»

AD-A173 352 COST EFFECTIVENESS TRADEOFFS IN COMPUTER
STANDARDIZATION AND TECHNDLDGV I (U) INSTITUTE FOR
DEFENSE ANRLYSES ALEXANDRIA A A HOOK ET AL. JUN 86

UNCLASSIFIED IDA-P-1931 IDA/HG-86-31052 HDHSOI 84-C-0031 F/G 9/2

9

!

'
(]

;
H

fie

| .25 s

EEER
1

FEEE
i;”; 2E

4
~
'

3 !F: i
EFERR
Pt

l

|

{
)

0 ‘qy’:
W

'

o

I
t
\
N
T

A

R

[

'
2

XD LN S LR T N R e O N S e N N A O IR

g 58 B
t
?

"'

) ¢

'l-r
J'J'..f..'

R T T A O L R O R R R R N I - A WL R LA/ AU

IDA PAPER P-1931

COST EFFECTIVENESS TRADEOFFS IN COMPUTER
STANDARDIZATION AND TECHNOLOGY INSERTION

AD-A175 352

ILE COPY

-

T

i
J

Audrey A. Hook
Terry Mayfield
Thomas Frazier

Alan K. Graham
David Kreutzer

June 1986

Prepared for

(OUSDRE)

S et e 4 P S

PO

DA

q’\;'.'v A 3,'4.'\" A \'\'\' % -'s:'&. Y

TEl Joons:odi LoE 6% AP
for plots a'vors cmd saley He
distributton ts uniimited.

INSTITUTE FOR DEFENSE ANALYSES
1801 N. Beauregard Street, Alexandria, Virginia 22311

86 12 22 021 BALsgne. hasesios -

\ \ﬂ"\\‘l\f\l‘J‘Il‘

RRR ALY
L) B

Lo ..

o,

~°,
o

R

'\

Office of the Under Secretary of Defense for Research and Development

)z.-.-.-

aTaTN TN '-."_~."

e e

- - - R

s -, e b

- -

S, %

BR Pl 272 J1 Lo’ Ta* Ra- Bac fat Ba e Rat Ba
@
UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE
REPORT DOCUMENTATION PAGE ADA 1 25 35
I1a REPORT SECURITY CLASSIFICATION Ib. RESTRICTIVE MARKINGS
o Unclassified
2a SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF REPORT
2b DECLASSIFICATION/DOWNGRADING SCHEDULE
4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5§ MONITORING ORGANIZATION REPORT NUMBER(S)
P-1931
‘ ‘\
6a NAME OF PERFORMING ORGANIZATION | éd OFFICE SYMBOL | 7, NAME OF MONITORING ORGANIZATION
Institute for Defense Analyses IDA
6c ADDRESS (City, State, and Zip Code) 7 ADDRESS (Chty, State, and Zip Code)
1801 N. Beauregard Street N
® Alexandria, VA 22311
B e
mmwm 8b OFFICE ‘smn)m. 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ANIZA (if applicable
1
) Ada Joint Program Office AJPO MDA 503 84 C 003
!Q 8c ADDRESS (Clty, Stats, and Zip Code) ~118. SOURCE OF FUNDING NUMBEKS
The Pentagon, Room 3E139 (1211 Fem St.,) ASK WORR URTT
Wum:mfnmbc";':am (1211 Fem St, C107) ELEMENT NO. |NO. No. ACCESSION NO.
N) -D5-215
1t TITLE (Include Security Classification)
Cost Effectiveness Tradeoffs in Computer Standardization and Technology Insertion

J12 PERSONAL AUTHOR(S)
Audrey A. Hook, Terry Mayfield, Thomas Frazier, Alan K. Graham, David Kreutzer

13a TYPE OF REPORT T35 TIME COVERED 17
FROM TO 1986 June 30 332
6 SUPPLEMENTARY NOTATION

17 COSATI CODES | 1 SUBJEE= TERMS (Continue on reverse if mecessary and idenmtify by block number)

FIELD GRQUP ! <up.group | Ada, technology insertion, modeling, cost effectiveness, APSE, MCCR acquisition,
decision support tools, software engineering environment, standards

19 ABSTRACT (Continue on reverse if necessary and Identify by block number)

This document reports on the feasibility of devéloping a decision support tool that could aid decision makers in formulating policies for the use of
software standards and strategjes for technology insertion. During the first phase (1983-1984) a "white paper” was completed which provided a conceptual
framework for examining the role of standards in the MCCR acquisition process. During the second phase (1985-1986), this conceptual framework was
translated into a prototype decision support tool. This tool provided the ability to simulate the effect of selected standardization policies on reiated

technology and Mission Critical Computer resources (MCCR) costs, thus demonstrating the feasibility of modeling the linkages among DoD, standards
policies, industry, technology, amd MCCR costs.

The first scenario simulated the role of the current policy for the use of Ada as the only higher order language for the development of MCCR software.
The other two scenarios examined cost effective strategies for inserting Ada and its related software engineering environments into the MCCR software

production and maintenance process. The findings from these simulations indicate that centain strategies/policies concerning the utilization of Ada have
a powerful influence on MCCR software costs.

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
K UNCLASSIFIED/UNLIMITED [SAME AS RPT.[J DTIC USERS Unclassified
22a NAME OF RESPONSIBLE INDIVIDUAL

22b TELEPHONE (Include Area Code| 22¢ OFFICE SYMBOL

DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE

AN other editions are obsolete UNCLASSIFIED
I{J’f --, .-gv.q.-\' AT ORRLEIR “'& - .,...s
) ?_l\) "!]! f C N fo & J I _‘.':.k'::‘_.'ﬁ’f <, 1' L4 I

. :
®
IDA PAPER P-1931
‘ !
COST EFFECTIVENESS TRADEOFFS IN COMPUTER r
STANDARDIZATION AND TECHNOLOGY INSERTION :
® ’
Y
. (]
Audrey A. Hook QuALITY 3
Terry Mayfield NSFRETED 3
Thomas Frazier i

® Alan K. Graham
DaVid Kreutzer Accession For B
NTIS GRA&I g ,
DTIC TAB ¢
Unannocun “rd O S
o Justificetion v
June 1986 By ;
_Distribution/
Availarility Codes %
lAvall and/or)
@ Dist | Special h
~
A-l l :
&
v |
P N
IDA :
'c INSTITUTE FOR DEFENSE ANALYSES N
Contract MDA 903 84 C 0031 3
Task T-D5-215 :
c o

Acknowledgments

During this project a number of people contributed ideas and effort that were very beneficial

: to the outcome of the project. Special thanks to Ms. Janet M. Gould (MIT) for editing the

) appendices and to Mr. Michael Saylor (MIT) for editorial work on the finished report.
Others who deserve credit for helping during the construction of the prototype model were

e Dr. Thomas Probert, Col. Ken Nidiffer, Mr. Burt Newlin, Dr. Edward Lieblein, Dr. Jack

Kramer, and Dr. John Salasin.

& . RO ey > 1...,.“‘., o‘- -’-- -’...l- .'..},’..-: >, . .-..-’-*-In » L e 'I'f'l‘f' ;. " CPATEYL PRSP T a7
SRBIER U 22N A LSRG AR R 95 557 1 SRS s 5 o S 59 5 SO A R AN S ADAOR W 45 RSN RN

@
TABLE OF CONTENTS
¢ 1.0 INTRODUCTIONcoovveeieeeeeinieeeeieernnensesssenessssseaneeneereseeseenes 1
2.0 N 600) 3 ST 2
3.0 BACKGROUND ...uviuiiiieniiiieeriereinseestineiessenssassseeesensssensensens 3
° 4.0 APPROACHcooooiviiiiieeeeiieeiiieeeeeeeeett et naneeesaeeneenes 5
4.1 Modeling Methodcoovninininiiininiiiii e 5
4.2 TREMOGEL ...cceiniiniitiiiiiiiiiiiieie e eeeereerencenennensenneneanennennens 5
Y 4.3 COSE SECLOT ..euvvneninnininirrineieiiieiiiietreatuettartaeareerasenseaanensenss 5
] 4.4 INfTASHIUCIUNE ...euveeeineieiietiinieneneeneenronrecnsenseneencnsensenceneensnrenes 7
44.1 INtBNSIEY «.uininiiin et eceen e e e et e et e e e tea e neneas 7
® 442 COVETABEeuvieiiiiinitiiii e teetieetsraeerranecacencrnsnaretaaausnenans 8
4.4.3 Incompatibilityccovunineniiniiiiiiiiiiiiii e 8 \
4.5 PrOJECES .ouvnriiiiiiiiiiiiieriii i e 8)
, 4.5.1 Development Projects Using the Ada Language yeeerectnns 8]
) 45.2 Non-Ada Development Projectscccoveviiieiiiiieniienenecnnnnenens. 9 '
453 Maintenance Projectscoceeieiiiiiniiiiiniiiiiiinnininiinene 9
¢ 4.5.4 CONVETSION PrOJECES ..oveeiivivrrrrrnneeeeeeeerurnnneeeeeeerrennnneeesenessnn
4.6 Language ChoiCec.oevruiiniiiuiiiiniiiiiiniiiriiiiirenenin e eeen, 10
4.7 Model ConStUCHONviiimiiiniiiieireeeereeeeerseeennseirectnneeesnennns 10 |
5.0 | 3100 5) 1€ A S U 11
5.1 Baseling SCENATIO ...vvvnviiininiiiiiinieiiiiireeeinrearseerseerrssennneeannronnens 11
5.1.1 Findingcocovvivuiianinniiaiinnnanaad e eteeen et e et taianens 11
5.1.2 DS CUSSION +.vvueeneiniirtninnrneenerereernsrasnassssnsssonsennsnseneoneonsnnens 13 '
5.1.3 Preliminary Conclusionsc.ccccveviiinininiiniiininiiniiineninnnenne. 13 \
5.2 Commercial APSE SCENarioc.cceviiiiieieiviniiieeneecnrenneenneinennnn. 14
5.2.1 FINGING «.vitiiiiiiiiiiiiiii et c e ree e ee e e e e enas 14 y
5.2.2 DS CUSSION «.uveeeenieeierttiiiireterenreerrnaseeessacsesnnencrosnnnesennneesn 14 »)
53 CONVETSION SCENATIO ..ovvvvrniiirrrrerereereereeneersesesaersnnesesssenceenss 14
5.3.1 FINAINg ..ooineniiiiiiiiiiiii i e ee e e e eea 16 \
5.3.2)5 T Tr LT o + F P 16
5.4 Utility of the Prototype Modelcocevvuiiiiiiercvinininnieeienninnnn. 16)
54.1 FINAING ..ottt eer e e ana 16 ;
54.2 DS CUSSION ... ueieiiterieiieiiinriineerenereneesnasennsecnnesnnsecnecenness 16
6.0 CONCLUSIONS AND RECOMMENDATIONScooivviviviininnnne. 20
{]

RADENIEN KA RRNN R RNRR NN RN N RN

L3

i APPENDIX A - MODEL STRUCTURE

v APPENDIX B - MODEL LISTING, OUTPUT, AND POLICY LEVERS

. APPENDIX C - AREAS FOR FUTHER INVESTIGATION

APPENDIX D - PROFILE OF INFRASTRUCTURE USED

4 APPENDIX E - WHITE PAPER CONCEPTUAL FRAMEWORK FOR
EXAMINING THE ROLE OF STANDARDS IN THE .f

3 MCCR ACQUISITION PROCESS

2 APPENDIX F - REFERENCES

3) X
@

- -

1
J
)
‘s
L]
V]
Y
3

. f
LIST OF FIGURE .
1 Organization of Prototype ModeL..............vevvveeeeiunerninnerreeneeenneneens 6 ‘
® 2 Baseline Scenario........... e teteeeestesesoeennenterteteenneneeanent et enneneas 12
3 Commercial APSE Scenario.......... ceeveenens teveeeteereneaerenrnrareneneenas 15
4 Conversion Scenario............ Crerereneenaraenes e eeetetneenreraeeeteararaeanan, 17 A
5 Three Scenarios in CoOmMPAriSON.cccociiviiiieienrnrnennenenereeaeaninenns 21 .
. ¢
3
.
. 7,
;Z
' -
%
®
N
8
|‘
8
)
. »
‘ 'l
U
{4
3
- 1
Y
C
C

s g4

¢

S bWt

L

COST EFFECTIVENESS TRADEOFFS IN COMPUTER STANDARDIZATION AND
TECHNOLOGY INSERTION

1.0 INTRODUCTION

This paper fulfills requirements for IDA Task T-4-215. This task was initiated in

November, 1983 by the Director, Computer Software Systems, Deputy Under Secretary

(Research and Advanced Technology) to be completed in several phases, each phase being

dependant upon the availability of funds. The purpose of the task was to determine the

feasibility of developing a decision support tool that could aid decision makers in

formulating policies for the use of software standards and strategies for technology

insertion. During the first phase (1983-1984) , a "white paper” was completed which

provided a conceptual framework for examining the role of standards in the MCCR

acquisition process. During the second phase (1985-1986), this conceptual framework |
was translated into a prototype decision support tool. This tool provided the ability to
simulate the effect of selected standardization policies on related technology and Mission
Critical Computer Resources (MCCR) costs, thus demonstrating the feasibility of modeling
the linkages among DoD, standards policies, industry, technology, and MCCR costs.
Section 4.0 of this paper provides an overview of the model while Appendices A and B
provide detailed documentation.

Section 5.0 describes the results of scenario simulations. The first scenario simulated the

role of the current policy for the use of Adal as the only higher order language for ;
development of MCCR software. The other two scenarios examined cost effective X
strategies for inserting Ada and its related software engineering environments into the ‘
MCCR software production and maintenance process. The findings from these simulations

indicate that certain strategies/policies concemning the utilization of Ada have a powerful

influence on MCCR software costs.

IAda 1s a registered trademark of the U.S. Government, Ada Joint Program Office.

1 ’

2 NOP NI O IRRNIR ,,-', NI ':"’-r‘ o T \"a"'\'\I A O A LR AR "\"s* SOSCY ~:"-“’~:‘f o \ LN

N7 B Lt S POl Ca s T A A A e N At A L L N N L T T N L
A A A S R PR IR L L A 1 A A PP AL A AN

2.0 SCOPE

Translation of the conceptual framework presented in the "white paper" required a
modeling technique that can make use of aggregate or anecdotal data to simulate the
interaction of multiple variables over an extended period of time. The lack of detailed data
which could be used to derive mathematical relationships among these variables was a
constraint to be minimized by proper tool selection. We selected the system dynamics

modeling technique as implemented by a commercially available software package.2 The
resulting simulations were based upon a model that was constructed in an iterative fashion

as information was obtained from interviews and a literature search.3 The scenarios were
constructed to provide plausible answers to the Sponsor's questions concerning the cost-
effectiveness of the Ada language standard and the need for additional standards for Ada
Programming Support Environments (APSE's). The Sponsor's questions were:

* What will be the long term effect of the current Ada policy on MCCR software
costs?

* Should the Government develop a standard for an APSE? If so, what should
be standardized - operating system, tool sets, interfaces?

 Is there a strategy/policy that will accelerate insertion of Ada technology in the
MCC;{ software acquisition process? If so, what will be the effect on MCCR
costs?

The intended users of the results of these simulations are the Sponsor and those concerned
with the use of standards in the Ada Program. Although the software is easy to learn and
to use, we assume that operators of the model will primarily be analysts who support the
process of policy formulation. The model enhances, rather than replaces, expert judgement

about MCCR software by quantifying many of the considerations surrounding
standardization issues.

Collection of data from the primary sources (i.e., DoD software developers/maintainers)
and calibration of the model was outside the scope of the task.

< STELLA V1.1: High Performance Systems Inc., Lynn, NH.

3 See Appendix F for listing of references.

Dol i ol P b $o U fav P Pa P M0 Sa B . x P T UART IR Ve~ b tgid gag L& '.» k o 4 IRRY. N LR AN T

3.0 BACKGROUND

(R

DoD decision makers must have both a clear understanding of the general effects of

| standards in the MCCR acquisition process and the ability to analyze the potential impact
of a particular policy for their use. This impact could be on overall MCCR costs or on the
technology that is available for use in the development and maintenance of MCCR
software. The general problem, facing DoD decision makers, is how to formulate
standardization policies that are goal oriented and cost-effective for each of the life cycle
phases of multiple MCCR programs.

e

e

¢
_—

The Ada Language was mandated for use in new MCCR projects by the DeLauer
memorandum (DeLauer 1983). The life-cycle cost of these projects is expected to be lower
than for those MCCR projects that have used older languages such as JOVIAL and CMS2,
but the visibility of these lower costs could be obscured by the larger number of non-Ada
projects that must be maintained for 20-30 years at higher costs per project. This

| underlying limitation on benefits from the Ada policy is the result of decades of non-Ada
programming that is in the pipeline for development and maintenance. Even with the
introduction of Ada for new projects, continuing development and enhancements of non-
Ada applications will make savings from Ada smaller and more distant in time.

Some previous language standardization studies have projected modest savings (Clapp

[1977) (Jensen 1984), when compared to the projected total cost for DoD MCCR software
(George 1985). Other studies of Ada (Cormier and Alberts 1985) (Foreman 1985a and
Foreman 1985b) (Hook and Fischer 1986) indicate that savings per project can be
significant, with full accounting for the impact of Ada and its related technology on DoD
MCCR software expenditure. However, this projected impact depends upon how quickly
and how widely Ada and its related technology is used for the development and

® maintenance of MCCR projects.

DoD Sponsorship of additional standards has been considered as a possible risk reduction

strategy that may accelerate the use of Ada. These potential DoD Sponsored standards

include the Common Ada Interface Set (CAIS), an Ada Programming Support

Environment (APSE) developed and furnished by the government, e.g., Army Language
o System (ALS), Ada Compiler System (ACS), Ada Language System (ALS-N).

¥
o
[y

S

Even with the DeLauer memorandum that set the policy for the use of Ada in DoD, there
are questions raised by proponents of other languages about how acceptable Ada will be in
meeting percievec. MCCR requirements for real-time, secure, and artificial intelligence
applications. There are, different views about what additional standards are needed to
v increase the rate at which Ada will be effectively used for MCCR applications. There are
also different perceptions about how DoD should present Ada-related standards. Some
believe that the government should develop and implement a prototype standard product for
industry to use and improve through use on MCCR projects. Others believe that this
approach would limit industry innovation to minor process improvements by freezing
technological development prematurely to the standard.

F I SR LN » i.

If a DoD sponsored standard for a particular technology has been standardized at a level :
below the market place technology, DoD project managers may require waivers from that
standard (or portions of it) so as to use a product they perceive as more capable, lower cost
technology available to their contractor. Further, incompatibility among implementations
will almost certainly result from the insertion of technology on a contractor by contractor y

e basis. Eventually, incentives may disappear for DoD project manager's and contractor's to
use a standard that does not reflect the current state of a technology. It is recognized that
the maturity of the technology and market place incentives play a major role in

< L

3

N A

.
4

N

SAYCAURCRE STALRAY Sy L AN A
) 3 ‘ L LAty &

ARUAL

U S A ISy RIS ‘T4l RS
PSR 4141 40 AN 4 UL QNS AR Vg iy Lol X

IR N ST NIAL NN R

P oA o A Ve "a"a - va V&

i e Sia- g at WAl in Bl gtaaty pip)
¥
B standardization decision. Finally, if additional standards are selected, should the policy for
§« their use effect only the development life cycle or should it effect the maintenance life cycle
?«_’ - phase which represents the larger portion (60-70%) of the MCCR expenditure.
. Bearing in mind these complexities, we set out to develop a model that would allow
L decision makers interested in Ada and its related technology to test the impact of various
L% assumptions on the total MCCR expenditure over a thirty year period. In essence, the
N prime focus of this study is to answer two questions:
L]
!' .

+« How does standardization affect innovation?

* How can standards best be implemented to obtain both effectiveness and
economy?

R

!

IRXXG |

-
P

g 4 .éﬁ. &

oy
-

-

SRR Vxa

o

W R AR R R . 2 e e A e AT AL
AR A SRS LA g R A N T S O O R R N I O I ORI
K) 5 . » . i\ o A » R B

........... fa g A, e AR e e,
Wl aled '.:w.:;\"w."-"&."' CARRN RN 1,08

E’Q

4.0 APPROACH

The first step in development of the decision support tool was formation of a cross-
disciplinary team who developed the approach. The team members provided expertise in -
economics, computer science, Ada related technology, and simulation techniques. Ad hoc
team members were used, as needed, to provide insight on DoD software development
practices, standardization policies, and industry perceptions of DoD acquisition practices.
The team determined that its efforts should be focused on analyzing and understanding the
issues and on developing a logical model that could be implemented and refined quickly.

4.1 Modeling Method

The problem addressed in this effort can be characterized as determining the variation of
output variables (e.g., cost of DoD MCCR software) over time, based on the dynamic
interaction of multiple input and process variables. Such problems can best be expressed
using a continuous system simulation approach, particularly when many of the variables
are most easily estimated in terms of rates of change.

The system dynamics method was selected as an appropriate technique for defining the
linkages among the variables associated with the MCCR acquisition process, technology,
standards policies, and cost. The team felt that the model should permit a user to examine
the underlying structure, the assumptions, and numeric values used during previous
simulations and to change any part of this structure in order to test a new set of
assumptions. The use of rapid prototyping allowed continuous evaluation and refinement
of the model as the simulation was analyzed and new information was collected. The
software of the model provides documentation of the equations used for each variable while
the documentation provided in the appendices includes the rationale and references as to

why particular linkages were established with their associated functions and equations.4
4.2 The Model

The model has been organized as six sectors: LANGUAGE CHOICE; ADA
INFRASTRUCTURE; ADA PROJECTS; NON-ADA PROJECTS; NON-ADA
INFRASTRUCTURE; and COST. Figure 1 illustrates this organization. The principal
variables in each of these sectors are described in the following sections.

4.3 Cost Sector

The cost sector of the model evaluates the yearly and accumulated costs of MCCR
computer programming under whatever scenario is being simulated. The cost sector
computes the costs on the basis of the programming workload represented by the number
of projects, the computer language being used, and the amount of infrastructure (the
summation of resources a programmer can draw upon when working in a particular higher
order language) available. The cost sector allows for selection of constant dollars or
discounted dollars to be calculated for any given scenario. The degree of discounting of
future expenditures is a parameter whose value can be varied and experimented with.

Although the cost sector does not affect the scenarios, it is crucial in illustrating the impact
of infrastructure on cost effectiveness. The model determines total costs by multiplying the
number of projects by the cost per project. As infrastructure intensity and coverage

4 Appendices A and B provide complete documentation of the model.

-

P IR R LT O N S . P P T N S N M I A S A A VRN AL RN
T O O G e N A e S A L L A SRS A R SN S N RN N XN

- oy -

c) S

o x5 S5 N 20

r S
Pt A e e 4

5 AT, K

- . o

LS LA Pt ta?.

s
~
“

Organization of Prototype Model

Figure 1

N (O ™)
Ada infrastructure -
y
l ~
Ada
4 N\ s
r
Language projects ;ﬂ
Choice N | Cost
Non-Ada N
\ ? - projects
_J
=
Non-Ada infrastructure
J Y,
N /
Y ~
Generate scenarios Assess costs

b

Y]

RN e
v (4

increase, the cost per project decreases.> Because the model sets the size of the standard
project (amount of programming to be done) constant, this means that innovation is taking
place. Not only is a given amount of work being done faster and cheaper, but for a

constant expenditure, better (or more) work is being done.6
4.4 Infrastructure

Infrastructure denotes the programming support environment which includes not only the
programming environment proper (operating system, tools, and program libraries) but also
programmer experience and availability, programmer managers, and courses of instruction
(in Ada and non-Ada languages). As the amount of infrastructure for a given language
increases, so does the effectiveness of those projects making use of that language. This
results in better performance as well as lower costs. It is thus crucial that the model
represent the level of infrastructure available for both Ada and non-Ada programming
separately.

An important input to infrastucture is the number of projects (either Ada or non-Ada)
currently in progress (see Figure 1). Programmers gain valuable experience as they do
more of their work in a certain language. In addition, there is an economic incentive for
private companies to develop auxilary tools and environments. An increasing number of
projects creates a market incentive, encouraging business to invest in a language with a
secure future.

Because thorough comprehension of infrastructure is crucial in understanding how MCCR
costs are affected by standardization policies, it has been disaggregated into three separate
variables representing the characteristics of intensity, coverage, and incompatibility.”

4.4.1 Intensity

The intensity of infrastructure denotes how much infrastructure is available to a contractor
or DoD programming manager. Intensity in the model is a selectable index number used to
characterize whether or not good, efficient compilers are available, whether it is possible to
hire (or train) programmers, the size and quality of the tool sets and the program libraries
available to programmers, etc. Intensity is the primary determinate of programming cost.
Higher intensity substantially raises programmer productivity.

Within the model, a low intensity index was selected to represent a "bare-bones"
infrastructure which consists of a compiler and a link-loader, along with a few experienced
systems analysts and managers. The highest intensity level of interest was selected to
represent the conditions envisioned in the Stoneman specification (DoD 1980), assuming
that the non-tool parts of the infrastructure (tool using, management experience, training,
etc.) are equally well-developed. _

2 Consider the automobile analogy: the cost as well as the utility of the vehicle over its
lifetime is a strong function of the availability of good roads, spare parts, qualified
mechanics, and plentiful oil/gasoline.

6 Appendix A.3 provides a complete description of the cost sector.

7 See Appendices A.7 and A.8 for details

AP TR e T T 2T e LW N T e e e e e T e e e \.\..'\-\\\.'-,\ N AN N I A Ny
T S R R 4 s S N G A O B A G S L SR N QO (AR b g “\ A ,'

.. -

)
- -
\' N, N \

A L Ll e st a AR TRl SO A ATL PN g g 8.

4.4.2 Coverage

Coverage of infrastructure denotes the fraction of host/target combinations that are available
for use with a particular programming language and its related tools. Lack of choice in
tools limits creativity, driving up costs and crippling innovation in the programming
process. We assume that the critical term of measurement is the fraction of target machines
for which a compiler is available because the availability of a particular language on a host
is not a significant issue for most MCCR projects.

4.4.3 Incompatibility

Incompatibility of infrastructure denotes the extent to which infrastructure is divided into
parts that do not intermix with one another: languages, operating systems, tools, and even
managment procedures all fragment the programming meta-environments. Compiler
languages usually underly the deepest divisions for programs, program libraries,
programmers, and programming managers. We assumed that incompatibility will exist to
some extent whenever a language is widely used even though there are policies and
mechanisms for controlling the variety of tools and compatibility of tool sets. However,
the rate at which incompatibility is introduced into the Ada infrastructure is assumed to be
lower because it possesses effective mechanisms for controlling incompatibility. One such
effective mechanism is the validation process for Ada compilers which is more rigorous
and comprehensive than for other high order languages. Incompatibility is central to the
analysis of standards policies, for incompatibility inhibits the accumulation of
infrastructure. With markets fragmented among languages and operating systems, for
example, neither programmer nor advanced tools develop rapidly.

4.5 Projects

Projects are the model's fundamental measure of programming work that must be done for
MCCR systems. In reality, projects vary in size and cost. A very large programming task
such as the World-Wide Military Command and Control System (WWMCCS) consists of
many project units which are aggregated for budget and management purposes into groups
that vary widely in complexity, lines of code, and man-hours. The definition of what
constitutes a project unit involved some arbitrary choices in order to create a definition that
would remain consistent over simulations of decades of changes in language, programming
technology, and mission requirements. We divided projects into five categories and
assigned consistent values to their cost-per-year and to the number of years per life cycle

phase.8 The categories of projects are described in the following sections.
4.5.1 Development Projects Using the Ada Language

These are the new development projects started that use the Ada language. Expert
judgement was used to set the average duration of the entire development phase at 10 years.

Some development projects will be completed sooner than 10 years, and some later.?
When the infrastructure available for both non-Ada and Ada projects is equal, yearly Ada

S Appendix A.9 in the cost sector calibration section explains the procedure.

9 See Appendix A .4, equation #540 for details and references.

development costs were defined to be $5-million . Costs for non-Ada projects were set at
$6-million for the reasons described below.

4.5.2 Non-Ada Development Projects

We assumed that some portion of new starts will not use Ada and will initiate a waiver
process because of the project manager's perception of risk and lack of available
infrastructure for Ada. This non-Ada portion of new starts will be influenced by the free
market forces in the Language Choice Sector including the level of both Ada and non-Ada
infrastructure. However, since there is a DoD mandate to use Ada for new starts, the level
of Ada Infrastructure at the time the project starts will be a stronger incentive for DoD
project managers to use it than for a non-DoD project manager. The cost-per-year selected
for non-Ada development projects was $6-million at the intensity of today's (primarily non-
Ada) infrastructure. Non-Ada development projects have the same average time to
complete development (10-years) as that of Ada projects. The slightly higher cost-per-year
for non-Ada development projects is based upon our assumption that the expected benefits
from Ada software engineering practices justifies a lower cost. We selected equal
development time periods for Ada and non-Ada to remove a bias-for-Ada that would have
resulted from using currently available Ada productivity studies based upon small projects.

4.5.3 Maintenance Projects

Ada and non-Ada maintenance projects are treated similarly in the model. Maintenance
projects denotes all projects that have passed out of the development phase and into the
maintenance phase. Any programming done after a project has left the development phase
is accounted for in the model as part of maintenance programming. Although not
consistent with all service usages, this definition is convenient for the purposes of the
model. The meaning of the term maintenance differs among DoD constituents. In the Air
Force terminology, large reprogramming projects (usually undertaken because of changed
system requirements) are called redevelopment projects and are distinguished from the
more routine fixing of bugs and making small additions to capabilities. In Navy
terminology, as in the model, both redevelopment and bug-fixing are included in the term
maintenance. The time period for a project's maintenance life cycle was estimated at 20
years. Maintenance costs per year for projects defined as above were estimated to be $2-
million for Ada and $3-million for non-Ada, under conditions where the Ada programming
environment is comparable to todays non-Ada environment. As with development, the cost
difference is predicated upon Ada's superior support of software engineering
methodologies.

4.5.4 Conversion Projects

These are projects that undergo major upgrades of functionality at planned intervals. It is
possible to begin the maintenance life cycle of a project with a compiler and tool set for one
language and to end the maintenance life cycle with a compiler and tool set of another
language. During the 20-year period of maintenance, language choices can be made at
intervals of planned project upgrade when there are significant incentives to do so. These
incentives can arise from market forces and from DoD policies. In the model, we have
provided a "policy lever” that can be activated for a policy that requires project managers to
consider converting to Ada at major upgrade intervals.

The yearly cost for conversion projects includes both the funds for major redevelopment/
conversion as well as those necessary for routine maintenance of the unconverted portion
of the project during this period. This has been approximated in the model to be equal to
the Ada development project cost-per-year.

- =

A RN A N A

We assumed that if a project is undergoing a major redevelopment and conversion to Ada,
it is doubtful that cost-conscious managers would also want to simultaneously carry on a
major redevelopment in the non-Ada language. Therefore, once conversion work starts on
a piece of software, it is reclassified as a conversion project immediately. When a project
has completed the conversion period (considered to be two years in the model), it becomes
an Ada maintenance project and is treated as such for the remainder of its lifetime.

4.6 Language Choice

We assumed that the world of non-DoD programming is fully functionai and operating in
parallel to the DoD programming project work. By making this assumption, we have
created a sector of the model that operates on free market forces with respect to decisions
about programming language and related technology. Implicitly, then programming
decisions for DoD and non-DoD projects will be made from much the same inputs and
incentives. Even with a mandated use of a particular language in DoD, the planned target
for the number of projects using that language could be higher or lower than what actually
occurs. With market forces operating to affect language choices, the actual number of
projects could be lower than planned because of disincentives such as risk, as well as real
or perceived lack of available infrastructure. On the other hand, if there is a perception that
a particular language choice reduces risk/cost and will lead to a sustained business base, the
number of projects using that particular language could be higher than planned. This is the
link represented in Figure 1. The role of the Language Choice sector is to determine the
acceptability of a given language standards policy to both DoD project managers and to the
producers of software for DoD and other markets.

4.7 Model Construction

Construction of the model implementing the system dynamics symbology and mathematics
began in August 1985. This model was refined and expanded through December 1985.
The refinement process resulted in thirty-two software versions of the model which
incorporated the assumptions and reference data that were collected by the team. The team
simulated numerous scenarios to test the "reasonableness” of the model and discussed these
simulations with several knowledgeable DoD project managers. From December 1985
through February 1986, detailed documentation was prepared so that the internal structure
of the model would be visible for any future user.

Three policy scenarios were simulated by the team to demonstrate the feasibility of using an
automated tool to support decision making. These simulations indicated plausable impacts '
on MCCR expenditure for each of the policy scenarios. However, the team recognized the -
need for collecting data from primary sources to calibrate the model and to re-run these
simulations. A multiple target survey was developed and discussed with Service

representatives as an important data source for model calibration. 10 Unfortunately, data

collection activity was suspended in January because of a reduction in available funds for
the second phase of this project.

10 This survey is provided in Appendix D.

10

MY

;7

o " B S
GRS 2SN X, S

5.0 FINDINGS

The findings of the team are based upon their research, analysis of available data, and use
[of the prototype model to generate scenarios. Although the quantitative results of the

simulations are open to question and substantial refinement, the qualitative results seem

robust and important enough to the Sponsor that a detailed description is given here.

5.1 Baseline Scenario

® This scenario simulates the effect of continuation of the current Ada policy. In 1981 there
is a moderate initial injection of Ada Infrastructure due to the development of compilers by

4 the government and private investment . The behavior which follows provides both a

reference point as well as some insight into how the MCCR process develops in the coming

years.11
® 5.1.1 Finding

{ Although the current Ada policy will eventually result in decreasing costs and greater
p effectiveness, these results will be painfully (if not needlessly) delayed. Figure 2 depicts
this cost curve.

¢ 5.1.2 Discussion

The increase in Ada infrastructure occurs when there are buyer's choices among validated
compilers for host/target pairs that are useful for MCCR projects. This initial increase in
Ada infrastructure provides increased incentives to use Ada. However, Ada-related
savings are stalled by a large number of non-Ada projects already initiated which are
® progressing slowly through their thirty year lifecycle. Therefore, the inventory of Ada
: projects is small compared to non-Ada projects until 1996 when the cost-effectiveness of
Ada has been demonstrated conclusively. As companies begin to independently develop
more tools that add to the infrastructure, the intensity of Ada infrastructure increases slowly
but steadily driving down the cost of Ada programming. The overwhelmingly important
difference between Ada and non-Ada is that incompatibility is much more difficult to create
@ among projects. Ada shows a correspondingly greater accumulation of intensity -- skills,
tools, and reusable software -- that drives down Ada costs. Because of the much higher
incompatibility in the non-Ada world, infrastructure cannot accumulate nearly as
effectively, and intensity of non-Ada infrastructure never moves substantially beyond
today's levels. At approximately 2003, the cost curve (1) indicates that the total yearly cost
of programming peaks and begins to decline, despite increasing numbers of projects. At
4 the end of this time period, Ada project costs have become 15 times less than those of Non-
. Ada projects. Thus, the majority of the cost after the year 2003 is coming from the
maintainence of a minority of expensive non-Ada projects. Total MCCR expenditures for

this scenario are 1.324 trillion dollars.12

11 See Appendix B.3 for details and plots.

12 By itself, this figure tells us little more than the expected order of magnitude of the of

the actual expenditure. However, when used as a comparison point with which to judge
e the performance of scenarios where quite different assumptions have been made, or where
different policies have been enacted, it can be very useful.

A T O R L T R R R L P GRS SRR SR
N R R B N o N N B N R R N N R S N N B R N B NN

64 |

Yearly Cost
(Billions)
32

Baseline Scenario

-

~
a ‘ ~
Yearlx Cost /
/ ’

Intensity- of Ada s 2
Infrastructure /

4 1 &~

] ' 4—-—-—-"/-,/'42/——Total Ada Projects

1975.000 1985.000 1995.000 2005.000 2015.000
Time

Curve 1: Yearly Cost (in Billions) : (0-64)
Curve 2: Total Ada Projects (Projects): (0-24000)

Curve 3: Conversion Projects (Projects): (0-3200)

Curve 4: Intensity of Ada Infrastructure (Composite APSE

and other resources): (0-200)

Figure 2

12

e AR N g e R B N D N A R A I N A e A N N ey Y A Nt
N R ot AU A X A AN A Y LN W RN .

fataiat Rt b Rt Oy

priN

SfaTS NN

5.1.3 Preliminary Conclusions

Given the slow startup process for Ada use, along with the eventual superiority of Ada
infrastucture, two general strategies appear to be particularly beneficial:

(1) Enactment of policies that accelerate the accumulation of Ada infrastructure
(tools, program libraries, environments, etc.) promises to even further
increase cost-effectiveness of MCCR acquisitions.

(2) Enactment of policies which encourage the conversion of the remaining mass
of non-Ada programming to Ada likewise offers considerable potential
savings by "piggybacking"” off the benefits of increasing Ada Infrastructure
with its attendant lower costs.

In the following two scenarios, both of these options are explored in a preliminary manner.

5.2 Commercial APSE Scenario

This scenario represents the case where the government selects one or more industry
"standard” operating systems (VMS™/UNIX™13, for example) for Ada programming,
then proceeds to develop and implement Common 'APSE Interface Set (CAIS). The most
important consequence of this policy is borrowing substantial infrastructure intensity from
the non-Ada world, but leaving behind many of the incompatibilities caused by numerous
other operating systems and tools used for non-Ada programming. The ability to create
incompatibility in the Ada environment is permanently reduced by operating system
standardization. Inclusion of transportable operating systems in a standard policy increases
the speed with which Ada extends its coverage of hosts and targets.14

5.2.1 Finding

Ada-related standards policies increase the available infrastructure and reduce overall
MCCR software expenditure when these standards are evolved from technology that is
current in the market place. Figure 3 provides the curves for cost and infrastructure.

5.2.2 Discussion

A strategy that reduces uncertainty about DoD's prefercnoe for implementations of
environments will both increase the number of Ada project starts as well as encourage
companies to invest in Ada related tools. This is responsible for a positive trend where
increasing infrastructure drives down Costs.

13 VMS™ is a trademark of Digital Equipment Corporation. UNIX™ is a trademark of
AT&T.

14 Appendix B.4 provides all plots, and tables, for this scenario.

13~

T ‘.‘) l J'o"- < .’~..f """

~
'\\\\\"

ey e .
RSB AN E ""‘"" \'x"\

.'JJ‘-I.

-

o

[
\

' -

w v T w s a_a

s e
» \n'\-

This scenario assumed that these Ada-related environments could be adopted to the CAIS
and the results would be widely understood within five years so that there would be an
accelerated accumulation of Ada infrastructure within 6-7 years after completion of this
initiative. By 1990 the yearly expenditure on MCCR costs is $1.9 billion less than the base
.scenario and the gap widens steadily. As a result, total costs associated with this scenario
turn out to be $201 billion less than those for the baseline case. Itis evident from these
results that measures which serve to focus the development of Ada infrastucture have the
potential to dramatically increase MCCR performance and decrease costs.

5.3 Conversion Scenario

The conversion scenario represents the enactment of government policies to encourage non-
Ada projects already in progress to be converted to Ada. In the model, this policy is
implemented in 1990 and by 1995 it is evident that a significant number of conversions

have taken place.15
5.3.1 Finding

Conversion of non-Ada projects to Ada during their maintenance phase is instrumental in
reducing total MCCR expenditures and increasing the availability of Ada infrastructure.
(Figure 4 provides these curves.)

5.3.2 Discussion

Due to the greater proliferation of Ada projects, companies are encouraged to develop
auxiliary tools, which results in a significant increase in infrastrucure. The savings in this
scenario come from two sources: (1) the greater cost-effectiveness of Ada programming

over the non-Ada infrastructure, due to the increase in infrastructure and (2) the added ﬂ
conversion of more expensive non-Ada projects to less expensive Ada projects. Total
MCCR expenditures in this scenario are 1.179 trillion dollars. If we compare this figure to
that of the base case, we note savings of $145 billion.16 Thus, even with the additional
costs of conversion, this policy results in savings equal to 12% of gross MCCR

expenditure. Given that analysis is likely to continue showing high payoff for a general

policy of conversions, more comprehensive investigation into specific policies and
incentives to encourage non-Ada to Ada conversions is justified.

15. Appendix B.5 provides all output plots and tables for this scenario.
Appendix B.6 is an overview of other policies that could be explored using the levers
in the model.

16, With comparisons of this type, it is not the absolute numbers which are important, but q
rather the relative difference in performance between the two policies.

14

......

e ‘el o e .- CaH I Y P ST AN AL I IR 'J
LR ST LSRR P TS PN G SR P G S LA . S PR el R R N S A

Commercial APSE Scenario

64

PUPETENS |

Yearly Cost

] 1
(Billions)] ‘ /— \:7.{
1 7
] Yearly Cost /
32] 7 s
] Intensity of Ada
/ Infrastucture
Total Ada

] f——f Projects
2

0 197§-°%3 1985.000 1995.000 2005.000 2015.000

Time

Ao

Curve 1: Yearly Cost (in Billions) : (0-64)
Curve 2: Total Ada Projects (Projects): (0-24000)
Curve 3: Conversion Projects (Projects): (0-3200)

Curve 4: Intensity of Ada Infrastructure (Composite APSE
and other resources): (0-200)

Figure 3

15

Conversion Scenario

o2, & o X A R NS A ST, B

64 T
Yearly Cost] —,
Billions h
() . Yearly Cost i’<
32] 14tensity of Ada Total Ada
] Infrastructuyzq_Projects
] L /‘ Conversion
1 1 Projects
<4— / ﬁ 3 'r ’."
‘_’_‘_,-o-"
0'"""&‘23. 2 LI B M A A I ML B B BNk An e ey Eaa Sngn EMan ey |
1975.000 1985.000 1995.000 2005.000 2015.000

Curve 1: Yearly Cost (in Billions) : (0-64)
Curve 2: Total Ada Projects (Projects): (0-24000)

Curve 3: Conversion Projects (Projects): (0-3200)

. ®
Curve 4: Intensity of Ada Infrastructure (Composite APSE
and other resources): (0-200)
v
Figure 4
L
!
16
L J

T S R N N L W T A A RN
PN AIERTII A N IFATITAS S R NN
4)"Sﬁ'.“".p‘_".'h A, ‘.':rp'.' PRIS FRS PN I)

p O e

e e s b -

t;

o,

)

I A N N A SRR L Oy
SRR R M N M 2 RN KA B R

5.4 Utility of the Prototype Model
5.4.1 Finding

The second phase of this study has resulted in the construction of a prototype model which
demonstrates the feasibility of developing a decision support tool to assist policy makers in
considering various standard related issues. This modei not only offers potential solutions
to current problems, but also clearly defines areas of study from which further insight into

these issues may be gained.17
5.4.2 Discussion

The next step in this task involves calibration of the existing model. One value of the
system dynamics methodology is that in the process of building the model, the researcher is
directed toward the most significant avenues of investigation. Although it was not
immediately apparent during the initial conceptualization of the problem, individual
variables differ widely in their effect upon MCCR expenditures. For example, there is a
substantial difference between the cost-per-year of non-Ada projects and Ada projects.!8

However, when these values were set equal to each other!9 in a run not presented here, it
was discovered that the impact on the final results was negligible. In system dynamics
terminology, the model is said to be insensitive to the cost-per-project, and in further
calibration studies, this variable can probably be ignored.

Some variables then have a great deal of influence over MCCR expenditures, and they
should be examined more closely. For two of these variables, the number of MCCR
projects and the measure of the level of infrastructure, there are no authoritative sources of
information. Two recent studies have been conducted that provide some aggregate
information on MCCR software expenditures and projects. One study (EIA 1985), .
forecasted expenditures on MCCR software from 1985 to 1995. The other study (IDA
1985) reported investigation of MCCR programs that have a substantial software

component but noted that the identification of software within MCCR is not explicit for
DoD.

Projects are the model's fundamental measure of the programming work that exists to do
for MCCR systems, for both development and maintenance. In the DoD environment
projects vary enormously in size from one another. But it is convenient to think (and
model) in terms of a standard project unit. A project cannot be defined in terms of some
number of lines of code, because shifts between, for example, assembler language and
higher-order language would change the amount of apparent programming work to be
done. Similarly, a project should not be defined in terms of man-hours or dollar's worth of

I'7 Appendix C discusses potential revisions and investigation to improve the utility of this
model.

18 Recall that development costs for non-Ada projects were set at $6-million per year,
while maintenance costs for non-Ada projects were set at $3-million per year (assuming
infrastructure is held constant at its normal value). These values for Ada projects were set
at $5-million and $2-million, respectively.

19 Development costs were set at $6-million, maintenance costs at $2-million.

17

. (™

s,

AN T N e T i T L R S e N R L N N N RSLGRY
S S N A R R AN A ¢¢ W L ¥

LR % |

35S h S

programming, because improvements in programmer productivity would likewise change
the apparent complexity of the programming tasks currently being worked on. The project
must be defined as an amount of programming to be done, measured with something akin
to the inherent complexity or difficulty of the specification. Of course, the inherent
difficulty can be translated into lines of code, man-hours per year, or dollars per year for a
given language, programmer productivity, and programmer's wages. But the unit that is
created by project starts, exists through the development phase, and endures during the
maintenance phase is the less-measurable, but more fundamental and constant mission the
software is to perform. The next phase of research should focus on more accurately
measuring project units.

There is no source of collected information on the intensity and incompatibility of MCCR
programming infrastructure, which we define broadly to include: programmer experience,
number and quality of software tools and program libraries, educational programs and
materials, and hardware support for programming. In the absence of such information, the
model uses aggregated indices to characterize the infrastructure, which can be tied to
specific information as it becomes available (see Section 4.0 for discussion and references).
For example, consider the software tool component of the infrastructure. {Boehm 1981)
defines five levels of tool intensity as it affects productivity:

Very low: basic microprocessor tools

Low: basic minicomputer tools

Nominal: Strong minicomputer or maxicomputer tools
High: Strong maxicomputer tools, Stoneman MAPSE

Very high: Advanced maxicomputer tools, Stoneman APSE

L] L] L] - L]

Boehm shows econometrically how tools effect costs. Although the model's calibration
does not yet explicitly use Boehm's results to show how higher intensity of infrastructure
drives down costs, the model curves show the same qualitative effect. - In addition, the
model asserts that as infrastructure for both Ada and non-Ada programming rises, Ada
costs will fall more rapidly, on the assumption that for any given level of infrastructure
intensity, Ada's support of modern software engineering methods (which Boehm shows
can reduce costs) will cause those methods to be more widely and effectively used.

Very low tool use corresponds to an intensity index of 20, and very high tool use
corresponds to an intensity index of 100. The model calibration has not yet used this
correspondence and Boehm's cost drivers to estimate the impact of intensity on cost. But
such an estimation procedure may be premature, for it is not yet known what a typical
intensity of tool use in MCCR programming is currently. (The calibration assumes an
intensity index of 40, or roughly Boehm's "nominal" intensity, in 1985; Appendix A.9
gives the details.) Accurate knowledge of the current status must await the survey
described in Section 4.7 and Appendix D.

Some amount of "field work," in the form of surveying and case studies, would fill a large

gap in knowledge about MCCR projects and programming, and allow much more accurate
calibration of the model.

18

e 7L A T LS A PLARCATRERA TG LI TR RS CR TR
D R e T A A S T T S S N -
N AR AN N I T NN AR N A

O

it 4% Yah's Vel ‘e Fhr 8 at® . R R R "popa¥edte gl 2y g% Ats A R0’ S 4n b ie -84ah 'l G e

6.0 CONCLUSIONS AND RECOMMENDATIONS

Although the results of this investigation are far from definitive, the weight of evidence

suggests that, in general, standardization policies 20 have a payoff two to three orders of
magnitude higher than the costs. MCCR software expenditures over the next 30 years can
total around one trillion dollars. The policies examined offer savings in the tens or
hundreds of billions, and the cost of implementing standards is in the tens of millions.
Figure S provides a summary comparison of the three scenarios.

Admittedly, with incomplete information, one might be tempted to move cautiously on
standards until more certainty can be obtained. However, there is a cost associated with
waiting to get all the facts. In one simulation not presented here, delaying the implemention
of the "standardize on commercial OSs, then CAIS scenario” for five years costs an extra
$5 billion. This cost is by itself much larger than the expenses involved with creating and
promoting programming environment standards.

Given the current weight of evidence indicating the effectiveness of standardizing the tool
interface/operating system for Ada, and the very high payoff ratio, the most desirable
course of action for DoD is to proceed aggressively on several fronts, both advancing the
state of knowledge about standardization and continuing along the path of standardization:

Three Scenarios in Comparison

Total Cost Fraction of
(Billions of dollars) | Projects in Ada

Baseline Case 1324 78%

Commercial

APSE Scenario 1123 81%

Conversion of 849

non-Ada to Ada 179 4%
Figure 5

20 These may be similar to those described in the previous scenarios, or some
conglomeration of various policies.

19

‘.

e S N

-

h

WARAARAN

v -
T

v ¥

[F 0 S

" %

[]

Pak ev Sab g iy e WP LA Pl Tada T

1. Continue toward more definitive research on the cost-effectiveness tradeoffs in
standardization.

2. Continue to aggressively develop, prototype, and test CAIS as the eventual
standard operating interface.

3. Proceed toward standardization on a selected small number of portable and non-
portable operating systems, a) as an interim standard, b) as an aid to migrating
programming to CAIS, and c) as a backup if CAIS is delayed or less than
satisfactory.

4. Continue research on automatic translation from non-Ada languages to Ada and
evolve policies and incentives that would spur conversation to Ada and
migration to an APSE.

.
A

20

R e s b R e

Tl WD & gt

-

- e o a>

APPENDIX A
MODEL STRUCTURE

a A A XK 1

'l I RS 'b‘--'\“'\-‘\-.'-\\‘\"v\‘\‘-\‘-'.‘h,\\-'\‘.\._n-\-.-_'vt-.\‘\,\t-y'-- -
\'-"b" "\"‘ % 'l' A SRS LY Y DA "\\"\"-."."\' Ll Loty \\" ~ -.‘.-."\' ‘\ "'\\"\\f N (]

L EF

'
-

~
Pt

-~

LY, A At)

- «d
SLEGHI WP W e

- 5 2 Sl e . 1 &

DAL |

wvw w s

Figure
A.1-1
A.1-2

A3-1
A3-2

A.3-3

A34

A4-1

A4-2
A5-1

AS5-2

A.6-1

A.6-2

A.7-1

A.7-2

A.7-3

A7-4

A.8-1

e v Wt et fan @ Sair Fal (W N) L W KX TR T
APPENDIX A
LIST OF FIGURES
Title
Flow diagram example of inputs to Total Cost (Total_cost)................ A-8
Example of graphic function for a converter variable: Effect of
intensity of Ada infrastructure on Ada Cost (E_int_Ada_cst) A-11
Flow diagram of inputs to Total Cost (Total_cost)......................... A-16
Flow diagram of inputs to Cost per year for Ada Development
projects (Cst_yr Ada_dev)c.coviiiiiiiiiiiiiiiiieee A-23
Flow diagram of inputs to Cost per year for non-Ada
development projects (Cst_yr NA dev)coveveiiiiiiiiiiinn.., A-30
Flow diagram of inputs to Total yearly cost of conversions
(TOt_YT_CSt_COMV) ..uiueninninininiinininiirrerneiieeerteensneneaeeaenanaans A-34
Flow diagram of inputs to Ada development projects
(Ada_dev_Proj)ocveeiiiiiiiiiiiiiiiini e A-38
Flow diagram of inputs to Conversion projects (Conv_proj)............. A-43
Flow diagram of inputs to Non-Ada development projects
(NonAda_dev_proj) «.o.eeevuruiiiiiiiiiiiiieiiiiniiiieen e A-50
Flow diagram of inputs to Non-Ada maintenance projects
(NonAda_maint proj) ...c.eeeeveeeiiinieieinieiiiiiiiiiiieniienns A-52
Flow diagram of inputs to Fraction of development starts in Ada
(Fr_dev_starts_Ada)oooiiiiniiiiiiiiiiii e A-54
Flow diagram of inputs to Incentives to use Ada
(Incentive_use_Ada)ccouveieiiiininiiiiiiiiiiiiii A-63
Flow diagram of inputs to Intensity of Ada infrastructure
(Inten_Ada_infr)cooviniiiiiiiiiiii A-70
Flow diagram of inputs to Creation of intensity of Ada
infrastructure (Crea_int_Ada_infr)ooviinii A-75
Flow diagram of inputs to Incompatibility of Ada infrastructure
(Incom_Ada infra)coovuieinenieniniiiiiiieiiii e A-84
Flow diagram of inputs to Coverage of Ada infrastructure
(Cov_Ada_infr)cooviiiiniiiiiiiiiiii A-95
Flow diagram of inputs to Intensity of non-Ada infrastructure
(Intens NA_Infr) c..ovivininiiiiiiiiii e, A-106

Appendix A: Model Structure

Appendix A documents the structure of the equations that comprise the model

® discussed in this report.
i Appendix A.1 reviews the system dynamics symbols and terminology used in the
remainder of the appendices.
Appendix A.2 gives abbreviations used within variable names; it may be handy keeping
e track of variables and what they mean.
; Appendix A.3 describes the cost sector of the model.
Appendix A.4 describes the Ada projects sector of the model.
® Appendix A.5 describes the non-Ada projects sector of the model.
L
Appendix A.6 describes the language choice sector of the model.
; Appendix A.7 describes the Ada infrastructure sector of the model.
@ Appendix A.8 describes the non-Ada infrastructure sector of the model.
Appendix A.9 describes the multiple-variable parameter estimation procedures used in
f calibrating the model. Simpler parameter estimations are described with
: the equation descriptions above.
@
L}
¥
) @
1 ©
; (
-
|
)
{
[}
e
A5
-
N
S o e S S S T e Sy R e S AN

Appendix A.1: System Dynamics Terminology and Symbols

B\ The model described in this report uses standard system dynamics symbols and
® terminology to represent diverse types of variables,each having its own dynamic

characteristics. For the convenience of the reader a brief description is provided here. For

further discussion see (Forrester 1961, Part 2) or (Alfeld and Graham 1976, Ch. 1-2).

Levels

® Level variables represent variables the state of the system at any single instant of time,

i.e. the stocks, or accumulations. One rule of thumb determines whether a variable is a

level variable through a thought experiment: If time were to suddenly stand still, and

» nothing change, only level variables would be measurable. The amount of water in a

bathtub would be observable and measurable. The amount of water is a level. The rate of

flow out of the drain is measurable only by observing changes over time. The flow of

® water out of the drain would not be a level variable, but a rate variable (see the discussion
below).

N Levels accumulate the changes to the system state caused by the rates of inflow and

. outflow. The concept is common to many disciplines. Mathematicians would think of
levels as the results of integrating the inflow and outflow rates. Engineers would

N © recognize levels as state variables. Economists would recognize them as stock variables,
and accountants would recognize balance sheet items as levels.

The interconnections among variables in system dynamics models are usually shown

graphically on flow diagrams, which differ somewhat from , e.g., FORTRAN flow

_ diagrams in showing not sequential flow of control, but simultaneous flow of information.

L J Figure A.1-1 shows an example of a system dynamics flow diagram. Levels are

represented by rectangles. The figure shows a level, Total cost, accumulating the inflow

rate, Cost per year discounted. (The meaning and function of this variable are discussed in

detail in Appendix A.3) Total cost is measured in units of dollars while its inflow rate is

measured in dollars/year. Inflow and outflows to levels are always measured in the units
of the level over time units.

LA, A

The equation below shows how STELLA represents the equation for the level, Total
cost. All STELLA equations are printed with a small version of their flow diagram symbol
at the beginning of the equation, so here, the equation for computing a level variable, Total
cost, begins with a rectangle.

2L LSS

® _ [Totel_cost = Total_cost + Cst_yr_dis
INIT(Total_cost) = O (Total cost (dollars)}

The actual equation STELLA uses for calculation differs from that above if the
simulation proceeds at time intervals other than 1.0 time units (1.0 years). For each time
- step of the simulation STELLA computes:

QL 44 %Ay

Total_cost (present time) = Total_cost (previous time step) +DT * Cst_yr_dis

- where DT (delta or difference in time) is the duration of the time step in the simulation. The

level at the present time in the simulation equals the value at the previous time step plus the

™ net rate of change in effect over the time step, which equals the yearly rate of flow times the
number of years in the time step.

A-7

R R P R R T L R TIPS) : AL - RS
A A A A) A N T A AL R A A N A S RN S A e e T e e

D S UL, U L I ISR IS SN RO e S I PR S R N i T
AP R SRS S MEAL SO AR AP A ER AN
BAUA A DA DL INFRIR . o

Total_cost
Cst_yr_dis

Total _yearly_cost
Discount_index

Discount_rate Start_yr_cst_accum

Figure A.1-1. Flow diagram example of inputs to Total cost (Total_cost).

A-8

¢

Although STELLA calculates the equation correctly for any value of DT, STELLA
shows the equation as if DT were 1.0 so it can be left out. By leaving out the explicit
representation of DT, STELLA's designers have denoted the possibility of using
mathematical integration methods—in effect, ways of proceeding from one time step to the
next—more sophisticated than the simple arithmetic just described. (choosable under
STELLA's "Specs" main menu item).

Rates

Rate equations define those variables that change the system levels. Therefore, the
rates of change aiways flow into or out of a level and are always measured in the units of
the level over the time units (years, for the model here). For example, in the figure, the
Cost per year discounted is the flow measured in dollars per year that is accumulated in the
level, Total cost, which is measured in dollars.

The STELLA symbol for a rate, as shown in the figure, is a circle with a symbolic
"valve" on top controlling a flow arrow that goes between a symbolic "cloud" (that also
resembles a four-leaf clover) and the rectangle which represents the level. If the rate is an
inflow, the arrow points to the level and the cloud is called a source. If the rate is an
outflow, the arrow points to the cloud which is then called a sink. Sinks or sources just
mean that the flows come from or go to destinations outside the system boundary, i.e.,
places not influencing the system's behavior. For example, for a simple model of water in
a bathtub, where the water goes after flowing through the drain would not be modelled by
another level, but by a sink.

Converters

Converter variables are used directly or indirectly in a rate equation. Rates ultimately
depend only on levels, so it would be possible write very long rate equations as functions
only of the levels. This would be confusing, however, so instead, the rates equations are
broken up into more meaningful sub-equations called converter equations. Converter
variables are then given their own names and are represented with large circles. The small
circles on the converter variables represent information takeoff points where the causal
links go to other variables. These causal links then terminate with arrowheads pointing to
the next variable in the causal chain.

Converter variables take information from levels or other converter variables, does

some computation—"converts it'—and then sends that new information to a rate or another
converter. All chains of converter variables eventually go into rate variables.

The figure shows several converter variables providing information for the rate Cost
per year discounted (Cst_yr_dis). The converter variable called Discount index takes
information provided by the converter variables called Discount rate (a percentage per year)
and Starting year for cost accumulation (1986) and computes an index that is then used by
the rate variable Cost per year discounted. This discount index wieghts or discounts future
expenditures, representing the smaller importance of costs in the future as oposed to
immediate costs. (For more detail on the meaning and usefulness of the equations just
described, see Appendix A.3, "Cost Sector.")

"Ghosts"
As with standard FORTRAN flow diagrams, or any other diagram of a complex

system, system dynamics flow diagrams of even medium sized models like the model
being discussed here are too large to fit on a normal page. STELLA allows portions of the

A9

0 e :'
P RN SR A RS .r}.r}t}r":_ ROV

. \

\

>
-

J:'

=

;
;

L

L.

flow diagram to be exhibited through the convention of "ghosts"—variables that are shown
but aren't really there. (They're defined elsewhere on the flow diagram, usually on another
page.) "Ghosted" variable are denoted on the flow diagram by variable symbols drawn
with grey, rather than black lines. Total yearly cost (Total_yearly cost) is shown on the
sample as a ghosted input to Cost per year discounted (Cst_yr_dis). Total yearly cost is the
raw flow of real (FY'86) dollars spent on MCCR programming; its computation is shown
elsewhere.

Graphic functions

Converter variables often use graphic functions because they are a convenient way to
specify a variable's output values for any given input values. If the modeller cannot invent
a simple, plausible equation that will do the proper conversion, the graphic function can
specify the relationship. This is particularly useful for non-linear relationships, where
effect is not strictly proportional to cause.

Figure A.1-2, shows a graphic function from the model. The converter variable, Effect
of intensity of Ada infrastructure on Ada cost, computes a value for the effect for any value
of Intensity of Ada infrastructure. This represents the idea that as Ada infrastructure
increases the cost of doing an Ada project goes down. When the user draws the curve,
only eleven points need to be specified by drawing the curve accross ten intervals.
STELLA uses linear interpolation to calculate the output value for inputs between the
specified values.

DYNAMO versus STELLA terms in literature

For the last two and a half decades the DYNAMO family of simulation languages
defined the standard in the field of system dynamics for computer simulations from
mainframes to microcomputers. Newer software, called STELLA, used in this project
breaks with the DYNAMO equation format by organizing the equations around icons. This
iconic representation is possible because of the sophisticated graphics capability of the
Apple Macintosh personal computer. Although STELLA is a software breakthrough in
terms of the style of interaction with the model, the underlying concepts are identical io the
traditional DYNAMO simulation languages for which there is a substantial body of
literature. There are, however, differences in nomenclature between the STELLA User's
Manual (Richmond 1985) and the rest of the DYNAMO-based system dynamics literature.
For the benefit of those familar with that literature and nomenclature, the table below shows
equivalencies between STELLA and DYNAMO. The asterisks denote the terminology
chosen for use in this text.

STELLA Terminology
Stock Level *
Flow and Flow regulator Rate of flow *
Converter variable * Auxilliary variable
Input link Causal link *
Signals Information flow *
A-10
S e o e e N e G L Sl e i

IS.OOO I

E_int_Ada_cst

(input)

Inten_Ada_infra

Figure A.1-2. Example of graphic function for a converter variable: Effect of intensity
of Ada infrastructure on Ada cost (E_int_Ada_cst).

A-11

PUCIE L R IR
'{‘-'\#\‘.-}‘

O

-

T 8 v €y gy i

A
R, e E

o

Tr. ERTERAR AN ER T AP O LN AW LWLV LW LV RN U U T TR O OOy

Appendix A.2: Standard Abbreviations within Variable Names

Variable name length is limited in STELLA, so the names are abbreviated. For
example, "Ada maintenance projects" is abbreviated "Ada_maint_prj:" "maint" abbreviates
"maintenance, and "prj" abbreviates "projects.” Such abbreviations are standardized
throughout the model; the following list gives the commonest. Occasionally, a word that
appears in more than one variable will have two abbreviations. For example, when there is
room, "maintenance is abbreviated "maint.” When there is not room, the abbreviation is

\bbreviati
A Ada
ch change in
compl completions
conv conversion
cov coverage
crea or cr creation
cst cost
dev development
dur, or du duration
E effect of or effects on
fr fraction
incen, ince, inc incentive
incom or inco incompatibility
infra, infr, or inf infrastructure
inten or int intensity
maint or mn maintenance
NA non-Ada
nat natural
norm normal
obsol obsolescence
perc perceived
pol _ policy
proj, or prj project
ref reference
rel relative
t time to or time for
targ target
tot total
yr year

A-13

LA R RN

Y

" - WY
L2

Appendix A.3: Cost Sector

Appendix A.3 on the cost sector equations is the first of 6 sections of Appendix A that
describe the model equations. The text accompanying each equation describes what the
variable or parameter means. If the estimation of a parameter value is straightfoward and
relatively simple, the estimation will be described with the equation. For example, all a
priori estimates are described with the respective equations. More complex estimations are
described in Appendix A.9, "Multivariable Model Calibration.”

The model is described as it existed in December, 1985. The formulations are still in
the midst of review and revision. . The model equation descriptions, for clarity, do not
describe alternative formulations, questions about standard software practices,
inconsistencies in available data, and so on. Such questions and observations are recorded
in Appendix C, "Areas for Further Investigation.”

The model equations are assigned unique numbers, and they are described in order. To
facilitate reference to individual equations, below are listed the ranges for equation numbers

in each of the equation description appendices. Also listed are the present numbers of
equations in each sector.

Eqn. Count Sector
1- 499 31 A.3 Cost sector
500- 819 19 A.4 Ada projects sector
820- 999 9 A.5 Non-Ada projects sector
1000- 1349 14 A.6 Language choice sector
1350- 1999 39 . A.7 Ada infrastructure sector
2000- 2399 2%6 A.8 Non-Ada infrastructure sector
136 total

The cost sector of the model evaluates the yearly and accumulated costs of MCCR
computer programming under whatever scenario is being simulated. The cost sector
computes the costs on the basis of the programming workload represented by the number
of projects, what computer language they are using, and how well-developed the
infrastructure is. At present, the cost sector has no effect on the scenarios as they are
simulated; its function is purely assessment. Of course, costs are a consideration at many
points in the system that creates scenarios, but these are represented through different
channels, as will be explained in the descriptions of the other model sectors.

Total cost (Equation #10)

Total cost represents the accumulated DoD expenditures on mission-critical software
development and maintenance in discounted 1986 dollars. Total cost is one of the most
important variables in assessing the outcome of alternative scenario simulations. Given that
several policy questions hinge on tradeoffs between short-term expenditures and long-term
benefits, it is necessary that one compare not just yearly expenditures on software between
different scenarios, but compare some measure of expenditures that spans many years.
Total cost is that measure.

Total cost (written Total_cost in the model) is a level variable; it accumulates the rate of
flow into it, the Cost per year discounted. Figure A.3-1 shows the flow diagram of the
inputs to Total cost; subsequent figures will show the computation of those inputs.

A-15

WL

A S

i

AR

L)
LN ety

L5

SN Y
o

X o P

i~

QENSERTATAS

L P 4
"‘

-.‘. ~ ".. .\‘_'y N

Yy

’

o L
PN

>

RN R "”

3

TAVAS NS

o

T

v g e,

v &

. P

Cst_yr_Ada_dev

&

- Cst __yr_Ada_m;m'y r_cst_Ada

'EIA_MCCR_forec @

EIA_ECR_forec

% 10
o @ @ Total_cost
@ Total_ygarly_cost ~ Cstf_dis
Tot_yr- cst_conv N @

@ Disgbunt_index
To¥ yr_dst_NA °

@ Discount_rate @
CstYrNAdev (320

Cst_yr_NA_mn

Start_yr_cst_accum

Figure A.3-1. Flow diagram of inputs to Total Cost (Total_cost)

A-16

c e el

] Total_Cost = Total_Cost + Cst_yr_dis
INIT(Total_Cost) = O {Total cost (dollars)}

Total cost is initialized at zero, since by definition expenses begin to accumulate only at
some point during the simulation. (The details of when the accumulation begins are
discussed shortly.)

While economic inflation is an important consideration in setting budgets and other
activities that call for predicttons in current dollars, inflation is not central to evaluating
standardization policies. Accordingly, Total cost accumulates costs as measured in 1986
constant dollars.

Resources on hand today are worth more than identical resources deliverable
tomorrow. Consequently, dollars with which we can buy resources today are worth more
than dollars available tomorrow. Thus, before we can meaningfully add together dollars
spent or received in different periods we must "discount” future dollars, for they are worth
less than current dollars. Accordingly, Total cost accumulates discounted expenditures, so
that expenditures in the future add only a fraction of their current dollar value to the
accumulated expenditures represented by Total cost. The degree of discounting of future
expenditures is a parameter in the model whose value can be varied and experimented with.

Cost per year discounted (Equation #20)

Total cost accumulates yearly expenditure; Cost per year discounted is that
expenditure. It represents the funds actually spent on software activities (not just
budgeted), discounted by a factor causes a dollar spent earlier to add more to Total cost
than a dollar spent later.

Cost per year discounted (abbreviated Cst_yr_dis in the model) is a converter variable,
converting the Total yearly cost to a quantity discounted to weight earlier expenditures more
heavily.

(O Cst_yr_dis = Total_yearly_cost*Discount_index
{Cost per year discounted (doliars/year)}

Because the discount index is zero any time before the Starting year for cost
accumulation, Cost per year discounted will likewise be zero before that time.

Discount index (Equation #30)

Weighting the importance of present versus future expenditures can be accomplished by
multiplying the expenditures by a factor. This should be 1.0 in 1986, representing full
importance of present expenditures. The factor should decline slightly for each year
thereafter, representing less weight on later expenditures; the later, the lesser. In financial
jargon, this is known as discounting cash flows. (The term "discounting” came from a
bank's practice of buying mortgages and other financial instruments at a discount from their
face value, because the payment of that face value would be happening in the future; the
"discount" between face value and purchase price represents the value of money later
versus now.) Because the multiplicative factor is dimensionless and passes through 1.0, it
is considered an index, the Discount index.

A-17

Y T I e S AT Rt
ﬁ AN SORC NI N AL

2 am we & - - .

2,0 8,478,

by
£

The Discount index (written Discount_index in the model) is a converter variable,
converting the year into an index through an algebraic formula.

O Discount_index = IF TIME ¢ Start_yr_cst_accum THEN O ELSE EXP(-
Discount_rate*(TIME - Start_yr—_cst_accum))

The formula implements in STELLA a standard exponentially-declining weight, starting
with a value of 1.0 when TIME equals the Starting year for cost accumulation. The
exponential is expressed within an IF... THEN clause that makes the Discount index zero
before the starting year, and therefore shuts off accumulation of costs before then.

Starting year for cost accumulation (Equation #35)

Costs which have already been incurred at the time of an analysis are "sunk costs."”
According to both standard financial analysis and DoD Instruction 7041.3, sunk costs
should not be included in the comparison of alternatives. To exclude sunk costs, the model
measures accumulated costs of software activities, but only after the present, which is
1986. The present year is specified in the model as the Starting year for cost accumulation.

The Starting year for cost accumulation (abbreviated Start_yr_cst_accum in the model)
is a converter variable with no inputs, i.e., a constant

O Start_yr_cst_accum = 1986
{Starting year for cost accumulation (year)}

The Starting year for cost accumulation is written as a separate symbolic constant,
rather than simply a number in various formulas, so that there is just one place in the model
where the assumption about what the present time resides. It wouldn't be desirable to
review and edit the whole model every time a new year passes.

Discount rate (Equation #40)

Any exponentially-declining Discount index can be characterized completely by a sfngle
number, that represents the percentage by which the discount index declines each year.
This number is the Discount rate.

The Discount rate (written Discount_rate in the model) is a converter variable, but with
no inputs; it is a constant, or equivalently, a parameter.

O Discount_rate = 0 {Discount rate (fraction-/gear)}

The discount rate is set at zero, representing the assumption (at least until the value is
changed) that all expenditures, from the starting year for the policy analysis onward, are
equally important. Setting the Discount rate higher would give less weight to future
expenditures. DoD Instruction 7041.3 ("Economic Analysis and Program Evaluation for

Resource Management,” October 18, 1972) mandates discounting, and suggests a value of
10 percent.

A-18

..1' y e S

AP
. .

" - “oo e, YO
O S A SV A R A TN NN A Nt ol ta Ty
. . A A o A i L

AALPLI AW

Al

oL A

The discount rate is an important parameter in evaluating short-term/long-term tradeoffs
in policies. If the discount rate is high, short-term expenditures are weighted very heavily
in Total cost. If a policy to minimize short-term spending is being evaluated against
policies that have a short-term cost and a long term gain, a higher discount rate will favor
the short-term cost minimizing policy. If one believes in policies that invest for the future,
one should therefore evaluate policies using a low discount rate, which gives weight to
long-term issues as well. At least until better information about DoD decision-making is
obtained, the long-term planning orientation is reflected in setting the Discount rate to zero.

Total yearly cost (Equation #50)

The Total yearly cost represents expenditures made per year on mission-critical
software development and maintenance, expressed in 1986 dollars. Total yearly cost
includes software activities both in Ada and non-Ada languages.

The Total yearly cost (written Total_yearly cost in the model) is a converter variable,
summing the Total yearly cost of Ada projects, the Total yearly cost of non-Ada projects,
and the Total yearly cost of conversions (from non-Ada programs to Ada programs)

O Total_yesrly_cost = Tot_yr_cst_NA+Tot_yr_cst_conv+Tot_yr_cst_Ada {
Total yearly cost (doltars/year)}

Even though the accumulation of yearly expenditures is set to zero prior to a starting
year, that setting is accomplished through the Discount index; Total yearly cost is positive
for the entirety of the simulation.

EIA 1980-1990 ECR forecast (Equation #60)

For convenience in comparing model output to real data, the model contains time series
drawn from the Electronics Industry Association's forecasts (EIA 1980). The first
forecast, made around 1980, is of yearly expenditures on embedded computer software
from 1980 to 1990. The variable representing this forecast is the EIA embedded computer
resources forecast.

A-19

02X ISR AR - ki atd ablt st gt el bl I gta- ove i ol ieulin- ol AR 00,

)

w

The EIA embedded computer resources forecast (abbreviated EIA_ECR_forec in the
model) is a converter variable, converting the year into the corresponding forecast value for

|

that year.
[4.000¢ |
(=]
-V}
1
e
o
@
-
=
-
[0.0 |
input Output
1980.000 JIFNFITECY
1981.000 | 4.490e+9
1982.000| 5.620e+9
1983.000 | ?7.180e+9
1984.000 | 8.950e+9
1985.000 [1.117e+10
1986.000 | 1.390e+10
1987.000 |[1.716e+10
1988.000 (2.120e+10
1989.000 |2.815e+10
1990.000 [3.210e+10

(nput)

year

A software bug in the present version of the STELLA simulation program prevents
standard display of the equation for the graphic function defining EIA_ECR_forec. There
are more decimals, including the floating-point exponents than the modules that display
equation listings can handle. The above table of values is drawn from a display by a
different part of the software.

Due to limitations of the simulation software, the value of EIA_ECR_forec outside of
its defined range of 1980-1990 is just the value of the endpoint: for time before 1980, the
1980 value, and for time after 1990, the 1990 value. The relevant period for comparision
to model output, however, is the 1980-1990 range.

W o.{sfshi‘.ti" &{‘DJ' L .ﬂ:‘l‘;.

o %)

A-20

Bar e ™ e e et o be Ra A o0 L L S SR T R R

u

oSG

LR g

EJA 1985-1995 MCCR forecast (Equation #70)

The model contains another time series drawn from the Electronics Industry
Association's forecasts. This forecast is of yearly expenditures in current dollars on
mission-critical computer software from 1985 to 1995 (EIA 1985). The variable

representing this forecast is the EIA mission-critical computer resources forecast.

The EIA mission-critical computer resources forecast (abbreviated EIA_MCCR _forec
in the model) is a converter variable, converting the year into the corresponding forecast

value for that year.

|4 .000¢ I

EIA_MCCR_forec

o 1]

Input

Output

1985.000
1986.000
1987.000
1988.000
1989.000
1990.000
1991.000
1992.000
1993.000
1994.000
1995.000

P 1
1.354e+10
1.662e+10
2.038e+10
2.311e+10
2.559%e+10
2.729e+10
2.911e+10
3.104e+10
3.297e+10
3.566e+10

o

AJ

¢

‘- \‘. L PR ﬁ'.\

% N

|198.5.000 | .

(input)
year

A-21

o]

: 'q"‘t,'a' “w

N e
W

SRS
N L At

‘\.‘)

’\ -

A LT L PR Y. Y
Ll L

A software bug in the present version of the STELLA simulation program prevents
standard display of the equation for the graphic function defining EIA_ECR_forec. There
are more decimals, including the floating-point exponents than the modules that display
equation listings can handle. The above table of values is drawn from a display by a
different part of the software.

Due to limitations of the simulation software, the value of EIA_MCCR _forec outside of
its defined range of 1985-1995 is just the value of the endpoint: for time before 1985, the
1985 value, and for time after 1995, the 1995 value. The relevant period for comparision
to model output, however, is the 1985-1995 range.

Total yearly cost of Ada projects (eqiation #80)

The total yearly cost of Ada projects represents the amount spent on Ada-based
oftware projects each year, expressed in constant dollars

Total yearly cost of Ada projects (abbreviated Tot_yr_cst_Ada in the model) is a
converter variable, which sums the Cost per year for Ada development projects and the
Cost per year for Ada maintenance projects.

O Tot_yr_cst_Ada = Cst_yr_Ada_mn+Cst_yr_Ada_dev ®
{Total yearly cost of Ada projects (dollars/year)}

Cost per year for Ada development projects (Equation #90)

The cost to do computer programming is a fairly predictable function of the size and
complexity of the task undertaken. A "project” as used in the model represents a unit of &
programming complexity, so that a very large programming task in real life would be
represented in the model as several projects. (The definition of a "project” as a unit of
programming work is detailed in Section 5 of this report.) The cost to do computer
programming then becomes just a matter of how much programming work there is to do,
measured in projects, and how much the standard project costs per year. The product of
these two factors becomes the Cost per year for Ada development projects. L4

The Cost per year for Ada development projects (abbreviated Cst_yr_Ada_dev in the
model) is a converter variable, converting the number of Ada development projects and the
Cost per year for Ada development projects into a yearly flow for all Ada development
projects. Figure A.3-2 shows the flow diagram for this computation.

v
(O Cst_yr_Ada_dev = Ada_dev_prj*Cst_prj_yr_Ada_dev

{Cost per year for Ada development projects

(dollars/year)}
Cost per project-year for Ada development projects (Equation #100) -

(Boehm 1981) discusses in great detail how much a given piece of software work will
cost, given various assumptions about the tools, people, and procedures involved.
Moreover, there are reasonably good ways of predicting how much of the cost will be
spent in a particular year. Such calculations are for individual projects, but the analogous
concept exists for large collections of programming efforts. For the body of Ada ®
development projects, that cost is the Cost per project-year for Ada development projects.

A-22

S P SN S SRR ?&R&-{ DI R R N NN S

@
- 500 ¢——
Ada_dev_prj :
> 4600 ¢
g Incom_Ada_infra @
‘ ® E_inco_A_ost \
: 1350 & @ ‘
Eé Inten_Ada_infra @ Ref_cst_Ada, dev :
L E_infr_Ada_prj_cst__/
i E_Ada cost @
v @ Cst _prj_yrda lev
. Ref_cst_Ada_mn @
¢ Cst _pri_yr_Ada_mn @
" Cst_yr_Ada_dev
o 700 ¢
Ada_maint_prj @
Cst_yr_Ada_mn
<

Figure A.3-2. Flow diagram of inputs to Cost per year for Ada development projects
(Cst_yr_Ada_dev).

A-23 N

.

PO N N S N

AR L LA e
YA 55 A0A Fo o S0

) 3 SR AT

<’--"'
LS\ MR)

oty trlo i

ALY, 4, o

« & s A A

The Cost per project-year for Ada development projects (abbreviated
Cst_prj_yr_Ada_dev in the model) is a converter variable.

O Cst_prj_yr—_Ada_deyv = Ref_cst_Ada_dev*E_Ada_cost
{Cost per project-year of Ada development projects
(dollars/project/year)}

The cost equation above is written in a form common in system dynamics for
expressing a single output as a function of multiple inputs. The Reference cost for Ada
development projects defines what the standard unit of software work costs per year to do,
under some set of conditions (tools available, experience of programmers, etc.). The
Effects on Ada costs gives the effect on costs when the current conditions differ from the
reference conditions. This equation form is discussed in (Alfeld and Graham 1976,
Section 5.3) and (Richardson and Pugh 1981, pp. 152-56).

Two sets of equations may be defined with respect to to different sets of reference
conditions, corresponding to two different sets of hypothetical conditions. This usually
happens because the modeller doesn't have good information for all equations under one
consistent set of conditions. When reading the model equations, therefore, it will be
important to notice the reference conditions for each reference constant as a separate entity.

Reference cost for Ada development projects (Equation #110)

The reference cost for Ada development projects is the cornerstone for determining Ada
development costs: it specifies the cost per year for a standard software project under
standard conditions. The standard conditions are defined as the current average intensity
and incompatibility of (primarily non-Ada) infrastructure. (Details of how the current
characteristics of programming infrastructure are measured in the model were discussed in
Section 5 of this report.)

The Reference cost for Ada development projects (abbreviated Ref cst_ Ada_dev in the
model) is a converter variable with no inputs, i.e., a constant.

O Ref_cst_Ada_dev = SE6

{Reference cost for Ada development prﬁjects
(dollars/project/year)}

It should be reemphasized that all of the costs in the model deal with yearly
expenditures, which are quite different from life cycle costs. For example, it may be that
projects have a life cycle maintenance cost higher than the development cost. But the
maintenance expenditures will usually be spread out over more years than the development
expenditures. In that case, the reference cost (measured in dollars per year) for
development may well be higher than the reference cost for maintenance. The spending per
year is presumably more intense.

The numerical value for the Reference cost for Ada development projects is central to
the policy evaluation process, yet at the current time, highly uncertain. The issue of how
the values are selected will be treated in Appendix A.9.

A-24

- T %

b AL

FUPACRILIWT

............ > ET TR T R L S S T
TR ” N 'a DO % SRS

Effects on Ada costs (Equation #140)

A number of variables influence how much a given amount of programming work
costs. The composite of such influences is represented by the Effects on Ada costs.

The Effects on Ada costs (abbreviated E_Ada_cost in the model) is a converter variable,
that converts specific influences (intensity and incompatibility of infrastructure) into a
single aggregate effect.

O E_Ada_cost = E_infr_Ada_prj_cst*E_inco_A_cst
{Effects on Ada costs (dimensionless)}

Effect of intensity of infrastructure on Ada project costs (Equation #150)

The intensity of infrastructure brought to bear on programming projects has a strong
influence on how much the programming costs. More experienced programmers, ample
computer facilities for programming, reusable code, software tools, and so on all cause the

programming to go faster and more reliably. The aggregate representation of these is the
Effect of intensity of infrastructure on Ada project costs.

The Effect of intensity of infrastructure on Ada project costs (abbreviated

E_int_rAda_cst in the model) is a converter variable, using a graph function to convert the
intensity of Ada infrastructure into an effect on cost.

|3.000 I

E_int_Ada_cst

ﬂ

(input)

Inten_Ada_infra

A-25

« "

M m e m R RTRT %" e BT Rt A"~ .) L T Ot
\‘~‘.\ a R R ‘u . R . ..

w .

B -

vy - XF

@ E_int_Ada_cst = graph(inten_Ada_infra)
0.0 -» 3.000
10.000 -> 2.850
20.000 -> 2.565
30.000 -> 2.010
40.000 -> 1.000
50.000 -> 0.600
60.000 -> 0.465
70.000 -> 0.360
80.000 -> 0.270
90.000 -> 0.200
100.000 -> 0.100

Generally, the graph function causes cost to decrease as infrastructure becomes more
intense. The curve is normalized to a reference condition equivalent to the current intensity
of non-Ada infrastructure. At that point, the effect is neutral, i.e., it has a value of 1.0.
The calibration of this curve is discussed in Appendix A.9.

Effect of incompatibility of infrastructure on Ada project costs (Equation
#160)

Incompatibility of infrastructure has both indirect and direct effects on costs. The
indirect effects occur when incompatibility inhibits the accumulation of intensity of
infrastructure, which can keep costs higher than they otherwise would be. Most of the
commonly-discussed ways by which incompatibility increases cost are in this indirect
channel. But there is also a direct effect, where incompatibility of infrastructure effects the
ability to integrate and maintain large systems, where programming may have been done by
several contractors. Systems integration becomes more difficult if programs must be
shuttled between different operating systems or recompiled. Assembling a project team is
also more difficult in the face of incompatible infrastructure. Incompatibility creates
situations where experienced people exist, but are tied up on other projects, and the people
who are available may not be experienced with the language, operating system, or tools
needed. And hiring someone experienced in language A on operating system B with tools
C, D, E, and F is difficult because of the numerous constraints. In essence, incompatibility
adds to the costs of the integrating contractor. This is discussed in (Foreman 1985a,
Foreman 1985b, and IDA 1985a)

Examples abound of incompatibility raising programming costs in the non-Ada world,
but Ada is not exempt. Incompatibility of operating systems means that tools will not be
transportable, so that even if major subsystems are developed with extensive use of tools,
those may no longer be available during system integration. Even on the same operating
system, compiling programs with a different Ada compiler may change program
behavior-the Ada specification is not totally complete with respect to how features interact.
So use of generics within generics, or tasking within generics may; be handled differently
in different validated Ada compilers. The overall consequence of such incompatibilities is

higher costs. This effect is represented by the Effect of incompatibility of infrastructure on
Ada project costs.

A-26

=

L o= o o

T Y

The Effect of incompatibility of infrastructure on Ada project costs (abbreviated
E_inco_A_cst in the model) is a converter variable, using a graphic function to convert the
index of incompatibility into an effect on cost. Higher incompatibility adds to cost, and
conversely.

E_inco_A_cst

o 1]

(input)

Incom_RAda_infra

@ E_inco_A_cst = graph(Incom_Ada_infra)
0.0 -> 0.740
10.000 -» 0.780
20.000 -> 0810
30.000 -> 0.860
40.000 -> 0910
50.000 -> 1.000
60.000 -> 1.150
70.000 -» 1.270
80.000 -» 1.400
90.000 -> 1.490
100.000 ->» 1.570

The curve is normalized for a reference condition of today's level of incompatibility of
non-Ada infrastructure. At that point, the effect is neutral, i.e., it equals 1.0. ~ The curve
has a three-to-one difference in yearly cost between zero incompatibility and one hundred
incompatibility (roughly twice the 1985 incompatibility). That is a three-to-one difference
between a situation where everyone has experience in exactly the same language, operating
system, and tools, and beyond that, the same management style, procedures, formalisms,
and so on, and a situation where effectively no one has any of these elements in common
with any of the other team members. This is a curve where (IDA 1986) may provide the
basis for a modestly rigorous estimate.

A-27

Cost per year for Ada maintenance projects (Equation #200)

As with programming done for product development, there is a cost for programming &
done for maintenance. The Cost per year for Ada maintenance projects measures those
costs.

The Cost per year for Ada maintenance projects (abbreviated Cst_yr_Ada_mn in the
model) is a converter variable, converting the number of Ada maintenance projects and the
Cost per project-year for Ada maintenance projects to a total dollar flow for Ada ®
maintenance programming.

O Cst_yr_Ada_mn = Ada_maint_prj*Cst_prj_yr_Ada_mn {Cost per yeer for
Ada maintenace projects (dollars/year)}

Cost per project-year for Ada maintenance projects (Equation #210)

Any individual MCCR system will have an erratic curve of maintenance programming
expenditures versus time. One year, very little may be done with it, apart from fixing
identified bugs. Other years may see a major redevelopment effort due to changed
requirements. The model assumes that, however variable and unpredictable the ®
expenditures for individual projects may be, the aggregate of many such projects tends to
produce a relatively stable expenditure stream, which is therefore predictable by the law of
large numbers. The Cost per project-year for Ada maintenance projects is in effect that
predicted cost.

The Cost per project-year for Ada maintenance projects (abbreviated L 4
Cst_prj_yr_Ada_mn in the model) is a converter variable, converting what the cost would
be under a set of reference conditions (the Reference cost for Ada maintenance projects)
and the effect on cost of departing from those reference conditions (the Effects on Ada cost)
into an expected cost per standard Ada maintenance project.

QO Cst_prj_yr—Ada_mn = Ref_cst_Ada_mn*E_Ada_cost g
{Cost per project-year for Ads maintenance projects
(dollars/year)}

Reference cost for Ada maintenance projects (Equation #220)

The cornerstone for evaluating costs is the idea that a given amount of programming
work, with a given infrastructure, will cost a predictable amount in the average year to
maintain. That "prediction” is the Reference cost for Ada maintenance projects

The Reference cost for Ada maintenance projects (abbreviated Ref_cst Ada_mn in the
model) is a converter variable with no input, i.e., a parameter. b d

@) Ref_cst_Ada_mh = 2e6 {(Reference cost for Ada maintenance projects (
Dollars/project/yeer)}

Appendix A.9 describes the derivation of the value of this reference cost. ™Y

A-28

e a o

.................... R ~

A ta® et At T A . PR PO I Y L RPN T)
~ - (;:,: *; J:; e A e g Ry N A A N N L N BRI
LI Y e A A Fu VAT WA TGV YR Y Y A Sl A WY, D

Total yearly cost of non-Ada projects (Equation #260)

The structure of equations that lead up to Total yearly cost of non-Ada projects is
precisely analogous to the structure for Total yearly cost of Ada projects. The parameter
values are also exactly the same, except where explicitly noted and derived in the model

calibration section, Appendix A.9. Therefore, no verbal description will accompany the
equations defining Total yearly cost of non-Ada projects.

O Tot_yr—cst_NA = Cst_yr_NA_mn+Cst_Yr_NA_dev
{Total yearly cost of Nonada projects (dollars/year)}

Cost per year for non-Ada development projects (Equation #270)

Figure A.3-3 shows a flow diagram of the computation of non-Ada costs; the diagram
is symmetrical with the corresponding diagram for Ada costs.

(O Cst_¥r_NA_dev = NonAda_dev_proj*Cst_prj_yr—_NA_dev
{Cost per year for NonAda development projects (dollars/year)}

Cost per project-year for non-Ada development projects (Equation #280)

O Cst_prj_yr—NA_dev = Ref_cst_NA_dev*E_NA_cst

{Cost per project-year for NonAda development projects
(dolars/year)} .

Reference cost of non-Ada development projects (Equation #290)

O Ref_cst_NA_dev = 6E6 {Reference cast for NonAda development projects (
dollars/year)}

Effects on non-Ada cost (Equation #350)

(O E_NA_cst = E_int_NA_cst*E_inco_NA_cst
{Effects on NonAda costs (dimensionless)}

A-29

¢
4
E)
.

320 ¢——)

NonAda_dev_proj sf Yr NA_dev

. @ Cst_yr N A_mn

Cst_prj _yr_ NA_dev

Ref_cst NA_dev - @

Cst_pfl_yn NA_mn

204Q ¢ @ b

Int_NA_infra @

E_int_NA_ :
in cst Ta cst .
o Ref_cst NA_mn
2150 § E_inco_NA_cst v
Incom_NA_infr
v
230 ¢

NonAda_maint_prj

Figure A.3-3. Flow diagram of inputs to Cost per year for non-Ada development
projects (Cst_yr_NA_dev).

‘" |2.000 |

Effect of intensity of infrastructure on non-Ada cost (Equation #360)

:
s (=]
- <
Zz
-
=
l
fed
T
I R A
, | (npu
C @ Int_NA_infra
© E_int_NA_cst = graph(Int_NA_infra)
. 0.0 -> 1970
o 10.000 -> 1.530
. 20.000 -5 1.270
N 30.000 -> 1.120
N 40.000 -> 1.000
: 50.000 -> 0.880
) & 60.000 -> 0.760
70.000 ->» 0.630
80.000 -> 0.520
90.000 -> 0.390
N 100.000 -> 0.300
v
}'
- -
A-31
5 \;.-."'*.;‘.:,,‘."-.'_'."‘.;_\ PRI :"_ :_-' | x:,-\." Ly ‘-_‘r ', - '-:, v .\ .:._,‘

Effect of incompatibility of infrastructure on non-Ada cost (Equation #370)

l2.000 |

E_inco_NA_cst

O

(input)

Incom_NA_infr

©@ E—_inco_NA_cst = graph(Incom_NA_infr)
0.0 ->» 0.740
10.000-> 0.780
20.000-> 0810
30.000 -> 0.860
40.000 -> 0910
50.000 -» 1.000
60.000 -> 1.150 94
70.000 ->» 1.270 .
80.000 -» 1.400
90.000 -> 1.490
100.000 ->» 1.570

Cost per year for non-Ada maintenance projects (Equation #320)

O Cst_yr—_NA_mn = NonAda_maint_prj*Cst_prj_yr—_NA_mn
{Cost per year for NonAda maintenance projects (dollars/year))}

Cost per project-year for non-Ada maintenance projects (Equation #330)

QO Cst_prj_yr_NA_mn = Ref_cst_NA_mn*E_NA_cst
{Cost per project-year for NonAda maintenance (dollars/year)}

A-32

'''''''''''''''''''''''''' ot -
LR N e S T A T “ . TP

b - "- M » .- ~ J hd - . -
LT IO X GG S LU SRR ALY

.........

Reference cost for non-Ada maintenance projects (Equation #340)

% O Ref_cst_NA_mn = 3e6 {Reference cost for Non v
Ada maintenance projects (dollars/yeer)}

Total yearly cost of conversions (Equation #420)

Programs developed in non-Ada languages do not need to stay that way. Major
@ redevelopments are one natural point at which conversion to Ada could be considered.
There have already been proof-of-concept translations of three avionics packages for fighter -
aircraft into Ada, with good results: the F4J (DS&E 1985), the F-15 (Stanley 1985), and .
the F-20 (Suydam 1985). As experience with Ada accumulates, conversions of operational 3
software during major upgrades should become more common. 3

@ Surprisingly, routine maintenance also offers opportunities to transit into Ada. One
contractor writes routines in Ada, then uses an Ada-to-CMS2 translator to convert the code
into CMS2 code compatible with the rest of the system (Mayfield, 1985). Gradually, more
and more of the "original source" code is in Ada, with all the benefits thereof. Determining
when such conversions are undertaken is represented elsewhere in the model; the cost
section assesses the cost of such conversions, with the Total yearly cost of conversions.

& Figure A.3-4 shows the flow diagram of the computation.

The Total yearly cost of conversions (abbreviated Tot_yr_cst_conv in the model) is a 2
converter variable, converting the number of standard Conversion projects and the Cost per N
project-year for conversions to a total dollars-per-year figure.

L J QO Tot_yr—cst_conv = Conv_prj*Cst_prj_gr_Conv
{Total yearly cost conversions (dollars/year)}

Cost per project-year for conversions (Equation #430)

® The Cost per project-year for conversions represents the yearly cost of any maintenance
programming (major or minor) that begins with materials that were used to generate non-
Ada source code and ends with Ada source code. This definition therefore excludes
translation activities during the development phase such as translation from a specification
language or program design language (PDL) into Ada source code. The definition would
include, however, retranslation from a PDL into Ada instead of the non-Ada language. So

o if a PDL version of a program was used to generate source code in JOVIAL, one way of
converting the JOVIAL program would be to translate from the PDL into Ada.

Cost per project-year for conversions, like the costs per project year of development ’
and maintenance, is a yearly cost, not a life cycle cost. Even if conversions have a yearly 0
cost comparable to development costs, the cost of completing a given conversion project
o can be much less if it is accomplished more quickly than developments.

X
)
\
{

SR R R R S R N S S S SR N AL S S Rt RNy
S"K\J' _.f- Ny sn.u. ___\-h D2 A COLOCA ¢

SR

w A A

Ratio_conv_dev_cst

y g e

, - Figure A.3-4. Flow diagram of inputs to Total yearly cost of conversions
(Tot_yr_cst_conv).

A-34

ot

A
ey

SN ASELEAN S04 ¥y

TR PG A SRS Ittt Pt d

T T ITININI Y I, ea % e d'sd e’) aAma r §- X

The Cost per project-year for conversions (abbreviated Cst_prj_yr_conv in the model)
is a converter variable, converting current programming costs (represented by the Cost per
project-year for Ada development projects) to costs for conversions, using the Ratio of
development to conversion costs.

O‘ Cst_prj—_yr—Conv = Cst_prj_yr_Ada_dev * Ratio_conv_dev_cst
{Cost per project-year for conversions (dollars/year)}

The model formulation assumes that the bulk of conversion costs will be incurred
during major redevelopments or block upgrades, as opposed to smaller-scale and more
routine maintenance. Therefore, the cost of doing such redevelopment/conversion
programming in Ada should be very similar to (and therefore should be based on) the cost
of developing new programs in Ada.

If a project is undergoing a major redevelopment and conversion to Ada, it is doubtful
that cost-conscious managers would also want to simultaneously carry on a major
redevelopment in the original non-Ada language. Therefore, once conversion work starts
on a piece of software, it is removed from the pool of non-Ada projects immediately. (The
projects sector contains the equations that accomplish this.) Of course, routine maintenance
of operational software must continue even if the software is in the process of being
redeveloped; the model includes these costs as part of conversion, just because the project
is accounted for as a conversion project, not included in either the Ada or non-Ada pools of
projects. This assumption about routine maintenance costs may create some slight
inaccuracies if Ada programming costs are dramatically different from non-Ada
programming costs, but the error should still be relatively small if routine maintenance
expenses are substantially smaller than redevelopment expenses.

Ratio of conversion to development cost (Equation #440)

The Ratio of conversion to development cost characterizes the relative cost per year of
working on a software project for the first time (development) versus a second time, third
time, and so forth (redevelopment). As usual, the ratio characterizes averages, rather than
any specific project: the average development project, the average extensiveness of pre-
planned product improvement, mission change, and so on.

The Ratio of conversion to development cost (abbreviated Ratio_conv_dev_cst in the
model) is a converter variable with no input, i.e. a constant.

O Ratio_conv_dev_cst = 1
{Ratio of conversion to development costs (dimensionless)}

At this point in the development of the model, there is little evidence even as to whether
the Ratio of conversion to development cost is greater than or less than 1.0. There are
arguments both ways. For redevelopment, much of the software is already well-tested: the
software operates to the specifications and the specifications are in fact what is needed. But
in the model, conversion costs also include routine maintenance while the conversion is in
process. If the architecture is well-worked out, it may be possible to "fan out"
programming tasks into modules more rapidly than for a development project--more people
involved sooner would give a higher yearly cost, even if the conversion is accomplished
much more quickly than a development. And, although the original software may operate
well, a formal specification may either not exist or be far out of date, which forces the
redevelopment to start almost from scratch. Too, redevelopment is usually triggered by

A-35

A

i'l’.’

AR

~n ¥

NP ASS

/7

RS -'. LRy

3

N

*

AR,

.

S ARIR

!

v

DO

>

.) "v "n

substantial changes in either mission or capability, which are new programming problems.
Might developing a system with new capabilities while operating more or less like the old
be more complex and costly than developing a new system without the constraint of
previous user training? In the absence of information on such questions, the ratio is set to
1.0; conversion projects are assumed to cost as much per year as new development
projects.

A-36

,,,,,,,,

.,, ,\ L% \:.'\' -~ \‘.\' ~’ '. ‘- _':'ﬂ \:.\' \'\\

N

Appendix A.4: Ada Projects Sector

The Ada projects sector of the model represents development and maintenance
programming work in the Ada language for all Mission-Critical Computer Resources
(MCCR). (Non-Ada projects are represented in a parallel but separate sector.) Every
MCCR project start that involves software will increase either the number of Ada
development projects or the number of Non-Ada development projects. That choice is
determined in the language choice sector. Ada development projects become Ada
maintenance projects, which usually endure for many years in the language in which they
were first programmed. There is also a policy option to translate programs in maintenance
phase from a non-Ada language to Ada. During the course of translation, the projects are
classified in a separate category, conversion projects, which is also located in the Ada
projects sector.

The Ada projects sector affects several other areas in the model. The numbers of
projects in the three Ada categories (Ada development, Ada maintenance, and conversion)
are the basis for calculating Ada software costs in the cost sector. Moreover, the amount of
Ada programming work in progress (as measured by the numbers of projects) also
determines how fast Ada infrastructure intensity, coverage, and incompatibility develop.

Ada development projects (Equation #500)

All MCCR systems in the development phase using the Ada language are classified in
the model as Ada development projects. The only Ada programming not represented here
is in projects already in the maintenance (i.e., post-development) phase, which may include
projects to translate programs in the maintenance phase from a non-Ada language to Ada.
Section 5 of this report discusses the exact definition of a programming project. Figure
A.4-1 shows the inputs to Ada development projects on a flow diagram.

Ada development prOJects (abbrewated Ada_dev_prj in the model) is a level variable; it
accumulates the rate of flow into it (Ada project starts) and is depleted by the outflow rate
(Ada development project completions).

[C] Ada_dev_prj = Ada_dev_prj + Ada_dev_starts - Ada_dev_compl
INIT(Ada_dev_prj) = 0 {Ada development projects
(projects)}

Ada development projects is initialized at zero, since the simulation starts prior to the

definition of Ada as a language and prior to the availability of compilers or any other
infrastructure. .

Ada development project starts (Equation #510)

All new MCCR development projects by definition use either the Ada language or some
non-Ada language. The development work started each year in Ada is called Ada
development project starts.

A-37

Figure A4-1. Flow diagram of inputs to Ada development projects (Ada_dev_proj).
The flow exiting to the right goes to Ada maintenance projects.

A-38

N = - . ’ - .. . Cama LRI A) R R T P S U e e AT et tetete
o A? -,-".a_;.f;f:.r:‘_._-_“.r~«-."l'\:.-\‘4-.-,. B B T N RSN __J
: aal P o v

N Ada development project starts (abbreviated Ada_dev_starts in the model) is a rate
variable, flowing into the level of Ada development projects. A rate variable is a special
, variation of a converter variable. Here, Total development project starts and the Fraction of

) development project starts in Ada are converted into a number of projects per year starting
' 1mn .
¥
b QO Ada_dev_starts = Total_prj_starts*Fr_dev_starts_Ada
» {Ada development (project) starts (projects/year)}
T

\ Total development project starts (Equation #520)

\ All Mission Critical Computer System projects are classified as development projects
until they officially become maintenance projects. The yearly rate at which development
projects are initiated is Total development project starts.

Total development project starts (abbreviated Total prj_starts in the model) is a

converter variable, using a graphic function to convert a calendar year into the number of
; development projects started.

! @ |4000.0 I

. @
. [4
[
) .-}
' ?
o o
|
Q.
-
o
-
L =
i\ b=
o I0.0I:IEEEEEEE
1970.000 (input) 2020.000
@ year
o
LY
¥
)
L]
<
de
¥
A-39
P
; - Las o«
’ . e e W N T T T T T A N ATt ISR T NI MR e "."' " ..'- = Tt e e <,
l‘:,. ".'-’\-"..'f':'-""-’_'_,:--.::','_{.'.’_:.-;f,;f__.-"f T A S N I A S R 4 BT NS ATAISF P 5.-\.-

© Total_prj_starts = graph(year)

1970.000 -> 15.000
1975.000 -> 50.000
1980.000 -> 120.000
1985.000 -> 620.000
1990.000 -> 760.000
1995.000 -> 1020.000
2000.000 -» 1390.000
2005.000 -> 1915.000
2010.000 -» 2360.000
2015.000 -»> 2870.000
2020.000 -> 3380.000

The derivation of specific numbers for this variable is described in Appendix A.9,
"Multivariable Model Calibration."

The number of starts is assumed to increase each year. As computer technology, both
software and hardware, continues to advance, more and more applications for computers in
MCCR systems become cost-effective. This study focusses on ways of causing costs of
software production to fall more rapidly. However, it is beyond the scope of this study to
characterize how software costs feed back to influence demand for software. Total
development project starts is an exogenous variable, i.e., its value is not influenced by
other variables within the system.

It is not expected that assumptions about the number of project starts will be critical in
determining which standards policies are most desirable, within a broad range of plausible
values for yearly project starts. In any event, this is the primary candidate for contingency
testing.

Year (Equation #530)

The yearly progression of time from 1975 to 2015 is represented in the variable called,
mnemonically enough, Year.

Year (written Year in the model) is a converter variable, converting the built-in variable
TIME into a model variable complete with a flow diagram symbol.

QO year = TIME {years (ye&rs)}

The variable, Year, was created to write as an explicit input to a graph function, since
the STELLA simulation package's syntax does not allow using the TIME variable directly.

The range of time simulated with the model can be changed in the "Specs" menu.
However, if this is done, the tables drawn as functions of time (Year) must be checked to
ensure that they are properly defined over the specified range.

. - M VA N
R T OEN N
SR .

Ada development project completions (Equation #540)

The transition from a development project to a maintenance project is a clearly defined
and formal event. Sometimes it is marked by handing the project over to a different team;
sometimes its is merely a signing of papers and a transition of budget authority. For a
contractor delivering on a contract obligation this event has important legal and financial

implications. The number of projects each year that make this transition is the rate of Ada
development project completions.

Ada development project completions (abbreviated Ada_dev_compl in the model) is a
rate variable; it is an outflow to Ada development projects and an inflow to Ada
maintenance projects.

O Ada_dev_compl = Ada_dev_prj/Ada_dev_compl_time
{Ada development (project) completion time
(projects/year)}

This representation of the rate as the level divided by the average dwell time, Ada
development completion time, will give an average continuous flow of Ada development
project completions.

The completion time is no more than an AVERAGE dwell time in the model, just as in
real life. Some projects will be completed within months. Some will persist for two and
three times the average. The structure of level and outflow rate used here forms what is

known as a first-order delay or lag; the average time a project spends as a development
project is the Ada_dev_compl_time.

The mathematics of the first-order delay are such that if a batch of projects were all
started at once (with none starting thereafter), both the number of projects remaining and
the completion rate would decline exponentially. When time equal to the average
completion time has passed, about 70 percent of the projects will already have been
completed. About 30 percent of the projects would still be incomplete. About 30 percent
of those will remain after 2 times the average completion time, and so on. It is these
stragglers that make the average dwell time equal to the Ada_dev_compl_time. For further

discussion, see (Forrester 1969, Sections 2.2 and 10.2; Goodman 1974, Ch. 3; and Alfeld
and Graham 1976, Section 3.5)

Ada development project completion time (Equation #550)

Although projects vary greatly in the time they take to be complete, with a large enough
sample it is possible to think of an average development duration. This parameter is called
Ada development project completion time.

Ada development project completion time (abbreviated Ada_dev_compl time in the
model) is a converter variable with no inputs, i.e., a constant.

O Ade_dev_compl_time = 10 (Ada development (project) completion time (
years))

-."'-\."s"' N "'\ %Y ol 5

- Wl e . A Sl G S -
A e s b be B 2 dn ' Jn 20 Ruagihde e i el i Sy “Rde A ininkn Ar e he ACERL S i T (R, Sply "R A gy Ay 4 Pa e it INg Big 08 I By WA PP DR IR S U S

The project completion time represents the time it takes from inception of development
the weapons platform or other system of which programming is a part, all the way to
becoming a developed, completed, maintained, and usually deployed system. This time
differs from the time it takes to complete one program module. Before any given module is
actually programmed, there are rounds of system definition and specification, and often
layers of calling routines to be written first. After a module is programmed, it will usually
be rewritten, revised, or possibly discarded entirely due to design changes in other parts of
the system, all as part of the development process. The time required for the entire process
is what is measured by the Ada development project completion time.

Conversion projects (Equation #600)

Supposing that Ada and its APSE will eventually become an attractive programming
alternative, the issue arises as to what to do about the non-Ada programs already deployed
and being maintained. As has been discussed in the Cost sector, one alternative is
translation to Ada, either on a module-by-module basis, or as an integral part of major
redevelopments. The projects where such translations are being done Conversion projects.
Figure A.4-2 shows the inputs on a flow diagram.

Conversion projects (abbreviated Conv_prj in the model) is a level variable; it
accumulates the rate of flow into it (Conversion project starts) and is depleted by the
outflow rate (Conversion project completions).

[Conv_prj = Conv_prj - Conv_prj—compl + Conv_prj_starts
INIT(Conv—prj) = 0 {Conversion projects (projects)}

Conversion projects is initialized at zero; there can be no conversion projects until there
is Ada.

Conversion project completions (Equation #610)

Once the conversion work is done -- once whatever direct translation is possible is
finished, along with the new Ada programming -- the project (or fraction of a project)
becomes just another Ada maintenance project. The number of such completions per year
is the Conversion project completions.

¢

Conversion project completions (abbreviated Conv_prj_compl in the model) is a rate
equation which flows out of Conversion projects and into Ada maintenance projects.

QO Conv_prj_compl = Conv_prj / Conv_compl_time
{Conversion project completions (projects/year)}

The rate of Conversion project completions is the outflow rate for a standard
first-order lag, with the time constant being the Conversion project completion time.

¢

Conversion project completion time (Equation #620)

Some conversions will take a week or two, if they are merely rewriting a subroutine in
Ada. Others will last several years, if they are major redevelopments stemming from
substantial mission changes. But in the aggregate, there is an average, which in the model @
is the Conversion project completion time.

Ada_ Yaint _prj
Ada_mn_prj_obsol e
L T\ . .
600 —‘ Ada_pri_mn_time
ConV[p fj @

: 1t Conv_prj_compl ,

) Y Conv_compl_time

N (9
@' Con _prj_starts D 950

< Fr_conv_NA_mn_pr NonAda_maint_prj

o
a
K Figure A.4-2. Flow diagram of inputs to Conversion projects (Conv_proj). The flow
B from the left is Ada development project completions. The flow from the bottom comes
P from Non-Ada maintenance projects.

‘* ?600

- @ Total_Ada_prj @
— i

..........

(750 ' Ada_Jev_pi 470

Fr_Ada_pr W_conv_prj

@ @ Conv_prj

Total_projects

W_Ada_mn_prj
Total_NA_prj

A-43

NI OO

S N A e A A N NN O NI NN
C .N;_,_x.u?ma:,‘u&-dc'.b.-.,.c. Y nu‘AxJ ulﬂ’; MMLMM, AASLY RS LS ORI

Conversion project completion time (abbreviated Conv_compl_time in the model) is a
converter variable with no inputs, i.e., a constant.

(O Conv_compl_time = 2 {Conversion project completion time (years)}
Conversion project starts (Equation #650)

The moment programmers start specifying the rewriting of non-Ada code that is to
result in Ada code, the project (or part of a project) involved is classified as a conversion
project. The yearly rate at which such projects are initiated is the Conversion project starts.

Conversion project starts (abbreviated Conv_prj_starts in the model) is a rate equation.
It is the flow of projects out of the Non-Ada maintenance level and into the Conversion
projects level.

QO Conv_prj_sterts = NonAda_maint_prj * Fr_conv_NA_mn_pr {Conversion
project starts (projects/year))

Conversion project starts is formulated as a fraction of the remaining pool of Non-Ada
projects. Even if DoD and the services choose a high fractional conversion rate, the
absolute number of conversion starts will slow down as the remaining pool of Non-Ada
projects gets smaller. This is a realistic because those remaining projects represent the
more difficult, less cost-effective conversion efforts, which should either be saved for last
when the process is well-understood or. not converted, just ignored until they and the
system in which they are embedded obsolesce.

Fractional conversion rate of non-Ada maintenance projects (Equation
#660)

A DoD policy encouraging the conversion of non-Ada projects to Ada is a potentially
powerful lever for influencing how quickly Ada establishes itself. Such a policy is
represented by the Fractional conversion rate of non-Ada maintenance projects.

{ O

e b AN S L L AL L L L s LA AR Snan

U AN DR S S D S e o T R PICIRIE, WG IR RS R N e e RN G U U TR RN

) \v\ I T A T N N T PR . N R A I N R RIS TR T g } Vet N >
“ A RIS ‘ . . -, - -, A

AR RGN - ¥

-
.
e
Fractional conversion rate of non-Ada maintenance projects (abbreviated
Fr_conv_NA mn_pr in the model) is a converter variable, which uses a graphical function .
to convert the calendar Year into a fractional flow rate. .
L

I 3
... :
F
;. ... -

e N PO SO SOUUE SUUUUPUS SUURE SUNUE SOUOE SUUE SO
=S U 0 U0 U O 0 O A A ,
< A
zI .
=) 3
R T PP DO PUPUS SYPOS PUPP P i

® xS U SUUOE SOUNE SUUO JOUOE SUUNE SOUNE SUUOL IO Y
N :
L L RN ;-
|-1 .000 I S S S .

« (mpu

year R
-
[@ Fr—conv_NA_mn_pr = graph(year)

1970.000 ->» 0.0

1975.000 -> 0.0

1980.000 -> 0.0

1985.000 -» 0.0

ot 1890.000 -> 0.0
‘ 1995.000 -> 0.0 \
2000.000 ->» 0.0 .
2005.000 -> 0.0 '
- 2010.000 -» 0.0 H
2015.000 -» 0.0 3

2020.000 -» 0.0

Conversion policy is a policy lever that is inactive in the base model; the values are set
- to zero at all times. The fraction is expressed as a graphical function of time to allow
experiments that create a flow of conversions. But such a flow would be realistic only after
Ada is available as a programming language, i.e., the formulation must provide for zero
conversions before the mid-1980's and the potential for conversions thereafter.

A-45

Ada maintenance projects (Equation #700)

Ada development projects and conversion projects, when completed, result in software
for developed (usually deployed) MCCR systems. There is still, however, a substantial
amount of work required to both improve the reliability of such systems through routine
maintenance, and to keep the system capabilities up to current military requirements. In the
terminology used here, all such activities are termed maintenance. The number of projects
being maintained that use the Ada language is called Ada maintenance projects.

Ada maintenance projects (abbreviated Ada_maint_prj in the model) is a level variable.
. Its inflows are the Ada development project completions and the Conversion project
- completions. The outflow from the level is the Ada maintenance project obsolescence.
* [Ada_maint_prj = Ada_maint_prj + Ade_dev_compl - Ada_mn_prj_obsol +

Conv_prj—compl
INIT(Ada_maint_prj) = 0 {Ada maintainance projects
(projects))

Ada maintenance projects is initialized at 0.0, since at the start of the simulation in
1975, there were no maintenance projects written in Ada.

Ada maintenance project obsolescence (Equation #710)

After their useful lifetime passes, weapons and communications systems finally become
too old or antiquated to be worth maintaining any longer. When this happens they are
retired from duty, and if computers are embedded in the systems, the software that runs
them no longer needs to be maintained. Undoubtedly, a similar process happens for non-
embedded systems also -- a given set of programs gets too far from current needs and
acquires too many repairs on top of repairs. Or changes in hardware costs over the years
make entirely new forms of computation desirable. Eventually, it is cost-effective to
develop an entirely new system and scrap the old. There comes a time when every
program is no longer used. The number of Ada programming projects that pass out of use
each year is represented by the rate of Ada maintenance project obsolesence.

Ada maintenance project obsolescence (abbreviated Ada_mn_prj_obsol) in the model is
a rate equation; it depletes the level of Ada maintenance projects.

O Ada_mn_prj—_obsol = Ada_maint_prj/Ada_prj_mn_time {Ada
maintainance project obsolescence (projects/year))

The rate is formulated in the standard first-order delay format, with the Ada project
maintenance time as the time constant.

Ada project maintenance time (Equation #720)

The lifetime of a weapon system can be quite long. The B52 as a weapons system,
which first entered limited production in 1952, is therefore 34 years old and still going
(Fahey 1956). On the other hand, many weapons systems would have much shorter
lifetimes. In the aggregate an average of 20 years seems plausible. This time is
represented in the model as the Ada project maintenance time.

A-46

T % e % T Y '}'»1'!
PACN AL NI IR IO

Vol Ao for gav by *ogat §gt Bav s Ra * dat ! ¥ ga% By Fac Fav Zaw ¢ Rav av Tt Gt a2’ fav el fa¢ Bat fut Pab B de tar bec baain X TN ‘Rl g el VR ¥ Ve g i g
4 .
]

K
y

(=

- .
-~ -

Ada project maintenance time (abbreviated Ada_prj_mn_time in the model) is a
- converter variable with no inputs, i.e., a constant.

N ",

QO Ada_prj_mn_time = 20 {Ada project maintainance time (years) -- the
time it takes for the system in which the technology is embedded to pass
out of useful service}

Telard e T

Fraction of Ada projects (Equation #750)

The Fraction of Ada projects represents that portion of the total MCCR programming
that is done in the Ada language. This fraction is used in the infrastructure sectors of the
model to represent how much Ada programming (and non-Ada programming) is going on,
which influences how rapidly the intensity of infrastructure is created.

fr el ld

"R Fraction Ada projects (abbreviated Fr_Ada_prj in the model) is a converter variable,
converting the Total projects and the Total Ada projects into a fraction.

QO Fr_Ada_prj = Total_Ada_prj/Total_projects
{Fraction of Ada projects (dimensionless))}

Total projects (Equation #760)

- Total projects is a measure of the amount of programming work that is going on at any
N particular time. As will be discussed further below, there is a weighted sum of
- maintenance, conversion, and development projects, the weightings representing the
. W differing amount of programming work implied by a standard project within each of those
categories. For example, a system in the maintenance phase might entail less programming

, work per year than would a system of equivalent complexity in the development phase.

Yy (Whether it actually would or not is a matter for further investigation, as discussed
elsewhere in this report.)

<« Total projects (written Total_projects in the model) is a converter variable, summing the
Total Ada projects and the Total non-Ada projects.
b
) QO Total_projects = Totai_Ada_prj+Total_NA_prj {Total projects (projects))
"(G Total Ada projects (Equation #770)
A Total Ada projects represents the total amount of Ada programming going on at any
& particular time in all categories of projects: development, maintenance, and conversion.
Total Ada projects (abbreviated Total_Ada_prj in the model) is a converter variable,
" summing development, maintenance, and conversion projects, with weighting coefficients
< on the latter two.
“ QO Total_Ada_prj = Ada_dev_prj+(Ada_maint_prj*W_Ada_mn_prj)+(Conv_prj
» W_conv_prj)
B {Total Ada projects (projects))
%
’
»
)

A-47

[it e et It b s Bel S0 gBgt N

f, The weighting factors represent the difference in programming effort required for the
2‘ different types of programming project. It may take less effort to maintain a project than it
i‘. ; does to either convert it from non-Ada or to develop it from scratch.
y Weight for conversion projects (Equation #780)
i’ \
.; Weight for conversion projects represents the programming effort required per year to
: convert a non-Ada project to Ada, relative to a development project.
« Weight for conversion projects (abbreviated W_conv_prj in the model) is a converter
e variable with no inputs, i.e., a constant.
o~
b3 O W_conv_prj = 1 {Weight for conversion upgrades
N (dimensionless)}
The representation as a constant implies that the relative programming efforts for the
o different kinds of programming projects (development, maintenance, and conversion) does
e, not change much over the span of the simulation. As discussed in Appendix A.3 on the
x3 cost sector, the value of 1.0 indicates that it takes as much effort per year to convert a non-
o Ada project to an Ada project as it does to develop an Ada project de novo. (Development
2 projects take longer to complete, so the life cycle cost of development is higher than that of
_f conversion.)
)1
o Weight for Ada maintenance projects (Equation #790)
1’.""? Weight for Ada maintenance projects indicates the programming effort required to
- maintain Ada projects relative to the effort required to develop them.
2 Weight for Ada maintenance projects (abbreviated W_Ada_mn_prj in the model) is a
) converter variable with no inputs. Its value is constant throughout the simulation.
.;~;' O W_Ada_mn_prj = .5 (Weight for Ada maintainance projects (dimensioniess
' The weighting value of .5 means that the model assumes that maintaining an Ada
3_-1 standard project takes half as much programming effort per year does developing one.
N2
o
Lo
3
po

-

>~ Ar&’l "

-

>
(L%

AN

»

! A-48

> o
~

~:

- L T ‘

R R G SR Ol i e e T e A e T A O DL e S S T LT B B RS N SC NS A SN

< -: IRy ‘: Wy ':. e S ‘; -_F" .,-. X ',: ',.: OGN ‘.': st .-_»\a_‘,,_-_..;-\. ,‘f__r,_~. " \.\-._._N- i \-' 5 (-\-. _. A

e ha'oa g TR o' 2@ oF1 o'l 4if av Y- yaa¥y 4 5 B’ Ba? 2t Rud Ba? Ra% B A6 90 pd’

Appendix A.S: Non-Ada Projects Sector

The non-Ada projects sector of the model represents development and maintenance
programming work in all non-Ada languages. Every development project start that
involves software will increase either the number of Ada development projects or the
number of Non-Ada development projects. That choice is determined in the language
choice sector. Non-Ada development projects become Non-Ada maintenance projects,
which usually endure for many years in the language in which they were first programmed.
There is also a policy option to translate programs in maintenance phase from non-Ada to
Ada. During the course of translation, the projects are classified in a separate category,
conversion projects, which are not part of the non-Ada projects sector.

The non-Ada projects sector affects several areas in the model. The numbers of
projects in the two non-Ada categories (development, and maintenance) are the basis for
calculating non-Ada software costs in the cost sector. Moreover, the amount of non-Ada

programming in progress determines how fast non-Ada infrastructure intensity, coverage,
and incompatibility develop.

The Non-Ada projects sector is structurally identical to the Ada projects sector, with
two exceptions, both due to the presence of conversion projects. First, conversion projects
flow out of the Non-Ada maintenance project level and into the Ada maintenance project
level. Second, the summation for Total non-Ada projects has no term for conversion

projects, since at least the coding phases of those projects are conducted in the Ada
language.

The parameters of the Non-Ada projects section are exactly equal to the corresponding

parameters in the Ada projects section. Because of the close similarity of the Ada projects

sector to the non-Ada projects sector, no further verbal description will accompany the
equations for the latter.

Non-Ada development projects (Equation #820)

Figure A.5-1 shows the inputs for non-Ada development projects on a flow diagram.

[NonAda_dev_proj = NonAda_dev_proj + NA_dev_starts - NA_dev_cbmpl
INIT(NonAda_dev_proj) = 150

{NonAda development projects (projects))
Non-Ada development project starts (Equation #830)

O NA_dev_starts = Total_prj_starts * (1-Fr_dev_starts_Ada)
{Non-Ada development (project) starts (projects/year))

Non-Ada development project completions (Equation #840)

(O NA_dev_compl = NonAda_dev_proj/NA_dev_compl_time
{Non-Ada development (project) completions
(projects/year)}

A-49

Y,

Lol o5 L 2 4 d L 2 'l,f Ps

LR RARA

P AR

R

Ta)

2.

»

=4

o

w

Fr_dev_starts_Ada
-
- NonAda_dev_proj
NA_dev_starts NA_dev_compl »
- v
Total_prj_starts
v
w
Figure A.5-1. Flow diagram of inputs to Non-Ada development projects

(NonAda_dev_proj). The flow exiting to the right goes into Non-Ada maintenance o
projects. -
A-50 vj
3
R S SRR

Non-Ada development project completion time (Equation #850)

™ (O NA_dev_compl_time = 10
{NonAda development (project) completion time
; (years)}

: Non-Ada maintenance projects (Equation #880)
™ Figure A.5-2 shows the flow diagram for Non-Ada maintenance projects.

(] NonAda_maint_prj = NonAda_maint_prj + NA_dev_compl -
NA_mn_prj_obsol - Conv_prj_starts
INIT(NonAda_maint_prj) = 90

{NonAda maintenance projects (projects))

.
Non-Ada maintenance project obsolescence (Equation #890)

, O NA_mn_prj_obsol = NonAda_maint_prj/NA_proj_mn_time {NonAda
- maintainance project obsolescence (projects/year)}

' Non-Ada project maintenance time (Equation #900)

O NA_proj_mn_time = 2G {NonAda project maintainance time (yeers))}
'g Total non-Ada projects (an output) (Equation #910)
; O Total_NA_prj = NonAda_dev_proj+((NonAda_maint_prj-Conv_prj)*
: w_NA_mn_prj)
{Total NonAda projects (projects)}

h &
. Weight for non-Ada maintenance projects (Equation #920)
)
¥
O w_NA_mn_prj=.5

q

L
23

~

A-51
ol ot
o e TV B LS N T e L e L D e e L L Ze AN L

LA

XXX s S

LA LA

P
AN A 2

o

Y
{

NA_mn_prj_obsol

@

w_NA_mn_prj

Total_NA_prj

£20 |
NonAda_dev_proj Conv_prj

Figure A.5-2. Flow diagram of inputs to Non-Ada maintenance projects
(NonAda_maint_proj). The flow exiting upwards goes into Conversion projects. The
flow entering from the left is the Non-Ada development project completions.

R T eI I I UL
PR PP aa LS T SN SR e T T e
'-’\"'y' NN 'I".'"\-" 5 \’.,...I.’.,.f r Lo T s ¥

N oo

[{]

€

T ORI T T VLS

Appendix A.6: Language Choice Sector

The language choice sector represents the considerations made in choosing the

e language in which MCCR systems will be programmed. Rather than representing all
language options equally, the sector represents choosing Ada versus the aggregate of all

other languages. The basis for choosing Ada versus another language is coverage and

intensity of infrastructure (i.e., whether sufficient skilled people, software tools, and

modern hardware for programmers are available; and available for the desired combination

of host and target computers), and beyond these characteristics, the incentives that arise

T v W w

& from the DoD having standardized on Ada.
j Fraction of development project starts in Ada (Equation #1000) (an output)
: In the aggregate, the various considerations about whether or not to use Ada can be
- summarized in the fraction of programming work starting up that uses Ada. In the model
\ this is the Fraction of development project starts in Ada. Figure A.6-1 shows this variable

and its inputs.

Fraction of development project starts in Ada (abbreviated Fr_dev_starts_Ada in the
model) is a converter variable, combining the Natural fraction of Ada starts (that would
arise from free market choices, without the influence of DoD standardization) with the

L4 influence of DoD standardization (the Effect of target on starts).

R T

! O Fr_dev_starts_Ada = Nat_fr_Ade_starts * E_target_on_starts
} (Fraction of development (project) starts in Ada
(dimensionless)}

Unlike most other sectors, the language choice sector equations are not organized

around a level variable; the function of this sector is to gather information about other level

variables, infrastructure variables in particular, from other sectors and combine them into a

single result. Just as a reminder of this difference with most other sectors, the heading of

@ the first equation calls the-Fraction of development project starts in Ada an output variable,
to distinguish it from a state variable.

Effect of target on starts (Equation #1010)
The DoD and Congress have set in motion a number of incentives to use Ada beyond

the free-market considerations of how well it should work in the project. The
. Authorization Act of 1983 stated:

¢

The Department of Defense should accelerate the implementation of the Ada
higher order language and constrain to the maximum extent feasible service

variations on Ada to ensure the utmost commonality of systems support
software.

G

Accordingly, the "DeLauer Memo" (DeLauer 1983) of June 10, 1983 from Richard

DeLauer, then Under Secretary of Defense for Research and Engineering (USDRE),

mandated the use of Ada, "consistent with approved introduction plans, in all mission-

critical defense systems that enter advanced development status after January 1, 1984 or

. that enter full-scale engineering development status after July 1, 1984." (quote from DoD

: Computer Technology (Study Annex): A Report to Congress, 1984). A 1985
memorandum from the current USDRE, Dr. Hicks, confirms this pelicy (Hicks 1985).

A-53

.« . g, t‘ WIS IPICIPE AMR 0 4, SPYEAN 4‘._'._.-. - '.",.'.'w".' 1_‘-,‘-\ SEATH wn S'\“.'ﬁ.“'\'&'\'\ '\- - . K A R - e
N D R N I S NI 2¢ S R IR NN B R N R N SR A e A M N N 4 D R A e

TR, 2 T R S0 20 Dhat ab A i Do Whe 40 2he Lorb bl cle s

h)
" =
5
'0
» o
o
e &
Incentive_use_Ada
L <
starts
)
o
e 9
- Time_perc_ince)
; Target_Ada_rel._nat
> =
N
N on_starts
d w
L) 6
Fr_dev_starts_Ada

\
3

-
: Figure A.6-1. Flow diagram of inputs to Fraction of development starts in Ada)
! (Fr_dev_starts_Ada). -

A-54

The policies on Ada use create incentives to use Ada above and beyond strict cost and
effectiveness issues. Obtaining a waiver to use a non-Ada language is time- and resource-

consuming. The process may not generate goodwill between the programming organization
and the DoD program officer. Moreover, the chain of evaluations and approvals could
cause substantial delays: The program officer must propagate the request for a waiver up
the chain of command within the service, and large projects must also involve the DoD's
Research, Development, Testing, and Evaluation (RDT&E) approval. Moreover, choosing
a non-Ada language causes an organization to lose the ability to accrue Ada experience for
later projects. Such considerations can increase the use of Ada beyond what would be
indicated by free-market considerations alone. This is represented in the model by the
Effect of target on starts.

The Effect of target on starts (abbreviated E_target_on _starts in the model) is a
converter variable, which uses a graphic function to convert the discrepancy between the
DoD target fraction and the natural fraction into an effect on starts.

|5.000 I

E_target_on_starts

¢
j
o

(input)

Target_Ada_rel_nat

C

A-55

........

..Mi PRTRS, AN AP 0800 R IR ATILI N N SR N 8 QR AN R AN TN 3 ST VD0 A X R 288

I3 o vl a b o

.

- v
..

Pl ot 43PN

3535 SRS N R

© E_terget_on_starts = graph(Target_Ada_rel_nat)

0.0 -» 1.000
0.500 -> 1.000 -
1.000 -> 1.000
1.500 -» 1.125
2.000 -> 1.325
2.500 -» 1.575
3.000 -> 1.950
3.500 -»> 2.300
4.000 -> 2.675
4500 -> 3.075
5.000 -> 3.500

This formulation allows the fraction of project starts actually using Ada to be a
compromise between the target, or mandated, fraction and the "natural” or free market
fraction. If the mandated fraction is smaller than the natural fraction, the actual fraction
equals the natural fraction. If the mandated fraction exceeds the natural fraction, the actual
rate will be somewhat higher than the natural rate.

If the mandate to use Ada were completely effective (in the sense of compelling the
actual fraction of starts to equal the target fraction), the curve would slope upwards at 45
degrees for inputs above 1.0. For those inputs, the effect would then equal the Target for
Ada starts relative to natural fraction (Target_Ada_rel nat). The discussion below will
define this variable as the Target fraction for Ada starts (Targ_fr_Ada_starts) divided by the
Natural fraction of Ada starts (Nat_fr_Ada_starts). Starting from equation 1000 and
substituting,

Fr_dev_stérts__Ada
=Nat_fr Ada_starts * E_target_on_starts
=Nat_fr Ada_starts * (Target_Ada_rel_nat)
=Nat_fr_Ada_starts * (Targ_fr Ada_starts / Nat_fr_Ada_starts)
=Targ_fr_Ada_starts. |
So if the curve were level at 1.0 for inputs below 1.0, and sloped at 45 degrees for inputs

above 1.0, the Fraction of development project starts in Ada would be the natural fraction
or the target fraction, whichever was higher.

The graph does not reach the 45-degree line, however, which represents limitations on
the extent to which DoD incentives can increase Ada usage above the natural rate. For
example, if the natural fraction is 10 percent and the target fraction is 50 percent, the Target
for Ada starts relative to natural fraction will be 5.0. The Effect of target on starts, from the
table above, will reach 3.5, so the actual Fraction of development project starts in Ada will
be 0.10 x 3.5, i.e., 35 percent.

A-56

Target for Ada starts relative to natural fraction (Equation #1020)

The goal for the fraction of development starts done in Ada that the DoD aims can
differ from the free market fraction. At first, the DoD target may be higher. If Ada is as
successful as is hoped, the free market fraction some day may substantially exceed the DoD
target. The measure of the difference between the two, a ratio, is called the Target for Ada
starts relative to natural fraction.

Target for Ada starts relative to natural fraction (abbreviated Target Ada rel nat in the
model) is a converter variable, taking the ratio of the Target fraction for Ada starts divided
by the Natural fraction of Ada starts.

O Target_Ada_rel_nat = Targ_fr_Ada_starts/Nat_fr_Ada_starts (Terget for
Ada (starts) relative to natural (fraction) (fraction))

Target fraction for Ada starts (Equation #1030,

The DeLauer memorandum (DeLauer 1983) mandating Ada use defines a category of
projects as requiring the use of Ada: those software projects for embedded computer
resources (ECR). That memo implicitly defines the mandated fraction of projects using
Ada. In the model, the existence of a fraction of MCCR starts for which Ada is mandated
is represented by the Target fraction for Ada starts.

The DeLauer memorandum (DeLauer 1983) requires Ada to be used for all mission-
critical computer resource (MCCR) programming projects starting in 1984 and later. This
is the de jure requirement. De facto, as a practical matter, there are some systems that will
be sufficiently more effective written in some other language that waivers to Ada use will
be given. And because experience with Ada builds up gradually, the granting of waivers to
use non-Ada languages will be the rule rather than the exception at first. In fact, such a
"rule" was formalized as Navy policy up until 1985: a waiver had to be obtained to use
Ada for embedded applications. The changing set of policies mandating when and how
Ada is to be used is represented in the model by the Target fraction for Ada starts.

Target fraction for Ada starts (abbreviated Targ fr Ada starts in the model) is a

converter variable, which uses a graphic function to convert the calendar year into the target
fraction.

A-57

. . . et et m e e R a " m " r . A e e
T PO 2N X N RO SO R0 .r\-r..r -n.".r .\.-V s .r NI ‘ R GG AN NI NN T

Rt 4 i had B bl Tl Ty Tl Shals Jhait i I " e et S ¥ S o
LR A e o ke e R gt gl g St i e i A e SRS AR A E S C A R S R A S S S Ll aSk pNE
o

=
Y

'u-.

LNOOT - |2

|1.000 l

@ i U SO SO SO SO IO
'.' :
zs E el
2 L IO SO SOUOE Ut SOV SO SOOIV
() o)
. 2 e SN IUNY OV IUUE SOUNE SOUUE O SO
2] e
-P,'. E,
% I R O O O O
_ bo || : ¢ { @ @@ @i
o (input)
N year
s
B,
2 @ Targ_fr—Ada_starts = graph(year)
o

2 1970.000 -> 0.0
N 1975.000 => 0.0
1980.000 -> 0.0

o 1985.000 -> 0.0
b 1990.000 -> 0.500
= 1995.000 ~-> 0.500
N
25 2000.000 -» 0.500
2005.000 -» 0.500
N 2010.000 -»> 0.500
.5;‘; 2015.000 -> 0.500
o 2020.000 -> 0.500 |
> -
3 The graphic function in the STELLA simulation software allows only limited
> resolution in terms of how many data points the graph may contain. A graphic function
b running from 1970 to 2020 can only show changes in the graph every 5 years. Therefore,
* the Target fraction for Ada will be zero at 1985 and the full 0.5 five years later in 1990. In
between, the target is computed by linear interpolation, so it is 0.20 in 1986, 0.40 in 1987,
and so on. This treatment in the model can be thought of as representing the de facto v
= rather than the de jure mandate: On 1/1/84, there were only two validated Ada compilers,
v and waivers on Ada use were the policy rather than the exception. In effect, the true target
;’- for what is proper for a fraction of Ada starts does in fact ramp up gradually, reflecting the
* operational swing in policy from non-use to use of Ada over several years.
o : :
' The post-1990 target for Ada starts is only 0.5 of all MCCR starts, representing a ®
rather lax enforcement of the DeLauer and Hicks memoranda (i.e., the class of projects
» " routinely granted waivers is fully half of MCCR projects).
‘»
. A-58
3 o
D T e T S B D B T R T N S A SRS

l. N
~

‘o)

R N I SO SR T
RPN NN,

Natural fraction of Ada starts (Equation #1040)

In the absence of any DoD pressure or guidelines Ada would compete with other
languages entirely on its own merits. As infrastructure intensity develops and Ada
compilers become available on more hardware the fraction of development project starts for
which Ada would properly be chosen would be larger. This concept of free-market choice
of Ada is represented as the Natural fraction of Ada starts.

The Natural fraction of Ada starts (abbreviated Nat_fr Ada_starts in the model) is a

converter variable, which uses a graphical function to determine the natural fraction for any
given value of Perceived incentives to use Ada.

|1 .000 I

Nat_tr_RAda_starts

Lo]

(input)

Perc_ince_use_Rda

© Nat_fr_Ada_starts = graph(Perc_ince_use_Ada)
-1.000 -> 5.000e-3
-0.800 -»> 0.025
-0.600 -> 0.055
-0.400 -> 0.120
-0.200 ->» 0.260
0.0 -> 0.500
0.200 -> 0.680
0.400 ->» 0.780
0.600 -» 0.825
0.800 -> 0.870
1.000 -> 0910

A-59

LS A . .
P e e e N

ny

- Ny Y

» s
S,
v %

7.

>

AL

L

LR P A

}

ofi w0
>.“ l."l‘.-f-”"'

PR Y uib s

& L

INNEN

<
s

AL

;\ﬁl~0~:l ".4' %

» B VO O LN SR TN 7O (X! . (Y & e fh Rat et By Bat Bav Dad Pav b o py St v . v

As the Perceived incentives to use Ada increase, higher fractions of development
projects will use Ada. Even when the Perceived incentives get to 1.0, indicating an
overwhelming advantage for Ada and its infrastructure, there will still be special cases
where a non-Ada language, quite possibly specially-developed, will be used to obtain some
functionality not easily available with Ada. .

This graphical function indicates that when the Perceived incentives to use Ada are
0.0, half of all development projects will use Ada. This is an assumption that the design of
the Ada language succeeded in its goals: that its features support modern software
engineering practices, especially for embedded systems, better than any established
language, and about as well as is possible given the state of the practical art in languages.
Although this is not the place for a thorough review of the merits of Ada, suffice it to say
here that the more evidence on the subject that accumulates, the more it appears that the Ada
design meets its design goals. Certainly, the three avionics experiments have been
successful (DS&E 1985, Stanley 1985, and Suydam 1985), as well as several other
projects more outside Ada's original application domain of embedded systems. Moreover,
Ada is perceived as making an important contribution to improving software engineering
(SE), and to an extent consistent with the ambivalent reception SE gets within "real”
programming organizations (Rogers 1985, pg. 6)

The input to Natural fraction of Ada starts is Perceived incentives to use Ada, which is
measured in "Incentive units." These are an artificial creation used as an intermediary
between characteristics of the Ada infrastructure viz. non-Ada, and the decision on which
language to use. Really, "Incentive units" have no meaning except that implicit in the
response of Natural fraction of Ada starts to the incentives. Incentives of 0.0 are defined as
neutral-a toss-up between Ada and some non-Ada language, so Nat_fr Ada_starts equals
0.5. Perceived incentives of -0.5 represent a substantial disadvantage for Ada use, and
consequently the Nat_fr Ada_starts equals 0.115. Incentives of -1.0 represent more or
less complete impossibility of usefully employing the Ada language at all;
Nat_fr_Ada_starts equals 0.005. (It doesn't go to 0.0 for two reasons: first, to prevent
division-by-zero difficulties in the equation for Target for Ada starts relative to natural
fraction, and second, to represent "“proof of principle" kinds of projects, especially by
academics, that proceed despite their impracticality.)

On the other side of the coin, incentives of 0.5 represent substantial superiority of Ada
over the body of non-Ada languages used for MCCR programming, and Nat_fr_Ada_starts
equals 0.8025, i.e. roughly 80 percent. Perceived incentives to use Ada equal to 1.0
represents overwhelming superiority of Ada and its infrastructure, with a
Nat_fr_Ada_starts of 0.91. The graphic function is somewhat asymmetrical, in that it is
easier for the non-Ada languages to vanquish Ada (with incentives of -1.0) than it is for
Ada to vanquish the non-Ada languages (with incentives of +1.0). The asymmetry arises
from the aggregation of a multiplicity of languages into the non-Ada category. There can
be many specialized languages with well-defined niches that will be very difficult for a
general-purpose language like Ada to displace.

Perceived incentives to use Ada (Equation #1100)

Program and project managers want languages and programming support
environments (PSEs) that are cost-effective (even if for no other reason than satisfying
military customers who want cost effectiveness). Managers also want reliability: software
is but a portion of overall systems development, and delays in software can mean delays in
the entire program. Managers (in collaboration with their customers) will choose languages
and PSEs that meet these goals.

N e “w \.'n\“'_.‘ F IR R e -
MICAN -.\\"' SN UER ORI TR

However, choices of language and infrastructure are not guided by perfect information
about the future, or even about the present; information, especially subjective judgements,
reputations, and "scuttlebut” will always be outdated relative to the actual current state of
affairs. One phenomenon that is holding back Ada acceptance is the lag in people's
perceptions about Ada behind the actual fact. For example, (Rogers 1985) documents
differences between perceptions of the number of members of Ada-related special-interest
groups and the actual numbers. The perception, as opposed to the actual facts, of Ada and
the Ada Programming Support Environment (APSE) usefulness is represented by the
Perceived incentives to use Ada.

The Perceived incentives to use Ada (abbrewated Perc_ mce use_Ada in the modcl) is

with a level variable, whose only rate, an inflow, is the Change n perceived incentives to
use Ada.

° (] Perc_ince_use._.Ada = Perc_ince_use_Ada + Ch_per—_ince
INIT(Perc_ince_use_Ada) = -2
{Perceived incentive to use Ada (incentive units)}

The meanings of particular numerical values of perceived incentives or incentives are
discussed below.

The Perceived incentives to use Ada is initialized at -2.0, representing for 1975 a
completely undesiratle language. What contractor could program in a higher-order

language (HOL) for which there was not only no compiler (and wouldn't be for several
years), but also no defined syntax or semantics?

L Change in perceived incentives to use Ada (Equation #1110)

Perceptions are changed by facts only gradually. A reputation, be it of a politician or a
computer language, is built up of many individual anecdotes, scientific findings, personal
experiences, philosophical biases, and more. Today's facts add only increments to the
stew of yesterday's facts, the day before yesterday's facts, and so on. If Ada has the
reputation of being too complex, hard to learn, and an inefficient user of computer
resources, success stories like the F-15 and F-20 avionics experiments or compiler
benchmarks will gradually chip away at that perception. The rate of "chipping away" of
perceptions by current facts is represented by the Change in perceived incentives to use
Ada.

The Change in perceived incentives to use Ada (abbreviated Ch_per_ince) is a rate
variable, flowing into the Perceived incentives to use Ada.

O Ch_per.ince = (Incentive_use_Ada - Perc_ince_use_Ada)
/Time_perc_ince
oA {Change in perceived incentives (to use Ada)
(incentive units/year)}

The overall formulation is the standard first-order lag (or first-order delay). The

Change in perceived incentives to use Ada will increase perceived incentives if the actual

- incentives are greater than those perceived, and inverseiy. In this way, Perceived
) incentives to use Ada will always move toward the actual Incentives to use Ada. The speed
of the motion is governed by the magnitude of the Time to perceive incentives to use Ada.

A-61

splhiahia bde pd i g B v Saae 230 ke aai BTa AV A | il o0 XA)P KHTOMR AN R A TEFARARE R LR LFLVA VLD UL LA LA
B> .
)>

v

Because the time to perceive is in the denominator of the equation, a small Time to perceive

N means large changes in perception, i.e. perception will approach actuality in a small period

::: of time. For more description of the properties of the general first-order delay, see ~
' (Forrester 1969, Sections 2.2 and 10.2); Goodman 1974, Chapter 3; or Alfeld and

Graham 1976, Section 3.5) : .

Time to perceive incentives to use Ada (Equation #1120)

APLPILE -

* The perceptions about the incentives to use Ada will always be somewhat out of date.
It takes time before breakthroughs become known, trusted, and acted upon throughout the

software community. The length of this delay is represented by the Time to perceive
incentives to use Ada.

Pl el Yl iy

Time to perceive incentives to use Ada (abbreviated Time_perc_ince in the model) is a
- converter variable with no inputs; i.e. a constant.

L4

O Time_perc_ince = 2 {Time to perceive incentives (to use Ada) (years)}

3 A value of two years indicates how long it take for perceptions to catch up with the
actual incentives to use Ada, plus how long it takes to translate those perceptions into actual
choice of Ada versus any of the non-Ada languages. Taking into account both delays in @

perception and delays in influencing choices, two years may be somewhat shorter than the
true average delay.

Incentives to use Ada (Equation #1200) (an output)

>0 .
'..-_;.A.A.‘

When a contractor is choosing between Ada and 4@ Non-Ada language, the criterion is @
effectiveness: What language will permit the lowest-cost, fastest, and most reliable
programming? Programming managers and their DoD clients want to choose a language in
which programmers can be most productive. There are considerations beyond simple cost.
If the infrastructure exists to ensure coordination, a rapid "fan out" of programming tasks
allows more programmers to work on a project at once, allowing completion in a shorter
elapsed time, which means less difficulty integrating the programming with the rest of the »
development effort. Also, there are reliability considerations: managers need to count on
programming being done to ensure success of the overall system being developed.
. Managers would like to see experienced programmers, software tools demonstrated to
: work well with the language, enough completed projects to have defined the pitfalls, and so |
. on. Lack of infrastructure means reliability can't be demonstrated, which is a disincentive |
b to use the language. In the model, all such considerations are combined into a single ﬁi

aggregate measure, the Incentives to use Ada. Figure A.6-2 shows the inputs to this
j variable.

Incentives to use Ada (abbreviated Incentive_'use_Ada in the model) is a converter
variable: it combines the incentives from coverage, infrastructure intensity, and policy into

an aggregate incentive. -

b O Incentive_use_Ada = Ince_rel_int_infr + Ince_rel_cov_infr + ince_pol

: {Incentives to use Ada (incentive units)}

0 The meaning of incentive units is discussed above in the description of the equation for .
Natural fraction of Ada starts.

]

3 A-62

’ v

N NINOON RS N N R O BT N S A

2

| - 1189Q
Cov_Ada_infr

8y

2300
Cov_NA_infr

13so T

Inten_Ada_infra

-

2000

y Inten_NA_infra

A
: @‘:

year

L

Rel

Figure A.6-2. Flow diagram of inputs to Incentives to use Ada (Incentive use_Ada).

G,
ov_Ada_infr @

ince_rel_cov_infr

S

ingéntive_use_Ada

3

Ipee_rel_int_infr

s

Rel/fnt_Ada_infr

[

=

ince_pol

..........

PR e iing aen AU NSl g ek T N W B LN RN T St P Ch i I A D)

Incentive from intensity of infrastructure (Equation #1210)

As described above, the intensity of infrastructure of a language is a major factor in
deciding whether to use it or some other language. People often speak of a "track record"
(especially in the context of Ada not having one) but the root cause for having confidence in
the cost-effectiveness of a language is not the track record per se, but whether compilers,
experienced people, tools, libraries, and so on (which are by-products of that track record)
can be brought to bear on the project. In other words, the more infrastructure is available,
the more desirable a language and its infrastructure become.

Incentive from intensity of infrastructure (abbreviated Ince_rel _int_infr in the model)

is a converter variable, converting the Relative intensity of Ada infrastructure into a
measure of incentives.

|1 000 I

Ince_rel_int_infr

I-1 .000 I

(input)

Rel_int_Ada_infr &

@ Ince_rel_int_infr = graph(Rel_int_Ada_infr)
0.0 -> -0.530
0.200 -> -0.400 o
0.400 -» -0.290
0.600 -> -0.190
0.800 -> -0.100
1.000 -> 0.0
1.200 -> 0.160 v
1.400 -> 0.340
1.600 -> 0.540
1.800 -> 0.720
2.000 -> 0.970

[

4

\ -“I AR LS

(W, S \'-.'r\'“)

Relative intensity of Ada infrastructure (Equation #1220)

Desirability of a language is a relative matter. Contractors can't choose the perfect
language; they can only choose among existing languages and infrastructures (or those
whose construction is straightforward and reliable). Therefore, the model compares the
infrastructure intensity available with Ada to that available for the average of all non-Ada
languages. The result of this comparison is the Relative intensity of Ada infrastructure

Relative intensity of Ada infrastructure (abbreviated Rel_int_Ada_infr in the model) is
a converter variable, dividing the Intensity of Ada infrastructure by the Intensity of non-
Ada infrastructure.

QO Rel_int_Ada_infr = Inten_Ada_infra/Inten_NA_infra
{Relative intensity of Ada infrastructure (dimensionless)}

Incentive from coverage of infrastructure (Equation #1230)

Contractors are often constrained as to what host and especially what target machines
are to be used for a given project. If Ada infrastructure is not available in sufficient
quantity for a given host/target combination, Ada is not desirable for that project. In the
aggregate, the narrower the coverage of the infrastructure, the fewer projects will be able to
use Ada, and the smaller will be the fraction that use it. The measure of the desirability of
Ada based on the relative coverage is called Incentive from coverage of infrastructure.

Incentive from coverage of infrastructure (abbreviated Ince_rel_cov_infr in the model)

is a converter variable, using a graphic function to convert the Relative coverage of Ada
infrastructure into an incentive.

|1 .000 l

...

...

...

ince_rel_cov_infr

...

(input)

Rel_cov_Rda_infr

l-l .000 |

A-65

« .

MR 1 S

.j'-

» - -

@ Ince_rel_cov_infr = graph(Rel_cov_Ada_infr)

0.0 -> -0.310 |
0.200 -» -0.215

0.400 -> -0.140

0.600 ->» -0.080

0.800 -» -0.015

1.000 -> 0.050

1.200 -> 0.095

1.400 -> 0.125

1.600 -> 0.160

1.800 -> 0.180

2.000 -> 0.190

Using the idea that incentives can represent the issues around coverage may seem odd
at first. But lack of coverage just means that there is cost and delay involved in porting the
language and ‘environment to the desired target and host. The smaller the coverage, the
more projects face such costs if they use Ada. In the aggregate, then, low coverage can be
translated to a cost and therefore to an incentive.

Relative coverage of Ada infrastructure (Equation #1240)

In the aggregate, coverage of infrastructure, like intensity, is a relative matter. While

.Ada and APSE may not be available for all potential target machines, neither is UNIX, or

DEC's VMS, or IBM's MVS. Incentives from coverage to use Ada can only come from
comparison of the costs of retargeting or rehosting (or needing to change to a software-
compatible target or host) incurred for Ada to the corresponding costs for an average non-
Ada language. For the non-Ada languages, there is also the opportunity to trade off such
costs against the cost of switching to another non-Ada language whose infrastructure is
present for the desired host and target. In the model, the aggregate result of such
comparisons is represented by the Relative coverage of Ada infrastructure.

The Relative coverage of Ada infrastructure (Abbreviated Rel_cov_Ada_infr in the
model) is a converter variable, converting the Coverage of Ada infrastructure and the
Coverage of non-Ada infrastructure into their quotient.

O Rel_cov_Ade_infr = Cov_Ade_infr/Cov_NA_infr
{Relative coverage of Ada infrastructure (dimensionless)}

Incentive from policy (Equation #1270)

There could be many factors other than the relative intensity of infrastructure and the
relative coverage that could influence a project manager's language choice. The language
of contracts might be written with incentives to use Ada. The Ada Joint Program Office
(AJPO) might sponsor marketing actions -- seminars, journals, advertisements, giveaways,
and so on. For the most part, these are actions at a level of detail considerably finer than
those the model is able to represent. But even without the ability to explicitly model such
activities, there is a way to represent their effects, in order to simulate their impact on
acceptance and find out how valuable that might be. The policy lever in the model to be
used for such experiments is the Incentive from policy.

A-66

Incentive from policy (abbreviated Ince_pol in the model) is a converter variable,
which uses a graphic function to convert the calendar year into an incentive.

o
0500 |
o pebebededdedeidadi
= I U SO SOt SR S SR ST N SO SO
S
-}
[&]
v E ...
4
T TR P SO DU FOUOS SO SR S SR S
| e [-0.500 |

(nput

; year
[
o
. @ Ince_pol = graph(year)
) 1975.000 -> 0.0
> 1979.000 -> 0.0

1983.000 -> 0.0
- 1987.000 -> 0.0
1991.000 -> 0.0
1995.000 -> 0.0
1999.000 -> 0.0
2003.000 -> 0.0
. 2007.000 -> 0.0
2011.000 -> 0.0
2015.000 -> 0.0

. The Incentive from policy is an exogenous variable, i.e. one not influenced by any
other system variables. Its value for the base scenario is always neutral, set at 0.0.

-) .
.......
S AL RS MCSIR TSN L LR I Y) -y o' R L

AR

Appendix A.7: Ada Infrastructure Sector

Ay W1
RO

The Ada infrastructure sector represents the entire ensemble of things used to carry on
o programming in Ada. As discussed in Section 5 of this report, this ranges from the most
basic software tools (e.g., an Ada compiler itself, linkers, loaders, etc.) to advanced
productivity tools (e.g., program libraries and configuration managment tools) to hardware
to speed programming (such as time-sharing and screen terminals), to the "soft"
infrastructure of programmer's experience, programming management, courses of

instruction and instructional literature. The dimensions used to characterize this diverse
P collection are: intensity (on average, how much of it is available?), incompatibility (how
many incompatible environments are there?), and coverage (what fraction of host/target
configurations are one of the environments available for?)

i’

7,
7.1

AN

1LAS

Bl

£ e v B _w "

R e

The characteristics of the Ada infrastructure affect both the cost of programming in Ada

L and the extent to which it is used in MCCR programming. The cost sector represents the

ability of intensity of Ada infrastructure to increase programmer productivity and thereby

reduce software costs. That sector also represents incompatibility of infrastructure (even

Ada can have non-linguistic incompatibilities) increasing costs. The language choice sector

represents the impact of such cost/effectiveness considerations on the frequency of Ada use

-- the extent to which it is used in non-embedded computer applications, and the extent to
o which waivers for use of a non-Ada language are obtained for embedded applications.

v

)
Y
oy
.’..

Intensity of Ada infrastructure (Equation #1350)

The infrastructure supporting Ada has many components and characteristics; some of
which are so obvious that they are taken for granted. For example, does a compiler exist?
How many programmers, textbooks, courses, etc. are there? How sophisticated is the
APSE; and how many programming tools are available? As these components of the
infrastructure develop and become widely available, programming becomes more efficient.
All of these components of infrastructure are combined and represent in the model by the
Intensity of Ada infrastructure. Figure A.7-1 shows the inputs.

Intensity of Ada infrastructure (abbreviated Inten_Ada_infra in the model) is a level
equation. It accummulates the rates of flow into it, Creation of intensity of Ada
infrastructure and Injection of government furnished Ada infrastructure. It is depleted by
its outflow rate, Obsolesence of intensity of Ada infrastructure.

] Inten_Ada_infra = Inten_Ada_infra + Crea_int_Ada_infr -
Obsol_int_Ada_inf + Inj_GFE_Ada_infr
INIT(Inten_Ada_infra) = 0
{Intensity of Ada infrastructure (intensity units)}

RE S AN - ALY

P
(I 4

Obsolescence of intensity of Ada infrastructure (Equation #1360)

o

Ada infrastructure, like all others, gradually and continuously obsolesces. Some of this

obsolescence represents the actual outdating and discarding of out-of-date textbooks, tools, R,
implementations, etc. Obsolesence also occurs when expert programmers retire or move 2
on to different endeavers they take with them knowledge and experience that must be s
replaced or infrastructure will decline. Both kinds of loss are represented in the aggregate o

by the Obsolescence of intensity of Ada infrastructure.

A-69

P I L (R ST T R Ry N A R N R R AR LI PR TS B WA T TR T TRy
> Z&:aiaﬁlaﬂke.fﬁtﬁ.f}ﬂ PRI AT N }J.TJC"':A’;_\.C;;I_';}.:}.r:.:f't:'.n}.a'.".c.';_\.-}.-).'}.-}.-:.O_Q\b.A'_'.'A"\.ﬁ:.\';'-Ah'ﬁ-_ﬂ-_.\.L'.\:.ﬁ .

B Ll

D" A W ._‘- DR G R & . {‘-..‘-"".’:--_ A .\(‘J'_:f;n' --‘\‘-'-:-_' ‘:l'.:.’ ot g
N 1‘.\'}!-{'-{\".'5-, NN TR SRR R A ot :A‘P_L\.'J..:‘::mm &

s

C _GFE_Ada_infr

Inten_Ada_infra S ‘ T_add_Ada_infr
Obsol_i

Dura_int_Ada_infr

Figure A.7-1. Flow diagram of inputs to Intensity of Ada infrastructure
(Inten_Ada_infr). The flow entering from the left is the Creation of intensity of Ada
infrastructure.

A-70

----- . -'..-.- RS

4
q
A
4

v, XX RHN

PPN

>

- ".-:":'-ﬁ’*-(‘n(ﬁl\(‘-((\(\&-&J‘ AR "1. - -'_'.-._: “’. . <) :‘. - '_‘-.:. .~ _: _ .: .:. .:; .:_ ,:_ ', JER - _-: . _: -
NACA I AP FCPE DT . .. 6 Ph P P AN N P A AP A A A N A 3 SO A A P T N NI A P G L

2 v ; 8 e g’ 20 2 2 n'S 20 v '8 VR VB Jia a¥i ¥ ™ T OO
.

Obsolescence of intensity of Ada infrastructure (abbreviated Obsol_int_Ada_inf in the
model) is a rate equation that depletes the level of Intensity of Ada infrastructure.

O Obsol_int_Ada_inf = Inten_Ada_infra/Dura_int_Ada_infr
{Obsolesence of intensity of Ada infrastructure (units/year))}

The equation for obsolescence is the familiar first-order delay, where, if there is no
inflow, the contents of the level will fall off exponentially, like radioactive decay. When a
time equal to the time constant (the Duration of intensity of Ada infrastructure) has passed,
approximately 30 percent of the initial value of the level will remain.

Duration of intensity of Ada infrastructure (Equation #1370)

Every component of Ada infrastructure has a finite useful lifetime. For textbooks it
may be a decade, for programmers it may be one or two decades before they join
management, retire, or seek other professions. For software tools, the useful lifetime may
vary considerably. Only a year may pass before some software tools are replaced by newer
tools. At the other extreme, some compilers and editors endure for one or two decades
with only minor maintenance changes. Standards for infrastructure endure for even longer;
the fundamental structures of the FORTRAN and COBOL languages have endured from
the early 1950s, with no sign of imminent demise. The average for all the components of
Ada infrastructure is here called Duration of intensity of Ada infrastructure.

Duration of intensity of Ada infrastructure (abbreviated Dura_int_Ada_infr in the
model) is a converter equation with no inputs, i.e., a constant.

O Dura_int_Ada_infr = 30 {Duration of intensity of Ada infrastructure (
years)} '

The duration of intensity is coupled to the total duration of programs during
development and maintenance, which, at 10 and 20 years respectively, sum to 20 years.
The assumption is that only a fraction of the components of the infrastructure will
obsolesce before the programs themselves, especially the programmer's skills. Another
fraction of the infrastructure must be maintained as long as the programs are being
maintained; this includes operating systems, test sets, and other software tools without
which the programs cannot be maintained. The final fraction of the infrastructure will
outlive the programs; for instance, this fraction includes styles and procedures of
programming (assembly language, FORTRAN, or ALGOL-style programming, standards
(ASCII and all the editors that work on ASCII files)), and operating systems (the IBM
360/370 and DEC PDP-11 are going on twenty years and promise another 20 at least).

In the absence of more specific data, the duration is set equal to the duration of
programs, 30 years.

Injection of GFE'd Ada infrastructure (Equation #1380)

The Injection of GFE'd Ada infrastructure represents a somewhat broader group of
actions than .night be indicated by the normal meaning of Government-Furnished
Equipment (GFE). This variable is the conduit for representing several differing additions
to Ada infrastructure. There is an initial surge of infrastructure created by the validation of
compilers as Ada. This surge was certainly done at the behest of DoD, although the
compilers are not literally GFE. There is a policy option to create more infrastructure after

A-71

e

the initial surge. That creation could represent literally a GFE'd environment.
Alternatively, such a creation could represent the increase in infrastructure available tc Ada
programmers if SVID were adopted as an interim tool interface, such that UNIX tools’
suddenly became available and officially acceptable for Ada programming.

Injection of government furnished Ada infrastructure (abbreviated Inj GFE_Ada_infr
in the model) is a rate equation that increases the level Intensity of Ada infrastructure.

QO Inj_GFE_Ada_infr = Init_inj_Ada_infr + Add_inj_Ada_infr
{Injection of GFE (government-furnished equipment) for Ada
infrastructure (infrastructure units/year)}

Initial injection of Ada infrastructure (Equation #1390)

Project work in the official Ada language could not begin until the very first Ada
compilers were validated in 1983. The structure and design of Ada had been discussed in
the computer literature for years. Experience programming in other languages carried over
into Ada to some extent. Combined with these precedents, the validation of compilers
sharply created an available Ada infrastructure. In the model this is represented by the
Initial injection of Ada infrastructure.

Initial injection of Ada infrastructure (abbreviated Init_inj_Ada_infr in the model) is a
converter equation which uses the special STELLA function called PULSE to covert the
calendar year into a pulse in the rate of flow into the level of Intensity of Ada infrastructure.

QO Init_inj_Ada_infr = PULSE(Ada_infr—init_inj,1981,1e11)
{Initial injection of Ada infrastructure (infrastructure units/year); the
one-time construction of a few initial compilers, loaders, etc.}

The pulse function introduces a brief (one time unit) increment to a variable. It has
three arguments; the first determines the size of the increment, the second indicates the time
of the first pulse, and the third specifies the interval of any subsequent repititions of the
pulse. By choosing lell (i.e. the interval is 100 billion years) here, we do not get any
repetitions within the time span of the model's policy runs. The 1981 injection date is
somewhat in error, but it should be noted that there was work going on with nonvalidated
compilers and so on before the first official validations.

Ada infrastructure initially injected (Equation #1410)

The introduction of the first approved Ada compilers was the first significant and
substantial increase to the intensity of Ada infrastructure. This boost is called Ada
infrastructure inititial injection.

Ada infrastructure initial injection (abbreviated Init_inj _Ada_infr in the model) is a
converter variable with no inputs, i.e., a constant.

O Ada_infr_init_inj = 20
{Ada infrastructure inititially injected (infrastructure units))
The value of 20 assumes that compilers and their closely-associated tools (linkers,
loaders, perhaps debuggers) represent about half of the current infrastructure currently used

A-72

........

o el S

O

to support non-Ada programming, which is arbitrarily defined as intensity equals 40. See
Section 5 for further discussion of infrastructure units.

Additional injection of Ada infrastructure (Equation #1420)

If the DoD adopts SVID, or a small number of commercial operating systems as an
interim standard, this will represent a second major boost to the available infrastructure
intensity. In the model, any such additional boosts after the validation of the compilers is
represented with the Additional injection of Ada infrastructure.

Additional injection of Ada infrastructure is a converter variable that uses a special
purpose PULSE function to add brief periodic increments to infrastructure.

O Add_inj_Ada_infr = PULSE(Add_GFE_Ada_infr,T_add_Ads_infr,
Inter_add_Adsa_infr)

{Additional inection of Ada infrastructure (infrastructure units/year);

The three arguments specify the size of the increment, the time of the first injecticn. and
the time interval between injections.

Additional GFE'd Ada infrastructure (Equation #1430)

The relative size of the-injection by the government is called Additional GFE'd Ada
infrastructure.

Additional GFE'd Ada infrastructure (abbreviated Add_GFE_Ada_infr in the model) is
a converter variable with no inputs, i.c., a constant.

O Add_GFE_Ada_infr =0
{Additional GFE'd Ada infrastructure (infrastructure units)}

Time for additional Ada infrastructure (Equation #1440)

Time for additional Ada infrastructure determines when the injection of additional
infrastructure intensity will take place.

Time for additional Ada infrastructure (abbreviated T add_Ada_infr in the model) is a
converter variable with no inputs, i.e., a constant.

QO T_add_Ada_infr = 1990
{Time for additional Ada infrastructure (year))

1990 is a ,lausible, albeit somewhat optimistic, date for adopting a standard CAIS.
((KITIA 1985 even suggests fourth quarter 1988, but the schedule leading up to that date
has already siipped by several months as of February 1986.) In the scenario testing other
times might be be chosen.

A-73

A s Rcanih gl gk a4

b
)
A
i
ll
»

)
L4

TEHEEY X T Ty A Y T T S S Y Y TV OB

Interval to add Ada infrastructure (Equation #1450)

To explore the possibility that the government might adopt a strategy of successive
injections of Ada infrastructure in order to accelerate its evolution, the model has a variable
called Interval to add Ada infrastructure.

Interval to add Ada infrastructure (abbreviated Inter_add_Ada_infr in the model) is a
converter variable without an input, i.e., a constant.

O Inter_add_Ada_infr = 1e11 {Interval to add Ada infrastructure (years)}
The enormous default value of lell effectively turns this facility off.
Creation of intensity of Ada infrastructure (Equation #1500)

The creation of intensity of infrastructure is primarily a free-market process. A
considerable amount of Ada compiler development, for example, has occurred without
direct government funding. Corporations have allocated funds because of the perceived
future benefits of having Ada products. This has happened both in large corporations
preparing for Ada contract work, and in small corporations looking to sell Ada products in
the marketplace. Creation of infrastructure is influenced by many factors. It can be
accelerated by increased use of Ada, by more advanced competing Non-Ada infrastructures
that can be borrowed from, by perceptions that is a potentitially profitable language to
develop tools for, and by policy declarations. It can be retarded by incompatibility within
the Ada infrastructure, lack of use of Ada, perception by tool developers that Ada is an
inferior language, and by policy declarations. All of these effects are combined in Creation
of intensity of Ada infrastructure. Figure A.7-2 shows a flow diagram of the inputs.

Creation of intensity of Ada infrastructure (abbreviated Crea_int_Ada_infr in the model)
is a rate equation that increases the level Intensity of Ada infrastructure.

(O Crea_int_Ada_infr = Norm_cr—_int_A_infr*E_tech_cr_int*
E_inc_int_Ada_infr®*E_use_int_A_infr*E_inco_int_A_infr *
E—_pol_int_A_infr*E_rel_infr_int_Ada

{Creation. of intens. of Ada infrastr. (infr. units/yr.)}

This creation represents both the development of new kinds of infrastructure (i.e.,
creation of a never-before-used tool) and the replacement of infrastructure lost through
normal obsolesence (i.e., replacing retiring programmers.)

The separate effects are multiplied rather than added. A zero in any component is
enough to overwhelm all the other effects even if they are high. For example, if for some
hyoothetical reason absolutely no one used Ada, there would be no more creation of
infrastructure even if the infrastructure had low incompatibility and advanced infrastructure.
The equation format above, with a normal constant multiplied by several variables centered
around unity is useful and common; see (Alfeld and Graham 1976, Section 5.3) or
(Richardson and Pugh 1981, pp. 152-56) for discussion.

P Ll

AD-A1?S 352 COST EFFECTIVENESS TRADEOFFS IN COMPUTER
STANDRRDIZATION AND TECHNOLOGY I.. (U> INSTITUTE FOR
DEFENSE ANALYSES ALEXANDRIAR VA A A HOOK ET AL. JUN 86

UNCLRSSIFIED IDAR-P-1931 IDA/HQ-86-31852 MDA9O3-84-C-0031 F/G 9/2

L T T L T E IR At AR P N

PR T L R ¥ o Wi Y Y R YR

|I|||
||ILU=;=

'

Ve Cal L aIn ¥ i el Al ko

= D
: 3

i
+

E
"
>

EEEEE

i ;0
EEEE
i ' B {-]

]

(

)

H
e .

el
Bo By

FEE

3 >
ke
R

EF

1.4 Mi-i }
=

’
‘ IMI

SR LA L

N Y N e N N e W IR ION

~adh

RN LT TSy

PN R XN

\
h
&
R
h2.

DI

o

160 ; ’ @ _ @
' : Norm_cf_int_A_infr
E_inco_in}, A_infr f

@

| E_inc_int_Ada_infr
Perc_ince_use_Ada

Incom_Ada_infra

4100 §

g

Prea jnt |Ada infr
Rel int Ada infr E_relinfr_int_Ada A ,

@" t
@“ E_use_int_A_infr

Fr_Ada_prj @ | @

E pdlint Ainfr Coo-ot \

1
!
te \
O .

year e Rate_tech_prog

Start_yr_cst_accum

Figure A.7-2. Flow diagram of inputs to Creation of intensity of Ada infrastructure
(Crea_int_Ada_infr). The flow exiting to the right goes into Intensity of Ada

infrastructure. ;
b

A-75 ,

8

A

.
P T Ty G T 37, PR L S A S Tk, S S SR A N VL A S N T N N S N A S L A W N M S S S N S AL W A G
N ¢ GGG, N A N T R I A I A N N N A I NI AT A S AP A AT T R AT,

Normal creation of intensity of Ada infrastructure (Equation #1510)

In processes which are influenced by many factors it is often convenient express the
functional relationship as the product of two terms: a normal base rate of activity
(representing what the output value would be if all inputs were at some specified reference
values), and a term giving the effects of the inputs not being at their reference values. Here
the Normal creation of intensity of Ada infrastructure represents the rate of adding to
infrastructure when the other factors influencing that rate are respectively equal to their
reference values.

Normal creation of intensity of Ada infrastructure (abbreviated Norm_cr_int A_infr in
the model) is a converter variable with no inputs, i.e., a constant.

O Norm_cr—_int_A_infr = 2.4
{Normal creation of intensity of Ada infrastructure
(intensity units/year)}

The value was chosen on the basis of having a proper relation to the corresponding
parameter for non-Ada, and to give a buildup of infrastructure over a plausible time
horizon. Appendix A.9 on multivariable model calibration provides details of the parameter
estimation.

Effect of incompatibility on intensity of Ada infrastructure (Equation
#1520)

The more incompatible infrastructures there are, the smaller the incentives to create
more infrastructure for any one in particular. Incompatible infrastructures divide the total
market for programming environments into incompatible segments, which reduces the
market size for any particular piece of infrastructure, be it a tool, a program library, a
programmer, or whatever. For example, building tools based on the Pick operating system
for personal computers is a poor investment; there aren't that many Pick OS's being used.
Similarly, building tools for JOVIAL environments, all other factors being equal, would be
less profitable than building tools for a single, transportable Ada environment used in all
DoD work. In the model, such phenomena are represented by the Effect of incompatibility
on intensity of Ada infrastructure.

Effect of incompatiblility on intensity of Ada infrastructure (abbreviated
E_inco_int_A_infr in the model) is a converter variable. It uses a graphic function to
convert a given level of Incompatibility of Ada infrastructure into a multiplicative effect on
the Creation of intensity of Ada infrastructure.

R T U TUR T O R R R I P e) el oA e b o g b o e Sen Bin A i s 4 a i la hin fin-i:g She Db da gy Staghbe Rly plo gl =

®

® DN b
& A :
& |..... P T P P ST .
5 R ,
=| \ '
- S
= B L LT R D O P PR T LR

® T N
A S N I
| P \, F
bl . . N !

o N

* o I
(input)

Incom_Ada_infra
o , . . .
| @ E_inco_int_A_infr = graph(incom_Ada_infra)
0.0 -» 3.000
10.000 -> 2.415
* 20.000 -> 1.965
® . 30.000 -> 1.635
40.000 -> 1.290
50.000 -> 1.000
60.000 -> 0.675
70.000 -> 0.450
A 80.000 -> 0.285
90.000 -» 0.180]
100.000 -> 0.135
o Effect of incentives on intensity of Ada infrastructure (Equation #1530) '
One motivation for creating Ada infrastructure is the perception of incentives for using \
Ada, even if it isn't yet in widespread use. Proof-of-concept programming projects can '
create showy successes. APSEs can be created with "technically sweet" tools that promise '
great efficiencies in use. If the software community begins to perceive Ada as the wave of :
' the future because such incentives exist for its use, companies will invest in tool
v development even before Ada is being used widely. Such effects are represented by the -
Effect of incentives on intensity of Ada infrastructure. :

Effect of incentives on intensity of Ada infrastructure (abbreviated E_inc_int_Ada_infr

in the model) is a converter variable that uses a graphic function to translate Perceived

o incentives to use Ada into a multiplicative effect on the Creation of intensity of Ada
' infrastructure.

|4.000 I

E_inc_int_Ada_infr

(input)

Perc_ince_use_Ada

© E_inc~int_Ada_infr = graph(Perc_ince_use_Ada)

-1.000 -> 0.380
-0.800 -> 0.400
-0.600 ->» 0.460
-0.400 -> 0.560
-0.200 ->» 0.700
0.0 -> 1.000
0.200 -» 1.380
0.400 -> 1.680
0.600 -> 1.900
0.800 -> 2.000
1.000 -» 2.020

Effect of relative infrastructure on intensity of Ada infrastructure
(Equation #1540)

Software developers usually try to build on past successes, whether their own or that of
others. Developers of Ada infrastructure will attempt to incorporate features, tools,
programming styles, etc. of any Non-Ada infrastructure that develops that is superior to
what is available, at the time, for Ada. Indeed, for example, the reason that so many of the
current crop of Ada compnlers come with debuggers is because of the demonstrated
usefulness of debuggers in past non-Ada programming. In the model, this technology
tranfer is called Effect of relative intensity of Ada infrastructure. |

A-78

A J

, A ettt (ot s e
."}I R A o e T LRI A NI Y)

Ca At SR A o
‘f_-fl‘ld't'f >,

. LN ‘. .‘ I-.n" '.- . "q -‘l Tata

-.-}i

Effect of relative infrastructure on intensity of Ada infrastructure (abbreviated :
E_rel_inf_A_int in the model) is a converter variable, which uses a graphic function to)
translate any given value of the Relative intensity of Ada infrastructure into the approproate
multiplier effect on the Creation of Ada infrastructure.

- —— ————

-
|2.000 I RY
>
) R
» S N
< "
A " 4
e -~
--l }'-‘
e e
E L
®] -
@ >
w "
: A
o oot : : o:o:o:oioiobo :
(input) 3
Rel_int_Ada_infr N
=
r. @ E_rel_infr_int_Ada = graph(Rel_int_Ada_infr) .
0.0 -> 1.850 o
0.200 -> 1.740 L
0.400 -> 1.510 b
g 0.600 -> 1.240 R
0.800 -> 1.080 ;;
1.000 -> 1.000 :ZZ_
1.200 -> 0.940 o
1.400 -> 0.900 3
|® 1.600 -> 0.890
1.800 -> 0.870
2.000 -> 0.860
I Effect of relative use on intensity of Ada infrastructure (Equation #1550)
Ada infrastructure is created by Ada use. Program libraries are continually added to in
the course of use. Programmer's experience accumulates by virtue of programming
activity in Ada. Steady use justifies acquisition of hardware to aid programming such as
CRT terminals and sufficient system resources to guarantee quick system response time.
fe= Moreover, one can look at the creation of software tools as an economic market driven by
perceptions of opportunities for profit. The opportunities to market Ada tools or whole
environments depend very much on what the future of Ada use is assessed to be. One of
A-79
~

0 Wt T e e PR I e R A I NS
E~¢~&:: .~: t""’"kf {3 -r~$’ AN ONNS

the most persuasive pieces of evidence about the extent to which Ada will be used in the
future is the extent to which Ada is used in the present. Here is half of a "bandwagon
effect" where use creates infrastructure. In the model this is represented by the Effect of
use on intensity of Ada infrastructure. o

Effect of use on intensity of Ada infrastructure (abbreviated E_use_int_Ada_infr in the
model) is a converter variable that uses a graphic function to translate any given value of the
Fraction of Ada projects into the appropriate multiplier effect on the Creation Ada

infrastructure. PY
[to00]
- ™
£
-
-
=
|
3
=| ®
id
oI ¢ ¢ fioiir
(input) ¢
Fr_Ada_prj
© E_use_int_A_infr = graph(Fr_Ada_prj) ¢
0.0 ->» 0.050
0.100 -> 0.500
0.200 ->» 0.770
0.300 -> 0.870 °
0.400 -> 0.920
0.500 -» 0.945
0.600 -> 0.965
0.700 -> 0.985
0.800 ->» 0.990]
0900 ->» 1.000
1.000 -> 1.000
@
A-80 i
o
, |
e e T e N Y e e v ey RS

Effect of policy on intensity of Ada infrastructure (Equation #1560)

In addition to all the free market effects discussed so far, there could be effects on the
rate of creation of Ada infrastructure by policy directives, guidelines, mandates, marketing
campaigns, etc. by the DoD. These effects can be portrayed with the variable Effect of
policy on intensity of Ada infrastructure.

Effect of policy on intensity of Ada infrastructure (abbreviated E_pol_int_A_infr in the

model) is a converter variable that uses a graphic function with year as an input. This
policy facility allows one to specify the magnitude of the effect for any given year.

|2.000 |

...

...

E_pol_int_A_infr

...

——

year

o 1]

@ E_pol_int_A_infr = graph(year)
1970.000 -> 1.000
1975.000 ->» 1.000
1980.000 -> 1.000
1885.000 -> 1.000
1990.000 -> 1.000
1995.000 -> 1.000
2000.000 ->» 1.000
2005.000 -> 1.000
2010.000 -> 1.000
2015.000 -> 1.000
2020.000 -> 1.000

The default values of this graphic function depict a totally neutral policy condition. The
use of this variable to represent policies is not clear at present; one use considered is part of
representing the evolution of a CAIS specification: the hypothesis is that software

A-81

. e . A S . AR T T T L TuL S P SR
), (, N *'f e z ;. PN Lol .'f__(s($l¢' J'.'){f‘a o ,‘rqr,' __r\e\.-‘r‘ i ‘aqr.‘*f\)sf oy

- v oo W ™ Tw

v oy e e -

- - o

Pl AR A

developers would defer heavy investment in Ada software tools if they knew that a
standardized environment would be required and widely used a few years down the
road—who wants their new software tools partially obsoleted by a change in operating
system?

Effect of technology on creation of inténsity (#1570)

Things are happening that will make it easier to accumulate infrastructure, which are not
in turn controlled by events in DoD programming, infrastructure, and standards policies.
Hardware is getting cheaper, faster, and possessing more memory all the time. The
tradeoff of programmer time versus hardware expense is steadily tilting toward supplying
more equipment to aid programmers. As time passes, it becomes easier to pile up
workstations and time-shared screen-based terminals, user-friendly facilities, and tools.
(Not only do tools cost less to buy or develop, they consume hardware resources; the
cheaper those resources are, the more tools it is cost-effective to acquire.)

But hardware is not the only "external” to be changing, for fundamental conceptual
insights into programming also steadily make it easier to accumulate infrastructure. For
example, structured programming is a conceptual discovery, first enunciated forcefully by
Djikstra (see Dijkstra 1969). By itself, that idea had virtually no impact. But as people
learned how to program in a structured manner, an element of infrastructure was
accumulating that allowed at least the "trendy" programmers that kept up with academic
ideas to program more effectively. Gradually, languages evolved that explicitly supported
structured programming, adding another element to the infrastructure. With such
languages available, regular 9 to 5 programmers gradually began to learn the style of
structured programming. Indeed, one of the functions of the Ada language is to make
several of such conceptual advances available and practical for the average programmer. Of
course, structured programming is but one of many conceptual advances that made it easier
to pile up infrastructure, both in programmer's experiences and skills, and features built in
to software. In the model, all the technological changes, including both the conceptual and
the hardware, that increase the ability to create infrstructure is represented by the Effect of
technology on the creation of intensity.

The Effect of technology on creation of intensity (abbreviated E_tech_cr_int in the
model) is a converter variable, converting the calendar year into an effect.

O E_tech_cr_int = EXP((year - Start_yr_cst_accum) * Rate_tech_prog) {
Effect of technology on creation of

The effect is a simple exponential, with a time constant of the Rate of technological
progress. Because many of the model parameters are calibrated around a reference year in
the middle of the simulated period (as opposed to the beginning), the effect is defined so
that it reaches 1.0 at the Starting time for cost accumulation. As explained in the cost
sector, the model therefore begins accumulating Total cost at the Starting time for cost
accumulation. That time is assumed to be the time that the analysis is taking place, which is
therefore the appropriate point about which to define reference values, such as the Effect of
technology on creation of intensity.

NN

LA SERE ST L RELN
LY, CLAGN 0508 048

Rate of technological progress (#1580) .

The preceding paragraphs argue that as time passes, events and discoveries outside the
@ sphere of DoD programming projects make it easier to accumulate intensity of
infrastructure. Given that the level of detail of the model (and our lack of foreknowledge
about future advances) prohibits an event-by-event description, the simplifying assumption
is that each year, the creation of infrastructure under a given set of circumstances is some y
small fraction greater than it would have been the year before. In the model this fraction is 3
the Rate of technological progress.

The Rate of technological progress (abbreviated Rate_tech_progress in the model) is a
converter variable with no inputs, i.e., a constant.

O Rate_tech_prog=0
PR {Rate of technological progress (fraction/year)}

The Rate of technological progress was set to 0.0 to simplify the analysis of model p
behavior as the model was being developed. As the model calibration section discusses, .
parameters should be set during policy analysis at their most likely values, rather than
attempting to guess which direction to bias the parameter to be conservative. Here, then, a)
& non-zero setting for the Rate of technological progress is indicated. Over the last 200 -
years, the nation as a whole has increased the productivity of a given amount of capital and
labor about 2 percent per year. While the quickly-moving computer field may seem as if X
the fraction should be much higher, there is a perception that the spread of extensive)
hardware support or new programming concepts has been quite slow, on the order of .
decades. Although these are not direct indicators of ease of accumulating infrastructure, N
™) they are related. Perhaps a figure of 3.0 percent per year would be plausible. In twenty -
years, without compounding, that rate would increase the normal creation of infrastructure
0.03 x 20 = 0.6, or 60 percent, which may even be on the high side.

Incompatibility of Ada infrastructure (Equation #1600)

o An inevitable by-product of developing tools on different hardware, and broader
application areas is the creation of incompatibility within the infrastructure. An
environment written for a VAX will not run on an IBM computer without extensive
adaptation. Students who learn Ada in classes on microcomputers will need some
reorientation when they get jobs that require working on mainframes. When Ada gains in \
popularity and is used in broader application areas, new problems may arise that require .
= extension, or specialized program libraries, all of which will introduce incompatibility into i
, the infrastructure. In aggregate, the net effect of these incompatibilities in operating
systems, style of use, program libraries, run-time packages, and so on is to reduce
programmer efficiency. (See Section S for more detailed discussion.) In the model, these
incompatibilities are characterized in the aggregate by the Incompatibility of Ada
infrastructure. Figure A.7-3 shows a flow diagram of the inputs.

O

R RRAFT I/

A-83

S NIl 1S A

Ny

(\‘v‘.r e .' 4' Ry .(\.-:.:.r o

R S D e L

Crea_jfco_Ada_in Loss_inco_Ada_infr

& | N ‘

E_int_ico_A_infr

E_inc_inco_A_in?
&, -
d E_use_ingo_A_infr ' 00 |
4350 A
|)] Perc_ince_use_Ada -
Inten_Ada_infra A @
Fr_Ada_prj

-

Figure A.7-3. Flow diagram of inputs to Incompatibility of Ada infrastructure '1
(Incom_Ada_infra). 3

L

-

]
\
‘

;

A-84 9

|
b
- :
O R N PR I ST AT U W~ Lt e PRSP TR I T e) (PRI I N A - u..ﬁ

N G A O T A R TS o e -

e aa K A

| &

’..“

[
()

A, R

(RARAN

Incompatibility of Ada infrastructure (abbreviated Incom_Ada_infra in the model) is a
level variable, which accumulates the inflow rate Creation of incompatible Ada
infrastructure and is decreased be the outflow rate Loss of incompatibility of Ada
infrastructure. :

J Incom_Ada_infra = Incom_Ada_infra - Loss_inco_Ada_infr +
Crea_inco_Ada_infr
INIT(Incom_Ada_infra) = 2 {Incompatibility of Ada infrastructure (
incompatability units)}

The initial value of 2 indicates a very low amount of incompatibility, since all that exists
at the beginning of the simulation in 1975 is a set of specifications. This contrasts to the
initial value of 40 for Non-Ada incompatibility, representing a great diversity among the
different Non-Ada infrastructures.

Loss of incompatibility of Ada infrastructure (Equation #1610)

Once incompatibility develops, it is difficult to get rid of. Deployed systems that use a
given piece of hardware and compiler version mean that the environment that supports
programming with that hardware and software must be retained for maintenance. But the
incompatible elements of infrastructure will eventually pass away. At one end of a
continuum, elements of infrastructure just dissappear, and take their incompatibility with
them. Target hardware passes out of use (“undeployed”?). Host hardware may pass out
of use more quickly. The old editors and operating systems associated with the old
hardware may likewise pass on. Programmers skilled in older, less used languages lose
the skill while programming in newer languages, or retire or move to a different
profession.

At the other end of the continuum, elements of incompatible infrastructure are
overhauled to »-uce the incompatibility. Programs written in variant dialects are gradually
rewritten in standard dialects. (Look at how many dialects of even a standard language like
JOVIAL have been used!) Programming and management styles gradually become more
standardized. (Soon, structured programming may even become the norm!) A standard
run-time environment for Ada may develop in a few more years. Market forces may
standardize on tools, and cause, e.g., general-purpose editors or configuration management
software to replace incompatible equivalents. Even though these various processes often
take decades, they do happen. They are represented in the model by the Loss of
incompatibility of Ada infrastructure.

Loss of incompatibility of Ada infrastructure (abbreviated Loss_inco_Ada_infr in the
model) is a rate variable, which is an outflow rate from the level of Incompatibility of Ada
infrastructure.

QO Loss_inco_Ada_infr = Incom_Ada_infra/
(Norm_dur_inco_A_inf * E_pol_du_inco_A_inf)
{Loss of incompatable Ada infrastructure (incompatability units/year)}

The form of the equation is the standard first-order delay, except that the effective delay
time, Norm_dur_inco_A_inf * E_pol_du_inco_A_infr, has been made variable to represent
possible policies, as explained below.

A-85

- L) . »
EaEALe InE L e

T T ST ST S Y X R O LA S Y MR Y T T DN NS R A O,

vy

Normal duration of incompatibility of Ada infrastructure (Equation #1620)

The average lifetime of a unit of infrastructure incompatibility is called the Normal
duration of incompatibility of Ada infrastructure.

Normal duration of incompatibility of Ada infrastructure (abbreviated
Norm_dur inco_A _inf) is a converter variable with no inputs, i.e., a constant.

O Norm_dur—inco_A_inf = 30 {Normal duration of incompatibility of Ada
infrastructure (years)}

Of the various elements of infrastructure represented by incompatibility, some wiil
vanish before the programming and hardware with which they are associated, the demise of
some will be simultaneous with that of the hardware and software, and some will endure
longer. Indeed, various characteristics of ECR programs can show all three behaviors.
Programs written in a specific dialect may be slightly modified to compile as a standard
dialect; here the incompatibility may last only a few years. When the system in which
programs are embedded are mothballed, the programs are lost, along with whatever
incompatible operating system, hardware, tools, libraries, and so on, were used with them.
The language developed for such systems (as opposed to dialects and implementations of
the language) will often endure far longer than any one MCCR system. There is a similar
story to tell with most components of incompatibility. In the absence of better information,
the Normal duration of incompatibility of Ada infrastructure is set equal to the lifetime of
the projects whose infrastructure is being represented. The sum of the durations of
development projects (10 years) and maintenance projects (20 years) is 30 years.

Effect of policy on incompatibility of Ada infrastructure (Equation #1630)

Establishing a standard which must be used in subsequent programming projects
reduces the creation of incompatibility; actively transferring existing projects on to a
standard increases the loss of incompatibility. Just as there are many ways that a given
infrastructure can be incompatible with others, there are many ways that the DoD and
services might use "retroactive” standardization to reduce incompatibility. In the Ada
sphere, this might mean standardizing tools, or core program libraries, or just a tool
interface, setting up some program where existing programming projects, either in
development or maintenance phase, are moved over to the standard. In the non-Ada
sphere, retro-standardization could also include translation into standard dialects of non-
Ada languages, which would reduce the linguistic incompatibility of the non-Ada
infrastructure. To provide the model with a policy level to experiment with the
consequences of such policies, there is the Effect of policy on duration of incompatibility of
Ada infrastructure.

The Effect of policy on duration of incompatibility of Ada infrastructure (abbreviated
E pol_du_inco_A_inf in the model) is a converter variable, converting the calendar year
into an effect.

5
i
!

L
N
N
Al
K
.‘
A-86 Ci
-
o
i
.
--------------------- - o d
T AN S ~ N ~ 0 N T R e e e e R S e e T e S T S LA !
~, o> PN 4 N o . LN LSS -, a8t
MO -f.*'i‘ RS ASASE LS A YR TR IR TS &MA;?@.@MMMMMM

I4.000 I

...
...
...
...

...

E_pol_du_inco_A_inf

...

...

d |0.0|.::::::::
, (input)

year

@ E_pol_du_inco_A_inf = graph(year)

1970.000 -> 1.000

1975.000 -> 1.000

® 1980.000 -> 1.000
1985.000 -> 1.000

1990.000 -> 1.000

1995.000 -> 1.000

4 2000.000 -» 1.000
4 2005.000 -» 1.000
2010.000 -> 1.000

2015.000 -> 1.000

2020.000 -> 1.000

&
For every year, the value is set at 1.0, so unless the graphic function is altered for an
experiment, this multiplicative effect has no effect on the loss of incompatibility.
Creation of incompatibility of Ada infrastructure (Equation #1660)
- The creation of incompatibility of infrastructure is basically a free market process. With

one exception, incompatibility is a by-product, rather than the primary aim, of new product
development. (The exception is the so-called "vanity standards"--a unique standard
designed to lock customers in to a hardware manufacturer's products.) Incompatibility
otherwise arises as a consequence of introducing an innovative product, for any of several
reasons. The features and formats of other products may not be feasible to use, either
o because there are no comparable products, or because new functionality precludes their
use. The "not invented here" syndrome may demotivate the use of formats and features

A-87

LTSN AT N I IS TS AR R e A T R SR s
A A A S R) v ey

-

Cd

LSO . AT S S M e S N T P T T IR
. I b o FANC A AT AN

i\i*ﬁ"i‘t-‘.‘i‘d‘a‘;’u ’Lﬁa‘.i’?j‘i‘.‘.ﬁn DN VS

originated outside the organization. The product may simply have not been designed to
work with some€ other piece of software that users turn out to want to use. (For example,
neither the early microcomputer pioneers nor any major computer/office automation
comglmy anticipated that people would want their word processor documents to contain
graphics.)

Even if Ada has solved some of the linguistic compatibility problems, opportunities still
abound for introducing incompatible products into the programming support infrastructure.
Even within Ada, there are still the matters of linkability and transportability of object code,
the run-time environment, communications protocols, and most of all, calls to the operating
system that are not standardized. Given the lack of any dominant standards in most of
these areas, every new Ada product, even just a compiler, is likely to introduce some
incompatibility into the infrastructure.

Similarly, any software tool is likely to create some incompatibility, through file
formats if nothing else. Were it not for ASCII, the file formats would have gotten out of
hand long ago. But merely having a standard for characters is far short of having
compatibility. For example, it is rare for mainframe databases to be readable by more than
one database program. (In microcomputers, the situation is different by virtue of a small

number of widely-accepted standard database programs, plus the much greater simplicity of
the databases.)

Given some normal free market creation of incompatibility of infrastructure, there are
four major effects that can accelerate or retard the creation of incompatibility. The more
Ada is used the more opportunity there is for creating incompatibility. Also, if it looks like
Ada will be popular in the future developers will have incentives to create new products
(tools, books, etc.) that will again tend to increase incompatibilility. Another influence on
Ada incompatibility comes from the intensity of infrastructure. A higher infrastructure
creates higher barriers to entry thereby reducing the creation of infrastructure. A final
influence on the creation of incompatibility can come from DoD policy. Creation of
incompatibility of Ada infrastructure combines all of these effects.

Creation of incompatibility of Ada infrastructure is a rate equatiori which flows into the
level of Incompatibility of Ada infrastructure.

(O Crea_inco_Ada_infr = Norm_cr_inco_A_infr*E_inc_inco_A_infr*
E_int_inco_A_infr*E_use_inco_A_infr*E_pol_inco_A_infr {Creation of
incompatibility of Ada infrastructure (incompatibility units/yeer)}

The equation follows the standard format of normal constant multiplied by several
multiplicative effects. The normal constant gives what the rate of flow would be under
some reference set of conditions, and the multiplicative effects specify the change to the
flow that occur when conditions depart from the reference conditions.

Normal creation of incompatilibity of Ada infrastructure (Equation #1670)

The rate at which incompatibility will be created under the reference conditions is the
Normal creation of incompatibility of Ada infrastructure.

Normal creation of incompatibility of Ada infrastructure is a converter variable with no
inputs, i.e., a constant.

A-88
. PR Y -
-r‘-.‘ .‘-' -'.\'.v(‘ - :..-‘.'-‘.- "-’_ ‘.. --_.:..- LI ._:.. KR R «® &
A ANV : o

v . o« £ e e w2« L2 -' <, . P -
N e KYRY

O Norm_cr—_inco_A_infr = .75
{Normal creation of incompatibility of Ada
infrastructure (fraction))

The reference conditions for which the normal creation is defined pertain to how much
Ada is being used, the perceived incentives for its use, and the intensity of Ada
infrastructure. There is a multiplicative effect on the rate of Creation of incompatibility of
Ada infrastructure for each of these three conditions. The graph for each effect passes
through 1.0 at some input value; that value is the reference condition for that effect.

Estimation of the normal creation parameters is discussed in Appendix A.9,
"Multivariable Model Calibration."

Effect of relative.use on incompatibility of Ada infrastructure (Equation
#1680)

Use of Ada indicates market opportunities for new Ada-related products. Therefore, all
other things being equal, the more Ada is used relative to non-Ada languages, the more
motivation there will be to introduce new Ada-related products, and, in the normal course
of events, the more incompatibility will be created. This influence is represented by the
Effect of relative use on incompatibility of Ada infrastructure.

The Effect of relative use on incompatibility of Ada infrastructure (abbreviated
E_use_inco_A_infr in the model) is a converter variable that uses a graphic function to

specify an effect of incompatibility for any given "market share” of Ada, represented by the
Fraction of Ada projects.

Eooo

...

...

E_use_inco_A_infr

(input)

Fr_Ada_prj

A-89

o r f . l-' "
QAU ORI 8 _s.':\'" '_lm_x_

i
’a
i
|
d
i
r
o
.J

© E_use_inco_A_infr = graph(Fr_.Ada_prj)

0.0 -> 0.405

0.100 -> 0.445
0.200 -> 0.510
0.300 -> 0.655
0.400 -» 0.750
0.500 -> 0.815
0.600 -> 0.870
0.700 -> 0.905
0.800 -> 0.945
0.900 -> 0.980
1.000 -» 0.995

Using a Fraction of Ada projects as an indicator of market size for Ada products
implicitly assumes some total market size, such that the fraction gives the size of the Ada
part of the pie. The limitations of such an implicit assumption are discussed in the
appendix on questions for further investigation.

Eft;egc(t’ of incentives on incompatibility of Ada infrastructure (Equation
#1)

Perceived effectiveness of Ada, i.e., existence of incentives for others to be using Ada,
also increases the perception of opportunities for introducing new products, and hence new
incompatibility. This is called the Effect of incentives on incompatibility of Ada
infrastructure.

Effect of incentives on incompatibility of Ada infrastructure (abbreviated
E _inc_inco_A_infr in the model) is a converter variable that uses a graphic function to
specify the effect of a given degree of Perceived incentives to use Ada

IZ.OOO]

E_inc_inco_A_infr

o 1]

(input)

Perc_ince_use_RAda

©@ E_inc_inco_A_infr = graph(Perc_ince_use_Ada)
-1.000 -» 0.240
-0.800 -» 0.290
-0.600 -> 0.360
-0.400 -> 0.450
-0.200 -> 0.620
0.0 -> 1.000
0.200 -> 1.280
0.400 -> 1.530
0.600'-> 1.700
0.800 -> 1.800
1.000 -> 1.900

Eff7ect of intensity on incompatibility of Ada infrastructure (Equation
#1710)

How much effort does it take to introduce new, sometimes incompatible infrastucture?
That depends on what the current infrastructure is like. If all that's required is a new
compiler, then many companies have the resources to introduce new products. If
compilers, APSEs with their myriad tools, and people who know how to use the present
infrastructure already exist in abundance, considerably more resources will be required to
create a new viable, and yet incompatible infrastucture. Fewer companies would have such
resources, and therefore, there would be less creation of incompatibility. In other words, a
high intensity of infrastructure constitutes a barrier to entry for new products, so intensity
of infrastructure would reduce creation of incompatibility. This is represented by the Effect
of intensity on incompatibility of Ada infrastructure.

A-91

A
}
R R R R e R DR e T A R R SR

e

The Effect of intensity on incompatibility of Ada infrastructure (abbreviated
E_int_inco_A_infr in the model) is a converter variable that converts the Intensity of Ada
infrastructure into an effect on creation of incompatibility.

|1 000 I

E_int_inco_A_infr

o]

-

Inten_Ada_infra

@ E_int_inco_A_infr = graph(Iinten_Ada_infra)
0.0 -> 1.000
20.000 -> 0.980
40.000 -> 0.950
60.000 -> 0.910
80.000 ~> 0.840
100.000 -> 0.735
120.000 -» 0.640
140.000 -> 0.550
160.000 ->» 0.470
180.000 -> 0.435
200.000 -» 0.410

Effect of policy on incompatibility of Ada infrastructure (Equation #1720)

In addition to the free market effects described above, DoD policy can also have
significant effects on the creation of incompatibility of Ada infrastructure. The Ada
standard is assumed to reduce the creation of incompatibility. (This is represent by the
normal creation being lower for Ada than for non-Ada.) But beyond the standard for
language, standards for tools or operating system interfaces could significantly reduce the
creation of incompatibility. Supplying a GFE'd APSE and allowing no others would

reduce the generation of incompatibility even more. The policy lever in the model that o
A-92
L
AN I A PN K PP P Y N K PO G O APt A ST AT A T A A N N A O Tet et
,’1:'”.:\.’\-‘---(1’_.,-‘, ‘ ~ N ol AR NN

-~

represents such policies and their effects on incompatibility is called the Effect of policy on
incompatibility of Ada infrastructure.

The Effect of policy on incompatibility of Ada infrastructure (abbreviated
E f_fpol_inco_A__infr in the model) is a converter variable, converting the calendar year to an
effect on creation of incompatibility.

|2.000 I

...

...

...

E_pol_inco_A_infr

...

——"

year

o 1]

©@ E_pol_inco_A_infr = graph(year)

1970.000 -»
1975.000 ->
1980.000 ->
1985.000 -»
1990.000 -»
1995.000 ->
2000.000 >
2005.000 ->
2010.000 ->
2015.000 ~>
2020.000 -

1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000

Coverage of Ada infrastructure (Equation #1800)

The desirability of Ada as a language depends in part on its availability on various hosts
and targets. A contractor is less likely to use Ada when no compiler will produce machine
code for the hardware that's being embedded. Even having only one compiler available is
not a comfortable situation -- the contractor is at the mercy of whoever produced the
compiler to ensure that it works well. (Passing a validation test is NOT the same as

A-93

........ P "R " AT A" 27" n "2 " nTa o S N TR G P TR
‘o -."-.'s"\f < U '& ‘f\""&",n' et N O

.\‘.q
e 10,

Ay 4 Ay -

s

S T A SR SR RS N S IR TN AR

"l igig the pin 3ie b'a LR A AD RO Rt it Db et S g

working well!) Moreover, software producers often have heavy investments in host
computers and operating systems up front, which cannot be used if such machines and
operating systems do not yet support any Ada compilers. In the aggregate, the more
available Ada is on common hosts and targets, the more incentive there is to use Ada. In
the model, the measure of that availability is the Coverage of Ada infrastructure. Figure
A.7-4 shows a flow diagram of the inputs to this variable.

Coverage of Ada infrastructure (abbreviated Cov_Ada_infr in the model) is a level
variable, whose one inflow rate is the Change in coverage of Ada infrastructure.

] Cov_Ada_infr = Cov_Ada_infr + Ch_cov_Ada_infr
INIT(Cov—Ada_infr) = 0 {Coverage of Ada infrastructure
(dimensionless))}

Coverage of both Ada and non-Ada infrastructure can range between 0, representing
complete unavailability, and 1.0, representing complete availability on all hosts and targets.
For discussion of the precise meaning of coverage for intermediate values, see Section 5 of
this report. Coverage of Ada infrastructure is initialized at zero, since initially Ada is not
available for any hosts or targets.

Change in coverage of Ada infrastructure (Equation #1810)

Like creation of intensity of infrastructure itself, additions to the coverage of host/target
combinations seems to be a free-market affair, with companies creating products for sale,
and contractors creating products for anticipated internal use. Therefore, additions to
coverage will respond to the market incentives as they appear to potential developers of
new PSEs (usually starting with a compiler). However, there will be a delay before
vendors actually have the products with coverage responsive to those incentives. The
gradual introduction of new compilers and their supporting software tools that extend

coverage of Ada to new hosts and targets is represented by the Change in coverage of Ada
infrastructure.

The Change in coverage of Ada infrastructure (abbreviated Ch_cov_Ada_infr in the
model) is a rate variable, which flows into the level of Coverage of Ada infrastructure.
Rate variables are a type of converter variable; here, the rate variable converts the
difference between an Indicated coverage of Ada infrastructure and the actual coverage into
a rate of change of the actual coverage.

O Ch_cov_Ada_infr = (ind—cov_A_infr-Cov_Ada_infr)/
(T—ch_cov_A_infr * E_pol_t_ch_cov_A)
{Change in coverage of Ada infrastructure (fraction/year)}

The form of the equation for Change in coverage of Ada infrastructure is the familiar
first-order delay. Here, taking the difference between an indicated and actual coverage
represents the delays inherent in the diffusion process: If economic considerations in the
aggregate indicated that suppliers of Ada compilers and the associated software tools can
make money on a certain fraction of all possible combinations of hosts and targets, it will
take some time for the additional marketing opportunities to be discovered, and Ada
compilers etc. to be written, rehosted, or retargeted.

A-94

¢

_'\}_A_infr

T_ch_cov_A_infr

Figure A.7-4. Flow diagram of inputs to Coverage of Ada infrastructure
(Cov_Ada_infr).

- ~ _\ “m o™ .._"... S TN . T o e e A (R ‘h o« ({'
\.p\- f\.'-fo'c'_‘-\ alot AR o a . DK \~ '\.\

Time to change coverage of Ada infrastructure (Equation #1820)

In the aggregate, there will be an average time that it takes for market opportunities to
be filled by products. Market opportunities are not 3lways obvious or easy to realize, for
the evidence of them is diffuse and multifarious. Weapons programs or other programs
might use hosts or targets upon which Ada is not yet available. Reports of ongoing
programming efforts gradually form a perception that Ada is being used more frequently,
indicating a generally larger market and therefore larger niche markets in the less common
combinations of hosts and targets. Announcements of new software tools for Ada and Ada
environments could engender the same type of reasoning. There is also delay in taking
advantage of opportunities once they are perceived. A new company may need to be
formed, or new divisions formed within existing organizations. Then the actual work takes
time to create an Ada compiler and so on, or more frequently, rehosting or retargeting
existing software. The total average time taken for all of these processes is the Time to
change coverage of Ada infrastructure.

The Time to change coverage of Ada infrastructure (abbreviated T_ch_cov_A_infr in
the model) is a converter variable with no inputs, i.e., a constant.

QO T_ch_cov_A_infr=5 _
{Time to change coverage of Ada infrastructure (years)}

Effect of policy on time to change coverage of Ada infrastructure (Equation
#1830)

There are several policies that could potentially influence the time it takes for Ada to
spread to new hosts and targets. One such policy might be use of SVID as an interim
standard tool interface for Ada-related software. Because of the reservoir of experience in
porting UNIX-like systems to new machines, and the design of UNIX that makes this
straightfoward, transporting the compiler and environment is much less time-consuming.
The mechanism that accomplishes this reduction is the Effect of policy on time to change
coverage of Ada infrastructure.

The Effect of policy on time to change coverage of Ada infrastructure is a converter
variable, converting the calendar year into an effect for that year.

A-96

O

Q

‘s

T e

Pad"al af vt = & @

|2.000 | |

...
...

...

E_pol_t_ch_cov_f

...

(input)

year

o]

© E_pol_t_ch_cov_A = graph(year)
1970.000 -> 1.000
1975.000 -> 1.000
1980.000 -> 1.000
1985.000 -> 1.000
1990.000 -> 1.000
1995.000 -> 1.000
2000.000 -> 1.000
2005.000 -» 1.000
2010.000 -> 1.000
2015.000 -> 1.000
2020.000 -> 1.000

The effect is set equal to 1.0 at all times in the base scenario model, representing no
departure by policy from the present as regards propagation of Ada to new machines.

Indicated coverage of Ada infrastructure (Equation #1840)

As a convenient economic fiction, one can conceive of the coverage of Ada
infrastructure that would exist eventually, given that the economic incentives stay as they
are. This equilibrium coverage would represent a balance between the slow spread of Ada
and its software environment into the last, marginally profitable combinations of host and
target, and the "despreading” of host/target combinations no longer being used. In the
model this equilibrium coverage is the Indicated coverage of Ada infrastructure.

Indicated coverage of Ada infrastructure is a converter variable, converting the Effects
on indicated coverage of Ada infrastructure and a switch to the indicated coverage.

A-97

WFI o pau yurt jrais e o e dgo ik Jud S B Jade f ol 3 lig- b i

T TP T T VY Y T e NN R F Y SN O R YN W R W BB T W——— R S — T

QO Ind_cov_A_infr = IF (Sw_transp_A_cov=1) THEN 1 ELSE E_ind_cov_A_infr
Indicated coverage of infrastructure units (infrastructure units)}

The form of the equation for indicated coverage selects between two cases. In case the
operating system and tool interface is standardized and easily transportable, the indicated
coverage is 1.0, i.e., 100 percent: there are no substantial economic barriers to speak of
that prevent implementing Ada and its environment on any viable combination of hosts and
targets. (Viable in this context meaning, e.g., that no one will attempt using a tiny Sinclair
personal microcomputer as a host.) In case the operating system and tool interface is not
standardized and therefore expensive to transport, the indicated coverage will depend on the
economic indicators that determine how many host/target combinations will be profitable
and how many will not. In the latter case, the indicated coverage equals the Effects on
indicated coverage of Ada infrastructure. The modeller controls which case is represented
by the model at what time by the Switch for transportability on Ada coverage.

Switch for transportability on Ada coverage (Equation #1850)

One policy option to be explored in the model is whether an APSE is made available
(either by GFE or by specification and private development), that is transported easily. The
model represents the effect such an APSE would have on coverage with the Switch for
transportability on Ada coverage.

The Switch for transportability on Ada coverage (abreviated Sw_transp A_cov in the
model) is a converter variable that uses a graphic function to choose between mnputs. When
drawn to equal 1 indicated to indicate an infrastructure that is intentially design to be
transportable indicated coverage becomes one. When equal to zero indicated converage
equals the endogenously determined Effects on indicated coverage of Ada infrastructure.

|1 .000 I

...

...

...

...

...

...

Sw_transp_A_cov

(mpu

year

o]

A-98

P b B Ba I R M SO L o o o P 0 P N g

IPUSPY “ARDVIYT EAAAAAA

2 AR

"'v'-

[309 0S5 3908 55 IRALIAN LA LA CAGALRAR LR Ll i e tie 00 e i ' atan e SV T e ta it et la® Wi Db pelpdh pt ps al et b tt da Ly ah

.

© Sw-_transp_A_cov = graph(year)
1970.000 -> 0.0
™ 1975.000 -> 0.0
1980.000 ->» 0.0
1985.000 -» 0.0
1990.000 -> 0.0
1995.000 -> 0.0
® 2000.000 -> 0.0
2005.000 -> 0.0
2010.000 -> 0.0
2015.000 -> 0.0
2020.000 -» 0.0

Effects on indicated coverage of Ada infrastructure (Equation #1880)

Many considerations go into a decision about whether to attempt to open a new market,
be it automobiles or software products. There are of course considerations about what type
-] of product to offer, but for Ada developers a major decision is what host and target
machines the software should work on. The major consideration here is whether there will
be demand for Ada on a particular configuration by projects in the same organization,
contractors, and military programmers. In the aggregate, the future demand for Ada
programming on all configurations cannot be known, only inferred from various
indications, such as current use, cost-effectiveness of currently available Ada compilers and
@ infrastructure, and incompatibility of existing infrastructure (which limits the market size
for new products). In the model, the composite of these various considerations is the
Effects on indicated coverage of Ada infrstructure.

The Effects on coverage of Ada infrastructure is a converter variable, converting effects

from use, incompatibility, and incentives on coverage of Ada infrastructure into a single
® effect.

QO E_ind_cov_A_infr = E_inco_cov_A_infr*E_inc_cov_A_infr*
E_use_cov_A_infr {Effects on indicated coverage of Ada infrastructure)

P The multiplicative form of the equation above allows any single indicator to strongly
restrict coverage if it is unfavorable enough. If no one were to use Ada, there would be no

good marketing prospects for making Ada available on more machines. If Ada were

terribly cost-ineffective, that would not be a sign that users would flock to Ada and demand

products, at least not soon. If the Ada infrastructure were splintered into many

incompatible environments, creating products for any one of the environments would

® address only a very small market, so the potential return on developing Ada products for
new machines would be very small.

Effect of relative use on coverage of Ada infrastructure (Equation #1890)

Probably the most persuasive evidence that a given language and PSE represent a
marketing opportunity is actual use. The more use of Ada is in evidence, the more
incentives there are to create Ada environments to new host/target configurations (or to
adapt and transport environments from other configurations. In the model, the effect of

A-99

POCAS RIS A PE AL PR EIEC AR

v

such incentives on the development and spread of Ada products is represented by the Effect
of relative use on coverage of Ada infrastructure.

The Effect of relative use on coverage of Ada infrastructure is a converter variable,
converting the Fraction of Ada projects into an effect.

Il 000 I

G AAANARTY AW N WL L

:

b

E_use_cov_A_infr

o 1]

(input)

Fr_Ada_prj

© E_use_cov_A_infr = graph(Fr_Ada_prj)

0.0-> 0.0

0.100 -> 0.895
0.200 -» 0.970
0.300 -»> 0.975
0.400 ~> 0.980
0.500 -> 0.985
0.600 -> 0.990
0.700 -> 0.995
0.800 -> 1.000
0.900 -> 1,000
1.000 -> 1.000

The Fraction of Ada projects is the fraction of DoD MCCR programming currently
going on using the Ada Inaguage. It is a measure of how much Ada is being used.

Effect of incentives on coverage of Ada infrastructure (Equation #1910)

'
-
“
?
:
i

Another strong piece of evidence that a language and PSE represent a market for more
products is if the cost/risk incentives indicate that the language and PSE are desirable for

A-100

programmers to use. Even if use has not yet blossomed, if Ada and APSE show good

results, people will be encouraged to make them available on many machines. Conversely,

if the current state of the APSE is poor, there is little experience with it, and so on, then

& there is considerably less promise in the Ada market (at least in the near future) and
: correspondingly less motivation to port APSE to new combinations of machines. The

' impact of cost/effectiveness incentives on desire to market Ada products on new host/target

configurations is represented in the model by the Effect of incentives on coverage of Ada
infrastructure

o N e e

| & . The Effect of incentives on coverage of Ada infrastructure is a converter variable,
) , converting the Perceived incentives to use Ada into an effect.

|1.ooo |
&
. -
. £
! 1
X =
) -
@ 3
- J
£
1
X ad
I0.0':::::::::
(input)
Perc_ince_use_Ada
)
. @ E_inc_cov_A_infr = graph(Perc_ince_use_Ada)
! -1.000 -» 0.440
~0.800 ->» 0.655
e -0.600 ~> 0.780
-0.400 -> 0.875
-0.200 ->» 0.965
0.0 -> 1.000
N 0.200 ->» 1.000
< 0.400 ->» 1.000
4 0.600 -» 1.000
: 0.800 -> 1.000
1.000 -> 1.000
K~
A-101
.~

X I A RN r\r\r‘a‘r‘ *’\'.\ \-'\v{'%.'_..'\-:\n"\.'\-“ I\J\J_.-{‘."J’\'r..}'_:v‘. ",:"\-'\-‘,'4' T e e Ca T ‘_" ’..' SN
Lot e D A Pt o Latln Tl L - N \ -

o

WM

......

St Bat Bat Bob $4° Sat Bav Bk Sau S0 S by B

[{]

Effec(t) of incompatibility on coverage of Ada infrastructure (Equation
#1920)

Market fragmentation diminishes the marketing opportunities for new products. For
example, if there is one standard Ada environment, creating a product (like a compiler) to
host/target configuration XY means. that it can be sold to anyone who uses or wants to use
that standard environment on XY. But suppose there are 12 incompatible Ada
environments. Creating a product for environment number 6 out of 12 to XY means that
the market is only those using environment number 6 AND who want to use configuration &
XY; users of numbers 1-5 and numbers 7-12 would have to convert to a strange
environment to use the new product. Accordingly, when an infrastructure is fragmented by
incompatibility, the incentives to create new Ada products, in particular products for new
configurations is diminished. This effect is represented in the model by the Effect of
incompatibility on coverage of Ada infrastructure.

The Effect of incompatibility on coverage of Ada infrastructure is a converter variable, v
converting the index, Incompatibility of Ada infrastructure, into an effect.
|1 .000 |
o
b
-
=]
|
%
=)
8 o
o
(=)
IE
|
[~
@
|0.0 |

(input)

Incom_Ada_infra

©@ E_inco_cov_A_infr = graph(Incom_Ada_infra)

0.0 -> 1.000
10.000 -> 0.975
20.000 -> 0.940
30.000 -> 0.900
40.000 ~> 0.870
50.000 -» 0.850
60.000 -> 0.830
70.000 -> 0.820
80.000 -> 0.805
90.000 -> 0.795
100.000 -> 0.785

A-103

Ton sy

of b/ 00 A A S

]
q

“'.-' ‘N LW) e N " '-\-tl‘h\‘ T, g™ e LT o ."-.'l\"\-\\'-‘-\\\\.-\'.'. I AT T S T N e e
N S X S A G R R NS LN ‘ QA SRR O S L S SO N R S S A N L O SRS S

Appendix A.8: Non-Ada Infrastructure Sector

The explanations given above for Ada will not be repeated for non-Ada, since for the
most part, the formulation and meaning of non-Ada infrastructure exactly parallels those of
Ada infrastructure. The Non-Ada equations lack some policy levers possessed by the
corresponding Ada structures, which requires no further comment. Values of
corresponding Ada and non-Ada parameters have been made exactly equal unless an
argument exists for a difference. Those arguments are given in Appendix A.9,
"Multivariable Model Calibration.” The 1975 initial conditions for non-Ada language
infrastructure differ considerably from those of the (nonexistent) Ada infrastructure of that
time; these differences have been described in Section 5 of this report, and are elaborated

on in Appendix A.9. It suffices, therefore, to give the non-Ada equations and their flow
diagrams.

Figure A.8-1 shows the flow diagram for inputs to the first of the three level variables
in the non-Ada infrastructure sector, the Intensity of non-Ada infrastructure.

Intensity of non-Ada infrastructure (Equation #2000)

[Inten_NA_infra = Inten_NA_infra - Obsol_int_NA_infr + Crea_int_NA_infr
INIT(Inten_NA_infra) = 35

{Intensity of non-Ada infrastructure
(intensity units)}

Obsolescence of intensity of non-Ada infrastructure (Equation #2010)

QO 0bsol_int_NA_infr = inten_NA_infra / Dura_int_NA_infr
{Obsolescence of intensity of non-Ada infrastructure
(intensity units/year)}

Duration of intensity of non-Ada infrastructure(Equation #2020)

O Dura_int_NA_infr = 30 {Duration of intensity of NonAda infrastructure (
years))

Creation of intensity of non-Ada infrastructure (Equation #2050)

- Figure A.8-2 shows a flow diagram of the inputs to the Creation of intensity of non-
Ada infrastructure.

O Crea_int_NA_infr = Norm_cr—int_NA_infr *E_tech_cr_int*
E_use_int_NA_infr * E_inco_int_NA_infr * E_inc_A_int_NA *
E_rel_infr_int_NA

{Creation of intensity of Non-Ada infrastructure
(intensity units/year)}

A-105

(s

-2 Inten_NA_infra
Obsol_int_NA_infr

Figure A.8-1. Flow diagram of inputs to Intensity of non-Ada infrastructure
(Intens_NA _infr). The rate of flow coming from the left side of the diagram is the Creation ®
of intensity of non-Ada infrastructure.

a - a S

s

A-106

N
2

) : .
v-"“r Ca (L v .J' "_. TR A L R % . I..f... (\.ﬁv'.'vf LA AN A,

QAL E CRCL RN R P s N O o S el g NNy
Tat }_'_‘-_'..L."'t}‘: WLt s ’."'.{‘_-{h{.‘\i'u BN LI IFAY) NP IIIENS . W A A N

& g% " o ¥ [O LK YN Y X NS o4 » s A3 . N %] v oo e @al Pad ¥ 3 J .- R X TN AN AR T o b v \J %) h, "3 3 \J b
)
@
'
:
L
@ h
® E_tech]cr_int -
| L]
2150 & a y
| @ Norm/cr_int_NA_infr 5
incom_NA_infr .)) L
) E_inco_int_NA_infr

v @ Créa_int_NA_infr

b

4100 ¢ E_inc_A_int_NA 3

Perc_ince_use_Ada h

. D .. ,
E_rel_infr_int_NA @ 5

’

E_use_in{_NA_infr ;

) Gas |
Rel_int_Ada_infr . @ .

@ Fr_Ada_prj L
‘L_

¢

(

[4

e

Figure A.8-2. Flow diagram of inputs to Creation of intensity of non-Ada infrastructure -
(Crea_int_NA_infr). The rate exits the right side of the diagram and flows into the)
& Intensity of non-Ada infrastructure. .
}_.

A-107 p

-

T et et taatat matatatate et PR RRRT
4,”*-\,’\," "-"s"'-.'-\'\“-,’ AL CXLR O s’s\\s-’\’\" e T N R N S A

Normal creation of intensity of non-Ada infrastructure (Equation #2060)

O Norm_cr—_int_NA_infr = 1.6
- {Normal creation of intensity of non-Ada
infrastructure (intensity units/year)}

Effect of incompatibility on intensity of non-Ada infrastructure (Equation

#2070)
[3.000 |
=
= -
<
4
=
i
8 |
=
|
- u
- Be TS
')
(input)
Incom_NA_infr
©@ E_inco_int_NA_infr = graph(Incom_NA_infr) o

0.0 -» 3.000

10.000 -> 2.415

20.000 -> 1.965

30.000 -> 1.635

40.000 -> 1.290 o
50.000 -3 1.000

60.000 -> 0.675

70.000 -> 0.450

80.000 -> 0.285

90.000 -> 0.180 b
100.000 -» 0.135

A-108

R R T i I e SN TN ST S AU TR SR
) N N N A A 2 N 2GS SR LS DA SR SO R S S AN IARAAIARDN,

Effect of incentives for Ada use on intensity of non-Ada infrastructure

(Equation #2080)

|2.000 I

E_inc_A_int_NA

o]

(input)

Perc_ince_use_Ada

©@ E_inc_A_int_NA = graph(Perc_lnce_use_Ada)

-1.000 -> 1.120
-0.800 -> 1110
-0.600 -> 1.100
-0.400 -> 1.070
-0.200 -> 1.050
0.0 -> 1.000
0.200 -> 0.920
0.400 -> 0.840
0.600 -> 0.750
0.800 -> 0.680
1.000 -> 0.600

A-109

A ARSI

R R
. -(.LA -L‘!.ALLT'L.__I_ IO JJJ-_LJLJJL_A_(A_LA_ A_" { ' \‘L‘f;ﬂﬁ’; L"\. \.'-\ Y

R
I\‘f

T W O TN T PO W, W Vg Y, N

5
:

Effect of use on intensity of non-Ada infrastructure (Equation #2090)

li 000 |

’

LA

XS

oXr 23

2

E_use_int_NA_infr

o]

A

(input)

Fr_Ada_prj

© E_use_int_NA_infr = graph(Fr_Ada_prj)
0.0 -> 1.000 o
0.100 -> 1.000
0.200 -> 0.990
0.300 -> 0.975
0.400 -> 0.965
0.500 -> 0.935 | v
0.600 -> 0.915
0.700 -> 0.885
0.800 -> 0.830
0.900 -» 0.715

RISAACVAMY | 3/

v
1.000 -» 0.500

v

L

A-110
L
W AR AL AL AR I S AP SN AT N A AN AN R AN A e A a\‘.-_'_.r_:.:,;.-,‘_ e ..\.r\.\.- '.'\

N o N N A A e N N N N T A NI :

Effect of relative infrastructure on intensity of non-Ada infrastructure

(Equation #2110)

|2.000 I

E_rel_infr—_int_NA

o~]

(input)

Rel_int_Ada_.infr

@ E_rel_infr_int_NA = graph(Rel_int_Ada_infr)

0.0 -> 1.000

0.200 -» 1.000
0.400 -> 1.000
0.600 -> 1.000
0.800 -» 1.000
1.000 -> 1.000
1.200 -> 1.050
1.400 -> 1.120
1.600 -> 1.230
1.800 -> 1.340
2.000 ->» 1.460

Incompatibility of Non-Ada infrastructure (Equation #2150)

Figure A.8-3 shows a flow diagram of the inputs to Incompatibility of non-Ada

infrastructure.

] Incom_NA_infr = Incom_NA_infr - Loss—_inco_NA_infr +

Crea_inco_NA_infr

INIT(Incom_NA_infr) = 40 {Incompatibility of non-Ada infrastructure (

incompatibility units)}

I.-N‘ '.\ s ’_- '..'
PR L JASRS SESANKS
RO AN PR M AL NI

P

K "_-\‘-h.' -~

3
g
i
‘h‘
W
“
S
¥
'
)
&
k.
i
‘Z
%
Y
b
"
5
b

e

Norm_cr_inco_NA

E_int_inco_NA_infr

Inten_NA_infra

Perc_ince_use_Ada

Fr_Ada_prj

1

Figure A.8-3. Flow diagram of inputs to Incompatibility of non-Ada infrastructure
(Incom_NA _infr).

|
3
. j
r
fl
[
*
”
>
P |
|
.

G RN e L T AP I AU A SR AR A AR TR LSRR o N A A A N A N SR
R e N e N N e e e e e e e e Lo

)

}

-¢'f -._ -._--.F ‘J'. - ‘., - "\‘_1“ '-..\'l.‘-“’.
> ‘&)}Jﬂ&i‘f& WIS IR

Loss of incompatibility of non-Ada infrastructure (Equation #2160)

(O Loss_inco_NA_infr = Incom_NA_infr / Norm_dur—incom_NA {Loss of
incompatibility of non-
Ada infrastructure (incompatibility units/year)}

Normal duration of incompatibility of non-Ada infrastructure (Equation
#2170)

(O Norm_dur—incom_NA = 30 {Normal duration of incompatibility of non-Ade
infrastructure (years)}

Creation of incompatibility of non-Ada infrastructure (Equation #2180)

(O Crea_inco_NA_infr = Norm_cr_inco_NA * E_int_inco_NA_infr *
E_A_use_inco_NA * E_inc_A_inco_NA
{Creation of incompatible Nonada infrastructure
(incompatibility units/year)}

Normal creation of incompatibility of non-Ada infrastructure (Equation
#2190)

(O Norm_cr—inco_NA = 3 {Normal creation of
incompatibility of non-Ada infrastructure
(incompatibility units/year)}

A-113

-

L)

2L AL LA

WA N e Y

-~ T v ..

PPt PR

.........

N

..... ARSI
Y
A W

¢ ~ .-
...

Effect of incentives for Ada use on incompatibility of non-Ada
infrastructure (Equation #2210)

l2.000 |

E_inc_A_inco_NA

i

(input) .J

Perc_ince_use_Ada

@ E_inc_A_inco_NA = graph(Perc_ince_use_Ada)

-1.000 -> 1.000

-0.800 -> 1.000

-0.600 -> 1.000

-0.400 -> 1.000

-0.200 -> 1.000

0.0 -> 1.000 L)
0.200 -> 0.990

0.400 -» 0.970

0.600 -> 0.930

0.800 -» 0.890

1.000 -» 0.820 ®
L d
o
A-114
®
I R T IR G NP R R S '* A AN T e T T TN I T e

- s
R R R L L AN 'ﬂ.{J-\.'r'L"._‘.lx"\"\'L’A.'\. PRPCAAGA, ;_”-an. LfJ‘(.jL\.x.ﬁAxJ.x’-x-f. l 1-;’-(-;-[-1

2 Effect of Ada use on incompatibility of non-Ada infrastructure (Equation
2 #2220)
W,
L
. |1.000 |
o <
; 2
i ‘ 8
£

» |
(-~ @

f @
N 3
; d

“ J
|o.o|§§§.§§§§§
: (nput)

Fr_Ada_prj

D
. © E_A_use_inco_NA = graph(Fr_Ada_prj)
® 0.0 -» 0.995
" 0.100 -» 0.985
7 0.200 -> 0.955
% 0.300 -> 0.930
% 0.400 -> 0.885
Y 0.500 -> 0.780
- 0.600 -> 0.700
- 0.700 -> 0.630
o 0.800 -> 0.570
Z 0.900 -» 0.530

> 1.000 -> 0.500

{
-
-
.
b= oy
2

¢
I
j A-115

Effect of intensity on incompatibility of non-Ada infrastructure (Equation
#2230)

fl E_int_inco_NA_infr E

v
5 SRR
(nput) .
Inten_NA_infra
©@ E_int_inco_NA_infr = graph(Inten_NA_infre)
0.0 -> 1.000 -
20.000 -> 0.980
40.000 -> 0.850
60.000 -> 0.800
80.000 -> 0.650
100.000 -> 0.560 -
120.000 -» 0.510
140.000 -> 0.445
160.000 -> 0.425
180.000 -» 0.405
200.000 -> 0.400 g
Coverage of Non-Ada infrastructure (Equation #2300)

Figure A.8-4 shows a flow diagram of the inputs to Coverage of non-Ada _
infrastructure. -
(] Cov_NA_infr = Cov_NA_infr + Ch_cov_NA_infr

INIT(Cov_NA_infr) = .85
{Coverage of non-Ada infrastructure (dimensionless)}
o
A-116
|
R s i Rt e S e e st e e VNN

- e B -~

-

&

T_ch_cov_NA_infr

Q)

-

gg M. NV AR\ foon

[4400
1199 & Ch_gov_NA_infr
Perc_ince_use_Ada @
E_inc_cov_NA_infr @

Ind_cgv_NA_infr

o

E_use_cov_NA _infr

e

Fr_Ada_prj
_inco_cov_NA_infr
2150
Incom_NA_infr

Figure A.8-4. Flow diagram of inputs to Coverage of non-Ada infrastructure
(Cov_NA_infr).

A-117

N OO SR NN NN A

R D P P RPN T Jor By

% e AT T T A AT A T S
A, SN SN LS 0 "’"a“'\ s \-"\ﬂ--\. BRI A A, S L ARG

b

-
-

S

@ Cov_NA_infr

A

- :"‘ N

.
N L‘.tl'.e‘

RO Y%

K r

L0 1 ‘Lot Rl 0 A \nibr-alral Gl dui e S B S/l Al Ul

-

Change in coverage of non-Ada infrastructure (Equation #2310)

O Ch_cov_NA_infr = (Ind_cov_NA_infr-Cov_NA_infr)/T_ch_cov_NA_infr
{Change in coverage of non-Ada infrastructure
(coverage units/year))}

Time to change coverage of non-Ada infrastructure (Equation #2320)

(O T_ch_cov_NA_infr = 5 {Time to change converage of
non-Ada infrastructure (years)}

Indicated coverage of non-Ada infrastructure (Equation #2330)

O Ind_cov_NA_infr = E_use_cov_NA_infr*E_inc_cov_NA_infr*
E_inco_cov_NA_infr {Indicated coverage of
non-Ada infrastructure (dimensionless)}

Effect of relative use on coverage of non-Ada infrastructure (Equation
#2340)

[oso ™ 7 g
N

E_use_cov_NA_infr

...

(input)

Fr_Ada_prj

i

A-118

bR Ll o h At 8- &AL S0 &2 S et Ak AR et ATR sl SR SNL AP NI AL SN ST IR NN
T Al AR i A Aah et

C
3
) @ E_use_cov_NA_infr = graph(Fr_Ada_prj)
N 0.0 -> 1.000
£ 0.100 -» 1.000
\ 0.200 -> 1.000
. 0.300 -> 0.990
) 0.400 -> 0.975
v 0.500 -» 0.965
j® 0.600 -> 0.935
, 0.700 -> 0.880
: 0.800 -» 0.835
! 0.900 -> 0.710
L o 1.000 -> 0.500
v Effect of incentives on coverage of non-Ada infrastructure (Equation
N #2350)
:q"
" [tooo] NG L
</ R LA A RARTEIT PR TR —\
’ £ fedededididbidon e
- |
¢ (-]
° z' ...
— YR S SR S S SO SN
: 3 |l
L N S SR SN SRS S S A
5 (T PP U P S U U S S S
2 N
" - W e
! E)O_] R
9 (input)
S Perc_ince_use_Ada
)
N
s
N
q C
-.'
0' e
.
2,
b A-119
‘l;"“\: < ;'- N -:"4:". O AT -:."' ' - \"'-'\’ """"" ~:' o '; < Y " "\"\':\:"\"\":‘:.' ‘: ~°

@ E_inc_cov_NA_infr = graph(Perc_ince_use_Ada)
-1.000 -> 1,000

N CC NS Y P Fr I NGS5 PR Y XY,

-0.800 -> 1.000 | d
-0.600 -> 1.000
-0.400 -> 1.000
-0.200 -> 1.000
0.0 -> 1.000 °
0.200 -> 0.980
0.400 -> 0.910
0.600 -> 0.870
0.800 -> 0.830
1.000 -> 0.800 v
Effect of incompatibility on coverage of non-Ada infrastructure (Equation
#2360)
[1.000 | @
-
=
|
=
Z| ®
)
e
9
Q
(=]
A=
ul =
N I N A N
(input)]
Incom_NA_infr v k
|
>
1
[
d
.i
~ :
A-120 a
d
!
AN A AT RN R R S AR

©@ E_inco_cov_NA_infr = graph(Incom_NA_infr)

AN A A

&

‘} P . ".“-".

g

Y XA N

"

DALPAINEEN

O

AN

By I

0.0 -> 1.000
10.000 -> 0.975
20.000 -> 0.940
30.000 -> 0.900
40.000 -> 0.870
50.000 -> 0.850
60.000 -> 0.830
70.000 -> 0.820
80.000 -> 0.805
90.000 -> 0.795
100.000 -> 0.785

A-121

:-_: ;\ A IREAT RN \y..’ LTS RASRA LY : -,q\\}\' x)\' S W
. bl o)

NSO

) ‘-}\}‘.}‘ -;.:.:_f-'\\:..\'- ..:.. BROS

|
Puy 3 s 308

f, 72t A

2 Ay

L

B S,

04
X4
{
193
i
4

Appendix A.9: Multivariable Model Calibration

The description of state variables and their inputs reports some calibration of the
model, which is included as a short rationale after the equation is described. This section
completes the description of model calibration, with the instances where calibration is either
fairly involved, or involves several parameters at once. In particular, all parameter
estimations where the respective Ada and non-Ada parameters differ are described here,
rather than in the equation descriptions.

The descriptions below relate to calibrations actually performed. Possible future
calibrations are described in Appendix C, "Areas for Further Investigation."

A note about calibration philosophy is in order. For analyses involving a single
policy, like (Clapp, et al. 1977) on cost-benefits of mandating a standard HOL, it often
suffices to simply make "conservative” assumptions in the model or calculation and report
the results. However, in an analysis that scritinizes multiple policies, making
"conservative” assumptions is tricky at best, and cistorting at worst. This is because what
may be a conservative assumption for one policy may be not only not conservative, but
cxaggerate the effects of some other policy.

For example, consider assumptions about the number of programming projects
started in the future; there is very little hard evidence out beyond 1990, and yet the analysis
requires an assumption out to 2015 or so. For analyzing the policy of mandating Ada, a
conservative assumption would be to assume low growth in project starts. This
assumption would shrink the size of the programming pie, and hence be conservative in
estimating the impact of standardizing on Ada on the cost of that pie. But for other
policies, such an assumption may exaggerate their effects.

For example, one of the policies discussed here is migrating non-Ada programs to a
standardized operating system. The effectiveness of that policy relative to policies
concerning Ada language programs hinges on the proportions of Ada and non-Ada systems
in development and maintenance. With very low growth, the older programs in non-Ada
languages will be proportionately more numerous than would be the case with rapid
growth. Therefore, policies that address non-Ada costs will appear more desirable relative
to those that address Ada costs with a low-growth assumption than with a higher-growth
"best guess” assumption. The bottom line, then, is that simply making conservative
assumptions and reporting results is not appropriate for the multiple-policy analysis. The
proper procedure is to make "best guess" assumptions to evaluate policies relative to one
another, and then use sensitivity testing to ensure that the relative desirability of policies
holds for any plausible set of circumstances, as prescribed in DoD Instruction 7041.3.

In a model produced by rapid prototyping such as this, the parameter estimation
procedures are quite informal and quick relative to the ponderous data massage of formal
econometric regression. For a discussion of the role of a priori and informal parameter
estimations, see (Graham 1980).

Cost sector calibration

Reference costs. The general procedure for estimating the reference costs (equations
110, 220, 290, and 340, in the cost sector) is to arbitrarily define one, implicitly defining
what is meant in the model by a "project.” The parameter thus defined is the Reference cost
of non-Ada development projects (Ref_cst NA_dev). Then the value for the Reference
cost of non-Ada maintenance projects (Ref_cst NA_mn) is chosen in order to have an
appropriate relationship to the development cost. Then the parameters for Ada development

A-123

..........
................

....

.........
......

and maintenance are similarly derived to have an appropriate relationship to the
corresponding non-Ada parameters and to each other. So one parameter is chosen as a
matter of defining the scale of effort denoted by a "project” and the other parameter values
are derived from assumed relationships with the first parameter chosen.

As discussed in Section 5 of this report, the definition of the amount of programming
work that constitutes a standard "project” is selectable rather arbitrarily, subject only to
consistency of treatment. For the present round of model development, the definition of a
"project” is implicitly specified when the cost per project year of a project is defined. A
Non-Ada development project is defined to cost, on average, 6 million dollars
(Ref_cst NA _dev = 6x106, or in model notation, 6e6).

While the selection of development costs is somewhat arbitrary, the selection of
maintenance costs must be choosen to be consistent with development costs. Heuristically,
the cost of maintenance can be derived from more basic observations. Suppose that a given
piece of software in the maintenance phase has major upgrades periodically, such that one
year out of every three, it is undergoing major revisions. Further suppose that major
revisions cost comparably to a development project. Two years out of three maintenance
will be routine, and much less costly. Reflecting only the cost of major revisions, the
maintenance cost for an average year should be one-third the yearly cost of development.
Reflecting both major and minor revisions, the average cost should be somewhat more than
the one-third. Here, one-half of the development cost is the ratio chosen; Ref_cst NA_mn
= 3e¢6). Here, then, maintenance costs one-half as much per year as development. (If the
maintenance phase of a projects life cycle lasts longer than the development phase, the
amount spent on maintenance may exceed that spent on development over the course of the
life cycle.)

Similarly, Ada development costs are estimated from their relation to non-Ada
development costs. A value has been chosen that asserts that doing a project in the Ada
language, if the infrastructure intensity for programming in Ada were comparable to the
intensity of infrastructure available for non-Ada languages, would cost somewhat less than
in a typical non-Ada language (5 million versus 6 million per year). Ada is assumed to be
somewhat more efficient than non-Ada languages if the infrastructures were comparable by
virtue of its design supporting good software practices.

It is true that good software practices can be followed without the support of the
language used; people have programmed generics in FORTRAN, and even BASIC
programs can be developed in a structured way. But it seems plausible to assume that for a
given amount of programming experience in a language, better practices will be followed if
the language supports those practices, and less cost will result from better practices. Ada's
support of both top-down and bottom-up programming, structured programming, generics,
packages, strongly-checked types, and so on, suggests that for a given level of
infrastructure, Ada projects will be less expensive than non-Ada projects. This assumption
is born out by the details reported in (Foreman 1985a and b) and (IDA 1985).

The parameters for cost (the reference costs and the graphic functions that define the
influence of incompatibility and intensity of infrastructure on costs) have been chosen such
that in 1985, Ada projects cost more than the comparable non-Ada projects, despite the
lower reference cost. This is due to Ada's present lack of infrastructure (programming
experience, programming tools, program libraries, courses of instruction, etc.) by
comparison to older languages.

A-124

- -
-

I AT NS NN A e

o .." .Y

- ; I S N T I IR
IR0 : NN NI
e i 0 TSR L SR, YRR A T ot oA T WA R WA YR WY VR R LN W v A

¢
~ =

RIS L. oS P PFY T EIFTGrw Vel) PR - WS e e

Pd

The yearly maintenance cost for Ada, by arguments similar to those above, is set less
than the yearly development cost. Moreover, the maintenance cost is proportionately less
of the development cost than is the case for non-Ada langauges. Again, the difference is
L4 attributed to the design of Ada. More than any other computer language, Ada is designed
to be maintainable, by virtue of features that yield clear program structure and isolate parts
of programs from each other. Non-Ada maintenance yearly expenditures per project were
set at 50 percent of the development cost; the corresponding Ada cost is set at 40 percent
(Ref_cst_A_mn = 2e6).

AR

TR RS

® " Effect of infrastructure intensity. Non-Ada prgramming costs respond to intensity
of infrastructure. The curve that defines that response, the graph function Effect of
intensity of non_Ada infrastructure on cost (E_int_ NA_cst), ranges from nearly 2.0 to 0.3.
The multiplier (a "cost driver") gives changes in cost when the intensity of infrastructure
departs from a reference value, which is chosen to be the 1985 intensity, 40 intensity units.
Therefore, the multiplier is 1.0 when Intensity of non-Ada infrastructure (Inten NA _infra)
@ equals 40. Less infrastructure yields higher costs, in the extreme of no infrastructure,
nearly double the refernce cost. More infrastructure yields lower costs.

There are a number of studies that relate software cost to what amounts to the
infrastructure. Foremost among these are Boehm's studies that resulted in the COCOMO
- model (Boehm 1981). No formal derivation of the cost curve from such a model has been
& done yet. The slope of the curve is about twice the slope of the curve in COCOMO that
relates tools to productivity. However, infrastructure is not just tools. The quality of
people, the extensiveness of support hardware, the size of program libraries, and the
methods of managing programming all play a role. Given that tools are just one component
of infrastructure, the slope of the curve seems appropriate, at least until a more formal
derivation is performed.

The curve relating Ada infrastructure to costs is steeper than the curve for non-Ada.
The Effect of intensity of Ada infrastructure on cost (E_int_A_cst) slopes about twice as
much for infrastructure more than the reference intensity index of 40, and three times as
much for infrastructure less than the reference index. The cost of progrzmming in Ada,
then, is asserted to be more sensitive to infrastructural support than non-Ada programming.
® For low levels of infrastructure, and especially low levels of experience, Ada is assumed to
be proportionately more expensive because of its complexity. There are many features, and
learning enough to know which to use to program simply is an obstacle. Also, Ada
programs are highly formatted, with many rules to follow just to get something to run
correctly. Finally, many of the features that support highly proficient programmers in good
practices may be confusing for programmers not accustomed to Ada. Programs using
o generics, packages, and structures with many nested procedures may do more harm than
good for a programmer not accustomed to pieces of programs scattered all over the place.

On the high-infrastructure side, Ada costs are assumed to decline proportionately
more than non-Ada costs for a given change in intensity of infrastructure. As usual, the
basis is the design of Ada. All of the features that are so troublesome at low intensities of
(> infrastructure become aids in controlling complexity at higher infrastructures. When
experienced programmers master the features, the result is programs easier to structure, and
easier to debug, since Ada's features support these activities better than most non-Ada
languages. Having a complex language designed for experienced programmers implies a
cost curve that descends more rapidly than for more typical languages.

A-125

L T S T U P O T T
N e e L N e e T L T T \'_\"\'_\"\'\‘ AT
L4 o -

. e At . cmaaa - .
SRR O RO O CR TN 4 .
q . .

4

:::'@ Ada and non-Ada projects sectors calibration
8
ey Project starts. Total project starts (Total_prj_starts) is specified as an exogenous
variable—one that, although time-varying, is not influenced by any variables in the system.
Generally, the values were derived by combining the defined costs per project year with the
N EIA forecasts for total expenditures on software to yield a number of project starts per year
{i (EIA 1980, EIA 1985). Mechanically, this was accomplished by first doing rough pencil-
)

and-paper calculations to get the right magnitudes for the initial non-Ada project levels and
the start rate. Then, a separate small model was used to get closer to numbers that would
roughly duplicate the EIA figures. Finally, experiments with the model itself were used to
derive a curve for starts per year.

The EIA forecast expenditures show smooth exponential-appearing growth, so one
might expect the same behavior from project starts. The fitted curve for Total _prj starts
does indeed rise quickly from 1975 to 1980, and proportionately more quickly still from
1980 to 1985. Presumably, this surge resulted from microprocessors being suitable for
embedded in a vastly wider group of weapons and systems. The curve flattens out from
1985 to 1990; indeed for simulated behavior to exactly match the EIA forecasts, the
number of project starts would have to drop. In other words, just the continued starting of
new projects at the 1985 rate is more than enough to explain the rise in the EIA figures.
Rather than force the curve downward to fit the EIA numbers for years that haven't
happened yet, the number of project starts just flattens out and rises slowly. The EIA
figures come from bottom-up estimates of programs now in process, so the numbers
would seem to exclude programs not yet approved, which would raise the actual
expenditure curve beyond 1985, and thus be closer to the model behavior.

The behavior of Total yearly cost in the model is compared to the EIA forecasts in
Appendix B.3 (plot number 19),. As is evident from the plot, the model-generated
behavior lies within or close to the envelope defined by the two EIA forecasts. That the
model matches the time-series is not remarkable, given that paraemters were adjusted in
order for it to do so. But the match does show that the calibration procedure works.

The careful reader may have noted that Total yearly cost is measured in constant
FY'86 dollars ("real" or "inflation-adjusted" dollars), whereas the EIA 1985-95 MCCR
forecast numbers are in current ("'inflated") dollars—the two sets of numbers are not really
comparable. (This mismatch was not discovered until after the initial calibration and
scenario analysis had been performed.) However, this mistake may not throw off the
calibration as much as it first may appear. The EIA studies were apparently very
conservative in tallying up future MCCR expenditures, for the real (i.e., inflation-adjusted)
expenditure stream is nearly flat beyond 1990, presumably representing only those
expenditures that are already in the works and therefore reasonably certain. But, as
discussed at the beginning of Appendix A.9, the estimates appropriate for this study are not
the most conservative, but the most likely estimates. Given the continuing advances of
computer capabilities and applications, it would seem that the most likely course of MCCR
spending would be continued gradual expansion, qualitatively more like the curve actually
used for the calibration, the current dollar-inflated EIA forecast. So although the calibration
procedure was based on incomplete information about the data, the outcome of the
calibration should remain qualitatively similar when the model is recalibrated.

Language choice sector calibration

At present, the calibration of the language choice sector is described entirely within
the equation description.

A-126

..............

..........

[

STt Rt

Ada and non-Ada infrastructure sectors calibration

Normal creation of intensity of Ada and non-Ada infrastructure. The normal
creations of intensity of Ada and non-Ada infrastructures were estimated by first deriving
the parameter for non-Ada from behavioral requirements, and then arguing for how the
corresponding Ada parameter should differ from the non-Ada parameter.

The Normal creation of intensity of non-Ada infrastructure represents an abstract and
highly aggregated process, as described in the equation description above. It is not
possible to assign a value simply derived from known observations on any of the
components of infrastructure, such as the rapidity with which experience changes a
programmer'’s productivity, or the frequency of new Ada-related products introduced.
Instead, a value can be derived from other values in the model and the behavior of the index
variable, Intensity of non-Ada infrastructure, discussed in Section 5 of this report.

The Intensity of non-Ada infrastructure was defined to rise from a value of 35 in

1975 to 40 in 1985. Infrastructure is assumed to disappear through Obsolescence of Ada

infrastructure at a rate of (Intensity of non-Ada infrastructure/Duration of intensity of non-

} Ada infrastructure) = (35/30) = 1.16. So Creation of intensity of non-Ada infrastructure
Y must be at least 1.16 just to stay even with obsolescence.

But creation must also increase the intensity somewhat -- 5 intensity units between
. 1975 and 1985, or about 0.5 intensity units per year. The total creation, then, must be
i about 1.16 + 0.5 = 1.66 intensity units per year.

The heuristic computation just described is not precise. As the Intensity of non-Ada
infrastructure increases between 1975 and 1985, the obsolescence likewise rises.
Moreover, the inputs to the rate of Creation of non-Ada infrastructure such as
Incompatibility of non-Ada infrastructure are not at their reference values during that
period, so the creation rate will not equal the normal rate. Incompatibility of non-Ada
infrastructure is defined to (and does) rise from its initial value of 40 in 1975 to its
reference value of 50 in 1985. To properly account for such effects, the final parameter
value was arrived at by simulating the model to ensure that the behavior of the levels
‘ v ‘ matched the behavior implicit in the definitions of initial conditions and reference values.
{ For the Normal creation of intensity of non-Ada infrastructure (Norm_cr NA _infr), the
¢ value that works well turns out to be virtually the same as the value calculated above—1.6.
p

The various effects that might change the value apparently more or less cancelled each other
out.

1 - With the normal creation for non-Ada computed, what can be said about the

appropriate value for the corresponding Normal creation of intensity of Ada infrastructure?
There are no clear reference values from which to compute. Probably the best that can be
done is to argue that the Ada parameter should be greater than the non-Ada parameter,
based on inherent differences between Ada and non-Ada.

o

One fundamental of the design of Ada that has had remarkably little disagreement is
that Ada supports modern software engineering practices and encourages reuse of code
better than any other common language. Ada constructs aid programmers in using
structured programming, information hiding, reuse of coding through generics, packages,
and so on. Other languages certainly permit such practices, but do not do as much as Ada
to facilitate and encourage them. So Ada would seem to facilitate programmer education,
which is one kind of creation of infrastructure intensity. Similarly, many languages permit
building program libraries, but this process is not facilitated by the design of the language
to the same extent it is in Ada; Ada, then, even with all other things being equal, creates

A-127

\
]
URPL TR

-t ‘W‘

............ T S
W RISISAE N '-'tnk'-‘- Tl e R L L A N A A A
.\}.s"r_‘.'ta Lol Sty Y y : v

. T mtadond tad v g b b ek ot ded o i b L ek Sk aby B b h i W SN RN AR SR AL A P R S A R S

i
!
b
J
.
\
)
|
]
"
'
!
E
E

more incentives to create infrastructure. The normal creation of infrastruc;urc should
therefore be higher for Ada than for non-Ada languages; Norm_cr_int_A_infr is set at 2.4,
or half again as great as for non-Ada.

Normal creation of incompatibility of Ada and non-Ada infrastructure. The
computation of the normal creations of incompatibility of Ada and non-Ada infrastructures
follows the same general format as the computations for normal creations of intensity:
First, a non-Ada parameter value is computed, based on required behavior of the associated
level. Then the value is refined through simulation testing. Finally, a value for the Ada
parameter is argued on a priori grounds.

Incompatibility of non-Ada infrastructure is defined to rise from its initial 1975 value
of 40 to its 1985 reference value of 50. In 1975, Loss of incompatibility of non-Ada
infrastructure will be (Incompatibility of non-Ada infrastructure/Normal duration of
incompatibility of non-Ada infrastructure) = (40/30) = 1.33 incompatibility units per year.
Therefore, the Creation of incompatibility of non-Ada infrastructure must be at least 1.33
just to keep the level constant.

But the level of Incompatibility of non-Ada infrastructure should rise from 40 to 50 in
ten years, or about 1.0 incompatibility unit per year. So the initial estimate for Normal
creation of incompatibility of non-Ada infrastructure would be 1.33 + 1.0 = 2.33.

As with intensity, the inputs to the Incompatibility of non-Ada infrastructure do not
stay constant between 1975 and 1985, so model simulation and parameter-tuning were
used to ensure that the model behaved as it ought. The value of Normal creation of
incompatibility of non-Ada infrastructure (Norm_cr_inco_NA) that produced the
appropriate behavior was 3.0, not terribly far from the original, hand-computed estimate of
2.33.

Should the corresponding parameter for Ada, the Normal creation of incompatibility
of Ada infrastructure, be more or less than the non-Ada parameter? The argument seems
fairly clear: the Ada portion of the programming world has intrinsically less tendency to
create incompatibility, since language is usually the major element in incompatibility and
creation of dialects and so on is forbidden to the Ada side, but not the non-Ada side. And
the matter of standardized language is the only fixed, fundamental, definitional difference
between the Ada and non-Ada classifications. There are no inherent differences in
tendency to create incompatibility in operating systems, tools, management styles, or
whatever. So the Normal creation of incompatibility of Ada infrastructure
(Norm_cr_inco_A_infr) is set at 0.75, one quarter of the non-Ada value.

Opposite polarity of impact on Ada and non-Ada of use and incentives. All
three levels of infrastructure -- intensity, incompatibility, and coverage -- for both Ada and
non-Ada are impacted by the Fraction of Ada use and Incentives to use Ada. Both use and
incentives represent relative measures of Ada versus non-Ada. For Ada, high use and
incentives mean high motivation to create infrastructure intensity, incompatibility, and
coverage. For non-Ada programming, the opposite is true: high use of Ada and high
incentives to use Ada are disincentives to accumulate intensity, incompatibility, and
coverage. Therefore, the pairs of graphic functions have opposite slopes:

A-128

Ll L A)

LA S W

Catd Al

-\-

Ada variable has the opposite slope of the non-Ada variable

E use_int_A_infr E use mt NA infr

E inc mt A “infr E 'inc mt NA

E~ _use_inco_. A infrE A _use_inco_NA_infr
E inc_inco_ A mfrE inc_A _ ‘inco NA

E use _Ccov_ A 1nfrE use cov _NA _infr
E INC_Cov_ "AInfrE_ Inc_cov_ NA infr

The Ada variables have been described in the equation description. The non-Ada
variables all assume values of 1.0 for small values of use or incentives, on the assumption
that when conditions work against Ada use, Ada use will be small, and creation of non-Ada
infrastructure will not affected by how undesirable Ada use is. When Ada use or Ada
incentives are high, creation of non-Ada infrastructure is inhibited, but not as seriously as
Ada infrastructure is inhibited by low values, i.e. the slopes of the non-Ada variables are
less than their corresponding Ada variables. This represents the assumption that by the
time conditions for Ada use become highly favorable, the non-Ada languages will be
evolving to fill the specialized needs not met as efffectively by Ada. Ada's potential
success several years down the pike is less of a disadvantage to the accumulation non-Ada
infrastructure of that time than the current use of non-Ada languages is a disadvantage to
accumulation of Ada infrastructure.

A-129

o, " Dl e . ', - o et oo R o P I SR S S T LN) o .
"\“&\\ "'-'.\'s\(-."\ At \"-\--.'.\\\-\-.\-'\-‘.-.;:.-

ool Ty AT NN AN P AR I

PR S

)

APPENDIX B

MODEL LISTING, OUTPUT, AND POLICY LEVERS

- - - S - ARIRIER TR
~ -~ - l«"l“f “

L'f-.’ L‘fL{L\Lﬂ‘L -_' L(Af;{kith_{:f (.(-(" 1;1’J.j o i'.l:j

S S TR
RIS N

pa” v ® s e o~ B

\\\\\

A I-AfA-L_--Jf-

............

Appendix B: Model Listing, Output, and Policy Levers

Ll
]

Appendix B contains supporting materials for the models used in this report: a listing,

g differences between the base scenario and others, both tabular and plotted output, and a

v summary of policy levers.

h) Appendix B.1 contains a complete equation listing of the base model, as described in

" Appendix A.

« Appendix B.2 provides an index for the plots contained in Appendices B.3 through B.5,

. in the correct order and with full names and equation numbers for

! reference.

\

o Appendix B.3 contains the output of the base scenario simulation, including both plots,

X © and tables of data.

3 Appendix B.4 provides all output plots and tables for the scenario representing the
adoption of a commercial environment as a standard APSE, and then gives
the exact changes to the base model needed to create this scenario.

Appendix B.5 provides all output plots and tables for the scenario representing a policy of

e converting deployed Non-Ada programs undergoing major redevelopment

' into Ada, and then gives the exact model changes needed to create this
ke scenario.

: Appendix B.6 provides an overview of the policies that could be explored with the model

S o and describes the levers in the model that would be used to represent them.

-
o

b

i

I.

L _

-

J

)
Lol
L

B-3

e ® " " a” 4" - [«® o AT L A -{'_‘-',..' - .
..’.o,‘-l:v._$'\’:f\’\ ~f‘ AN "-,\(\ ﬁ, \ N ATIEN

Appendix B.1: Model Listing

This appendix provides a complete equation listing of the base model as described in
Appendix A. This model resides on the Macintosh floppy disks supplied along with this
report as STELLA document SSM0.32 (Standardization Scenario Model release O version
32). STELLA equation listings are divided into three blocks: all the level variables are
listed first, the second block lists the rates and converter variables which do not use graphic
functions, and finally, the third block lists all the converter variables which use use graphic
functions. Within each block variables are listed alphabetically.

The listing, then, begins with the level variables, symbolized by the small rectangles to
the left of the equation proper:

[Ada_dev_prj = Ada_dev_prj + Ada_dev_startg - Ada_dev_compl
INIT(Ada_dev_prj) = 0 {Ada development projects

(projects)}
[Ada_maint_prj = Ada_maint_prj + Ada_dev_compl - Ada_mn_prj_obsol +
Conv_prj_compl o '
INIT(Ada_maint_prj) = 0 {Ada maintainance projects
(projects)}

[Conv_prj = Conv_prj - Conv_prj_compl + Conv_prj_starts
INIT((_Zgrjw _prj) = 0 {Conversion projects (projects))

3 Cov_Ada_infr = Cov_Ada_linfr + Ch_cov_Ada_infr
INIT(Cov_Ada_infr) = 0 {Coverage of Ada infrastructure
(dimensionless)} .

3 Cov_NA_infr = Cov_NA_infr + Ch_cov_NA_infr
INIT(Cov_NA_infr) = .85 . .

{Coverage of non-Ada infrastructure (dlmens!onless_)} .

CJ Incom_Ada_infra = Incom_Ada_infra - Loss_inco_Ada_infr +
Crea_inco_Ada_infr '
INIT(Incom_Ada_infra) = 2 {iIncompatibility of Ada infrastructure (
incompatability units)}

O Incom_NA_infr = Incom_NA_infr - Loss_inco_NA_infr + .
Crea_inco_NA_infr
INIT(Incom_NA_infr) = 40 {Incompatibility of non-Ada infrastructure (
incompatibility units)} . ,
O Inten_Ada_infra = Inten_Ada_infra + Crea_int_Ada_linfr -
Obsol_int_Ada_inf + In|_GFE_Ada_infr
INIT(Inten_Ada_infra) = 0 :
{Intensity of Ada infrastructure (intensity units)} :
0O Inten_NA_infra = Inten_NA_infra - Obsol_int_NA_infr + Crea_int_NA_infr
INIT(Inten_NA_infra) = 35
{Intensity of non-Ada infrastructure
(intensity units)}

!

AR IR TR NP OR
DI Y SR I I -
S PO

O NonAda_dev_proj = NonAda_dev_proj + NA_dev_starts - NA_dev_compl

INIT(NonAda_dev_proj) = 150
{NonAda development projects (projects)}

O NonAda_maint_prj = NonAda_maint_prj + NA_dev_compl -
NA_mn_prj_obsol - Conv_prj_starts
INIT(NonAda_maint_prj) = 90 '

{NonAda maintenance projects (projects)}

[Perc_ince_use_Ada = Perc_ince_use_Ada + Ch_per_ince
INIT(Perc_ince_use_Ada) = -2 o
{Perceived incentive to use Ada (incentive units)}

[Total_cost = Total_cost + Cst_yr_dis '

INIT(Total_cost) = 0 {Total cost (dollars)}

O Ada_dev_compl = Ada_dev_prj/Ada_dev_compl_time

{Ada development (project) completion time
(projects/year)} ' '

O Ada_dev_compl_time = 10 {Ada development (project) completion time (
years)} .

O Ada_dev_starts = Total_prj_starts*Fr_dev_starts_Ada

- {Ada development (project) starts (projects/year)}

O Ada_infr_init_inj = 20
{Ada infrastructure inititially injected (infrastructure units)}

O Ada_mn_prj_obsol = Ada_maint_prj/Ada_pri_mn_time {Ada
maintainance project obsolescence (projects/year)}

O Ada_pri_mn_time = 20 {Ada project maintainance time (years) — the
time it takes for the system in which the technology is embedded to pass
out of useful service}

O Add_GFE_Ada_infr=0
{Additional GFE'd Ada infrastructure (infrastructure units)}

O Add_in]_Ada_infr = PULSE(Add_GFE_Ada_lnfr,T_add_Ada_infr,
Inter_add_Ada_infr) 4
{Additional inection of Ada infrastructure (infrastructure units/year)}
O Ch_cov_Ada_infr = (Ind_cov_A_infr-Cov_Ada_infr)/
(T_ch_cov_A_infr * E_pol_t_ch_cov_A) _
{Change in coverage of Ada infrastructure (fraction/year)}
O Ch_cov_NA_infr = (Ind_cov_NA_infr-Cov_NA_infr)/T_ch_cov_NA_infr
{Change in coverage of non-Ada infrastructure
(coverage units/year)} '
O Ch_per_ince = (Incentive_use_Ada - Perc_ince_use_Ada)
/Time_perc_ince
{Change in perceived incentives (to use Ada)
(incentive units/year)}

B-6

.“1‘.:-‘..".-\-' -u-v:'--.'.-_w . BT I TR TR . . o et .
ERTNIRINERY = RN A ARG BOACAGAC A . o R PRGN

N TatiTaTataT ot e T, N Cma Wt Y gt T T e e e

l}

O Conv_compl_time = 2 {Conversion project completion time (years)}

O Conv_pri compl = Conv_prj/ Conv_compl_time
{Conversion project completions (pro;ects/year)}

QO Conv_prj_starts = NonAda_maint_prj * Fr_conv_ NA _mn_pr {Conversuon

project starts (projects/year)}

QO Crea_inco_Ada_infr = Norm_cr_inco_A_| infr'E _inc_inco_A_infr*

E_int_inco_A_| infr'E_use_inco_ A infr‘E_poI inco_A_infr {Creation of
incompatnbmty of Ada infrastructure (incompat:bnlity umts/year)}

O Crea_inco_NA_infr = Norm_cr_inco_NA * E_int_inco_NA_infr *

EAuseuncoNA EincAtnooNA
{Creation of incompatible Nonada infrastructure
(incompatibility units/year)}

O Crea_int_Ada_infr = Norm cr_nnt_A__mfr'E tech_cr_int*
E_inc_int_Ada_infr*"E_use_int_A_infr*E_inco_int_ —A_ Cinfr *
E_pol_int_A_infr'E_rel__infr_int_Ada

{Creation. of intens. of Ada infrastr. (infr. units/yr.)}

O Crea_int_NA_infr = Norm_cr_int_NA_infr *E_tech_cr_int*
E_use_int_NA_infr * E_inco_int_NA_infr * E_inc_A_int_NA *
‘E_rel_infr_int_NA

{Creation of intensity of Non-Ada Infrastructure
(intenslty units/year)}

QO Cst_pri_yr_Ada_dev = Ref_cst_Ada_dev*E_Ada_cost

{Cost per project-year of Ada development projects
(dollars/project/year)}

O Cst_pri_yr_Ada_mn = Ref_cst_Ada_mn*E_Ada_cost

{Cost per project-year for Ada maintenance projects
(dollars/year)}

O Cst_prj_yr_Conv = Cst_prj_yr_Ada_dev * Ratio_conv_i dev_ cst
{Cost per project-year for conversions (dollarslyear)}

O Cst_pri_yr_NA_dev = Ref_cst_NA_dev*E_NA_cst
{Cost per project-year for NonAda development projects
(dollars/year)}

O Cst_pri_yr_NA_mn = Ref_cst_NA_mn°E_NA_cst
{Cost per project-year for NonAda maintenance (dollars/year)}

" B-7

(S I NN IS N o Dt 7 Jat B I N R Y R A S Y SASp e e e I LU S I S S P L I
PG CQGN L -. s‘: o % \"\ \" W- \ AN A N N A R N N
WX i L % » N ~ N . M -

2 AN

QO Cst_yr_Ada_dev = Ada_dev_prj*Cst_pri_yr_Ada_dev
{Cost per year for Ada development projects
(dollars/year)}
QO Cst_yr_Ada_mn = Ada_maint_prj*Cst_prj_yr_, Ada mn {Cost per year for
Ada maintenace projects (dollars/year)}
O Cst_yr_dis = Total_yearly_cost*Discount_ index
{Cost per year discounted (dollars/year)}
QO Cst_Yr_NA_dev = NonAda_dev_proj*Cst_pri_yr_NA_dev
{Cost per year for NonAda development projects (dollars/year)}
QO Cst_yr_NA_mn = NonAda_maint_prj*Cst_pri yr_NA_mn
{Cost per year for NonAda maintenance projects (dollars/year)}
QO Discount_index = IF TIME < Start_yr_cst_accum THEN 0 ELSE EXP(-
Discount_rate*(TIME - Start_yr_cst_accum))
{Discount index (dimensionless)}
O Discount_rate = 0 {Discount rate (fraction/year)}
O Dura_int_Ada_infr = 30 {Duration of intensity of Ada infrastructure (
years)}
QO Dura_int_NA_infr = 30 {Duratlon of intensity of NonAda mfrastructure (
years)}
O E_Ada_cost = E_int_Ada_cst"E_inco_A_cst
{Effects on Ada costs (dnmensnonless)}
O E_ind_cov_A_infr = E_inco_cov_A_infr'E_inc_cov_A_infr*
E_ _use_cov_A_infr {Eﬂ'ects on indicated coverage of Ada mfrastructure}
O E_NA_cst= E_int_NA_cst*E_inco_NA_cst
{Effects on NonAda costs (d:mensnonless)}
QO E_tech_cr_int = EXP((year - Start_yr_cst_accum) * Rate_tech_prog) {
Effect of technology on creation of
intensity of infrastructure (dimensionless)}
O Fr_Ada_prj = Total_Ada_prj/Total_projects
{Fraction of Ada projects (dimensionless)}
O Fr_dev_starts_Ada = Nat_fr_Ada_starts * E_target_on_starts
{Fraction of development (project) starts in Ada
(dimensionless)}
O Incentive_use_Ada = Ince_rel_int_infr + Ince_rel_cov_infr + Ince_pol
{Incentives to use Ada (incentive units)}
O Ind_cov_A_infr = IF (Sw_transp_A_cov=1) THEN 1 ELSE E_ind_cov_A_infr {
Indicated coverage of infrastructure units (infrastructure units)}
O Ind_cov_NA_infr = E_use_cov_NA_infr"E_inc_cov_NA_infr*
E_inco_cov_| "NA_infr {lndlcated coverage of
non-Ada infrastructure (dimensionless)}
O Init_inj_Ada_infr = PULSE(Ada_linfr_Init_inj,1981,1e11)
{Initial injection of Ada infrastructure (infrastructure units/year);
one-time construction of a few initial compilers, loaders, etc.}

B-8

&

a

‘.-~-

€

EORENWEl MASTRAYTRT] TR IIRN: W

O Inj_GFE_Ada_infr = Init_inj_Ada_Infr + Add_in]_Ada_infr
{Injection of GFE (govermment-furnished equipment) for Ada
infrastructure (Infrastructure units/year)}
O Inter_add_Ada_infr = 1611 {Interval to add Ada infrastructure (years)}
O Loss_inco_Ada_infr = Incom_Ada_infra/
(Norm dur lnco A_inf * E_pol_du_inco_A_inf)
{Loss of incompatable Ada Infrastructure (Incompatability units/year)}
O Loss_inco_NA_infr = Incom_NA_infr / Norm_dur_incom_NA {Loss of
incompatibility of non-
Ada infrastructure (incompatibility units/year)}
O NA_dev_compl = NonAda_dev_proj/NA_dev_compl_time
: {Non-Ada development (project) completions
(projects/year)}
O NA_dev_compl_time = 10
{NonAda development (project) completion time
(years)}
O NA_dev_starts = Total_prj_starts * (1-Fr_dev_starts_Ada)
{Non-Ada development (project) starts (projects/year)}
O NA_mn_prj_obsol = NonAda_maint_prj/NA_proj_mn_time {NonAda
maintainance project obsolescence (projects/year)}
O NA_proj_mn_time = 20 {NonAda project maintainance time (years)}
O Norm_cr_inco_A_infr = .75
{Normal creation of incompatibility of Ada
infrastructure (fraction)}
O Norm_cr_inco_NA = 3 {Normal creation of
mcompatibility of non-Ada infrastructure
(incompatibility units/year)}
O Norm_cr_int_A_infr = 2.4 -
{Normal ‘creation of intensity of Ada infrastructure
(intensity units/year)}
O Norm_cr_int_NA_infr = 1.6
{Normal creation of intensity of non-Ada
. infrastructure (intensity units/year)}
O .Nomm_dur_incom_NA = 30 {Normal duration of incompatibility of non-Ada
infrastructure (years)}
O Norm_dur_inco_A_inf = 30 {Normal duration of incompatibility of Ada
infrastructure (years)}
O Obsol_int_Ada_inf = Inten_Ada_infra/Dura_int_Ada_infr
{Obsolesence of intensity of Ada infrastructure (umts/year)}
O Obsol_int_NA_infr = Inten_NA_infra / Dura_int_NA_infr
{Obsolescence of intensity of non-Ada Infrastructure

(intensity units/year)}

B-9

)N Y \ L P S O A S \u '.‘ oY LRI AP .
LNy LA o S IRAR SR SN o ., .
I e N e N e L TR LA AN SN

Dan g AR an . i A b 4

O Rate_tech_prog =0
{Rate of technological progress (fraction/year)}
O Ratio_conv_dev_cst = 1
{Ratio of f conversion to development costs (dimensionless))
O Ref_cst_Ada_dev = 5E6
{Reference cost for Ada development projects
(dollars/project/year)}
O Ref_cst_ Ada_mn = 2e6 {Reference cost for Ada maintenance projects (
Dollars/project/year)}
O Ref_cst NA_dev = 6E6 {Reference cost for NonAda development projects (
dollars/year)} ‘
O Ref_cst_NA_mn = 3e6 {Reference cost forNon - ‘.
Ada maintenance projects (dollars/year)}
O Rel_cov_Ada_infr = Cov_Ada_infr/Cov_NA_infr
{Relatrve coverage of Ada infrastructure (dimensionless)}
O Rel_int_Ada_infr = Inten_Ada_infra/Inten_NA_infra
{Relative intensity of Ada infrastructure (dlmensronless)}
QO Start_yr_cst_accum = 1986
{Startmg year for cost accumulation (year)}
O Target_Ada_rel_nat = Targ_fr_Ada_starts/Nat_fr_Ada_starts {Target for
Ada (starts)) relative to natural (fraction) (fractron)}
O Time_perc_ince = 2 {Time to perceive incentives (to use Ada) (years)}
Q Total_Ada_prj = Ada_dev_pri+(Ada_maint_prj*"W_Ada_mn_prj)+(Conv_prj
W_conv_prj)
{T otal Ada projects (projects)}
O Total_NA_prj = NonAda_dev_proj+((NonAda_ mamt _prj-Conv_prj)*
w_| NA mn_prj)
{T otal NonAda projects (projects)}
QO Total_projects = Total_Ada_prj+Total_NA _prj {Total projects (projects)}
O Total_yearly_cost = Tot_yr_cst_NA+Tot_yr_cst_conv+Tot_yr_cst_Ada {
Total yearly cost (dollars/year)}
O Tot_yr_cst_Ada = Cst_yr_Ada_mn+Cst_yr_Ada_dev
{Total yearly cost of Ada projects (dollars/year)}
O Tot_yr_cst_conv = Conv_prj*Cst_prj_yr_Conv
{Total yearly cost conversions (dollars/year)}
O Tot_yr_cst_NA = Cst_yr_NA_mn+Cst_Yr_NA_dev
{Total yearly cost of Nonada projects (dollars/year)}
O T_add_Ada_infr = 1990
{Time for additional Ada infrastructure (year)}
O T_ch_cov_A_infr=5-
{Time to change coverage of Ada infrastructure (years)}

B-10

[3

St ol R Bt T Bt ot o8 B 3 o UL V'R BV T §* B

O

O T_ch_cov_NA_infr = 5 {Time to change converage of
non-Ada infrastructure (years)}
O W_Ada_mn_prj = .5 {Weight for Ada maintainance projects (dimensionless)
O W_conv_prj = 1 {Weight for conversion upgrades
(dimensionless)}
O w_.NA_mn_prj=.5
O year = TIME {years (years)}
© 1990.000 -> 3.210e+10
© EIA_851995.000 -> 3.566e+10
© E_A_use_inco_NA = graph(Fr_Ada_prj)
0.0-> 0.995
0.100 -> 0.985
0.200 -> 0.955
0.300 -> 0.930
0.400 -> 0.885
0.500 -> 0.780
0.600 -> 0.700
0.700 -> 0.630
0.800 -> 0.570
0.900 -> 0.530
1.000 -> 0.500
@ E_inco_A_cst = graph(incom_Ada_infra)
0.0-> 0.600 '
10.000 -> 0.630
20.000 -> 0.650
30.000 -> 0.720
40.000 -> 0.830
50.000 -> 1.000
60.000 -> 1.190
70.000 -> 1.350
80.000 -> 1.540
90.000 -> 1.650
100.000 -> 1.730

A Ak R il fad

o 7

@ E_inco_cov_A_infr = graph(incom_Ada_infra)

A A T N T o Tt o ~ i,
ot .:.l.:.‘.f_:{:}:.f\‘.-_\q-‘&._. L LN NN N N A A AT L L SR ORI
A K S LR RPN WP DI B DN N PN IEOE AP A A AR ACAI A N AN

0.0-> 1.000

10.000 -> 0.975
20.000 -> 0.940
30.000 -> 0.900
40.000 -> 0.870
50.000 -> 0.850
60.000 -> 0.830
70.000 -> 0.820
80.000 -> 0.805
90.000 -> 0.795

100.000 -> 0.785

E_inco_cov_NA_infr = graph(Incom_NA_infr)

0.0-> 1.000
10.000 -> 0.975
20.000 -> 0.940
30.000 -> 0.900
40.000 -> 0.870
$0.000 -> 0.850
60.000 -> 0.830
70.000 -> 0.820
80.000 -> 0.805
90.000 -> 0.795

100.000 -> 0.785

E_inco_A_cst = graph(Incom_Ada_infra)

0.0-> 0.600
10.000 -> 0.630
20.000 -> 0.650
30.000 -> 0.720
40.000 -> 0.830
50.000 -> 1.000
60.000 -> 1.190
70.000 -> 1.350
80.000 -> 1.540
80.000 -> 1.650
100.000 -> 1.730

¢

- -,

FIN TR AT TR T TN T NER
-

o

c

i3 © E_inco_cov_A_infr = graph(Incom_Ada_infra)
0.0-> 1.000
10.000 -> 0.975
20.000 -> 0.940
. 30.000 -> 0.900
- 40.000 -> 0.870

50.000 -> 0.850
60.000 -> 0.830
70.000 -> 0.820
80.000 -> 0.805
90.000 -> 0.795
100.000 -> 0.785
E_inco_cov_NA_infr = graph(Incom_NA_infr)
0.0-> 1.000
10.000 -> 0.975
20.000 -> 0.940
30.000 -> 0.900
40.000 -> 0.870
50.000 -> 0.850
60.000 -> 0.830
70.000 -> 0.820
80.000 -> 0.805
90.000 -> 0.795
100.000 -> 0.785
E_inco_int_A_infr = graph(Incom_Ada_infra)
0.0-> 3.000
10.000 -> 2.415
20.000 -> 1.965
30.000 -> 1.635
40.000 -> 1.290
50.000 -> 1.000
60.000 -> 0.675
70.000 -> 0.450
80.000 -> 0.285
90.000 -> 0.180
100.000 -> 0.135

pA e o %

*

B-13

........... .r;;a_‘:;'.f.'.f
OO N

RIS TN P L L (P e -
SR LU PO A AOA AU A TR ENIN AL
RO SRR COLS OO - Tt NIRRT
B AN EIES AR AR CHRAAMKL SRS Y

- -
~

L
~T

.....

l‘ "
S

P A
RS

© E_inco_int_NA_infr = graph(lncom NA lnfr)

0.0 -> 3.000
10.000 -> 2.415
20.000 -> 1.965
30.000 -> 1.635
40.000 -> 1.290
50.000 -> 1.000
60.000 -> 0.675
70.000 -> 0.450 .
80.000 -> 0.285
90.000 -> 0.180
100.000 -> 0.135

E_inco_NA_cst = graph(incom_NA_infr)

0.0-> 0.600
10.000 -> 0.630
20.000 -> 0.650
30.000 -> 0.720
40.000 -> 0.830
50.000 -> 1.000
60.000 -> 1.190
70.000 -> 1.350
80.000 -> 1.540
90.000 -> 1.650
100.000 -> 1.730

E_inc_A_inco_NA = graph(Perc_ince _use, _Ada)

-1.000 -> 1.000
-0.800 -> 1.000
-0.600 -> 1.000
-0.400 -> 1.000
-0.200 -> 1.000
0.0 -> 1.000

- 0.200 -> 0.990
0.420 -> 0.970
0.60¢ -> 0.930
0.80(; -> 0.890
1.000 -> 0.820

© E_inc_A_int_NA = graph(Perc_ince_use_Ada)
: -1.000 -> 1.120
o -0.800 -> 1.110
-0.600 -> 1.100
-0.400 -> 1.070
-0.200 -> 1.050
0.0 -> 1.000
0.200 -> 0.920
0.400 -> 0.840
0.600 -> 0.750
0.800 -> 0.680
s 1.000 -> 0.600
© E_inc_cov_A_infr = graph(Perc_ince_use_Ada)
-1.000 -> 0.440 :
-0.800 ->» 0.655
-0.600 -> 0.780
¢ -0.400 -> 0.875
-0.200 -> 0.965
0.0->1.000
0.200 -> 1.000
. 0.400 -> 1.000
v 0.600 -> 1.000 -
0.800 -> 1.000
1.000 -> 1.000
© E_inc_cov_NA_infr = graph(Perc_ince_use_Ada)
- -1.000 -> 1.000
-0.800 -> 1.000
-0.600 -> 1.000
-0.400 -> 1.000
-0.200 -> 1.000

= 0.0 -> 1.000
! 0.200 -> 0.980
0.400 -> 0.910
0.600 -> 0.870
0.800 -> 0.830
< 1.000 -> 0.800
€«
\ B-15

N AL S R R S A ARG LA R TR AR RN "_s T SR, T N SR s oo L @
> f"f L. N" -'\i’ I‘?". v },. '(‘v‘ ‘v.'. . o '.' (-."’ -’l‘{l:'l" ., _" '_*.":‘. ~ '-J:‘) 3'-\'\ e

“nTy®

s 1, 4 4,3
’

554

»

ol
-

S

Y

-
'-.

s asssy

e,

o
o+

i in i “ o
1 NSRRI ARY

. .‘_.-":-.'_ A

L4

© E_inc_inco_A_infr = graph(Perc_ince_use_Ada)

-1.000 -> 0.240

-0.800 -> 0.290

-0.600 -> 0.360

-0.400 -> 0.450

-0.200 -> 0.620
0.0 -> 1.000

0.200 -> 1.280

-0.400 -> 1.530

0.600 -> 1.700

0.800 -> 1.800

1.000 -> 1.900 _

© E_inc_int_Ada_infr = graph(Perc_ince_use_Ada)

-1.000 -> 0.380

-0.800 -> 0.400

-0.600 -> 0.460

-0.400 -> 0.560

-0.200 -> 0.700
0.0 -> 1.000

0.200 -> 1.380

0.400 -> 1.680

0.600 -> 1.900

0.800 -> 2.000
1.000 -> 2.020

© E_int_Ada_cst = graph(inten_Ada_infra)

0.0 -> 3.000
10.000 -> 2.850
20.000 -> 2.565
30.000 -> 2.010
40.000 -> 1.000
50.000 -> 0.600_
60.000 -> 0.465
70.000 -> 0.360
80.000 -> 0.270
90.000 -> 0.200
100.000 -> 0.100

B-16

© E_int_inco_A_infr = graph(inten_Ada_infra)
0.0-> 1.000
20.000 -> 0.980
40.000 -> 0.850
60.000 -> 0.910
80.000 -> 0.840
100.000 -> 0.735
120.000 -> 0.640
140.000 -> 0.550"
160.000 -> 0.470
180.000 -> 0.435
200.000 -> 0.410

© E_int_inco_NA_infr = graph(inten_NA_infra)
0.0-> 1.000
20.000 ->0.980
40.000 -> 0.850
60.000 -> 0.800
80.000 -> 0.650
100.000 -> 0.560
120.000 -> 0.510
140.000 -> 0.445°
160.000 -> 0.425
180.000 -> 0.405
200.000 -> 0.400

© E_int_NA_cst = graph(inten_NA_infra)
0.0->1.870
10.000 -> 1.530
20.000 -> 1.270
30.000 -> 1.120
40.000 -> 1.000
50.000 -> 0.880
60.000 -> 0.760
70.000 -> 0.630
80.000 -> 0.520
90.000 -> 0.390
100.000 -> 0.300

B-17

I U ST - - ~ -
SN NI I AT, P T T e T e SeS e N N L
o e N e e e L RN T A S e

-. S S R . -
. N AN S CEAEREN T S S
C AL NI W AR C I S S I VR PO I AR B AR A

L4

L I T -t e A B N

0 © E_pol_du_inco_A_inf = graph(year)
. 1970.000 -> 1.000
3 1975.000 -> 1.000
bt 1980.000 -> 1.000
1985.000 -> 1.000
R 1990.000 -> 1.000
1995.000 -> 1.000
'_i:‘ 2000.000 -> 1.000
2 2005.000 -> 1.000
s 2010.000 -> 1.000
B 2015.000 -> 1.000
2% 2020.000 -> 1.000
~ © E_pol_inco_A_infr = graph(year)
.;;.\‘: 1970.000 -> 1.000
% 1975.000 -> 1.000
3 1980.000 -> 1.000
P> 1985.000 -> 1.000
X _.:f 1890.000 -> 1.000
> 1995.000 -> 1.000
~ 2000.000 -> 1.000
] 2005.000 -> 1.000
b 2010.000 -> 1.000
= 2015.000 -> 1.000
- 2020.000 -> 1.000 _ :
© E_pol_int_A_infr = graph(year) .
1970.000 -> 1.000
% . 11975.000 -> 1.000
i 1980.000 -> 1.000
20 1985.000 -> 1.000
- 1990.000 -> 1.000
.2 1995.000 -> 1.000
% 2000.000 -> 1.000
¥ 2005.000 -> 1.000
X| 2010.000 -> 1.000
= 2015.000 -> 1.000 v|
% 2020.000 -> 1.000
:
-
.
§ B-18
L J

¢

© E_pol_t_ch_cov_A = graph(year)
1970.000 -> 1.000
1975.000 -> 1.000
1980.000 -> 1.000
1985.000 -> 1.000
1990.000 -> 1.000
1995.000 -> 1.000
2000.000 -> 1.000
2005.000 -> 1.000
2010.000 -> 1.000
2015.000 -> 1.000
2020.000 -> 1.000
@ E_rel_infr_int_Ada = graph(Rel_int_Ada_infr)
0.0 -> 1.850

0.200 -> 1.740

- 0.400 -> 1.510
0.600 -> 1.240
0.800 -> 1.080
1.000 -> 1.000
1.200 -> 0.940
1.400 -> 0.900
1.600 -> 0.890
1.800 -> 0.870
2.000 -> 0.860

© E_target_on_starts = graph(Target_Ada_rel_nat)

0.0 -> 1.000)
0.500 -> 1.000

1.000 -> 1.000

1.500 -> 1.125

2.000 -> 1.325

2.500 -> 1.575

3.000 -> 1.950

3.500--> 2.300.

4.000 -> 2.675

4.500 -> 3.075

5.000 -> 3.500

B-19

© E_use_cov_A_infr = graph(Fr_Ada_prj)
00-> 00 -
0.100 -> 0.895
0.200 -> 0.970
0.300 -> 0.975
0.400 -> 0.980
0.500 -> 0.985
0.600 -> 0.990
0.700 -> 0.995
0.800 -> 1.000
0.900 -> 1.000
1.000 -> 1.000
© E_use_cov_NA_inir = graph{Fr_Ada_prj)
0.0->1.000
0.100 -> 1.000
0.200 -> 1.000
0.300 -> 0.990
0.400 -> 0.975
0.500 -> 0.965
0.600 -> 0.835
0.700 -> 0.880
0.800 -> 0.835
0.900 -> 0.710
1.000 -> 0.500
© E_use_inco_A_infr = graph(Fr Ada_prj)
0.0 -> 0.405
0.100 -> 0.445
0.200 -> 0.510
0.300 -> 0.655
0.400 -> 0.750
0.500 -> 0.815
0.600 -> 0.870
0.700 -> 0.905
0.800 -> 0.945
0.900 -> 0.980
1.000 -> 0.995

I
”

.

"

E- B-20

Q

N

p

RISSITIONEO; e S . -

SN AL RN e e A S e e L L SRRy

AP A N

PSRSAS RN SRS

SR AT AT A A A, .A\A_n - . -_.*

v

tl

'1

€

- '
.......

0.0->0.050

0.100 -> 0.500
0.200 -> 0.770
0.300 > 0.870
0.400 -> 0.920
0.500 -> 0.945
0.600 -> 0.965
0.700 -> 0.985
0.800 -> 0.990
0.900 -> 1.000
1.000 -> 1.000

© E_use_int_A_infr = graph(Fr_Ada_prj)

E_use_int_NA_infr = graph(Fr_Ada_prij)

0.0 -> 1.000
0.100 -> 1.000
0.200 -> 0.990
0.300 -> 0.975
0.400 -> 0.965
0.500 -> 0.935
0.600 -> 0.915
0.700 -> 0.885
0.800 -> 0.830
0.900 -> 0.715
1.000 -> 0.500

Fr_conv_NA_mn_pr = graph(year)

1970.000 -> 0.0
1975.000 -> 0.0
-1980.000 -> 0.0
1985.000 -> 0.0
1980.000 -> 0.0
1985.000 -> 0.0
2000.000 -> 0.0
2005.000 -> 0.0
2010.000 -> 0.0
2015.000 -> 0.0
2020.000 -> 0.0

W

B-21

@ Ince_pol = graph(year)
1975.000 -> 0.0
o 1979.000 -> 0.0
N 1983.000 -> 0.0
- 1987.000-> 0.0
3 1991.000 > 0.0 ™
1995.000 -> 0.0
1999.000 -> 0.0
2003.000 -> 0.0
; 2007.000 -> 0.0
: 2011.000 -> 0.0
a 2015.000 -> 0.0
s © Ince_rel_cov_infr = graph(Rel_cov_Ada_infr)
0.0 -> -0.310
0.200 -> -0.215
= 0.400 -> -0.140
0.600 -> -0.080
0.800 -> -0.015
- 1.000 -> 0.050
1.200 -> 0.095
1.400 -> 0.125
1.600 -> 0.160
1.800 -> 0.180
N 2.000 -> 0.190
" @ Ince_rel_int_infr = graph(Rel_int_Ada_infr)
: 0.0 -> -0.530
0.200 -> -0.400
0.400 -> -0.290
0.600 -> -0.190
0.800 -> -0.100
1.000-> 0.0 .
1.200 -> 0.160
1.400 -> 0.340
1.600 -> 0.540
1.800 -> 0.720 -
2.000 -> 0.970

[Nl QR R S

5 A YA 'l"

) h

CNCLLPCIG . | SN

R 2

s el

<. B-22

|IFT T
D

" Y YWY v, =, v,

g

-1.000 -> 5.000e-3
-0.800 -> 0.025
-0.600 -> 0.055
-0.400 -> 0.120
-0.200.-> 0.260 -
0.0 -> 0.500
0.200 -> 0.680
0.400 -> 0.780
0.600 -> 0.825
0.800 -> 0.870
1.000 -> 0.910

© Nat_fr_Ada_starts -graph(Perc Ince, use_Ada)

Sw_transp_A_cov = graph(year)

1970.000 -> 0.0
1975.000 -> 0.0
1980.000 -> 0.0
1985.000 -> 0.0
1990.000 -> 0.0
1995.000 -> 0.0
2000.000 -> 0.0

2005.000 > 0.0
- 2010.000 -> 0.0

2015.000 -> 0.0
2020.000 -> 0.0

1970.000 -> 0.0
1975.000 -> 0.0
1980.000 -> 0.0
1985.000 -> 0.0
1990.000 -> 0.500
1995.000 -> 0.500
2000.000 -> 0.500
2005.000 -> 0.500
2010.000 -> 0.500
2015.000 -> 0.500
2020.000 -> 0.500

@ Targ_fr_Ada_starts = graph(year)

B-23

*-'s\\s\

o
j"":: c'-_.

¢

© Total_pr]_starts = graph(year) e

1970.000 -> 15.000
1975.000 -> 50.000 .
1980.000 -> 120.000 ¢
1985.000 -> 620.000 _
1990.000 -> 760.000 -
’ 1995.000 -> 1020.000
» 2000.000 -> 1390.000
2005.000 -> 1915.000
2010.000 -> 2360.000 o 2
2015.000 -> 2870.000 -
2020.000 -> 3380.000
i .,
i l
o
v :
N
>
-
v ks
B-24 s
[J
N N B o TR R R N W A N S N

¢

Appendix B.2: Guide to Variables Plotted

This appendix provides a guide to the multiple pages of simulation plots in
Appendices B.3 through B.5. The plots in those appendices are numbered identically to
the listing below, although the captions of plots are not given there for space reasons. The
first column gives the variable names as they appear above the respective plots. The
second column gives the full name of the variable and the equation number. The latter can
be used to find quickly a description of the variable in Appendix A.

Total yearly cost
Tot_Ada_prj
Conv_prj
Inten_Ada_infra

Inten_Ada_infra
Inten NA _infra
Incom_Ada_infra
Incom_NA_infra

Cov_Ada_infr
Cov_NA_infra
Cst_yr_Ada_dev
Cst_yr NA_dev

Fr_dev_starts_Ada
Targ_fr_Ada_starts
Nat_fr Ada_starts

Incentive_use Ada

Incentive_use_Ada
Ince rel_cov_infr
Ince rel _int_infr
Ince pol

Ada_dev_proj
Non-Ada_dev_proj
Ada_maint_prj
Non-Ada maint_prj

E_rel infr_int A

E_inc_int_A_infr
E_inco_int_A_infr

E_use_int A_infr

A N Rt T SR RN -.'_:.'{ -.ft-."-.'!-.;a;xg,;;:\ngx}'.\}"-;Z:-Z.-

Total yearly cost, #50

Total Ada projects, #770

Conversion projects, #600

Intensity of Ada infrastructure, #1350

Intensity of Ada infrastructure, #1350

Intensity of non-Ada infrastructure, #2000
Incompatibility of Ada infrastructure, #1600
Incompatibility of non-Ada infrastructure, #2150

Coverage of Ada infrastructure, #1800

Coverage of non-Ada infrastructure, #2300 .

Cost per year for Ada development projects, #90

Cost per year for non-Ada development projects, #270

Fraction of development project starts in Ada, #1000
Target fraction for Ada starts, #1030

Natural fraction of Ada starts, #1040

Incentives to use Ada, #1200

Incentives to use Ada, #1200
Incentive from relative coverage of infrastructure, #1230
Incentive from relative intensity of infrastructure, #1210
Incentive from policy, #1270

Ada development projects, #500
Non-ada development projects, #820
Ada maintenance projects, #700
Non-ada maintenance projects, #880

Effect of relative infrastructure on intensity of Ada
infrastructure, #1540
Effect of incentives on intensity of Ada infrastructure, #1530

Effect of incompatibility on intensity of Ada infrastructure,
#1520

Effect of relative use on intensity of Ada infrastructure, #1550

B-25

BRI

TN Vet At e
LSRR A CAR LR ST
NN RN

-

Y

NI B

SRS S EERER N

VA S

E_rel_infr_int NA
E_inco_int NA_infr

E use_int NA infr
E inc_A_int NA

E_use_inco_A_infr
E_inc_inco_A_infr

E_int_inco_A_infr

E pol _inco A_infr

E_A_use_inco NA
E_inc_A_inco NA
E int_inco NA _infr

Crea_inco_NA_infr

Ind_cov_A_infr
E_use_cov_A_infr
E _inc_cov_A_infr.

E_inco_cov_A_infr

i 2 ver
Ind_cov_NA_infr
E_use cov_NA_infr

E_inc_cov_NA_infr

E_inco_cov_NA _infr

Incentive_use_Ada
Perc_ince_use_Ada
E_tech_cr_int
Fr_Ada prj

Conv_prj
Conv_prj_starts
Ada_dev_starts
NA _dev_starts

RN S Ky
) .l__ﬁf\'-(\r N FIZAY

Effect of relative infrastructure on intensity of non-Ada
infrastructure, #2110

Effect of incompatibility on intensity of non-Ada
infrastructure, #2070

Effect of use on intensity of non-Ada infrastructure, #2090
Effect of incentives for Ada use on intensity of non-Ada
infrastructure, #2080

Effect of use on incompatibility of Ada infrastructure, #1680
Effect of incentives on incompatibility of Ada infrastructure,
#1690

Effect of intensity on incompatibility of Ada infrastructure,
#1710

Effect of policy on incompatibility of Ada infrastructure,
#1720

Effect of Ada use on incompatibility of non-Ada infrastructure,
#2220

Effect of incentives for Ada use on incompatibility of non-Ada
infrastructure, #2210

Effect of intensity on incompatibility of non-Ada
infrastructure, #2230

Creation of incompatibility of non-Ada infrastructure, #2180

Indicated coverage of Ada infrastructure, #1840
Effect of relative use on coverage of Ada infrastructure, #1890
Effect of incentives on coverage of Ada infrastructure, #1910

Effect of incompatibility of coverage of Ada infrastructure,
#1920

Indicated coverage of non-Ada infrastructure, #2330

Effect of relative use on coverage of non-Ada infrastructure,
#2340

Effect of incentives on coverage of non-Ada infrastructure,
#2350.

Effect of incompatibility on coverage of non-Ada
infrastructure, #2360

Incentives to use Ada, #1200.

Perceived incentives to use Ada, #1100

Effect of technology on creation of intensity, 1570
Fraction of Ada projects, #750

Conversion projects, #600

Conversion project starts, #650

Ada development project starts, #510
Non-Ada development project starts, #830

B-26

PP ACC AL . AT A SR - RIS s A S R A i
\5\\$ S o ST A N A T L N S S G IR R N T TIPS YN
e e T N e v

(.

€

/ '..s'\

Total Cost
Total_yearly_cost
Cst_yr_dis
Discount_index

Cst_prj_yr_Ada_dev
Cst_prj_yr NA_dev
Cst_prj_yr_Ada_mn
Cst_prj_yr NA mn

Plot 17. Ada costs
Tot_yr_cst_Ada
E_int_Ada_cst
E_inco_A_cst

Tot_yr_cst NA
E_int NA cst
E inco NA_cst

Total_yearly_cost
EIA_ECR forec
EIA_MCCR_forec

Total cost, #10

Total yearly cost, #50

Cost per year discounted, #20
Discount index, #30.

Cost per project-year for Ada development projects, #100
Cost per project-year for non-Ada development projects, #280
Cost per project-year for Ada maintenance projects, #210
Cost per project-year for non-Ada maintenance projects, #330

Total yearly cost of Ada projects, #80

Effect of intensity of infrastructure on Ada project costs, #150
Effect of incompatibility of infrastructure on Ada project costs,
#160.

Total yearly cost of non-Ada projects, #260

Effect of intensity of infrastructure on non-Ada cost, #360
Effect of incompatibility of infrastructure on non-Ada cost,
#370

Total yearly cost, #50
EIA 1980-1990 embedded computer resources forecast, #60

EIA 1985-1995 mission-critical computer resources forecast,
#70

lot 2 Two-curv. iefi mmary
Inten_Ada_infra Intensity of Ada infrastructure, #1350
Total yearly cost Total yearly cost, #50
B-27
.o \;.\-: - \}xq - 4‘—*\}.“-'...}._}\-{-‘:-'\:{_:.-‘;-‘}:‘\ -‘::P‘,-":-"‘~ o) .,'\(-_:.:'I:I::l: -.:"_.':". -.:-" '-.__\-_,.-‘l:.-.-.;.-.; \'.-';.-“')_:- LI

T RAANIN)

Appendix B.3: Complete Output for Base Scenario X

This Appendix contains all of the output plots and tables for the base scenario
& produced by the Standardization Scenario Model, SSM0.32. That model as stored on the
Macintosh floppy disk contains the plots and tables shown below, so they are available .
"on-line" as well. No changes to the equations listed in Appendix B.1 are required to &
produce this base scenario. Appendix B.2 “"Guide to Variables Plotted" provides the full ‘
names and equation numbers for the plotted variables. E

Plot 1 1 Tow_yoarly._eoct 2 Total_Ada_prj 3 Conv_pr 4 Inten_Ada_infra 0

/]
r ' :
! 1 £ .
™ 2 RS 3 3 3+
s $73.000 1985.000 1995.000 2005.000 2015.000
Time
Plot 2 1 Inten_Ada_infra 2 Inten_NA_inira 3 incom_Ada_infra 4 Incom_NA_intr
° é 200.000
3} 0000 ‘
i 150.000 ”
§} 0000 . C ;
— - + :
e 1} 100.000 =45 -
g 40.000 2 3
%‘ 50.000 ?‘(N
20.000 ; = ; L L ; N
X3 pase ‘ —
-) 1 | { f = —
i 0.0 . e o ? : i 1 -
3 0.01975.000 1985.000 1995.000 2005.000 2015.000 N
Time .
o« . A
B-29 R

oy I.P:le‘n-;‘f:%:t*-h:-rt{::."a"f:'f:'

3T RT SN

wer w q T ™7 E ol ol alir o~ e e R ad
ettt e A Rt S Ao ' e M 4 02t 1 ST i b DAL A S ALK A LAR SE GG AR EASAEAC LR A LGS ST
N .

b

.

1
z
2%

[

Siot 3 1 Cov_Ada_lnfr 2 Cov_NA_lnfr 3 Cst_yr_Ada_dev 4 Cei_Yr_NA_dev
i} 1.000
ﬁ £} 4.0008+10
v 3 c y
oo ‘] 0.750 N3,
¥ .
§ 3.0000+10 y 4]
7 |
! 0.500
% 2.0006+10 ’
: . 1
! 0.250 /i
3 § 1.0000+10 Jai
. 1 00 ' ",% T
: 2 0.01975.000 1985000 1995.000 2005.000 2015.000
t’,\.u Tll"
n".‘.
o . _
% Plot4 1 Fr_dev_stats_Ada 2 Targ_fr_Ada_starts 3 Nat_fr_Ada_starts 4 incentive_uss_Ada
5 :
- i} 1.000 T
-~ s 1.500 - T
% 3 -
L4 V .
N 'g’} 0.750 »
~ 4 1.000 4
L} 'l 3 - -
é} 0.500 . . _ _
- s 0.500 L
= . 1{ 4
") i} 0.250 3]
T: 4 0.0 .
2 : 1 o
e i} 0.0 (Y g
- -+ .0.5001975.000 1985.000° 1995.000 2005.000 2015.000
-~ Time
)
% Plot 5 -
’, 1 incentive_use_Ada 2 Ince_rel_cov_infr 3 Ince_rel_int_infr 4 Inoe_pal @
1
2 1.500
._: s
Y 1 =
N §] 1.000 f‘t——“—-;—“:a#
. 3 /o
[]
- 1)
>~
- g 0.500
R }1;
<7 . :
A 2
~7 $ 0.0 —
4 » 2 T [
« 1 o
L. 3 -0.500 }
‘% 2l 1975.000 1985.000 1995.000 2005.000 2015.000
- Time
v.
- o
B-30

L)
5 st
L

‘.,‘

Plot 6 t Ada_dev_pd 2 NonAda_dev_proj 3 Ada_maint_prj 4 NonAda_maint_pr|

‘.
-
: B

AUIN -
-l
4

¢
SUIN -

« ¥ ¥ o4 b 4>

y. 4 o
| B : Ees:
X P4 A ~ 4
¢ ' - . 1#F =~
?!
1 4 1 ," 3
@ 3 13 o +
3 975.000 1985.000 1995.000 2005.000 2015.000
Time
Plot 7 t E_rel_infr_int_Ada 2 E_inc_int_Ada_infr 3 E_inco_int_A_infr 4 E_use_int_A_intr
[1
3} 4.000
4
1
g 3.000 > = -
.‘-!*.‘
L 1
§ 2.000 - ~F
4
1 b I?.'/d
% 1.000 =1 1
)]
4 " 24
L . — 15 L
§ 00 - ——— =
3 1975.000 1985.000 1995.000 2005.000 2015.000
Time
! Plot 8 infr NA_intr E_inc_A_int_NA ;
6 1 E_rel_infr_int_NA 2 E_inco_int_NA_| 3 E_use_int_NA_| 4 E_ inc_A_int_ ‘
"
§] 4.000
4
1
:] 3.000
. 4
(V]
1
g 2.000
4
ws r]
1 -
§f 1000 =PI —=al tamal =
-~ 4 = 2 2 =
) 4
3 0.0
3 1975.000 1985.000 1995.000 2005.000 2015.000
Tere
B-31
N AT T s e T e e T T e T L L e L

M;A;!fp.‘s\ PR VR RSP N, ._JL J‘ ..“

) 1 E_usa_inco_A_ink 2 E_inc_inco_A_intfr 3 E_int_inco_A_infr 4 E_pol_inco_A_intr
"o Plot9
L 1
.] 4.000
&4
2
- 1
N 3 3.000
o’
-‘J 4
W
Y 1
2 2.000
. 4)
f-: 1 s
X : % 1.000 3 3 3 34 : 3 1 1
- | 1 =12 = . =
- ‘;‘ 0.0 bt ol
n : 1975.000 1985.000 1995.000 2005.000 2015,
:}.j Time
s
-2 Plot 10 1EAWeincoNA 2EjncAincoNA 3 Eiminco NAInk 4 Crea_inco_NA_infr
.".
1
g} 4000
al
b ‘.'.
,: ,
3 3.000
4
. -
3 2.000
- H 2
N 1 =
- 1.000 ! 12 1 1
> 2 ! T 2 Jamcor
Cad
] 1
A 3 0.0
i 2 1975.000 1985.000 1995.000 2005.000 2018,
.: Time
..‘-
Plot 11 .
1 Ind_cov_A_infr 2 E_use_cov_A_infr 3 E_inc_cov_A_intr 4 €_inco_cov_A_infr
—~ 1.000
2N
2 %} 4.000 T 1
_‘-
- 1 0.750 S
YA
0 g] 3.000 7
) 1 0.500
™ 3} 2.000
S]
9N
> 1 0.250
3 i} 1.000 y 3 3 3 23
4 ry Se
v AN = ol
2 i oo,
¢ b1 49738000 1985.000 1995.000 2005.000 2015.000
N Time
N
»
‘ B~32
% -
4
.

.-\. o __-._.. BEERTS
AL SO Sy

L eIRI N A AT

\l J

Plot 12

Plot13

Plot 14

'y

1 Ind_cov_NA_intr

“ LW W

2 E_use_cov_NA_infr

3 E_inc_cov_NA_infr

4 E_lnco_cov_NA_intr

1 1.000
2] 4.000
1 0.750 b — "% <
3] 3.000
| N
Saun

1 0.500
§] 2.000
1 0.250
g} 1.000 12 2 2% 2 ‘*-m ;m;xm
1 0.0
%} 00,975.000 1985.000 1998.000 2008000 2015.000

Time
1 Incentive_use_Ada 2 Perc_ince_use_Ada 3 E_tech_cr_int 4 Fr_Ada_prj
1} 1800
§ o
1} 1.000 - :
¥ AFaun=oan
1} 0.500 Yo
AT 12 fa
i} o 3 3 3 : 4,-42‘ 3
4 &%B - qF T

K

i} -0.500 = 1
3 881972 000 1985.000 1995.000 2008.000 2015.000

Time
1 Conv_pd 2 Conv_pri_starts 3 Ada_dev_starts 4 NA_dev_starts
L
3} 3200.000
i 2338838 ”
3} 2400.000 »

> o
L ,
3} 1600.000 4
i 938888 ¥
3} 800.000 4
.’ 4

1) v n
$ 88 123w+ 2§ 1 12 or.
3) 0.01975.000 1988.000 1995.000 2005.000 2015.000

Time

f¥3‘

L R R ARA P

-,'{n 'f-,-f}‘_-

R A

A

RN

. .{<'{ " ..' "’ .

S

Plot 15

Plot 16

1
§ 8.000e+6
C 4

1 Total_cost 2 Total_yearly_cost

3 Cst_yr_dis

1 Cst_pri_yr_Ada_dev 2 Cst_pr|_yr_NA_dev

3 Cst_pri_yr_Ada_mn

4 Cst_pri_yr_NA_mn

11

-

L e - Ta v e T e o T T W (T T ad O A Na AT Wy T W - ¥ ~ VWY LTS
.
¢ v
Mot 18 1 Tot_yr_cst_NA 2 E_int_NA_cst 3 E_lnco_NA_cst
& 1. 6.400e+10)
g} 4000
1. 4.8008+10 [Z
Qg B
g} 3000 ol b
> 1. 3.2000+10 g '
g} 2000
’1
1. 1.600e+10 =
3} 1000 2 23 27 2
hd 1 0.0 1 1]
il 08975000 1985.,000 1995.000 2005.000 2015.000 :
i Plot 19 1 Total_yearly_cost 2 EA_ECR_forec 3 EA_MCCR_forec :
]
i] 6.4008+10
i} 4.8000+10
- ’ i
v A 2 3
1 y
;} 3.200e+10 2 ; 3 > > , -
i] 1.600e+10 ;
v 123 ’
1] — 1277
0.0 ettt
] 1975.000 1985.000 - 1995.000 2005.000 2015.000 .
Time K
& Plot20 . A
1 Inten_Ada_infra 2 Total_yearly_cost
% 6.4200090'01 ::
-' -
W \"-=‘1— :
. b (o858 ! -
‘f
r o)
3 32853 7 > iy
- AL 1 .
~ 3 1680358 | = ‘
3 e y
, T
| ;88 22T '
“1975.000 1985.000 1995.000 2005.000 2015.000
Time K
B-35

RPN S TR O -

N R A G e S ST
a.\'i:-":aisi\'_x"_h‘:a.fa. Py L a2 w{;&f;ﬁ.ﬁ.@ L‘;L ,_,‘1"1‘_1;' {._{ .;.LJ'J

l

MO W

......

Time [Total yearly cost|Fr Ada prj| Total cost | Rel int Ada infr{Total prj starts
1975.000 1.029¢+9 0.0 0.0 0.0 50.000
1980.000 2.867e+9| 5.902e-3 0.0 0.034 120.000
1985.000 1.123e+10 0.033 0.0 0.506 620.000
1990.000 2.863e+10 0.117| 6.440e+10 0.573 760.000
1995.000 4.447e+10 0.229| 2.418e+11 0.856 1020.000
2000.000 5.705e+10 0.333| 4.894e+11} 1.301 1390.000
2005.000 5.982e+10 0.522{ 7.868e+11 2.101 1915.000
2010.000 5.246e+10 0.687| 1.068e+12 3.091 2360.000
2015.000 4.976e+10 0.778| 1.324e+12 3.954 2870.000

1]

) Appendix B.4: Complete Output for Commercial APSE Scenario

| @ This appendix contains all of the output plots and tables for the scenario
representing the adoption of a commercially available environment as the standard APSE,
as an interim standard for all DOD Ada projects. This appendix then gives the equation
changes to the base model that produce this scenario. These changes could be done on line
h to the base model. However, to ensure easy reproducibility of results, a model with the
changes already made has been supplied along with this report on a Macintosh floppy disk
' as STELLA document CAPSEMO0.32, (Commercial APSE Model Release 0 version 32,
; corresponding to the base model SSMO 32). That model stored on the floppy disk contains
the output plot and tables as well as the equations and flow diagram. "

1 Total_yearty_cost 2 Total_Ada_pr 3 Conv_pr 4 Inten_Ada_infra
) Plot 1
. @ y
4
7
T 4
$ '3 . 1 -~ 1
4 1 {
e
" | e ~
. 4 100. . 11E [5-A [
1 n)72 BNV 4
- H
: %@ u !
1 4 e
© e
; §§1 23 trtd2 St § b 3
B1975.000 1985.000 1995.000 2005.000 2015.000
Time
@ Plot 2 1 Inten_Ada_infra 2 Inten_NA_infra 3 Incom_Ada_bnira 4 Incom_NA_infr
i 200.000
) 3} 80000
i 150.000 :
S 3} 0000 = T4ENE
- ~
i © 100000 o
3} 40000 »
1} s0.000 =
- g 20.000 b o e T 'f
1 1
) i 0.0 - 1t T L t-3 ==
: 0.01975.000 1985.000 1995.000 +2005.000 " 2015.000
Time ‘
3 h o
- B-37

LTS Ry

"Q‘::N& }\{st\{}(b(“\' \ {\.{-..1_\)‘. }\."-.: :'.s' 3' } . ‘.‘f:h ‘[.L .'L\'{h. \)\'f.\q.'n.\ LY .‘.'...'.&h‘ii.;h"

Plot 3 1 Cov_Ada_infr 2 Cov_NA_infr 3 Cst_yr_Ada_dev 4 Cst_Yr_NA_dev

! 1.000
g 4.0008+10
pt
; 3 O S T
! 0.750 T —p=
-33 } 3.0000+10 1 a7)
)" N -—
1 o 4 [e
é - 0.500 o
4
y 2} 20008410 » =
. y’
! 0.250 "
. 2 1.0000+10 44 o
R 0.0 — md 1] ! =3 ! !] v
1 0.01975.000 1985.000 1995.000 2005.000 2015.000
Time
Plot 4 1 Fr_dev_starts_Ada 2 Targ_fr_Ada_starts 3 Nat_fr_Ada_starts 4 incentive_use_Ada
1
g} 1.000 @
1.500 T i
i] 0.750 e
y
4 1.000 =/
. 4 -
3} 0.500 : 'J)
4 0.500 H 'l,z ~
1 o/)
3} 0.250 /_ i
3 0.0 e
I el
i} 0.0 12 | = . -
3 -0.5001975.000 1985.000 1995.000 - 2005.000 2015.000
Teme
Plot5
1 Incentive_use_Ada 2 Ince_rel_cov_infr 3 Ince_rel_int_infkr 4 Ince_pol o
1
1.500

SHIN -

......

%

L e Dl M

NI

®lot 6

Plot 7

Plot 8

L) - - e Y "
RS g

MU M P

Mo

SO -

1 E_rel_infr_int_Ada

2 E_inc_int_Ada_infr

3 E_inco_int_A_infr

2 NonAda_dev_proj 3 Ada_maint_prq 4 NonAda_maint_prf
- Y,
o
r “4 - 2 4
- -4
Z —
b.
o
& ot
_ i 3
o -
gig R = A ﬁ—;ﬁ:“;’.ﬁ+,
-01975.000 1985.000 1995.000 2005.000 2015,
Tme

4 E_use_int_A_intr

1
;} 4.000
4
|
3 3.000 T 3
‘ T D ——
1
3 2.000
4
1
1
§ 1.000 Y ¢} 14 1 3
1 - + y =
; 0.0 o -
H 1975.000 1985.000 1995.000 2005.000 2015,
Time
1 E_rel_infr_int_NA 2 E_inco_int_ NA_infr 3 E_use_int NA_ink 4 E_inc_A_Int_NA
1
4 4.000
4
1
3 3.000
4
1
$ 2.000
4
§ ST
1] 3= 1
1.000 1533 —123 1

3 mik === Ky 2
|
; 0.0

1975.000 1985.000 1995.000 2005.000 2015,

Time
B-39

2 YA

LaSE At P et i et ot el S g 0 ¢ S 0D YA ECAZ D B8 I BB ch Sl Mol N e B el A PR AR A A

T T T T bat al e ouh i aa ate i Doy AR DA DAL B Sl e e s b i S S e PASLL LA £ g

(XY
‘." P
7 r Plot 9 1 E_usa_inco_A_ink 2 E_inc_inco_A_infr 3 E_int_inco_A_infr 4 E_pol_inco_A_lnfr
o
’ 1
o ;] 4.000
§ 9
o
' 1)
O % 3.000
\" 4
v
o 1
- 3 2.000 - : L
. 4
v :
o 1
[3 1,000 3 3 , 3 =
. 4 i a1 TR
~.: ¥ 1‘34‘:" 1
. é 0.0 T - #
. 3 1975.000 1985.000 1995.000 2005.000 2015.000
2 Time
5 Plot 10 1EAuweinco N4 2EincAlncoNA 3 E_intinco NAinfr 4 Crea_inco_NA_inr
¥ 1 . d
o §J 4.000
¢ l
\-f
xj 1
-;) § 3.000
, 4
Y
' =
_ % 2.000 N
ol
- ' 3
: = % 1.000 12 1 14 1= =
W 2 2=
3] - -
‘ E I
Dy] 0.0
. 3 1975.000 1985.000 1995.000 2005.000 2015.000
b ;: Tm
e
N Plot 11 .
‘ 1 Ind_cov_A_infr 2E usecov Adntr FEinccovAnfr 4 E_inco_cov_A infr -
1 1.000
. §} 4.000
- 4 f
- {
% 1 0.7%0 {
- 3} 3.000 -
H -
;:j 1 0.500
§} 2.000
~ 4
x
: 1. 025 [
i] 1.000 i date2 3 s 3 23 P
: L. HEEELE
:' l} :0 —,L l : 4
- : 0973000 1988000 1995.000 .000 2015.000
L Time ‘
h} G‘
B-40 |

3
i]

o

M R R "o W a -'
A, NI
L]

ot 12 1 Ind_cov_NA_infr 2 E use_cov NAInfr 3 E_inc_cov_NA_inr 4 E_inco_cov_NA_in¥

Y 1.000
g] 4.000
1 0750 I
3] 3.000 3
4
1 0.500]
] e
4
1 0.250
2% % 2% 12 —
g} 1.000 2 A S dsre
1 00
2] 0.0,975.000 1985.000 1995.000 2005.000 2018,
Time
Plot 13 1 Incentive_use_Ada 2 Petc_‘m__m_m 3 E_tech_cr_int 4 Fr_Ada_pr
1} 1500
‘} 1.000 e} § '4. -
£ !
oy im R
1
1} os00 , 7
oo 22
'} 0.0 7
] ' 3 3 Fr—msid o
4 3338 - ‘: é
1} -0.s00 A '
§ 8-81975.000 1985.000 " 1995.000 2005000 2015.000
) Time
Plot 14
1 Conv_pr 2 Conv_pri_starts 3 Ada_dev_starts 4 NA_dev_starts
i 333383
3} 3200.000
1 2388888 7
£} 2400.000 >
o’
1 1690000
§) 1600.000
.
i 388888 v 1
3} eo0.000 m
: ah E S -+
i 88 1282] oy Iy 1 :
} 0.0197%.000 1985.000 1995.000 2005,000 2015.000
Time

R

HhHS N

{:‘f"v’-’-’.?

2%

Plot 15

Plot 16

Plot17

N A AR T T e e

MMM S SR el g e

1 Total_cost

1. 1.6000412
3} 64008410

1, 1.200e+12
2} 4.800e+10
‘ 0.750

1, 8.0008+11
£} 3.200e+10
s 0.500

1. 4.0000411
2} 1.6000+10
‘4 0.250

1 0.0

0 >
§} 8,01975.000 '3

LA S R i ity ol as ot fiimghae i R b finh Jat Sad s gy S 2l di

2 Total_yearty_cost

3 Cst_yr_dis

SIFIETITEIETIENY T

4 Discourt_index

23

W

1 Cst_pri_yr_Ada_dev 2 Cst_prj yr_NA_dev

8.0000+8

SUIN -

6.000¢+8

s

4.0000+6

BN -

2.000e+6

Lo

SOIN -
(=]
o

19985.000
Time

3 Cst_pri_yr_Ada_mn

2005.000

2015.000

4 Cst_pri_yr_NA_mn

3

o3

71975.000

t Tot_yr_cst_Ada

1. 4.0000+10
3} 4.000

1. 3.000e+10
3] 3000

1985.000

3 E_int_Ada_cst

1995.000
Time

4 E_inco_A_cst

2005.000

2015.000

1985.000

B-42

.-(-. . ..

- >
A..A..J..IAL-AA.‘L

e e .

138

-
-
o

2015.000

A A R Ao Ahe S e

REY A SN i gnl ok o h LN S AL N S gt SRR AR Ll e o B g

N
N
1=
y
p
ot 18 1 Tot_yr_cst_NA 2 E_Int_NA_cst 3 E_inco_NA_cst ¢
1. 6.4000+10
3 4,000
1 4.8000+10 .
g8} 3000 » :
< = ‘
1. 3.2008410 v .
g} 2000 3
11 .
1.6000+10 2 .
é} 1000 2 22 2 2 3 23 X
L 7 1 :
1 0.0 - 5
g} 0-%975.000 1985.000 1995.000 2005.000 2015.000 5
Time R
»
" {
hd Plot 19 t Total_yearly_cost 2 ElA_ECR_forec 3 EW_MCCR_forec
[]
i} 8.4008+10 E
v
1 [
3} 4.8000410 ! = N
1 :
i} 3.2006410 ARBEY.o N
13 ~
. N
3} 1.6008.+10 -
» 122
3 ;)
1] -— 12 =
00 ettt B
[1975.000 1985.000 1995.000 2005.000 '2015.000 x
Time -
Plot 20
1 Inten_Ada_infra 2 Total_yearly_cost .
1 6 5558 N
/ 1]
Dt
2 4.815&21 T 7 Naa i b
1"-)
»
& 32‘&?02?8 ‘41 .
b y -
50 =il
; 1%2?8 1 1
1 8~8‘ - S .
Yy975.000 i

&

» .,
a2
A
!..
>

-
"
~

P 4
J"JSJ ' '.') '.'\'.‘

Sl

‘i

LN N

oAy

Time__[Total yearly cost| Fr_Ada prj| Total cost|Rel int Ada infr|Total prj starts
1975.000 1.02%¢e+9 0.0 0.0 0.0 50.000
1980.000 2.867e+8! 5.902e-3 0.0 0.034 120.000
1985.000 1.123e+10 0.033 0.0 0.506 620.000
1990.000 2.675e+10 0.118| 6.311e+10 0.898 760.000
1995.000 4.075e+10 0.239| 2.253e+11 1.133 1020.000
2000.000 4.950e+10 0.413] 4.511e+11 1.707 1390.000
2005.000 4.513e+10 0.616| 6.928e+11 2.703 1915.000
2010.000 4.248e+10 0.744] 9.124e+11 3.728 2360.000
2015.000 4.179e+10 0.812]| 1.123e+12 4.625 2870.000

e

w

w

-

-

v

L

B-44
A A e L e e e e e S o

By M W R, W W W WO E LN (T

O Add_GFE_Ada_infr = 15 {Additional GFE'd Ada
infrastructure (infrastructure units)}

: O T_add_Ada_infr = 1988

{Time for additional Ada infrastructure (year)}
© E_pol_inco_A_infr = graph(year)

1970.000 -> 1.000

1975.000 -> 1.000

1980.000 -> 1.000

1985.000 -> 1.000

1990.000 -> 0.500

1995.000 -> 0.500

2000.000 -> 0.500

2005.000 -> 0.500

2010.000 -> 0.500

2015.000 -> 0.500

2020.000 -> 0.500
© E_pol_t_ch_cov_A = graph(year)

1970.000 -> 1.000

1975.000 -> 1.000

1980.000 -> 1.000

1985.000 -> 1.000

1990.000 -> 1.500

1995.000 -> 1.500

2000.000 -> 1.500

2005.000 -> 1.500

2010.000 -> 1.500

2015.000 -> 1.500

2020.000 -> 1.500
© Sw_transp_A_cov = graph(year)

1970.000 -> 0.0

1975.000 -> 0.0

1980.000 -> 0.0

1985.000 -> 0.0

1990.000 -> 1.000

1995.000 -> 1.000

2000.000 -> 1.000

2005.000 -> 1.000

2010.000 -> 1.000

2015.000 -> 1.000

2020.000 -> 1.000

B~45

-
"

....................

T NG IIATRE
'. '~ '~. -~ \ \. \ ~. AR A S S AN T NI S CEAIOA AU AR AT AN AT A A A St S A R AT T :]
J'_. e A AT ua.g«..,;..n’\. } -u-\}.:\h‘:ﬂi‘lm.!\& ,A..k.h}.a_j.l.‘ \A\A\'.I\ ".A"J";'L‘ﬁn. LW W LA Z-;.\ G N I N

« CEAEY

D

O

Appendix B.5:

Complete Output for Conversion Scenario

This appendix contains all output plots and tables for the scenario representing

gradual conversion of non-Ada programming being converted to Ada during maintenance.
The changes to the base model done to represent this policy test (given here after the
output) have been incorporated into an altered version of the base model which resides on a
Macintosh floppy disk as a STELLA document named CONVI/0.32 (Conversion Model,
release O, version 32, derived from the corresponding base model SSMO0.32). As usual,
the stored model contains all of the output information given here, in addition to the

equations and flow diagram.

Plot 1

Plot 2

1 Total_yearly_cost 2 Total_Ada_prj 3 Conv_pxj 4 inten_Ada_infra
1 . 4000+1
s
§ KL
400 3’4
4 1%. 4 < 1’
3 1 ol
|
4 1 o J I‘:,'
1 16006+ '_/
2 53§§r§ =
4 . —
~]
: ' oo S Y 3 |
5 gg 234 —l—!z. P i ! + +
4 :01975.000 1985.000 1965.000 2005.000 2015.000
Tims

1 Inten_Ada_infra 2 Inten_NA_infra 3 Incom_Ada_infra 4 Incom_NA_infr
é] 200.000
3] s0.000
i 150.000
3} s0.000 4] 7 e

= R 1/1 t
! 100.000 ; :
% 40.000 »
i 50.000

20.000 2 =3 Lo, 3
¢ !] ! 11
=
i 0.0 TR — IERE
4 0.01975. 1985.000 1995.000 2005.000 2015.000
Time

B-47

CATE A M MEAA LYY AR N LAALANE S STy ey YRS

e " FEERL®A" ..

- # a x e mwmm

\
\
L)
\
.
.
[]
!

)

AD-A17S 352 COST EFFECTIVENESS TRADEOFFS IN COWPUTER 3/4
STANDARDIZATION AND TECHNOLOGY I..(U) INSTITUTE FOR
DEFENSE ANALYSES ALEXANDRIA YA R A HOOK ET AL. JUN 86
UNCLASSIFIED IDA-P-1931 IDA/HA-86-31052 WDA9G3-84-C-0031 F/G 9/2 NL

A)
i . /
oL el o i
! — P O .
! 3 \

)
"

o

Ao Xy
! A
WO
) §
S.?
ey

iadd.
‘,E_!I_S s
)
]
2.

/' .
| ——
l}
\ —
X O
N |
'
:'.“:
7
,:“9"‘*',.‘ ',"
p
!
m"\
~.

il

>
P
—
o™
}
i
Y
f
1§
L

'
R

pravver S o
e i

-

AV 2000 SR VAR I VNN R SR RN AN SR AR NI

A 2u A N AN Rl L5 a5 L LG

i

)
J
Plot 3 1 Cov_Ada_inkr 2 Cov_NA_ink 3 Cst_yr_Ada_dev @ Cst_Yr_NA_dev 4
) 1.000) !
3 4.0008+10 T : Iy s 1.9
4 - 1 o5
| 0.7%0 Ne
§ 3.0000+10 14
‘ o~
0.500] .
2 2.0000+10 2 o *
11 o029 i
g 1.0009+10 /
: o or——
, 4 . _
i 00 T - bttt]
2 0.01975.000 1985.000 1995.000 2005.000 . 2015.000
Time
Plot4 1 Fr_dev_stants_Ada 2 Targ_fr_Ada_starts 3 Nat_fr_Ads_starts 4 Incentve_use_Ada
i] 1.000 w
< 1.500 ! [|
3
il
0.750
g 1.000
1
i} 0.500 !
s 0.500 H
oSt
i} 0.250 -
: 0.0
N ;} 0.0 D 2 e —- -
! : -0.5001975.000 1985.000 1995.000 2005.000 2015.000
<o Time
e
! Plot 5 t Incentve_use_Ada 2 ince_rel_cov_inir !
&N LSS, rol_cov_| 3 Ince_rel_int_ink 4 inoe_pol
.‘.’n.‘ 19
r_‘.:: 1.500
Y
Y -
) 3 1.000 ;ﬁ:y_‘::a
:-\; 1 7
- g 0.500
X : '
':Q: 1 - y
h § 0.0 oo
o :
-t 1 P i |
= 2 -
- 3 1975.000 1985.000 1995,000 2005.000 2015.000
3.: Tere
|
A B~48 !
2

4

e A & M

-

Plot 6

Plot 8

AL SES TSRS
(n s

o)

a3}

e s:ﬂ.‘\ . -.7 W RS RS A ‘-}\ R :-'.L. NP0

IARTAN

WUNY 0 KR A AR Py ! hagti 9.3 ¢ ay at v in , » %
1 Ada_dev_pr 2 NonAda_dev_proj 3 Ada_maint_pd 4 NonAda_maint_pr|
' 2 S ™
; 24000.000
1 18000.000
j 1

4 » 4
1 12000.00 1
i 1 . < 1 d
»._ p o
1 A0 OO o 4
z 4 !
.}*:
1 . < - 1
Y > "* v v v v
2 g; $75.000 1985.000 1995.000 2008.000 2015.000
Time
1 E_rel_ink_int_Ada 2 E_inc_int_Ada_ink 3 E_inco_int_A_inir 4 E_use_int A _inkr
1
3 4.000
4
1
3 3.000 ==
L) o= g
1
§ 2.000
1 -t 7
gJ 1.000 — -? 4 3 1
aaREE. 2 4=
1 i
00 S o +
; 1975.000 1985.000 1995.000 2005.000 2015.000
Time
1 E_rel_infr_int_NA 2 E_inco_int_NA_intr 3 E_use_Int_NA_int 4 E_inc_A_Int_NA
' : . -
;}A 4.000
4
1
g] 3.000
4
1
3} 2.000
4
F’ . 37T ___ -
! -2y e
; 1.000 153- 123 13 A -
o 2 B
. .
;] 0.0
1975.000 1985.000 1995.000 000 2015.000
Time
B-49

gt a9 Cwt o 4" - LR g -
' SO0 N, -,\,.* e e Y, :f‘

[
L
i

1 €_use_inco_A_infr 2 E_inc_inco_A_ink 3 E_int_inco_A_inir 4 E_pol_inco_A_lnkr

1
4.000

0.0 bt
1975.000 1985.000 ! . 2018.
Time

t E_A_use_inco_NA 2 E_inc_A_inco_NA S E_intinco NA inkr 4 Crea_inco_ NA_infr

4.000

1 Ind_cov_A_ink 2 E_use_ocov_A_ink 3 E.lnc_evv_A__Nr 4 E_inco_cov_A_ink
1.000

} o =

0.7%0
3.000

0.500
2.000

0.2%0
1.000

. LIRS LY oY B . - W' . » e e - - A R) '.-..'.-._-‘- c e ™ m "> " s " m" a" -p
{f\l.\ﬁ*{“ ; NCSH DO LN W L < LA AT I s e oo S

BN LS IS R] A
S e NS e e N L N S 1N Y8 b S I A R W S,) v Sy
o NP B phe .

Plot12 1 covNAJar 2 Euse covNAllr 3 Encoov NAIW 4 E_inco_oov_NA_ink
1 1.000
;] 4.000 =
1 0.750 1
i] 3.000 s
1
1 0.500 ~L
/ g} 2.000
1 0.250
23 2% r¥ o 2% 2 ——
g] 1.000 = 1@:*—-—‘
1 0.0
3} 0.9,975.000 1985.000 1995.000 2005.000 2018.000
Tire
Plot 13 1 incentive_use_Ada 2 Perc_nco_use_Ada 3 E_tech_cr_int 4 Fr_Ada_pr
1} 1500 '
R
i} 1.000 [[: :7--‘4
4 8988 "‘ =
1} os00
oo
1} 0.0 ' -
% & 'x‘ s,
o ‘
1} -0.500 e
; 88978000 . 1985.000 1995.000 2005.000 2018.000
Time
Flot 14 1 Conv_pd 2 Conv_pr|_starts 3 Ada_dev_starts 4 NA_dev_starts
i 3308
3} 3200000
3 2838838
;} 2400.000
] 193888 >4 &
2} 1600.000 yd
3 3080 I
} e00.000 == :
$ 88 F128~+12 dgﬁv‘ NEEEE
;} 0.01978.000 1988.000 = 1998.000 000 2018.000
Time
B-51
'~- '] LR P e %N N N cam -~ .~ (R P I T e DL TR PO At e et e a et et
A S SN A0, 1 O PR A A L A IR 00 2% G R A0 N L N 28 D N R A SN VNI O O O O

- o o g

X a3 & <

baih it sl sl gl aia gle Gin Lun £ o Ty C I PIT N Ol . ROEA RN

LT 1S e e

s

T Total t : index
Plot 15 1 Towl_cost 2 Total_yearly_cos % Cst_yr_dis 4 Discount_|

o
8
N

h

eo
oo

] =

Plot 16 ' Cstpriyr Adadev 2 Cstpriyr NAdev 3 CstplyrAdamn « Cstpriyr NA_mn

. -
§! 8.0000+8 T
H
, 5 .
§| 6.0000+8
“ < -
1 - =
§] 4.000e+6 ¥
<) P~
" 1::‘:
§} 2.000e+8
H . o .
e’
-
1 j-f-]
3 0.0 i ==t
H 1975.000 1985.000 1995.000 2005.000 2015.000
Time
Plot 17 1 Tot_yr_cst_Ada 3 E_int_Ada_cst « E_inco_A_cat - s
1. 4.0000+10
3} 4.000
1. 3.0008+10
3] 3000 -
1. 2.0000+10 B
3] 2000
1. 1.0000+10
3] 1000 \
| _4
1] S |} 1
1 0.0 T -+
) BT) wal.ooo 1906000 = 2005.000 2018.000
Time
B-52 -
R :’,‘, AN -.\-“,‘_ NSNS PRI A SN CORYTN R T ST N e

" “«" e YRS SRR

(Rl 354

Plot 18

" . - .

P & Plot 19

«ve A aaa

L Plot 20

.

1. 1.6000+10
g} 1000

1 0.0

 gi £, e o?) e e e * B4y - -at B g r T "B B B O B, B8 By - o ‘aVa ala"

2 E_InC_NA_cat 3 E_inco_NA_ast

3) 0.0,975 000 1985.000 1995.000 2008000 2015.000

1 Total_yearly_cost

i] 6.4000+10
i} 4.8000+10
1

;} 32000410

i} 1.6000+10

i
0.0 —r ’
; 1975.000 1685.000 1995.000 2005.000 2015.000

t Inten_Ada_intra

) e:%o'm
150 2?8
100 2?8

'3?84

~ w,N "ol AT A
’-,"q.”-,"-' ‘\. T X

8w A

= 1271

2 Total_yearly_cost

-1"’

H

OB A e D T

B-53

LY P

" e e e "u - . - -t
SN AN AN, QY \"\' et "'r""h"‘ ""'*-s -. \ '\x 1.' T

'h \ ~
\'- SNLS N

Time [Total yearly cost| Fr Ada prj| Totai cost | Rel int Ada infr|Total pri starts
1975.000 1.029%e+9 0.0 0.0 0.0 50.000
1980.000 2.867e+9| 5.902e-3 0.0 0.034 120.000
1985.000 1.123e+10 0.033 0.0 0.506 620.000
1990.000 2.884e+10 0.135] 6.466e+10 0.582 760.000
1995.000 4.321e+10 0.275| 2.417e+11 0.892 1020.000
2000.000 5.303e+10 0.406| 4.787e+11 1.382 1390.000
2005.000 5.066e+10 0.607| 7.455e+11 2.233 1915.000
2010.000 4.202e+10 0.761] 9.763e+11 3.204 2360.000
2015.000 3.885e+10 0.838] 1.17%e+12 4.033 2870.000

B-54

RIoR RN R S I IR DTN

¢

-~ o A
L/

e
-

g

T

L2
R

-
-

Fr_conv_NA_mn_pr=graph(year)
1970.000-> 0.0 .
1975.000-> 0.0
1980.000-> 0.0
’s 1985.000-> 0.0
1990.000-> 0.050
1995.000-> 0.050
2000.000-> 0.050
2005.000-> 0.050.
F 2010.000-> 0.050
2015.000-> 0.050
2020.000-> 0.050

o<, " 0

CARPARIN

NN

»
J 3 AT I
e "\v")..")'..aﬁ : ".}: i:‘ _.&_.' "; h._&. _11.\ N\ o \;»ﬁ g -

Appendix B.6: Matrix of Policies and Levers '

There are several ways to represent the effects of policies in models. In very detailed
models with a relatively small number of policies to evaluate, one has available a single ¢
parameter that represents whether or not a given policy is to be in effect. In the study 2
reported here, the model is relatively aggregated. However, there are numerous policies
that need to be evaluated. Thus, a somewhat different means of representing policies is

used. The model contains levers at important points in the system, such that the effects of _
hd any set of policies should be representable by changes in one or more of the levers. For 3
example, one of the effects of introducing a Common Ada Interface Standard (CAIS) _
would be to reduce the amount of incompatibility in the infrastructure being created, all 5

other things being equal—there would be much less incompatibility among operating '-'.
systems and tool sets as a result of imposing a standard. This etfect of a CAIS is N
® represented by reducing the Effect of policy on incompatibility of Ada infrastructure s 3
(E_pol inco_A_infr), which, other inputs being equal, reduces the Creation of -
incompatibility of Ada infrastructure (Cr_inco_Ada_infr). By
The study has currently identified eight policies concerning standardization of o,
programming support environments that should eventually be examined in scenario
™ simulations. A scenario may have several or none of these policies in force, for they are 2
not mutually exclusive. Some have been proposed in pairs, such as using SVID (UNIX -
System V) as an interim standard operating system-tool interface, followed by use of a :
DoD-developed interface (the CAIS) as the successor The seven policies are described o
below, -
& There are 8 policies, and around 10 policy levers to represent their effects. One
convenient way of summarizing both is shown in Figure B.6-1, which shows a matrix of 7 _
of the policies versus the policy levers. At this point in the study, policy analysis L
experiments on the proof-of-principle model have just begun, with the experiments 5
described in Section 5 of this report. In the normal course of simulating and analyzing
policy experiments, changes will be made in how policies are represented, so the entries in
@ the matrix are far from final. They are included to enhance the value of the review process:
they constitute a statement of the intended use of the model. The policy levers are
described in Appendix A, and the policies themselves are as follows: o
Mandated use of Ada y
o This policy is already in force as per the DeLauer memorandum. The policy of 2
mandated use of the Ada language for mission-critical systems is in force in all simulations, ;
except where explicitly noted. Also in force, however, are the pressures of expense and 1
haste that can lead to waivers on Ada use for specific projects.]
\‘
C
o
&
<
o .
: .
L)
y
e B-57 i
‘vf
“f
e
} . \:"\' S”\' ’-'-}\ \d.\.,\ .\ \"\"- *:..\ Y \,.’ : .\..!?:-\I:..-:\::.‘ e . ' . .f‘.',"'::::“. \'_v) ‘,(. , IS LS T ."; -".- .

“» \‘v\‘.'ﬁ

g

-l -

i
%0
(™
Vome
‘Cg
Yo
=N
oy
Y

4
p g N4 /474040
o SWach for TRANSPortabity t ?

P Ada COVeage

- Eftect of POLIcy or Time 0 ?
CHangs Ae COVenge f

9 ERect of POLIcY on DUration

{ INCOmpaibiiity of Ada INFrastructure
¥

¥

/A

DeCOmouy ol Acn IR

TARGat FRaction of Ade st ¢

%MMd i ‘M’ ‘ t 2 .

)
Y
<

PRomct upgracies
ADONon by GFE 10 Ada $ t
NFRasswcure ’

Tima © Add (GFE) Ada ? S
INFRasucare

NTerval o 1 Add (GFE) Ada
INFRasvucare

DB R R

& ey
‘-
Qb [3
‘r

Figure B.6-1. Matrix of policies versus levers that represent such policies in the model.

L

3 | B-58

- Pt AT AT, , " .w LIV UL L D PR T S ALVSL IR B I N L T A IS I N .
I ‘J' I'*J‘”* e " .‘4\(\: - Ca ,-%z\)_h. - _ U J‘ \4'... \(_ .\.r\:\.r \-4'.'- ECOICEE A SR AN
Ly w i B . R

‘i"h‘l N oW
AaGaY A0l

- -

O

Mandated conversions to Ada

As discussed in Appendix A.3, it is possible to do programming in the Ada language
for deployed, operational systems that were originally programmed in other languages.
Certainly the potential exists for major redevelopments, which tend to have mostly new
code in any event. The potential also exists for doing piecemeal language conversion. One
way is to write new subroutines in Ada when new subroutines are needed, then use a
HOL-to-HOL translator to create HOL code in the same language as the rest of the system.
The new subroutines can use existing linkers, loaders, and so on. This procedure is being
used with CMS2. The other way to convert code piecemeal is to create Ada compilers that
can link and load modules compatibly with modules sourced in the non-Ada language of
the rest of the system. This is commonly done among FORTRAN, PL/l and other
languages.

Although a policy of converting deployed systems to Ada is not prominent in current
discussions, it is included here because it has potential to be a high-leverage policy.
Simply because there are so many more systems in maintenance phase than there are being
started in development, requiring use of Ada on a gradually-increasing number of existing
systems offers the potential for rapidly increasing the rate at which Ada is used and thus
internalized by the DoD programming community.

Develop a CAIS

The policy of developing and mandating a Common Ada Interface Standard, i.e. an
operating system interface standard, is already gathering momentum. While no CAIS-
based system yet exists, the effort to structure and specify such a system is well along.

Scenario simulations cannot speak to the technical efficacy of a given CAIS
specification. What the model can evaluate (given assumptions about the technical merits
of a standard, its development time and cost, and effect on productivity) is the impact on
the evolution of DoD programming costs.

Use SVID as a CAIS

Unti’ _.cently, there were no publicly available specifications for an operating system;
there were only the actually-implemented OSs. These were proprietary, and therefore not
appropriate to be standardized upon. However, AT&T has published a complete
specification for its Unix V OS in the System V Interface Description (SVID). This has
raised the possibility of using a UNIX-based standard for software products developed for,
or delivered to, DoD.

Interim GFE APSE

An alternative approach to specifying a standard is to require the use of a particular
programming support environment as government-furnished equipment (GFE). Again, the
scenario simulations cannot speak to the technical desirability of a particular environment.
Assuming reasonable parameters for cost, effectiveness, time to implement, and
acceptance, the scenarios simulation the impact of such a policy on programming
expenditures.

B-59

* -
.......................

- - - Cd -:‘
- - [
AT NN

Convert older environments to APSE

Just as the DoD is plagued by a multiplicity of languages, it is plagued by a multiplicity
of programming support environments. Just as with languages, there are a variety of
excuses to customize an environment: a different target or host machine, a different
language, or just passage of time creating desires for new features or changes to the old.
One possible standardization strategy is to create an orderly migration process of programs
on to a modern, standardized environment.

Although such a policy is not currently being discussed seriously, it is included here for
further investigation, as it has potential to have very high leverage. For example, the
survey being conducted as part of this study may reveal that a substantial portion of
maintenance programming is being done in fairly old and primitive environments.
Programs in those environments could be migrated to a modern standard environment with
only the effort it takes to create a compiler, linker, loader, and debugger on the standard OS
that is compatible with the original language. Such a migration would make available a
wide array of programming support tools for maintenance, and make finding people
experienced with the OS much easier. Moreover, adding maintenance programming to the
list of users of the standard environment would make the market much larger for tool
creation, and thus benefit all of DoD programming activities.

Require standard APSE only for maintenance

A variant on all policies that standardize an operating system, by specifying either a
specific GFE'd product or an interface standard, is to impose such a requirement only on
systems when they enter the deployment and maintenance phase. This would leave
contractors and DoD organizations free to choose any appropriate environment for the
development phase.

Standardize on small number of operating systems

Just as one step toward a common MCCR language was the specification of 7 approved
languages for MCCR use, one step toward a common operating system and tool interface
(and eventually tools) could be mandating a small number of commercially-available
operating systems. A relatively small number of OSs could span most applications and
requirements for MCCR programming. For example, one possible set is DEC's VMS,
IBM's MVS, AT&T's UNIX V, and Softech's ALS/N. The first two are probably the
most common OSs now used for MCCR programming, and the latter two should offer
competing transportable OSs for nonIBM and DEC hardware. (This policy is not shown
on the matrix)

B-60

APPENDIX C
AREAS FOR FURTHER INVESTIGATION

‘ Appendix C: Areas for Further Investigation

| @ One purpose of the present phase of this project is to develop a prototype model
; demonstrating the feasibility of the approach. Rapid prototyping requires a quick treatment
v of many areas that would otherwise warrant more detailed consideration. This appendix
b records such areas that were noted during the development process.

: ® Appendix C.1 discusses improvements to the multivariable model calibration procedures.
) . Appendix C.2 discusses next steps in the policy analysis.

p Appendix C.3 describes questions and improvements to the cost sector.

& Appendix C.4 describes questions and improvements to the Ada and non-Ada projects

sectors.
Appendix C.5 describes questions and improvements to the language choice sector.
: Appendix C.6describes questions and improvements to the Ada and non-Ada
E o infrastructure sectors.
y Appendix C.7 describes miscellaneous questions and improvements.
. Appendix C.8 describes the procedures for creating this report from the simulation
. software on the Macintosh computer.
® Most items are listed by model sector, and then prioritized within each sector.
) Three stars indicates the items that promise the most immediate benefits and should
- definitely be included in the next phase of this project. Two stars indicate that the area is
) possibly important. One star indicates an interesting but probably postponable question.
<

y
¥

)
R
J
Z
&
.
"
k-]

" C-3

-~
. |
{
q
- N T T N L SN e T e L N T LT e e T % N T N T L e e e Tt e L e e N \._‘-'.\ \\.."\- v.'\ - \"j LR \{V
R AR A AR SR RS AR A SRR R S RN

Y A IR U T I T TR AW s AT NN N W RPN O R P LR LI NPT P AN T P T DR PO O Ul 1O G DI TRl SLEL JPe i LY aiebea §

Appendix C.1: Multivariable Model Calibration

*** Resolve maintenance versus development costs data conflict

-

There is a statistic that circulates in software circles that 80 percent of the life cycle
cost of software is maintenance. However, computing the development/maintenance
balance from other figures gives quite different results. Suppose, as the model does, that

¢ development projects last ten years and maintenance activities go for another twenty years.
Even if the yearly expenditure on software in maintenance equalled that in development,
only 66 percent of the life cycle cost would be in maintenance. Either the model
assumptions about "dwell time" are quite inaccurate, or the two computations are using
incompatible cost measures. The origin of the 80 percent figure needs to be tracked down,
and its supporting data and assumptions analyzed and reconciled with the other
@ information.

’ x -
'T"'_

*** Change EIA '85 to the real dollar equivalents ::

As discussed in Appendix A.9, the correct empirical time series of software costs to 5 ‘

compare with Total yearly cost (equation #50) would be an inflation-adjusted version of the ,

& EIA forecasts (equations #60 and #70). The present EIA forecasts are in current (i.e., non-
inflation adjusted) dollars.

-

1Y

** Add current-dollar comparisons .
L%

N\

DoD instruction 7041.3 requires that multiyear economic analyses give results in

® both constant (inflation-adjusted) and current (actual budget) dollars. When both the EIA
forecasts, Total yearly cost, and all its inputs are in constant dollars (as per the preceding ,

item), an inflation index should be added so that such quantities can be viewed in current d

dollar terms also. : ¢

** Understand basis of EIA forecasts of total programming costs bt

The DoD Digital Data Processing Survey by the Electronic Industries Association is
the major information source on the total magnitude of DoD programming effort. The
information is used to calibrate the number of MCCR development project starts in the
model. There is some evidence that the forecasts are very conservative in the spending

estimates, more or less counting only projects for which budgetary authorization already N
< exists. As discussed in the Appendix on multivariable model calibration (A.9), the *
estimates of future development project starts should be best estimates, not conservative
estimates. In effect, the ground rules that created the EIA forecasts have to be known o
before it is possible to deviate from them correctly to calibrate the model. .
;
Ll
«

;
L
»
e ‘
.?
¢
1

e ' C-5
r
. | ;
NN -,» TN M ,,\.*-_.w- s _,:\) '» " h T A A IV L _.-;,‘,"..-" ‘f:.-:-;,.-'.,f. ol lnT

‘W,

Appendix C.2: Policy Analysis
*** Reformulate to accomodate all candidate policies

Appendix B.6 describes how to represent a broad array of policy questions within
the model. Those representations were examples created rapidly, as part of the prototyping
process. Their purpose was to demonstrate that something like the present model could be
used for later, more thorough, policy analysis. The next step in policy analysis is to review
the proposed representations thoroughly, reformulate the model as necessary, and then
simulate the various policy scenarios.

Evaluate scenarios with contingency testing

When the full set of scenarios is tested and generally satisfactory, the next step is
contingency/sensitivity testing on the most promising policies, as per DoD instructions.

** Use survey to see coverage of UNIX, VMS, aiid MVS

The viability of specific policy recommendations about operating systems (OSs), or
at least tool interface specifications, hinges upon the current conditions regarding
incompatibility of operating systems. Is UNIX a common enough OS among the
organizations actually doing MCCR programming that it is a viable candidate for an interim
CAIS? Or is the MCCR programming world heavily dominated by two or three OSs from
major manufacturers (like VMS from DEC and MVS from IBM)? If so, then standardizing
on the two or three current leaders would be a possibility, at least for an interim standard.

** Investigate policy viability

As the policy implications of the scenario simulations become clearer, there will be
a need for research beyond the modeling effort, to investigate the political, technical, and
commercial viability of the potentially recommendable policies. As part of that
investigation, the costs of implementing the policies should be evaluated. For some
policies, DoD will expend very little by comparison to expenditures on all MCCR software.
For example, the Ada program costs, in dollars per year, much less than the billions to be
spent on programming. But other policies may involve substantial expenditures, such as
developing a GFE'd APSE. As another example, little is known about the general viability
of migrating large programs to new operating systems or translating them into Ada from
non-Ada languages. A few examples exist, and study of them should yield insights on the
practicality of policies involving migration or translation.

= Get incompatibility cost information from Fisher & Hook

(Fisher and Hook, 1986) do detailed calculations of the cost of language
incompatibility. Such calculations should be able to yield appropriate slope values for the

aggregated, more general effects in the model, the effects of incompatibility of Ada and
non-Ada infrastructures on cost.

.) > Py % T YOG R
24 o NN o LN I

N
LR

R

PRI R .

S TN |

a%e a8 A

\ s N el Bae i g Al dae ga gia R TR R TRV TN C WU IN S VR TPy Lo iun Soa el onl oal

** Tie model relationships into software science literature

Although Phase II of Task T-4-215 involved a literature search, the primary aim of
that search was information on Ada, its acceptance, and background. With the model
structure now explicated, it constitutes a fairly complete specification of the relationships
needing justification in order to validate the model's policy scenario outcomes. Another

round of literature search would be appropriate, this time explicitly linked to model
validation.

* Get long-term trend in real per-line costs

It ought to be possible to find information from previous studies that would give a
trend in aggregate programming productivity over 10 or 20 years. This would allow
validation. of the assumptions made in intializing and assigning reference values for the
non-Ada intensity and incompatibility levels. In brief, the assumptions are that intensity of
infrastructure has risen somewhat over 1975 to 1985, and incompatibility has risen
significantly. For further details see Appendix A.9, "Multivariable Model Calibration."

C-8

AT AT AL AL LN AN T S0 s LA,
COSITNMA IAROINY

IASAY
0_&\ OV TG O

3

Appendix C.3: Cost Sector

*** Consider different shape for effects of infrastructure on cost

The present Effect of intensity of infrastructure on Ada project costs (equation
#150) is an S-shaped function of intensity, with the steepest part in the middle, and less
steep at both extremes of very little and very much infrastructure. (Boehm, 1981) argues
for treatment of software cost as a classic production function, where the factors of
production are the various components of the programming infrastructure. Under this
view, the most realistic shape for the curve would be steepest at the extreme of no
infrastructure, with cost declining as a function of intensity of infrastructure, but at an ever-
decreasing rate. Such a curve would show the classic "diminishing returns to factor." This
makes sense from a practical point of view, too: the tools that get used first are presumably
the tools that are most useful and productive, with the more sophisticated tools making less
difference in absolute terms (dollars per year saved).

*** Formally derive cost curves from COCOMO

The COCOMO model for software cost estimation (Boehm, 1983) explicitly
represents the impact of most components of intensity of infrastructure on programming
costs. It should be straightforward to correlate the meaning of the intensity of
infrastructure indices with the inputs to the COCOMO cost drivers to deduce at least
narrower bounds for the effect of intensity of Ada and non-Ada infrastructure on cost.

*** Consider curve for Incentive from relative intensity of infrastructure

The present curve for Incentive from relative intensity of infrastructure (equation
#1210) gives an incentive of -0.53 at zero intensity of Ada infrastructure. That value
should be -1.0, indicating complete unsuitability as a programming language.

*** Raise Target fraction for Ada starts

The target fraction for Ada starts (equation #1030) rises to 50 percent of new
project starts targeted for Ada. This represents a fairly lax implementation of the DeLauer

memorandum, and is probably too low; a figure closer to 100 percent would be more
realistic.

An interesting alternative would be to experiment with defining the scope of the
model as all DoD programming (not just MCCR), to explicitly represent Ada use in non-
mandated applications.

** Use survey to develop realistic characterization of "projects"

It is sufficient to define what a standard project is by defining how much it costs to
do per year in 1985 constant dollars with a given programming technology. But the survey
and other sources may give a more multidimensional definition, including how many lines
of a certain type of code it encompasses, how many people work on it in its various stages.
and how many standard projects go into a major program like MIS, SDI, the B-1. an
aircraft carrier, and so on. With such information, the definition would imply other
characteristics, such as reference costs and duration of the development and maintenance
phases. Also, although some information on the aggregate cost of software production per
year exists, there is little hard information on how long projects and their payment
obligations last. The survey will give a sampling of real projected lifespans for
development and maintenance phases of projects.

C-9

S

O R LY " LR S O N T T R N U S R A N S L S W W N M N S L LN KR
[N OV G) ot > (v’;.f"r,.r.@__.r G G A A e A N AN

e a N A TN T N

e

* Examine the correctness of the treatment of conversion costs

It is unclear that the cost of conversion is exactly correct, in response to the
following thought-experiment. Suppose Ada development costs were identical to non-Ada
development costs (per project-year), and maintenance costs, especially the component
representing redevelopment costs, had the appropriate relationship to development costs.
Then turning on the conversion projects should make no difference to cost--the projects in
the conversion level would merely be costed explicitly where before they were costed
implicitly. It is unclear that the various time constants and costs, both actual and implicit,
have the required relationships among them to make this so at present.

C-10

e N T e e
NG TARCSLYS

v Vg Eal Um: €. Dal Eab €0 gav it R0 .0 Bas 327 2oV 800 J0 P, Unt fav A pat Po g < Pt Eav o gat tpe b M O o 3o dat e Ba Ae e B

! Appendix C.4: Ada and Non-Ada Projects Sectors
F *** Consider measuring the Fraction Ada use by cost rather than by project

The present formulation uses a Fraction of Ada projects as an input to the process
of creating infrastructure, representing both creation of experience and reusable
programming, and the perception of a sizable market for programming tools and other
forms of investment. At one point it was decided not to use cost because if Ada
o programming became very cheap relative to non-Ada, a fraction based on cost would
"underestimate” the complexity, size, and amount of Ada programming under way.

But perhaps the issue should be decided in terms of how the Fraction of Ada
projects is used, which is to influence the creation of infrastructure. If thousands of lines
of code are generated at the touch of a button, this does not generate programmer
@ experience, and may not generate reusable code. No one would perceive a profitable
market for tools to increase efficiency. The real market would be where the money is being
spent, which would be non-Ada programming. This might be a market mechanism that
would hasten buildup of Ada infrastructure in the beginning and retard it near the end, by
comparison to the present model. The mechanisms seem to be quite different from those
captured in the effects of relative infrastructure.

*** Change weightings in Fraction Ada use to be consistent with costs

The present weightings for Ada projects are 1.0 for development projects and 0.5
for maintenance projects. The implicit assertion is that per year, maintaining a
programming project takes 50 percent as much programming effort as it did during
") development. But in the cost sector, a maintenance project always costs 40 percent, not 50
percent, of what a development project costs per year. Given that the relative figures in the
cost section are well-justified heuristically, if the present formulation is retained, the
weighting for Ada maintenance projects whould be changed to 0.4.

** Correct the injection dates of first Ada compilers to 1983 from 1981

¢
The dates of the insertion of infrastructure should be changed from the present 1981
to 1983, when the first Ada compilers actually were validated (see the description of
equation #1390).
** Add free-market representation of language choice in upgrade section
1~

Conversion upgrades promise to be a very important policy area, where some detail
might be justified. In particular, It cannot be assumed that DoD has absolute leverage over
the language conversion process, any more than it has absolute leverage over the original
process of programming in a language. If it desired to be highly realistic about how much
the DoD might be able to increase Ada programming over the late 80's and early 90's. it is
c necessary to look at the "free market" forces that might indicate when Ada should be used
in major software upgrades, and how much the DoD can (and would want to) influence the
economics of the process.

** Improve distinction between development and redevelopment
r In addition to defining the average size and characterictics (especially cost) of our
standard development project, a good operational definition is needed of when

programming is a development project and when it is a major redevelopment, which is part
of maintenance. This relates to the time to obsolesce maintenance projects. If people start

r~~

........ P A A A e A At T A AN
t‘; AN :-;:(:Ng\ ‘e .\'f!'-"t\":s"- G o S S A AN -._«."-\‘-.-. R A S A ~

entirely over with every major redevelopement, then the average maintenance lifetime of the
software is much less than that of the weapons or C31 systems. If shorter-lived weapons

or C31 systems borrow software from previous systems, however, the lifetime of the
software is longer than that of the average system in which it is embedded. This has
important implications for the number and infrastructure available for non-Ada projects
especially, and the desirability of policies, such as conversion or migration to standard
operating systems, that deal directly with non-Ada programs.

* Consider aggregating development & maintenance if costs are close

If it turns out that the cost profile is roughly the same for both development and
maintenance projects then the structure could be simplified by aggregating them into one
projects level. The primary reason for treating them separatly is to represent the potential of
different associated costs, as well as being more precise about when system obsolesce.

** Determine if the best time for program translation is during upgrades

Implicit in the choice of parameter values for Conversion project starts is the
assumption that the time when programs are most cost-effectively translated is when they
are being changed anyway, either in small ways during routine maintenance or in large
ways during major redevelopments. Is this in fact true? An alternative assumption says
that programs should be translated exactly, so that the full battery of tests (drawn from the
old programming effort) run on the new code. Then, once the new code is working and
well-documented, modify it, since modifications are supposed to be much easier in Ada.
In scholarly research on the process of technological change in manufacturing, one of the
big causes of failure to successfully change to new production technologies is trying for too
much: simultaneous and large changes in both production technology (analogous to what
language is used to program) and product technology (analogous to the program
specification). '

Perhaps there is a wide spectrum of appropriate procedures in practice. There is
little point in translating a poorly-structured, poorly-documented or tested system whose
requirements are dramatically changed anyway; any one of those three attributes in the
extreme would make literal translation ineffective. Poor structuring (especially of
assembly-language code) probably causes semi-automatic translation to become mostly
manual. Poor documentation and testing implies that what the program is supposed to do
is not very discoverable; in effect, the conversion team would have to write specifications
and tests for the old system before it could be well-translated. It would be better to proceed
straight to the new specifications and implement them in the new language, Ada.

But there must be situations where the non-Ada code is well-structured and well-
documented. In such situations, translation followed by modification would seem the most
efficient course. Even if the mission of the overall system had been changed, many of the
specifications and test requirements would carry over directly from the non-Ada materials.
Similarly, much of the code should be translatable nearly automatically.

* Represent added complexity of upgraded software explicitly

If in later phases of this research the definition of a project equates to a
programming task of some defined level of complexity, then as requirements are increased
in major upgrades/redevelopments, the model should show an increased number of projects
in maintenance, i.e. more complex software to be maintained in the future. At present, this
blowup in complexity and therefor presumably cost could be represented by the reference

C-12

et R T S T e N L N . AT R AT RURERT S RS RS I
Lo l‘\f AL .’__.' .‘\{"-'\J"_J','\ B . A A CLIER A

L A4

VRN A ¥ i s U i 8 v lial v Fac o Bat bt At Yo a b g8 08 3 ¥ s % n b Eie Bbg by b ikl Elaale FTTN g, g 2t ok a e L q

cost per project of maintenance projects being higher than cost per line might indicate
(because there would implicitly be more lines).

* Settle on terminology of conversion or translation

i The model represents entities called conversion projects. They have so named
rather than simply translation projects because more than simple translation from non-Ada
_ to Ada may be involved. For the Navy piecemeal work, the new programming is actually
® in Ada, with translation from Ada to CMS2, not the reverse. And for shifting to Ada as
part of redevelopment, there is mostly new programming going on, not translating. So the
model uses a new term, conversions. But will that term lose more in obviousness than is

gained in accuracy by not using simply "translations”?

C-13

B L A AR

[o N N \J

» e

P g sty

AN B NERN TS X35] ip Wia @ . . s Rt md a8, T . , SN ¢ .o 8- a S0 2’k 2% ok 2t af UWA U WY

h Appendix C.5: Language Choice Sector
& ** Consider adding trend in Ada use
Given that incentives are supposedly representing perceptions about the future of
Ada, perhaps a perceived trend in Ada use is a legitimate input. The "bandwagon effect" is
certainly real.
Y * Reconsider input to incentives from incompatibility

In a situation where the infrastructure is low, there is an attractiveness to contractors
if there is a choice between several Ada environments, each with its own strengths and

" weaknesses. If such an influence is represented in the model, it should have moderate gain
. for moderate incompatibility, but saturate quickly--vast numbers of incompatible
™) environments should not hold vast attraction for users. The model should show a potential

short-term attractiveness to diversity of choice. being overtaken in the long term by
! intensity of infrastructure.

The present formulation without an attractiveness of many infrastructures assumes
that a variety of features is really represented by the intensity of infrastructure, and that
k¥ having these features dispersed among a variety of incompatible systems is purely a
disadvantage.

* Reexamine assumption of Ada fitness
. The preliminary literature search done for this project revealed that the use of Ada

@9 and expansion of areas of application was growing rapidly, with many favorable reports
from projects using it. A useful and interesting extension to this work might be a more

y detailed examination, now that some experience has been gained, of the suitability of the
‘ design of Ada, as well as its implementations.
3
o
3
L
. &
]
K
C-
&
[
_]
: Y
i . ‘
s
N, C-15
q
I
P e " ot < . . _- T A R - T o .-

Appendix C.6: Ada and Non-Ada Infrastructure Sectors

<™

¢

*** Explore differences in the creation of Ada and non-Ada infrastructure

In most simulations, Ada infrastructure gets to four times the non-Ada
infrastructure, and 1/10 the cost. Are these numbers pluasible? Would the presence of
advanced Ada infrastructure by itself reduce the creation of non-Ada incompatibility (and
therefore allow more non-Ada infrastructure to accumulate)? There should be more
analysis and discussion on how costs can get so different from one another.

T i Y

** Consider eliminating coverage if it is redundant with intensity

It is unclear that having an explicit measure of coverage contributes to the model
dynamics, for the same effects run through intensity of infrastructure: Intensity has the
same inputs and effects the same things (and more) that coverage does. Coverage seems
) like a candidate for simplification if simplification is desired.

(g Nl 2e R U

*** Add an injection incompatibility of infrastructure for SVID

At present, the adoption of SVID as an interim or permanent standard operating
system leaves incompatibility of Ada infrastructure untouched, which is also the case in the
vy commercial APSE scenario. Yet there are many sourcess of incompatibility within the

UNIX world. There are two different shell languages, C and Bourne, user- or installation-
defined utilities in the hundreds, and so on. It would be well to recognize such diversity
(and therefore potential incompatibility) as one of the costs of an SVID standard. A model
"policy lever" allowing the injection of incompatibility of Ada infrastructure would add to
L the flexibility and usefulness of the model.

*** Activate effect of technology on creation of infrastructure

The equation description indicates that there are real effects of technological change

that exogenously impact the creation of infrastructure. As pointed out in the "Model

o calibration” section, the model parameters should not be set to make "conservative

assumptions,” because what is conservative for one policy question may be anything but

conservative for another policy question. The proper choice fro the Rate of technological

progress (equation #1580) therefore is not 0.0 but a best guess at how fast the case of

contributing to infrastructure is increasing. A value 3.0 percent per year or somewhat less

seems appropriate. (For further discussion, see the text for equation #1580 in Appendix
A7)

A A

A AN

*** Use nonzero discount rate

3. %%

Again in the spirit of using best guesses rather than attempting either conservative
estimates or simplifying assumptions, the present model's representation of the comparison
c of present and future expenditures should be changed. Currently, the model treats them as

comparable, with a discount rate of 0.0. A DoD instruction suggests 10 percent per year as
a discount rate, but that seems perhaps colored too strongly by the interest rate experiences

-
)

N over the last 5 years. By financial theory, the discount rate should be a function of the
- expected real interest rate (if constant-dollar, i.e. inflation-adjusted flows are being
N discounted). 5 percent seems appropriate, being a compromise between the real interest
- & rates of the last 4 years and the much lower average historical rate.

. C‘17
¢
?
J

A RN R WAY

&

v - S L T TGN LN il S S A T e P A T R D T T R T DR DU 0 e I .-.\ A ’--.\ '<J'--.'- .
B A N i O e A O G R O, e S S A5 S S A S A

SR Nt I N P N8 DL A S A

** Consider reformulating infrastructure incompatibility as a coflow

There is a subtle formulation issue related to the representation of incompatibility of
Ada infrastructure. It might be better to use a coflow structure to more accurately capture
the effect of large changes in the number of projects over the decades on the incompatibility
of infrastructure. There is some incompatibility of Ada infrastructure right now because
there are several environments, but for a number of projects that is small relative to what is
to come. If a standard environment is mandated, during a time when vast numbers of new
starts are using Ada, the large numbers of the new projects with the standard environment
should rapidly overwhelm numerically the small number of projects done with the
incompatibility environments, such that Ada incompatibility should disappear quite rapidly
given a standard environment. If so, then a coflow structure would be better than the
present formulation, which does not take into account major differences in numbers of new
projects in determining incompatibility.

** Reconsider effects of scale on creation of infrastructure

The current formulation implicitly links the amount of programming (Ada and non-
Ada) going and the infrastructure they create. There is an explicit influence of the fraction
of Ada and non-Ada projects, but buried in this formulation there is an assumption about
the absolute amount of programming going on as well. For some components of the
infrastructure, absolute scale doesn't matter to the creation of average intensity.
Programming experience is an example. But for other components, most notably software
tools and program libraries, absolute scale does matter. Doubling the total amount of
programming going on would increase the tool creation, purchase, and use, even if there
wasn't an actual doubling. Over the course of the simulation, the scale of total
programming efforts changes considerably, so it would be preferrable to have the scale
issue better thought out.

Arguing for the present formulation, there is considerable infrastructure to be
gained from university graduates utilizing more advanced programming techniques. The
present formulation based on a constant flow of creation of infrastructure, modified to
some extent by the amount of Ada programming, captures this idea.

** Tie loss of incompatibility to that of intensity

N
As the equation description explains, at least a portion of the loss of incompatibility
of infrastructure is tied directly to the loss of intensity, which is in turn tied to the
obsolescence of projects. Currently all of these rates of flow have independently-
specifiable parameters, when perhaps they should all have the same parameter, or
otherwise show the linking in a robust way. (With some parameter settings, the intensity
can disappear but leave the incompability, or vice-versa.)

** Reconsider the distinction between Ada and non-Ada infrastructures

In the beginning, it seemed that Ada programming would go on only in PSEs that
conformed at least in spirit to Stoneman, which meant that programming would be done in
substantiaily new environments, different from the environments being used for non-Ada
programming. But there are ever-increasing numbers of Ada programming projects under
way. What environments are they using? Are there any particular constraints on what
environments are permissible? Is the model correct in the way it represents the
accumulation of infrastructure (which includes the APSEs) as quite seperate from non-Ada
infrastructure?

C-18

o, e i\ T a¥a™ e -
“ AR R AR SN
N N S e

** Increase Natural fraction of Ada use. e

- In the present model, if the Ada infrastructure intensity and coverage are equal to
the corresponding values for non-Ada, 50 percent of new development project starts will
use Ada. This number may be too low, if Ada is at all a good language in its own right. '
In addition, the natural fraction, even though it represents what language would be chosen f
in the absence of DoD pressure, must still represent the knowledge that Ada is a
standardized language, and hence would have an advantage over many non-Ada languages. g

** Make "Waiting for CAIS" scenario more realistic

There is a scenario where the changes representing standardization on one or more ;
commercial APSEs are implemented 5 years later to represent a policy of waiting for the Y
custom-designed CAIS. That simulation is optimistic, both by the mere 5-year wait, but
@ also by creating as much new infrastructure as standardizing on existing PSEs. A more
realistic scenario would inject considerably less infrastructure, for there would be virtually
no experience implementing or using a custom-designed GAIS that is quite different from

any other operating system interface.

** Use survey to calibrate current incompatibility and intensity p

To know how much improvement in productivity is available from more intense
infrastructure, perhaps brought about by standardization policies, data is needed on the
present status of MCCR programming: what level of sophistication of tools, etc. is actually
out and in use, and how incompatible the tools, operating systems, and languages are.

o, 7

@ If the survey reveals that a considerable amount of maintenance programming is
being done in environments that are very impoverished, that implies considerable leverage
for a policy of transferring existing programs to a better-equipped PSE for further
maintenance, maybe even well before (if ever) a program is translated into Ada. -

* Consider representing Non-Dod programming explicitly

The model obviously details DoD programming; the representation of non-DoD ‘
programming is left implicit. Future models may offer additional insights by explicitly
representing non-DoD programming. But at present, there is no overwhelming hypothesis
as to why the dynamics of Ada use and Ada infrastructure development would proceed
differently in the non-DoD world. In the absence of such an hypothesis, the model as it
stands seems satisfactory in its implicit assumption that both non-Ada and Ada
programming will occur in the non-DoD world, and contribute to development of Ada and
non-Ada infrastructures responding to the same set of incentives as governs the DoD
programming. If Ada were used only by the military, this situation would be represented
in the mode] with a lower normal creation of infrastructure.

¢

¢ * Improve formulation for coverage

The present formulation of indicated coverage and actual coverage does not mirror
the actual processes very closely. In real life, coverage expands based on perceived market
for using a particular host/target combination. Then along come new combinations, which
reduce the coverage. Combinations come along either because of new hardware, perhaps

& designed especially for the military, or newly-popular civilian hardware, such as the 8086
and 80286 chip sets made popular by the IBM PC. It should be possible for coverage to :
rise to nearly one, then fall if extension of coverage does not keep pace with new hardware "
developments. The present formulation allows no such "obsolescence" of coverage.

C-19

- D R I T T T T e T e g e s T T TN ST ORI ISR S ‘.:
OO LN Ny <‘,-'-.’~'_g' AT T \'-."\.‘.\‘_-."-\ T G S R SR L AT Yt
d o v 1a .) - £

BataNLBe A0 S0 N0 S A B i SN

* Consider renaming obsolescence of intensity as loss of intensity

Obsolescence of intensity of Ada infrastructure now represents both the antiquation
of infrastructure (being surpassed by newer technologies) and the continued loss of
programmers etc.that are not obsolesced but merely retired or moved on to
nonprogramming positions. If the dual meaning becomes confusing, perhaps
Obsolescence of intensity ... should be renamed Loss of intensity ... where loss would
more clearly represent both processes.

* Consider seperating infrastructure for development and maintenance?

It may be that intensity, coverage, and incompatibility for maintenance projects and
new projects must be represented seperately. When the production technology of new
software is standardized, all of the ancient systems currently deployed will remain
unaffected. Their infrastructure is simply no longer added to, and may be decreased if
people (programmers, managers, and teachers) are lured away to other languages and
operating systems. As the model is presently structured, incompatibility is simply lost with
a 30-year average lifetime.

There are various scenarios and policies that would make it desirable to keep track
of the characteristics of the infrastructure for maintenance programming seperately from the
infrastructure available for development programming. One such policy is permitting any
development environment to be used, but specifying that a programming project be turned
over to be maintained on a standardized environment. Although the effects of such policies
can be simulated approximately with the present aggregate infrastructure, more detail might
give more confidence in the simuiated results.

Perhaps a reasonable interim step would be to structure a single aggregate set of
infrastructure characteristics (intensity, incompatibility, and coverage) explicitly as
coflows. Startup projects would have some level of these characteristics, and a separate
part of the formulation could specify the extent to which existing projects (the aggregate of
new and maintenance) can "retrofit” to get the (presumably higher) level of new
infrastructure. This should allow more explicit linking of obsolescence of infrastructure
with that of projects. Will it suffice to control the fading away of non-Ada infrastructure
when Ada becomes very popular?

Appendix C.7: Miscellaneous Suggestions

** Produce a glossary with abbreviations, full names, and equation
numbers

A fully indexed glossary of variable names, abbreviations, and equation numbers
would be helpful. Even with a model of only moderate size, the task of finding out where
a variable is, or what it means can be clumsy and time-consuming.

** Make a fold-up complete flow diagram

The current documentation contains a complete flow diagram, however, it is broken
up into sectors, and scattered throughout the text. It is left to the reader to deduce the way
the whole model fits together. The Stella software used in this project can produce a large
(4'x5") and complete diagram of the whole model. For those with good eyes, the laser
printer can shrink the flow diagram with lettering down to about the size of 4 8 1/2"x11"
sheets. In either case, the equations would have to be hand-numbered. The major
drawback is that the document becomes difficult to reproduce. Such a diagram is well
worth the trouble for anyone actively using the model. '

* Check reference conditions

Many formulations throughout the model rely on the "reference and multipliers"
format, which is explained with equations #100, #1500, and #1660. This formulation
defines a variable in terms of what it would be (simply equal to the reference value) under
some set of reference conditions, modified by multiplicative factors representing the impact
on the variable of conditions differing from the reference conditions. In principle each
equation can define a different set of reference conditions, even two different reference
values for the same input variable. In practice, it would be good to review the reference
conditions. and make them as consistent as possible, to allow a simpler presentation and
reduce the possibility of human error in the calibration process.

C-21

b AL

-

O 4

Y

e R RAANS

%

-
LA

N KARARPLL (NPKs |

II\A

AP

% A

S

! Appendix C.8: Guide to Document Assembly

2 o To facilitate later modification of this‘report, this appendix describes the process by
which the report was produced, primarily on the Macintosh 512K personal computer.
Microsoft Word produced the text, and contains many of the graphics as well. Most of the
graphics were transferred electronically from the STELLA simulation package (Richmond
1985). Some graphics, however were transferred via hard copy. The following sections
provide guidance on how to accomplish these various steps.

. Guide to underlying disk files

-j The disk files used to create this report occupy several standard 400K Macintosh
- floppy disks. Each disk is labelled "T-4-215 Report disks x of n,” where n is the total
R number of disks and the disk in question is the xth one. Each file name likewise contains
k @ the project number. Files for the various appendices are the most numerous; they can be

identified quickly by the beginning characters, which are the letter of the appendix, a
[period, and the number of the section, e.g. "A.0." The report's text is contained in the
following Microsoft Word documents:

1 A.0 #1 Appendix A intro. T-4-215
PN A.1 #1 SD term. & symb. T-4-215
) A.2 #1 Standard Abbrev. T-4-215

A.3 #2 Cost Sector T-4-215

A.4 #2 Ada Proj. Sector T-4-215

A.5 #2 Non-Ada Pro;j. S. T-4-215

9 A.6 #2 Lang. Choice S. T-4-215

‘ @ A.7 #2 Ada Infr. Sector T-4-215
A.8 #2 Non-Ada Infr. S. T-4-215

.9 #2 Multiv.Mod.Calib. T-4-215

.0 #1 Appendix B intro. T-4-215

.1 #1 Model listing T-4-215

.2 #1 Variables Plotted T-4-215

.3 #1 Base Scen. T-4-215

.4 #1 Comm. APSE Scen. T-4-215

.5 #1 Conversion Scen. T-4-215

.6 #1 Policy Matrix T-4-215

.0-8 #1 Further Invest. T-4-215

¢
OWWWEEEE >}

P The three primary scenarios (base, commercial APSE, and conversion) each have a
stored model that without further alteration produces the plots and tables shown in

Appendices B.3 through B.5. Those models appear respectively on the disk as STELLA
) : documents:

3 SSMO0.32 T-4-215
A C CAPSEMO.32 T-4-215
CONVMO0.32 T-4-215

-

-
L 14" he P}

-

C-23

.

N e e e e ath s et A A ptatp e p g a g pratp it
RN e 2 e T e A Tl i T NIttt "*' \"'

TN, :‘~--.}Y"“ $}{ xi ‘-~

: . _ . i g i s : b Pat fem< Q= . fiat
e Vm Va? g > et Bt . < A . (O R el i e R Al g gL Y £ LA S Rl Sl O F ok
-

Two more models appear on the disks. They are identical to SSMO0.32 T-4-215,
the base model, except for the layout of the stored flow diagrams. The models above all
have the same flow diagram, layed out to create large, wall-mounted flow charts printed on
the Imagewriter dot-matrix printer. The additional models have flow charts layed out to ¢
create the figures in this report. The models are:

Figures for Appx. A T-4-215
Figure for Appx. B.1 T-4-215

Sections below discuss how to create graphics from the various models. 4
Electronic transfer: Equations and graphic functions into Word

STELLA displays information on the Macintosh's medium-quality bit-mapped
graphics screen. The screen images of the model equations and the graphic functions were
taken electronically and used in the Word documents. b

The fundamentals of the process are straightforward. One runs STELLA and
displays the desired picture (equations are shown by choosing "Display” from the main :
menu and the "Equations” menu item; graphic functions are displayed by double-clicking
either the equation desired or its flow diagram symbol). Pressing the command, shift, and
3 keys simultaneously creates a MacPaint document on the disk. Using some means of ®
selecting part of the screen image and putting it onto Macintosh's clipboard (more on that
below), one runs Word and pastes the image into the document (either from the menu or
command-v). Pasting automatically left-justifies the inserted figure with respect to the
margin. To center the graphic function's graphs, either use the ruler to indent 1 1/2 inches,
or click on the image to select it, click again on the border that appears, and drag itto a 1
1/2 inch indentation. There are two complications to this process: setting up to do large
numbers of such images, and getting selected parts of the image onto the clipboard.

¢

The system of using screen dumps is somewhat awkward for doing large numbers
of screen dumps. Each time command-shift-3 is pressed, a disk file is created (containing
the screen image in bit-mapped form) and named. The first file is named ScreenO, the .
second is Screenl, and so on up to Screen9. If command-shift-3 is pressed when 10 .
screen dumps with those names already exist, the Macintosh will beep and nothing further ‘
happens. The ten files need to be renamed so that 10 more screen dumps can be made.

The time required is prohibitive to simply quit from STELLA and return to the Finder

(which is the user interface for the operating system that creates the well-known desktop).

Instead, use the Apple Switcher program, which can load several applications into memory 9
at once. (Word will run in 128K in the Switcher, but STELLA prefers about 200K; set g .
these allocations when first entering the Switcher by choosing "Configure then Install" "
under the "Switcher" main menu item, and for each program enter the desired size into both

the preferred memory size and the minimum memory size.)

- S -

With STELLA and the Finder loaded into the Switcher, one can make ten screen .
dumps in STELLA, switch to the Finder to rename them, and switch back to STELLA g
quite rapidly. Be sure to mark on a hard copy listing which screen dump documents show |
which equations. The whole procedure is best done with a hard disk, because storing the
bit-mapped graphics fills 400K floppy disks fairly rapidly. (The models here will fill two
floppies, without anything else on the disks, which is awkward when trying to run the

system and an application, t0o.) ® .
The second complication is getting the right parts of the screen images into the ;
clipboard. The screen images record literally the whole screen, only part of which will be ¢
A

¢

C-24

RS EREAS & EGE AL A AL St S i SUEP S DAY A S Y
> EN'IZ AP o PG
OGS AN SCATA FCAR OO0

2T e ™ L ™ Y) “w _%a “w R T ST S S T " N S
o < ' 1—“’-."

the equation or graphic function that the report is supposed to contain. By far the best way
is the Paint Grabber desk accessory, a widely available desk accessory that, in the midst of
any application (Word, in this case), can open up a MacPaint document, select a rectangular
portion of it, and place that on the clipboard. (An alternative is described below.) Paint
Grabber fs available from any Apple dealer, either off-the-shelf, or within a few days by
ordering. See the Macintosh instruction manual on how to install desk accessories and
install Paint Grabber on the system you will be using.

With the system containing Paint Grabber and the screen dumps available online,
open up Word and find the location where something is to be inserted. Under the Apple
symbol on the main menu, select Paint Grabber. A new main menu item will appear, "Art
Thief." From that, choose "Open.” An option box will appear with all of the MacPaint
documents available from which to choose. Using the list of screen dump names, find the

name of the MacPaint document that contains the equation or graph you want. Scroll to -

that name in the option box, click on it, and click on "Open." (Note: as for most ail
commercial software, subtle bugs remain in Paint Grabber; one has better luck selecting a
file and using the Open button than just double clicking on the file.)

The screen image will appear, and you can click and drag to form a rectangular
boundary around the part of the image you want. Under the "Edit" main menu item,
choose "Cut" or Copy." (Note: the "Art Thief" main menu item also has a "Display
Clipboard” and cut option called "Swipe.” Using these sometimes puts things on Paint
Grabber's clipboard, but you have to display that, select your selection again, and use the
Edit menu's cut before Word's clipboard will hold the selection. These features are
quircky but workable—just experiment.) With the right selection on the clipboard, click on
the Word window to activate it, put the cursor at the location for pasting, and paste (either
from the Edit menu, or with command-v).

If Paint Grabber is not available, one can use the Switcher to allow MacPaint and
Word to operate closely. Make sure that both programs are looking at the same clipboard
by choosing "Options” under the "Switcher" main menu item and putting an X in the
"Always convert clipboard” box. MacPaint is more awkward to use than Paint Grabber,
since MacPaint seems to be limited in how large an object can be put in its
clipboard—equations are wider than the MacPaint window. There is a MacPaint-like
program for larger bit-mapped documents called "Paint Cutter" that may be more suitable.
Even so, Paint Grabber seems perfectly designed for the task at hand, and is the preferred
method. It's much faster than the instructions above might make it appear, and is much
faster and higher-quality than physically cutting and pasting originals.

Hard-copy transfer: Flow diagrams, plots, tables, and listings into
document

Given that legible flow diagrams are larger than the Macintosh screen, these
appendices use STELLA's facility for printing flow diagrams and portions thereof with a
laserprinter, and use nonelectronic means to put the images into the report. This procedure
takes advantage of the high-quality laser output. The flow diagrams in the two models,
Figures for Appx. A T-4-215 and Figure for Appx. B.1 T-4-215, are arranged so that the
laser printer will print each portion of the flow diagram on a separate page, and positioned
in the middle of the page.

To laser print the flow diagrams, choose "Choose printer" from under the Apple
symbol on the main menu, and choose the LaserWriter. (Make sure there is about 60K left
on the disk for scratch space for the printing process.) Then display one of the two
specially-prepared models in STELLA. Choose "Diagram" under the "Windows" main

C-25

\, " f" -

~ TSR I R o L T 0 TR R e SR g
L “:"x"\'.\ -"\' "-.\'r\\' '-.\'l\"-'\ RS \'\"\(

q

menu item, and under the "Display" main menu item choose "“show pages" to show where
the boundaries between printed pages will lie. Under the "File" main menu item choose
"Page setup” and specify reduction to 60 percent. You should see page boundaries coming
in between parts of the flow diagram. Under the "Display” main menu item hoose "Full
size" and "Hide pages.” Under the "File" main menu item choose "Print." If you want
only part of the flow diagram, specify the page or pages to print. Choose "Full view"
under the "Display” main menu item to see the entirety of the model, but change back to
“Full size" before printing, or the LaserWriter will create a cute little one-page diagram of
the whole model. STELLA numbers pages like MacDraw: number one is the upper left
corner page, number two is below it, and so on. So, for example, the top row of pages in
the models here are pages numbered 1, 5, 9, 13, 17, and 21. Because of the way the
models are layed out, pages 20, 21, 23, and 24 are blank.

Where the flow diagrams go,the Word document pages contain nothing but the
heading above and the caption below. Laser print those, copy them on a Xerox machine or
whatever, and then put the copies back in the paper feed of the copier. The copier is now
set up to copy an image onto a page already showing the heading and the caption. Just
copy the flow diagrams onto these pages in the correct order. In the stack of LaserWriter
text output from Word, just replace the pages with the copies (which now show the flow
diagram with caption on a properly numbered page) with the corresponding page numbers.

The procedure for putting plots, tables, and listings onto properly headed and page-
numbered pages is exactly the same, except for how the originals are laser printed and
assembled. Under "Windows" choose "Graph Pad" for plots or "Table,” and then under
"File" choose "Print Graph" or "Print Table" (only the correct option will appear). On the
LaserWriter menu that follows the selection of printing, choose reduction of 78 percent for
plots and 100 percent for tables.

Creating hard copy for equation listings is slightly more complex, because STELLA
insists on not recognizing page boundaries. Obtain a printout by choosing "Equations"
under "Windows" and then "Print Equations” under "File." (If the screen display shows
blank, it is displaying the changes made recently, which are hopefully none. To get back to
the full display of equations, select "Show All Equations" under "Display.”) On the
printout there will be equations whose top half is on one page and whose bottom half is on
the next. Obtain a listing with these "page breaks™ in different equations by going to the
flow diagram and creating a fictitious level or two with names like "AAAA" that would put
them at the beginning of the listing. Then print the equations again. Now there is enough
material to cut and paste an equation listing onto 8 1/2 x 11 pages with proper margins.
Doing the trick with the copier as described above will then put the listing on pages with
headings and page numbers.

After comparing the relative effort for physical versus electronic cutting and
pasting, the electronic procedure seems easier, more reliable, and gives higher-quality
results. There is nothing to be done about flow diagrams, but they are the easiest output to
physically prepare (there is no actual cutting or glueing). But the listings, plots, and tables
should all be done with screen dumps if they are ever done again. The screen dumps that
would make up the listing are all available from the process of pasting equations inot the
text. According to the Addendum for Microsoft Word 1.05, the plots can be reduced in a
controlled way as follows: do a screen dump and paste it into the Word document as
described above. Then type Command-Shift-Y and then 7, which should reduce the figure
to 70 percent of its original size. The screen display of resized screen dumps looks awful,
but it comes out fine on a laser printer. Use 6 for 60 percent reduction, 8 for 80 percent,
and so on. Command-shift-Y then O restores the figure to full size.

C-26

L DAl Sl A, ' e

[1]

[§

¢

¢

For fancier plots for the main body of the report or whatever, screen dump the]
plots, then open the documents with MacPaint to trim off the date or scaling numbers if A
o they are too small to read. Put the whole thing on the clipboard (which should be doable

from the page-size display in MacPaint), and open up MacDraw to put on nice labels. ;
(They could be done in MacPaint, but they couldn't be repositioned and they wouldn't print
out as well on the laser printer.) In MacDraw, use rectangles with invisible edges and filled
with solid white to create a pure white background for the captions. If the text is
"Grouped” (command-G or menu selection) with the rectangle, the text automatically
@ rewraps itself to fit within the rectangle. Then put the MacDraw object in the clipboard and
transfer to Word, and paste it in at whatever reduction is appropriate.

The figure showing the matrix of policy levers versus policies in Appendix B.6 is
reduced from an original created in Audrey Hook's office on a Macintosh. The graphics in

_ the main body of this report were artist-created from full-sized laser output of the models' :
@ plots. !

Assembly, pagination, and printing j

Pagination in the present draft is not well-done, for historical reasons. Most of the R

, text in Appendix A originated in MacWrite, which divides paragraphs from one another
L with extra carriage returns. Word, by contrast, is set up to use a single carriage return to
mark the end of a paragraph, and uses the paragraph formats menu to add an extra line

between paragraphs. This difference becomes important when trying to arrange the text on

pages such that no captions are orphaned at the bottom of the page, with the text starting on .

the next page. It is also desirable to have the short paragraph that precedes each model :

equation appear on the same page as the equation itself, or the graph, in the case of a .
@ graphic function. Word has facilities for keeping paragraphs together, but they are

- unreliable if there's an extra carriage return. They are especially unreliable when the

following paragraph is a picture, to the point of crashing the system. Save the file before
playing with pagination!

Cut the full-page spaces for figures and paste them at the end of the document
- before repaginating—Word cannot automatically put full-page figures after a full page of
text, so if the document is repaginated with the figures in their old locations, quite a few
nearly-blank pages will result. Also remove any other fixed page breaks in the document
that do not start major sections. (These were inserted as a makeshift ways of having
captions come out with their text.)

" 3 WY [

1) In retrospect, it would have been easier to go along with Word's system for
paragraphs and pagination completely, just editing out all the extra carriage returns and
using the option-command-click shortcut for copying the paragraph format that would keep
the appropriate paragraphs and figures together.

¢

(AL MY

Before reprinting a document, check the page layout (under "File") and the division
< layout (under "document"), since the right settings don't seem to have been saved with the
documents consistently. The page layout for most of the documents is the default settings
except for left margin of 1 inch and right margin of 1.5 inches. (For some reason, this is
required to give 6 1/2 inches of text). The exceptions are Appendices B.3-B.5, which use
a margin of 1/2 inch left and right, to accomodate labels for plots. Choose smoothing in
the page setup menu to get the figures to look good, but do not choose font substitution.
- Even though the documents use a laser font throughout (such that there shouldn't be any
font substitution), it somehow wipes out the underscores in variable names. Division 8
layout uses all the default settings except for the running head starting 0.6 inches from the
top. (0.75 was just too close to the text.)

$ Y BNy

C-27

.r:a-'?

CI) . P L R S T S .t P -
AR \ 5 ~ sj "\ > LA S _’,x"s"-.“'.‘\"-.'-'-.' R A O ORI PR O AL SN

APPENDIX D
QUESTIONAIRE

V".f

PO I P A RIS L N I
RO A e S AL O LR CS
h N N . R

QUESTIONAIRE
PART 1 PROFILE OF INFRASTRUCTURE USED

General Directions for Completing:

There are two types of forms to be completed in the first
part of this survey. The first type of form is labeled
ATTACHMENT 1. It is the mechanism for collecting a data
sample indicating the types of computers (host and target)
and languages that are actually available and being used to
develop/maintain MCCR software applications. The hardware,
including operating systems, and languages are the minimal
infrastructure for tools. This infrastructure also
represents technical constraints that must be considered in
future strategies for improvements in envi.ronments.

The second type of form is labeled ATTACHMENT 2. 1It is the
mechanism for collecting a data sample indicating the tools
routinely used for developing/maintaining MCCR applications
witten in the languages you identified on ATTACHMENT 1. The
detajiled directions for completing each attachment are
stapled to each form,

Directions for Completing ATTACHMENT |

Please complete ATTACHMENT | for each MCCR Program and for
each software project (of that Program). ATTACHMENT] should

be duplicated as continuation pages if more space is needed
to list all the host/targets. There are two pages in
ATTACHMENT l. The first page has pre-printed languages at the
top with space for one "other” language (e.g graphics
language) which has a special purpose when used in
combination with another language. The second page is space
for you to identify languages used but not identified on page
1 (e.g. COBOL).

P - . . " _— . : - e o naw - ~ - . %% -

1-1
"80UBUBIUIEIN 10§ (N, JO awdordaAeQ 104 .0, JLIUM €
-eBenbuey yoes Ul BUOP oM (B10] jO JU3DIad BY) BleuNlSd asedld 2 N
(L' SAN XXZXVA "6°8) |opow sareiuesadas e Apuapy o

‘wolsAs Buneiedo ewes 8y} 8AeY e A8yl pue ISOY SJOPUBA BWIeS 8y} JO S|9pOowW [BI9ABS aaey NOA J| L :JION

o

LS

e %2 ‘2 ‘e s "a !

. A Tl T,

D-5

P S

"n
. ,I

a
-
%

<.

<
(\'_‘ LA e .
Lol AN

.,
.,.f..’:-

‘e
-’

(1 o0N)
, (Z ®10N) SwatsAs
% % % % % % % % % s101ndw o)) SunexadO puy
H3IHIO | t1dS jedsed uesuo4 0 ZSWO | ger-lewor | €L-enor epy 1961) 1910 1SOH

LN
e

-{:-

Lol s
,

aasn S3IODVYNONVI da3asn IHVYMAHVH

(¢ ILON)

‘SNLVLS
JNVYN 103rodd INVN NVHOOUd

0P

-
L

I LN3IWNHOVLLV

M (..
~ o %

.
o

LA
-’\I‘-

. | L oy » o) o1 s

e
’

¢l
-eBenBue} yoee iy BUOP YOM |B10} J0 Juadsad Byl BTeuNnISa asedld 2

(1'P SAW XXZXVA '6°8) japows saeuasasdas e Apuap
‘wivishs Buiiesado ewes ey) eAey |fe A8yl pue JSOY S JOPUSA BLIES By} JO SI9POW [BJ8A8S 8ABY NOA) "L :J1ON

(1 oN)
SWoISAS
ss9Indwo) BunesedO puy

1o0re $181nAW0D) ISOH
a3asn 3IHVMAUVYH

aasn SIODVNONVI
« I LNINHOVLLY

INVN 103roud

INVN AVHOOUd

G

Directions for Completing ATTACHMENT 11

Please indicate the tools you use with a check mark, We have
included nine forms (one for each language shown on
ATTACHMENT 1); however, please duplicate and complete this
form for any other language you use.

The following provides some guidelines on selecting the level
of tools.

Heaning of LEVEL:

LEVEL I (BASIC) = tools available for microprocessors.,
LEVEL II1 = Basic tools available for most minicomputers

LEVEL III = Tools avaiable on minicomputers and host
computers which extend the operating system services.

LEVEL IV = Tools available on most large hosts
(equivalent to Stoneman Minimal Ada Programming Support
Environment (MAPSE)) as an extension of a virtual
machine interface for programmers,

LEVEL V = Tools that may be available on large hosts
(equivalent to Stoneman Ada Programming Support
Environment (APSE)) which may include project specific
tools.

The "cost driver"” factors used by the COCOMO model can be
derived from this classification of tools; therefore, we have
selected this scheme for aggregating data that will be used
in the Systems Dynamics Model under development.

(Reference: Boehm, Barry W.: Software Engineering Economics;
Prentice-Hall, Inc, 1981 PP 458-466

R U RN SR AR
,\I\'ﬂ. o : .

wa AN

o

S T R T e e e T T e e e S e el e e e e

VAV X [t g L g &g b gty b a" ‘e ANy Pt ot at i i s - PR A SN K g gl g gt o BNl

SR 554

Crc e,

T -
A Sc-d

2 AR L]

..' .l‘ “- gN'

-
1]

“ L

A 8y r

R

L 2 — G » , 3)) > o » »
{-2
sany zo_wmw_mumw HOL1133 3DHNOS IJAILOVHILINI
S100L TOHLNOD AHINT V1VQ AHVHEIT 1HOJdNS ONINWYHOOHd
S1001 DNISS3IDO0Hd SNOILYIINNNWOD SOOIV ONQ3aQ IALLDVHILNI
SHILLYWHOS AV1dSIa
SHOLVINWIS 13S NOLLONHLSNI HIINITAVIHIAO
SHINAWOISSOHD W3LSAS ININIOVNVN ISVE VIVQ
:$7001 3SOdHNd-VID3dS W3LSAS ONILYHIJO ONIYVYHSINIL
IW3LSAS NOILVOIJIH3A AILVNOLNY IBRELER]
ST100L NDIS3Q WVHOOHd
HIZATIVNY ANV 3DVNONYT NOLLYDIHID3dS SINIWIHIND3Y SQIV 3SVE V1Va
W3LSAS TOHINOD 193r0Hd SOV AUVHEI
W31SAS NOILYINIWNDOG 3LVHDILNI HOL1Q3 IOHAOS HOLVE
SAIV WD HLIM AHVHEIT LHOddNS DNINWVHOOYd HOLINOW INJONIJIAN! FOVNONYT
A TIATT H3INNIT AVIHIAO
H3ITIBNISSY OHOVN
HININOD TOH
HIOVNVIN ONV HOLIG3 1X3L
HIZATYNY ISV 1S31 ANV MOT4 WYHDOHd T TIATT
H3IZATVYNY 3SN L3S
SAIV WD DISVE HLIM AHVHEIT 1HOddNS DNIWNVHOOHd
SAIV SISATYNY ANV 1INIWIHNSYIN IONYWHO4H3d SQIV ONE3a HOLVE
JOVNONYT NOISIA WVHOOHd HOLINONWN
div N©IS3Q 3Sv8 v1iva HINNN
W31SAS ONILYHIAO AHOWIW TYNLHIA HIGNISSY
35N ATINILNOH A T3A3T | 3snaaninoy isvar 1 3AT
GNV JAVH NOA aNV 3AVH NOA
SWALI 3HL ¥OIHO SWILI FHL HOTFHO
IJOVAONY
ST1001L IHVYMLLO0S
IWVYN 103roHd ¢ ININHIOVILLY INVN NYHOOUd
Al XA QDN SRR XN R DX MOOOOE PRXAAA, ANNAMAN v LT s

D-8

G
.nl\’--a -‘.‘-’..,‘....

LRI
AL

v -

LS W Y

T e s N WP, T

¢

2938
WS¢

PART 11 APPROXIMATION OF COMPATIBILITY AND COST

Directions for Completion:

In this part of the Questionaire, we need your approximation
of factors that help quantify the magnitude of costs/benefits
associated with current software development and maintenance
practices.

1. How long do you normally use a tool? (i.e. the length of
time in months/years between acquisition and replacement of a
tool) months years

2. The percentages you estimate below will give us an
indication of the portability/re-usability of your tools.
Please indicate percentages for the following (the total for
all four cases should be 100%):
LANGUAGE SPECIFIC TOOLS:

Host Specific Z Host Independent b4
LANGUAGE INDEPENDENT TOOLS:

Host Specific % Host Independent %
3. The source of tools is also of interest. Please indicate

by percentage the sources for the tools you use (the total
for all four cases should be 100%):

Government Furnished Z
Internally Developed %
Commercial Products y 4
Other (explain below) %
D-9
.m.\.‘r,'T -'. .)s \.-, DAS n‘\$ 3)'# 3 e \ }f.'.\ LR x}. . \ Ky \, - 3ﬂ“\f;<5’ gﬁcd:

A _ -
o, '. ':\ \.\.”\‘

-

|

l'
’ 4, For each project you support, plcasc estimate the “size”
b of the software by either the total lines of source code
delivered to the customer/user OR the annual level of effort ®
. ‘(programmers/systems analysts only) required to produce the
*' software for which you are responsible. (If you can estimate
' both of these quantities, please provide them.)
2 Note: When estimating for development projects, estimate the
o expected size. If you count delivered source code by another
unit of measure (e.g. words/statements) please label the ®
. units and the language.
\'
3
Y,
2 ’
X PROJECT NAMES LINES OF CODE or ANNUAL LEVEL OF EFFORT @
"
X
;
2 ®
T
)
x
: .
k.
Y
b
@
k-
K
e,
L
.'
4
3
W8
]
: v
(Note: Please provide a continuation sheet if required.)
®
D-10

‘ 'h A A I >, e,
hY) .' .'_.\ \a\ \a.z\.f~¢ o :\.r - .r . .'\.r\.- Py -".f

P PN M UM Y 4 P . v 0 N Rat 0 1 [we S " 1 - s
"
‘l
G ’
A
. 3
PART 111 PERCEPTIONS OF THE "VALUE" OF TOOLS ;
| A
Your answers to the following questions will be used to .
refine the perceptions of DoD with respect to cost factors i
which are difficult to quantify.
® .
1. Have you kept any statistics that indicate how tools o
effect the productivity of application development or d
maintenance? Yes No K
a. If your answer 1s yes, please provide a contact who L
® will be willing to discuss these statistics with us.
Name: ;
N
Phone: :
@ b. If your answer is no, what is the criteria you use to 2
make an investment in tools?
s
o
& o
L
2. Please identify your most critical software engineering
problems with a short rationale for their criticality. f
W)
4
&
by
>
.
b
-~
¢
¢
.I
A,
)
]
D-11 -
-
: RSP -_;'x_ﬂ R \--.."\'..‘-'.\n:.'.: .'_' I '\.._\. S ‘--_‘. .:- .o . N A AR DI ‘::-
ARG LRGN . '-’,.‘-J!‘"’:":;:'.Lv.g_';:'.c_'.:_i_"} NNt S e T e

@
T
;
.
®
. APPENDIX E
®
WHITE PAPER
CONCEPTUAL FRAMEWORK FOR EXAMINING THE ROLE OF
@ STANDARDS IN THE MCCR ACQUISITION PROCESS
: Prepared by
) ¢ Marko Slusarczuk
N, Sarah Nash
Tom Frazier
Peter Ashton
Stanley Dubroff
j ¢
‘ 20 December 1984
v
!
i)
\
'« |
3 1
:
E-1 3
A 3‘-"?"1"-";‘*1'-.-‘.'lf*l-‘}'.;l-.".-'-;-‘-l:-'-:-\:l'- e e R SN I AT e N T

a g

(\

Figure

Exhibit 1
Exhibit 2

Exhibit 3
Exhibit 4
Exhibit 5

Exhibit 6
Exhibit 7
Exhibit 8
Exhibit 9

Exhibit 10

APPENDIX E
LIST OF FIGURES
~ Title
Conceptual Framework and Linkages............cc.cccvevenviiiinnnennnen. 1ii, 6
Panel A: Probability of Adoption as a Function of Saturation
and Profits. Panel B: Probability of Adoption as a Function
of Saturation and Size of InvesStment...........c.oeveviiiiniiiiiiiiiieen.s, 9
Technology Process Concepts.o.oueeeuiureinenneinentiiniiiriereanenens, 12
Types of Standards.cooeiiiiiiiiiiiiiii 21
Factors Influencing the Development of DoD Strategy vis-a-vis
MCCR AcquiSition Process.........cocvuviiiniiiiniiieiiiiiiiiiieeeennes. 26
DoD Requirements for MCCR..........cc.iiiiiiiiiiiiiiiiiii e, 27
Factors Influencing Corporate Strategy..........ooevvveeviniininiinnnanenn... 31
Standards - MCCR Acquisition Process Linkage.............................. 42
Consumer Surplus Analysis..........c.ovuirieieriuereniierininiriieneninananns 47
Impact Analysis Including Weighting of Risk-Returns from a
Software Environment Standard.c..ooceiiiiiiiiiiiiiiniiiiien. 49
%
¢
7
"
3
A
h!
ey
N R R R R DA B S RIS

TSV AN NI LT T

WHITE PAPER

CONCEPTUAL PRAMEWORK POR EXAMINING THE ROLE OF STANDARDS
IN THE MCCR ACQUISITIOR PROCESS

EXECUTIVE SUMMARY

NV VR " o” 87T P SR BB

Mission Critical Computer Resources (MCCR) are an increas-
ingly important element in the development and deployment of
major weapons systems. Effective management of the acquisition
of MCCR is vital to maintaining a successful national defense,
especially given the complexity and dynamic nature of computer
technology and the diverse groups involved in the acquisition
process. Standards can play an important role in that process by
reducing uncertainty both £for government and industry. DoD
decisionmakers must have a method or framework in which to
evaluate the 'relative costs and benefits associated with a
particular standard. This White Paper provides such a framework.
Prior work has looked at impacts on only one dimension, failing
to capture all asvects of the problem., One unigque aspect of our
approach is its attempt to integrate each area which has been
previously studied separately.

The conceptual framework describes the factors affecting the

E-4°

use of standards in the MCCR acquisition process. It also .!
defines the relationships among those factors which indicate the :
impacts of standards. The objective in developing the framework .
is to provide high-level decisionmakers with an interactive '.i
analytical tool using real-time information for understanding how :

¢

. AN N

) PR - DT A VART RN ’ P REIEI A ATIE SO AN P 8 N Ry R
. PR PRI I ST Y SR SR AT R S A o, J'%I..-'*- LS ML L G LS .
G S R N I 20 NP C AL X2 SO SO AV RISP 29 2 3¢

Y

standards influence and interrelate with the MCCR acquisition
‘process, The framework is an initial presentation of the key
"factors and the interrelationship of those factors that describe

¥ the impact of standards. Two specific methodologies for evaluat-
ing the impacts of standards, the consumer welfare method and the
risk/return method, are presented. By incorporating these
methodologies, the framework consists of both a "road map" that

-@‘ assists decisionmakers in analyzing the potential effects of a
standard and also contains the information necessary to rational-
ize a given policy decision regarding standards.

E & The framework will be modified, extended, and refined based
. on the results of a series of historical case studies which will
. serve as analogues to current standardization policy issues. A

valuable by-product of this refinement effort will be the estab-

t @ lishment of a database of relevant literature concerning stan-

dards and the MCCR acquisition orocess. Ultimately, the frame-

work will be an interactive decisionmaking tool which will assisf

the decisionmaker in analyzing the aopropriate implementation of
) standards and orovide a rationale for that prescription.

The conceotual framework consists of several dimensions: the
MCCR acquisition oprocess, standards and the standardization
process, the DoD, the computer and semiconductor industries, and
government-policy. The dimensions are linked as shown in Exhibit
1, and the arrows indicate the direction of influence. The
linkages indicated with a dotted line, although vossibly signifi-
< cant in the overall process, are not included in the analysis.
) The most significant linkage for the purpose of this discussion
) is the MCCR-standards linkage.

i d

]

& The framework also includes the environment of technology
which influences each of the dimensions and the linkages. This
-fii-

...........

e LRI C S |

o

Abotouyoay A

spiepue3g

* - ‘e
RN

-~

vV

._“-J_ O

a oa "

§593201d
uotlrsynboy
HIOOH K13snpul

A\ 4

aod

AN .
PO RS LY

- "

\
\?
[+
AN
\
\
AR R

'
|
~
~ ~ _ . 7
; e
”
/ m

\
\
2
B
N

S

\ A\
-
-

*

/ ”
3 Kotvo4 “ -
JUBWUIIA0H

.

N
28

et AT
1':\:\.'.'*_‘:*

o

- -
'

“u

2

SIOWINIT ANV YHOMIHVYI TVNLITONOD

<
o

T 3rqryxg

I

-

-
DN

-

hehe

£ W,
NN

-\‘

A

S L R VAN T NN Y AR LA IR

is one critical aspect of the framework because computer
resources are driven by technology. Within the life cycle of the
MCCR acquisition process, DoD must plan for and implement tech-
nology insertion. DoD must manage and consider important con-
cepts such as matching the technology life cycle with the weapons
systems life cycle and recognizing learning curve benefits from a
technology. These considerations interact with the use of stan-

dards and can influence their impact in the MCCR acquisition
process.

Within each component of the framework, there are many sepa-
rate elements. For example, the MCCR acquisition process is
viewed in terms of the phases of the life cycle as defined in
A-109: mission analysis, exoloration of alternative systems,
competitive demonstrations, full-scale development and evalua-
tion, production/performance appraisal, deployment and operation,
maintenance and support, and retirement and disposal.

Standards perform various fynctjonsg such as conveying infor-
mation, promoting compatibility/interoperability/transport-
ability, optimizing variety, and improving quality; these func-
tions describe the impact that a standard will have, Various
types of standards also help define their impact; these types of
standards rande from the most flexible to the least flexible:
interface,. process, and product standards. FPinally, various
groups are affected by standards and may desire them at any
particular point 'in time. These groups include buyers, sellers
(suppliers), users, and maintainers.

DoD and industry are the two primary groups involved and
affected by the use of standards in the acquisition of MCCR. DoD
develops certain strategies which are implemented as part of the
MCCR acquisition process in order to meet various goals. These

afy-

BT W T S PR S I R VI R A A s A AR ARC AL P T T
., .'ﬂ- ‘,f\l'.'-!f ,'J“f.. .c"’._ K e a, RLR RN \.. RICAN®

- T Wy, W W W, Wy T

3y

N

goals stem from verceived threats to national security, opera-
tional and logistical requirements, and specific problems or
issues unique to MCCR. Standards may represent an element of DoD
strategy vis-a-vis the acquisition of MCCR. DoD writes standards
in situations where they will reduce uncertainty in the MCCR
acquisition process, assisting in maximizing quality and flexi-
bility while minimizing cost and delivery time of a system.

A NERS NN

Ay
:'.. >

4
S

Industry also formulates and implements strategies based on
ooportunities and constraints in the environment and the goals of
each company and its organization. Standards can reinforce or
reorient industry strateqgy directly. Standards may also raise or
lower the risks faced by companies resulting in lower or higher
expected payoffs from investment projects including technology
insertion programs. Industry acts as a proponent of standards
when it believes (collectively) that the standard will have bene-
ficial impacts.

¢

Standards interact with Ehe MCCR acquisition process to
raise and/or lower risk. The direction of the jmpacts on risk
produces the beneficial and harmful effects. Standards can v
influence each of the phases of the acquisition process and
various functions of standards are important at particular
phases. For example, the quality function (performance standard)

may be critical at the test and evaluation phase of the acquisi- v
tion process to facilitate comparison. Successful standards tend
to be more flexible at early phases of the acquisition process
(and the technology 1life cycle) and less flexible at later
stages, Standards can assist the technology insertion process, *
but careful analysis of the standard is necessary to prevent
freezing the existing technology and 1locking out new technolo-
gies. .
L
-v-
E-8 -
;‘3,-'.;{;-'.1-'.-_‘. e e A T AT e L A TN e T e e NN e

A - e

P

CNONCUENES

1\

AU NN

S e B

g

....

J x - W e T T rrw. .. Y. Vu N,
P R RO WA w2 CL AN - v » - Ve Va ~ ™

The analysis of the risks and returns of using a standard in
the acquisition of MCCR depends upon assessing the impacts on all
dimensions. The framework identifies the critical components and

interrelationships necessary for performing such a comorehensive
analysis.

-tyi-

WHITE PAPER

CONCEPTUAL FRAMEWORK FOR EXAMINING THE ROLE OF STANDARDS
IN THE MCCR ACQUISITION PROCESS

Mission Critical Computer Resources (MCCR)* are an increas-
ingly imoortant element in the develooment and deployment of
major weaoons systems. Effective management of the acquisition
of MCCR is vital to maintaining a successful national defense,
especially given the complexity of comouter resources and tech-
nology and the diverse varties involved in the ovrocess. Cur-
rently, MCCR reoresents almost 3 nercent of DoD's total budget.**
Standards can olay an imvortant role in the orocess of acquiring
CCR by reducing uncertainty in the MCCR acquisition nrocess. To
formulate effective, efficient oolicy, DoD decisionmakers must
have both a clear understanding of the general effects of stan-
dards in the MCCR acquisition orocess and the ability to analyze
the opotential impacts of a particular standard.

This vpaver reoresents the first steo in develoving a comore-
hensive analyﬁical tool for DoD decisionmakers for evaluating the
factors and forces affecting the use of standards in the acquisi-
tion of MCCR. The purpose of the tool is to orovide decision-
makers with an interactive decision orocess using real-time

* An aopendix includes a glossary of terms included in this
vaver,
fald DoD,

EL » Draft (Washington, D.C.: DMSSO, September 15,
84).

E-10

......................

R IR R S Co Tt TN e e AT T L T T
L REW .~ AL PP I R T TR A) 5 .
7, ‘-:j".".}'.'.‘f DAL P L A L R P PR VIR AP A A PR "_fhﬂ'.“'iﬂ';“; A L'P‘.._&)_i S Ll NS . SN

2 BT RATL A UL TN A

DRAFT

"’ information to determine how standards may be used in the MCCR
acquisition process. This White Paper presents an initial frame-
work identifying and describing the factors influencing the use
of standards in the acquisition of MCCR. It develops and
@ explains key relationships among these factors which form the
basis for identifying likely impacts of standards. An overall
analysis of a standard can be made by examining each of these key
relationships and correlating the interplay of these factors.

Two methodologies integrate the overall analysis; these are
risk/return and consumer surplus analyses. Both methods seek to
measure the impacts of a standard on each of the components and
PeS provide a way to determine the overall impact. These methods are
complementary and can be used together to reach a final estimate.
By incorporating these methodologies,* the framework consists of
both a "road map" that assists decisionmakers in analyzing the

® potential effects of a standard and also contains the information
necessary to rationalize a given policy decision regarding
standards.

| @ Prior analyses have concentrated on impacts at one or

another of the components.** One unique feature of our approach

* These methodologies will be refined in greater detail as
more data become available.

*h Prior studies examining the impacts of standards generally
.have focused on the impacts to one group, such as a single
department in the government, overlooking other impacts on
other groups or on other factors such as technology inser-
tion. See, for example, Roger Schave et al., "Potential !
Effects of Standardization on Avionics Software Life-Cycle |
Cost," IEEE Computer (1979); Harold Stone, "Life Cycle Cost
Analysis of ISA Standardization for Military Computer Sys-

tems,” JEEE cComputer (April 1979); Logistics Management
- Institute, Costs and Benefits and Federa)l Automated Data

()

» Washington, D.C., August 1978;
;nd U.S. Department of Commerce, National Bureau of Stan-
ards, -

(Washing-

'1- ton, D.C.: NBS, June 1978).
-2~ E-11

- -
. IS

e S e ™ st e e T
Tt W &, e CaT e

DRAFT

is that we are integrating the analysis by examining all the com-
ponents and the interrelationships of these factors within a
single framework. In this way all factors impinging on the
' process can be analyzed.

For example, assume that DoD decisionmakers are faced with
deternmining the likely effects of implementing a standard mili-
tary computer family that would permit only certain types of
computers for use by DoD. The conceptual framework can be used
to identify the <critical factors necessary to evaluate the
significant potential impacts of the standard. For example, at
what stage in the technology 1life cycle are the particular
computer systems that are being standardized? Will industry
resist the standard because the technology is still in a nascent,
growing phase or because the standard limits competition? How
does the standard affect various DoD goals such as interoperabil-
ity, technology insertion, or cost minimization? At what phase
of the acquisition process will the standard be critical and have
its intended effect? What are the costs and benefits, in terms
of risk reduction to DoD, from implementing the standard? These
questions and answers to them are vital if DoD decisionmakers are
to understand adequately the effects of a standard and if DoD is
to provide a suitable rationale for implementing specific stan-
dards. The objective of this framework is to assist DoD in con-
ducting that analysis.

The conceptual framework will be refined and revised with
further study and analysis, including the development of a data-
base and empirical study. A database will be developed that will
serve as an adjunct to the analytical tool to be used by high
level DoD decisionmakers to (1) formulate opinions, (2) rational-
ize and support decisions, and (3) answer "what if" questions
concerning MCCR standards. Drawing from the literature, existing
databases on standards, and from case studies analogous to

-3~ E-12

W [& . o

DRAPT

-

potential future standards issues, the database will gtore

° factual information about standards issues including general

descriotive data, risks, benefits, costs, and footnotes to the

Y literature., The case studies will use historical analogies to
® current issues facing DoD with respect to the use of standards in

the MCCR acquisition process.* The results of the historical
studies will be used to evaluate and refine the conceptual
framework as well as provide DoD decisionmakers with information
that will be useful in solving current standards policy issues.
In this way, decisionmakers will understand how to aoply the
conceptual framework and will gain insights to solve issues of
current and future concern.

Before describing the framework, several assumptions must be
made. For instance, although the framework describes various
components in a static, single-time dimension, it is recognized
that there is dynamism among the components in which impacts are
spread over time. It is assumed that standards have certain
functions that are important within the acquisition orocess and
as such are demanded by certain groups, e.g., DoD and industry.
Also, we assume that both DoD and industry formulate and imple-
ment strategies vis-a-vis the MCCR acquisition process. We make
certain assumptions regarding strateqgy and the various objectives
which.lead to the formulation of strategy. Finally, we recognize
that other factors, such as actions by foreign governments and
industries, may have some influence, but for clarity and ease of
understanding, we have chosen not to describe those elements.

* For example, such case studies might include examining the
implementation of FASP as an analogy to ALS; the development
of the AN/YUR 7 as an analogy to the MCF; and the use of
MIL-ST?-1679A as an analogy to MIL-STD-SDS (software devel-
opment) ., '

e e Sy

- A

¥ o
L a0

v

o
P

ARARA 1

."'}5}

A ,5’ I
LY

> 7
»

R

.,

£y
.}4

~
4

:'. ;N)"

Tt T N TN i
AT I A SN D et

DRAFPT

COMPONENTS OF THE CONCEPTUAL FRAMEWORK

The conceptual framework consists of several components,
including the MCCR acquisition process, standards and the stan-
dardization process, DoD, industry, and government policy. These
components are linked in the manner shown in Exhibit 1. The
dotted lines from DoD and industry to government policy indicate
that although these linkages exist, and may be Very important,
they are outside of the scope of this study, and therefore will
not be considered |here. The 1linkages <comprise the key
relationships among the dimensions and represent focal points for
understanding the impacts of standards, including particular
costs and benefits,

The environment of technology affects each of the components
and the linkages, and each component can exert an influence on
technology. Several concepts within the technology "process® are
important, such as the life cycle and the learning curve. These
concepts will be described before the other components of the
conceptual framework to provide the proper background and focus.

The Environment of Technology

Three general concepts influence the technology process and
the technology environment: (1) technology "push®" versus "pull®;
(2) the technology life cycle; and (3) the learning (experience)
curve,

In many industries, a technology evolves and is adopted
because users (consumers) demand certain types of products; this

E-14

RN
i L %Ly

Aborouyoay
spiepue;g
> W
A4
§590014
aoa — > | uo¥3rsynbov >
¥IOH Kiasupug
~ ﬁ
~ ! s
~] s -
~ e \\
~ * L7 -
~) ~ _ \\ \\)
s 0
~ o
N ~ _ -7 \\»tP
~ N\ - [
SN s 7
3 Kot104 “ -
quauuiaaoy |&
SAOWANIT ANV XNOMIHVYJ TYNLJIIINOD
T 3Irqryxg
9 d » :] Y T

E-15

- - .'- .‘-
PO

i

- “u e
RSO

AL

AT T Y .-‘
N N

.

TP RN
B0 Nl Yy

Y

2 7 T PO R N) S .
LU0 R0 0 ARG N

DRAFPT

has been characterized as technology ®“demand-pull.® In this
situation, the market pulls the technology and innovation results
from identifying user needs and responding to those needs.*
Under other circumstances, onqoing research activities or advance
ments in the gstate of science may result in an innovation, but no
market exists for it. The develover, therefore, must "push® the
technology by either creating a new market or demonstrating how
the new technology can replace an existing one. DoD and NASA,
for example, have actively pushed certain technologies before it
was certain a commercial market existed.** FPrequently, these
efforts do result in “"spin-offs® that can be marketed
commercially.

Technology push, i.e., compelling or creating a market to
accept a new product is achieved by reducing risk.t Barriers to

* See, for example, Eric Von Rippel, "The Dominant Role of
Users in the Scientific Instrument Innovation Process,”
Regearch Policy (1976):; David Ford and Chris Ryan, "Taking
Technology to Market,” Harvard Business Review (March/April
1981); and Geoffrey Kiel, "Technology and Marketing: The
Magic Mix?" Business Horjzong (May-June 1984).

e Some of these studies of government technology push include
Norman Asher and Leland Strom,
Development of Integrated Circuits, P-1271 (Alexandria, Va.:
Institute for Defense Analyses, May 1977); Herbert Kleiman,
*A Case Study of Innovation,®” Business Horizons (Winter
1966); James Utterback and Albert Murray,

" (Cambridge, Mass.: Massachusetts Institute of Technology,
Center for Policy Alternatives, June 1977); William
Abernathy and Balaji Chakravathy, "Government Intervention
and Innovation in Industry," Sloan Management Review (Spring
1979); G. P. Dinnean and P. C. Prick, "“Electronics and
National Defense: A Case Study," Scjence, March 18, 1977;
and Robert Wilson, Peter Ashton, and Thomas Egam, Innova-

Aot %ty MR LA S

(Lexington, Mass.: D. C. Heath, Lexington 'i
Books, 1980). '

+ In this manner, one can think of technology push as being
somevhat analogous to technology insertion.

g e - A g ST WTEITYRLC IV VIS
. vy, “gat ¥at Ba¥ Ba* - pab 4 ‘ . 0.t " L,) Pt fud Ga” v Mt (a0 Do~ Ba? Og* Jia-als’ Py o AR AR i a" IN4dWE

DRAFPT

& innovation and adoption of innovation stem from two types of
risk: market risk and technical risk. Market risk is the risk
- inherent in attemoting to sell a product and the uncertainty of
;E that product generating a profit. Technical risk involve; the
S risk of successfully developing a product or cost-saving process.
With technology push, the primary bartiet is market risk, i.e.,
making either producers (suppliers) and/or users understand that
- a particular technology is worth implementing or adopting.

In order to push a technology, a group, such as DoD, must
reduce market risk. It does this by encouraging the use of the
new technology through procurement, through dissemination of
information about the technology, through "gatekeepers," or
through funding R&D projects directed in this area.* It creates
incentives to make it profitable to adopt and use this technol-

ogy. The rate at which an innovation is adopted is influenced by
- several factors. ’

o

|
" 5% I

¢

E MM

The profitability of the innovation, the number of firms
™, using the innovation, and the amount invested in the innovation

< affect its rate of adoption. In Panel A of Exhibit 2, for
3 example, Al and Az' which designate two different innovations,
. show a direct relationship between the probability of adoption
and the proportion of firms already using the innovation (degree

* The concept of "gatekeepers®" is a particularly useful one in

.encouraging adoption of a new technology. Gatekeepers are

members of an organization who, by virtue of their

- personality, expertise or other factors, control and !
disseminate information about innovations and are viewed as
. “experts” in judging the usefulness of a new technology.
Gatekeepers know the appropriate people to whom the
3 information should go to encourage adoption. Thus
> gatekeepers can play a vital role in the adoption of a new
M & , technology or ensure that it is never adopted. For more on
this concept, see T. J. Allen, Managing the Flow of
(Cambridge, Mass.: The MIT Press, 1977); and

.'“I ~

Rosabeth Moss Kanter, Innovations for Productivity in the
8 American Market: <The cChange Masters (New York: Simon &
3 Schuster, 1983).

-8= E-17

-------------------------- R P RIPP E N e e NS
------ ..'-: A -. o .. I \'\-" o« UL f.‘*\-‘ >

b DANARIURS St Db ¥ I g St A A

Exhibit 2

PANEL-A: PROBABILITY OF ADOPTION
AS A FUNCTION OF SATURATION AND PROFITS

Probability
of Adoption

Proportion of Firms
JUsing the Innovation

PANEL B: PROBABILITY OF ADOPTION
AS A FUNCTION OF SATURATION AND SIZE OF INVESTMENT

Probability
of adoption

Proportion of Firms
Using the Innovation

7

I Y

3

E-18 .

.
........

' “~
- ‘e -' .. ',,-’ 2 ‘.
,.(xf\fsb\:-f<f ﬂ AU LC IR ,ﬁJ MRS

DRAFT

of saturation).* Panel A also shows that the probabjility of
adoption is higher at every level of saturation for-A2 than for
Ayo because A, is a more profitable innovation. Panel B of
Exhibit 2 shows a higher probability of adoption of an innovation
requiring a smaller investment (Bz) than one requiring a larger
investnent (Bl)' other things being equal.

On a priori grounds, these are relationships that one would
expect. The risks of introducing a new technology generally
diminish as market saturation grows, therefore, one would expect
increased adoption as experience and information increase.
Likewise, the more profitable the investment in a new technology.,
the greater the compensation for anticipated risks of undertaking
that investment. Finally, it seems reasonable to expect firms to
be more reluctant to commit large amounts (particularly when they
have difficulty faising large capital amounts) than small amounts
to the development of new technologies.**

Technology Life Cvcle®

A considerable research effort has been dedicated to examin-
ing the development and growth of a technology. This research

* Edwin Mansfield, The Economics of Technological Change (New
York: NOrton & Co., 1968).

** This process of "push"™ frequently involves a revolutionary
idea or concept as opposed to an evolutionary process; once
the technology is used in one or a few applications,
*demand-pull® overtakes technology push, leading to the use
of the technology in many other areas. One example is the
integrated circuit; it was first developed and used by DoD;
once industry learned its capabilities, the applications for
integrated circuits widened rapidly.

+ This theory was first developed by Raymond Vernon, "Interna-
tional Investment and International Trade in the Product
Cycle,® Quarterly Journal of Economicg (May 1966); and L. T.
Wells, The Product Life Cvcle and International Trade
(Cambridge, Mass.: Barvatgovniversity Press, 1972).

SR R T TH AL L

DRAFT

has identified distinct phases in the life cycle of a product and
has related them to the phases of the acquisition process as well
as the development of standards.

Panel A of Exhibit 3 displays the various stages of the
technology 1life cycle. Industry growth typically follows an
S-shaped curve; the flat introductory phase reflects the diffi-
culty of overcoming buyer inertia and technology push. During
", the growth phase, a market is created and many buyers demand the
product or technology as it demonstrates its usefulness. The
technology eventually becomes widely accepted and growth levels
off and finally declines as new substitute technologies aopear.

T4 8 B FEESVE W BT

The concept of the life cycle has been extended to evaluate
the pattern of product and process innovation and when particular
standards are likely to be developed.* Panel B of Exhibit 3
indicates the patterns of product and process innovation. This
exhibit shows that, over time ptoduct innovation slows, particu-
larly after a "dominant design® has been adopted; orocess innova-
tion increases as product innovation declines, and greater empha-
sis 1is placed on cost reduction and efficient, large-scale
production. '

One hyvpothesis regarding the life cycle is that as the life
cycle or technology matures, standardization becomes more impor-
tant. In early stages, there is radical product innovation, wide
variation in product design and methods of production. Most
stanﬁards are unimportant and not desired at this stage. As the

* W. J. Abernathy, The Productivity Dilemma (Baltimore, Md4.:
Johns Bopkins University Press, 1978); J. M. Utterback and
W. J. Abernathy, "A Dynamic Model of Process and Product y
Innovation,®” QMEGA (1975); and David L. Bodde, "Technical v
Standardization, Competition, and Innovation," Draft Working "
Paper, 1975. A

N e e
Lo “rt
PO A Py

- : p ‘ v) . N)
- B - ets a & N R XX N . o T ale N “Velslw &8 S .. . = A ’ o~

E-21

aunyoA aury

/.[

v
.

, ' ! 5
i | umwmwmmn 2urToaq A37an38H Y3M019 °013UT N
A3tan3jed y3moin ' ‘oijug | .m
! safe e
uoy3eaouu] s <
Jo ajey]
-) “‘l\ d
D Taued g4 Taued Y :

MW, "
1'\,

AT
a0,

SLd3ONOD SS3dO0Ud X9OTONHOIL

TN
N M

€ 3ITqrYyxg

PP e Y U W . A Kb a8 - R T T~ o g e >

DRAFT

MNEAEMA | § - gy
1

product enters the early mature stage, standardization begins,
first with a dominant design and then with cost competition. 1In
the late mature phase, markets are well-defined, cost competition
is critical, and standardization becomes very important as a
5 means of reducing cost.

LA
LW LS

55

h

The Learning (Fxperjence) Curve

The learning curve builds on life-cycle theory. The learn-
ing curve predicts that as a company (or industry) produces more
(especially in labor-intensive industries), its unit costs will
decrease because it learns how to produce more efficiently with
production experience.* These cost declines are usually more
significant in the early and growth phases of the product 1life
cycle. Panel C of Exhibit 3 plots the learning curve against the
phases of the technology life cycle, indicating this trend.

The implications of learning curve theory are quite simple.
If costs decline with experience in an industry and if that
experience is kept proprietary, the established technology leader
will have an inherent cost advantage over latecomers and can
pursue aggressive pricing strategies in anticipation of future
cost declines.** In areas with little or no competition, the
learning curve may be considerably "flatter," because there is
less pressure to reduce costs.

* A particularly good description of the concept of the
learning curve is contained in the Defense Contract Audit

Manual, Appendix P, "Improvement Curve Analysis Techniques,"
May 1979.

e Some of these advantages have been termed "first mover"®
advantages and may involve not only a cost advantage but an
advantage derived from brand recognition, advertising, or

buyer loyalty. See Oliver Williamson, Markets and Hierar-
chies (New York: The Free Press, 1978).

13-
E-22

Re S0 [Vol N T
FYT R A WL A R AL AL A PR

S AT RB M T W ER T TN TN T BT T Te T T AT A

4

| 1]

L]

'("1’;4“.'-‘_.;‘ A T L Ca T T e N e T N e e T e, e e S NT PR SRR L A

DRAFT

Reference to the learning curve in the acquisition of MCCR
may be important to determine who the low-cost suppliers are and
how they can apply their experience to DoD's needs. Certain
companies develop their strategies based on the learning curve
conceot; for example, in anticipation of future cost reductions,
they may lower prices before current costs would dictate such a
reduction. This can affect corporate strategy vis-a-vis the MCCR
acquisition process and influence the point in time when stan-
dards may be desired. Those companies who are first to market a
technology may desire product and process standards as a means of
reducing costs and reducing the risk of investing in that tech-
nology. DoD must also be aware of where in the technology life
cycle a product is, because this will influence its ability to
push a technology and gain industry acceptance of standards. For
instance, it may be very difficult for DoD to enforce a product
standard if no dominant design has yet emerged.

Texas Instruments (TI), a significant suoplier of integrated
circuits to DoD, built much of its early growth on the learning
curve concept. TI was an early producer of integrated circuits
which became a dominant design. Part of TI's strategy focused on
selling devices to DoD which provided an assured market and
reduced the risks of rapid cagacity expansion necessary to take
advantage of the learning curve. Given the sharp declines in
cost with increased output in this industry (integrated circuit
costs havé_déblined on average by 28 percent with each doubling
of quantity produced) ,* this strategy was crucial to TI's success
as a leading producer of integrated circuits. The timing was
critical for DoD. DoD was pushing this technology and because of
the »osition of the technology in the life cycle, it was easy to
get industry adootion, as well as realize substantial cost
savings with some standardization on a dominant design.

* Wilson, Ashton, and Egan, gop, c¢it.

DRAFT

The MCCR Acquisition Process
MCCR is defined as computer systems "applications involving:
(1) intelligence systems; (2) cryotography for national defense;
(3) command and control of military forces; (4) weapons or

weapons systems; (5) direct suvport to military or intelligence
operations."*

" v T TR MY B BN RS 7 8. T Ta T S, 8 R T

The development of any major system is determined largely by
the operational requirements. The requirements for the develop-
ment and/or acquisition of computer resources result from the
operational requirements. The MCCR acquisition process is part
of the overall process by which DoD acquires major weapons
systems and it is governed by a number of directives.** OMB
Circular A-109 describes the distinct phases of the life cycle of
the acquisition process for major systems.+ Because of the
importance of technology evolution in the acquisition process, it

"is useful to understand how DoD acquires computer resources
within the life-cycle context. The phases as defined by A-109
include:t*

* DoD, Report to cCongresg on Computer Technology (Washington,

kel For example, see DoD Directive 5000.1, "Major System Acqui-
sitions,* March 29, 1982; DoD Directive 5000.2, "Major
System Acquisition Procedures," March 8, 1983; and DoD
Directive 5000.29, "Management of Computer Resources in
_Major Defense Systems," April 26, 1976.

+ Office of Management and Budget (OMB), Maior Svstems Acqui-
gitions, OMB Circular A-109 (Washington, D.C.: OMB, 1976).

++ Greater detail on these phases and the management of the
acquisition process is contained in Defense System
Management College, "Management of Software Acquisition,®
Fort Belvoir, Virginia, January 1984.

- & v ¢ 7

-15- E-24 9|

e J“
\’\iﬁ ‘i\o\)n"'.n LI

DRAFT

[Mission analysis -~ analysis of existing
systems, capabilities, priorities, and oppor-
tunities and identification of a particular
need, threat, or deficiency in existing
systems.

° Exploration of alternative systems -- analy-
sis of alternative ways to meet the perceived
need including initial solicitation, propos-
als, and evaluations.

° Competitive demonstrations -- analysis of
alternative system design concepts to verify
the chosen concepts and provide a basis for
selecting a system for full-scale develop-
ment.

° Full-scale development, test, and evaluation
- selection of contractor(s) including
monitoring and evaluation of progress to
full-scale development to assure effective
performance under expected conditions.

° Production/performance appraisal -- full-
scale production of the desired system and
continued monitoring of contractor perfor-
mance.

° Deployment and operation =-- actual field
deployment and use of the system.

° Maintenance and support -- logistics and
maintenance support of the system during
deployment.

® Retirement and disposal -- replacement of

system with new system, including disposal
.and/or use with non-active forces.

The life cycle of the weapon system may be as long as 25 to
35 &ears. Yet the typical 1life cycle of a computer technology
generation is about 5 to 10 years. This disparity creates a
unique problem. A major weapons system deployed in 1985 with a
life expectancy of 25 years nevertheless could be outmoded or
less effective than expected within)0 years due to development |
of new, more efficient computer technology.

tr'rs

A

--—.~
S,

B_F 5
,A,’,\(\{N

t .. ‘:"'l;";" L‘

,.-

DRAPT

DoD is concerned with ensuring timely technology insertion
and utilizing state-of-the-art technology in all computer systems
embedded in major weapons systems to reduce the [jigk of using
less effective or less efficient technology. Technology inser-
tion must be planned early on in the life cycle and continually
monitored and updated. For example, by the demonstration phase,
a system's projected 1life-cycle costs, including pre-planned
product improvements (P3I). must be within the amounts reflected
in the latest PYDP (Five Year Defense Plan). Yet even the
process of technology insertion (P3I) can cause lengthy delays
and cost overruns. It is this unique problem of managing concur-
rent yet very different 1life cycles within the acquisition
process that is of continual concern to DoD program managers.

ards and a io oce

A standard's function(s), type, proponents, and the groups
it affects influence the effect it will have on the MCCR acquisi-
tion process. For the purpose of this study, standards are
defined as documents which establish engineering and technical
limitations and applications for items, materials, processes,
methods, designs, and engineering practices.* The formal stan-
dardization process as defined by DoD is divided into three
steps: (1) standards are developed and agreed upon; (2) those
standards -are then communicated to users; and (3) standards are
applied in a cost-effective manner.** The bulk of the standards
(and- specifications) evaluated in this study are mandatory, MIL

* Rowen Glie, Speaking of Standards (Boston, Mass.: Cahners
Publishing Company, 1972).

** DoD, Qvervjew of the Defense Standardization and Specifica-
tion Program (Washington, D.C.: OUSDRE, 1983).

(:

o iR R

DPAPT

or FED standards, although some are developed within the volun-
tary consensus process or in a de facto manner.* Anpther set of

standards are international (ISO) standards. International

standards represent a higher level of standardization in terms of
requiring broader agreement of many groups. Nevertheless, they

can be important to DoD especially in relation to supporting the
NATO forces.

Functions of Standards

The analysis of standards proceeds from understanding the
various functions they perform, including information; compati-
bility/transportability/interoperability; variety reduction

(optimizing flexibility); and quality.** Punctions determine the
impacts of a standard.

The jnformatjion functjion defines terms and establishes
measurement and test methods; these standards generate and
disseminate information to buyers, sellers, and other users of
the standard. An example of a standard that contains this

function is a test method for evaluating the functional proper-
ties of integrated circuits.

De facto standards evolve in a market from one or a small
group . of companies who, because of market dominance,
establish standards without necessarily using the voluntary
.consensus process.

** This delineation of the functions of standards was based on
a broad survey of the literature on standards and was first
formally defined in Putnam, Hayes & Bartlett, Inc., The

Impacts of Private Voluntary Standards on Industrial Innova-
tion, prepared for National Bureau of Standards, Washington,
D.C., November 1982,

et '(.‘\'-l'.: '-t\,',;{-’_ ondels Lo
. ! . 5 [B - > 0 o id 'y .

WEE TR TN T TR, " T e mr f . w y - ¥
i ae pna ang- - ECEnk pul ik il it - o6t o ar i S o o o it Aur St et At ot Sur i i G L S R L I S * ¥ . T L.¥a v
i el had sha b ate s g B st Ik St IR -1 \ P i e gt

DRAFT

The compatibility function ensures that two related products
will fit with one another. In specialized uses such as software,
special categories of compatibility such as interoperability and
transportability are important. Interoperability refers to "the
ability of two systems to exchange data and understand the
relationships between these data objects."* Transportability is
the ability of software to be installed on different environments
and perform with the same functionality.** Software standards
such as Ada provide compatibility.

= AT 2 G S % T Y S I e 8 . BB AWV Ve T T W

The gg;1ggx;ggggggign_jnng;19n minimizes proliferation and
attempts to achieve the optimum variety of a particular product.
This function permits producers to cut costs by making longer
production runs and to reduce consumer (buyer) search costs. One
example would be a single standard instruction set architecture
(ISA) as proposed under 5000.5X, which would have reduced the
different varieties of ISAs bought by DoD.

The gualitv/reljabjlity functjon establishes minimum levels
at which a product must perform to be acceptable. This function
involves a determination of better or worse., Such standards are
extremely common within DoD, since most system acquisitions must
meet well-gspecified performance criteria,

Standards may have multiple functions and in fact the
functions of standards often operate in tandem; for example, test
methods provide information needed to evaluate quality., The
information function may also be essential to determine how to
establish compatibility or reduce variety. Consider a standard g

* DoD, Report to cCongress on Computer Technology, p. 1l4.
e Council of Defense and Space Industry Associations (CODSIA). g
RoD _Management of Mission-Critical cComputer Resources

Washington, D.C., March 1984, Volume II, p. 113,

tetatl L LA SERSCOL LA R

DRAFT

that establishes environmental specifications under which com-
outer hardware must operate. The standard may stipulate the
temperature range, humidity, altitude, and other conditions under
which the computer must function. This standard conveys jinforma-
tion from buyers to suppliers about certain performance charac-
teristics of the computer and also establishes a level of guality
that the computer must meet to be acceptable to the buyer.

Types of Standards

In addition to being categorized by function, a standard can
be categorized by its type. Does the standard cover a particular
products or does it involve a procegs; or does it simply estab-
lish an jnterface? This categorization scheme is essentially a
hierarchy as shown in Exhibit 4; interface or "paper®" standards
are less restrictive and merely define certain characteristics.
For example, an interface standard may define the communications
protocol to be used in connecting two "boxes."™ Process stan-
dards, while somewhat more restrictive, define the manner in
which a process is be done, but do not determine the actual
output. Process standards include such standards as those
governing software design, development, and documentation.
Product standards do define a particular output or outcome and
therefore tend to be the most restrictive. MIL STD 1750A is a
product standard because it defines a particular commodity, i.e.,
a 16-bit instruction set architecture (1ISa).

These categories indicate the likely effects of a particular
standard (or the function of a standard) both in terms of whether
certain groups may resist the standard and in terms of how well
the standard will be integrated into the MCCR acquisition process
and the technology life cycle. Por instance, a prodyct standard
that is promulgated too early in the technology life cycle may be

S T N I SN I B R ™ A e A A A R TN TN SO AU
N 1(*55 NN \)\"\ >, ‘.-'\4'.‘}\-’\-'\’\1'\-'\-'\.‘\.'\-‘. CEGNON N '~'.\-' ‘-'\.' -.'\.- "

E-29

* B et Seb b S TS e

Exhibit 4

TYPES OF STANDARDS

Product More
Restrictive
AN
Process

9
N
Interface ("Paper") . Less

Restrictive
1
v
.

’ E-30
-21 - L

5 gar gus goe mN w0t T T T T T LY ATV WOV A VM W URTAS S AT R Y - Tt R TR A SRS R

L
: DRAPT
§x° resisted by suppliers (industry) because it does not allow enough
flexibility in adapting to anticipated changes in the technology.
: On the other hand, a simple interface standard may be insuffi-
) cient for users or maintainers of a product who require accurate
3

& and detailed information about a particular product and how it
. functions. Such information may not be critical at early stages

of the acquisition process, but may become essential at later
gstages.

iy

0o t anda

b & Depending on which of the various groups that is the actual
prooonent of the standard, the standard itself will be perceived
differently and will have different effects. There are essen-
tially four sets of standards developed by different combinations

@ of groups: government mandatory standards, government-industry

(joint) standards, industry voluntary standards, and industry de
facto standards.

o S GRS

LNy

(o) Government mandatory standards are standards that pgugt be
N adhered to by everyone doing business with the government. Most
DoD and MIL standards, federal regqulations, and the 1like are
) considered mandatory standards. Usually they are published by
¥ the government and compliance is considered mandatory. Enforce-
R ment is obgrSeen by the appropriate government agency.

" Joint government-industry standards may be developed through
< the voluntary consensus process, but adoption and use by the
government makes the standard mandatory. The primary difference
between this standard and a government mandatory standard is that
industry has had input into the process and is less 1likely to
~ disagree with the standard.

ol AN BE N Y

E-31

o el Bl Ba® Wa¥ Gl TRt Re® S It Ra Rak Sal Ral e

g DRAPT
» ¥oa ‘)

b! Industry voluntary standards are develoved through the

consensus process;* there is general industry agreement but no
‘one is compelled to obey the standard. The impacts of these
standards may be different because no one s obliged to follow
the standard; a standard may be implemented, yet have no impact
because no one complies with it.

Industry de facto standards are standards that evolve from
one or a small group of corporations which often dominate a
segment of an industry. These firms have enough market power
simply to establish the standard, and market forces dictate that
everyone else must follow that standard. For example, IBM has
been responsible for setting many de facto standards in the
computer industry. These standards may have far~reaching effects
or none at all depending on whether competitors are willing to
follow the standard and whether buyers believe it is a beneficial
standard.

Groups Affected by Standards

For the standards described above, there are different
groups who at a given time may desire a particular standard.
Standards as a whole are desired because they benefit the economy
or some particular process in our economy.** The "demanders® of

* ‘Por a detailed discussion of the voluntary consensus process
of develoving and implementing standards, see American
Society for Testing and Materials, Standardization Process A
(Philadelphia, Pa.: ASTM, 1980) and ASTM,

System of the U.S, (Philadelphia, Pa.: ASTM, 1975).

LA For a detailed discussion of the factors influencing the
demand for standards, see D. Bottaro, "Analysis of Factors
Affecting the Demand for and Supply of Voluntary Consensus L
Standards," Massachusetts Institute of Technology Energy Lab
Working Paper, 82-003WP, August 1981.

N IR o N AR LT T
- \}'f:;*\";) ;'.::'-\f"-'; e :.J‘\-’ \-‘\}\‘.\..'. -’\3‘.‘\-'.'-'. ~*. l""- ~ -'.\ ” -'\-' -'\-' .- L o v ~
i AP Al S T T W

e

Sl

O

DRAPT

standards fall into one (or more) of several groups: buyers,
suppliers (sellers), users, and maintainers. Buyers are those
who buy the product affected by the standard, in this case, DoD
or one of the Services. Suppliers are those who sell the product
in question, usually industry. Users are those who actually use
the product, usually DoD or the Services in this case. Maintain-
ers are those who must maintain and support the product and
ensure jits effective and continued operation after deployment.

Each of these groups may desire particular standards (or
functions of standards) to assist them in performing their jobs.
Buyers desire standards that reduce costs, ensure adequate prod-
uct performance, or permit accurate comparisons. Suppliers want
standards that clearly define the buyers' (and/or the users')
needs and ensure that the product will be sold. Users demand
standards that facilitate the operation of the product, for
example, by assuring compatibility or performance. Maintainers
want standards that enhance 1logistical capabilities, such as
reducing variety or ensuring a certain level of reliability.
Also, because maintainers typically did not develop the systenm,
they are interested in standards that will assist them in main-

taining something they did not develop, i.e., software documenta-
tion.

Each group may also desire different types (functions) of
standards'pt'different points in time. Buyers and sellers are
interested in standards earlier in the acquisition life cycle
than users or maintainers. However, to ensure effective perfor-
mance during deployment, users and maintainers may need to be

involved early in the acquisition process to assure that their
needs are met,

E-33

TATATS e e e .-‘ - R N A T G T P T
R N AR RN SN . ot

>

......

.
DR R

Repartment of Defense

In acquiring MCCR, DoD formulates and implements certain
strategies based on its goals and requirements. These require-
ments compel DoD to acquire the best computer resources utilizing
the latest technology. However, this process must be viewed in
the unique context of the life cycle of a weapons system, which
is usually in excess of 30 years. Given the rapid changes in
computer technology during this 1life cycle, DoD has a unique
problem of ensuring the use of up-to-date computer resources in
systems that have a very long life cycle. The enormous financial
resources which DoD commits to MCCR further compound this prob-
lem. DoD spent over $5 billion for MCCR in 1981; this amount is
projected to increase to $38 billion by 1990.* As stated in a
recent draft report,

eee [I]t is important that computer resources
in Defense systems be managed as elements or
subsystems of major importance during the
various 1life cycle phases, with particular
emphasis on computer software and its inte-
gration with the surrounding hardware.**

Exhibit S5 shows the factors influencing DoD's development
and implementation of strategy. DoD constantly reviews the
threats against which it must operate. The overriding objective
is to minimize the threat in the most efficient, productive
manner. ﬁpD"formulates specific sttategies to meet its goals;
these goals in turn are based on perceived needs and require-
ments. DoD in its Report to Congress on Computer Technology
identified various requirements for MCCR. These requirements,
listed in Exhibit 6, are divided into two categories: those
derived from operational needs and those derived from logistical

* Electronic Industries Association, DoD Digital Data Procegs-

ing Studv -- A Ten Year Porecagt., October 7, 1980.

e DoD,

..
.........
......................
S e PR I I I P I o e R T B R S S TS R S i R A e LA
o

........
Ny o PP Y

YOOH 40

SHITE0dd

$S30044 Teor3syboq o
NOILISINDOVY | €— | . €— | ¥DOH SIA-Y-SIA 00d 40| € |treuorieisdo e o
¥OOH X93IV4IS aod SIAILOILA0 ANV STVOD SINANIY INDIY 5

S

“- $

fa e .

.
IS

l. \' “

AL

' SS3D0¥d NOILISINDOV YOOW SIA-V-SIA
AD3LWNLS AOQ 40 INIWAOTIATA JHL ONIONANTANI SUOLOVA

S 3I1qryxg

w i‘}"'}":.—'.‘".“‘v-'.ﬁ-v‘)' haf T 3 P

Exhibit 6

DOD REQUIREMENTS FOR MCCR*

Operational Reguirements

° Enclosures '

° Survivability and vulnerability
° Interoperability

° Interchangeability

° Reliability

° Maintainability

° Hardening

° Vibration, acceleration and shock
° Thermal

° Power, size, and weight

Maintenance and Support Requirements
° Specific operational requirements
° Maintainabilify
° Manpower and training

° Sparing and repair

* Adapted from DoD,
(Washington, D.C.: DoD, August 1983).

-27—

E-36

TN T LT T e T T T e T
P R N A C R O L O AR CR N

DRAFT

(or maintenance) needs. Because operational needs are the

overriding concern to DoD, they determine, in part, the logisti-
cal needs,

In addition, DoD identifies gspecific problems or issues
inherent in MCCR which must be addressed by its strategy. These
problems include:*

° Lack of adequate competition;

) System schedule slip;

) System failures;

° Latent defects;

[Inability to reuse and transport software;

) High cost of maintenance support and logis-
tics;

° Low operational availability:;

° Difficulty in maintaining and upgrading
software as needs change and as technology
changes.

The unique requirements of DoD as well as the problem of timing
between the technology life cycle and the system life cycle cause
these problems and are an important input into the development of
objectives determining DoD's strategy in acquiring MCCR.

DoD's objectives in acquiring MCCR can be deduced from an
understanding of its requirements and problems, While not
necessarily exhaustive, a 1list of objectives provided below

* Defense Science Board, Tagk Force on ECR Acquisition and
Management (wWashington, D.C.: OUSDRE, November 1982); DoD,
Report to Congress on Computer Technology

r PP. 1i-iii; also
see CODSIA,

Resources, Volume II, pp. 21-22.

\ - I‘ I-‘ -‘ -- ‘-. --.'-.Q.‘ ."I‘-.-\'-‘ -.'. y
AN 4-..}- - A NV o2 r N “'\ N.\'Q', 1 .f_ ,\ «" .(N s 4'.'¢_.\- ~.' Js. f\f\(\-"\-r*l‘\- M AR SR SRS A A

A Rl " e U N P BN BN 0 B D N R S L A S

§

CRR T LA AN RN

a
a

DRAPT

indicates the factors driving DoD's strategy in acquiring MCCR.
These objectives include:

X A
%
[

Reducing the cost and time of acquiring MCCR;

Fga
[)

Improving operational readiness;

° Enhancing interchangeability, interoperabil-

Eﬁ ity, and transportability of MCCR;
;& ° Improving maintenance and logistics supoort

of MCCR;

[Reducing the variety proliferation of MCCR;
and

° Enhancing the ability to introduce opre-)
planned product improvements (technology v
ingsertion) to MCCR.

DoD develops strategies to acquire MCCR that will meet these
objectives., For every new start of a major system, an initial

acquisition strateqy is oroposed and implemented. Part of this ®
strategy will include consideration of technology insertion
(P3I). Further, DoD strategy must be developed in sufficient
detail at the time of issuing solicitations for concept

exploration to permit competitive exploration of alternative
system design concepts.

DoD strategy changes for different systems. For one system,
DoD may opt for the lowest cost system even though its vperfor-
mance may not be the best offered, but it is sufficient to meet
DoD's needs. In other situations, system performance (qual-
ity/reliability) is of greatest concern and cost is a less
important factor in DoD strategy. As one understands DoD strat-
egy and how it affects the MCCR acquisition process, one can
begin to evaluate how standards can be used in that process and
can identify potential impacts.

E-38

DRAFPT

Industry

. Because industry supplies MCCR to DoD via the acquisition

process, the behavior of companies in industries such as comput-
ers and semiconductors must be examined, Exhibit 7 disvlays the
factors influencing industry behavior and the development of
strategies by companies within an industry.* The behavior of
these companies is conditioned by the environment in which they
operate; for example, standards and the MCCR acquisition process
are elements of the environment and affect the corporate behavior
of these compaﬁies. The actions of competitors as well as gov-
ernment policy also affect industry behavior. 1In addition, other
factors, including the organization of the companies and their
goals, influence behavior.

The organization represents the manner in which a company
structures its human, capital, and financial resources. Compa-
nies in industries also pursue'goals; these goals may be short-
run, such as maximizing market share, or long-run, such as profit
maximization. Given a set of goals and a particular organiza-
tional structure, a company will formulate and implement a set of
gstrategies by matching these capabilities with the opportunities
that it perceives in the marketplace.

A company selects various strategies with respect to pric-
ing, produbt"choice, technology, and marketing. The company
implements a set of strategies in hopes of achieving its goals
and attaining a certain level of performance. For example,
certain companies in the semiconductor industry have followed a
set of strategies that emphasize introducing new technologies,
producing high-quality/high-priced devices in relatively low
volume, and concentrating on specializ~d markets or market

* This industry model "has been developed in Putnam, Hayes &
Bartlett, Inc., 9Qp. ¢cit,

E-39

AT ATy "™ es" 2 n "k "~ AR

e SR

e e e A~ Y ANR A AL AL

Exhibit 7

FACTORS INFLUENCING CORPORATE STRATEGY

] Technology

™ Standards

ENVIRONMENT

° Market structure
and competition

[Government strategy
and policy

opportunities

QRGANIZATION AND GOALS

[Resources

. Hierarchy

] Long-term versus
short-term goals

T AT AT AT '\1'-')"‘ ‘:]“‘" = e
)\.’\\{-“u .‘-{‘ t“(“‘-\) -ﬁhﬂ:"

-
XN

v

\\EQ STRATEGY FORMULATION
AND_IMPLEMENTATION
] Pricing
v
° Product
® Technology
° Marketing
¢ .
RERFORMANCE
° Profitability -
[Productivity
) Innovation
L
L
-31 - E-40 o

P,
A PN

Wt aty

LS

- . P R N

.....

|

DRAFT

niches. These firms perform reasonably well as long as competi-
tion is not severe and they are able to maintain a technological
lead. Successful strategy implementation' depends upon both
environmental factors (market structure, degree of competition)
and organizational factors (good in-house researchers, flexible
management of the technology development process).*

LINKAGES IN THE FRAMEWORK

The components of the conceptual framework provide the
building blocks for isolating the effects of standards in the
MCCR acquisition process. The next step is to identify the key
linkages among the components which explain the factors
influencing the impacts of standards. These linkages are shown
as solid lines in Exhibit 1.

DoD =-- Acquisitijo oce

DoD strategy and behavior are linked closely to the MCCR
acquisition process since DoD is the primary motivating force
behind that orocess. In Exhibit 5, we noted that DoD implements
a strategy which is directly related to the MCCR acquisition
process. That strategy encompasses various factors designed to
affect the:MCCR acquisition process at various stages to obtain
the desired results. To be effective, DoD's strategy may differ
at vérious stages of the acquisition process. For example, even
though P3I may not be introduced until late in the life cycle, it
must be planned for and budgeted in the early phases of the life

* See Peter K. Ashton and James A, Dalton, "Strategic Behavior
and Performance in the Semiconductor Industry,® Texas

Business Review (Spring 1983).

.......

AT a NN g Nu N eV P, 0, Wy T 07 T

E-41

Suthu> Aat et S et At gt ofie > i JARS S e ai AL oL K 0 LI e Bl Bl

DRAFT

cycle. Changes in technology, however, can affect DoD's plans
with regard to technology insertion. DoD's ability to match an
effective strateqgy with each stage'of the acquisition process is
a key to achieving its objectives.

The beneficial and/or harmful impacts of a particular

strategy are isolated by determining the impact on three con-
cepts:

. Budget planning;
) Cost predictability;
° Uncertainty (risk) reduction.
For example, DoD's MCCR acquisition strategy must facilitate the

budget planning process for the acquisition life cycle. This
strateqy should also induce cost predictability both in terms of

overrun control and in terms of properly making risk/return\

assessments. DoD's strategy should also reduce risk, where risk
is defined as the uncertainty associated with the timely develop-
ing and deploying of a cost-effective, reliable MCCR.

The uncertainty or risk of the MCCR acquisition process is a
function of several factors including cost, quality, time, and
system' flexibility. By changing each of these factors, risk
(uncertainty) can be raised or lowered. Each of these factors is

in turn influenced by a number of variables impinging on the MCCR
acquisition process.

Cost is defined as the total acquisition cost for a partic-
ular MCCR. It is influenced by the existing technology base, the
extent to which suppliers can move down the learning curve, par-

ticular DoD requirements for that MCCR, and the amount of compe-
tition in supplying that MCCR.

-33- E-42

)

(4

1/

‘\

DRAPT

Quality reflects the prdbability that a MCCR will perform as
anticipated. Several elements affect the quality of MCCR includ-
ing the existing technology base, particular DoD requirements,
and tradeoffs which the supplier(s) or DoD makes between cost and
development time.

Time is defined as the length of time needed to develop and
deploy a MCCR. It, too, is defined by the existing technology
base and DoD requirements as well as the shape of the learning
curve and the acquisition life cycle itself.

System flexibility reflects the capability of MCCR to be
interoperable, transportable, and compatible with other MCCR.
The existing technology base and DoD requirements affect flexi-
bility as does the existence (or non-existence) of standards.

DoD takes each of these four factors inmto account in devel-
oving a strategy; one objective to minimize uncertainty. " In
order to minimize uncertainty, DoD must maximize system flexi-
bility and quality while also minimizing cost and development
time. Since each of these factors is interrelated and affected
by similar elements, DoD must make tradeoffs among them to obtain
an optimal condition with minimum uncertainty. For instance, to
increase quality, DoD must make greater use of time or money
(cost) or both.

The following example illustrates the tradeoffs between
cost, -time, quality, and system flexibility of MCCR that face
DoD. Assume that DoD chooses to encourage competition and the
number of competitors throughout the MCCR acquisition process.
DoD may benefit because this reduces uncertainty by lowering cost
and by indirectly improving quality through maintaining many
alternative sources. With a greater number of competitors, move-
ment down the learning curve may be slower, but greater emphasis
may be placed on process (cost) innovation because of the diver-
sity of approaches. On the other hand, uncertainty may increase

E-43

(4'.-/11---".'11-4‘('(
\.\ \\\\&‘-\
J‘J' f-ff(l'-'-'&-'hﬁ.’ }Lff!

........................

A Sl i Bl L AC RO A, AT R DG DR R, N T B A

DRAFT
because delivery time is delayed due to an extended life cycle
for solicitation and evaluation of different provosals., The

. strategy affects other factors such as budget planning which is
made more complex and less certain. Each of these impacts are
weighed to determine the overall impact of DoD strategy on the
MCCR acquisition process and then.compated with other impacts
flowing from the other linkages.

- and

DoD and the Services formulate and implement various types
of standards and specifications as part of their strategy for
acquiring MCCR. Standards represent one focus of DoD strategy
vis-a-vis the MCCR acquisition process. 1Its impact on the MCCR
acquisition process is the oprimary. focus of this study and is
treated in detail as a separate linkage. 1In this section, we
point to the reasons why DoD uses standards to acquire MCCR and
discuss the likely results,

DoD has explicitly identified certain objectives with regard &
to its use of standards. These objectives are to "assure physi-
cal and operational interchangeability and interoperability while
balancing specific mission requirements with technological growth
and cost effectiveness."* DoD employs standards where they will ®
reduce the. risks inherent in the MCCR acquisition process. The
previous section showed that standards can affect system flexi-
bility which in turn influences risk. Standards can also indi-
rectly influence other elements such as cost, time, and quality. .
The primary benefit to DoD of using standards properly is that
standards improve DoD's ability to make tradeoffs among quality,
cost, time, and flexibility, thereby making it easier to achieve

* DoD, Qverview of the pDefense Standardizatjon and Specifica-

o Bl W R DL L L R e T

DRAFT

an ootimal solution to reducing risk. Costs result when stan-
dards elevate risk by exacerbating one of these elements.

For example, standards that define the manner in which
° software will be developed and documented provide a general
framework for software acquisition and allow common implementa-
tion by develovers, users, and maintainers.* The benefits of the
standard to DoD include information that is transferred among
P users and enhancement of interoperability; the standard may also
reduce costs and development time by providing a uniform method
of develoving and documenting software. 1Insertion of new tech-
nology may be easier because software developers have to spend
@ less time "reinventing the wheel.® They can concentrate on new
programming because the design and documentation needs are
clearly specified.:

< DoD implements such standards where such benefits clearly
exist; what is less clear is a standard that may generate certain
benefits, but also increases costs in other ways. Suppose the
documentation standard described above were written in such a way
<& so as to prevent using certain new programming techniques which
in turn delayed technology insertion. 1In this case although the
standard may have provided useful information and reduced costs,
it also prevented the use of advanced programming techniques and
S caused DoD to acquire software which was not state-of-the-art.
Measuring these lost ooportunities may be difficult, but DoD
frequently faces these tradeoffs which can condition its behavior
leading to suboptimal choices.

* Such as MIL-STD-1679A, "Software Development."

Ta
T L P T Ay

™ NS

PN NN NI O IR USROS m\

DRAFT
Industry -- Standards*

Standards affect industry in two ways: (1) by influencing
strategic behavior, and (2) by altering their investment behav-
ior. Strategic behavior is affected, for example, if a standard
establishes a minimum quality level that necessitates pushing the
"state of the art," it may force a company to pursue a product or
technology strategy designed to achieve this quality level. This
is one way in which DoD can insert new technologies. As another
example, DoD may implement a standard that reduces the prolifera-
tion of different varieties of applications software. Companies
that had supplied software not covered in the standard then face
three strategic choices: (1) exit from the market of supplying
to DoD; (2) develop new software that meets the standard; or (3)
seek a waiver from DoD to permit it to use the non-standard
software. These options may be more or less risky depending on
commercial applications for the company's “nonconforming®
software, the nature of competition in the DoD marketplace, and
the company's overall strategic outlook vis-a-vis that particular
product.

Standards influence industry behavior in another way.
Standards can alter the expected profitability of an investment
project by changing the risk/ceturn payout of the project. The
expected profitability of any investment project is a function of
the expected returns and the relative riskiness of those returns.
(See Equation 1.)

E(D = g Pl V1+P2 V2 eee + P Vn (1)

* This linkage is described in detail in Putnam, BHayes &
Bartlett, Inc., Qp, ¢it,.

! DRAPT

& where

E(T) = Exvected profitability
) P, = The probability (risk) of the expected return for
i product

th

V; = Expected return for i ' product

The functions of standards can alter vi, that is, the risk
| & associated with earning a particular return. Standards may both
raise and lower, market and technical risks.*

Test and measurement methods. provide valuable information
o which vermits the comparison of results of various innovations.
If a researcher knows that one prototype will measure favorably
against other test oroducts, R&D effort can concentrate on the
t design that is superior, thereby reducing development costs (and
™ technicai. risks) and increasing expected profitability. 1In these
situations where risk is 1lowered and/or returns go up, and
expected profits increase, standards will be desired; standards
will not be demanded by industry when they raise risk (or lower

L returns) and lower expected profitability.

For example, DoD may implement a standard that oprovides

information to 3all suppliers of software that DoD will purchase

- only software that operates on certain compilers. This reduces
the tisks'_of developing certain software since suppliers are

aware of the precise specifications of what DoD wants and how the

\ software must operate. Certain companies that do pot have
< compatible or transportable software may face higher risks of

* As discussed above at page 8, market risk represents the
- risk associated with attempting to sell a product and the
AR probability that the product will generate a profit.

Technical risk involves the risks of successfully developing
a product or cost-saving process.

e eammcsm PR B R P EPA R B AR AP L TR NS "R A N I S I A L SIS YL D 0 R Wi T WATIDARIRSY S T N I 3% SO NI
SO AL O (NS LU RSP g \"‘."\t"'.w."\'\" DA RGN ER S Y MBI ARSI

DRAPT

doing business with DoD, especially if there are established
competitors already making compatible software.

The impacts of standards to industry result from their
influence on industry behavior and through impacts on risk.
Standards can raise or lower risk, and not all companies may be

- affected in the same manner. The nature of the impact depends

upon the competitive position and strategies of companies prior
to the imposition of the standard.

The MCCR acquisition process has a direct impact on industry
and industry strateqy.** This process represents a manifestation
of DoD strateqy and its impact on industry. It includes the

“interaction of the MCCR acquisition process and standards, which

is the crucial linkage discussed in the next section.

As we discussed above, the MCCR acquisition process may be
viewed as an element of the environment which conditions and
constrains industry strategy (see Exhibit 7). The MCCR acquisi-
tion process may influence a company's goals either by creating
new goals or reinforcing existing goals. The structure and
resource base of the company may also be affected by the acquisi-
tion process; -for instance the company may need to acquire and/or
train persénnel to deal particularly with DoD and respond to
DoD's unique requirements.

* A more detailed discussion of this linkage appears in
Wilson, Ashton, Egan, gp, ¢it,

e Industry can influence the MCCR acquisition process indi-

!
:
i
|

rectly in three ways: (1) through lobbying efforts that g
influence the acquisition process directly; (2) through
lobbying efforts that feed back on DoD strategy; and (3) :
through industry participation in implementing standards ;
used in the MCCR acquisition process. .
-39- E-48 4
e AT A At AL o e T e N N e A S S T A S e
(-:\\‘n"f-.(&.*:*:.f\.f\s(R \{i‘(‘\.\.\':\.:'.{hi‘.'h\.t‘-{hf 'l.h'l'-ﬁ--'l*ﬂJﬂ AL PSS, AL EALTLTR AN TR Y

DRAFT

Since companies pursue different strategies, the MCCR
acquisition process will affect various companies differently.

Certain firms may aqgressiveiy pursue strategies aimed at winning

DoD business while others are less aggressive and concentrate
greater effort in commercial markets. Changes in the way DoD
affects the MCCR acquisition process can alter corporate strat-
egy. For example, greater emphasis on cost control or less
emphasis on reliability may compel certain companies that previ-
ously had emphasized high cost/high quality products to reorient
their strategy.

The analysis of industry reaction to one MCCR acquisition
program will demonstrate how industry is affected. The VHSIC
(very high speed integrated circuits) program was announced in
late 1978 as a six-year $200 million program to push technology
in the development of integrated circuits. Many saw this as a
response to the Japanese and European government efforts in the
VLSI (very large scale integration) area. Industry initially
greeted the VHSIC program with mixed feelings. Some vointed to
its likely effects on companies' organization and resources; this
program was expected to be engineer-intensive and, given the
scarcity of trained design and process engineers, a potential
problem of committing enough talent to the program was identi-
fied. Others claimed that the program would divert resources
away from promising commercial areas to military applications
with little commercial relevance. Still others believed that the
VHSIC program would not insert enough basic technology and not
'push‘ the technology in the appropriate direction.

Many of these complaints have proven ill-founded and most
companies have welcomed this government interest and support of
integrated circuit technology. These companies believe VHSIC is
providing needed capital resources and will help stimulate
continued growth and innovation in this area. Some companies

E-49

« .

» &
P

NI PIEN NI

DRAFT

have responded to the program, reorienting their strategies in
hopes of "cashing in®" on the capital for R&D provided by DoD. It
~is still too early to tell what the final impacts of the program
will be; it is clear such a program can have significant effects
on industry and its strategies and indicates the factors eval-
uated by industry in making impact analyses of such programs.

The 1linkage between standards and the MCCR acquisition
process is the crucial relationship in the framework because it
demonstrates the jmpacts of standards. We have seen that DoD
pursues certain goals in the MCCR acquisition process and that
the use of standards is one element of DoD's strategy for achiev-
ing its objectives by reducing risk in the MCCR acquisition oro-
cess. Further, we have seen how industry and standards interre-
late and how the MCCR acquisition orocess can. affect industry.
But to fully understand whether DoD's use of standards will
achieve various objectives and what the impacts are, the stan-
dards-MCCR acquisition process linkage must be analyzed.

Exhibit 8 depicts a schema showing that standards interre-
late with all phases of the MCCR acquisition process. The
functions of standards impact each of the phases of the MCCR
acquisitiod,pfocess. although certain functions are more impor-
tant at some phases than others. 1In the early phases of the MCCR
acqufsition process, basic information is needed to help define
needs and assist contractors in understanding DoD's requirements,
During the demonstration, and test and evaluation phases, the
quality function is important because it gives DoD program
managers a means to measure performance and make comparisons
among competing systems and against overall system requirements.
Later on at the maintenance and support phase, the variety

-41- E-50

“» % %
M N

- s
TS

AR

€

Exhibit 8

STANDARDS - MCCR ACQUISITION
. PROCESS LINKAGE

Generations _ 7

- . . MissidﬁE
. : : Analysis

.

Alternative

svstesms \\),

D L]
emoystrat. <E}“‘

STANDARDS

[X X J

A\

|
~Function !
-Proponent

J

Test &
Evaluation |

°
‘ ®
Production
& Deployment
. ® .
e
o

~-Category

Maintenance

& Support ’

| v

® :_

. -

® .
.

Retirement & R

Disposal B

Y

© v
N

N

_\

.\

- ‘ N E-51 |
.

- 4 2 - N

ST e ST S S I L SO T W SRR LY \‘._\::'

....... "TaTe a'p -’-"-'-..--....-'.-;-., -'_:._ ~'_:~. "‘\'.-.' Satat et At et et . "‘- . .::_l < \“. ..,..’\'. > '\.-‘. K ‘\'\"- -*)

¢ ‘\-'*:‘- ;‘-‘:\"-\,ﬁ'-"i"..*.»" S AN A e e e PTIENT w -

optimization and compatibility functions are important for
adequate spare parts availability and to facilitate repair by
’meanSAOf compatible modular construction.

In addition, the flexibility of standards (i.e., interface,
process, or product) will change with the different phases of the
MCCR acquisition process and the technology life cycle. 1In the
early phases of the acquisition cycle and the life cycle, stan-
dards will be written so as to maximize flexibility and encourage
alternative designs. At later stages, standards may be more
process- or ptoduct-oriented. emphasizing physical dimensions and
designs.

The prooonents of standards will be involved in different
phases of the acquisition process. Clearly buyers and suppliers
will be most actively involved in the phases up through oroduc-
tion and deployment; at this point users and maintainers assume %
significant roles and will demand standards that facilitate use
and maintenance of the system. The buyers and suppliers, how-
ever, do not drop out of the picture completely; if a system
fails to operate properly in the field, feedback to the buyer and o
supplier from the user will compel them to alleviate the problem.

This 1linkage, as Exhibit 8 indicates, however, must be
viewed in the context of the technology process and particularly o
the technology life cycle and technology push/insertion or P3I.
A critical issue facing DoD is when in the acquisition process
P3I is desired (because of the technology life cycle, DoD knows
P3I must occur) and how does DoD get industry to help provide -
P3I? As noted earlier, DoD must plan for P3I early in the life
cycle. This may involve interaction with potential users as well
as giving consideration to what the state of the art may be 10 or
20 years hence. L

DRAPT

Standards can foster or inhibit the insertion of technology
in the MCCR acquisition process. Early adherence to a gquality
standard (such as an ISA) that freezes on a particular technology
or design clearly hampers technology insertion and can increase
DoD's risks by deploying less effective systems. On the other
hand, an information and compatibility standard such as for
software documentation may facilitate technology insertion by
making it easier to introduce new advanced software to an exist-
ing system whose requirements are clearly understood. In the
latter case, risks are reduced because system flexibility has
improved.

To assess the impact of standards in the MCCR acquisition
process, one must examine whether thé goals of DoD strategy in
that process have benefited (or been achieved) as a result of the
use of the standard. As discussed previously, the benefits of
standards are derived from the manner in which they reduce risk.
For example, as noted above, the quality function of a standard
obviously helps assure that DoD obtains reliable MCCR. Compati-
bility standards can reduce costs and increase system flexibil-
ity. Standards that make it easier for DoD to trade off among
the factors affecting uncertainty are perhaps the most benefi-
cial. Por instance, a standard that establishes common software
terminology and definitions among the Services helps to reduce
system development time by making it easier to determine mission
needs and evaluate current systems. Such a standard may also
enhance system flexibility by facilitating comparisons across the
Services and t“ereby also reduce the cost of developing new
software that c.n be utilized by all three branches of the
military.

Agide from looking at the impacts on DoD, one must analyze
the reaction by industry to a particular standard. DoD may
believe that standards for software documentation will facilitate
technology insertion as described above. However, if the stan-
dard provides a method for documentation with which industry is

—44- E-53

S Y el

:
h
i
2
:-\:

DRAFPT

unfamiliar or believes is not appropriate, industry may resist
the standard and technology insertion may not proceed smoothly.

This last example demonstrates the necessity of evaluating
all the linkages and impacts of a standard tc fully determine its
impact. Both DoD and industry analyze the likely effects of a
standard and, depending on the perspective, the impact analysis

may prove radically different. The last section of this paper

will discuss techniques for conducting the impact analysis.

METHODOLOGIES FOR EVALUATING
TAE IMPACTS OF STANDARDS

Once one understands the components and their linkages in
the framework, one can assess the impacts of standards or
prooosed standards and attempt to make an overall evaluation. As
we noted earlier, oprior analyses have examined the impact of
standards on one or two dimensions; however, to gain a complete
understanding of a standard one must evaluate the impacts at each
component level and conduct an analysis integrating those impacts
across the framework.

There are a number of ways to integrate the impacts in the
framework. Common techniques include risk-benefit analysis and
consumer welfare analysis. Each technique as developed herein
merely provides a "road map®” for decisionmakers and must be

‘refined and developed further on the basis of further analysis

and case study. Furthermore, these techniques may be used
together to complement and supplement each other in arriving at
an overall determination of impact.

-45- E-54

]

4

*

AD-R17S 352 COST EFFECTIVENESS TRADEOFFS IN COMPUTER @we
STANDARDIZATION AND TECHNOLOGY l (U) INSTITUTE FOR
EFENSE ANALYSES ALEXANDRIA YA ET AL. JUN 86
UNCLASSIFIED IDA-P-1931 IDA/HO-86-31052 HDRSBZ 84 C 0031 F/6 9/2

PN

T PN

1
§
Ry

BEY

- oo o
LT 4N

)

-

¥ -

)

> g
-

ok

e E L

v‘,-‘."..-;." .

N 5%"'."‘!"'."‘\‘\"‘I'n‘l’!‘ U

P N T L T T L T

©
E

‘
3
A

".m;w‘e .

'Fi

i
1}

[4
. kB
¥

} ‘

O TS s e Y S R TNV PR ST, TS TR TS AN Y

EE

FE
I8 W P

)

)

B

A

-

Consumer Welfare Analvsis

Consumer and producer welfare analysis examines the benefits
(and costs) of changing the demand and supply for a particular
good, in this case, MCCR. The concept of consumer surplus
provides a tool for measuring changes in social welfare. Con-
sumer surplus is the difference between the maximum price that
consumers are willing to pay for a product (such as an MCCR) and
the actual price of that product. Producer surplus represents
the profits earned by a producer in selling a product.

Consumer surplus can be measured as the area under the
demand curve and above the horizontal line denoting price, as
shown by the shaded area in Exhibit 9. If the price of the
product falls, the price line moves down and the area showing
consumer surplus increases, Producer surplus is commonly mea-
sured as the difference between revenue earned by the producer
and the cost of making and selling the product.

With the introduction of a standard, the supply curve (51 in
Exhibit 9) is assumed to shift down to s2 as a result of lower
production costs.* The price of the standardized product falls
from Pl to o, and the quantity demanded increases from Q1 to Qz.
The measure of benefits from introducing the standard is the
increase in consumer surplus resulting from the decrease in price
paid by the consumer, i.e., DoD, as shown by the cross-hatched

area, PZRTi’l. Depending on this shift in the producer's cost

curves, producer surplus may either increase, decrease, or remain
the same. Comparfson of price~cost margins before and after the
impogsition of the standard provide the measure of change in
producer surplus.

It is assumed that the standard lowers production costs, for
example, by optimizing variety and permitting the realiza-
tion of scale economies,

; Exhibit 9 o
‘ _ CONSUMER SURPLUS ANALYSIS

. Price | ’

; P, Supply (s,)

. / R L

2

| P, £ supply (S,

{

i

e{ L

o Demand (D)

i

X

. _ | .

Q Q, Quantity

‘ g
-

;
w
L 4

-47 - | E-56

L3 .
. . B L I B N IO SRS T LS TR W \‘-\v‘\ "‘
- e o - ARSI LRI D SR A mc O
[« 7 7 e ; ~:- :"’-I"’(-’ (J‘ (:(‘s' L’A ;. ‘vl';_:';’ RPN T s R CORN C RN alats '-{
& PAEAE S K84 ’zt. Zuit ».
f_d._tn_{...fL AT LY. S

PSP T, 4
e i

- N S
bl S " o

[

DRAPT

In order to fully apply this technique, one must first be
able to estimate the demand and supply for MCCR for a particular
system and then estimate the life-cycle costs (and cost savinék)
of introducing a standard. PFurthermore, as the framework demon-
strates, these estimates must incorporate not only direct costs
and savings, but indirect effects as well on not only buyers and
suopliers, but users and maintainers as well, Clearly,
sufficient data must exist before this method is feasible;
however, it does provide a useful and relatively simple approach
to the problem,

Risk-Benefit Analvsis

Traditional cost-benefit analysis involves measuring the
impacts of a standard in terms of the costs and benefits it
generates. Measurement of costs and benefits in quantitative
terms is not necessarily simple or straightforward. The analysis
discussed here involves "risk-benefit®™ analysis which is less
quantitative but provides a way to assess all the impacts (direct
and indirect) of a standard. One evaluates impacts in terms of
whether rigk is increased or decreased and what the benefits are
that result from changes in risk. A series of decision rules are
implemeénted to determine the nature of the impact on risk and
weights are established to assist in comparing impacts among the
components in the framework. A hypothetical example of risk-
benefit analysis follows and is depicted in Exhibit 10.

Assume DoD issues a set of standards designed to implement a
standard softwvare support environment that could ooverate with a
variety of computer systems. DoD's objectives in this effort
would be to reduce applications software proliferation, provide
central configuration control, and improve software support from
both development and life-cycle standpoints. In examining the

T NRTPUW W (WU IS T o7 .d % we

-

8JuU3rds jo aje3s ayl ur jJuswadueapy
% uorjiasul Aborouyoayl paaoiadury <«
205 S3rjoiad pue pueuwsap 13m0
- <l Kbaje1ys-
t0z ISTI reotuyosaz .paonpad | sjoeduy
Ki13snpul
t0¢€
0¢ X571 3J9jieu paonpay ubyan 1TRI940,
Iybyom
\Se ejep 13bpnq paaociduj
0¢ X31tenh cm>mwmad4 aaryoalqo-
<" sjoeduy aoda
20€ £3171qIX313 wajsAs paaoiadu 209

ybraM TTERIB34AQ

ts61

IYybropm

WT]) 9 3S0D waysks 1amo7]

QUVANVLS INIWNOYIANI JYVYMLIOS V WOUd
SNINLIY-ASTIY JO ONILHOIIM ONIANTIONI SISATVNV IIVANWI

0T 31qTYx3

Abofouyoay, uo 3oedu] Teurajxy

$01
aybram 111340

E-58

§8300a4d
uot3rsTnboy ¥WOOM

3iem3jos piepuelsS

juswuoirAug 3zoddns)

-
<
Lg

o2

2

LN
L

DER N

TR

R NN

RRNRY

2N

v
)

.

N

\)

DRAPT

likely impacts of the standards from DoD's point of view, the
benefits derived from reduced risk would include: (1) lower cost
and less time required to establish software support facilities;
(2) greater total (hardware/software) system flexibility and
easier upgrading; (3) improved system quality; and (4) better
1nfo:matiog about life-cycle cost.

The cost savings are measured by comparing the cost of
independent development for software support per system plus the
life-cycle support costs per system with the costs of implement-
ing a standard software support environment per system. This
quantitative estimate reflects only one set of benefits to DoD
and must be weighted relative to the other benefits to DoD.
Decision rules can be developed, for example, that state that
improved quality and system flexibility are twice as important as
dollar cost savings and thus these benefits would be weighted
twice as heavily as the cost savings. (As shown in Exhibit 10,
flexibility and quality are weighted twice as much as cost/time.)

The analysis must also evaluate ﬁhe‘impact from industry's
verspective. Industry may react favorably to the standard as it
reduces both market and technical risk of developing software
support tools and facilitates upgrading to new systems and
enhancing existing systems. Again these benefits must be weight-
ed according to a set of decision rules. Hypothetical weights
for both pr"and industry are shown in Exhibit 10 as well as an
overall weighting scheme. Industry may experience certain costs
as well. Clearly, a standard software environment reduces
software proliferation which may potentially reduce software
sales and profits, Also, proprietary support software would no
longer be necessary which might deter some companies from compet-
ing. The technology insertion process, however, would be
improved by the standards, particularly as it would facilitate
side-by-side hardware and software development. Summing up all

A

We? ot x®a” 4" G 5 v v TR e

«

=2 x|

it g n g s gt TR i g R B R R W et e M- A ouBel Rais PN P ¥ X3 oLy &y Bty s

DRAFT
the impacts and weighting by the scheme shown in Exhibit 10 o
yields an overall impact estimate.
Again, a more rigorous approach to weighing and comparing ®

Vs

the benefits and costs of the standard must be developed;
nevertheless, this analysis provides a way to integrate the
impacts of a standard and understand how the use of a particular ®

standard affects the MCCR acquisition process and ultimately

TG

impacts both industry and DoD.

.
S CONCLUSION

This study will develop a decisionmaking model to assist .

: high level DoD officials in determining whether a proposed 2

‘ standard or proposed application of a standard affecting the .

MCCR acquisition process. will have the anticipated or desired ‘

effect. The approach taken provides a methodology for examining :

the problem from the perspectives of the MCCR acquisition :

L

process, l?oD~ objectives and goals, industry objectives and
goals, and the standardization process. By developing a model
which examines the proposed action from all these perspectives
| and the linkages among them, important secondary and tertiary
effects which may actually exceed the primary or anticipated

effect in scope and significance may be identified.

E-60

2 (i O T2 € Yoy 5t A ¥
:f"q\“‘, By " LSRG ‘ }" N2,

\ Y
NS RE X At

S e S S S R o o A LS I

The'mobel will guide the DoD official through a series of

critical questions and issues that need to be examined from the
perspective of the specific situation. 1In addition to focussing
his attention on these critical areas, the model will provide
him with an analysis of the probable outcome based on surveys of
the relevant literature and actual case studies. This analysis
will provide appropriate citations and references which can be

used directly by the official in any supporting documentation he

needs to produce.

-52-

L oBE £ 3 0t 0 FEFN IR o gth

Aopendix A
GLOSSARY*

Lqm. An ANSI standard programming language trademarked by and
3 nder the control of the U.S. Department of Defense, with a
) vimber of modern characteristics.

- railabilitv. Overational Availability (OA) is defined as the
- ‘obability that, when used with actual overating environment, a
rstem as equipment will operate satisfactorily at any time.

4 gher Order Language (HOL). A software lanquage for program-
w.ng, which is more problem oriented than the traditional
@» ichine-level assembly languages.

. 13truction Set Architecture (ISA). The attributes of a computer
d .y * processor as seen by a machine (assembly) language programmer,
S " e., the conceptual structure and functional behavior of a
T . mputer (at the machine-language level) as distinct from the
H ovganization of data flows and control, logic design, and physi-
~al implementation. »

Interoverability. The ability of two environments (computer
jystems, processors, or weapon systems) to exchange data objects

(lata fields, records, files, or messages) and their relation-

;1ips in forms usable by tools and user orograms without conver-

~on. Interoverability is measured in the deqgree to which this L4
‘change can be accomplished without conversion.

. ssjon Critical Computer Resources (MCCR). Computer systems
wplications involving: (1) intelligence systems; (2) cryptogra-
1y for national defense; (3) command and control of military

-
* The definitions contained in this glossary are from Council
of Defense and Space Industry Associations (CODSIA), QoD
Management of Mission-Critical cCompuyter Resources, Volume

II, prepared for the Undersecretary of Defense, Rese'arch and ,

Engineering, March 1984. 4

b

1

y

E-62 - hd

T N S,

™l -

%)

% Auic e Fo- Yu fus Bp’

APPENDIX F
REFERENCES

G Ger Ny &,

2 Fpt

i T ACAL e (A7, Ta O O
\xrh-'u P" ~~ ,’ * < W e ‘b

Ada Information Clearinghouse, "Ada IC", July 1985.

Agrawal, S. et.al., "On Performance Oriented Design of JSSEE(JSSEE
Performance Considerations)”, Report EE-ARCH-012, BGS Systems, Inc.,
Waltham, MA 02245.

Alfeld, L., and Graham, A., Introduction to Urban Dynamics, Cambridge,
MA: MIT Press, 1976.

Arndt, D. "The Application of Ada Generics to Large-Scale Projects: A Case
Study", Bell Technical Operations Corporation Technical Report, Tucson,
AZ, no date.

Association of Computing Machinery, "Matrix of Ada Language
Implementations”, ACM, updated May 1985 by COMPASS.

Barnes, J. and Fisher, G., Jr.,, "Ada in Use", Proceedings of the Ada
International Conference, Paris, 14-16 May 198S.

Boehm, B., Software Engineering Economics, Prentice Hall, 1981.

Boehm, B., and Standish, T., "Software Technology in the 1990's: Using an
Evolutionary Paradigm”, /EEE, 1983.

Brown, M., "Computer Validation Called Beneficial to Ada Use",
Government Computer News, October 1985.

Brown, M. "UK Re-examines Ada Implementation Policies," Government
Computer News, October, 1985.

Brykczynski, W., "Abstracts.1" Abstracts of Ada tool packages. Draft.

~ Institute for Defense Analyses, Alexandria, VA, June 1985.

Carlyle, R., "Panacea or Placebo?", Datamation, August 1985.

Clapp, J., et al., "A Cost/Benefit Analysis of Higher Order Language
Standardization”, The MITRE Corporation Technical Paper M78-206,
McLean, VA, September 1977.

F-3

WA resle N AT AN .

LSS A LR TK T OO R R N N AT A A e T e e T S

-

) Y,

...

YN m e

........

-

e

{ Cormier, A., and Alberts, D., WIS Joint Mission Application Software
o Sizing Study: Volumes III and IV," Institute for Defense Analyses Technical
A Paper P-1868, October 1985. ,

R Courtwright, T., "Ada Tools Update”, briefing slides prepared for the Ada
Joint Program Management Office/ADT, no date.

Defense Science &Electronics, " Ada: an in-depth look", March, 1984.

E Defense Science and Electronics, "Interview with William R. Hattabaugh",
LD March 1985.

Defense Science and Electronics, "The Second Annual Ada Directory",

et March 1985.

e

E Dijkstra, E., "Structured Programming,” in Software Engineering
N Techniques, J.N. Burton and B. Randall, Eds., NATO Science Committee, o]
X 1969.
Y Druffel, L., et al., "The STARS Program: Overview and Rationale", /EEE,
s November 1983.

) L

Fahey, J., USAF Aircraft 1947-56, Ships and Aircraft, Falls Church, VA

> 1956.

>

:_" Fisher, D., " Automatic Data Processing Costs in the Defense Department,”

Institute for Defense Analyses Technical Paper P-1046, Alexandria, Va, ©

3 October, 1974.
f:_l Flaspohler, J., et al., "The Software Test and Evaluation Project: Tools

Baseline,” Georgia Institute of Technology, Atlanta, GA, September, 1985.

L

N Foreman, J., "APSE Interactive Monitor, Final Report on Interface Analysis

X and Software Engineering Techniques”, Volumes I-III, Technical Report,

2: Texas Instruments Equipment Group, McKinney, TX, July 1985.

_ Foreman, J. "Building Software Tools in Ada: Design, Reuse, Productivity, v
? Portability", Briefing Slides, Texas Instruments Co., McKinney, TX., July

; 1985.

i

" Forrester, J., Principles of Systems, Cambridge, MA: MIT Press, 1969. -
7

»

i F-4

- o
A

‘;: . . ; 1 ' ’:: \ Nt e ».:., ~ A OS] '\1.;-' :.:'\: ..:_.'- ./-'\.':-‘-'-‘ ..' (> ’ " ._)\'_..\ PRI ._ o)\ ?*-'-'\-‘\-‘\-‘:'.‘:'e

A A o

Fox, J., "Benefits Model for High Order Language", Technical Report
% TR78-2-72, Defense Advanced Research Projects Agency, Arlington, VA,
1978. .

GEC Software, "Overview of the GEC Software IPSE Product Strafegy",
The General Electric P/C of England, London, August 1985.

> L Lo A

George, J., "DoD Computing Activities and Programs Ten Year Market
Forecast Issues, 1985-1995", Technical report for Electronics Industries
Association, 1985.

(e = &

T Goodman, M., Study Notes in System Dynamics, Cambridge, MA: MIT
Press, 1974.

Graham, A. "Parameter Estimation in System Dynamics Modeling,"
Management Science,1980.

T AL A

Griffin, W., "Software Engineering in GTE", IEEE, November 1984.

Holmes, E., "P-System Poops Out", Datamation, August 1985.

2 % ot S5 A R

Jensen, R, "Projected Productivity Impact of Near Term Ada Use in
Software System Development,” Hughes Aircraft Co., Fullerton, CA. No
date.

AN

- Johnson Space Center, "Level C Space Station Project Office Proposes Use of
' Ada for Applications Software in Flight Subsystems”, Houston TX, no date.

KITIA, "Views on a CAIS from Industry and Academia", Draft, August
1985.

Klumpp, A. "Space Station Flight Software: Hall/S or Ada?", IEEE, March
1985.

Kramer, J., "Interview with Col. Whitaker", notes of verbal communication,
Institute for Defense Analyses, Alexandria, VA, 1985.

R 2R R R RS

O

. Kruchten, P., et al., "Software Prototyping Using the SETL Programming
Y Language”, IEEE, October 1984.

© Marmor-Squires, A., et al., "The Support Systems Task Area", IEEE,
November 1983.

C V7,

L]
T T roL Wo oty COR W, A AT N AP AT N D I I A T S T Sl B SRR RS A
NSO \,\,\ \j P AR NN L Nt AT AT T - PN R O S

[)

Martin, J. "The Management of Mission Critical Computer Resources", Parts
I-III Defense Science and Electronics, February, April and May, 1985.

il gl

McDonald, C., et al., "Seeking Ada's Full Potential", Defense Science and
Electronics, April 198S.

N o K A

Myers, Edith, "Picking Up the Pieces", Datamation, August, 198S.

Najberg, A., and Healy, R., "The Impact of Ada on Software Development
Costs," The Analytic Sciences Corporation, Report No. TR-4612-5-2,
Reading, MA, October 1984.

N
Tl W e,

¢

Office of the Under Secretary of Defense, Research and Engineering,
"Department of Defense Computer Technology (Study Annex): A Report to
Congress," Washington, D.C., January 1984.

2 RS %M

Oglesby, C., and Urban, J., "The Human Resoéurces Task Area", IEEE,
November 1983.

Osterweil, L. "Software Environment Research: Directions for the Next Five
Years", April 1981.

A Y

. PA. Computers and Telecommunications, "Benefits of Software Engineering
3 Methods and Tools, " London, England, June 1985.

Richardson, G. and Pugh, A., Introduction to System Dynamics Modeling
with DYNAMO, Cambridge, MA: MIT Press, 1981. |

Richmond, B. "A User's Guide to STELLA", High Performance Systems,
Inc., Hanover, NH, 198S.

Riddle, W., and Wileden, J., "Environment Extensibility Impact on the .
STARS SEE Architecture: SEE-ARCH-007-001 .0, Technical Paper P-1828,
Institute for Defenses Analyses, April, 198S.

; Ripken, K., "US DoD Motivation-Engineered Language Design,” TECSI,

EFDPA, London, September 1982. Quoted in Rogers, M, "IT Companies' v
Acceptance of and Attitudes toward Ada,” in Barnes, J. and Fisher, G., Eds.,

Ada in Use: Proceedings of the Ada International Conference, Paris 14-16

May 1985, The Ada Companion Series, Cambridge University Press. |

Russell, D. "First Ada Compilers Show Diversity", Defense Electronics,
: March 1984. :
‘D
. F-6
o
Q‘
k|
I G AR o R N T B NN R R RN "3

¢ SofTech, "ALS Description", Technical Paper, Softech, Inc., Middletown,
RIL ,

SofTech, "Architectural Descripition of the Ada Language System (ALS),
JSSEE Report No. JSSEE-ARCH-001, Middletown, RI, December 1984.

Stanley, R, "Whither Ada?", Defense Science and Electronics, March 1985.

y Stenning, V. et al., "The Ada Environment: A Perspective", IEEE, June
1981.

Stephen, D, et al., "DoD Digital Data Processing Study: A Ten-Year
Forecast”, Technical Report for the Electronics Industries Association, 1981.

Stone, H., "Life-Cycle Cost Analysis of Instruction-Set Archetecture
Standardization for Military Computer Systems", /[EEE, APRIL 1979.

Suydam, W., "Ada Programs Emerge as Compilers Vault Validation
Hurdles", Computer Design, June 1985.

. Systems and Software, "Packages Spawn Ada Growth", 1985.

Tlustos, C., "Users Need Ada Training,” Government Computer News,
October 1985.

U.S. Department of Defense, Instruction 7041.3 "Economic Analysis and
Program Evaluation for Resource Management," October 18, 1972.

U.S. Department of Defense, "Military Standard: Software Support
Environment” DoD-STD-1467, January 1985.

U.S. Department of Defense, "Requirements for Ada Programming Support
Environments -- 'Stoneman’," February-1980.

Verity, J., "Empowering Programmers", Datamation, August 1985.

Wasserman, A., "Automated Development Environments”, /EEE, April
1981.

Williams, J. "Compiler and Tool Set for Ada Design and Implementation”,
Defense Electronics, January 1983.

@

Distribution List for P-1931

, Sponsor

) Virginia L. Castor (8 copies)

_ Ada Joint Program Office

b The Pentagon, Room 3D139
® (1211 Fern/C-107)

_ Washington, D.C. 20301

3

; QOther

' Defense Technical Information Center (2 copies)
® Cameron Station

‘ Alexandria, VA 22314

K

8

)

)

.:
o

;

1@

i

. @

:

&

v‘l

3

. &

K

3

[

e

%

)
4e

B T I N 2y e N e o AR T A L e S LRI T,

.;fu.'. \(.'(-‘(”:\(sf Doy f\.f)
~ .y

L
L4

S W W, T W
‘-f\\ .{\‘

)

VT o e s - -
Ko gl ol gy - A - PR
idlad ; - e L=~ Lt o o S S TS D
- - h g)

\ o T Fu pen ¥ — ey
< i W Oy gt ey

Vi’ TP

