaggerate the effects of some other policy.

For example, consider assumptions about the number of programming projects
-W started in the future; there is very little hard evidence out beyond 1990, and yet the analysis

requires an assumption out to 2015 or so. For analyzing the policy of mandating Ada, a
conservative assumption would be to assume low growth in project starts. This
assumption would shrink the size of the programming pie, and hence be conservative in
estimating the impact of standardizing on Ada on the cost of that pie. But for other
policies, such an assumption may exaggerate their effects.

For example, one of the policies discussed here is migrating non-Ada programs to a
standardized operating system. The effectiveness of that policy relative to policies
concerning Ada language programs hinges on the proportions of Ada and non-Ada systems
in development and maintenance. With very low growth, the older programs in non-Ada
languages will be proportionately more numerous than would be the case with rapid

46 growth. Therefore, policies that address non-Ada costs will appear more desirable relative
to those that address Ada costs with a low-growth assumption than with a higher-growth
"best guess" assumption. The bottom line, then, is that simply making conservative
assumptions and reporting results is not appropriate for the multiple-policy analysis. The
proper procedure is to make "best guess" assumptions to evaluate policies relative to one
another, and then use sensitivity testing to ensure that the relative desirability of policies

60, holds for any plausible set of circumstances, as prescribed in DoD Instruction 7041.3.

In a model produced by rapid prototyping such as this, the parameter estimation
procedures are quite informal and quick relative to the ponderous data massage of formal
econometric regression. For a discussion of the role of a priori and informal parameter
estimations, see (Graham 1980).

Cost sector calibration

Reference costs. The general procedure for estimating the reference costs (equations
110, 220, 290, and 340, in the cost sector) is to arbitrarily define one, implicitly defining
what is meant in the model by a "project." The parameter thus defined is the Reference cost
of non-Ada development projects (Ref cst NA dev). Then the value for the Reference

* cost of non-Ada maintenance projects (Re _cst-NAinn) is chosen in order to have an
appropriate relationship to the development cost. Then the parameters for Ada development

A-123

and maintenance are similarly derived to have an appropriate relationship to the
corresponding non-Ada parameters and to each other. So one parameter is chosen as a
matter of defining the scale of effort denoted by a "project' and the other parameter values
are derived from assumed relationships with the first parameter chosen.

As discussed in Section 5 of this report, the definition of the amount of programming
work that constitutes a standard "project" is selectable rather arbitrarily, subject only to
consistency of treatment. For the present round of model development, the definition of a
"project" is implicitly specified when the cost per project year of a project is defined. A
Non-Ada development project is defined to cost, on average, 6 million dollars
(Ref cstNA dev = 6x10 6 , or in model notation, 6e6).

While the selection of development costs is somewhat arbitrary, the selection of
maintenance costs must be choosen to be consistent with development costs. Heuristically,
the cost of maintenance can be derived from more basic observations. Suppose that a given
piece of software in the maintenance phase has major upgrades periodically, such that one
year out of every three, it is undergoing major revisions. Further suppose that major
revisions cost comparably to a development project. Two years out of three maintenance
will be routine, and much less costly. Reflecting only the cost of major revisions, the
maintenance cost for an average year should be one-third the yearly cost of development.
Reflecting both major and minor revisions, the average cost should be somewhat more than
the one-third. Here, one-half of the development cost is the ratio chosen; Ref cstNA mn
= 3e6). Here, then, maintenance costs one-half as much per year as development. (If-the
maintenance phase of a projects life cycle lasts longer than the development phase, the
amount spent on maintenance may exceed that spent on development over the course of the
life cycle.)

Similarly, Ada development costs are estimated from their relation to non-Ada
development costs. A value has been chosen that asserts that doing a project in the Ada
language, if the infrastructure intensity for programming in Ada were comparable to the
intensity of infrastructure available for non-Ada languages, would cost somewhat less than
in a typical non-Ada language (5 million versus 6 million per year). Ada is assumed to be
somewhat more efficient than non-Ada languages if the infrastructures were comparable by
virtue of its design supporting good software practices.

It is true that good software practices can be followed without the support of the
language used; people have programmed generics in FORTRAN, and even BASIC
programs can be developed in a structured way. But it seems plausible to assume that for a
given amount of programming experience in a language, better practices will be followed if
the language supports those practices, and less cost will result from better practices. Ada's
support of both top-down and bottom-up programming, structured programming, generics,
packages, strongly-checked types, and so on, suggests that for a given level of
infrastructure, Ada projects will be less expensive than non-Ada projects. This assumption
is born out by the details reported in (Foreman 1985a and b) and (IDA 1985).

The parameters for cost (the reference costs and the graphic functions that define the W

influence of incompatibility and intensity of infrastructure on costs) have been chosen such
that in 1985, Ada projects cost more than the comparable non-Ada projects, despite the I
lower reference cost. This is due to Ada's present lack of infrastructure (programming
experience, programming tools, program libraries, courses of instruction, etc.) by
comparison to older languages. .1

A-124

AI

. .. .\. .

The yearly maintenance cost for Ada, by arguments similar to those above, is set less
than the yearly development cost. Moreover, the maintenance cost is proportionately less
of the development cost than is the case for non-Ada langauges. Again, the difference is
attributed to the design of Ada. More than any other computer language, Ada is designed
to be maintainable, by virtue of features that yield clear program structure and isolate parts
of programs from each other. Non-Ada maintenance yearly expenditures per project were
set at 50 percent of the development cost; the corresponding Ada cost is set at 40 percent
(Ref cstA mn = 2e6).

* Effect of infrastructure intensity. Non-Ada prgramming costs respond to intensity
of infrastructure. The curve that defines that response, the graph function Effect of
intensity of non Ada infrastructure on cost (Eint NA cst), ranges from nearly 2.0 to 0.3.
The multiplier (a "cost driver") gives changes in cost when the intensity of infrastructure
departs from a reference value, which is chosen to be the 1985 intensity, 40 intensity units.
Therefore, the multiplier is 1.0 when Intensity of non-Ada infrastructure (Inten NA infra)
equals 40. Less infrastructure yields higher costs, in the extreme of no infrastructure,
nearly double the refernce cost. More infrastructure yields lower costs.

There are a number of studies that relate software cost to what amounts to the
infrastructure. Foremost among these are Boehm's studies that resulted in the COCOMO
model (Boehm 1981). No formal derivation of the cost curve from such a model has been
done yet. The slope of the curve is about twice the slope of the curve in COCOMO that
relates tools to productivity. However, infrastructure is not just tools. The quality of
people, the extensiveness of support hardware, the size of program libraries, and the
methods of managing programming all play a role. Given that tools are just one component
of infrastructure, the slope of the curve seems appropriate, at least until a more formal
derivation is performed.

The curve relating Ada infrastructure to costs is steeper than the curve for non-Ada.
The Effect of intensity of Ada infrastructure on cost (E int A cst) slopes about twice as
much for infrastructure more than the reference intensity index of 40, and three times as
much for infrastructure less than the reference index. The cost of programming in Ada,
then, is asserted to be more sensitive to infrastructural support than non-Ada programming.

40 For low levels of infrastructure, and especially low levels of experience, Ada is assumed to
be proportionately more expensive because of its complexity. There are many features, and
learning enough to know which to use to program simply is an obstacle. Also, Ada
programs are highly formatted, with many rules to follow just to get something to run
correctly. Finally, many of the features that support highly proficient programmers in good
practices may be confusing for programmers not accustomed to Ada. Programs using
generics, packages, and structures with many nested procedures may do more harm than
good for a programmer not accustomed to pieces of programs scattered all over the place.

On the high-infrastructure side, Ada costs are assumed to decline proportionately
more than non-Ada costs for a given change in intensity of infrastructure. As usual, the
basis is the design of Ada. All of the features that are so troublesome at low intensities of
infrastructure become aids in controlling complexity at higher infrastructures. When
experienced programmers master the features, the result is programs easier to structure, and
easier to debug, since Ada's features support these activities better than most non-Ada
languages. Having a complex language designed for experienced programmers implies a
cost curve that descends more rapidly than for more typical languages.

A-125
Q

.4

• d " - -# 't €""m e "
e ' e ' d ' " ' ' ° J "

t '
' "

''"' ', ' * d
' ' ' ' l "

re" "° .e"" "d"*' -''
" ' ° ' -* " ° " " ' " " ' - " '

Ada and non-Ada projects sectors calibration
Project starts. Total project starts (Totalprj starts) is specified as an exogenous

variable--one that, although time-varying, is not inluenced by any variables in the system.
Generally, the values were derived by combining the defined costs per project year with the

%l EIA forecasts for total expenditures on software to yield a number of project starts per year
(EIA 1980, EIA 1985). Mechanically, this was accomplished by first doing rough pencil-I and-paper calculations to get the right magnitudes for the initial non-Ada project levels and
the start rate. Then, a separate small model was used to get closer to numbers that would
roughly duplicate the EIA figures. Finally, experiments with the model itself were used to
derive a curve for starts per year.

The EIA forecast expenditures show smooth exponential-appearing growth, so one
might expect the same behavior from project starts. The fitted curve for Total_prj starts
does indeed rise quickly from 1975 to 1980, and proportionately more quickly still from
1980 to 1985. Presumably, this surge resulted from microprocessors being suitable for
embedded in a vastly wider group of weapons and systems. The curve flattens out from
1985 to 1990; indeed for simulated behavior to exactly match the EIA forecasts, the

- number of project starts would have to drop. In other words, just the continued starting of
k, new projects at the 1985 rate is more than enough to explain the rise in the EIA figures.

Rather than force the curve downward to fit the EIA numbers for years that haven't
happened yet, the number of project starts just flattens out and rises slowly. The EIA
figures come from bottom-up estimates of programs now in process, so the numbers
would seem to exclude programs not yet approved, which would raise the actual
expenditure curve beyond 1985, and thus be closer to the model behavior.

4" The behavior of Total yearly cost in the model is compared to the EIA forecasts in
Appendix B.3 (plot number 19),. As is evident from the plot, the model-generated
behavior lies within or close to the envelope defined by the two EIA forecasts. That the
model matches the time-series is not remarkable, given that paraemters were adjusted in
order for it to do so. But the match does show that the calibration procedure works.

The careful reader may have noted that Total yearly cost is measured in constant
FY'86 dollars ("real" or "inflation-adjusted" dollars), whereas the EIA 1985-95 MCCR
forecast numbers are in current ("inflated") dollars-the two sets of numbers are not really
comparable. (This mismatch was not discovered until after the initial calibration and
scenario analysis had been performed.) However, this mistake may not throw off the

"- calibration as much as it first may appear. The EIA studies were apparently very
conservative in tallying up future MCCR expenditures, for the real (i.e., inflation-adjusted)
expenditure stream is nearly flat beyond 1990, presumably representing only those
expenditures that are already in the works and therefore reasonably certain. But, as
discussed at the beginning of Appendix A.9, the estimates appropriate for this study are not
the most conservative, but the most likely estimates. Given the continuing advances of
computer capabilities and applications, it would seem that the most likely course of MCCR
spending would be continued gradual expansion, qualitatively more like the curve actually
used for the calibration, the current dollar-inflated EIA forecast. So although the calibration
procedure was based on incomplete information about the data, the outcome of the
calibration should remain qualitatively similar when the model is recalibrated.

Language choice sector calibration

At present, the calibration of the language choice sector is described entirely within
the equation description.

A-126
U

.

",- d" - " . _ " ," .'o ' .'. ". .,'.-- -' -. -, ', ".-. ".. . . ."..'. .. '-.'. .'..'..-.. ..-....- ".-- .-... .-.-.

Ada and non-Ada infrastructure sectors calibration

Normal creation of intensity of Ada and non-Ada infrastructure. The normal
creations of intensity of Ada and non-Ada infrastructures were estimated by first deriving
the parameter for non-Ada from behavioral requirements, and then arguing for how the
corresponding Ada parameter should differ from the non-Ada parameter.

The Normal creation of intensity of non-Ada infrastructure represents an abstract and

highly aggregated process, as described in the equation description above. It is not
possible to assign a value simply derived from known observations on any of the
components of infrastructure, such as the rapidity with which experience changes aprogrammer's productivity, or the frequency of new Ada-related products introduced.
Instead, a value can be derived from other values in the model and the behavior of the index
variable, Intensity of non-Ada infrastructure, discussed in Section 5 of this report.

The Intensity of non-Ada infrastructure was defined to rise from a value of 35 in
1975 to 40 in 1985. Infrastructure is assumed to disappear through Obsolescence of Ada
infrastructure at a rate of (Intensity of non-Ada infrastructure/Duration of intensity of non-
Ada infrastructure) = (35/30) = 1.16. So Creation of intensity of non-Ada infrastructure
must be at least 1.16 just to stay even with obsolescence.

But creation must also increase the intensity somewhat -- 5 intensity units between
1975 and 1985, or about 0.5 intensity units per year. The total creation, then, must be
about 1.16 + 0.5 = 1.66 intensity units per year.

The heuristic computation just described is not precise. As the Intensity of non-Ada
infrastructure increases between 1975 and 1985, the obsolescence likewise rises.
Moreover, the inputs to the rate of Creation of non-Ada infrastructure such as
Incompatibility of non-Ada infrastructure are not at their reference values during that
period, so the creation rate will not equal the normal rate. Incompatibility of non-Ada
infrastructure is defined to (and does) rise from its initial value of 40 in 1975 to its
reference value of 50 in 1985. To properly account for such effects, the final parameter
value was arrived at by simulating the model to ensure that the behavior of the levels
matched the behavior implicit in the definitions of initial conditions and reference values.
For the Normal creation of intensity of non-Ada infrastructure (Norm cr NA infr), the
value that works well turns out to be virtually the same as the value calculated above-1.6.
The various effects that might change the value apparently more or less cancelled each other
out.

With the normal creation for non-Ada computed, what can be said about the
appropriate value for the corresponding Normal creation of intensity of Ada infrastructure?
There are no clear reference values from which to compute. Probably the best that can be
done is to argue that the Ada parameter should be greater than the non-Ada parameter,
based on inherent differences between Ada and non-Ada.

One fundamental of the design of Ada that has had remarkably little disagreement is
that Ada supports modem software engineering practices and encourages reuse of code
better than any other common language. Ada constructs aid programmers in using
structured programming, information hiding, reuse of coding through generics, packages,
and so on. Other languages certainly permit such practices, but do not do as much as Ada
to facilitate and encourage them. So Ada would seem to facilitate programmer education,
which is one kind of creation of infrastructure intensity. Similarly, many languages permit
building program libraries, but this process is not facilitated by the design of the language
to the same extent it is in Ada; Ada, then, even with all other things being equal, creates

A-127

7
_-v-A

more incentives to create infrastructure. The normal creation of infrastructure should
therefore be higher for Ada than for non-Ada languages; Norm cr intA infr is set at 2.4,
or half again as great as for non-Ada.

Normal creation of incompatibility of Ada and non-Ada infrastructure. The
computation of the normal creations of incompatibility of Ada and non-Ada infrastructures
follows the same general format as the computations for normal creations of intensity:
First, a non-Ada parameter value is computed, based on required behavior of the associated
level. Then the value is refined through simulation testing. Finally, a value for the Ada
parameter is argued on a priori grounds.

Incompatibility of non-Ada infrastructure is defined to rise from its initial 1975 value
of 40 to its 1985 reference value of 50. In 1975, Loss of incompatibility of non-Ada
infrastructure will be (Incompatibility of non-Ada infrastructure/Normal duration of
incompatibility of non-Ada infrastructure) = (40/30) = 1.33 incompatibility units per year. W
Therefore, the Creation of incompatibility of non-Ada infrastructure must be at least 1.33
just to keep the level constant.

But the level of Incompatibility of non-Ada infrastructure should rise from 40 to 50 in
ten years, or about 1.0 incompatibility unit per year. So the initial estimate for Normal
creation of incompatibility of non-Ada infrastructure would be 1.33 + 1.0 = 2.33.

As with intensity, the inputs to the Incompatibility of non-Ada infrastructure do not
stay constant between 1975 and 1985, so model simulation and parameter-tuning were
used to ensure that the model behaved as it ought. The value of Normal creation of
incompatibility of non-Ada infrastructure (Norm cr incoNA) that produced the
appropriate behavior was 3.0, not terribly far from the original, hand-computed estimate of up
2.33.

Should the corresponding parameter for Ada, the Normal creation of incompatibility
of Ada infrastructure, be more or less than the non-Ada parameter? The argument seems
fairly clear: the Ada portion of the programming world has intrinsically less tendency to
create incompatibility, since language is usually the major element in incompatibility and
creation of dialects and so on is forbidden to the Ada side, but not the non-Ada side. And
the matter of standardized language is the only fixed, fundamental, definitional difference
between the Ada and non-Ada classifications. There are no inherent differences in
tendency to create incompatibility in operating systems, tools, management styles, or
whatever. So the Normal creation of incompatibility of Ada infrastructure
(Normcr incoA infr) is set at 0.75, one quarter of the non-Ada value.

Opposite polarity of impact on Ada and non-Ada of use and incentives. All
three levels of infrastructure -- intensity, incompatibility, and coverage -- for both Ada and
non-Ada are impacted by the Fraction of Ada use and Incentives to use Ada. Both use and
incentives represent relative measures of Ada versus non-Ada. For Ada, high use and
incentives mean high motivation to create infrastructure intensity, incompatibility, and
coverage. For non-Ada programming, the opposite is true: high use of Ada and high
incentives to use Ada are disincentives to accumulate intensity, incompatibility, and
coverage. Therefore, the pairs of graphic functions have opposite slopes:

A-128

'0 ~ ~~ P *::.

-. *~p. ~ .'. ~~** *.... *. J.****. (. ?~ ,1

F." Ada variable has the otposite slope of the non-Ada variable

E use int A infr E use int NA infr
40 E-inc int A infrE inc A int NA

Euse inco A infr7EA use inco NA infr
E -inc inco A infrE inc A -nco NA
E use cov A infr E use cov NA infr
E-inc-cov_A_infr E inc-cov-NA_ifr

The Ada variables have been described in the equation description. The non-Ada
variables all assume values of 1.0 for small values of use or incentives, on the assumption
that when conditions work against Ada use, Ada use will be small, and creation of non-Ada
infrastructure will not affected by how undesirable Ada use is. When Ada use or Ada
incentives are high, creation of non-Ada infrastructure is inhibited, but not as seriously as

*g Ada infrastructure is inhibited by low values, i.e. the slopes of the non-Ada variables are
less than their corresponding Ada variables. This represents the assumption that by the
time conditions for Ada use become highly favorable, the non-Ada languages will be
evolving to fill the specialized needs not met as efffectively by Ada. Ada's potential
success several years down the pike is less of a disadvantage to the accumulation non-Ada
infrastructure of that time than the current use of non-Ada languages is a disadvantage to
accumulation of Ada infrastructure.

4

A-129

"Vk . 'I S-S* S5 ~

APPENDIX B

MODEL LISTING, OUTPUT, AND POLICY LEVERS

Appendix B: Model Listing, Output, and Policy Levers

Appendix B contains supporting materials for the models used in this report: a listing,
differences between the base scenario and others, both tabular and plotted output, and a
summary of policy levers.

Appendix B. 1 contains a complete equation listing of the base model, as described in
Appendix A.

Appendix B.2 provides an index for the plots contained in Appendices B.3 through B.5,
in the correct order and with full names and equation numbers for
reference.

Appendix B.3 contains the output of the base scenario simulation, including both plots,
4 and tables of data.

Appendix B.4 provides all output plots and tables for the scenario representing the
adoption of a commercial environment as a standard APSE, and then gives
the exact changes to the base model needed to create this scenario.

Appendix B.5 provides all output plots and tables for the scenario representing a policy of
0 !converting deployed Non-Ada programs undergoing major redevelopment

into Ada, and then gives the exact model changes needed to create this". scenario.

, Appendix B.6 provides an overview of the policies that could be explored with the model
and describes the levers in the model that would be used to represent them.

B-3

r .2

Appendix B.1: Model Listing

This appendix provides a complete equation listing of the base model as described in
Appendix A. This model resides on the Macintosh floppy disks supplied along with this
report as STELLA document SSMO.32 (Standardization Scenario Model -release 0 version
32). STELLA equation listings are divided into three blocks: all the level variables are
listed first, the second block lists the rates and converter variables which do not use graphic
functions, and finally, the third block lists all the converter variables which use use graphic
functions. Within each block variables are listed alphabetically.

The listing, then, begins with the level variables, symbolized by the small rectangles to
the left of the equation proper:

* Q0 Adadev..prj = Ada..dev..prj + Ada~dev -starts - Ada...dev...compl
INIT(Ada...devprj) = 0 (Ada development projects

r- d (projects))- d mnp ob l+
* ~ Ada~..maint..prj a Ada...maInt~prj + Ada_dev _compi d..n.plbO

ConvprLcompl
INIT(Ada..maint..prj) a-0 (Ada maintainance projects
(projects)) _rsat

* ~~~ Conv~prj a Conv..pr - Conv..prLcompI + Convy.rsat
INIT(Conv..prj) = 0 (Conversion projects (projects))

0 CoyvAdajinfr = CovAcfalnfr + ChcoAdajlnfr
INIT(Cov_.AdaJnfr) = 0 (Coverage of Ada Infrastructure
(dimensionless))

0 CovjJAJnfr - CoyNA infr + Chco.P...NA_1nfr
INIT(Cov...NAjnhfr) = .85T
(Coverage of non-Ada infrastructure (dimensionless))

n Incom Ada infra - lncomnAda.j.nfra - Loss-inco...Adajinfr +
Crea nco j..dajnfr
INITCncomAdaJnfra) = 2 (incompatibility of Ada infrastructure(
Incompatability units))

0 tncom-NAJnfr = lncom...NAinfr -Loss~jnco_.NA_1nfr +.
Creajnco_Aknfr
INIT(IncomiNkjnfr) = 40 (Incompatiblity of non-Ada Infrastructure(
Incompagbility units))

0 IntenAda infra - lnten.Adajnfra + CrealnLAdainfr -
Obsol~mtAdaijnf + InLGFE...Adajnfr
INIT(lnten Adainfra) n 0
(intensity of Ada Infrastructure (intensity units))

C3 Inten NAinfra - IntenNAInfra - ObsoUntNkjnfr +. CreajntNkjnfr
INIT(Inten-Nkinfra) = 35

(intensity of non-Ada Infrastructure
(intensity units))

B-5

C Nondadeproj NonAdadev..proj + NA dev_starts - NAkdev _compi
INIT(NonAdadevproj) = 150

(NonAda development projects (projects))
El NonAda..maintprj a NonAdlamaint..pd + NA-dev_compi -

NA..mnprLobsol - ConvjprjstartsINIT(NonAdlamaint.prj) - 90
(NonAda maintenance projects (projects))

ElPerc ince useLAdla = Perc~ince~useAa + Ch...per:ince
INIT(Percince~use-Ada) - -2
[Perceived Incentive to use Ada (incentive units))

0 Total cost = Total -cost + CsU'r...dis
INIT(Total cost) -0 (Total cost (dollars))

0 Ada,.devcompl -Ada~..dev.prAda~dev_compfltme

(Ada development (project) completion time
(projects/year))

0 Adacdev _compljilme = 10 (Ada development (project) completion time(
yea-rsq)

0 Ada...dev.starts - Totalprjstarts'Frde..startsAda
(Ada development (project) starts (projects/year))

o Ada infr initjnj - 20
(Ada infrastructure inititlally Injected (infrastructure units))o Ada mnprLobsol =Adajnaint..prj/AdaprLmnjime (Ada
maintainance project obsolescence (projects/year))o Adapr~mn time = 20 (Ada project maintainance time (years) - the

-~ time it takes for the system in which the technology is embedded to pass
out of useful service)

0 AddGFE_ Adajinfr =0
(Additional GFE'd Ada Infrastructure .(Infrastructure units))

o AddjnLAdaLnfr - PULSE(AddGFE Ada lnfr,T.ad.Aanr
lnteraddAdainfr)

9*. (Additional inection of Ada Infrastructure (infrastructure units/year))
0 Ch....covAdaJnfr = (Ind..ovknfr-Covj.dainfr)/

(T....ccovA~lnfr *E...pLt.ch..cov_.A)
(Change In coverage of Ada infrastructure (fraction/year))

*0 Ch..covNA,.infr - (Ind v....NAlnfr-Cov...NAInfr)/Tch cov _NAklnfr
(Change in coverage of non-Ada infrastructure
(coverage units/year))o Ch~per ince =(lncentive -use_Ada - Perc ince_use...Ada)

/Tme...percjnce
(Change In perceived incentives (to use Ada)
(incentive units/year))

V

B-6

%dV

0 Cony....comp~time = 2 (Conversion project completion time (years))
o Conv_,prLcompl Cony..pdj / Conv....ompLtlme

(Conversion project completions (projects/year))o Conv...prLstarts = NonAda...maintpr * Fr conv.NA..mn..pr (Conversion
project starts (projects/year))o Creaj..nco.Adainfr = Nor~ ic~if*Eic:noknr
Ejntnco_.Ajnfr*E..usej~ncoA_lnfr*E..po~inco_Ainfr {Creation of
Incompatibility of Ada infrastructure (incompatibility units/year))

o CreaJnc..NAkinfr - NormncrjlncoNA * E JntJnc...NAJnfr
* E_Akuse-incojNA *EInc_A~incoj4A

(Creation of incompatible Nonada infrastructure
(incompatibility units/year))

O 'ra:itAda6.infr = Norm-crint...Anfr*E tech-cr int'
E-_nc..JntAda_infr*E..use.jnt_A_Infr'EjincoJnt Ainfr
E..pol_mtAklnfrE _reL.nfrjn..Ada

(Creation. of intens. of Ada Infrastr. (infr. units/yr.))
o CreaLjnLNkjnfr = Norm...cr.Jnt..NA~nfr *Ejech...cr mt*

E..Usejint..NAjnfr * Ejncojn.NA6_nfr *Ejnc..kAntNA'
* Ejel infr int.,NA

{Creation of Intensity of Non-Ada Infrastructure
(intensity units/year))

o Cst-prLyr-.Ada-dev = Ref.stAda_devELAda...cost
(Cost per project-year of Ada development projects

* (dollars/project/year))o Cst..prj..yr...Ada jmn a Ref cst -Ada...mnEAda cost
* (Cost per project-year for Ada maintenance projects

(dollars/year))o Cst,.prjjr...Conv - Cst.pd~y...Ada..dev *Ratio _cnv..dev_cst
(Cost per project-year for conversions (dollars/year))

o Cst-prj4ANdev = RefLcstNA-dev*ENA-cst
(Cost per project-year for NonAda development projects
(dollars/year))o Cst pdyNA,_mn = Ref_ t-Nkn'ELNAcst
(Cost per project-year for NonAda maintenance (dollars/year))

B-7

0 Cst y...Ada.A.ev = Ada,..devprJCst.pr r..Ada....dev
(Cost per year for Ada development projects
(dollars/year))

o Cstjr...Adan n -AdajnantpCs.pr~rwAda..mn (Cost per year for
Ada maintenace projects (dollars/year))

o Cst..yr..dis - Totalyearly p.ost'Dlscountjndex
(Cost per year discounted (dollars/year))

o Cst.Yr_NA dev - NonAdadev...projCst prLj_NA dev
{Cost per year for NonAda development projects (dollars/year))

o Cstjr...NA -mn = NonAda...maint'dCst prLyr..NAmn
(Cost per year for NonAda maintenance projects (dollars/year))

o DiscounUndex = IF TI1ME:5 Start..,yr..sLaccum THEN 0 ELSE EXP(-
Discount rate(TIM E - Start yrcs..accum))

(Discount index (dimension less))
o Discount-rate = 0 (Discount rate (fraction/year))
o Dura-intAdaJinfr = 30 (Duration of intensity of Ada infrastructure(

A years))
o Dura,_:n,.NA_infr = 30 (Duration of intensity of NonAda infrastructure (-

years))
o E..Adacpost = E-ImtAda~cst*Ejnco.A..cst

(Effects on Ada costs (dimensionless))
o E.Jnd~coyA-infr = Ejinc...cov...Ajnfr*E LIncqcoyA infr*

E use coyAjInfr (Effects on indicated coverage of Ada infrastructure) y

o ENA -cst - E mtNAksEjincoNAcst
(ffects on NonAda costs (dimensionless))

o Ejech-cr int - EXP((year - Startyr cst accum) 'Ratejechprog)(

Effect of technology on creation of
intensity of infrastructure (dimensionless))

o FrAda.prj = TotaLAdaprJ/Totalprojects
(Fraction of Ada projects (dimensionless))o Frdev _startsAda - Natf_rAda..starts *Ejargetn.starts
.(Fraction of development (project) starts In Ada
(dimensionless))

o Incentive use Ada - nce_rel-int-infr + Ince_rel-covjinfr + Ince..pol
(Incentives to use Ada (incentive units))o lndcov_Ainfr = IF (Swj ranspAcovu1) THEN 1 ELSE EjI nd coyA nfrI

Indicated coverage of infrastructure units (infrastructure units))
oInd...cov_NA Infr n E _use..cov.NAj nfr'E jnc coyNA infr*
E inco coyNA infr (Indicated coverage of

non-Adaijifr-astructure diiiiensi6nles-))'
o lnitjnLAdajnfr n PULSE(Ada_..jnfrjinitjnj,l 981 ,leli)

(initial Injection of Ada Infrastructure (infrastructure units/year); thevj
one-time construction of a few initial compilers, loaders, etc.)

B-9 4

o lnLGFEAdalnfr n iniLnLAdalInfr + AddlInLAdajnfr
(Injection of GFE (government-furnished equIpment) for Ada

40 Infrastructure (infrastructure units/year))
*0 Inter .add_.Ada.nfr -1011 (Interval to add Ada Infrastructure (years))o LossJnco..Adaj1nfr -lncom..Adajinfra/

(Norm..durj1nco..AJnf *E..poldu1nco.Anf)
(Loss of Incompatable Ada Infrastructure (Incoinpatability unit/ear))

0 LossjncojJAjInfr = Incom...NA_.jnfr / Norm...durjncom....NA (Loss of
Incompatibility of non-

Ada Infrastructure (incompatibility units/year))o NA.dev...compl =' NonAda..dev.,projINA..dev..compLtime
* (Non-Ada development (project) completions
* (projects/year))o NA..dev..compL~time a-10

(NonAda development (project) completion time
(years))

0NAkdev~starts = TotalprLstarts * (1-Fr...dey..starts..Ada)
(Non-Ada development (project) starts (projects/year))o N~nn.prLobsoi = NonAda..main YrjNA....prLnme (NonAda

maintalnance project obsolescence (projects/year))
o NA_,proLmn..tIme =-20 (NonAda project maintainance time (years))o NorrY...rJnco...AJnfr a .75

(Normal creation of Incompatibility of Ada
Inf rastructure (fraction))

0 Norm cr -inco..NA - 3 (Normal creation of
incompatibility of non-Ada infrastructure

*(in compatibility units/year))
0 Norm_cr_'t .Anfr - 2.4

(Normal creation of intensity of Ada Infrastructure
(intensity units/year))o Norm..crntjJAJnfr a 1.6

(Normal creation of Intensity of non-Ada
Infrastructure (intensity units/year))o: Norm...durJncomNA - 30 (Normal duration of incompatibility of non-Ada

Infrastructure (years))o Normrdurinco.AJnf a 30 (Normal duration of incompatibility of Ada
Infrastructure (years))o Obsoljnt-Adajinf - Inten Ada infra/Dura,_int..Ada infr
(Obsolesence of intensity of Ada infrastructure (units/year))
Obsolnt..NAknfr - lnten....Nkjnfra / DuraintjjAj nfr

(Obsolescence of intensity of non-Ada infrastructure(intensity units/year))

!j -
0 RateJech..prog -0

(Rate of technological progress (fraction/year))
o Ratioconvdevycst = 1

(Ratio of conversion to development costs (dimensionless))
o Ref_cstAda-dev w 5E

(Reference cost for Ada development projects
(dollars/project/year))

o Ref csLAda.mn = 2e6 (Reference cost for Ada maintenance projects (
Dollars/project/year))

O Ref_cst_NAdev = 6E6 (Reference cost for NonAda development projects (
dollars/year))

o Ref cstNAmn - 3e6 (Reference cost for Non
Ada maintenance projects (dollars/year))

O RelcovAdaJnfr - CovAda.nfr/CovNAinfr
(Relative coverage of Ada infrastructure (dimensionless))

o ReUnLAda..infr - Inten._Ada.infraAlntenNAinfra
(Relative Intensity of Ada infrastructure (dimensionless))

O Start_yr._cst accum - 1986
(Starting year for cost accumulation (year))

o Target_Ada.rel-nat - TargjrAdastarts/Natr..Ada..starts (Target for
Ada (starts) relative to natural (fraction) (fraction))

0 Time_.ercJince - 2 (Time to perceive incentives (to use Ada) (years))
o TotaL.Adajprj = Ada~devprj+(Adamaint.prj*WAda_,mnprj)+(Conv prj

W-conv..prj)
(Total Ada projects (projects))

O TotaLNAprj = NonAda..devproj+((NonAda..maintprj-Convprd)*
w_-NAmn..prj)
(Total NonAda projects (projects))

0 Total.projects - TotaLAda.prj+TotaLNAprj (Total projects (projects))
O Total.yearlypost - Tot yr _st_NA+Tot.yrcsconv+Tot yr_cstAda {

Total yearly cost (dollars/year))
o TotjrcstAda - CstrAa_mn+Cst..Adadev

(Total yearly cost of Ada projects (dollars/year))
o Totyr_cst_conv - Conv..prjCst..prLyr..Conv

(Total yearly cost conversions (dollars/year))
o Tot.yr-cstNA - CstyrNA.mn+CstYr_.NA.dev

(Total yearly cost of Nonada projects (dollars/year))
o TaddAda.nfr - 1990

(Time for additional Ada infrastructure (year))
0 Tchcov._AJnfr =5

(Time to change coverage of Ada infrastructure (years))

B-10

,'

o T_chcovNAjinfr = 5 (Time to change converage of
non-Ada infrastructure (years))

" W_.Adamn..pd = .5 {Weight for Ada maintainance projects (dimensionless)
o Wconv prJ = 1 (Weight for conversion upgrades

(dimensionless))
0w NA_mnprj w .5

*Q 0 year = TIME (years (years))
0 1990.000 -> 3.210e+10
0 EIA-851995.000 -> 3.5660+10
0E_.Akuse.incoNA = graph(FrAda prJD

0.0 -> 0.995
* 0.100 -> 0.985

0.200-> 0.955
0.300 -> 0.930
0.400 -> 0.885
0.500 -> 0.780

| 0.600 ->0.700
0.700-> 0.630
0.800 -> 0.570
0.900 -> 0.530
1.000-> 0.500

0 E.incAcst = graph(IncomAda infra)
0.0 -> 0.600

10.000 -> 0.630
20.000 -> 0.650
30.000 -> 0.720
40.000-> 0.830
50.000-> 1.000
60.000-> 1.190
70.000-> 1.350
80.000-> 1.540
90.000-> 1.650
100.000-> 1.730

B-11

P. P-1. .ul -U

n Enco_cov_Ajnfr = graph(IncomAda._infra)
0.0-> 1.000
10.000 -> D.975 0
20.000 -> 0.940
30.000 -> 0.900
40.000 -> 0.870
50.000 -> 0.850
60.000-> 0.830
70.000 -> 0.820
80.000-> 0.805
90.000 .> 0.795
100.000 -> 0.785

0 E_inco_cov_.NAjnfr = graph(IncomNAjinfr)
0.0-> 1.000
10.000 -> 0.975
20.000 -> 0.940
30.000-> 0.900
40.000-> 0.870
50.000-> 0.850
60.000 ->0.830
70.000 -> 0.820
80.000->0.805
90.000 -> 0.795
100.000 -> 0.785

E Ejnco_A cst = graph(Incom._Adainfra)
0.0 -> 0.600
10.000-> 0.630
20.000 -> 0.650
30.000 -> 0.720
40.000 -> 0.830
50.000-> 1.000
60.000-> 1.190
70.000-> 1.350
80.000 ->1.540
90.000-> 1.650
100.000 ->1.730

B- 12

-* * °- .- -,
-

*, -.- . - I-

0 EjncocovA.infr = graph(IncomAda, infra)
0.0 -> 1.000

* 10.000 ->0.975
20.000-> 0.940
30.000 -> 0.900
40.000 -> 0.870
50.000 -> 0.850

* 60.000 -> 0.830
70.000 -> 0.820
80.000 ->0.805
90.000 -> 0.795
100.000 -> 0.785

0 E_inco_covNAinfr = graph(IncomNAJnfr)
0.0-> 1.000
10.000-> 0.975
20.000-> 0.940
30.000-> 0.900
40.000 -> 0.870

4 50.000-> 0.850
*" 60.000 -> 0.830

70.000 -> 0.820
* v 80.000 -> 0.805

90.000-> 0.795
100.000 -> 0.785

S E_inco_intA..jnfr - graph(Incom_. Adajnfra)
0.0 -> 3.000
10.000 ->2.415
20.000 ->1.965
30.000 -> 1.635
40.000-> 1.290
50.000 -> 1.000
60.000 -> 0.675
70.000 -> 0.450
80.000 -> 0.285I 90.000 -> 0.180

¢ 100.000 ->0.135

i

',

B-13

- e: ,.z: e . . :., e',a" e - ._" - , %J . , '- .. . "... , ". . .", ".. . ". ,. K. . -e . - ,-': " .k. L." • .

SE_inco_intNA.nfr graph(Incom NAinfr)
0.0 -> 3.000
10.000 -> 2.415
20.000-> 1.965

30.000 1.635
40.000-> 1.290
50.000-> 1.000
60.000 -> 0.675
70.000 -> 0.450
80.000 -> 0.285
90.000 -> 0.180
100.000 -> 0.135I EjncoNAkcst - graph(IncomNAinfr)

0.0 -> 0.600
10.000 -> 0.630
20.000 -> 0.650
30.000 -> 0.720
40.000 -> 0.830
50.000 -> 1.000
60.000 -> 1.190
70.000 -> 1.350
80.000 -> 1.540
90.000-> 1.650
100.000 -> 1.730

" E.inc_A_incoNA - graph(Perc..ine..use..Ada)
-1000 -:1:1.000

-0.800 -> 1.000
-0.600 -> 1.000
-0.400 -> 1.000
-0.200 -> 1.000
0.0-> 1.000

0.200 -> 0.990
0.400 -> 0.970
0.60C -> 0.930
0.80C) -> 0.890
1.000 -> 0.820

B-14

E_Inc_A_inNA = graph(Percjinceuse_Ada)
-1.000 -> 1.120
-0.800 ->1.110
-0.600 -> 1.100
-0.400 -> 1.070
-0.200 -> 1.050
0.0-> 1.000

0.200 -> 0.920
0.400 -> 0.840
0.600 -> 0.750
0.800 -> 0.680
1.000 -> 0.600

(EJnccovAjinfr - graph(Perc inceuse.Ada)
-1.000 -> 0.440
-0.800 -> 0.655
-0.600-> 0.780

,v -0.400 -> 0.875
-0.200 -> 0.965
0.0-> 1.000
0.200-> 1.000
0.400 ->1.000

U0.600-> 1.000
0.800-> 1.000
1.000-> 1.000

e E.Jncq covNA.infr - graph(PercjinceuseAda)
-1.000 -> 1.000
-0.800-> 1.000
-0.600-> 1.000
-0.400-> 1.000
-0.200 -> 1.000
0.0 -> 1.000

0.200 -> 0.980
0.400 -> 0.910
0.600 -> 0.870
0.800 -> 0.830
1.000 -> 0.800

B-15

I--, , ,... - o -,--. -. , , ,'". - - ,. .. ,. - . - , , ., -. . -. ,,-. -. ,- -. , -,-,-.,

,.

E incinco_Ainfr = graph(PercinceuseAda)
-1.000 -> 0.240
-0.800 -> 0.290
-0.600 -> 0.360
-0.400 -> 0.450
-0.200 -> 0.620
0.0-> 1.000

0.200 -> 1.280
0.400 -> 1.530
0.600-> 1.700

A. 0.800-> 1.800
1.000> 1.900

0 Ejncint_Adainfr = graph(PercjinceuseAda)
-1.000 -> 0.380
-0.800 -> 0.400
-0.600 -> 0.460
-0.400 -> 0.560
-0.200 ->0.700
0.0 -> 1.000
0.200-> 1.380
0.400-> 1.680
0.600-> 1.900
0.800 -> 2.000
1.000 -> 2.020

e) EintAda-cst = graph(IntenAdainfra)
0.0 -> 3.000
10.000-> 2.850
20.000-> 2.565
30.000-> 2.010
40.000 ->1.000
50.000 -> 0.600
60.000-> 0.465-
70.000 -> 0.360
80.000 -> 0.270
90.000-> 0.200
100.000 ->0.100

B-16

0 EintincoAjnfr = graph(Inten_.Ada.jnfra)
0.0-> 1.000

20.000 -> 0.980
40.000 -> 0.950
60.000 -> 0.910
80.000 -> 0.840
100.000 -> 0.735
120.000 -> 0.640
140.000 -> 0.550
160.000-> 0.470
180.000 -> 0.435

* 200.000 -> 0.410
SEJntincoNAinfr = graph(IntenNAinfra)

0.0-> 1.000
20.000 ->,0.980
40.000 -> 0.850
60.000 -> 0.800
80.000 -> 0.650
100.000 ->0.560
120.000 -> 0.510
140.000 -> 0.445"
160.000 -> 0.425
180.000 -> 0.405
200.000 -> 0.400

O E_nLNAcst = graph(IntenNAjinfra)
0.0 -> 1.970
10.000-> 1.530
20.000-> 1.270
30.000-> 1.120
40.000-> 1.000
50.000 -> 0.880
60.000-> 0.760
70.000 -> 0.630
80.000 -> 0.520
90.000 -> 0.390
100.000 -> 0.300

B-17

E-poLduinco_A.inf - graph(year)
1970.000 -> 1.000
1975.000 -> 1.000
1980.000 ->1.000
1985.000 -> 1.000
1990.000-> 1.000
1995.000-> 1.000
2000.000-> 1.000
2005.000-> 1.000
2010.000 ->1.000
2015.000-> 1.000
2020.000-> 1.000
E_polinco_A_:infr - graph(year)
1970.000 ->1.000
1975.000 ->1.000
1980.000-> 1.000
.1985.000 ->1.000
1990.000 ->1.000
1995.000-> 1.000
2000.000-> 1.000
2005.000-> 1.000
2010.000-> 1.000
2015.000 -> 1.000
2020.000-> 1.000
E..poLnLA.infr - graph(year)
1970.000-> 1.000
1975.000 ->1.000
1980.000-> 1.000
1985.000-> 1.000
1990.000-> 1.000
1995.000-> 1.000
2000.000 ->1.000
2005. -> 1.000
2010.000-> 1.000
2015.000-> 1.000
2020.000-> 1.000

B-18

f.. , .. , .L .

S E..poULt_chcovA = graph(year)
1970.000 -> 1.000
1975.000 ->1.000
1980.000 -> 1.000
1985.000 -> 1.000
1990.000 -> 1.000
1995.000-> 1.000
2000.000-> 1.000
2005.000-> 1.000
2010.000 ->1.000
2015.000-> 1.000
2020,*000-> 1.000
E~jel infr intAda - graph (ReLintAda_infr)
0.0-> 1.850

0.200-> 1.740
0.400 ->1.510
0.600-> 1.240
0.800-> 1.080
1.000-> 1.000
1.200-> 6.940
1.400-> 0.900
1.600-> 0.890
1.800 ->0.870
2.000 -> 0.860
E-targetonstarts graph(TargetAda.reLnat)
0.0 -> 1.000
0.500-> 1.000
1.000 ->1.000
1.500-> 1.125
2.000-> 1.325
2.500-> 1.575
3.000 ->1.950
3.500--> 2.300.
4.000 -> 2.675

C; 4.500 -> 3.075
5.000 -> 3.500

p.p

B- 19

I

0 E_usecov_Ajnfr - graph(FrAda-pr)
0.0 -> 0.0

0.100 ->0.895
0.200-> 0.970
0.300-> 0.975
0.400 -> 0.980
0.500 -> 0.985
0.600 -> 0.990
0.700 -> 0.995
0.800-> 1.000
0.900-> 1.000
1.000-> 1.000.S Euse covNA_infr = graph(Fr.Adapj)o.o-> 1.000 _
0.00 -> 1.000

0.200-> 1.000
0.300-> 0.990
0.400 -> 0.975
0.500 -> 0.965
0.600-> 0.935
0.700 -> 0.880
0.800 -> 0.835
0.900 -> 0.710
1.000-> 0.500

ES E_usejnco_..Ajnfr graph(FrAda...pj)
0.0 -> 0.405

0. 100-> 0.445
0.200 ->0.510
0.300 -> 0.655
0.400 -> 0.750
0.500 -> 0.815
0.600 ->0.870
0.700-> 0.905
0.800 0.945
0.900 -> 0.980
1.000 -0.995

B-20

P " " 1

Q) E _usejnt..Ajnfr -graph(Fr..Ada,,prj

0.0 -> 0.050
0. 100 ->0.500

0.200 ->0.770

0.300.- 0.870
0.400 ->0.920

0.500 ->0.945

0.600 ->0.965

0.700 ->0.985

0.800 ->0.990

* 0.900 .-> 1.000
1.000 -> 1.000

Q) E...usejntNA_ilnfr -graph(Fr..Ada pr)
0.0 ->.1.000
0. 100 -> 1.000

io 0.200 -> 0.990
0.300 -> 0.975
0.400 -> 0.965
0.500 -> 0.935
0.600 -> 0.915

* 0.700 -> 0.885
0.800 -> 0.830
0.900 -> 0.715
1 .000 -> 0.500

SF _cnvNkmnpr -graph(year)

*1970.000 -> 0.0
1975.000 -> 0.0
1980.000 -> 0.0
1985.000 ->0.0

1990.000- 0.0
1995.000- 0.0
2000.000 ->0.0

2005.000 ->0.0

2010.000 -> 0.0
2015.000 -> 0.0
2020.000 ->0.0

B-21

rw IN -w r. WK -% .- F IM -

SInce..pol -graph(year)

1975.000 ->0.0

1979.000- 0.0
1983.000 ->0.0

1987.000 ->0.0

1991.000- 0.0-.
1995.000- 0.0

p. 1999.000 ->0.0

2003.000- 0.0
2007.000- 0.0

* 2011.000- 0.0
2015.000- 0.0

Q) Ince...reLcoynfr -graph(ReLcov...AdaLinfr)

0.0 -> -0.310
0.200 ->-0.215

0.400 ->-0. 140
0.600 ->-0.080

0.800->-0.015
1.000->0.050

- 1.200> 0.095
1.400> 0.125
1.600 >0.160
1.800 -0. 180
2.000> 0. 190

Q) Incqe...rlntjnfr -graph(ReUnLAda.Jlnfr)

0.0 -> -0.530
0.200 -0.400
0.400->-0.290
0.600 ->-0.190O

0.800- -0. 100
1.000- 0.0
1.200- 0. 160
1.400'>0.340
1.600->0.540
1.800> 0.720
2.000- 0.970

B-22

0 Natjfr..Adastarts - graph(Perc.nceuse..Ada)
-1.000-> 5.000e-3
-0.800 -> 0.025
-0.600 -> 0.055
-0.400 -> 0.120
-0.200.-> 0.260
0.0 -> 0.500
0.200 -> 0.680
0.400 -> 0.780
0.600 ->0.825
0.800 ->0.870
1.000 -> 0.910
Swvransp_A _cov = graph(year)
1970.000 -> 0.0

* 1975.000 -> 0.0
1980.000-> 0.0
1985.000-> 0.0
1990.000-> 0.0
1995.000 -> 0.0
2000.000-> 0.0
205 .00>-0.0
2010.000-> 0.0
2015.000-> 0.0
2020.000-> 0.0

0 Targjr_Adastarts -graph(year)
1970.000 -> 0.0
1975.000-> 0.0
1980.000 -> 0.0
1985.000-> 0.0
1990.000 -> 0.500
1995.000-> 0.500
2000.000 -> 0.500
2005.000 -> 0.500
2010.000-> 0.500
2015.000 ->0.500
2020.000 -> 0.500

0
B-23

r

€ zWg
'

' €o - o . ." ' ¢ • ° " " " ° " " " " € " . .

0 Total-prLstarts n graph(year)
1970.000 -> 15.000
1975.000 -> 50.000
1980.000 -> 120.000
1985.000 -> 620.000
1990.000 -> 760.000
1995.000 -, 1020.000
2000.000-> 1390.000
2005.000 -> 1915.000
2010.000 -> 2360.000
2015.000 -> 2870.000
2020.000 -> 3380.000

B-24-

S.

B-24 ..

.- : - .:.'--- - -. - -- '/; J. . . - . ,,¢ .. ,,.,.,... .,,....,,,.......:

Appendix B.2: Guide to Variables Plotted

This appendix provides a guide to the multiple pages of simulation plots in
Appendices B.3 through B.5. The plots in those appendices are numbered identically to
the listing below, although the captions of plots are not given there for space reasons. The
first column gives the variable names as they appear above the respective plots. The
second column gives the full name of the variable and the equation number. The latter can
be used to fimd quickly a description of the variable in Appendix A.

Plot 1. Four-curve briefing summary
Total_yearlycost Total yearly cost, #50
TotAda_prj Total Ada projects, #770
Conv_prj Conversion projects, #600
IntenAdainfra Intensity of Ada infrastructure, #1350

Plot 2. Infrastructure summary
Inten Ada infra Intensity of Ada infrastructure, #1350
Inten-NA infra Intensity of non-Ada infrastructure, #2000
Incoj Ada infra Incompatibility of Ada infrastructure, #1600
IncomNAinfra Incompatibility of non-Ada infrastructure, #2150

Plot 3. Infrastructure and cost summary
Cov Ada infr Coverage of Ada infrastructure, #1800
Cov-NA -infra Coverage of non-Ada infrastructure, #2300
Cstyr_Adadev Cost per year for Ada development projects, #90
Cst_yr_NA_dev Cost per year for non-Ada development projects, #270

Plot 4. Fraction project starts in Ada
Fr dev starts Ada Fraction of development project starts in Ada, #1000
TargfrAdastarts Target fraction for Ada starts, # 1030
Nat fr Ada starts Natural fraction of Ada starts, #1040
Incentive useAda Incentives to use Ada, #1200

Plot 5. Incentives to use Ada
Incentive useAda Incentives to use Ada, #1200
Ince rel -cov infr Incentive from relative coverage of infrastructure, #1230 r
nce rel int infr Incentive from relative intensity of infrastructure, #1210

Ince__po Incentive from policy, #1270

Plot 6. Project&
Ada devproj Ada development projects, #500
Non-Ada-dev.proj Non-ada development projects, #820
Ada maint_prj Ada maintenance projects, #700
Non-Ada maintpj Non-ada maintenance projects, #880

Plot 7. Intensity of Ada infrastructure
E rel infr intA Effect of relative infrastructure on intensity of Ada

infrastructure, #1540
E inc int A infr Effect of incentives on intensity of Ada infrastructure, #1530
E_incoint A infr Effect of incompatibility on intensity of Ada infrastructure,

#1520
E use intA infr Effect of relative use on intensity of Ada infrastructure, #1550

B-25

pq

.'3. ' ' .,_,' ' %',_ .'.'',3'. '. ? "\'" .' '.'" - '',' \, "".,''..% ". .\.","."".'.''. '" '.-.-'.'-'. "" ' "'"'

.. 75;

Plot 8. Intensity of non-Ada infrastructure
E rel infr intNA Effect of relative infrastructure on intensity of non-Ada

infrastructure, #2110
E_inco intNAinfr Effect of incompatibility on intensity of non-Ada

infrastructure, #2070
E use int NA infr Effect of use on intensity of non-Ada infrastructure, #2090
E inc Aint _NA Effect of incentives for Ada use on intensity of non-Ada

infrastructure, #2080

Plot 9. Incompatibility of Ada infrastructure
E use inco A infr Effect of use on incompatibility of Ada infrastructure, #1680
E-inc-inco A infr Effect of incentives on incompatibility of Ada infrastructure,

#1690
E int incoA infr Effect of intensity on incompatibility of Ada infrastructure,

#1710
E_polincoA infr Effect of policy on incompatibility of Ada infrastructure,

#1720

Plot 10. Incompatibility of non-Ada infrastructure
EA use inco_NA Effect of Ada use on incompatibility of non-Ada infrastructure,

#2220
E incA incoNA Effect of incentives for Ada use on incompatibility of non-Ada

infrastructure, #2210
E int incoNAinfr Effect of intensity on incompatibility of non-Ada

infrastructure, #2230
CreaincoNAinfr Creation of incompatibility of non-Ada infrastructure, #2180

Plot 11. Coverage of Ada infrastructure
Ind_cov_ A infr Indicated coverage of Ada infrastructure, #1840
E use cov A infr Effect of relative use on coverage of Ada infrastructure, #1890
E-inc-cov A nfr Effect of incentives on coverage of Ada infrastructure, #1910
E_inco_covAinfr Effect of incompatibility of coverage of Ada infrastructure,

#1920

Plot 12. Coverage of non-Ada infrastructure
Ind_covNA infr Indicated coverage of non-Ada infrastructure, #2330
E_usecovNA_infr Effect of relative use on coverage of non-Ada infrastructure,

#2340
E inc covNAinfr Effect of incentives on coverage of non-Ada infrastructure,

#2350.
E inco covNA infr Effect of incompatibility on coverage of non-Ada

infrastructure, #2360

Plot 13. Incentives delay and technology
Incentive use Ada Incentives to use Ada, #1200.
Perc ince use Ada Perceived incentives to use Ada, #1100
E te~h cr-int Effect of technology on creation of intensity, 1570
FrAda__prj Fraction of Ada projects, #750

Plot 14. Project starts and conversion nrojects
Conv.prj Conversion projects, #600
Convprjstarts Conversion project starts, #650
Ada dev starts Ada development project starts, #510
NA-dev-tarts Non-Ada development project starts, #830

B-26

- d ~a.oil- P.'

Plot 15. Total cost
Total Cost Total-cost, #10

* Total._yearly cost Total yearly cost, #50
Cstyr dis Cost per year discounted, #20
Discount index Discount index, #30.

Plot 16. Costs per proiect-vear
Cst_pjyr Ada_dev Cost per project-year for Ada development projects, # 100
CstprjyrjNA_dev Cost per project-year for non-Ada development projects, #280
Cstprjyr Ada mn Cost per project-year for Ada maintenance projects, #2 10
Cstprjyr NA_mn Cost per project-year for non-Ada maintenance projects, #330

Plot 17. Ada costs
Totyr cst Ada Total yearly cost of Ada projects, #80
E int Ada cst Effect of intensity of infrastructure on Ada project costs, #150
E icoA-cst Effect of incompatibility of infrastructure on Ada project costs,

#160.

Plot 18. Non-Ada costs
Tot._yrcst NA Total yearly cost of non-Ada projects, #260

* E int NA cst Effect of intensity of infrastructure on non-Ada cost, #360
E-inco NA_cst Effect of incompatibility of infrastructure on non-Ada cost,

#370

Plot 19. EIA forecasts
Totalyearly-cost Total yearly cost, #50

* EIA ECR forec EIA 1980-1990 embedded computer resources forecast, #60
EIA MCCforec EIA 1985-1995 mission-critical computer resources forecast,

#70

Plot 20. Two-curve briefing summary
Inten Ada infra Intensity of Ada infrastructure, #1350

4) Total -yearlycost Total yearly cost, #50

B-27

Appendix B.3: Complete Output for Base Scenario

This Appendix contains all of the output plots and tables for the base scenario
*produced by the Standardization Scenario Model, SSMO.32. That model as stored on the

Macintosh floppy disk contains the plots and tables shown below, so they are available
"ion-line" as well. No changes to the equations listed in Appendix B. 1 are required to
produce this base scenario. Appendix B.2 "Guide to Variables Plotted" provides the full
names and equation numbers for the plotted variables.

Plot 1 1 TOWtaelyace 2 TOW-Adajr 3 Cauwpj 4 In~n.Ada..hM

4Ifu*1

19 X.000 1M8.000, _19000 2005.000 01.000

Plot 2 1 Inten_~Adajnfra 2 IntenNknfa ln= ./i.lfM 4 In~fmj4A..fr

200.00

80.000
V4

0.00 1 1900 1900

4-2

-. .. -. ' 0

w-v-~ -A *..-w 7
.7 -- 777

I1o 3 ccOY kA~ 2 COVJO4AIffr 3 Catjr.Ada..dev 4 Cst..Yr-NA,.d*V

3 .0000+10

0.50
2.0000+10 2

0.50

S.2.0000+10

i.00.01 500 aoo 9.00.

199.00

Plot 4 1 Fr,..devWyarAda 2 Targ-fr..Ada..StrW 3 NatAda.st 4 nWOCTMUw...Ada

.4 1.00

jJ 0.750 4-
4 1.000

4 0.500

A'4 0.0

4. .S001975.O00 1985000 1995.000 200.000 21.0

t44

.4 1~0500 .--

4£

A --

44

I O.O v --

0B.3

Plot 6 1 Ada..dwv..p 2 NWc~kd$-WCI 3 Ada...maintpl 4 NO~Md.lUfLpJ

I

ImQQ

L~ffi

4 9 00 1985.000 1995.000 2005.000 2015.000
Tkm

Plot 7 1E..roLlnfrjnLAda 2 Ejlnkt.Adajr* 3 EhokfiLk.A.k* 4 EL~eft~:Ak*

3.00

* 4 2.000 L
-4-

1. 24

41 ~1975.000 1985.000 0 o 21.0

Pltt Ejo~Infrjnf-NA 2 -=WN- 3 E--nN* 42 EInC-A-"-NA

3 4.000

4 3.000A

iI 2.000

III
TI".

B- 31

3.00

2.000 -

3000 - a-

44

11 2015.000

4.0 19-.0 -0 .04) 1 9 ' .001 " .0 T 2

* 3~.000I14

3I .000 1
I Id

1.000

0.0 Lt
41975.000 1985.000 1995.000 2005.000 2015.000

TOMs

PltII I Ild~cOVAjhifr 2 E uOV_.Ajnfr z Encwv=-ifr 4 E~kco v...jnfr

1, 1.000
41

3.000
4 -A

I 0.50
J) 1.0003 3r 3

0.0

4J 0-9' oo 1 .0 1 .p:oo 2015.000

B- 32

Plot 12 1 INitdwvNA-h* 2 E-txq-w..ooNAk* 3 EjnC.wV..NAk 4 Ew..q~wvA.f*

1.000

* I) 4.00
0.750
3.000 71I

* 2.000-

0.2S0 -

11.5002
OT:888 195.0 - 00 201.00

).0001

Irv I
09.0 9 .0

-0.500 20
4 8:81975.000 I,011go k 20S000 2015.000

Plot 142COW..Lmf

000 I

2400.000 -

.
18888

600*0001 f± 1

4-3

... 18.8 7.N it% 4-A. PX ~ ~ . . . ~ .A

4. Plot 15 1 ToaIcos 2 TOti..Y~ar..oost 3 Ca..yr...di 4 Di hd*X

I1.2009+12
64000+e10

44 1 .00011 11

13.200*e12Wi0

4 0.750

a,4i 0.00

4 0.01975.000 118.0 1996.000 M00.000 2015.000

TEMi

- Plot 16 1 C~t..pijjt..Ad4_dov 2 Cst.pLyr..A..dev 3 Cst..prLyr..da.mn 4 Cst..pdxNrNm

~.0006

- 6.00006

4U

V1975.000 1965.000 1995.000 2006 000 2015.000

Plot17 Tor-y Cs.Afa a E_..hLAdaca 4 E~b~_Al

1 . 4.0000+10
31 4.000'

3.0000+10

2.0009.10

)2000
:1I A

3 1.0 0010009 0 2000 050

B4 3

*~~ -. ...

1. 0.0.'\' ~ 4'4 a
. -

"lot 18 1 Taoyrest..NA 2 E-"NQ4A a thiw...NA...

16.4000+10

4.000

j3000'

I AI I

S1.6000+10 -

O~a7.060 1985.000 1995.000MOW215O

Plot 19 1ToWijoartycm 2 EAEC~rbe EA-kMCUR~b3O

6.4000+10

I. 4.8000+10 I
1.6000+1

Tins

S Plot 20 Ino.~amr 2Toajulcs

2 6. 5001 8I

- ~15000 **-..L

243.00o+18 0.

*.0001 1 -- 0 1 1

8:9,,000

Tbm

B- 35U

.. 4.

Time Total yearly cost Fr Ada pri Total cost Rel int Ada infr Total prj starts
1975.000 1.029e+9 0.0 0.0 0.0 50.000

* - 1980.000 2.867e+9 5.902e-3 0.0 0.034 120.000
1985.000 1.123e+10 0.033 0.0 0.506 620.000
1990.000 2.863e+10 0.117 6.440e+10 0.573 760.000
1995.000 4.447e+1 0 0.229 2.418e+1 1 0.856 1020.000
2000.000 5.705e+1 0 0.333 4.894e+1 1 1.301 1390.000
2005.000 5.982e+10 0.522 7.868e+1 1 2.101 1915.000
2010.000 5.246e+1 0 0.687 1.068e+1 2 3.091 2360.000
2015.000 4.976e+1 0 0.778 1.324e+12 3.954 2870.000

r .

B-36

a' ', - ' - . - .. - . - .. - *. * - -* , , . -

6-W V4 ~J-~r~i7V 47-~ WI -T---

Appendix B.4: Complete Output for Commercial APSE Scenario

This appendix contains all of the output plots and tables for the scenario
representing the adoption of a commercially available environment as the standard APSE,
as an interim standard for all DOD Ada projects. This appendix then gives the equation
changes to the base model that produce this scenario. These changes could be done on line
to the base model. However, to ensure easy reproducibility of results, a model with the
changes already made has been supplied along with this report on a Macintosh floppy disk
as STELLA document CAPSEMO.32, (Commercial APSE Model Release 0 version 32,
corresponding to the base model SSMO.32). That model stored on the floppy disk contains
the output plot and tables as well as the equations and flow diagram.

I Tcta~y*ary..cost 2 Tot&.Ada.Jrj a Convwjt 4 Inlsn.Ada.m*fra
Plot 1

14 10,"

13 '

4000 W-

4 1 1_' 4 .

9 ;00 1985.000 199.000 2005.000 2015.000

Tun

@'Plot 2 tn_a.-ma 2 InsnAra U tn~m_...da* 4 I,_..._jnr

60.000 - :I

4J10.000 - 3

6 - .0.000 1. 2 1 .
I I 4 I

2 .100000,1 50.000

20.000

#-.0 0.01975.000 196.000 1995.000 200 2015.000
TNT*

B-37

* -.

Plot 3 1 CovAdahItr 2 COVNA..* I Csjr..kAdaq.d 4 C8~VfJ4A..dSv

31. .0001

O.S1

0.0

0.01975.000 1985.000 19.00 204000 2015.000
This

Plot 4I Fr.dStAfa 2 TaIrgj.Ada-staS I Natjr.Ada...tar 4 biWnduse Ada

1.00

0.750 f

4 1.0002

I LA 4
71 0.500
4 0.500 -

ii 0.250

0.01

0.01 2

4 .. 001975.000 198.000 1995.000 2005000 201S.000
TMi

Plot 5 1 lI=ICSEoP& 2 Inc*j@Ir jl-o It z ncq_.Mljntjnkf 4 kM-Pd

1.10

1.00 .-

0.' 00

197. w"00 1 000 0..0

Too

B- 38

Olot 6 1 Add-MI 2 NonAdsv..pmI a Adajnaint..p N~a-akj

j 2

14

4 11975 000 1*00 "19.0 6.0t' 2l~o

Plot 7 1 EJ.Lkint.Ada 2 EIncnt.Ada~inir a E~.kint.kVr 4 EUS...mLA.rnfr

)4.000--

3.000

2.005000 800 9.0 050 050

1.w1 21

Plot 8 1 E~~r*nN 2 E-k=ikNA-ifr 3 E-"kLN-r 4 Eft hNA

* 4.000

Ii I A I - I I L
41 1 - i

3.000--

2.00-

0.0

;- 39

Plot 9 1 Ejze-Ik.A..hfr 2 EJn0_.AJI* r z EWh o A_ * 4 Ej ki..A_.*

I) 4.000

4/ 3.000

2.000

N. " .
21 1.000 - 3 3_

4 1975.000 18.000 1992.000 -2015.0004 i} -
. Plot 10 AuenoA 2 Ej r=_Alro NA 3 E-innCONA_:Infr 4 CrGa into NAkin

il '~~.000 ' ,,
'44

-I I I
3.000

! I ! i
2.00019 oo2 5 02 5 0

1.000
- I - -I -

4.00-0 -::: : .- -

41-
0" .0 7S _ -- ,

4 970.0005.000 1.000 200d.000 2015.000

; Plot 11
I lad A infr 2 E-Lse VA-i& 3 E_iq¢, cv A in 4 E_-O_€ -W_Ajr*r

4.000

1 0.00 r

300

f f

0.50 -

B-40

V...250

"'lot 12 1 b0dwv-Nkih* 2 E2UO-VNM-k* 3 Iq_ _k 4 E~friooWV.NA,_k*

1 I 1.000
4.000

, 0.750
3.000

1 0.500 aI

I 2.000 II

, 0.2501 1

.0021- 2 ! 1 425

4. 0-1975.000 1J000 I.0 0d0021.0

Plot 13 1 lncenwe*Lmeo.A 2 PercjkLm....Ada 3 E-1dI.er-Int 4 Pt..Ada..pM

4 9 I 1 I

-~~~;
Tr050 I1

- I - r,

jk 0.04 111 AI110
4 8:81975.000 1985.000 1995.000 2005.000 2015.000

TOM

Plot 14
I Convp'j 2 CnsmrwL' 3 Ada dey. 4~ Nk*.W

3200000

1)200'000

:88

4 16B-.41

Wo*A I I..

Plot 15 1TotaI-cws 2 ToWtai..Y-al.Cost 3 Cst..r..Is 4 D.isthdex
1)1.6009.12

6.4000+10
1.000

1 1.2000+12
D 4.800@+10

44 0.7502

t 8.000e+11
3.2000+10

4 0.500

0.01975.000 1985.000 199 .000 2005.000 2015.000

Plot 16 1 Cst-prLWy..Ada..dtv 2 CSt-WLNdv 3 Cxt..Pf~jjrdamn 4 Cgt..pwjyNknm

iJ .0000+6
4

41:
4.00000950020500205.0

2.000j
I ~ ~ I.0ee1 -

.00 7-

TWO

1) ~~B 4200+

.~p W. W: W :

?lot 18 1 TOtyrcsLNA 2 LRLNASt 3 k=cNojA W
i}i.oo.,
1) 6.400+10

,_I i.4.000 o

4.8009+10j .ooo .

1 3.200e+10 :
2.000 _ .

II j Ii

1.6006+10 ,,. '

b.Oo 2~" 2
Ii !

o0.O97510 198.000 190.000 20M.000 2015.000
Thw

Plot 19 TotaW..yeary_rost 2 SAECR...b= 3 EIA_MCCRRbCW

jJ 6.4000+10 ,.[

ii4.800e.+10
It 2

3.2006.102i

2 2'
1.600+e10

0.0 1 .iII - .7ii1975.000 1985.000- 1995.000 2005.000 201S.000

Plot 20
i IntnAda_infra 2 Totysuty.cst

I 2000-
2 6.400.0.

2
3- A= 8 -.-- - .

2 4.2 --

=7 9 .000- -,0 . . I , 0o 200o.W Ooo O

Thm

B- 43

°* % " * 4 u " . % . % % ' ,, , ,-- . . , . . . o . " ~ -". *." " - , P " - " - - . " . "- " '"-
',,I"." " ', ," ', e ," ',%, - , -. . . • . - /- ."4 , , .p. , " , * . ."." .' . '. -', -".' - . ' .

Time Totalyearly cost Fr Ada ori Total cost Rel int Ada infr Total or starts
1975.000 1.029e+9 0.0 0.0 0.0 50.000
1980.000 2.867e+9 5.902e-3 0.0 0.034 120.000
1985.000 1.1 23e+1 0 0.033 0.0 0.506 620.000
1990.000 2.675e+1 0 0.118 6.311 e+1 0 0.898 760.000
1995.000 4.075e+10 0.239 2.253e+1 1 1.133 1020.000
2000.000 4.950e+1 0 0.413 4.511 e+1 1 1.707 1390.000
2005.000 4.513e+10 0.616 6.928e+11 2.703 1915.000
2010.000 4.248e+1 0 0.744 9.124e+1 1 3.728 2360.000
2015.000 4.179e+10 0.812 1.123e+12 4.625 2870.000

4B-44

-a . ; . , ; ' , " ., " ., . , " , , , , . ,' : " ' .. ' ' ' .. - . . " " .., ...; " - - . . .- .. ' ' .-.-...-.- - ' " .

O AddGFEAda infr = 15 (Additional GFE'd Ada
infrastructure (infrastructure units))

o T_addAdainfr = 1988
{Time for additional Ada infrastructure (year))

0 EpoUnco_A_infr = graph(year)
1970.000-> 1.000
1975.000 ->1.000
1980.000-> 1.000
1985.000 -> 1.000
1990.000 -> 0.500
1995.000 ->0.500
2000.000 -> 0.500
2005.000 -> 0.500
2010.000 ->0.500
2015.000 ->0.500
2020.000 ->0.500

0 Epol t ch_coy_A = graph(year)
1970.000 ->1.000
1975.000-> 1.000
1980.000 ->1.000
1985.000 ->1.000
1990.000 ->1.500
1995.000 -> 1.500
2000.000,-> 1.500
2005.000-> 1.500
.2010.000 -> 1.500
2015.000 -> 1.500
2020.000 -> 1.500

0 Sw_transp_A_cov = graph(year)
1970.000-> 0.0
1975.000-> 0.0
1980.000 -> 0.0
1985.000 -> 0.0
1990.000 -> 1.000
1995.000 -> 1.000
2000.000 -> 1.000
2005.000 -> 1.000
2010.000 -> 1.000
2015.000 -> 1.000
2020.000 -> 1.000

r

B-45

1. -. .' ,'. .k,'.° ,% % "°%, %
%

=' % % ' ,. %= %* % %.* .* ,* .*-. '-- - p--- . ,--' - "_." .. -' * , """ ' -i ' -

Appendix B.5: Complete Output for Conversion Scenario

This appendix contains all output plots and tables for the scenario representing
gradual conversion of non-Ada programming being converted to Ada during maintenance.r
The changes to the base model done to represent this policy test (given here after the
output) have been incorporated into an altered version of the base model which resides on a
Macintosh floppy disk as a STELLA document named CONVMO4.32 (Conversion Model,
release 0, version 32, derived from the corresponding base model SSMO.32). As usual,

40 the stored model contains all of the output information given here, in addition to the
equations and flow diagram.

11

4C

13 0.10

.05000980019500 2 JOO05.0

wr

24 0 .00

6000.0

16009+00:~ ,1*~

001975.000 1985.0__ 19.0020.0 2015.000

4-4

1. 0.000'

7AO-R173 352 COST EFFECTIVENESS
TR DEOFFS IN CONPUTER

314

DEFENSE ANALYSES ALEXANDRIA YA A A HOOK ET AL. JUN B6
UNCLSjSIFIED IDA-P--1931 IDR/HQ-86-31952 MDR963-84-C-8131 FIG 9/2 Nt.

Euh~~hhh

EmhhmhmhmhhA

/
I-; -.---

1111111111 1.0 ~

11I11~ -~

3'~

11111 1. U--

=

1~1~ii~

* J

t

~-,. j -' -- -

Plot 3 1 CW-Ad6b* 2 CmNA...r* 3 Cas.yrAde-.dw 4 CGIIW..NA...duV

.00..0

&.0004410

L0006+10 l

ii1.00004 10

ii 0.50

1.000

4 1*RA

i 0750

4 0.0

4 0.0

0i.0 0 *L Ils _
a.4 ..50197i00_-- 1965.00020 .0 0100

Thu

Plot5 I ~WW**UAdl 2 Inc..uI..cVju UIcs&r* 4 hkas.Pd

i 10.0 t I I

B- 48

Plot 6 ,~d,1 AdI Non dadsvju 3 Adajpnj, 4 NonAdmnLMktpj

11 1 111

I 19~19000 1 .00.000 201 .000

Plot 7 1 EJOsikitjn~t.. 2 Ejno_10tAajnfr z A. 4 E..*Wdm._Of.Ah

iI 4.000 -

f i l1 1 i i l11 1 i l

3.000

141 1975 10 19 .00 19 0 105.0 1 .101

f I

4 1n

I B-49

0.0~

Plot 9 1 E-un..ImOAk* 2t E.hiO...hWA)* U b3h 4 !..pd..h10A.h*

31.000.

1.000

0.0
14905.000 1 2005.00 0 .000

Plot 10 1 E...AJn.JiWJA 2 E.bwAJnwLNPA 3 E-in~k=4Anf 4 CMeco..NAk

)4000

141

j 2.000 £

4S

I) 1.000

11
0.0

19 2.0100020S00 01.0

1.000

* .0

0.2500

Plot 12 1 hMdW,*NAhk* 2 kEJM-PlVJA..* 3 E!'lC-VNk* 4 EfrI=..Wj4Ah*

1.000
4.00I 0.750

3.00 -

200

Plo 1 I'am 2 -42-..w. a d c frt4Fr. dj

1.00

S~o

1) 0.500

8Si.oo .000 0oo 196.666- 05.000 201 .000
T"

Plt1 i Conv.p. 2 COiwjj.ShW 3 A&6BJSU 4 NA-.dev-utwo

4)2400.000 >24 .jJ -

''~888I
1600.000

4m

IRA- 51l

W'.' 0

PlIot 15 1 Tow-.cod 2 Towoyaye_ct X Cstjr...dh 4 ObcourjInf

I1.2000.12
6.4008.10

0.750

I 0000.11
3.2000.10j-L

4 0.500

4 0.50

0.0 E

0.01975.000 9.0 W.00 2600

Plot 16 1 CstjrLrwAa...d 2 Cst-prU~r.NA..dov X Cs.PrLWAftMmn 4 Cst~prjjr.NA6_n

* 11600064
I t

6.0004

14.0006.1

2000 1 -

14 -A I

0.00000.10 .
4 495.0 -fs.0 .0 6i.0

I 4.0000+e10
2 4000

3 .000..10fI

300

4-5

2.0000+10~.

3)~- 2.000: 5 W.~VI.*** ,..

plot 18 I~ ~ Ti--=N E-W..Nked x E-=N-o
O 6400@+10

1)3.200+10
2.000

11600.+101

Thm

plot 19 1 Tow y"cw~ 2 E8A-ECF*veo a EIA..MCCIbo

4000.10

f I

~J3.2000+10

1.606+1

Plot 20 1 InonAawina 2 Tota-ysardy~oast

3. AV 8 1

1 1.60(+01

I .00 19.06, 206.00 00

B-53

Time Total yearly cost Fr Ada .rj Total cost Rel int Ada infr Total ori-starts
1975.000 1.029e+9 0.0 0.0 0.0 50.000
1980.000 2.867e+9 5.902e-3 0.0 0.034 120.000
1985.000 1.123e+10 0.033 0.0 0.506 620.000
1990.000 2.884e+10 0.135 6.466e+10 0.582 760.000
1995.000 4.321e+10 0.275 2.417e+1 1 0.892 1020.000
2000.000 5.303e+1 0 0.406 4.787e+1 1 1.382 1390.000
2005.000 5.066e+10 0.607 7.455e+1 1 2.233 1915.000
2010.000 4.202e+1 0 0.761 9.763e+1 1 3.204 2360.000
2015.000 3.885e+10 0.838 1.179e+12 4.033 2870.000

,..

B-54

-V 4.

FrconyNA_m n_pr=graph(year)
1970.000-> 0.0
1975.000-> 0.0
1980.000-> 0.0
1985.000-> 0.0
1990.000-> 0.050
1995.000-> 0.050
2000.000-> 0.050
2005.000-> 0.050.
2010.000-> 0.050
2015.000-> 0.050
2020.000-> 0.050

B- 55

Appendix B.6: Matrix of Policies and Levers

There are several ways to represent the effects of policies in models. In very detailed
models with a relatively small number of policies to evaluate, one has available a single
parameter that represents whether or not a given policy is to be in effect. In the study
reported here, the model is relatively aggregated. However, there are numerous policies
that need to be evaluated. Thus, a somewhat different means of representing policies is
used. The model contains levers at important points in the system, such that the effects of
any set of policies should be representable by changes in one or more of the levers. For
example, one of the effects of introducing a Common Ada Interface Standard (CAIS)
would be to reduce the amount of incompatibility in the infrastructure being created, all
other things being equal-there would be much less incompatibility among operating
systems and tool sets as a result of imposing a standard. This effect of a CAIS is

* represented by reducing the Effect of policy on incompatibility of Ada infrastructure
(E_pol inco A infr), which, other inputs being equal, reduces the Creation of
incompatibility of Ada infrastructure (CrincoAdainfr).

The study has currently identified eight policies concerning standardization of
programming support environments that should eventually be examined in scenario
simulations. A scenario may have several or none of these policies in force, for they are
not mutually exclusive. Some have been proposed in pairs, such as using SVID (UNIX
System V) as an interim standard operating system-tool interface, followed by use of a
DoD-developed interface (the CAIS) as the successor. The seven policies are described
below.

There are 8 policies, and around 10 policy levers to represent their effects. One
convenient way of summarizing both is shown in Figure B.6-1, which shows a matrix of 7
of the policies versus the policy levers. At this point in the study, policy analysis
experiments on the proof-of-principle model have just begun, with the experiments
described in Section 5 of this report. In the normal course of simulating and analyzing
policy experiments, changes will be made in how policies are represented, so the entries in
the matrix are far from final. They are included to enhance the value of the review process:
they constitute a statement of the intended use of the model. The policy levers are
described in Appendix A, and the policies themselves are as follows:

Mandated use of Ada

This policy is already in force as per the DeLauer memorandum. The policy of
mandated use of the Ada language for mission-critical systems is in force in all simulations,
except where explicitly noted. Also in force, however, are the pressures of expense and
haste that can lead to waivers on Ada use for specific projects.

B-57
.t.

: .. ':--.'. '. -- .. .*S. . C .. *... * . . . •h .v * ,,'..-;.-,." :" :", "*."'. .''

- - - - - . - -

EIta W MWs orm a~ins

0-0.~ 10 AM w~uinmw

TAAOW FwoE f f amt

WBa of AM WANof - - - -

9WRmNNCW

KWrerf a~m Wiod (GFE) Ad

41'4

Figure B.6-1. Matrix of policies versus levers that represent such policies in the model.

B-58

Mandated conversions to Ada

As discussed in Appendix A.3, it is possible to do programming in the Ada language
for deployed, operational systems that were originally programmed in other languages.
Certainly the potential exists for major redevelopments, which tend to have mostly new
code in any event. The potential also exists for doing piecemeal language conversion. One
way is to write new subroutines in Ada when new subroutines are needed, then use a
HOL-to-HOL translator to create HOL code in the same language as the rest of the system.

41 The new subroutines can use existing linkers, loaders, and so on. This procedure is being
used with CMS2. The other way to convert code piecemeal is to create Ada compilers that
can link and load modules compatibly with modules sourced in the non-Ada language of
the rest of the system. This is commonly done among FORTRAN, PL/I and other
languages.

0 Although a policy of converting deployed systems to Ada is not prominent in current
discussions, it is included here because it has potential to be a high-leverage policy.
Simply because there are so many more systems in maintenance phase than there are being
started in development, requiring use of Ada on a gradually-increasing number of existing
systems offers the potential for rapidly increasing the rate at which Ada is used and thus
internalized by the DoD programming community.

Develop a CAIS

The policy of developing and mandating a Common Ada Interface Standard, i.e. an
operating system interface standard, is already gathering momentum. While no CAIS-
based system yet exists, the effort to structure and specify such a system is well along.

Scenario simulations cannot speak to the technical efficacy of a given CAIS
specification. What the model can evaluate (given assumptions about the technical merits
of a standard, its development time and cost, and effect on productivity) is the impact on
the evolution of DoD programming costs.

Use SVID as a CAIS

Unti' -,-ently, there were no publicly available specifications for an operating system;
there were only the actually-implemented OSs. These were proprietary, and therefore not
appropriate to be standardized upon. However, AT&T has published a complete
specification for its Unix V OS in the System V Interface Description (SVID). This has
raised the possibility of using a UNIX-based standard for software products developed for,
or delivered to, DoD.

Interim GFE APSE

An alternative approach to specifying a standard is to require the use of a particular
C programming support environment as government-furnished equipment (GFE). Again, the

scenario simulations cannot speak to the technical desirability of a particular environment.
Assuming reasonable parameters for cost, effectiveness, time to implement, and
acceptance, the scenarios simulation the impact of such a policy on programming
expenditures.

B-59

Convert older environments to APSE

Just as the DoD is plagued by a multiplicity of languages, it is plagued by a multiplicity
of programming support environments. Just as with languages, there are a variety of
excuses to customize an environment: a different target or host machine, a different
language, or just passage of time creating desires for new features or changes to the old.
One possible standardization strategy is to create an orderly migration process of programs
on to a modem, standardized environment.

Although such a policy is not currently being discussed seriously, it is included here for
further investigation, as it has potential to have very high leverage. For example, the
survey being conducted as part of this study may reveal that a substantial portion of
maintenance programming is being done in fairly old and primitive environments.
Programs in those environments could be migrated to a modem standard environment with
only the effort it takes to create a compiler, linker, loader, and debugger on the standard OS
that is compatible with the original language. Such a migration would make available a
wide array of programming support tools for maintenance, and make finding people
experienced with the OS much easier. Moreover, adding maintenance programming to the
list of users of the standard environment would make the market much larger for tool
creation, and thus benefit all of DoD programming activities.

Require standard APSE only for maintenance

A variant on all policies that standardize an operating system, by specifying either a
specific GFE'd product or an interface standard, is to impose such a requirement only on
systems when they enter the deployment and maintenance phase. This would leave
contractors and DoD organizations free to choose any appropriate environment for the
development phase.

Standardize on small number of operating systems

Just as one step toward a common MCCR language was the specification of 7 approved
languages for MCCR use, one step toward a common operating system and tool interface
(and eventually tools) could be mandating a small number of commercially-available
operating systems. A relatively small number of OSs could span most applications and
requirements for MCCR programming. For example, one possible set is DEC's VMS,IBM's MVS, AT&T's UNIX V, and Softech's ALS/N. The first two are probably the
most common OSs now used for MCCR programming, and the latter two should offer
competing transportable OSs for nonIBM and DEC hardware. (This policy is not shown
on the matrix)

B-60

V. V
%....... " I... .. "

-' '''%'?''" -,-''"", '"'" ,'".'..,""-'', .- '"" " / "- ".,-,- '

APPENDIX C

AREAS FOR FURTHER INVESTIGATION

c-1

Appendix C: Areas for Further Investigation

0 One purpose of the present phase of this project is to develop a prototype model
demonstrating the feasibility of the approach. Rapid prototyping requires a quick treatment
of many areas that would otherwise warrant more detailed consideration. This appendix
records such areas that were noted during the development process.

4 Appendix C. 1 discusses improvements to the multivariable model calibration procedures.

Appendix C.2 discusses next steps in the policy analysis.

Appendix C.3 describes questions and improvements to the cost sector.

* Appendix C.4 describes questions and improvements to the Ada and non-Ada projects
sectors.

Appendix C.5 describes questions and improvements to the language choice sector.

Appendix C.6describes questions and improvements to the Ada and non-Ada
infrastructure sectors.

Appendix C.7 describes miscellaneous questions and improvements.

Appendix C.8 describes the procedures for creating this report from the simulation
software on the Macintosh computer.

Most items are listed by model sector, and then prioritized within each sector.
Three stars indicates the items that promise the most immediate benefits and should
definitely be included in the next phase of this project. Two stars indicate that the area is
possibly important. One star indicates an interesting but probably postponable question.

C

,- C-3

Appendix C.1: Multivariable Model Calibration

*** Resolve maintenance versus development costs data conflict

There is a statistic that circulates in software circles that 80 percent of the life cycle
cost of software is maintenance. However, computing the development/maintenance
balance from other figures gives quite different results. Suppose, as the model does, that
development projects last ten years and maintenance activities go for another twenty years.
Even if the yearly expenditure on software in maintenance equalled that in development,
only 66 percent of the life cycle cost would be in maintenance. Either the model
assumptions about "dwell time" are quite inaccurate, or the two computations are using
incompatible cost measures. The origin of the 80 percent figure needs to be tracked down,
and its supporting data and assumptions analyzed and reconciled with the other
information.

*** Change EIA '85 to the real dollar equivalents

As discussed in Appendix A.9, the correct empirical time series of software costs to
compare with Total yearly cost (equation #50) would be an inflation-adjusted version of the
EIA forecasts (equations #60 and #70). The present EIA forecasts are in current (i.e., non-
inflation adjusted) dollars.

** Add current-dollar comparisons

DoD instruction 7041.3 requires that multiyear economic analyses give results in
40 both constant (inflation-adjusted) and current (actual budget) dollars. When both the EIA

forecasts, Total yearly cost, and all its inputs are in constant dollars (as per the preceding
item), an inflation index should be added so that such quantities can be viewed in current
dollar terms also.

** Understand basis of EIA forecasts of total programming costs

The DoD Digital Data Processing Survey by the Electronic Industries Association is
the major information source on the total magnitude of DoD programming effort. The
information is used to calibrate the number of MCCR development project starts in the
model. There is some evidence that the forecasts are very conservative in the spending
estimates, more or less counting only projects for which budgetary authorization already
exists. As discussed in the Appendix on multivariable model calibration (A.9), the
estimates of future development project starts should be best estimates, not conservative
estimates. In effect, the ground rules that created the EIA forecasts have to be known
before it is possible to deviate from them correctly to calibrate the model.

C-5

I IV
qaD% l q q %zi %

Appendix C.2: Policy Analysis

*** Reformulate to accomodate all candidate policies

Appendix B.6 describes how to represent a broad array of policy questions within
the model. Those representations were examples created rapidly, as part of the prototyping
process. Their purpose was to demonstrate that something like the present model could be
used for later, more thorough, policy analysis. The next step in policy analysis is to review
the proposed representations thoroughly, reformulate the model as necessary, and then
simulate the various policy scenarios.

* Evaluate scenarios with contingency testing

When the full set of scenarios is tested and generally satisfactory, the next step is
* contingency/sensitivity testing on the most promising policies, as per DoD instructions.

** Use survey to see coverage of UNIX, VMS, aid MVS

The viability of specific policy recommendations about operating systems (OSs), or
at least tool interface specifications, hinges upon the current conditions regarding
incompatibility of operating systems. Is UNIX a common enough OS among the
organizations actually doing MCCR programming that it is a viable candidate for an interim
CAIS? Or is the MCCR programming world heavily dominated by two or three OSs from
major manufacturers (like VMS from DEC and MVS from IBM)? If so, then standardizing
on the two or three current leaders would be a possibility, at least for an interim standard.

** Investigate policy viability

As the policy implications of the scenario simulations become clearer, there will be
a need for research beyond the modeling effort, to investigate the political, technical, and
commercial viability of the potentially recommendable policies. As part of that
investigation, the costs of implementing the policies should be evaluated. For some

*m policies, DoD will expend very little by comparison to expenditures on all MCCR software.
For example, the Ada program costs, in dollars per year, much less than the billions to be
spent on programming. But other policies may involve substantial expenditures, such as
developing a GFE'd APSE. As another example, little is known about the general viability
of migrating large programs to new operating systems or translating them into Ada from
non-Ada languages. A few examples exist, and study of them should yield insights on the
practicality of policies involving migration or translation.

** Get incompatibility cost information from Fisher & Hook

(Fisher and Hook, 1986) do detailed calculations of the cost of language
incompatibility. Such calculations should be able to yield appropriate slope values for the

Qaggregated, more general effects in the model, the effects of incompatibility of Ada and
non-Ada infrastructures on cost.

C-7

** Tie model relationships into software science literature

Although Phase II of Task T-4-215 involved a literature search, the primary aim of
that search was information on Ada, its acceptance, and background. With the model
structure now explicated, it constitutes a fairly complete specification of the relationships
needing justification in order to validate the model's policy scenario outcomes. Another
round of literature search would be appropriate, this time explicitly linked to model
validation.

* Get long-term trend in real per-line costs

It ought to be possible to find information from previous studies that would give a
trend in aggregate programming productivity over 10 or 20 years. This would allow
validation- of the assumptions made in intializing and assigning reference values for the
non-Ada intensity and incompatibility levels. In brief, the assumptions are that intensity of
infrastructure has risen somewhat over 1975 to 1985, and incompatibility has risen
significantly. For further details see Appendix A.9, "Multivariable Model Calibration."

! .

C-8
W

Appendix C.3: Cost Sector

*** Consider different shape for effects of infrastructure on cost

The present Effect of intensity of infrastructure on Ada project costs (equation
#150) is an S-shaped function of intensity, with the steepest part in the middle, and less
steep at both extremes of very little and very much infrastructure. (Boehm, 1981) argues
for treatment of software cost as a classic production function, where the factors of

40 production are the various components of the programming infrastructure. Under this
view, the most realistic shape for the curve would be steepest at the extreme of no
infrastructure, with cost declining as a function of intensity of infrastructure, but at an ever-
decreasing rate. Such a curve would show the classic "diminishing returns to factor." This
makes sense from a practical point of view, too: the tools that get used first are presumably
the tools that are most useful and productive, with the more sophisticated tools making less

40 difference in absolute terms (dollars per year saved).

*** Formally derive cost curves from COCOMO

The COCOMO model for software cost estimation (Boehm, 1983) explicitly
represents the impact of most components of intensity of infrastructure on programming

0costs. It should be straightforward to correlate the meaning of the intensity of
infrastructure indices with the inputs to the COCOMO cost drivers to deduce at least
narrower bounds for the effect of intensity of Ada and non-Ada infrastructure on cost.

*** Consider curve for Incentive from relative intensity of infrastructure

The present curve for Incentive from relative intensity of infrastructure (equation
#1210) gives an incentive of -0.53 at zero intensity of Ada infrastructure. That value
should be -1.0, indicating complete unsuitability as a programming language.

*** Raise Target fraction for Ada starts

The target fraction for Ada starts (equation #1030) rises to 50 percent of new
project starts targeted for Ada. This represents a fairly lax implementation of the DeLauer
memorandum, and is probably too low; a figure closer to 100 percent would be more
realistic.

An interesting alternative would be to experiment with defining the scope of the
model as all DoD programming (not just MCCR), to explicitly represent Ada use in non-
mandated applications.

** Use survey to develop realistic characterization of "projects"

It is sufficient to define what a standard project is by defining how much it costs to
do per year in 1985 constant dollars with a given programming technology. But the survey
and other sources may give a more multidimensional definition, including how many lines
of a certain type of code it encompasses, how many people work on it in its various stages.
and how many standard projects go into a major program like MIS, SDI, the B- 1. an
aircraft carrier, and so on. With such information, the definition would imply other
characteristics, such as reference costs and duration of the development and maintenance

C4 phases. Also, although some information on the aggregate cost of software production per
year exists, there is little hard information on how long projects and their payment
obligations last. The survey will give a sampling of real projected lifespans for
development and maintenance phases of projects.

C-9

a - % %1

* Examine the correctness of the treatment of conversion costs

It is unclear that the cost of conversion is exactly correct, in response to the
following thought-experiment. Suppose Ada development costs were identical to non-Ada
development costs (per project-year), and maintenance costs, especially the component
representing redevelopment costs, had the appropriate relationship to development costs.
Then turning on the conversion projects should make no difference to cost--the projects in
the conversion level would merely be costed explicitly where before they were costed
implicitly. It is unclear that the various time constants and costs, both actual and implicit,
have the required relationships among them to make this so at present.

GW

*1-1

W

r -

rw

C-I

% ' " " o = V "r " -u -v "* " , • lp =./.
w

1' • d * " "l " "
"

" " "' " " "" '" " " ' " "
"

Appendix C.4: Ada and Non-Ada Projects Sectors

* Consider measuring the Fraction Ada use by cost rather than by project

The present formulation uses a Fraction of Ada projects as an input to the process
of creating infrastructure, representing both creation of experience and reusable
programming, and the perception of a sizable market for programming tools and other
forms of investment. At one point it was decided not to use cost because if Ada
programming became very cheap relative to non-Ada, a fraction based on cost would"underestimate" the complexity, size, and amount of Ada programming under way.

But perhaps the issue should be decided in terms of how the Fraction of Ada
projects is used, which is to influence the creation of infrastructure. If thousands of lines
of code are generated at the touch of a button, this does not generate programmer
experience, and may not generate reusable code. No one would perceive a profitable
market for tools to increase efficiency. The real market would be where the money is being
spent, which would be non-Ada programming. This might be a market mechanism that
would hasten buildup of Ada infrastructure in the beginning and retard it near the end, by
comparison to the present model. The mechanisms seem to be quite different from those
captured in the effects of relative infrastructure.

*** Change weightings in Fraction Ada use to be consistent with costs

The present weightings for Ada projects are 1.0 for development projects and 0.5
for maintenance projects. The implicit assertion is that per year, maintaining a
programming project takes 50 percent as much programming effort as it did during
development. But in the cost sector, a maintenance project always costs 40 percent, not 50
percent, of what a development project costs per year. Given that the relative figures in the
cost section are well-justified heuristically, if the present formulation is retained, the
weighting for Ada maintenance projects whould be changed to 0.4.

** Correct the injection dates of first Ada compilers to 1983 from 1981 .

The dates of the insertion of infrastructure should be changed from the present 1981
to 1983, when the first Ada compilers actually were validated (see the description of
equation #1390).

** Add free-market representation of language choice in upgrade section "

Conversion upgrades promise to be a very important policy area, where some detail
might be justified. In particular, It cannot be assumed that DoD has absolute leverage over
the language conversion process, any more than it has absolute leverage over the original
process of programming in a language. If it desired to be highly realistic about how much
the DoD might be able to increase Ada programming over the late 80's and early 90's. it is
necessary to look at the "free market" forces that might indicate when Ada should be used
in major software upgrades, and how much the DoD can (and would want to) influence the
economics of the process.

** Improve distinction between development and redevelopment

In addition to defining the average size and characterictics (especially cost) of our
standard development project, a good operational definition is needed of when
programming is a development project and when it is a major redevelopment, which is part
of maintenance. This relates to the time to obsolesce maintenance projects. If people start

C-11

entirely over with every major redevelopement, then the average maintenance lifetime of the
software is much less than that of the weapons or C 3I systems. If shorter-lived weapons
or C31 systems borrow software from previous systems, however, the lifetime of the
software is longer than that of the average system in which it is embedded. This has
important implications for the number and infrastructure available for non-Ada projects
especially, and the desirability of policies, such as conversion or migration to standard
operating systems, that deal directly with non-Ada programs.

* Consider aggregating development & maintenance if costs are close

If it turns out that the cost profile is roughly the same for both development and
maintenance projects then the structure could be simplified by aggregating them into one
projects level. The primary reason for treating them separatly is to represent the potential of
different associated costs, as well as being more precise about when system obsolesce.

** Determine if the best time for program translation is during upgrades

Implicit in the choice of parameter values for Conversion project starts is the
assumption that the time when programs are most cost-effectively translated is when they
are being changed anyway, either in small ways during routine maintenance or in large
ways during major redevelopments. Is this in fact true? An alternative assumption says
that programs should be translated exactly, so that the full battery of tests (drawn from the
old programming effort) run on the new code. Then, once the new code is working and
well-documented, modify it, since modifications are supposed to be much easier in Ada.
In scholarly research on the process of technological change in manufacturing, one of the
big causes of failure to successfully change to new production technologies is trying for too
much: simultaneous and large changes in both production technology (analogous to what
language is used to program) and product technology (analogous to the program
specification).

Perhaps there is a wide spectrum of appropriate procedures in practice. There is
little point in translating a poorly-structured, poorly-documented or tested system whose
requirements are dramatically changed anyway; any one of those three attributes in the
extreme would make literal translation ineffective. Poor structuring (especially of
assembly-language code) probably causes semi-automatic translation to become mostly
manual. Poor documentation and testing implies that what the program is supposed to do
is not very discoverable; in effect, the conversion team would have to write specifications
and tests for the old system before it could be well-translated. It would be better to proceed
straight to the new specifications and implement them in the new language, Ada.

But there must be situations where the non-Ada code is well-structured and well-
documented. In such situations, translation followed by modification would seem the most
efficient course. Even if the mission of the overall system had been changed, many of the
specifications and test requirements would carry over directly from the non-Ada materials.
Similarly, much of the code should be translatable nearly automatically.

* Represent added complexity of upgraded software explicitly

If in later phases of this research the definition of a project equates to a
programming task of some defined level of complexity, then as requirements are increased
in major upgrades/redevelopments, the model should show an increased number of projects
in maintenance, i.e. more complex software to be maintained in the future. At present, thisblowup in complexity and therefor presumably cost could be represented by the reference

C-12
AU

__ .:%"z'A

cost per project of maintenance projects being higher than cost per line might indicate
(because there would implicitly be more lines).

* Settle on terminology of conversion or translation

The model represents entities called conversion projects. They have so named
rather than simply translation projects because more than simple translation from non-Ada
to Ada may be involved. For the Navy piecemeal work, the new programming is actually

*in Ada, with translation from Ada to CMS2, not the reverse. And for shifting to Ada as
part of redevelopment, there is mostly new programming going on, not translating. So the
model uses a new term, conversions. But will that term lose more in obviousness than is
gained in accuracy by not using simply "translations"?

i°

C-13

• ,,- , < ' " "Z '" " . '.,r . . € ,.,. ., ,. . ,, ' . , ... e ,". ,-" ","e ."i " - ,a .'. "- .' ,' '' ',. "*

Appendix C.5: Language Choice Sector

* ** Consider adding trend in Ada use

Given that incentives are supposedly representing perceptions about the future of
Ada, perhaps a perceived trend in Ada use is a legitimate input. The "bandwagon effect" is
certainly real.

* * Reconsider input to incentives from incompatibility

In a situation where the infrastructure is low, there is an attractiveness to contractors
if there is a choice between several Ada environments, each with its own strengths and
weaknesses. If such an influence is represented in the model, it should have moderate gain
for moderate incompatibility, but saturate quickly--vast numbers of incompatible

*environments should not hold vast attraction for users. The model should show a potential
short-term attractiveness to diversity of choice. being overtaken in the long term by
intensity of infrastructure.

The present formulation without an attractiveness of many infrastructures assumes
that a variety of features is really represented by the intensity of infrastructure, and that
having these features dispersed among a variety of incompatible systems is purely a
disadvantage.

• Reexamine assumption of Ada fitness

The preliminary literature search done for this project revealed that the use of Ada
and expansion of areas of application was growing rapidly, with many favorable reports
from projects using it. A useful and interesting extension to this work might be a more

,1 detailed examination, now that some experience has been gained, of the suitability of the
design of Ada, as well as its implementations.

-

C-I15

Appendix C.6: Ada and Non-Ada Infrastructure Sectors

*** Explore differences in the creation of Ada and non-Ada infrastructure

In most simulations, Ada infrastructure gets to four times the non-Ada
infrastructure, and 1/10 the cost. Are these numbers pluasible? Would the presence of
advanced Ada infrastructure by itself reduce the creation of non-Ada incompatibility (and
therefore allow more non-Ada infrastructure to accumulate)? There should be more

* analysis and discussion on how costs can get so different from one another.

** Consider eliminating coverage if it is redundant with intensity

It is unclear that having an explicit measure of coverage contributes to the model
dynamics, for the same effects run through intensity of infrastructure: Intensity has the

- •same inputs and effects the same things (and more) that coverage does. Coverage seems
like a candidate for simplification if simplification is desired.

*** Add an injection incompatibility of infrastructure for SVID

At present, the adoption of SVID as an interim or permanent standard operating
system leaves incompatibility of Ada infrastructure untouched, which is also the case in the
commercial APSE scenario. Yet there are many sourcess of incompatibility within the
UNIX world. There are two different shell languages, C and Bourne, user- or installation-
defined utilities in the hundreds, and so on. It would be well to recognize such diversity
(and therefore potential incompatibility) as one of the costs of an SVID standard. A model
"policy lever" allowing the injection of incompatibility of Ada infrastructure would add to

* the flexibility and usefulness of the model.

*** Activate effect of technology on creation of infrastructure
S

The equation description indicates that there are real effects of technological change
that exogenously impact the creation of infrastructure. As pointed out in the "Model

* calibration" section, the model parameters should not be set to make "conservative
assumptions," because what is conservative for one policy question may be anything but
conservative for another policy question. The proper choice fro the Rate of technological
progress (equation #1580) therefore is not 0.0 but a best guess at how fast the ease of
contributing to infrastructure is increasing. A value 3.0 percent per year or somewhat less
seems appropriate. (For further discussion, see the text for equation #1580 in Appendix
A.7.)

• Use nonzero discount rate

Again in the spirit of using best guesses rather than attempting either conservative
estimates or simplifying assumptions, the present model's representation of the comparison

Cof present and future expenditures should be changed. Currently, the model treats them as
comparable, with a discount rate of 0.0. A DoD instruction suggests 10 percent per year as
a discount rate, but that seems perhaps colored too strongly by the interest rate experiences
over the last 5 years. By financial theory, the discount rate should be a function of the
expected real interest rate (if constant-dollar, i.e. inflation-adjusted flows are being
discounted). 5 percent seems appropriate, being a compromise between the real interest
rates of the last 4 years and the much lower average historical rate.

.. C-17

)

** Consider reformulating infrastructure incompatibility as a coflow

There is a subtle formulation issue related to the representation of incompatibility of
Ada infrastructure. It might be better to use a coflow structure to more accurately capture
the effect of large changes in the number of projects over the decades on the incompatibility
of infrastructure. There is some incompatibility of Ada infrastructure right now because
there are several environments, but for a number of projects that is small relative to what is
to come. If a standard environment is mandated, during a time when vast numbers of new
starts are using Ada, the large numbers of the new projects with the standard environment
should rapidly overwhelm numerically the small number of projects done with the
incompatibility environments, such that Ada incompatibility should disappear quite rapidly
given a standard environment. If so, then a coflow structure would be better than the
present formulation, which does not take into account major differences in numbers of new
projects in determining incompatibility.

** Reconsider effects of scale on creation of infrastructure

The current formulation implicitly links the amount of programming (Ada and non-
Ada) going and the infrastructure they create. There is an explicit influence of the fraction
of Ada and non-Ada projects, but buried in this formulation there is an assumption about
the absolute amount of programming going on as well. For some components of the
infrastructure, absolute scale doesn't matter to the creation of average intensity.
Programming experience is an example. But for other components, most notably software
tools and program libraries, absolute scale does matter. Doubling the total amount of
programming going on would increase the tool creation, purchase, and use, even if there
wasn't an actual doubling. Over the course of the simulation, the scale of total
programming efforts changes considerably, so it would be preferrable to have the scale
issue better thought out.

Arguing for the present formulation, there is considerable infrastructure to be
gained from university graduates utilizing more advanced programming techniques. The
present formulation based on a constant flow of creation of infrastructure, modified to
some extent by the amount of Ada programming, captures this idea.

** Tie loss of incompatibility to that of intensity

As the equation description explains, at least a portion of the loss of incompatibility
of infrastructure is tied directly to the loss of intensity, which is in turn tied to the
obsolescence of projects. Currently all of these rates of flow have independently-
specifiable parameters, when perhaps they should all have the same parameter, or
otherwise show the linking in a robust way. (With some parameter settings, the intensity
can disappear but leave the incompability, or vice-versa.)

** Reconsider the distinction between Ada and non-Ada infrastructures

In the beginning, it seemed that Ada programming would go on only in PSEs that
conformed at least in spirit to Stoneman, which meant that programming would be done in
substantially new environments, different from the environments being used for non-Ada
programming. But there are ever-increasing numbers of Ada programming projects under
way. What environments are they using? Are there any particular constraints on what
environments are permissible? Is the model correct in the way it represents the
accumulation of infrastructure (which includes the APSEs) as quite seperate from non-Ada
infrastructure?

C-18

M!

** Increase Natural fraction of Ada use.

In the present model, if the Ada infrastructure intensity and coverage are equal to
the corresponding values for non-Ada, 50 percent of new development project starts will
use Ada. This number may be too low, if Ada is at all a good language in its own right.
In addition, the natural fraction, even though it represents what language would be chosen
in the absence of DoD pressure, must still represent the knowledge that Ada is a
standardized language, and hence would have an advantage over many non-Ada languages.

** Make "Waiting for CAIS" scenario more realistic

There is a scenario where the changes representing standardization on one or more
commercial APSEs are implemented 5 years later to represent a policy of waiting for the
custom-designed CAIS. That simulation is optimistic, both by the mere 5-year wait, but
also by creating as much new infrastructure as standardizing on existing PSEs. A more
realistic scenario would inject considerably less infrastructure, for there would be virtually
no experience implementing or using a custom-designed GAIS that is quite different from
any other operating system interface.

** Use survey to calibrate current incompatibility and intensity

To know how much improvement in productivity is available from more intense
infrastructure, perhaps brought about by standardization policies, data is needed on the
present status of MCCR programming: what level of sophistication of tools, etc. is actually
out and in use, and how incompatible the tools, operating systems, and languages are.

If the survey reveals that a considerable amount of maintenance programming is
being done in environments that are very impoverished, that implies considerable leverage
for a policy of transferring existing programs to a better-equipped PSE for further
maintenance, maybe even well before (if ever) a program is translated into Ada.

* Consider representing Non-Dod programming explicitly

The model obviously details DoD programming; the representation of non-DoD
programming is left implicit. Future models may offer additional insights by explicitly
representing non-DoD programming. But at present, there is no overwhelming hypothesis
as to why the dynamics of Ada use and Ada infrastructure development would proceed
differently in the non-DoD world. In the absence of such an hypothesis, the model as it
stands seems satisfactory in its implicit assumption that both non-Ada and Ada
programming will occur in the non-DoD world, and contribute to development of Ada and
non-Ada infrastructures responding to the same set of incentives as governs the DoD
programming. If Ada were used only by the military, this situation would be represented
in the model with a lower normal creation of infrastructure.

* Improve formulation for coverage

The present formulation of indicated coverage and actual coverage does not mirror
the actual processes very closely. In real life, coverage expands based on perceived market
for using a particular host/target combination. Then along come new combinations, which
reduce the coverage. Combinations come along either because of new hardware, perhaps
designed especially for the military, or newly-popular civilian hardware, such as the 8086
and 80286 chip sets made popular by the IBM PC. It should be possible for coverage to
rise to nearly one, then fall if extension of coverage does not keep pace with new hardware
developments. The present formulation allows no such "obsolescence" of coverage.

C-19

~~~~~~~~~~~~~.......... ...........-........... ......-..... ,......:.. ......... ......-::..:.:........: ... ....:



* Consider renaming obsolescence of intensity as loss of intensity

Obsolescence of intensity of Ada infrastructure now represents both the antiquation
of infrastructure (being surpassed by newer technologies) and the continued loss of
programmers etc.that are not obsolesced but merely retired or moved on to
nonprogramming positions. If the dual meaning becomes confusing, perhaps
Obsolescence of intensity ... should be renamed Loss of intensity ... where loss would
more clearly represent both processes.

* Consider seperating infrastructure for development and maintenance?

It may be that intensity, coverage, and incompatibility for maintenance projects and
new projects must be represented seperately. When the production technology of new
software is standardized, all of the ancient systems currently deployed will remain
unaffected. Their infrastructure is simply no longer added to, and may be decreased if
people (programmers, managers, and teachers) are lured away to other languages and
operating systems. As the model is presently structured, incompatibility is simply lost with
a 30-year average lifetime.

There are various scenarios and policies that would make it desirable to keep track
of the characteristics of the infrastructure for maintenance programming seperately from the
infrastructure available for development programming. One such policy is permitting any
development environment to be used, but specifying that a programming project be turned
over to be maintained on a standardized environment. Although the effects of such policies
can be simulated approximately with the present aggregate infrastructure, more detail might
give more confidence in the simuiated results.

Perhaps a reasonable interim step would be to structure a single aggregate set of
infrastructure characteristics (intensity, incompatibility, and coverage) explicitly as
coflows. Startup projects would have some level of these characteristics, and a separate
part of the formulation could specify the extent to which existing projects (the aggregate of
new and maintenance) can "retrofit" to get the (presumably higher) level of new
infrastructure. This should allow more explicit linking of obsolescence of infrastructure
with that of projects. Will it suffice to control the fading away of non-Ada infrastructure
when Ada becomes very popular?

C-20

S .c .' , . . - ; . ,-," . ,,.". . ,- ,., ,.. - ... , .. .. . .2- .- - ' ' ' '.' ' . -. j -.- .-.. ,. - - .. .. ,. .



Appendix C.7: Miscellaneous Suggestions

** Produce a glossary with abbreviations, full names, and equation
numbers

A fully indexed glossary of variable names, abbreviations, and equation numbers
would be helpful. Even with a model of only moderate size, the task of finding out where
a variable is, or what it means can be clumsy and time-consuming.

** Make a fold-up complete flow diagram .

The current documentation contains a complete flow diagram, however, it is broken
up into sectors, and scattered throughout the text. It is left to the reader to deduce the way
the whole model fits together. The Stella software used in this project can produce a large
(4'x5') and complete diagram of the whole model. For those with good eyes, the laser
printer can shrink the flow diagram with lettering down to about the size of 4 8 1/2"xl 1"
sheets. In either case, the equations would have to be hand-numbered. The major
drawback is that the document becomes difficult to reproduce. Such a diagram is well
worth the trouble for anyone actively using the model.

* Check reference conditions

Many formulations throughout the model rely on the "reference and multipliers"
format, which is explained with equations #100, #1500, and #1660. This formulation
defines a variable in terms of what it would be (simply equal to the reference value) under
some set of reference conditions, modified by multiplicative factors representing the impact
on the variable of conditions differing from the reference conditions. In principle each
equation can define a different set of reference conditions, even two different reference
values for the same input variable. In practice, it would be good to review the reference
conditions and make them as consistent as possible, to allow a simpler presentation and
reduce the possibility of human error in the calibration process.

'

U.

i

C-21

.r

r: 5-



Appendix C.8: Guide to Document Assembly

To facilitate later modification of this'report, this appendix describes the process by
which the report was produced, primarily on the Macintosh 512K personal computer.
Microsoft Word produced the text, and contains many of the graphics as well. Most of the
graphics were transferred electronically from the STELLA simulation package (Richmond
1985). Some graphics, however were transferred via hard copy. The following sections
provide guidance on how to accomplish these various steps.

Guide to underlying disk iles

The disk files used to create this report occupy several standard 400K Macintosh
floppy disks. Each disk is labelled "T-4-215 Report disks x of n," where n is the total
number of disks and the disk in question is the xth one. Each file name likewise contains

*the project number. Files for the various appendices are the most numerous; they can be
identified quickly by the beginning characters, which are the letter of the appendix, a
period, and the number of the section, e.g. "A.0." The report's text is contained in the
following Microsoft Word documents:

A.0 #1 Appendix A intro. T-4-215
A.1 #1 SD term. & symb. T-4-215
A.2 #1 Standard Abbrev. T-4-215

". A.3 #2 Cost Sector T-4-215
A.4 #2 Ada Proj. Sector T-4-215
A.5 #2 Non-Ada Proj. S. T-4-215
A.6 #2 Lang. Choice S. T-4-215
A.7 #2 Ada Infr. Sector T-4-215
A.8 #2 Non-Ada Infr. S. T-4-215
A.9 #2 Multiv.Mod.Calib. T-4-215
B.0 #1 Appendix B intro. T-4-215
B.1 #1 Model listing T-4-215

4B.2 #1 Variables Plotted T-4-215
* B.3 #1 Base Scen. T-4-215

B.4 #1 Comm. APSE Scen. T-4-215
B.5 #1 Conversion Scen. T-4-215
B.6 #1 Policy Matrix T-4-215
C.0-8 #1 Further Invest. T-4-215

The three primary scenarios (base, commercial APSE, and conversion) each have a
stored model that without further alteration produces the plots and tables shown in
Appendices B.3 through B.5. Those models appear respectively on the disk as STELLA
documents:

SSMO.32 T-4-215
CAPSEMO.32 T-4-215
CONVMO.32 T-4-215

a

C-23

...



Two more models appear on the disks. They are identical to SSMO.32 T-4-215,
the base model, except for the layout of the stored flow diagrams. The models above all
have the same flow diagram, la5ed out to create large, wall-mounted flow charts printed on
the Imagewriter dot-matrix printer. The additional models have flow' charts layed out to
create the figures in this report. The models are:

Figures for Appx. A T-4-215
Figure for Appx. B. 1 T-4-215

Sections below discuss how to create graphics from the various models.

Electronic transfer: Equations and graphic functions into Word

STELLA displays information on the Macintosh's medium-quality bit-mapped
graphics screen. The screen images of the model equations and the graphic functions were
taken electronically and used in the Word documents.

The fundamentals of the process are straightforward. One runs STELLA and
displays the desired picture (equations are shown by choosing "Display" from the main
menu and the "Equations" menu item; graphic functions are displayed by double-clicking
either the equation desired or its flow diagram symbol). Pressing the command, shift, and
3 keys simultaneously creates a MacPaint document on the disk. Using some means of
selecting part of the screen image and putting it onto Macintosh's clipboard (more on that
below), one runs Word and pastes the image into the document (either from the menu or
command-v). Pasting automatically left-justifies the inserted figure with respect to the
margin. To center the graphic function's graphs, either use the ruler to indent 1 1/2 inches,
or click on the image to select it, click again on the border that appears, and drag it to a 1
1/2 inch indentation. There are two complications to this process: setting up to do large
numbers of such images, and getting selected parts of the image onto the clipboard.

The system of using screen dumps is somewhat awkward for doing large numbers
of screen dumps. Each time command-shift-3 is pressed, a disk file is created (containing
the screen image in bit-mapped form) and named. The first file is named ScreenO, the
second is Screenl, and so on up to Screen9. If command-shift-3 is pressed when 10
screen dumps with those names already exist, the Macintosh will beep and nothing further
happens. The ten files need to be renamed so that 10 more screen dumps can be made.
The time required is prohibitive to simply quit from STELLA and return to the Finder
(which is the user interface for the operating system that creates the well-known desktop).
Instead, use the Apple Switcher program, which can load several applications into memory
at once. (Word will run in 128K in the Switcher, but STELLA prefers about 200K; set S
these allocations when first entering the Switcher by choosing "Configure then Install"
under the "Switcher" main menu item, and for each program enter the desired size into both
the preferred memory size and the minimum memory size.)

With STELLA and the Finder loaded into the Switcher, one can make ten screen
dumps in STELLA, switch to the Finder to rename them, and switch back to STELLA
quite rapidly. Be sure to mark on a hard copy listing which screen dump documents show
which equations. The whole procedure is best done with a hard disk, because storing the
bit-mapped graphics fills 400K floppy disks fairly rapidly. (The models here will fill two
floppies, without anything else on the disks, which is awkward when trying to run the
system and an application, too.)

The second complication is getting the right parts of the screen images into the
clipboard. The screen images record literally the whole screen, only part of which will be

C-24 "

-,



the equation or graphic function that the report is supposed to contain. By far the best way
is the Paint Grabber desk accessory, a widely available desk accessory that, in the midst of

*any application (Word, in this case), can open up a MacPaint document, select a rectangular
portion of it, and place that on the clipboard. (An alternative is described below.) Paint
Grabber is available from any Apple dealer, either off-the-shelf, or within a few days by
ordering. See the Macintosh instruction manual on how to install desk accessories and
install Paint Grabber on the system you will be using.

* With the system containing Paint Grabber and the screen dumps available online,
open up Word and find the location where something is to be inserted. Under the Apple
symbol on the main menu, select Paint Grabber. A new main menu item will appear, "Art
Thief." From that, choose "Open." An option box will appear with all of the MacPaint
documents available from which to choose. Using the list of screen dump names, find the
name of the MacPaint document that contains the equation or graph you want. Scroll to

*O that name in the option box, click on it, and click on "Open." (Note: as for most all
commercial software, subtle bugs remain in Paint Grabber; one has better luck selecting a
file and using the Open button than just double clicking on the file.)

The screen image will appear, and you can click and drag to form a rectangular
boundary around the part of the image you want. Under the "Edit" main menu item,
choose "Cut" or Copy." (Note: the "Art Thief' main menu item also has a "Display
Clipboard" and cut option called "Swipe." Using these sometimes puts things on Paint
Grabber's clipboard, but you have to display that, select your selection again, and use the
Edit menu's cut before Word's clipboard will hold the selection. These features are
quircky but workable-just experiment.) With the right selection on the clipboard, click on
the Word window to activate it, put the cursor at the location for pasting, and paste (either

* from the Edit menu, or with command-v).

If Paint Grabber is not available, one can use the Switcher to allow MacPaint and
Word to operate closely. Make sure that both programs are looking at the same clipboard
by choosing "Options" under the "Switcher" main menu item and putting an X in the
"Always convert clipboard" box. MacPaint is more awkward to use than Paint Grabber,
since MacPaint seems to be limited in how large an object can be put in its
clipboard-equations are wider than the MacPaint window. There is a MacPaint-like
program for larger bit-mapped documents called "Paint Cutter" that may be more suitable.
Even so, Paint Grabber seems perfectly designed for the task at hand, and is the preferred
method. It's much faster than the instructions above might make it appear, and is much
faster and higher-quality than physically cutting and pasting originals.

Hard-copy transfer: Flow diagrams, plots, tables, and listings into
document

Given that legible flow diagrams are larger than the Macintosh screen, these
appendices use STELLA's facility for printing flow diagrams and portions thereof with a

C laserprinter, and use nonelectronic means to put the images into the report. This procedure
takes advantage of the high-quality laser output. The flow diagrams in the two models,
Figures for Appx. A T-4-215 and Figure for Appx. B.1 T-4-215, are arranged so that the
laser printer will print each portion of the flow diagram on a separate page, and positioned
in the middle of the page.

0To laser print the flow diagrams, choose "Choose printer" from under the Apple
symbol on the main menu, and choose the LaserWriter. (Make sure there is about 60K left
on the disk for soratch space for the printing process.) Then display one of the two
specially-prepared models in STELLA. Choose "Diagram" under the "Windows" main

C-25



menu item, and under the "Display" main menu item choose "show pages" to show where
the boundaries between printed pages will lie. Under the "File" main menu item choose
"Page setup" and specify reduction to 60 percent. You should see page boundaries coming
in between parts of the flow diagram. Under the "Display" main menu item hoose "Full
size" and "Hide pages." Under the "File" main menu item choose "Print." If you want
only part of the flow diagram, specify the page or pages to print. Choose "Full view"
under the "Display" main menu item to see the entirety of the model, but change back to
"Full size" before printing, or the LaserWriter will create a cute little one-page diagram of
the whole model. STELLA numbers pages like MacDraw: number one is the upper left
comer page, number two is below it, and so on. So, for example, the top row of pages in
the models here are pages numbered 1, 5, 9, 13, 17, and 21. Because of the way the
models are layed out, pages 20, 21, 23, and 24 are blank.

Where the flow diagrams go,the Word document pages contain nothing but the
heading above and the caption below. Laser print those, copy them on a Xerox machine or
whatever, and then put the copies back in the paper feed of the copier. The copier is now
set up to copy an image onto a page already showing the heading and the caption. Just
copy the flow diagrams onto these pages in the correct order. In the stack of LaserWriter
text output from Word, just replace the pages with the copies (which now show the flow
diagram with caption on a properly numbered page) with the corresponding page numbers.

The procedure for putting plots, tables, and listings onto properly headed and page-
numbered pages is exactly the same, except for how the originals are laser printed and
assembled. Under "Windows" choose "Graph Pad" for plots or "Table," and then under
"File" choose "Print Graph" or "Print Table" (only the correct option will appear). On the
LaserWriter menu that follows the selection of printing, choose reduction of 78 percent for
plots and 100 percent for tables.

Creating hard copy for equation listings is slightly more complex, because STELLA
insists on not recognizing page boundaries. Obtain a printout by choosing "Equations"
under "Windows" and then "Print Equations" under "File." (If the screen display shows
blank, it is displaying the changes made recently, which are hopefully none. To get back to
the full display of equations, select "Show All Equations" under "Display.") On the
printout there will be equations whose top half is on one page and whose bottom half is on
the next. Obtain a listing with these "page breaks" in different equations by going to the
flow diagram and creating a fictitious level or two with names like "AAAA" that would put
them at the beginning of the listing. Then print the equations again. Now there is enough
material to cut and paste an equation listing onto 8 1/2 x 11 pages with proper margins.
Doing the trick with the copier as described above will then put the listing on pages with
headings and page numbers. W

After comparing the relative effort for physical versus electronic cutting and
pasting, the electronic procedure seems easier, more reliable, and gives higher-quality
results. There is nothing to be done about flow diagrams, but they are the easiest output to
physically prepare (there is no actual cutting or glueing). But the listings, plots, and tables
should all be done with screen dumps if they are ever done again. The screen dumps that
would make up the listing are all available from the process of pasting equations inot the
text. According to the Addendum for Microsoft Word 1.05, the plots can be reduced in a
controlled way as follows: do a screen dump and paste it into the Word document as
described above. Then type Command-Shift-Y and then 7, which should reduce the figure
to 70 percent of its original size. The screen display of resized screen dumps looks awful,
but it comes out fine on a laser printer. Use 6 for 60 percent reduction, 8 for 80 percent,
and so on. Command-shift-Y then 0 restores the figure to full size.

C-26

% %



rVr

For fancier plots for the main body of the report or whatever, screen dump the
plots, then open the documents with MacPaint to trim off the date or scaling numbers if
they are too small to read. Put the whole thing on the clipboard (which should be doable
from the page-size display in MacPaint), and open up MacDraw to put on nice labels.
(They could be done in MacPaint, but they couldn't be repositioned and they wouldn't print
out as well on the laser printer.) In MacDraw, use rectangles with invisible edges and filled
with solid white to create a pure white background for the captions. If the text is
"Grouped" (command-G or menu selection) with the rectangle, the text automatically

40 rewraps itself to fit within the rectangle. Then put the MacDraw object in the clipboard and
transfer to Word, and paste it in at whatever reduction is appropriate.

The figure showing the matrix of policy levers versus policies in Appendix B.6 is
reduced from an original created in Audrey Hook's office on a Macintosh. The graphics in
the main body of this report were artist-created from full-sized laser output of the models'

0 plots.

Assembly, pagination, and printing

Pagination in the present draft is not well-done, for historical reasons. Most of the
text in Appendix A originated in MacWrite, which divides paragraphs from one another
with extra carriage returns. Word, by contrast, is set up to use a single carriage return to
mark the end of a paragraph, and uses the paragraph formats menu to add an extra line
between paragraphs. This difference becomes important when trying to arrange the text on
pages such that no captions are orphaned at the bottom of the page, with the text starting on
the next page. It is also desirable to have the short paragraph that precedes each model
equation appear on the same page as the equation itself, or the graph, in the case of a

0* graphic function. Word has facilities for keeping paragraphs together, but they are
unreliable if there's an extra carriage return. They are especially unreliable when the
following paragraph is a picture, to the point of crashing the system. Save the file before
playing with pagination!

Cut the full-page spaces for figures and paste them at the end of the document
before repaginating-Word cannot automatically put full-page figures after a full page of
text, so if the document is repaginated with the figures in their old locations, quite a few
nearly-blank pages will result. Also remove any other fixed page breaks in the document
that do not start major sections. (These were inserted as a makeshift ways of having
captions come out with their text.)

I In retrospect, it would have been easier to go along with Word's system for
paragraphs and pagination completely, just editing out all the extra carriage returns and
using the option-command-click shortcut for copying the paragraph format that would keep
the appropriate paragraphs and figures together.

Before reprinting a document, check the page layout (under "File") and the division

layout (under "document"), since the right settings don't seem to have been saved with the
documents consistently. The page layout for most of the documents is the default settings
except for left margin of 1 inch and right margin of 1.5 inches. (For some reason, this is
required to give 6 1/2 inches of text). The exceptions are Appendices B.3-B.5, which use
a margin of 1/2 inch left and right, to accomodate labels for plots. Choose smoothing in
the page setup menu to get the figures to look good, but do not choose font substitution.
Even though the documents use a laser font throughout (such that there shouldn't be any
font substitution), it somehow wipes out the underscores in variable names. Division
layout uses all the default settings except for the running head starting 0.6 inches from the
top. (0.75 was just too close to the text.)

C-27

% %.



07T077, X7

APPENDIX D

* QUESTIONAIRE

D-1I



QUEST1ONAIRE

PART I PROFILE OF INFRASTRUCTURE USED

General Directions for Completing:

There are two types of forms to be completed in the first
part of this survey. The first type of form is labeled
ATTACHhENT 1. It is the mechanism for collecting a data
sample indicating the types of computers (host and target)
and languages that are actually available and being used to
develop/maintain MCCR software applications. The hardware,
including operating systems, and languages are the minimal
infrastructure for tools. This infrastructure also
represents technical constraints that must be considered in
future strategies for improvements in envi.ronments.

The second type of form is labeled ATTACHMENT 2. It is the
mechanism for collecting a data sample indicating the tools
routinely used for developing/maintaining MCCR applications
witten in the languages you identified on ATTACHMENT 1. The
detailed directions for completing each attachment are
stapled to each form.

D- 3

.~~~~ .~ . . .

% %'
£ £ " " .'2"2 ''' . X . A2 %-% . . . . "-"-"-"." . . . . .. "," ."."• . o ' ' ,",. °. ' ' ,



Directions for Completing ATTACHMENT 1

Please complete ATTACHMENT I for each MCCR Program and for
each software project (of that Program). ATTACHMENT I should
be duplicated as continuation pages if more space is needed
to list all the host/targets. There are two pages in
ATTACHMENT I. The first page has pre-printed languages at the
top with space for one "other" language (e.g graphics
language) which has a special purpose when used in
combination with another language. The second page is space
for you to identify languages used but not identified on page
I (e.g. COBOL).

5J.

D-4

-"-..



z U
C. !r) U-)_ 

_

0' _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

z
LU 

'.j<
o.

--O -> _

Av

*z CV)(0
LU

low

w cr-

040l

0 Q0 U
D-5



LUS

00

Lu LU

(A d

Lo _ _ _ _ _ _ _ _ _ _ _ _ _

_ _ _ _ _ _ _

-a
U) ;i 0 a

LCu

UA

L4(1

0 Iii
00

cc_ __

IL_ _ _ __ _

4~~L - L- L

D-



~WT

Directions for Completing ATTACIIENT 11

Please indicate the tools you use with a check mark. We have
included nine forms (one for each language shown on

ATTACHMENT 1); however, please duplicate and complete this
form for any other language you use.

The following provides some guidelines on selecting the level
of tools.

Meaning of LEVEL:

LEVEL I (BASIC) - tools available for microprocessors.

LEVEL II - Basic tools available for most minicomputers

LEVEL III Tools avaiable on minicomputers and host
computers which extend the operating system services.

LEVEL IV - Tools available on most large hosts
(equivalent to Stoneman Minimal Ada Programming Support
Environment (MAPSE)) as an extension of a virtual
machine interface for programmers.

LEVEL V - Tools that may be available on large hosts
(equivalent to Stoneman Ada Programming Support
Environment (APSE)) which may include project specific
tools.

The "cost driver" factors used by the COCOMO model can be
derived from this classification of tools; therefore, we have
selected this scheme for aggregating data that will be used
in the Systems Dynamics Model under development.
(Reference: Boehm, Barry W.: Software Engineering Economics;
Prentice-Hall, Inc, 1981 pp 458-466

D- 7
°1

D-7 "

'.€ ."' '", - - - - "- ' " ",'' " '"--.' -'' ,' ' . .--.' '.'',' -'' .'-' .'. '. '.' '.-' 'e'-'. .-'''. .-' - ' .-'-'.'- .



ww

z -J

a <

I-) z 0

LU wC
-3 NU 0 Ku

< ca N <0 (J) -J

cc 2~ < -jL

CL wZU 0 - !5z: z. U3

0 LL- U)U -- U) ( -U

Oz <Z (DQ U LL LU)CO U CCW

cr zj .(L 0 0 -

j_ LLO-QU) oQ.i MQ<U
__ ~LL o- -z Z___.Jew <

a I c<- >w

a. z- 2 1w -zzC

(1 -ua - U 0

-J z J

wD 8
> MIS CA~.*. a '(-- cc

co cc cc * * *\ NO.



* PART II APPROXIMATION OF COMPATIBILITY AND COST

Directions for Completion:

In this part of the Questionaire, we need your approximation
* of factors that help quantify the magnitude of costs/benefits

associated with current software development and maintenance
practices.

1. How long do you normally use a tool? (i.e. the length of
time in months/years between acquisition and replacement of a
tool) months years

2. The percentages you estimate below will give us an
indication of the portability/re-usability of your tools.
Please indicate percentages for the following (the total for
all four cases should be 100%):

* LANGUAGE SPECIFIC TOOLS:

Host Specific _ Host Independent

LANGUAGE INDEPENDENT TOOLS:

Host Specific % Host Independent_ _

3. The source of tools is also of interest. Please indicate
by percentage the sources for the tools you use (the total
for all four cases should be 100%):

Government Furnished_ _
Internally Developed__
Commercial Products %
Other (explain below)

D-9

W6 *4.V~;~ ~ 4~



4. For each project you support, please estimate the "size"
of the software by either the total lines of source code
delivered to the customer/user OR the annual level of effort
"(programmers/systems analysts only) required toproduce the
software for which you are responsible. (If you can estimate
both of these quantities, please provide them.)
Note: When estimating for development projects, estimate the
expected size. If you count delivered source code by another
unit of measure (e.g. words/statements) please label the
units and the language.

PROJECT NAMES LINES OF CODE or ANNUAL LEVEL OF EFFORT

(Note: Please provide a continuation sheet if required.)

D-O

% r J. *1



PART LII PERCEPTIONS OF THE "VALUE" OF TOOLS

Your answers to the following questions will be used to
refine the perceptions of DoD with respect to cost factors
which are difficult to quantify.

I. Have you kept any statistics that indicate how tools
effect the productivity of application development or
maintenance? Yes No

a. If your answer is yes, please provide a contact who

will be willing to discuss these statistics with us.

Name:

Phone:

b. If your answer is no, what is the criteria you use to
make an investment in tools?

2. Please identify your most critical software engineering
problems with a short rationale for their criticality.

fP

D-11

fl-il

S% %'~ .~vv v -- , * ~ , ~ .*.... . * .%



* APPENDIX E

WHITE PAPER

CONCEPTUAL FRAMEWORK FOR EXAMINING THE ROLE OF
STANDARDS IN THE MCCR ACQUISITION PROCESS

Prepared by

* Marko Slusarczuk
Sarah Nash
Tom Frazier
Peter Ashton

Stanley Dubroff

20 December 1984

E- 1



APPENDIX E

LIST OF FIGURES

Figure Title

Exhibit I Conceptual Framework and Linkages ........................................ iii, 6

Exhibit 2 Panel A: Probability of Adoption as a Function of Saturation
and Profits. Panel B: Probability of Adoption as a Function
of Saturation and Size of Investment ........................................... 9

Exhibit 3 Technology Process Concepts ................................................ 12

Exhibit 4 Types of Standards ............................................................ 21

Exhibit 5 Factors Influencing the Development of DoD Strategy vis-a-vis
MCCR Acquisition Process ............................... 26

Exhibit 6 DoD Requirements for MCCR ................................................ 27

Exhibit 7 Factors Influencing Corporate Strategy ..................................... 31

Exhibit 8 Standards - MCCR Acquisition Process Linkage ........................... 42

Exhibit 9 Consumer Surplus Analysis ...................................................... 47
Exhibit 10 Impact Analysis Including Weighting of Risk-Returns from a

Software Environment Standard .............................................. 49

E-3

'S



II

WHITE PAPER

CONCEPTUAL FRAMEWORK FOR EXAMINING THE ROLE OF STANDARDS
IN THE MCCR ACQUISITION PROCESS

EXECUTIVE SUMMARY

Mission Critical Computer Resources (MCCR) are an increas-

ingly important element in the development and deployment of

major weapons systems. Effective management of the acquisition

of MCCR is vital to maintaining a successful national defense,

especially given the complexity and dynamic nature of computer

technology and the diverse groups involved in the acquisition

process. Standards can play an important role in that process by

reducing uncertainty both for government and industry. DoD

decisionmakers must have a method or framework in which to

evaluate the relative costs and benefits associated with a O

particular standard. This White Paper provides such a framework.

Prior work has looked at impacts on only one dimension, failing

to capture all aspects of the problem. One unique aspect of our+
approach is its attempt to integrate each area which has been

previously studied separately.

The conceptual framework describes the factors affecting the

use of standards in the MCCR acquisition process. It also W1

defines the relationships among those factors which indicate the

impacts of standards. The objective in developing the framework

is to provide high-level decisionmakers with an interactive

analytical tool using real-time information for understanding how

E-4'
.r .£-.'.V*'' ".v •

. -+.. . .,•... .. .. . .. +. ._ -.-;,,-.+.,..o .. , , .,. . .,.;.?.. ;



standards influence and interrelate with the MCCR acquisition

process. The framework is an initial presentation of the key

factors and the interrelationship of those factors that describe

the impact of standards. Two specific methodologies for evaluat-

ing the impacts of standards, the consumer welfare method and the

risk/return method, are presented. By incorporating these

methodologies, the framework consists of both a *road mapO that

assists decisionmakers in analyzing the potential effects of a

standard and also contains the information necessary to rational-

* ize a given policy decision regarding standards.

The framework will be modified, extended, and refined based

on the results of a series of historical case studies which will

serve as analogues to current standardization policy issues. A

valuable by-product of this refinement effort will be the estab-

(Wp lishment of a database of relevant literature concerning stan-

dards and the MCCR acquisition process. Ultimately, the frame-

work will be an interactive decisionmaking tool which will assist

the decisionmaker in analyzing the appropriate implementation of

standards and provide a rationale for that prescription.

The conceptual framework consists of several dimensions: the

MCCR acquisition process, standards and the standardization

process, the DoD, the computer and semiconductor industries, and

government-policy. The dimensions are linked as shown in Exhibit

1, and the arrows indicate the direction of influence. The

linkages indicated with a dotted line, although possibly signifi-

cant in the overall process, are not included in the analysis.
The most significant linkage for the purpose of this discussion

is the MCCR-standards linkage.

The framework also includes the environment of tegjogx
which influences each of the dimensions and the linkages. This

-ii-

E-5

41.% • " .• " .% • %% 
%

%% %.-%• .. %"%."•°' " %- % % "• ' •, •"• "
•
" •"""""""'



Co

i0

C-

IE-
11

1 / 1
,: I Io,. ,7I,

" / / '

4 0

* \

1 i
uu

\w
~g-

ii .v



is one critical aspect of the framework because comouter

resources are driven by technology. Within the life cycle of the

MCCR acquisition process, DoD must plan for and implement tech-

noloqy insertion. DoD must manage and consider important con-

cepts such as matching the technology life cycle with the weapons

systems life cycle and recognizing learning curve benefits from a

technology. These considerations interact with the use of stan-

dards and can influence their impact in the MCCR acquisition

process.

Within each component of the framework, there are many sepa-

rate elements. For example, the MCCR acquisition process is

viewed in terms of the phases of the life cycle as defined in

A-109: mission analysis, exploration of alternative systems,

competitive demonstrations, full-scale development and evalua-

tion, production/performance appraisal, deployment and operation,

maintenance and support, and retirement and disposal.

Standards perform various f such as conveying infor-

mation, promoting comoatibility/interoperability/transoort-

ability, optimizing variety, and improving quality; these func-

tions describe the impact that a standard will have. Various

types of standards also help define their impact; these types of

standards range from the most flexible to the least flexible:

interface,, process, and product standards. Finally, various

qroups are affected by standards and may desire them at any

particular point in time. These groups include buyers, sellers

(suppliers), users, and maintainers.

DoD and industry are the two primary groups involved and
affected by the use of standards in the acquisition of MCCR. DoD

develops certain strategies which are implemented as part of the

MCCR acquisition process in order to meet various goals. These

-iv-

E- 7

.. . . .' .. ' .- ; " .... .'. ....... .:'.:'.. .. '.% .. ,. ", , . " .



6 .4

goals stem from oerceived threats to national security, opera-

tional and logistical requirements, and specific problems or

issues unique to MCCR. Standards may represent an element of DoD

strategy vis-a-vis the acquisition of MCCR. DoD writes standards

in situations where they will reduce uncertainty in the MCCR

acquisition process, assisting in maximizing quality and flexi-

bility while minimizing cost and delivery time of a system.

Industry also formulates and implements strategies based on
opportunities and constraints in the environment and the goals of
each company and its organization. Standards can reinforce or
reorient industry strategy directly. Standards may also raise or
lower the risks faced by companies resulting in lower or higher

expected payoffs from investment projects including technology
insertion programs. Industry acts as a proponent of standards
when it believes (collectively) that the standard will have bene-

ficial impacts.

Standards interact with the MCCR acquisition process to
raise and/or lower risk. The direction of the impacts on risk
produces the beneficial and harmful effects. Standards can
influence each of the phases of the acquisition process and
various functions of standards are important at particular
phases. For example, the quality function (performance standard)
may be critical at the test and evaluation phase of the acquisi-
tion process to facilitate comparison. Successful standards tend
to be more flexible at early phases of the acquisition process
(and the technology life cycle) and less flexible at later
stages. Standards can assist the technology insertion process,
but careful analysis of the standard is necessary to prevent
freezing the existing technology and locking out new technolo-
gies.

-V-

E-8

- " " '.' , " " . " . " ' . . . ". . - - " .



7-r- WV --- W. . sr; Q. -F.; -V VV W -.

The analysis of the risks and returns of using a standard in

a' the acquisition of MCCR depends upon assessing the impacts on all

dimensions. The framework identifies the critical components and

interrelationships necessary for performing such a comprehensive
analysis.

* -vi-

E- 9



I

WHITE PAPER

CONCEPTUAL FRAMEWORK FOR EXAMINING THE ROLE OF STANDARDS
IN THE MCCR ACQUISITION PROCESS

Mission Critical Computer Resources (.CCR)* are an increas-

ingly important element in the development and deployment of

major weapons systems. Effective management of the acquisition

of MCCR is vital to maintaining a successful national defense,

especially given the complexity of computer resources and tech-

nology and the diverse oarties involved in the process. Cur-

rently, MCCR represents almost 3 percent of Doo's total budget.**

Standards can play. an important role in the process of acquiring

:CCR by reducing uncertainty in the MCCR acquisition nrocess. To

formulate effective, efficient policy, OoD decisionmakers must
have both a clear understanding of the general effects of stan-

dards in the MCCR acquisition process and the ability to analyze

the ootential imoacts of a particular standard.

This oacer represents the first step in developing a compre- 4

'S hensive analytical tool for DoD decisionmakers for evaluating the

factors and forces affecting the use of standards in the acquisi-

tion of MCCR. The purpose of the tool is to provide decision-

makers with an interactive decision process using real-time

An appendix includes a glossary of terms included in this
paper.

•* DoD, Embedded Comouter Resources Standards Standardization
Procram Plan, Draft (Washington, D.C.: DMSSO, September 15,
1984).

E-10



-- .J _-V . _ ,r

DRAFT

information to determine how standards riay be used in the MCCR
acquisition process. This White Paper presents an initial frame-
work identifying and describing the factors influencing the use
of standards in the acquisition of MCCR. It develops and

40 explains key relationships among these factors which form the
basis for identifying likely impacts of standards. An overall

" analysis of a standard can be made by examining each of these key

relationships and correlating the interplay of these factors.

Two methodologies integrate the overall analysis; these are
risk/return and consumer surplus analyses. Both methods seek to
measure the impacts of a standard on each of the components and
provide a way to determine the overall impact. These methods are
complementary and can be used together to reach a final estimate.
By incorporating these methodologies,* the framework consists of
both a "road map" that assists decisionmakers in analyzing the

0 potential effects of a standard and also contains the information
necessary to rationalize a given policy decision regarding

standards.

Prior analyses have concentrated on impacts at one or
another of the components.** One unique feature of our approach

* These methodologies will be refined in greater detail as
more data become available.

.: ** Prior studies examining the impacts of standards generally
have focused on the impacts to one group, such as a single

-* department in the government, overlooking other impacts on
other groups or on other factors such as technology inser-
tion. See, for example, Roger Schave I t "Potential
Effects of Standardization on Avionics Software Life-Cycle
Cost," IEEE Computer (1979); Harold Stone, "Life Cycle Cost
Analysis of ISA Standardization for Military Computer Sys-
tems," IEEE Computer (April 1979); Logistics Management
Institute, Costs and Benefits and Federal Automated Data
Processing Standards: Guidelines for Analysis and Prelimi-
nary Estimatina Technicucs, Washington, D.C., August 1978;
and U.S. Department of Commerce, National Bureau of Stan-
dards, A Cost-Benefit Analysis of Proposed Federal Inout!
Output Channel Level Computer Interface Standards (Washing-
ton, D.C.: NBS, June 1978).

-2- E-11
de

A-- . - . . . - . - - - - . . . - - . . . - . . . - . . . . . - . . . " . : " . " . . . - . . . . . - . : . . . . . '. . ..



DRAFT

is that we are integrating the analysis by examining 4lU the com-

ponents and the interrelationships of these factors within a

single framework. In this way all. factors impinging on the

process can be analyzed.dI
For example, assume that DoD decisionmakers are faced with

determining the likely effects of implementing a standard mili-

tary computer family that would permit only certain types of
computers for use by DoD. The conceptual framework can be used

to identify the critical factors necessary to evaluate the
significant potential impacts of the standard. For example, at
what stage in the technology life cycle are the particular

computer systems that are being standardized? Will industry w
resist the standard because the technology is still in a nascent,

growing phase or because the standard limits competition? How
does the standard affect various DoD goals such as interoperabil-

ity, technology insertion, or cost minimization? At what phase

of the acquisition process will the standard be critical and have

its intended effect? What are the costs and benefits, in terms
of risk reduction to DoD, from implementing the standard? These

questions and answers to them are vital if DoD decisionmakers are

to understand adequately the effects of a standard and if DoD is
to provide a suitable rationale for implementing specific stan-

dards. The objective of this framework is to assist DoD in con-

ducting that analysis.

The conceptual framework will be refined and revised with

further study and analysis, including the development of a data-
base and empirical study. A database will be developed that will

serve as an adjunct to the analytical tool to be used by high
level DoD decisionmakers to (1) formulate opinions, (2) rational-
ize and support decisions, and (3) answer "what if" questions

concerning MCCR standards. Drawing from the literature, existing

databases on standards, and from case studies analogous to

-3- E-12 'I

* *. * . * -



D R A F T

potential future standards issues, the database will store

factual information about standards issues including general

descriptive data, risks, benefits, costs, and footnotes to the

literature. The case studies will use historical analogies to
current issues facing DoD with respect to the use of standards in
the MCCR acquisition process.* The results of the historical

studies will be used to evaluate and refine the conceptual
framework as well as provide DoD decisionmakers with information
that will be useful in solving current standards policy issues.
In this way, decisionmakers will understand how to apply the
conceptual framework and will gain insights to solve issues of

current and future concern.

Before describing the framework, several assumptions must be

made. For instance, although the framework describes various
components in a static, single-time dimension, it is recognized

that there is dynamism among the components in which impacts are
spread over time. It is assumed that standards have certain
functions that are important within the acquisition process and
as such are demanded by certain groups, e.g., DoD and industry.
Also, we assume that b= DoD and industry formulate and imple-
ment strategies vis-a-vis the MCCR acquisition process. We make
certain assumptions regarding strategy and the various objectives
which. lead to the formulation of strategy. Finally, we recognize

that other factors, such as actions by foreign governments and
industries, may have some influence, but for clarity and ease of

understanding, we have chosen not to describe those elements.

• For example, such case studies might include examining the
implementation of FASP as an analogy to ALS; the development
of the AN/YUK 7 as an analogy to the MCF; and the use of
MIL-STD-1679A as an analogy to MIL-STD-SDS (software devel-
opment).

E-13

2)~~~ ~ ~ ~ e:6 **,. v:



'. . . . .. . .

D RAFT

COMPONENTS OF THE CONCEPTUAL FRAMEWORK

The conceptual framework consists of several components,

including the MCCR acquisition process, standards and the stan-

dardization process, DoD, industry, and government policy. These

components are linked in the manner shown in Exhibit 1. The
dotted lines from DoD and industry to government policy indicate
that although these linkages exist, and may be very important,

they are outside of the scope of this study, and therefore will

not be considered here. The linkages comprise the key

relationships among the dimensions and represent focal points for

understanding the impacts of standards, including particular

costs and benefits.

The environment of technology affects each of the components
and the linkages, and each component can exert an influence on

technology. Several concepts within the technology *process" are

important, such as the life cycle and the learning curve. These

concepts will be described before the other components of the

conceptual framework to provide the proper background and focus.

The Environment of Technoloav

Three general concepts influence the technology process and

the technology environment: (1) technology "pushu versus Opullw;

(2) the technology life cycle; and (3) the learning (experience)
curve.

Technologv 'Push* Versus "Pull'

In many industries, a technology evolves and is adopted
because users (consumers) demand certain types of products; this

.

E-14,

. - I I * .. , .. b*



r,

I'

c ~0 V

I,\

-/ /

x, -4V\\

W C "4040I

$4P - V N
IV 0 -

01 tr A4A

AU W~

_.,4 \ ~..44 K ,

m.A4

1E-1

622
'" E-0

" " [ /" i - "I H i l~l | I •|\



DRAFT

has been characterized as technoloqy "demand-oull." In this 0

situation, the market pulls the technology and innovation results
from identifying user needs and responding to those needs.*

Under other circumstances, onqoing research activities or advance-
ments in the state of science may result in an innovation, but no
market exists for it. The developer, therefore, must 'PushO the

technology by either creating a new market or demonstrating how
the new technoloqy can replace an existing one. DoD and NASA,
for example, have actively pushed certain technologies before it

was certain a commercial market existed.** Frequently, these
efforts do result in 'spin-offsO that can be marketed
commercially.

Technology push, i.e., compelling or creating a market to

accept a new product is achieved by reducing risk. + Barriers to

w
* See, for example, Eric Von Hippel, UThe Dominant Role of

Users in the Scientific Instrument Innovation Process,3
Research Policy (1976); David Ford and Chris Ryan, "Taking
Technology to Market,' Harvard Business Review (March/April
1981): and Geoffrey Kiel, OTechnology and Marketing: The
Magic Mix?O Business Horizons (May-June 1984).

** Some of these studies of government technology push include
Norman Asher and Leland Strom, The Role of the DoD in the
Development of Integrated Circuits, P-1271 (Alexandria, Va.:
Institute for Defense Analyses, May 1977); Herbert Kleiman,
OA Case Study of Innovation,w Business Horizons (Winter
1966)- James Utterback and Albert Murray, The Influence of
Defense Procurement and Sonsorship of Research and Develop-
ment on the Development of the Civilian Electronics Industry
(Cambridge, Mass.: Massachusetts Institute of Technology,
Center for Policy Alternatives, June 1977); William
Abernathy and Balaji Chakravathy, 'Government Intervention
and Innovation in Industry," Sloan Management Review (Spring
1979)1 G. P. Dinnean and F. C. Prick, wElectronics and
National Defense: A Case Study, S, March 18, 1977;
and Robert Wilson, Peter Ashton, and Thomas Egai, Innova-
tion. Competition, and Government Policy in the Semicon-
ductor Industry (Lexington, Mass.: D. C. Heath, Lexington
Books, 1980).

+ In this manner, one can think of technology push as being
somewhat analogous to technology insertion.

-7- E-16 @

zizeyz'.'zA



7VU- p 6-.;U JCV4r - r .-. wVV V" r~v V wUMlIJ P r1 wr-.

i DRAFT

*, innovation and adoption of innovation stem from two types of

risk: market risk and technical risk. Market risk is the risk

inherent in attempting to sell a product and the uncertainty of

that product generating a profit. Technical risk involves the

risk of successfully developing a product or cost-saving process.

with technology push, the primary barrier is market risk, i.e.,

making either producers (suppliers) and/or users understand that

a particular technology is worth implementing or adopting.

In order to push a technology, a group, such as DoD, must
reduce market risk. It does this by encouraging the use of the

new technology through procurement, through dissemination of

information about the technology, through Ogatekeepers,* or

through funding R&D projects directed in this area.* It creates

innives to make it profitable to adopt and use this technol-
ogy. The rate at which an innovation is adopted is influenced by

several factors.

The profitability of the innovation, the number of firms

using the innovation, and the amount invested in the innovation

affect its rate of adoption. In Panel A of Exhibit 2, for
example, A1 and A2, which designate two different innovations,

show a direct relationship between the probability of adoption

and the proportion of firms already using the innovation (degree

".The concept of OgatekeepersO is a particularly useful one in
* encouraging adoption of a new technology. Gatekeepers are

members of an organization who, by virtue of their
Personality, expertise or other factors, control and
disseminate information about innovations and are viewed as
"expertsu in judging the usefulness of a new technology.
Gatekeepers know the appropriate people to whom the
information should go to encourage adoption. Thus
gatekeepers can play a vital role in the adoption of a new
technology or ensure that it is never adopted. For more on
this concept, see T. J. Allen, Managing the Flow of
.Technol2g (Cambridge, Mass.: The MIT Press, 1977)1 and
Rosabeth Moss Kanter, Innovations for Productivity in the
American Market! The Chance Masters (New York: Simon &
Schuster, 1983).

-8- E-17

• . ,. ' . , " ' ,': .. ..*-'*v" ,. . .. ' .. .% . , N,,Y , '\ * ' J. .



Exhibit 2

PANEL.A: PROBABILITY OF ADOPTION

AS A FUNCTION OF SATURATION AND PROFITS

Probability
of Adoption 

A2

pA

Proportion of Firms
Osing the Innovation

PANEL B: PROBABILITY OF ADOPTION
AS A FUNCTION OF SATURATION AND SIZE OF INVESTMENT

).

Ptobability
of Adoption

!..- Proportion of firms
• . Using the Innovation

.- 9-
E-18



DRAFT

of saturation).* Panel A also shows that the probability of

adoption is higher at every level of saturation for A2 than for

Al, because A2 is a more profitable innovation. Panel B of

Exhibit 2 shows a higher probability of adoption of an innovation

requiring a smaller investment (B2 ) than one requiring a larger

investment (B1 ), other things being equal.

On j 2riori grounds, these are relationships that one would

expect. The risks of introducing a new technology generally

diminish as market saturation grows, therefore, one would expect

increased adoption as experience and information increase.

Likewise, the more profitable the investment in a new technology,,

the greater the compensation for anticipated risks of undertaking

that investment. Finally, it seems reasonable to expect firms to

be more reluctant to commit large amounts (particularly when they

have difficulty raising large capital amounts) than small amounts

to the development of new technologies.**

Technology Life Cycle+

A considerable research effort has been dedicated to examin-

ing the development and growth of a technology. This research

* Edwin. Mansfield, The Economics of Technological Chance (New
York:- Norton & Co., 1968).

** This process of upush" frequently involves a revolutionary
idea or concept as opposed to an evolutionary process; once
the technology is used in one or a few applications,
Odemand-pull" overtakes technology push, leading to the use
of the technology in many other areas. One example is the
integrated circuit; it was first developed and used by DoD;
once industry learned its capabilities, the applications for
integrated circuits widened rapidly.

+ This theory was first developed by Raymond Vernon, "Interna-
tional Investment and International Trade in the Product
Cycle,* Ouarterlv Journal of Economics (May 1966); and L. T.
Wells, The Product Life Cycle and International Trade
(Cambridge, Mass.: Harvard University Press, 1972).

-10- E-19



DRAFT

has identified distinct phases in the life cycle of a product and

has related them to the phases of the acquisition process as well

as the development of standards.

Panel A of Exhibit 3 displays the various stages of the a
technology life cycle. Industry growth typically follows an

S-shaped curve; the flat introductory phase reflects the diffi-

culty of overcoming buyer inertia and technology push. During

the growth phase, a market is created and many buyers demand the t

product or technology as it demonstrates its usefulness. The

technology eventually becomes widely accepted and growth levels

off and finally declines as new substitute technologies appear.

The concept of the life cycle has been extended to evaluate

the pattern of product and process innovation and when particular

standards are likely to be developed.* Panel B of Exhibit 3

indicates the patterns of product and process innovation. This tp

exhibit shows that, over time product innovation slows, particu-

larly after a "dominant design* has been adopted; process innova-

tion increases as product innovation declines, and greater empha-

sis is placed on cost reduction and efficient, large-scale

production.

One hypothesis regarding the life cycle is that as the life

cycle or technology matures, standardization becomes more impor- W

tant. In early stages, there is radical product innovation, wide

variation in product design and methods of production. Most

standards are unimportant and not desired at this stage. As the

W. J. Abernathy, The Productivity Dilemma (Baltimore, Md.:
Johns Hopkins University Press, 1978)i J. M. Utterback and
W. J. Abernathy, 4A Dynamic Model of Process and Product
Innovation, OMEGA (1975)1 and David L. Bodde, Technical W1
Standardization, Competition, and Innovationu Draft Working U

Paper, 1975.

-11- E-20

... % .'..,. .' -:. --... . .. .',. *,*.'. . , 'a . " " X



#-4

14

0
Ld

E--

00

V-4.J

04 E

0
LI

00

* E-4

004,

~ E-4

LI 0

Jj0

E-2

e:4t



PDRAFT

product enters the early mature stage, standardization begins,
first with a dominant design and then with cost competition. In
the late mature phase, markets are well-defined, cost competition
is critical, and standardization becomes very important as a
means of reducing cost.

The Learnina (Experience) Curve

The learning curve builds on life-cycle theory. The learn-
ing curve predicts that as a company (or industry) produces more

*, (especially in labor-intensive industries), its unit costs will
* decrease because it learns how to produce more efficiently with

production experience.* These cost declines are usually more
significant in the early and growth phases of the product life
cycle. Panel C of Exhibit 3 plots the learning curve against the
phases of the technology life cycle, indicating this trend.

The implications of learning curve theory are quite simple.
If costs decline with experience in an industry and if that
experience is kept proprietary, the established technology leader
will have an inherent cost advantage over latecomers and can
pursue aggressive pricing strategies in anticipation of future
cost declines.** In areas with little or no competition, the
learning curve may be considerably flatter,' because there is
less pressure to reduce costs.

A particularly good description of the concept of the
learning curve is contained in the Defense Contract Audit
Manual, Appendix F, Improvement Curve Analysis Techniques,
May 1979.

** Some of these advantages have been termed *first moverR
advantages and may involve not only a cost advantage but an
advantage derived from brand recognition, advertising, or
buyer loyalty. See Oliver Williamson, Markets and Hierar-
chies (New York: The Free Press, 1978).

-13-
E-22 ',

" . .'a .



-W ffP -J -F- -7-V' rl rWU K vrV VwX M7 kl. %- -F%.

I'DRAFT

Reference to the learning curve in the acquisition of MCCR

may be important to determine who the low-cost suppliers are and

" how they can apply their experience to DOD's needs. Certain

*. companies develop their strategies based on the learning curve

concept; for example, in anticipation of future cost reductions,

they may lower prices before current costs would dictate such a
reduction. This can affect corporate strategy vis-a-vis the MCCR
acquisition process and influence the point in time when stan-

dards may be desired. Those companies who are first to market a
technology may desire product and process standards as a means of

reducing costs and reducing the risk of investing in that tech-

nology. DoD must also be aware of where in the technology life
cycle a product is, because this will influence its ability to

push a technology and gain industry acceptance of standards. For
instance, it may be very difficult for DoD to enforce a product
standard if no dominant design has yet emerged.

Texas Instruments (TI), a significant supplier of integrated

circuits to DoD, built much of its early growth on the learning

curve concept. TI was an early producer of integrated circuits
Id which became a dominant design. Part of TI's strategy focused on

- selling devices to DoD which provided an assured market and

reduced the risks of rapid capacity expansion necessary to take
• advantage of the learning curve. Given the sharp declines in

cost with increased output in this industry (integrated circuit
" costs have.declined on average by 28 percent with each doubling

of quantity produced),* this strategy was crucial to TI's success
as a leading producer of integrated circuits. The timing was

critical for DoD. DoD was pushing this technology and because of
the 3osition of the technology in the life cycle, it was easy to

get industry adoption, as well as realize substantial cost

savings with some standardization on a dominant design.

* Wilson, Ashton, and Egan, g.. gjo

-14- E-23



Z1

DRAFT

The MCCR Acauisition Process

MCCR is defined as computer systems napplications involving:

(1) intelligence systems; (2) cryptography for national defensel

(3) command and control of military forcesi (4) weapons or
weapons systems; (5) direct support to military or intelligence

operations."*

The development of any major system is determined largely by

the operational requirements. The requirements for the develop-

ment and/or acquisition of computer resources result from the

operational requirements. The MCCR acquisition process is part

of the overall process by which DoD acquires major weapons 0
systems and it is governed by a number of directives.** OMB
Circular A-109 describes the distinct phases of the life cycle of

the acquisition process for major systems. +  Because of the

importance of technology evolution in the acquisition process, it
is useful to understand how DoD acquires computer resources
within the life-cycle context. The phases as defined by A-109

include:
44

* DoD, Report to Conoress on Comouter Technologv (Washington,
D.C.: OUSDRE, August 1983), p. ii.

** For example, see DoD Directive 5000.1, "Major System Acqui-
sitions," March 29, 1982: DoD Directive 5000.2, "Major
System Acquisition Procedures," March 8, 1983; and DoD
Directive 5000.29, wMan-agement of Computer Resources in
Major Defense Systems," April 26, 1976.

+ Office of Management and Budget (OMB), Major Systems Acaui-
sitions, OMB Circular A-109 (Washington, D.C.: OMB, 1976).

++ Greater detail on these phases and the management of the
acquisition process is contained in Defense System
Management College, "Management of Software Acquisition,w
Fort Belvoir, Virginia, January 1984.

-15- E-24



D RA T

• Mission analysis -- analysis of existing
systems, capabilities, priorities, and oppor-
tunities and identification of a particular
need, threat, or deficiency in existing
systems.

0 Exploration of alternative systems -- analy-
sis of alternative ways to meet the perceived
need including initial solicitation, propos-
als, and evaluations.

* Competitive demonstrations -- analysis of
alternative system design concepts to verify
the chosen concepts and provide a basis for
selecting a system for full-scale develop-
ment.

0 Full-scale development, test, and evaluation
-- selection of contractor(s) including
monitoring and evaluation of progress to
full-scale development to assure effective
performance under expected conditions.

* Production/performance appraisal -- full-
scale production of the desired system and
continued monitoring of contractor perfor-
mance.

0 Deployment and operation -- actual field
deployment and use of the system.

0 Maintenance and support -- logistics and
maintenance support of the system during
deployment.

0 Retirement and disposal -- replacement of
system with new system, including disposal
.and/or use with non-active forces.

The life cycle of the weapon system may be as long as 25 to
35 years. Yet the typical life cycle of a computer technology

generation is about 5 to 10 years. This disparity creates a
unique problem. A major weapons system deployed in 1985 with a

* life expectancy of 2U years nevertheless could be outmoded or
less effective than expected within I0 years due to development
of new, more efficient computer technology.

--16- E-25



D R A F T

DoD is concerned with ensuring timely technology insertion

and utilizing state-of-the-art technology in all computer systems

embedded in major weapons systems to reduce the LLk of using

less effective or less efficient technology. Technology inser-
tion must be Planned early on in the life cycle and continually

U monitored and updated. For example, by the demonstration phase,

a system's projected life-cycle costs, including pre-olanned

product improvements (P3 I), must be within the amounts reflected

in the latest FYDP (Five Year Defense Plan). Yet even the

process of technology insertion (P31) can cause lengthy delays
and cost overruns. It is this unique problem of managing concur-
rent yet very different life cycles within the acquisition
process that is of continual concern to DoD program managers.

Standards and the Standardization Process

A standard's function(s), type, proponents, and the groups
it affects influence the effect it will have on the MCCR acquisi-
tion process. For the purpose of this study, standards are
defined as documents which establish engineering and technical

limitations and applications for items, materials, processes,

methods, designs, and engineering practices.* The formal stan-
dardization process as defined by DoD is divided into three
steps: (1) standards are developed and agreed upon; (2) those
standards -are then communicated to users; and (3) standards are
applied in a cost-effective manner.** The bulk of the standards
(and- specifications) evaluated in this study are mandatory, MIL

* Rowen Glie, Soeaking of Standards (Boston, Mass.: Cahners
Publishing Company, 1972).

** DoD, Overview of the Defense Standardization and Specifica-
.tion Program (Washington, D.C.: OUSDRE, 1983).

1E "p -7-E-26

I.;

.:' .. . .. .-. . ... . . . . .. . -,. . ., - .. ... - .- .. .. ,.. . - .. .. <. ---.-.. -... .-... - -'-.: : ..



D RAFT

or FED standards, although some are developed within the volun-

tary consensus process or in a de facto mann'er.* Another set of

standards are international (ISO) standards. International

standards represent a higher level of standardization in terms of

requiring broader agreement of many groups. Nevertheless, they

can be important to DoD especially in relation to supporting the

NATO forces.

Functions of Standards

The analysis of standards proceeds from understanding the

various functions they perform, including information; compati-

bility/transportability/interoerability; variety reduction

(optimizing flexibility); and quality.** Functions determine the

impacts of a standard.

The information function defines terms and establishes

measurement and test methods; these standards generate and

disseminate information to buyers, sellers, and other users of

the standard. An example of a standard that contains this
function is a test method for evaluating the functional proper-

ties of integrated circuits.

* e facto standards evolve in a market from one or a small
group, of companies who, because of market dominance,
establish standards without necessarily using the voluntary
-consensus process.

** This delineation of the functions of standards was based on
a broad survey of the literature on standards and was first
formally defined in Putnam, Hayes & Bartlett, Inc., The
Impacts of Private Voluntary Standards on Industrial Innova-
tion, prepared for National Bureau of Standards, Washington,
D.C., November 1982.

-18- E-27



DRAFT

The omatibilitv function ensures that two related products

will fit with one another. In specialized uses such as software,

special categories of compatibility such as interoperability and

transportability are important. Interoperability refers to Othe

ability of two systems to exchange data and understand the
relationships between these data objects.** Transportability is
the ability of software to be installed on different environments

and perform with the same functionality.** Software standards

such as Ads provide compatibility.

The variety reduction function minimizes proliferation and

attempts to achieve the optimum variety of a particular product.

This function permits producers to cut costs by making longer

production runs and to reduce consumer (buyer) search costs. One

example would be a single standard instruction set architecture

(ISA) as proposed under 5000.5X. which would have reduced the

different varieties of ISAs bought by DoD. V

The aualitv/reliabilitv function establishes minimum levels

at which a product must perform to be acceptable. This function

involves a determination of better or worse. Such standards are

extremely common within DoD, since most system acquisitions must

meet well-specified per focriteria.

Standards may have multiple functions and in fact the

functions of standards often operate in tandem; for example, test

methods provide information needed to evaluate quality. The

information function may also be essential to determine how to

establish compatibility or reduce variety. Consider a standard

* DoD, Report to Conaress on Comouter Technology, p. 14.

** Council of Defense and Space Industry Associations (CODSIA), .-
DoD Management of Mission-Critical Comouter Resources,
Washington, D.C., March 1984, Volume II, p. 113.

-19- E-28 7

i , •,



DRAFT

that establishes environmental specifications under which com-

outer hardware must operate. The standard may stipulate the

temperature range, humidity, altitude, and other conditions under
which the computer must function. This standard conveys £2orma-

tInS from buyers to suppliers about certain performance charac-
teristics of the computer and also establishes a level of gualit
that the computer must meet to be acceptable to the buyer.

Tvoes of Standards

In addition to being categorized by function, a standard can

be cateqorized by its t=. Does the standard cover a particular

prduc I or does it involve a p.2rocs; or does it simply estab-
lish an in f ? This categorization scheme is essentially a
hierarchy as shown in Exhibit 4; interface or "paperw standards
are less restrictive and merely define certain characteristics.

For example, an interface standard may define the communications

protocol to be used in connecting two "boxes.' Process stan-
dards, while somewhat more restrictive, define the manner in

iwhich a process is be done, but do not determine the actual
output. Process standards include such standards as those
governing software design, development, and documentation.

Product standards do define a particular output or outcome and
Qtherefore tend to be the most restrictive. NIL STD 1750A is a

product standard because it defines a particular commodity, i.e.,
a 16-bit instruction set architecture (ISA).

These categories indicate the likely effects of a particular

standard (or the function of a standard) both in terms of whether
certain groups may resist the standard and in terms of how well
the standard will be integrated into the MCCR acquisition process

and the technology life cycle. For instance, a roduct standard

that is promulgated too early in the technology life cycle may be

-20- E- 29



Exhibit 4

TYPES OF STANDARDS

d

Product More

Restrictive

Process

Interface ("Paper") Less

Restrictive

.5

E- 30

..

. ,. < - . , .. .. -, .. , , , ; v . . :. _ - , .. .: . . , ..... .- :, . ., .% . -,..,..:..- , ... , , ., ,



" D R A F T

resisted by suppliers (industry) because it does not allow enouqh

flexibility in adapting to anticipated changes in the technology.

On the other hand, a simple interface standard may be insuffi-

cient for users or maintainers of a product who require accurate

and detailed information about a particular product and how it

functions. Such information may not be critical at early stages

of the acquisition process, but may become essential at later

stages.

Proponents of Standards

Depending on which of the various groups that is the actual

proponent of the standard, the standard itself will be perceived
differently and will have different effects. There are essen-

tially four sets of standards developed by different combinations

of groups: government mandatory standards, government-industry
(joint) standards, industry voluntary standards, and industry de

facto standards.

Government mandatory standards are standards that M= be
adhered to by everyone doing business with the government. Most

DoD and MIL standards, federal regulations, and the like are
considered mandatory standards. Usually they are published by

the government and compliance is considered mandatory. Enforce-
ment is overseen by the appropriate government agency.

Joint government-industry standards may be developed through

the voluntary consensus process, but adoption and use by the

government makes the standard mandatory. The primary difference

* between this standard and a government mandatory standard is that
. industry has had input into the process and is less likely to

disagree with the standard.

4E-31
-22-

o~*.*~*
*' .. . . , ... • . •, • .-5- .. .- . *•- . ". . -. " • . •S .". .. - *" * -* ' " - . .. '

*Id....,S"..-*. . """ '" .'" "'.. ', .i, .5' . " . .. " ". ' .' " .. ,",". ' ", , . "." , ",, ."•" .5 " "" " . ' ".



A~~~~ RJ A F T ~ 5

DRAFT

Industry voluntary standards are developed through the

consensus processl* there is general industry agreement but no
one is compelled to obey the standard. The impacts of these

standards may be different because no one is obliged to follow

the standard; a standard may be implemented, yet have no impact

because no one complies with it.

Industry de facto standards are standards that evolve from

one or a small group of corporations which often dominate a

segment of an industry. These firms have enough market power
simply to establish the standard, and market forces dictate that
everyone else must follow that standard. For example, IBM has
been responsible for setting many de facto standards in the
computer industry. These standards may have far-reaching effects

or none at all depending on whether competitors are willing to
follow the standard and whether buyers believe it is a beneficial

standard.

Groups Affected by Standards

For the standards described above, there are different
groups who at a given time may desire a particular standard.

Standards as a whole are desired because they benefit the economy

or some particular process in our economy.** The "demanders* of

* For a detailed discussion of the voluntary consensus process
of developing and implementing standards, see American
Society for Testing and Materials, Standardization Process
(Philadelphia, Pa.: ASTM, 1980) and ASTM, The Standards
System of the U.S. (Philadelphia, Pa.: ASTM, 1975).

** For a detailed discussion of the factors influencing the
demand for standards, see D. Bottaro, OAnalysis of Factors
Affecting the Demand for and Supply of Voluntary Consensus
Standards, Massachusetts Institute of Technology Energy Lab
Working Paper, 82-O03WP, August 1981.

-23- E-32

5*1*.* .5 % " " , ," . * V '
" *~ ." " %" "%'".. ,. .- .



DRAFT

standards fall into one (or more) of several groups: buyers,
suppliers (sellers), users, and maintainers. Buyers are those
who buy the product affected by the standard, in this case, DoD
or one of the Services. Suppliers are those who sell the product
in question, usually industry. Users are those who actually use
the product, usually DoD or the Services in this case. Maintain-
ers are those who must maintain and support the product and
ensure its effective and continued operation after deployment.

Each of these groups may desire particular standards (or
- functions of standards) to assist them in performing their jobs.

Buyers desire standards that reduce costs, ensure adequate prod-
uct performance, or permit accurate comparisons. Suppliers want
standards that clearly define the buyers' (and/or the users')
needs and ensure that the product will be sold. Users demand

standards that facilitate the operation of the product, for

* example, by assuring compatibility or performance. Maintainers
want standards that enhance logistical capabilities, such as

reducing variety or ensuring a certain level of reliability.
* Also, because maintainers typically did not develop the system,

they are interested in standards that will assist them in main-
taining something they did not develop, i.e., software documenta-

tion.

£ Each group may also desire different types (functions) of
standards at different points in time. Buyers and sellers are
interested in standards earlier in the acquisition life cycle
than users or maintainers. However, to ensure effective perfor-
mance during deployment, users and maintainers may need to be
involved early in the acquisition process to assure that their
needs are met.

E-33

-24-
@' ' p *'**'U~ .. . - . - . *



D RAF T

Department of Defense

In acquiring MCCR, DOD formulates and implements certain

strategies based on its goals and requirements. These require-

ments compel DoD to acquire the best computer resources utilizing

the latest technology. However, this process must be viewed in

the unique context of the life cycle of a weapons system, which

is usually in excess of 30 years. Given the rapid changes in

computer technology during this life cycle, DoD has a unique

problem of ensuring the use of up-to-date computer resources in

systems that have a very long life cycle. The enormous financial

resources which DoD commits to MCCR further compound this prob-

lem. DoD spent over $5 billion for MCCR in 1981; this amount is S

projected to increase to $38 billion by 1990.* As stated in a

recent draft report,

[It is important that computer resources
in Defense systems be managed as elements or
subsystems of major importance during the
various life cycle phases, with particular
emphasis on computer software and its inte-
gration with the surrounding hardware.**

Exhibit 5 shows the factors influencing DoD's development

and implementation of strategy. DoD constantly reviews the

threats against which it must operate. The overriding objective

is to minimize the threat in the most efficient, productive W

manner. DoD formulates specific strategies to meet its goals;

these goals in turn are based on perceived needs and require-

ments. DoD in its Report to Congress on Computer Technoloav

identified various requirements for MCCR. These requirements,

listed in Exhibit 6, are divided into two categories: those

derived from operational needs and those derived from logistical

V.
* Electronic Industries Association, DoD Diaital Data Process-

ing Study -- A Ten Year Forecast, October 7, 1980.
• * DoD, Embedded Computer Resources Standards Standardization

Document Proaram Plan, p. 3.

-25- E-34 'U
-U

..- : .: .- ...- .- . . . .. , ., . ..-.................-.-....-. - .. ..-. ..-. ......-.-....-. . .. .. -. . .. .... : .



m 4U)

Xv

E-0

w o 0

64 to
C.,.

>->

ra)a

E-4 E-4E-35

101

63U 14

04

.E-4 0

-- . - "

.r.,.'

Ca) 0

0'4
L _ __

Zs-iE-35



Exhibit 6

DOD REQUIREMENTS FOR MCCR*

Operational Requirements

0 Enclosures

0 Survivability and vulnerability

0 Interoperability

0 Interchangeability

0 Reliability

* Maintainability

0 Hardening

0 Vibration, acceleration and shock

* Thermal

* Power, size, and weight

Maintenance and SuDoort Recuirements

0 Specific operational requirements

" Maintainability

* Manpower and training

" Sparing and repair.

Adapted from DoD, Reoort to Congress on Computer Technologv
(Washington, D.C.: DoD, August 1983).

-

.1
-27- I

E-36

%*.. , , . .- ,- . - - , * -5 % ".. .. - - - a. , * 5%,% " , . % . "4, ". ". * ' " , • , . ". - ., ,-



DRAFT

(or maintenance) needs. Because operational needs are the

overriding concern to DOD, they determine, in cart, the loqisti-

cal needs.

In addition, DOD identifies specific problems or issues

inherent in MCCR which must be addressed by its strategy. These

*. problems include:*

0 Lack of adequate competition;

* System schedule slipt

* System failures;

9 Latent defects;

0 Inability to reuse and transport software;

* High cost of maintenance support and logis-
tics;

• Low operational availability;

* Difficulty in maintaining and upgrading
software as needs change and as technology
changes.

The unique requirements of DOD as well as the problem of timing

between the technology life cycle and the system life cycle cause

these problems and are an important input into the development of

objectives determining DoD's strategy in acquiring MCCR.

DoD's objectives in acquiring MCCR can be deduced from an
understanding of its requirements and problems. While not

necessarily exhaustive, a list of objectives provided below

• Defense Science Board, Task Force on ECR Acauisition and
"ngem (Washington, D.C.: OUSDRE, November 1982); DOD,
Report to Conaress on Computer Technologv, pp. ii-iii; also
see CODSIA, DOD Management of Mission-Critical Comoute
Rurces, Volume II, pp. 21-22.

-28- E-37



D R A F T

indicates the factors driving DoD's strategy in acquiring MCCR.
These objectives include:

• Reducing the cost and time of acquiring MCCR;I Improving operational readiness;

_ Enhancing interchangeability, interoperabil-
ity, and transportability of MCCR;

0 Improving maintenance and logistics support
of MCCR;

0 Reducing the variety proliferation of MCCR;
and

0 Enhancing the ability to introduce pre-
planned product improvements (technology
insertion) to MCCR.

DoD develops strategies to acquire MCCR that will meet these

objectives. For every new start of a major system, an initial
acquisition strategy is proposed and implemented. Part of this
strategy will include consideration of technology insertion

(P3I). Further, DoD strategy must be developed in sufficient
detail at the time of issuing solicitations for concept

exploration to permit competitive exploration of alternative
system design concepts.

DoD strategy changes for different systems. For one system,

DoD may opt for the lowest cost system even though its perfor-

mance may not be the best offered, but it is sufficient to meet

DoD'a needs. In other situations, system performance (qual-

ity/reliability) is of greatest concern and cost is a less

important factor in DoD strategy. As one understands DoD strat-

egy and how it affects the MCCR acquisition process, one can

begin to evaluate how standards can be used in that process and

can identify potential impacts.

E-38
-29-

• .6- , . . , ; . - - . - . . - -, ' ' ' , ' o ' ' - ' , - '



DRAFT

Because industry supplies MCCR to DoD via the acquisition

process, the behavior of companies in industries such as comput-

ers and semiconductors must be examined. Exhibit 7 displays the

factors influencing industry behavior and the development of

strategies by companies within an industry.* The behavior of

these companies is conditioned by the environment in which they

operatel for example, standards and the MCCR acquisition process

are elements of the environment and affect the corporate behavior

of these companies. The actions of competitors as well as gov-

ernment policy also affect industry behavior. In addition, other

factors, including the orqanization of the companies and their

goals, influence behavior.

The organization represents the manner in which a company

structures its human, capital, and financial resources. Compa-
nies in industries also pursue goals; these goals may be short-

run, such as maximizing market share, or long-run, such as profit

maximization. Given a set of goals and a particular organiza-

tional structure, a company will formulate and implement a set of

strategies by matching these capabilities with the opportunities

that it perceives in the marketplace.

QA company selects various strategies with respect to pric-

ing, product choice, technology, and marketing. The company

implements a set of strategies in hopes of achieving its goals

and attaining a certain level of performance. For example,

certain companies in the semiconductor industry have followed a

set of strategies that emphasize introducing new technologies,

producing high-quality/high-priced devices in relatively low
volume, and concentrating on specialize'd markets or market

This industry model has been developed in Putnam, Hayes &
Bartlett, Inc., golagJL.

E-39

-30-



Exhibit 7

FACTORS INFLUENCING CORPORATE STRATEGY

213 BQNMENT ORGANIZATION AND GOALS

Market structure • Resources
and competition

* Government strategy 0 Hierarchy
and policy

* Technology 0 Long-term versus

opportunities short-term goals

Standards Vw
STRATEGY FORMULATION
AND IMPLEMENTATION

Pricing

* Product

* Technology

a Marketing

PEREORMANCE

6 Profitability

0 Productivity

• Innovation

3.-40~-31-



w

DRAFT"

p

niches. These firms perform reasonably well as long as competi-

tion is not severe and they are able to maintain a technological

lead. Successful strategy implementation depends upon both

environmental factors (market structure, degree of competition)

and organizational factors (good in-house researchers, flexible

management of the technology development process).*

LINKAGES IN THE FRAMEWORK

The components of the conceptual framework provide the

building blocks for isolating the effects of standards in the
MCCR acquisition process. The next-step is to identify the key

linkages among the components which explain the factors

influencing the impacts of standards. These linkages are shown
as solid lines in Exhibit 1.

DOD -- MCCR Acqu isition Process

DoD strategy and behavior are linked closely to the MCCR

acquisition process since DoD is the primary motivating force

behind that orocess. In Exhibit 5, we noted that DoD implements
a strategy which is directly related to the MCCR acquisition

process. That strategy encompasses various factors designed to
affect the MCCR acquisition process at various stages to obtain

the desired results. To be effective, DoD's strategy may differ

at various stages of the acquisition process. For example, even

though P3 I may not be introduced until late in the life cycle, it
must be Planned for and budgeted in the early phases of the life

See Peter K. Ashton and James A. Dalton, *Strategic Behavior
and Performance in the Semiconductor Industry," Texa
Business Review (Spring 1983).

E-41-32-



w

DRAFT

cycle. Changes in technology, however, can affect DoD's plans
with regard to technology insertion. DoD's ability to match an

effective strategy with each stage of the acquisition process is

a key to achieving its objectives.

The beneficial and/or harmful impacts of a particular

strategy are isolated by determining the impact on three con-

* cepts:

• Budget planning;

-• Cost predictability;

* Uncertainty (risk-) reduction.

For example, DoD's MCCR acquisition strategy must facilitate the

budget planning process for the acquisition life cycle. This

strategy should also induce cost predictability both in terms of

overrun control and in terms of properly making risk/return

assessments. DoD's strategy should also reduce risk, where risk

is defined as the uncertainty associated with the timely develop-

ing and deploying of a cost-effective, reliable MCCR.

The uncertainty or risk of the MCCR acquisition process is a

function of several factors including cost, quality, time, and

system flexibility. By changing each of these factors, risk

(uncertainty) can be raised or lowered. Each of these factors is

in turn influenced by a number of variables impinging on the MCCR

acquisition process.

Cost is defined as the total acquisition cost for a partic-

ular MCCR. It is influenced by the existing technology base, the

extent to which suppliers can move down the learning curve, par-

ticular DoD requirements for that MCCR, and the amount of compe-

tition in supplying that MCCR.

-33- E-42 Wg

-, . A ?,,, " ?., "; -... , , _" " " " . . . . *' J ~ ~ *C -kai U -'
"

' ,,,, ,.... . . .



FC D R A P T

Quality reflects the orobability that a MCCR will perform as

6 anticipated. Several elements affect the quality of MCCR includ-

inq the existing technology base, particular DOD requirements,

and tradeoffs which the supplier(s) or DOD makes between cost and

development time.

Time is defined as the length of time needed to develop and

deploy a MCCR. It, too, is defined by the existing technology

base and DOD requirements as well as the shape of the learning

* curve and the acquisition life cycle itself.

System flexibility reflects the capability of MCCR to be

interoperable, transportable, and compatible with other MCCR.

The existing technology base and DOD requirements affect flexi-

bility as does the existence (or non-existence) of standards.

DOD takes each of these four factors into account in devel-

oping a strategy; one objective to minimize uncertainty. In

order to minimize uncertainty, DOD must maximize system flexi-

bility and quality while also minimizing cost and development

time. Since each of these factors is interrelated and affected

by similar elements, DOD must make tradeoffs among them to obtain

an optimal condition with minimum uncertainty. For instance, to

-C increase quality, DoD must make greater use of time or money

(cost) or both.

The following example illustrates the tradeoffs between

cost, time, quality, and system flexibility of MCCR that face

DOD. Assume that DOD chooses to encourage competition and the

number of competitors throughout the MCCR acquisition process.

DOD may benefit because this reduces uncertainty by lowering cost

and by indirectly improving quality through maintaining many

alternative sources. With a greater number of competitors, move-

ment down the learning curve may be slower, but greater emphasis

may be placed on process (cost) innovation because of the diver-

sity of approaches. On the other hand, uncertainty may increase

-34-
E-43

• -... ... , .• . -_- ..- .. . .,-, -.-. .- - - a.- .- .. a -• ._ e e . , , , t e



D RA P T

because delivery time is delayed due to an extended life cycle
for solicitation and evaluation of different proposals. The

strategy affects other factors such as budget planning which is
made more complex and less certain. Each of these impacts are
weighed to determine the overall impact of DoD strategy on the
MCCR acquisition process and then compared with other impacts
flowing from the other linkages.

DoD -- Standards

DoD and the Services formulate and imolement various types
of standards and specifications as part of their strategy for
acquiring MCCR. Standards represent one focus of DoD strategy
vis-a-vis the MCCR acquisition process. Its impact on the MCCR
acquisition process is the primary. focus of this study and is
treated in detail as a separate linkage. In this section, we
point to the reasons why DoD uses standards to acquire MCCR and

discuss the likely results.

DoD has explicitly identified certain objectives with regard
to its use of standards. These objectives are to *assure physi-
cal and operational interchangeability and interoperability while
balancing specific mission requirements with technological growth
and cost effectiveness.** DoD employs standards where they will
reduce the. risks inherent in the MCCR acquisition process. The
previous section showed that standards can affect system flexi-
bility which in turn influences risk. Standards can also indi-
rectly influence other elements such as cost, time, and quality.
The primary benefit to DoD of using standards properly is that
standards improve DoD's ability to make tradeoffs among quality,
cost, time, and flexibility, thereby making it easier to achieve

* DOD, Overview of the Defense Standardization and ftecif.ca-

tion Program, p. 4.

-35- E-44

.1. ..



D RAF T

an optimal solution to reducing risk. Costs result when stan-

dards elevate risk by exacerbating one of these elements.

For example, standards that define the manner in which

software will be developed and documented provide a general

framework for software acquisition and allow common implementa-

tion by developers, users, and maintainers.* The benefits of the

standard to DoD include information that is transferred among

users and enhancement of interoverabilityl the standard may also

reduce costs and development time by providing a uniform method

of developing and documenting software. Insertion of new tech-

noloqy may be easier because software developers have to spend

less time *reinventing the wheel.' They can concentrate on new

programming because the design and documentation needs are

clearly specified.

DoD implements such standards where such benefits clearly

exist; what is less clear is a standard that may generate certain
benefits, but also increases costs in other ways. Suppose the
documentation standard described above were written in such a way

46 so as to prevent using certain new programming techniques which
in turn delayed technology insertion. In this case although the
standard may have provided useful information and reduced costs,
it also prevented the use of advanced programming techniques and

caused DoD to acquire software which was not state-of-the-art.

Measuring these lost opportunities may be difficult, but DoD
frequently faces these tradeoffs which can condition its behavior
leading to suboptimal choices.

* Such as MIL-STD-1679A, "Software Development."

-36- E-45

%.-



DRAFT

Industry -- Standards* @

Standards affect industry in two ways: (1) by influencing

strategic behavior, and (2) by altering their investment behav-

ior. Strategic behavior is affected, for example, if a standard

establishes a minimum quality level that necessitates pushing the

"state of the art,u it may force a company to pursue a product or

technology strategy designed to achieve this quality level. This

is one way in which DoD can insert new technoloqies. As another

example, DoD may implement a standard that reduces the prolifera-

tion of different varieties of applications software. Companies

that had supplied software not covered in the standard then face

three strategic choices: (1) exit from the market of supplying

to DoD; (2) develop new software that meets the standard; or (3)

seek a waiver from DoD to permit it to use the non-standard

software. These options may be more or less risky depending on

commercial applications for the company's Ononconforminq i

software, the nature of competition in the DoD marketplace, and

the company's overall strateqic outlook vis-a-vis that particular

product.

Standards influence industry behavior in another way.

Standards can alter the expected profitability of an investment

project by changing the risk/return payout of the project. The

expected profitability of any investment project is a function of w

the expected returns and the relative riskiness of those returns.

(See Equation 1.)

E(77 - 1 V1 + P2 V2 *** + Pn Vn (1)

* This linkage is described in detail in Putnam, Hayes &
Bartlett, Inc., Q. gl1.

-37- E-46
.. . . . . . , . . o-........ .. ..., .. -...... ... .. , ....-. ,., .. ..: . .. .. .. .., ; / ;. : .'. : ' .% ' '.' ' " : .', .' : : .,* , .' .,. .. -. , -. ,., .. : ,. '. .'.



D RAFT

where

E(71 = Expected profitability

Pi T= R probability (risk) of the expected return for
i product

Vi  = Expected return for ith Product

The functions of standards can alter Vi , that is, the risk

associated with earning a particular return. Standards may both

raise and lower, market and technical risks.*

Test and measurement methods. provide valuable information

'10 which permits the comparison of results of various innovations.

If a researcher knows that one prototype will measure favorably
against other test products, R&D effort can concentrate on the
design that is superior, thereby reducing development costs (and

0 technical risks) and increasing expected profitability. In these

situations where risk is lowered and/or returns go up, and
expected profits increase, standards will be desired; standards
will not be demanded by industry when they raise risk (or lower

4F returns) and lower expected profitability.

For example, DoD may implement a standard that provides

information to aU suppliers of software that DoD will purchase
only software that operates on certain compilers. This reduces
the risks of developing certain software since suppliers are

aware of the precise specifications of what DoD wants and how the

software must operate. Certain companies that do n have
compatible or transportable software may face higher risks of

As discussed above at page 8, market risk represents the

risk associated with attempting to sell a product and the
probability that the product will generate a profit.
Technical risk involves the risks of successfully developing
a product or cost-saving process.

-38- E-47



' . . , ', - . . . - , ,i , . ,_ I

D RA F T

doing business with DoD, especially if there are establishedi. t e
comoetitors already making compatible software.

The impacts of standards to industry result from their

influence on industry behavior and through impacts on risk.
4

Standards can raise or lower risk, and not all companies may be
affected in the same manner. The nature of the impact depends
upon the competitive position and strategies of companies prior

to the imposition of the standard. W

Industry -- MCCR Acouisition Process*

The MCCR acquisition process has a direct impact on industry
and industry strategy.** This process represents a manifestation
of DoD strategy and its impact on industry. It includes the

'interaction of the MCCR acquisition process and standards, which
is the crucial linkage discussed in the next section.

As we discussed above, the MCCR acquisition process may be
viewed as an element of the environment which conditions and
constrains industry strategy (see Exhibit 7). The MCCR acquisi-
tion process may influence a company's goals either by creating

- new goals or reinforcing existing goals. The structure and
-' resource base of the company may also be affected by the acquisi-

tion process; for instance the company may need to acquire and/or
train personnel to deal particularly with DoD and respond to
DoD'g unique requirements.

WI

A more detailed discussion of this linkage appears in
Wilson, Ashton, Egan, o. Cjt.

** Industry can influence the MCCR acquisition process indi-
rectly in three ways: (1) through lobbying efforts that
influence the acquisition process directly; (2) through
lobbying efforts that feed back on DoD strategy; and (3)
through industry participation in implementing standards
used in the MCCR acquisition process.

-39- E-48

.... ,. ,.... -.. - , .



DRAFT

Since companies pursue different strategies, the MCCR

acquisition process will affect various companies differently.

Certain firms may aqgressively pursue strategies aimed at winning

DOD business while others are less aggressive and concentrate

greater effort in commercial markets. Changes in the way DoD
affects the MCCR acquisition process can alter corporate strat-
eqy. For example, greater emphasis on cost control or less

emphasis on reliability may compel certain companies that previ-
ously had emphasized high cost/high quality products to reorient

their strategy.

The analysis of industry reaction to one MCCR acquisition

program will demonstrate how industry is affected. The VHSIC
(very high speed integrated circuits) program was announced in

late 1978 as a six-year $200 million program to push technology
in the development of integrated circuits. Many saw this as a

response to the Japanese and European government efforts in the
VLSI (very large scale integration) area. Industry initially

greeted the VHSIC program with mixed feelings. Some pointed to

its likely effects on companies' organization and resources; this
proqram was expected to be engineer-intensive and, given the
scarcity of trained design and process engineers, a potential

problem of committing enough talent to the program was identi-
fied. Others claimed that the program would divert resources

away from promising commercial areas to military applications
with little commercial relevance. Still others believed that the

VHSIC program would not insert enough basic. technology and not
upushu the technology in the appropriate direction.

Many of these complaints have proven ill-founded and most

companies have welcomed this government interest and support of
integrated circuit technology. These companies believe VHSIC is
providing needed capital resources and will help stimulate

continued growth and innovation in this area. Some companies

E-49

"* -40- -

-- -- --..-.--- '.---.-: .- .-"-: : .- .-:/'?-':-¢-'------------------------------.----..----.---------.----------



DRAFT

have responded to the program, reorienting their strateqies in

hopes of Ocashinq in" on the capital for R&D provided by DoD. It

is still too early to tell what the final impacts of the proqram

will bei it is clear such a program can have significant effects

on industry and its strategies and indicates the factors eval-
uated by industry in making impact analyses of such programs.

Standards -- MCCR Acauisition Process

The linkage between standards and the MCCR acquisition
process is the crucial relationship in the framework because it
demonstrates the impacts of standards. We have seen that DoD
pursues certain goals in the MCCR acquisition process and that
the use of standards is one element of DoD's strategy for achiev-
ing its objectives by reducing risk in the MCCR acquisition pro-
cess. Further, we have seen how industry and standards interre-
late and how the MCCR acquisition process can affect industry.
But to fully understand whether DoD's use of standards will
achieve various objectives and what the impacts are, the stan-
dards-MCCR acquisition process linkage must be analyzed.

Exhibit 8 depicts a schema showing that standards interre-

late with all phases of the MCCR acquisition process. The
*functions of standards impact each of the phases of the MCCR

acquisition process, although certain functions are more impor-
tant at some phases than others. In the early phases of the MCCR

acquisition Process, basic information is needed to help define
needs and assist contractors in understanding DoD's requirements.
During the demonstration, and test and evaluation phases, the
quality function is important because it gives DoD program
managers a means to measure performance and make comparisons
among competing systems and against overall system requirements.

*Later on at the maintenance and support phase, the variety

-41- E-50



Exhibit 8

STANDARDS - MCCR ACQU3ISITIONJ
PROCESS LINKAGE

JGenerations

M4is sion
Analysis

M [Demonstrat~

do STANDARDS

E*
* -Function
13 -Proponent

ITest &-Category
Evaluationj

&Deployment

maintenance
Support

R~etirement&
Disposal

E-51
-42-



DRAFT

optimization and compatibility functions are imoortant for

adequate spare parts availability and to facilitate repair by

means-of compatible modular construction.

In addition, the flexibility of standards (i.e., interface,

process, or product) will change with the different phases of the

MCCR acquisition process and the technology life cycle. In the

early phases of the acquisition cycle and the life cycle, stan-

dards will be written so as to maximize flexibility and encourage 4

alternative designs. At later stages, standards may be more

process- or product-oriented, emphasizing physical dimensions and

designs.

The proponents of standards will be involved in different

phases of the acquisition process. Clearly buyers and suppliers

will be most actively involved in the phases up through oroduc-

tion and deployment; at this point users and maintainers assume

significant roles and will demand standards that facilitate use

and maintenance of the system. The buyers and suppliers, how-

ever, do not drop out of the picture comoletely; if a system

Ai fails to operate properly in the field, feedback to the buyer and

supplier from the user will compel them to alleviate the problem.

This linkage, as Exhibit 8 indicates, however, must be

viewed in the context of the technology process and particularly

the technology life cycle and technology push/insertion or P31.

A critical issue facing DoD is whe in the acquisition process

P 3  is desired (because of the technology life cycle, DoD knows

P 31 must occur) and ho does DoD get industry to help provide

P31? As noted earlier, DoD must plan for P 31 early in the life
cycle. This may involve interaction with potential users as well

as giving consideration to what the state of the art may be 10 or

20 years hence.

-43- E-52 W



Vr V

DRAFT

Standards can foster or inhibit the insertion of technology

in the MCCR acquisition process. Early adherence to a quality

standard (such as an ISA) that freezes on a particular technology

or design clearly hampers technology insertion and can increase

DOD's risks by deploying less effective systems. On the other

hand, an information and compatibility standard such as for

software documentation may facilitate technology insertion by

making it easier to introduce new advanced software to an exist-

inq system whose requirements are clearly understood. In the

latter case, risks are reduced because system flexibility has

improved.

To assess the impact of standards in the MCCR acquisition

process, one must examine whether the goals of DOD strategy in

that process have benefited (or been achieved) as a result of the
use of the standard. As discussed previously, the benefits of

standards are derived from the manner in which they reduce risk.

For example, as noted above, the quality function of a standard

obviously helps assure that DoD obtains reliable MCCR. Compati-

bility standards can reduce costs and increase system flexibil-

ity. Standards that make it easier for DOD to trade off among

the factors affecting uncertainty are perhaps the most benefi- I
cial. For instance, a standard that establishes common software

terminology and definitions among the Services helps to reduce

system development time by making it easier to determine mission

needs and evaluate current systems. Such a standard may also

enhance system flexibility by facilitating comparisons across the
Services and tereby also reduce the cost of developing new

software that c.n be utilized by all three branches of the

military.

Aside from looking at the impacts on DoD, one must analyze
the reaction by industry to a particular standard. DOD may

believe that standards for software documentation will facilitate

technology insertion as described above. However, if the stan-
dard provides a method for documentation with which industry is

,-44- E-53[E-53



D R A F T

unfamiliar or believes is not apropriate, industry may resist

the standard and technology insertion may not proceed smoothly.

This last example demonstrates the necessity of evaluating

Ill the linkages and impacts of a standard to fully determine its
impact. Both DoD and industry analyze the likely effects of a
standard and, depending on the perspective, the impact analysis
may prove radically different. The last section of this paper
will discuss techniques for conducting the impact analysis.

METHODOLOGIES FOR EVALUATING
4THE IMPACTS OF STANDARDS

Once one understands the components and their linkages in
the framework, one can assess the impacts of standards or
proposed standards and attempt to make an overall evaluation. As
we noted earlier, prior analyses have examined the impact of
standards on one or two dimensions; however, to gain a complete
understanding of a standard one must evaluate the impacts at each

component level and conduct an analysis integrating those impacts
across the framework.

There are a number of ways to integrate the impacts in the
framework. Common techniques include risk-benefit analysis and
consumer welfare analysis. Each technique as developed herein
merely provides a *road map" for decisionmakers and must be
refined and developed further on the basis of further analysis
and case study. Furthermore, these techniques may be used
together to complement and supplement each other in arriving at
an overall determination of impact.

-45- E-54

U~A* A'**• -- • .. .J .



RD-Al?5 352 COST EFFECTIVENESS TRRDEOFFS IN CONPUTER 4/4
STRNDRRDIZATION RND TECHNOLOGY I..(U) INSTITUTE FOR
DEFENSE RNRLYSES RLEXRNDRIR YR R R HOOK ET AL. JUN 86

UNCLRSSIFIED IDR-P-1931 IDA/HG-86-31052 HDA9S3-84-C-6831 F/G 9/2 HL

Eu..n

IIII



/

11111
It'll

.~.U32

11111=
=

3

I

I



DRAFT

Consumer Welfare Analysis

Consumer and producer welfare analysis examines the benefits

(and costs) of chanqing the demand and supply for a particular

good, in this case, MCCR. The concept of consumer surplus

provides a tool for measuring changes in social welfare. Con-
sumer surplus is the difference between the maximum price that
consumers are willing to pay for a product (such as an MCCR) and
the actual price of that product. Producer surplus represents
the profits earned by a producer in selling a product.

Consumer surplus can be measured as the area under. the

demand curve and above the horizontal line denoting price, as

shown by the shaded area in Exhibit 9. If the price of the
product falls, the price line moves down and the area showing
consumer surplus increases. Producer surplus is commonly mea-
sured as the difference between revenue earned by the producer
and the cost of making and selling the product.

With the introduction of a standard, the supply curve (S1 in

Exhibit 9) is assumed to shift down to S2 as a result of lower
production costs.* The price of the standardized product falls
from P1 to P2 and the quantity demanded increases from 01 to Q2.

The measure of b from introducing the standard is the

increase in consumer surplus resulting from the decrease in price

paid by the consumer, i.e., DoD, as shown by the cross-hatched
area, P2RTP1. Depending on this shift in the producer's cost

curves, producer surplus may either increase, decrease, or remain
the same. Comparison of price-cost margins before and after the

imposition of the standard provide the measure of change in

producer surplus.

A * It is assumed that the standard lowers production costs, for
example, by optimizing variety and permitting the realiza-
tion of scale economies.

-46- E-55



Exhibit 9

CONSUMER SURPLUS ANALYSIS

Price

T

P1 Supply (S1)

R3
P2  Supply (S2 ) .

Demand (D)

0 2 Quantity

-

- 47 - E-56

,- ' - "• *e ", ' - o • % , • , * % - . " * ? .* . P v



DRAFT

* In order to fully apply this technique, one must first be

able to estimate the demand and supply for MCCR for a particular

system and then estimate the life-cycle costs (and cost savings)

of introducing a standard. Furthermore, as the framework demon-

* strates, these estimates must incorporate not only direct costs

and savings, but indirect effects as well on not only buyers and

suppliers, but users and maintainers as well. Clearly,

sufficient data must exist before this method is feasible1

*Q however, it does provide a useful and relatively simple approach

to the problem.

Risk-Benefit Analysis

Traditional cost-benefit analysis involves measuring the

impacts of a standard in terms of the costs and benefits it

generates. Measurement of costs and benefits in quantitative

terms is not necessarily simple or straightforward. The analysis
discussed here involves "risk-benefits analysis which is less

quantitative but provides a way to assess all the impacts (direct

* and indirect) of a standard. One evaluates impacts in terms of
whether rLJs is increased or decreased and what the benefits are

that result from changes in risk. A series of decision rules are

implemented to determine the nature of the impact on risk and

* weights are established to assist in comparing impacts among the

components in the framework. A hypothetical example of risk-

benefit analysis follows and is depicted in Exhibit 10.

Assume DoD issues a set of standards designed to implement a

standard software support environment that could operate with a

variety of computer systems. DoD's objectives in this effort

would be to reduce applications software proliferation, provide

*central configuration control, and improve software support from

both development and life-cycle standpoints. In examining the

-48- E-57



41~IF Ira W II

0~ C e C

041 1

44 A 0

0) 
-4 

-P0 40
41 N ha

M 0 tr
4# 0 0 =~G

) 0 0 0 "4

C)0 0 '0 0

01 Pal -1 - 4.v

Caa) 0 0A

C40

41 41

D, u

2 spa

C

E0z41 - -

P41 01 0

C- V4 0

a.,4 C 4

z 41 c1. "0 0 C13 0

to 'U

'CC
c 01

39 0

E C A4 t1P 0 -
~0 Co. (d

4I

h41 '

E-.58



DRAFT

likely impacts of the standards from DoD's point of view, the

benefits derived from reduced risk would include: (1) lower cost

and less time required to establish software support facilitiesy

(2) qreater total (hardware/software) system flexibility and

easier upqradinq; (3) improved system quality; and (4) better
information about life-cycle cost.

The cost savings are measured by comparing the cost of

independent development for software support per system plus the

life-cycle support costs per system with the costs of implement-

ing a standard software support environment per system. This

quantitative estimate reflects only one set of benefits to DoD

and must be weighted relative to the other benefits to DoD.

Decision rules can be developed, for example, that state that

improved quality and system flexibility are twice as important as

dollar cost savings and thus these benefits would be weighted

twice as heavily as the cost savings. (As shown in Exhibit 10,

flexibility and quality are weighted twice as much as cost/time.)

The analysis must also evaluate the impact from industry's

perspective. Industry may react favorably to the standard as it

reduces both market and technical risk of developing software

support tools and facilitates upgrading to new systems and

enhancinq existing systems. Again these benefits must be weight-

ed accordinq to a set of decision rules. Hypothetical weights

for both DoD and industry are shown in Exhibit 10 as well as an

overall weighting scheme. Industry may experience certain costs

as well. Clearly, a standard software environment reduces

software proliferation which may potentially reduce software

sales and profits, Also, proprietary support software would no

longer be necessary which might deter some companies from compet-

inq. The technology insertion process, however, would be

improved by the standards, particularly as it would facilitate

side-by-side hardware and software development. Summinq up all

-50- E-59

R- ..



DRAFT

the impacts and weighting by the scheme shown in Exhibit 10 0

yields an overall impact estimate.

Again, a more rigorous approach to weighing and comparing

the benefits and costs of the standard must be developed;

nevertheless, this analysis provides a way to integrate the

impacts of a standard and understand how the use of a particular C

standard affects the MCCR acquisition process and ultimately

impacts both industry and DoD.

CONCLUSION

This study will develop a decisionmaking model to assist

high level DoD officials in determining whether a proposed

standard or proposed application of a standard affecting the

MCCR acquisition process will have the anticipated or desired

effect. The approach taken provides a methodology for examining

the problem from the perspectives of the MCCR acquisition

process, DoD. objectives and goals, industry objectives and

goals, and the standardization process. By developing a model

which examines the proposed action from all these perspectives

and the linkages among them, important secondary and tertiary w

effects which may actually exceed the primary or anticipated

effect in scope and significance may be identified.

E-60 P



The model will guide the DoD official through a series of

0 critical questions and issues that need to be examined from the

perspective of the specific situation. In addition to focussing

his attention on these critical areas, the model will provide

him with an analysis of the probable outcome based on surveys of

the relevant literature and actual case studies. This analysis

will provide appropriate citations and references which can be

used directly by the official in any supporting documentation he

needs to produce.

0i

-52-

E-61

•55 . O"*. *



Aopendix A

GLOSSARY*

LIm. An ANSI standard programming languaqe trademarked by and
ider the control of the U.S. Department of Defense. with a

1.imber of modern characteristics.
railabilJ±.. Operational Availability (OA) is defined as the
"obability that, when used with actual operating environment, a
,stem as equipment will operate satisfactorily at any time.

:! oher Order Lanauage (HOL). A software lanquaqe for program-
t..nq, which is more problem oriented than the traditional
,ichine-level assembly languages.

,.struction Set Architecture (ISA). The attributes of a computer
processor as seen by a machine (assembly) language programmer,

e., the conceptual structure and functional behavior of a
mputer (at the machine-language level) as distinct from the

totqanization of data flows and control, logic design, and physi-
-al implementation.

tnteroperabilitv. The ability of two environments (computer
i,8tems, processors, or weapon systems) to exchange data objects
(data fields, records, files, or messages) and their relation-
;*ips in forms usable by tools and user programs without conver-

,.on. Interoperability is measured in the degree to which this W
change can be accomplished without conversion.

ssion Critical Comouter Resources (MCCR). Computer systems
)plications involving: (1) intelligence systemsy (2) cryptogra-
,y for national defensey (3) command and control of military

The definitions contained in this glossary are from Council
of Defense and Space Industry Associations (CODSIA), DoD
Manaalement of Mission-Critical Computer Resources, Volume
II, prepared for the Undersecretary of Defense, Research and
Engineering, March 1984.

E-62



0

APPENDIX F

REFERENCES

Or F-i



Ada Information Clearinghouse, "Ada IC', July 1985.

Agrawal, S. et.al., "On Performance Oriented Design of JSSEE(JSSEE
Performance Considerations)", Report EE-ARCH-012, BGS Systems, Inc.,
Waltham, MA 02245.

Alfeld, L., and Graham, A., Introduction to Urban Dynamics, Cambridge,
MA: MIT Press, 1976.

Amdt, D. "The Application of Ada Generics to Large-Scale Projects: A Case
Study", Bell Technical Operations Corporation Technical Report, Tucson,
AZ, no date.

Association of Computing Machinery, "Matrix of Ada Language
Implementations", ACM, updated May 1985 by COMPASS.

Barnes, J. and Fisher, G., Jr., "Ada in Use", Proceedings of the Ada

International Conference, Paris, 14-16 May 1985.

Boehm, B., Software Engineering Economics, Prentice Hall, 1981.

Boehm, B., and Standish, T., "Software Technology in the 1990's: Using an
Evolutionary Paradigm", IEEE, 1983.

Brown, M., "Computer Validation Called Beneficial to Ada Use",
Government Computer News, October 1985.

Brown, M. "UK Re-examines Ada Implementation Policies," Government
Computer News, October, 1985.

Brykczynski, W., "Abstracts.1" Abstracts of Ada tool packages. Draft.
Institute for Defense Analyses, Alexandria, VA, June 1985.

Carlyle, R., "Panacea or Placebo?", Datamation, August 1985.

Clapp, J., et al., "A Cost/Benefit Analysis of Higher Order Language
Standardization", The MITRE Corporation Technical Paper M78-206,
McLean, VA, September 1977.

F-3

4;' f,. 44 E'". '' f 4\W '. " . 9°. ' V . - .. .I. .r.:,... %. .(-.. -. .. ..." ... - . -.... ,.-



Cormier, A., and Alberts, D., WIS Joint Mission Application Software
Sizing Study: Volumes III and IV," Institute for Defense Analyses Technical
Paper P-1868, October 1985.

Courtwright, T., "Ada Tools Update", briefing slides prepared for the Ada
Joint Program Management Office/ADT, no date.

Defense Science &Electronics, "Ada: an in-depth look", March, 1984.

Defense Science and Electronics, "Interview with William R. Hattabaugh",
March 1985.

Defense Science and Electronics, "The Second Annual Ada Directory",
March 1985.

Dijkstra, E., "Structured Programming," in Software Engineering
Techniques, J.N. Burton and B. Randall, Eds., NATO Science Committee,
1969.

Druffel, L., et al., "The STARS Program: Overview and Rationale", IEEE,
November 1983.

Fahey, J., USAF Aircraft 1947-56, Ships and Aircraft, Falls Church, VA
1956.

Fisher, D., "Automatic Data Processing Costs in the Defense Department,"
Institute for Defense Analyses Technical Paper P-1046, Alexandria, Va,
October, 1974.

Flaspohler, J., et al., "The Software Test and Evaluation Project: Tools
Baseline," Georgia 'Institute of Technology, Atlanta, GA, September, 1985. w
Foreman, J., "APSE Interactive Monitor, Final Report on Interface Analysis
and Software Engineering Techniques", Volumes I-III, Technical Report,
Texas Instruments Equipment Group, McKinney, TX, July 1985.

Foreman, J. "Building Software Tools in Ada: Design, Reuse, Productivity,
Portability", Briefing Slides, Texas Instruments Co., McKinney, TX., July
1985.

Forrester, J., Principles of Systems, Cambridge, MA: MIT Press, 1969. w

F-4

I'.N

Zo



Fox, J., "Benefits Model for High Order Language", Technical Report
, TR78-2-72, Defense Advanced Research Projects Agency, Arlington, VA,

1978.

GEC Software, "Overview of the GEC Software IPSE Product Strategy",
The General Electric P/C of England, London, August 1985.

George, J., "DoD Computing Activities and Programs Ten Year Market
Forecast Issues, 1985-1995", Technical report for Electronics Industries
Association, 1985.

* Goodman, M., Study Notes in System Dynamics, Cambridge, MA: MIT
Press, 1974.

Graham, A. "Parameter Estimation in System Dynamics Modeling,"
Management Science, 1980.

Griffin, W., "Software Engineering in GTE", IEEE, November 1984.

Holmes, E., "P-System Poops Out", Datamation, August 1985.

Jensen, R, "Projected Productivity Impact of Near Term Ada Use in
Software System Development," Hughes Aircraft Co., Fullerton, CA. No
date.

Johnson Space Center, "Level C Space Station Project Office Proposes Use of
Ada for Applications Software in Flight Subsystems", Houston TX, no date.

KITIA, "Views on a CAIS from Industry and Academia", Draft, August
1985.

Klumpp, A. "Space Station Flight Software: Hall/S or Ada?", IEEE, March
1985.

Kramer, J., "Interview with Col. Whitaker", notes of verbal communication,
Institute for Defense Analyses, Alexandria, VA, 1985.

Kruchten, P., et al., "Software Prototyping Using the SETL Programming
Language", IEEE, October 1984.

Marmor-Squires, A., et al., "The Support Systems Task Area", IEEE,
November 1983.

F-5

4',' € 'm€ r-,'- . "t 'tC . ' . . ,, , .* € . ,, . . . -- . . -- . . . . . . .. . % . -



Martin, J. "The Management of Mission Critical Computer Resources", Parts
I-III Defense Science and Electronics, February, April and May, 1985.

McDonald, C., et al., "Seeking Ada's Full Potential", Defense Science and

Electronics, April 1985.

Myers, Edith, "Picking Up the Pieces", Datamation, August, 1985.

Najberg, A., and Healy, R., "The Impact of Ada on Software Development
Costs," The Analytic Sciences Corporation, Report No. TR-4612-5-2,
Reading, MA, October 1984.

Office of the Under Secretary of Defense, Research and Engineering,
"Department of Defense Computer Technology (Study Annex): A Report to
Congress," Washington, D.C., January 1984.

Oglesby, C., and Urban, J., "The Human Resources Task Area", IEEE,
November 1983.

Osterweil, L. "Software Environment Research: Directions for the Next Five
Years", April 1981.

PA. Computers and Telecommunications, "Benefits of Software Engineering
Methods and Tools," London, England, June 1985.

Richardson, G. and Pugh, A., Introduction to System Dynamics Modeling
with DYNAMO, Cambridge, MA: MIT Press, 1981. 0

Richmond, B. "A User's Guide to STELLA", High Performance Systems,
Inc., Hanover, NH, 1985.

Riddle, W., and Wileden, J., "Environment Extensibility Impact on the
STARS SEE Architecture: SEE-ARCH-007-O01.0, Technical Paper P-1828,
Institute for Defenses Analyses, April, 1985.

Ripken, K., "US DoD Motivation-Engineered Language Design," TECSI,
EFDPA, London, September 1982. Quoted in Rogers, M, "IT Companies'
Acceptance of and Attitudes toward Ada," in Barnes, J. and Fisher, G., Eds.,
Ada in Use: Proceedings of the Ada International Conference, Paris 14-16
May 1985, The Ada Companion Series, Cambridge University Press.

Russell, D. "First Ada Compilers Show Diversity", Defense Electronics,
March 1984.

F-6

1 N11 " , ~ >: --....



SofTech, "ALS Description", Technical Paper, Softech, Inc., Middletown,
RI.

SofTech, "Architectural Descripition of the Ada Language System (ALS),
JSSEE Report No. JSSEE-ARCH-001, Middletown, RI, December 1984.

Stanley, R, "Whither Ada?", Defense Science and Electronics, March 1985.

Stenming, V. et al., "The Ada Environment: A Perspective", IEEE, June
1981.

Stephen, D, et al., "DoD Digital Data Processing Study: A Ten-Year
Forecast", Technical Report for the Electronics Industries Association, 1981.

Stone, H., "Life-Cycle Cost Analysis of Instruction-Set Archetecture
Standardization for Military Computer Systems", IEEE, APRIL 1979.

Suydam, W., "Ada Programs Emerge as Compilers Vault Validation

Hurdles", Computer Design, June 1985.

Systems and Software, "Packages Spawn Ada Growth", 1985.

Tlustos, C., "Users Need Ada Training," Government Computer News,
October 1985.

U.S. Department of Defense, Instruction 7041.3 "Economic Analysis and

Program Evaluation for Resource Management," October 18, 1972.

U.S. Department of Defense, "Military Standard: Software Support
Environment" DoD-STD-1467, January 1985.

U.S. Department of Defense, "Requirements for Ada Programming Support

Environments -- 'Stoneman'," February- 1980.

Verity, J., "Empowering Programmers", Datamation, August 1985.

Wasserman, A., "Automated Development Environments", IEEE, April
1981.

Williams, J. "Compiler and Tool Set for Ada Design and Implementation",
Defense Electronics, January 1983.

F- 7



Distribution List for P.1931

--

Virginia L Castor (8 copies)
Ada Joint Program Office
The Pentagon, Room 3D139

0 (1211 Fern/C-107)
Washington, D.C. 20301

Other

Defense Technical Information Center (2 copies)
* Cameron Station

Alexandria, VA 22314

tq



2
/

I.... ~k * ~


